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1 

Theory 

(1) Electronic Structure of Disordered Systems. 

The study of the electronic structures of one-dlmenslonal disordered 

arrays of delta-function potentials has provided us with considerable Insights 

Into the applicability of the Wu-Dy method(1) to three-dimensional systems. 

The preprint of a paper containing the results Is attached.  Extension to three 

dimensions are now under way. The models considered are those of Henderson(2) 

(3) 
and Polk  . The function R^, required in the Wu-Dy method has recently been 

computed by Chaudharl, Graczyk, and Charbnau(4) for the Henderson model. Their 

results confirms our original conjecture that considerable fine structures in 

this function will remain when the lattice becomes amorphous. These fine 

structures are due to coherent scattering of clusters of atoms with short range ^^"ll 

order. In order to complete our calculation of the density of states, we need     •' * 
-'        • ■' ,".V. ■' 

in addition the function ^ . which is the fluctuation in the energy band due      ' 

to disorder. Since computer effort in this direction is anticipated to be        .J 

enormous, we are now trying to see if a reasonable analytic approximation ;ts , • • 
■ ""•* ■ ."■ 

possible. ; 

• ■ 

In our attempt to understand the electronic structure, we have also investl»- 

gated the tight - binding approach to the problem. We have calculated the density 

of states of the Henderson modal and the Polk model based on the one band hamll- 

tonian H - I vllXi1), where the sum is over all nearest neighbor pairs 1 and I1. 

In order to calculate the density of states, we computed the first ten moments 

of the density of states using the close-walk counting technique. We then derive 

the density of states by fitting the moments with an expansion in Legendre poly- 

nomials. Since the Henderson and Polk models are small enough for the hamilton^an 

to be diagonallzed numerically, we also calculated the exact eigen-values and 



eigen-states. The density of states derived in this way agree very well with 

those derived from the moment method. The eigen-states so derived exhibit no 

localization. In order to produce localization, we made a numerical study of 

the Anderson model hamiltonian 

H- I  E|l)<ij +1    V|i><i'| 
i ii' 

where E fluctuates within the bounds ± W/2. We calculated the localization 

parameter N     . N    2 2 
o - r iaii 'd iaii) 

i-i     i-i 

where the a. are amplitudes for some particular eigen-statej». In a similar study, 

Edwards and Thooless'5^ show that for ESiisfij; diamond lattice, the onset of 

localization is less sharply defined and occurs more easily than in the Anderson 

theory. For the disordered Henderson model we find that the onset of localization 

is also not sharply defined and that localization is the sane on the average to 

that in the perfect diamond structure. The extension to more realistic models 

are now being considered. 

(2) Models of Steady State Electron Injection Current into Dense Media. 

We have completed our calculations of the field and density dependence of the 

steady state electron current injected into dense argon, hydrogen, and nitrogen 

gases. The results are included in a preprint attached. 



Experiment 

Experimentally, we have concentrated on continuing our experiments on 

the drift of electrons in dense helium gas. Our results are now in accord with 

previous experiments, the precipitous drop we reported in our last report is in 

fact double branching, i.e. a high mobility branch coexisting with a low mobility 

branch. This was observed before in hydrogen but never in helium and suggest 

a very long life time for bubble formation ct these high densities. A preprint 

covering these result is attached. 
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Electronic Structure of Disordered Systems 

II. 'One-Dimensional Arrays, Bound Bands 

J. C. Wang and K. S. Dy 
Department of Physics, University of North Carolina 

Chapel Hill, North Carolina 27514 

and 

Shi-Yu Wu 
Department of Physics, University of Louisville 

Louisville, Kentucky 40208 

Abstract 

The structure of the bound band of a one-dimensional disordered 

array of attractive 6-function potentials was calculated using the 

method of Wu and Dy. 



I.  Introduction 

In a previous paper (referred to as I), we presented a method for cal- 

culating the electronic density of states in disordered systems.  We showed 

that the method can be easily generalized to syrterns with structural disorder. 

Here we applied the method to calculate the density of bound states for an 

electron in a one-dimensional disordered array of attractive 6-fur.ction poten- 

tials of a given strength. Other methods of solving this particular problem 
2—6 

exist.    Our purpose here is to illustrate how the method presented in I 

works and to provide insight for the application of the method to three-dimensional 

problems. 

Although the one-dimensional disordered array is not a topological disordered 

system, we have not taken the advantage of the sequential numbering of the 

atomic sites to reduce the problem into an ordered one. We also do not use 

the closely connected method of relating the energy eigenvalue to the number 

of nodes in the wavefunction. Thus our method of calculation can be readily 

extended to two and three dimensions. However, as a basis for comparison, we 

also calculated the exact density of states by the node counting method of 
2 

Lax and Phillips. 

We shall consider only arrays having short range order as defined by 
7 

Gubanov in the following way. The distance between each pair of neighboring 

atoms is taken to be a(l + ey) where a is the average interatomic spacing 

L/N, L being the length of the chain and N the number of atoms in the chain. 

