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Theory
(1) Electronic Structure of Disoxdered Systems.

The study of the electronic structures of one-dimensional disordered
arrays of delta-function potentials has provided us with considerable insights
into the applicability of the Wu=Dy method(l) to three-dimensional systems.

The preprint of a paper containing the results is attached. Extension to three
dimensions are now under way. The models considered are those of Henderson(z)
and Polk(3). The function Rkk’ required in the Wu-Dy method has recently been
computed by Chaudhari, Graczyk, and Charbnau(4) for the Henderson model. Their
results confirms our original conjecture that considerable fine structures in

this function will remain when the lattice becomes amorphous. These fine

- L IR Y T

Structures are due to coherent scattering of clusters of atoms with. short range o
order. In order to complete our calculation of the density of states, we need N :'fl
in addition the function ﬁkk. » which is the fluctuation in the energy band due
to disorder. Since computer effort in this direction is anticipated to bg ,._ :_ 7q§

‘.,::\, "

enormous, we are now trying to see if a reasonable analytic approximation As ..o

3

possible. . : ? «L
In our attempt to understand the electronic structure, we have,also’invegt;%
gated the tight - binding approach to the problem. We have calculated the density
of states of the Henderson model and the Polk model based on the one band hamil-
tonian H = Vli)(i'L where the sum is over all nearest neighbor pairs i and 1'.
In order to calculate the density of states, we computed the first ten moments
of the density of states using the close-walk counting technique. We then derive
.the density of states by fitting the moments with an expansion in Legendre poly-
nomials. Since the Henderson and Polk models are small enough for the hamiltonfan

to be diagonalized numerically, we also calculated the exact eigen-values and



eigen-states., The density of states derived in this way agree very well with
those derived from the moment method. The eigen-states so derived exhibit no
localization. In order to produce localization, we made a numerical study of

the Anderson model hamiltonian

H=) Ela)]| + ] v|i|
i ii!

where E fluctuates within the bounds * W/2. We calculated the localization
parameter . N
4 2,2
a=) lagd¥q la;%
i=1 i=]1
where the a, are amplitudes for some particular eigen-stateg. In a similar study,
{

Edwards and Thouless‘s) show that for perfect diamond lattice, the omset of

localization is less sharply defined and occurs more easily than in the Anderson

theory. For the disordered Henderson model we find that the onset of localization

is also not sharply defined and that localization is the same on the average to

that in the perfect diamond structure., The extension to more realistic models

are now being considered.

(2) Models of Steady State Electron Injection Current into Dense Media.

We have completed our calculations of the field and density dependence of the
steady state electron current injected into dense argon, hydrogen, and nitrogen

gases. The results are included in a prepriant attached.



Experiment

Experimentally, we have concentrated on continuing our experiments on
the drift of electrons in dense helium gas. Our results are now in accord with
previous experiments, the precipitous drop we reported in our last report is in
fact double branching, i.e. a high mobility branch coexisting with a low mobiliiy
branch. This was observed before in hydrogen but never in helium and suggest

a very long life time for bubble formation &t these high densities. A preprint

covering these result is attached.
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Electronic Structure of Disordered Systems -
et
II. Bne-Dimensional Arrays, Bound Bands
J. C. Wang and K. S. Dy
Department of Physics, University of North Carolina
Chapel Hill, North Carolina 27514
and
Shi-Yu Wu .

Department of Physics, University of Louisville
Louisville, Kentucky 40208

Abstract

The structure of the bound band of a one-dimensional disordered

array of attractive §-function potentials was calculated using the

method of Wu and Dy.'l



I. Introduction

In a previous paperl (referred to as I), we presented a method for cal-
culating the electronic density of states in disordered systems. Ws showed
that the method can be easily generalized to syctems with structural disorder.
Here we applied the method to calculate the density of bound states for an
electron in a one-dimensional disordered array of attractive §-function poten-
tials of a given strength. Other methods of solving this particular problem
exist.?-6 Our purpose here is to illustrate how the method presented in I
works and to provide insight for the application of the method to three-dimensional
problems.

Although the one-dimensional disordered array is not a topological disordered
system, we have not taken the advantage of the sequential numbering of the
atomic sites to reduce the problem into an ordered one. We also do not use
the closely connected method of relating the energy eigenvalue to the number
of nodes in the wavefunction. Thus our method of calculation can be readily
extended to two and three dimensions. However, as a basis for comparison, we
also calculated the exact density of states by the node counting method of
Lax and Phillips.2

We shall consider only arrays having short range order. as defined by
-Gubanov7 in the following way. The distance between each pair of neighboring
atoms is taken to be a(l + ey) where a is the average interatomic spacing
L/N, L being the length of the chain and N the number of atoms in the chain.

The factor € is a positive number less than one (called the short range order
parameter) and y is a random number having a Gaussian distribution with {y) = 0,
<ﬁg> = 1. Makinson and Roberts® have computed the density of states of one-
dimensional arrays of é-function potentials with ¢ ranging from 0 to 0.1.
The results presented, however, are for the positive energy region only. In

this work we have calculated the energy level distribution in the negative

energy region for the same range of c.
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I1I. Method of Calculation

We use the Green's function formulation presented in I to calculate the density

of states. The Hamiltonian we consider is given by

2
=B - E Vs(x - ), (2.1)

where Vo is a positive number which defines the strength of the potential and %

denotes the atomic sites. The tight-binding wavefunction is taken to be the

eigenstate 3
FNO) mVo| |
o(x - ) = (——) expl- ——|x - 2]] (2.2)
72 12
of
B
h = " Vod(x -2) (2.3)
with eigenvalue
2
mV0
W s - 2 . (2."")
2h