The factor t is a positive number less than one (called the short range order 

parameter) and y is a random numbertaving a Gaussian distribution with ^y^ ■ 0, 

vO = 1'    Makinson and Roberts have computed the density of states of one- 

dimensional arrays of 6-function potentials with t ranging from 0 to 0.1. 

The results presented, however, are for the positive energy region only.  In 

this work we have calculated the energy level distribution in the negative 

ensrgy region for the same rang« of c. 



II. Method of Calculation 

We use the Green's function formulation presented in I to calculate the density 

of states. The Hamiltonian we consider is given by 

H = £i-IV06(x-l). (^ 

where V is a positive number which defines the strength of the potential and I 

denotes the atomic sites. The tight-binding wavefunction is taken to be the 

eigenstate L 

of 

"■^ -v(*-» (2'3) 

with eigenvalue 

w 2 
_ ^0_ (2.H) 

W '   2fi2 

For simplicity we set w equal to -1. Using (2.2) one can easily compute the 

matrix elements of the total Hamiltonian: 

mV, 

Defining the position .1  by a dimensionless parameter I = t/a,  we get 

(2.6) 

H... = ^. + ** I «pt- -^U" - .*! + U"" ^l»« (2-5) 

mV 
where A E ^«. Henceforth we shall omit the " sign over the I's. The parameter 

A is equivalent to e  in Lax and Phillips1 notation. 

In the formulation of I we need the following quantities: 

Rkk, = N  ^e      - «kk,. 

V(k) = N-1nH| J.L • 
ikL (2.81 

IL 

U(l.k) I lHttVL .
ikL - V(k).   ' "    7 <2-9, 



i, . N-^d + lO-J.. ei(k,,-k,)lU(.Ä.k.). (2.10) 

Typical curves of R, V, U and W are shown in Figs. 1-3. The matrix (I + R) 

needed to calculate W.., is inverted from I t R using a computer. 

Using the computed values of V(k) and Wkk,, we calculated the Green's function 

by the direct summation of the band propagator expansion: 

G(k,z)  = l/Cz- V(k) - SCk.z)). (2,11) 

where 

E(k'') = Sk*\lV5(k',z)Ä><''<+  <2a2) 
K   ^K 

We truncated the series for the proper self-energy E at the    second    term as shown 

in (2.12) and solved for 6 self-consistently using a computer.    The density of 

states was calculated from G by 

dN(E)/dE = n(E) = - - [ Im G(ksz -»■ E + i0+). (2.13) 
v k 

III. Results and Discussion 

In Fig. 1, the curve for \\kA    shows considerable structures. These 

structures are closely related to coherent scattering from clusters of atoms 

g 
in the array. P. Chaudhari, J. F. Graczyk and H, P. Charbau recently calculated 

the quantity |Rlfk.|
2 (PP in their notation) for a three-dimensional random network 

model of a tetrahedrally coordinated amorphous solid. Their result shows similar 

structures in the IRJ^II
2
 axm but with less intensity in the local maxima com- 

pared with our one-dimensional random array. 

^ r ..     ikL 
In Pig. 2, the V(k) curve (solid line) is the average of I ^ltl,lj  

e   over 

L 

all sites I, i.e., it is the energy dispersion of the electron in an 'average crystal'. 

The approximation G(k,z) » l/(z-V(k)) gives essentially the energy band of the 

perfectly ordered array and, therefore, is a poor approximation for the tail states. 

The structures in the U(l,k) curve, for a given k value, presented in Fig. 3 

' 8 

■ 



represent the deviation of ^H . T e1 L from V(k) from site to site and arise 

because of the disorder. Note that the fluctuations are of the same order of 

Tiägnitude as the band-width given by V(k) alone.  In Fig. 2 we see that the 

transformation of UU.k) to Wkk, (dashed line) reduces the fluctuations to values 

much smaller than the band width of V(k). This reduction is due to the short- 

range order in the array considered. 

In Fig. 4(a) and (b) we show (solid lines) the calculated density of 

states, dN(E)/dE, for a chain of 50 particles with short-range order parameter e 

equal to 0.05 and 0.1. in Fig. 5(a) and (b) we show (solid lines) the corresponding 

integrated density of states, N(E).  In all these cases, the quantity A which 

determines the degree of overlap of the neighboring wavefunctions is taken to be 

10. As a comparison, we plotted in the same figures the exact results obtained 

by the node counting method of Lax and Phillips (histograms in Fig. U and dots in 

Fig. 5). The positions of the band edges for the perfectly ordered system are 

indicated by arrows in the figures. From Figs. «+ and 5 one can see the gradual 

spreading of the allowed band as the disorder increases. Because of the small 

size of the arrays considered, the exact density of states shows considerable 

fine structures.  In Fig. 6 we show the exact density of states for a bigger 

sample consisting of 2000 particles. It is evident that the fine structures 

diminish as the sample size becomes larger. The density of states calculated 

by our method using the 50-particle sample is smoothed out because of the approxi- 

mation used in summing the proper self-energy series. The finite imaginary part 

of the proper self-energy gives rise to a broad Lorentzian rather than a delta 

function at each eigenvalue in the density of states. 