For simplicity we set w equal to -1. Using (2.2) one can easily compute the

matrix elements of the total Hamiltonian:

mvV
0
Hypr = Wy + 0 b exel- (e - 2] + Jam - 2D (2.5)

Defining the position & by a dimensionless parameter,i z t/a, we get

Hize = Wjg, + 29 Jexp{-A(|E' - &| + |2" - 2'])), (2.6)
Bt Bars 'z"¢.l
mV0 -
where A = —=a. Henceforth we shall omit the sign over the L's. The parameter

1
A is equivalent to ¢! in Lax and Phillips' notation.

In the formulation of I we need the following quantities:

Ry =N JatlkkDt g ., (2.7)
h

oyl iKL

V() = N Egﬂt,l-b e, (2.8)

U(LKk) = JHy eV, - (2.9

l‘ B
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= -1 -1 i(k"-k")R
Wkk, = N E"(I + R)k "

Typical curves of R, V, U and W are shown in Figs. 1-3. The matrix (I + R)-l

U(L,k"). (2.10)

needed to calculate ﬁkk' is inverted from I + R using a computer.

Using the computed values of V(k) and ﬁkk" we calculated the Green's function

by the direct summation of the band propagator expansion:

G(k,z) = 1/(z- V(k) - £(k,2)). (2.11)
where
Z(k,2) = W, + k'gk Wi OCK T 5Z)W, yp + ceeee (2.12)

We truncated the series for the proper self-energy I at the second term as shown
in (2.12) and solved for G self-consistently using a computer. The density of

states was calculated from G by

aN(E)/GE = n(E) = - = § In &(k,z + E + 107). (2.13)
K

III. Results and Discussion

In Fig. 1, the curve for IRkk'|2 shows considerable structures. These
structures are closely related to coherent scattering from clusters of atoms
in the array. P. Chaudhari, J. F. Graczyk and H. f. Charbau8 recently calculated
the quantity |Rkk'|2 (FF* in their notation) for a three-dimensional random network
model of a tetrahedrally coordinated amorphous solid. Their result shows similar
structures in the |Rkk'|2 curve but with less intensity in the local maxima com-
pared with our one-dimensional random array.

In Fig. 2, the V(k) curve (solid line) is the average of E gle-L eikL .
all sites £, i.e., it is the energy dispersion of the electron in an 'average crystal'.
The approximation G(k,z) ® 1/(z-V(k)) gives essentially the energy band of the

perfectly ordered array and, therefore, is a poor approximation for the tail states.

The structures in the U(L,k) curve, for a given k value, presented in Fig. 3

8




represent the deviation of [H . from V(k) from site to site and arise

£78,0-L e
because of the disorder. Note that the fluctuations are of the same order of
nagnitude as the band-width given by V(k) alone. In Fig. 2 we see that the
transformation of U(%,k) to wkk, (dashed line) reduces the fluctuations to values
much smaller than the band width of V(k). This reduction is due to the short-
range order in the array considered.

In Fig. 4(a) and (b) we show (solid lines) the calculated density of
states, dN(E)/dE, for a chain of 50 particles with short-range order parameter ¢
equal to 0.05 and 0.1. In Fig. 5(a) and (b) we show (solid lines) the corresponding
integrated density of states, N(E), In all these cases, the quantity A which |
determines the dezree of overlap of the neighboring wavefunctions is taken to be
10. As a comparison, we plotted in the same figures the exact results obtained
by the node counting method of Lax and Phillips (histograms in Fig. 4 and dots in
Fig. 5). The positions of the band edges for the perfectly ordered system are
indicated by arrows in the figures. From Figs. 4 and 5 one can see the gradual
spreading of the allowed band as the disorder increases. Because of the small
size of the arrays considered, the exact density of states shows considerable
fine structures. In Fig. 6 we show the exact density of states for a bigger
sample consisting of 2000 particles. It is evident that the fine structures
diminish as the sample size becomes larger. The density of states calculated
by our method using the 50-particle sample is smoothed out because of the approxi-
mation used in summing the proper self-energy series. The finite imaginary part
of the proper self-energy gives rise to a broad Lorentzian rather than a delta
function at each eigenvalue in the density of states.

Ideally,.the comparison of results should be made for a very large sample.

Because the computer time® for the present method increases with sample size N

roughtly as Ns, no sample larger than 50 particles were attempted. Nevertheless,

9




Figs 4 and 5 show that on the average the band tails are quite well reproduced
by our present calculations. The larger discrepancies actually occur at the
center of the band. The reason is that states at the center of the band are
quite extended (see Fig. 7b), and as the disorder increases, the overlap of the
wavefunctions can become quite large, thus introducing larger errors in the
tight-binding approximation.
We conclude that using the present‘me;ﬁod, the band tails of disordered

systems with short range order can be calculated quite accurately. However,
because of the large computer time involved the application to three dimensional

systems could best be done by introducing analytic approximations to the func-

tionals Rkk' and wkk' for an infinite system.

*
Work supported by the Materials Research Center, UNC, under Contract number

DAHC-15-67-C~0223 from the Advanced Research Projects Agency and a grant monitored

by the U, S. Army Research Office - Durham under Grant number DA-AROD-31-71-G52.
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure Captions
|Rkk,|2 as a function of |k-k'|for 50 §-function potentials with short
range order parameter € = (.05,
Typical V(k) curve (solid lire) and the real part -f W(k',k) curve
(dash line) with k' = -4n/5 for a linear chain of 50 6-function poten-
tials with € = 0.05 and overlap parameter A = 10. The imaginary part of
W(k',k), whi_. is not shown here, has theAZigzr of magnitude as Re W(k',k).
Real (solid line) and imaginary (désh line) parts of typical U(%,k) curve
with k = -2n/5 fér 50 §-function pofentials with ¢ = 0.05 and A = 10.
w is the eigen-energy of the bound 'state of a single §-function potential.
Density of states calculated with the Dy-Wu method (solid lines) and the
node-counting method (histogréms) fbr 50 6-function potentials with A = 10
and (a) € = 0.05 and (b) € = 0.1. Arrows indicate the band edges for the
perfectly ordered system. The bound-state energy of a single §-function
potential is chosen to be zero. -
Integrated density of states calculated with the Dy-Wu method (solid
line) and the node-coﬁnting method (doté) for 50 6-function potentials
with A = 10 and (a) € = 0:05 and (b) € = 0.1. Arrows indicate the band
edges for the perfectly ordered system.
Density of states calculateé with the node-counting method for 2000
8-function potentials with.(a) € = 0.05 and (b) € = 0.1.
Eigenstates for (a) E = 4.66 x 10" *|w], (b) E = -0.1 x 10™*|u|, and
(¢) E = -7,35 x 10-u|w| for a 50-particle system with € = 0.1. The
eigenstates wE(x) = {§1(5)¢(x - %) are obtained by finding the eigen-
vectors of the Hamiltonian matrix. Only the amplitudes, a,, are plotted

in the figure.
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Modeln for Steady State Electron Injection Current into Denne Media®
P. Sanjtek, M. Stlver, 1. L. Huang and K. S. Dy
University of Borth Carolina act Chapel Hill

Chapel N1ll, North Carolina 27514

Abstract

Tvo modelsn, the Moate Carlo sad the diffusion model for calculating
the electron curreat due to injection of hot electrons into dence media are
preseated. In the diffusion model, the curreat can be derived exsctly by
solving the contimuity of current equation aumerically assuniag & fant
encrgy Celanstion tvo-level system. lovever a very simple analytic
chptession for the curreat is odtained Lf one wees o strong diffusion
appronination for the hot electrons. The validity sad errors resultisg
frem the appronisation oit 4iscussed. Wien the diffesion sadel fatls,

e propose a slaplifisd Noate Corle aodel for calculating the currest.
The sadel ts o aadification of ea catiier nethod by Young oad Brofdury
te inclwde the offect of amitiple scattering ond the Influsace of the

faage pateatie].
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1. Introduction

Electron injection experiments have played a poverful role in determining
the electronic transport properties of insulating solids, d l1iquids 2 and geses 3 .
Nowevar, up until receatly, thsre ta atill a lack of an edequete theoratical model !
for explaining the dependence of the experimentally wmeasured curraat on the applied
electric fleld, the characterfatica of the medium, and the electron-mediums inte:-
ietion. Perhsps the first calculetion of the current-voltege relation resuviting
from charge injcction vas due to J. J. Thomson 4 . Thomson assumed thet neoar the
cathode the injected electrons heve s rendos velocity 30 given by thermsi equilibium

vith the ges and thet the density of electrons in the jes 1s uniform and of everage

velue 8 , This teplies that there is ¢ beck-diffusion curreal givea by ac;oll . '
in the presence of ea applied fleld, the curtent will de given dy jenev vhare v
is the drift velocity. Thus if Jo fe the total imjected current, vo get from
Thomson'e result jo-j-n;cll , ond

313924/ (vg449) | ()

3 found that Eq. (1) gives resscaadle (it to exparimeat only

Theobald ° and Lot ¢
" ;0 s reinterpreted oo the average velocity of emissica. Behierian d taproved
the theory further by taking the back-diffusien curreat to be .’é /4 and the

seasured curreat to be a_ev vhere 8, #86 n_ore the densitiss of electrons neer
aad far from the cathode respectively. The spplicedility of the theory presented
shove §s quite restricted eves in 1ts modified form. Theobeld > found that there

is o large descrepancy between theory ead enperiment vhen the emisaion velocity

becomns muth less thes the drift welecity, 1a sweh ¢ case back~diffusion loes
decteaves ond Thonson's resuit fatis. Ancther situation vhere Bq. (1) may be
eagetted o foll Lo vhen the bech-diffusion sone 18 wader the sttong influence of
the laage fleld prodeced by the injected electrons. In such 1 cave "he tetutn of

<0

— T



electrons to the cathode fs not given by back-diffusion alone.

Perhaps the correct approach tc the solution of the problew would be to do
a Monte Carlo calculation including all ths fields experienced by the electrons
and all the important scattering processes sncounter by the electrons. This is a
very time consuming calculation. One aimplified approach to this was made by
Young end Bradbury 8 vho calculated ths return curreant assuming only reflection
of elactrona in their first encounter with gas atoms or molecules. They found

that for jlj°<0.2 the current {s givea by

1.1/2gg)11/2
oy @

vhers ) {s the mean free path, I is the applied field and <o is the energy of tha
injected elsctrons. Unfortunately the validity of Eq. (2) is difficult to access
as thare is no simple vey of estimating the effects of multiple scattering.

Ia this psper, we shall presant two theoretical models for the steady stste
dlectron (njection currsnts. The first wodel is a modification of thas Young end
Bradbury wodsl to account for the effects of both image field and multipla scattering.
The sodel {s spplicadle to cases vhers the alectron momsntum and energy relaxation
rates ore slov. The second model 1s & two fluid model ia vhich the electrons aras
divided into a hot and a thermalized componsnt. The currents ave derived by solution
of the continuity ol currents squaticn. This msodel is spplicable vhen the momentum
snd energy relaxation retss of the electrons ara fast.

11. § 1 te Carlo

1a this seetion we present s simplified Monte Carlo method for calculating

the curreat is en experimeatal situation depicted im Pig. 1. An elesctron is injected

fato the medium vith enargy €o° In the wedium the electron experiences the total
2
potential V(x) consisting of the imaje potential - %;; and the applied potential

21
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-eEx. Let us considar first the case in which the scattering of the electron is

clastic. In our simplified model we shall mak2 the following basic assumptions:

(a) The scattering of an electron with a particle in the medium is s-wave,

(b) The direction of motion of the electron after each collision is inde-
psndent of ths previous collision.

(c) The thermal velocity of the scatterers in :he medium are negligible,

(d) the trajectories of the elactron bztween collisions are linear and
tboir path lengths e distributed according to exp(-s/A) where A is the

womentum exchange mean free path.

Assumption (a) can be easily corrected to include other partial waves.
Assumption (b) is valid 1if the average collision duration of an aelectron with
the scattering center is much shorter than the time between collisions. Assumption
(c) limits our presentation t- mediums with extremely low temperature. In these
cases the electron losas its kinetic energy at each collision only through the
recoil of the scatterer and the amount lost is simply cslculated. This assumption
shortens our Honée Carlo calculation considerably but it is by no means necessary.
At higher temperatures, one can for examply assign a Maxwell-B¢ltzmann distribuiior
of velocities to the particles in the medium. The change in kinetic energy of the
electron after a collision can then be computed from the collision kinematics. In
this paper, we only present the T=0°K results.

Assumption (d) 1is correct if the mean free ﬁath of the electrons is so short
that between collisions they don't pick up (or lose) enough kinetic energy from
the fieid to deflect their trajectories significantly. In this case the problem
reduces to a straight diffusion problem and it can be handled simply for example
by solving a Boltzmann aquation treating the field as a perturbation. We shall be
interested in cases whare the influence of the image snd driving fields are strong

8o that assumption (d) has to be corrected to take into account trajectories with

2



turning points and the fact that most trajectories will be bent towara the
.direction of the field. Since such calculations would require a tremendous
amount of computer time, we correct for the effect in the following approximate
way. Let us consider an electron located at a position x to the right of the

potential maximum x. as shown in Fig., 1. The probability that the electron will

M
be reflected backward by the fields at that point will be proportional to the

return _one ° ,
V. ~V(xH1/2

a(x) = 2“{1'[?%&_(:;] } 3)
We shall define a reflection coefficient, r(x) and a transmission coefficient t(x)
for an electron at a distance x>xﬂ from the cathode to be r(x)=0(x)/4r and
t(x)=l-r(x) . For X<y r(x) and t(x) simply exchange roles. In our model we
assume as in (d) that the trajectories are linear, but correct it approximately
by weighting the forward and backward trajectories according to t(x) and r(x)
respectively. Thus our simplified Monte Carlo calculation proceeds as follows:

(1) Electrons are injected into the medium with energy ey and with an

initial angular distribution f (60,¢o) . In the present calculation we take €0

to be monoenergetic and f (00.00).to be in the forward direction so that the current
can be correlated with injection into vacuum where the escape cone is expected to
be small.

(2) The length of the trajectory s of a given electron is determined by
-Afnr, where r is a random number betwees 0 and 1, and A is the momentum exchange
mean free path.

(3) At the end of the trajectory where a collision event has occured, the
electron losses apﬁroximately ﬁl(l-cose) of its kinetic energy to the recoil of the
molecule. m and M are the masses of the electron and the scatterer respectively

and 8 is the angle between the incident and final velocities of the electron.

23




(4) After the collision, tha direction of motion of the electron with
respect to the x axis is gilvea by e.cos'lr where r is a random number between 0
and 1 . The choice of 6 in the forward or backward direction is weighted according
to t(x) and r(x) respectively.

(5) Taking the angle f step (4) as the new initial aﬁgle we repeat the
process of generating the trijectories until the final point where the kinetic
energy becomes less than the potential maximum VM . Then the electron is considered
transmitted 1f its final position x is greater than Xy and returned othervise.

(6) If in addition thare are inelastic processes in the medium, we need
to know all the possible modes of energy transfer and cheir respective ¢ross-sections.
The number of each typa of inalastic events is then generated in direct proportion
to their cross sections.

The results for the Monte Carlo calculation of the current as a function
of E/N where E is the strength of the applied field end N is the density of particle
in the medium is shown by the solid curve in Fig. 2. In thesa calculations two
atomic masses were considered, M=2 and M=40, and only elastic scutterings\were

included. The scattering etoss section was taken to be 10—15cm2 and the density

1021 atoms per cn3 . The results are independent of the masses to within the
statistical fluctuation due to the finite number of elactrons (106) injected.

The Young and Bradbury result is shown by the dashed curve. The agreement between
the Young end Bradbury result and the Monte Carlo'rcsult is quite good at high fields
for the density snd Crossesection considered,Under such conditions it is reasonable

to neglect the image field and the single scattering approximation is valid because

the transmission coefficient rapidly becomes one. At lower fields, the Monte-Carlo

results gives lesser end lesser currents compared with the Young and Bradbury results.

The differences arise from incluaion of the image field and multiple scattering. The
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deviation will become smaller if we consider finite temperature cases as part of
the current will thermally diffuse across the potential barric -.
IIT. The Diffusion Model

When there is rapid momentum and energy relaxation it becomes simpler to
calculuce the current by a diffusion model. First we shall discuss the injection
of monoenergetic electrons into the medium where the momentum exchange m.f.p. is
A and the strength of the inelastic electron-medium interaction is glven in terms
of an average lifetime f. .. Because we use only a single relaxation time
the system can be characterized by a two-components fluid, i.e, hot electrons,
the density of which are given by P » @nd the tharmalized electrons with LR
specifying their density. Because V-(]h+3t\-0 » we have simply “or the case of

planar geometry:

d =
= @Un) - e/ 0 %)
vhere dp 2
jh-" h'zg' + llh (E‘ Z—'z)ph (48)
€X
d n '
and - E(jt)-l- o =0 (5)
I e :
o - g- B (2PN
where 1, ?t -:lr;:wt( Acxz) Py (3a)

In these equations D is the diffusion constant, y is (ha mobility and ¢
1s the dielectric constant of the medium which we shall set equal to 1. Since
BEq. (4) is decoupled from the thermal component we can find its solution inde-
pendently. One boundary condition is given by the current balance at one
scattering m.f.p. from the emitter. One part of the electron current injected

is scatterad back without appreciable energy loss and is given by the Thomson's
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term ph(x)<vx(l)> 3 <Vx(1)> is the average over all angles of the x component
of the velocity at A in the presence of the applied and image fields. If we define
<yx(x)>a¢(x);o . whctcl;b , is the avarage emission velocity, then ¢(A) must approach
the Thomson value of 1/4 as A becomes larger or of the order of Xy the position
of the potential meximum. The details of the calculation of q\a) are shown in
appendix 1. ‘enothet part of the current at A is that diffusiug into the medium
and given bty ’1’19h(x)di . Consequently for current balance at A , the boundary
A

condition is

3o = ¢ Mo, T+ r‘ljphcx)dx (6
A

where jo is the current supplied by the emitter. Another boundary condition we shall

use is

(=) = 0. 7N

Integrating Eq. (4) from x to = and using (7) gives

-1
Iy x) =1 Iph(x)dz (8)
x
We shall show that the measured current j can be derived from jh(x) alone., We

start by discussing the T = O K case. At T = 0 K, the diffusion part of the thermal

current given by Eq. (5e) sanishes as Dt-o' At x = Xy the field driven current

aleo vanishes as the field is zero at Xy . Thus jt(xu) = 0 , and the measured

current

1(1=0) = 343, = 3, (x) . e

For finite temperatures, jt is nonvenishing at Xy and we have to adopt another

method. Since j = jh(x) + jt(x) we get after substituting Eq. (5a) for jtand - %!
x

for the total field the following equetion,

<6



dp
_t dav
3-3, () = Dy T Mgy P
Solving this equation for Pe we ‘get
3, (x")-]
P, (x) = exp-[(n. /D, )V(x)]] ——-—— exp{(u /D IV(x")]dx' + p (0) (10)

As x+», we don't expect Pe to diverge, but since V(x)+-=, we must require that the

integral in Eq. (9) vanishes. Thus we obtain

{ Jh(x)exp[ev(x)/kT]dx

I el 11
[“explev(x) /kT]dx (11)
0

where we have made use of the Einstein relation ut/D . We shall use Eq. (9)

. Ll
t kT
and Eq. (11) to calculate the current and as mentioned earlier, they depend only
on 3h$*)‘

We now discuss the derivation of p, (x) from which jh(x) can be calculated.

Substituting Eq. (4a) into Eq. (4), we get

¢ Ph e \dph we
'"h(E LT '(2
; ex

3t =0 12)

Equation (12) can be solved exactly by numerical method. Typical solutions are

shown in Fig. 3. Here we shall present a simple approximate solution and discuss

its validity. We note that if the terms in Eq. (12) arising from the image field
can be neglected, then the remaining equation can be solved analytically. We expect
that the approximation might be justified for x above a certain distance x for

dp ‘ SD
which -Dh 3

(SDA). Estimates of Xgp are given in detail in appendix 2. The SDA solution to
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Eq. (12) is simply
o () = p, (1) &Y (XN) (13)
where
oE L e mE2 20102
v:= 2 * [('2'6;) +xp ] (14)
d ' 2.1
an X4 Wt 1s)
Applying the boundary condition (6), and Dh - %l;o » we find
() =22 [eqye 2oyt
Pp(d) = = 2 (16)

The comparisons of the SDA solution with the exact solution are shown in Fig. 3.
It is observed that the deviation is greater for electrons of lower energy and
shorter mean free path. This deviation is to be expected since under these con-
ditions the diffusing electrons are more exposed to the influence of the image
field. Their random velocity becomes also wore sensitive to the change in the
potential energy and the electrons undergo more scattering events closer to the
emitter where the retarding field is high.

We can now calculate the SDA expression for the current by substituting
(13) into (8) and then use (9) or (11). We shall discuss here the T=OK cage

only as the following simple analytic expression for j ‘ollows from (9),

-1
}o - —"——z-[cm + -4 5) YRR
3vxo 3yx° 7

A typicel current versus E/N curve is shown by the solid curve in Fig. 4.

For illustrative purposes we choose the medium to be nitrogen with a density of

<8
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1022 molecules lcnj. We assume an inelestic process in vhich en electron

loses 0.25 eV at eeck collieion with a cross eection of xo"' e-z. and ve take
the momentum exchenge cross eection ‘o be 3 n 10-“ c-’. The electrons are
injected with energy ﬁn-xov. The field dependence of the current enters through
2" (elh!)“z. By changing the applied field the potential maximum cen be
shifted, in thie wey the image barrier probes the spotial dietridbution of the hot
electrone. At lowv fields, X, fe large and a large portion of the hot electrons
relaxed be’ore reaching the potential meximum. This gives rise to an exponential

drop in the current given by

/x
1 o M50 0 3000 <) (18)
3o o N,

At large fields, y becomes quite small yw Dhluhhoz acd

lpil
L~ [ ] -—i-_

o cm«tg MR a9

vhich fe simply Eq. (1), the prediction of w‘s and Leob‘. It s interesting
to netice that in the high fields limit, the diffusion model predicts that the
current is independent of the inelastic processes. The reseon is that most electrons
are relaxing beyond the potential maximum in this limtce.

We have also {nveetigsted wvhat would happen 1f the diffusion model were nmot
applicable and the Monte Carlo model have to be used. The results sre presented
in Pig. 4. In the high field region (shown by dots) sgreement ia ('~ order of
magnitude of the curreat can be achieved only by using ¢ « 4,10'1(’“2 and
L 1%, e insensitivity to the fnelastic pnu-s:u 1s

preserved, but the

field der~adence has clearly gone over to the 8”2 behsvior. 1In the lew ffeld
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Ia £4. (AL) ve nive nsglected the omall effect of the applied (leld, The

avetage veloclry thea i»

v/

2
i Q\
‘-‘.("' = %! -%‘ C(i, VO (

v

efl) o be celeuloted by subatitviing (AL) tato (AS), its valuss erc shown

in Fig. (3). Por very large A, c()) approaches 1/é an enpected.

Appendix 11,

In etder to estimnte the value of LT sucth that for x » o
4,
v e
’t én » sh 1% (AS)

Len

we saks the followiag eppreninations,

b Y
D

dn (A7)
ars
o
?." <> (A8)
wvhete > is the averege kisstic esergy of the electrons, i.e.
“ - d iiléﬁl. Substituting (A7) and (A8) iato (AS) we find that the
isequality (AS) te setisfied for
16¢c
z2> [{1e —‘;Qto)ln-ﬂl(k:oh:). (A9)
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Assusing the thsrmalization distance x, = 100 X, ve find the criticel

[ ]
distance Rep tO bs 17 A and 29 R for laV end 0.3 eV electrons respectively.
The curves in Fig. ) shovs that tha SDA solution and the exact solution agree

beyond & critical value of x elightly largar than that aetimated here.

Appeadix III,

In order to estimate tha error in the alectron nscattering m.f.p. and the
hot electron lifetime derived from the SDA, ve make the following gedankan
experiment. We vill injsct monoenargetic alectron currant Jo into & medium at
T=OK and measura the collscted curreat which is determicied by tha value of the
current at x. Thie current can be calculated by soiving nuserically Eq. (12)
for assumed values of the actual hot electron n.f.p. “ACT end lifatime TaCT"
Ve then enalyze the same current using the SDA solution (17), and find “SDA
end ToDA® The results are shovn in Fig., 6 vhere tvo cases, (a) €, = laV and
(®) € " 0.3 aV are showvn. The m.f.p. and lifetime sssumed are labaled xACT
and YT and those obtained from SDA approximation ars ASDA and TSpA® reepectively,
As clearly shown the SDA underestimates )\ and overestimatee t. The deviation

ie larger for lower injsction energy snd smaller a.f.p.

Appendix 1V,

In terms of the strong diffusion approximstion at T = OK, the meseured
current does not depend explicitly onm the envrgy of tha injected electrons.
If the tharmalization distance itsalf was energy independent, the snergy distri-
bution of electrons at the barrier maximum would be identical with the injacted
one. It would thea be possible to corract for the effect of the energy distri-
bution on ths error in m.f.p. and lifetims by weighting each with the energy

distribucion function. However, the assumption of equal relaxation for electrons

35
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of different energies is not realistic. It is rather more reasonable to
assign equel lifetime to all electrons. This way the relaxation distance
becomes energy decpendent according to the definition,

1/2

x) = [Qeg/mt/2ae/3)) /2 (A10)

In the constant lifetime approximation, the low energy electrons Lave shorter
thermalization distance. The low energy electrons are more strongly attenuated,
and therefore, their contribution to the measured current will be less. Another
energy dependent effect comes in when we introduce the image potential. Fig. 3
shows that the hot electron densiiy decrease faster in the exact solution than
in the SDA solution. Thus the image barrier also distorts the energy distri-
bution of current at Xy The two effects mentibned above were included in the
estimate of errors produced by using the strong diffusion app;oximation. The
error was estimated from the following procedure. For a selected value of the
electron m.f.p. and for an assumed energy distribution of injected electrons,

a numerical solution of the exact differential equation was sought. From the
solution for each energy a contribution to the hot electron current is calcu-
lated using Eq. (8). The total current is then found by averaging over all
incident energies € according éo the energy distribution. For comparison we
also analyzed the current by the SDA method where tﬂe energy distribution of
injected electrons is replaced by a monoenergetic ‘one withlﬁ) equal to the
average energy of the different distribution studied. The resulting dis-
crepancies in A are shown in Fig. 7a, b, and c. In Fig. 7a the error

derived from the exact solution and the SDA are shown for the monoenergetic
case. The re-vlt will serve as a standard for evaluating the error in A

vhen the injection energy i{s not monoenergetic. 1In Fig. 7b, the assumed

dn 2 Sy
distribution is photoelectric with %" ("/e..x) c Sin(we/em‘x),-where
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2
max eaV."/Cﬂ2-4). In Fig. 7c, the distribution is thermionic with

dn
e ey

Figure Captions

Fig. 1 Schematic representation of electron injection into a medium. Due to
the applied electric field and polarization of the emitter the electron potential

1/2
=)

energy has a maximum at a distance x = (“‘E

Fig. 2 Comparison between results of Monte Carlo calculations and the simplified
theory of Young and Bradbury. The ratio of the collected to t! ;njected current
j[jo as a function of the ratio of the applied field to number demsity N. The
parameters are § = 10 1scm2 and N = 1021cm 3.

Fig. 3 Distribution of hot electrons are obt;ined from the numerical solution
to Eq. 12 (solid line) and from the stfong diffusion approximation (broken line)
for different electron m.f.p.: 1)5&, 2)101, 3)201y 4)401’ and for the energy
of injected electrons a) lev; 1)0.3 eV.

Fig. 4 Comparison petween the analytical solution obtained from the strong
diffusion approximation (solid line) and reaults of Monto Carlo calculations.
j/j is the ratio of the collected to the injected electron current, E/N 1is

the ratio of the applied electric field to number density of the medium. Param-

-18 2; Monte Carlo:

-16 2

eters: strong diffusion approximation op - 3x10 16cm2,‘ci = 10

triangles, Gp = 1,9x10 16cmz, o3 = 2x10 lscmZ;

ay = 10-18cn2. Temperature OK, N = 10 molecules/cm3.

circles, op " 4x10~

Fig. 5 Backscattering coefficient c(d) of hot electrons in the image field

as calculated from Eq. (A 4) and (A 5) as a function of the electron m.f.p. A and

energy of injected electrons €
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Fig. 6 Evaluation of errors produced by application of the strong diffusion
approximation to the analysis of the Qeaauted current at T=OK. AACT and

TacT oTe real values of the hot electron m.f.p. and lifetime. ASDA and TSpA
are the corresponding quantities as determined from the strong diffusion
approximation for energy of injected electrons a) € " leV, b) € = 0.3 ev.
Fig. 7 Evaluation of errors produced by applying SDA method to the analysis

of collected current when the distribution of injected electrons is a) mono-

energetic b) photoelectric, and ¢) thermionic.
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Hobl! ity of Electrons in Dense Helium Gan®
James A. Jahake and M. Stiver
Departasnt ~¢ Physics, Univereity of Korth Carolina
Chapel Hill, Sorth Carolina 27514

Ve have extended the range of slectron mobility measurements
in dense helium gus ot 77.) K to pressures of 40 etm and at 160 K
to 80 ata. Coexisting high sad lov mobilizy branches wvere found
at both temperatures, corresponding, ve believe, to free electron

and "buddle” states.

The behavior of electrona ia dense helium gas server as an dxperimeantal

1,2

model for the study of electrons in structurslly dieordered eystams, A

rapid drop in electron mobility as a function of density vas suggeeted by

Leviae and Sandtroj

to correspond to s self-trapped "budble” state.
Recently their experimentel work vas exteaded by Harrison and Sprln;att"s

to tesperatutes sbove the helium criticel temperature (7 K < 18 K) ehoving

¢ Research supported by the Adveaced Ressarch Projecte Agency of the Department
of Defense ond monitorsd by the U. S. Aray Research Office - Durhas, undsr
Grant %o. DA=AROD-31-124-72-C80, and by the Materiele Research Center, U.N.C.

under Contract DANC 15-67-C-0223 with the Advenced Reseerch Projects Agency.
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similar rapid decreases in mobility as a function of fluid density. In
contrast to the self-irapped model, Eggerter and Cohen interpreted this
data {n terms of fluctuation trapping in their "pseudobubble” model. Due
to the fmportance of distinguishing between the forms of electron trapping
in these theoretical uodels,1’3’6 it was felt necessary to extend the
mobility measurements even further es functions of temperature and pressure.
Mobilities are determined from the measured electron drift velocity vy
The 2ero field electron mobility Yo is defined as bo " é:; vd/E where I is

the electric field strength. The drift velocity was measured, in the present
experiments, by use of a double gate time-of-flight techniquc.7 A thin
film Al-Alzos-Au diodca'9 was used as a source of relatively low energy

13 to 10-11 amps being

electrons (1 eV at injection); currents of about 10
successfully measured in the present apparatus. Measurements were made as
a function of pressure at 77.3 K and 160.1 K by immersing the experimental
high pressure cell in dewars of liquid nitrogen and frozen ethanol. Helium
Bes of 99.95% purity was passed through a liquid-nitrogen-cooled charcoal
trap and pressurized. Gas of 99.9995% was also used without any noticeable
discrepancies between the measured drift velocities. Pressures were
determined using a Heise gauge and temperatures were monitored with a
calibrated copper-constantan thcruocouplc.7 The gas number densities were
calculated from an empirical equation of state,lo errors estimated as being

no greater than +.02 x 104 ea™3 ae 77.3 K end +.04 x 104! a3

at 160.1 K.
Drift velocity measurements were taken at clectric field strengths of

75 V/em to 200 V/em at 77.3 K, but only at 100 V/c~ at 160.1 K since the field
dependent data at the lower temperature appeared linear in this range for

dunsities greater than 1.0 x 1021 c--3 (Fig. 1). Each point on the drift
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velocity curves [s the average of over 12 experimental traces from the
spuctrometer. Over slx harmonics were scanned in some instances for a given
point, whereas no less than two harmonics were measured for any given point,
The precision of each averaged drift velocity is about 5% and the absolute
accuvacy of the extrapolated zero field mobilities is estimated to be on

the order of 10%.

The zero field mobility results of the present experiments are summarized
in Fig. 2 where they are also compared with the recent deta of Harrison and
Springett for both helium and hydrogen.4'5 As can be seen, our data at 77.3 K
essentially reproduces the earlier data over the raﬁge at which it was taken.
Also, the existence of two mobility branches is similar to that previously
observed in hydrogen. The mobility branches, we observed, coexist over a
density range of about .7 x 1021 cm-3 at both 77.3 K and 160.1 K. The
relative amplitudes of the drift velocity peaks were cleazly density
dependent, with the amplitudes of the high mobility data decreasing with
increasing dencity and the amplitues of the low mobility branch correspand-
ingly increasing. The amplitudes of each brgnch, at constant density, were
normalized to one for a number of densities and are plotted in Fig. 3. It
can be noted from the electric field dependence of these relative amplitudes,
that, at a given temperature, the high mobility branch will extend to higher
densities for higher field strengths, It also can be inferred from this
data that, at constant field, fhe high mobility branch will extend to higher
densi;ies a. the temperature increases.

The correspondence between our helium data and the hydrogen data as
shown in fig. 2 (insert) is striking. The low mobility branch in hydrogen
was attributed to the formatioh:of Hz- or H ions by the high energy radio-
active source used, although there was some doubt in this regard by the

' : 5
authors, who also felt that self-trapped "bubbles" were a possibility.
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In the present experiment, where one does not expect the formation of
negative helium ipnsil since a.low energy electron source was used, the
low mobility branch is due either to a "bubble" state or some negative
ion impurity. As discussed later, we rule out the negative ion impurity
as a possibility. This data, then, gives support to the contention that
the low mobility branch observed in hydrogen is also due to "bubbles."

A suming then, that "bubble" states give rise to the low mobility
branch, we have calculated their radii at these higher temperatures using

the semi-classical formula5

b e 91n

Vo " T 1 T )
0 6mR 4nR (zTMKT)

where n is the viscosity, R the bubble radius, n the number dersity, and M

the reduced mass betwéen the bubble and a helium atom which we take to be just
the mass of the helium atom. We obtain a radius of 4.2 R at 77.3 K and 4.5 Z
at 160.1 K, values which are somewhat too low when one considers that the radii

° b 12,13
are on the order of 12 A to 20 A in the liquid.

It is nomewhat doubtful,
however, whether one should use the helium mass for M in this case since the
"bubble" mass need not be large compared to tﬁat of the helium atom.6

For several reasons, we believe that impurities do not play a measure-
able role in our present experiments. In the first instance, ve used helium
gas of two different purity levels without any noticeable differences 'in
drift velocities. In the care of our two temperature runs, one would expect
higher impurity levels and effects at 160.1 K than at 77.3 K; for example, any
oxygen impurity would freeze out at 77.3 K but not at 160.1 K. Such an impurity
ion would then give a low mobility signal over a much longer density range than
we have observed.7 Also, in regard to the relative peak amplitudes in the reglon
of overlap shown in Fig. 3, the signal strength due to a negative {fon Lmpuritv

would Increase in direct proportion to the density, an effect which has not

been observed.. E;1~




In order to obtain a theoretical estimate of the zero field mobilities
of the upper branch, we have used a modification of the semi-classical

forwula for gases and liquid514’5

/

ué = {4e/30(2nka)1 2}(1+Bln) (2)

where m is the electron mass, Bl the second virial coefficient and o the
s-wave scattering cross-section. At densities less than 1.0 x 1021 cm'-3 our
data agrees to within 20% of thesé theoretical values, but for higher
densities this agreement becomes gradually poorer until at 3.0 x 1021 ¢:m'-3
these theoretical values are about 45X too high. Trapping due to fluctua-
tions (pseudobubbles)would lower this theoretical estimate to essentially
the observed value, but the point here is that these calculations do
suggest that we are dealing with free electrons in the *iigh mobility branch.
The primary implications that we have drawn from these experiments
are that we have observed self-trapped'bubbles in dense helium gas at high
temperatures and pressures and that we have observed the coexistence of
free electron and "bubble" states over a sigﬁificant density range (where
quite probably, coexisting free electrons and pseudobubbles lead to the
high mobility branch and self-trapped states lead to the low mobility
branch). This interpretation further suggests that we ar;'dealing with a
nonequilibrium phenomenon (because of the branching) implying a long
relaxation time to the low mobility states. This is of some interest in
view of the short lifetimes observed in the 11quid8 and in view of the
intermediate mobilities observed at lower temperatures where fast relaxa-
tion due to fluctuation trappingg;vesrisc to thermal quilibrium between
free and pscudobubble states. 1t may be that the number and trapping

cross sections of the states observed here are quite strongily dependent

on density and temperature, giving rise to a longer trapping time than

o2




that found 2t lower temperatures. If one were to obtain a longer drift
time by the use of a longer drift space or a lower electric field, one
would expect, in this view, that the free clectron signal strength would
decrease with a cortesponding increase in the "bubble" signal. This
change has indeed been obsgrved as is shown in Fig. 3.

From the data of Harrison and Spt.‘ngett4 for helium at 18 K, we had
expected a gradual decrease in mobility at our higher temperatures rather
than branching, It is possible that branching also occurs at these lower
temperatures but was not detected by the single gate technique. We are
presently extendihg our experiments to lower temperatures in order to

draw some consistency between these two sets of data.,

The authors wish to thank J. P. Hernandez for many helpful discussions

and P. Smejtek and T. Carruthers for their experimental advice.
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Fig. 1

Fig. 2

Fig. 3

FIGURE CAPTIONS

Electron Drift velocity versus electric field strength at 77.3 K
in a pressure range of 10 Kg/cm2 to 40 Kg/cmz. The drift velocity
is nonlinear at 100 V/cm at pressures less than 10 Kg/cmz-
Zero-field electron mobilities as a function of number density in
dense helium gas. The dashed lines represent the earlier data of
Harrison and Springett for helium. The inset compares our 77.3 K
data for helium with the hydrogen dara of Harrison and Springett
at 31.7 K. Note the existence of high and low mobility branches
in both cases.

Relative signal strengths of the high and low mobility branches
versus number density at 77.3 K and 160.1 K. The figure for 77.3 K
also shows the effect of the electric field on the relative inten-

sities. The data for 160.1 K was taken at a field of 100 V/cm.
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