Ideally, the comparison of results should be made for a very large sample. 

9 
Because the computer time for the present method increases with sample size N 

3 
roughtly as N , no sample larger than 50 particles were attempted. Nevertheless, 

V 



Figs 4 and 5 show that on the average the band tails are quite well reproduced 

by our present calculations. The larg r discrepancies actually occur at the 

center of the band. The reason is that states at the center of the band are 

quite extended (see Fig. /b), and as the disorder increases, the overlap of the 

wavefunctions can become quite large, thus introducing larger errors in the 

tight-binding approximation. 

We conclude that using the present method, the band tails of disordered 

systems with short range order can be calculated quite accurately. However, 

because of the large computer time involved the application to three dimensional 

systems could best be done by introducing analytic approximations to the func- 

tionals R^,, and W. . , for an infinite system. 

it 
Work supported by the Materials Research Center, UNC, under Contract number 

DAHC-15-67-C-0223 from the Advanced Research Projects Agency and a grant monitored 

by the U. S. Army Research Office - Durham under Grant number DA-AR0D-31-71-G52. 
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Figure Captions 

Figure 1     |RUn|2 as a function cf  jk-k'|for 50 6-function potentials with short 
KK 

range order parameter e = C.05. 

Figure 2 Typical V(k) curve (solid lir») and the real part ;f WCk'.k) curve 

(dash line) with k' = -WS for a linear chain of 50 6-function poten- 

tials with e = 0.05 and overlap parameter A = 10. TlM Imaginary part of 
same 

^(k'.k), whi— is not shown here, has they\order of magnitude as Re W(k,,k). 

Figure 3 Real (solid line) and imaginary (dash line) parts of typical U(.Ä,,k) curve 

with k = -2ii/5 for 50 6-function potentials with e = 0.05 and A = 10. 

w is the eigen-energy of the bound state of a single 6-function potential. 

Figure U Density of states calculated with the Dy-Wu method (solid lines) and the 

node-counting method (histograms!) for 50 6-function potentials with A = 10 

and (a) E = 0.05 and (b) e = 0.1. Arrows indicate the band edges for the 

perfectly ordered system. The bound-state energy of a single 6-function 

potential is chosen to be zero. 

Figure 5 Integrated density of states calculated with the Dy-Wu method (solid 

line) and the node-counting method (dots) for 50 6-function potentials 

with A = 10 and (a) e = 0.05 and (b) e =0.1. Arrows indicate the band 

edges for the perfectly ordered system. 

Figure 6 Density of states calculated with the node-counting method for 2000 

6-'function potentials with (a) e = 0.05 and (b) e = 0.1. 

Figure 7 Eigenstates for (a) E = 4.66 * lO'Vl, (b) E = -0.1 * 10" |w| , and 

(c) E = -7.35 x 10~4|w| for a 50-particle system with e = 0.1. The 

eigenstates iMx) = Xa.^HU - Ä) are obtained by finding the eigen- 
E     j I 

vectors of the Hamiltonian matrix. Only the amplitudes, a£, are plotted 

in the figure. 

11 
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No4«2a for Steady IcaU tlaccroo lajaccloo Curraat tata Daaaa Nadla« 

f. toajtak, N. Sllvar, I. L. fttaat aad K. t. Dy 

Ualvaratty af north Carolina ac Oiopol Hill 

Chayal ■111, aorth Carallaa 2IS14 

laverace 

to ae^aia, ihm Moat* Carla mi tkm «llffaalaa mo4»l far calealatU« 

ClM «iMCfM aarraat 4m to ta)*<iioa af hat oloctraaa lata 4mm m4U ara 

praaaat«4.    U UM 4Utmim m>4mi. UM cutrmi mm W 4arl«W mmilf *f 

aalaUt tka caactaalty at ««rraat a^aatlMi MMfftcally aaa«l^ a faat 

raUaatlaa i«a-la««l ayata».    tfnai a vary alo^U aaalyttc 

ilaa far dM twtaat la o»talaa4 II aaa «Ma a atra^ «iffaaiaa 

fat tka hat alaattwa.    TW «•ii4itT aai arwara ra^litaa 

fr<« tka aaar<Miaallaa af« 4%timtmi.    mm Cfca Mftaalaa M4at falla. 

w iMM" • •iaylifi.4 Haata CarU aa^al tat aaiaalf 1^ UM carraat. 

n» aetol  U a Maifuatlaa af aa mtUm mtiui Wf fM« mi NaAvry 

la laclaia tw «ffaot af ••iti»U »catiari^ «M UM laftaaaca at tha 
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I.    lotffodwctloo 

Electron injactioo «xparlMats Yw pUy«d • powerful rol« In datacslalnt 

eh« «Uctronlc craaaport propartlaa of laaulaKiaf •olid«.      liqulda     aa4 K«»«-» 

■—ft, up oattl racaatly,  th»r»  la «till a lack of aa «dequat« chooratlcal aodal 

for  c5. Lining   Ihr  d.pcndrn. •  of  tba  .«ptr l».nt • 1 ly  MMur«d COTtMC oa  ch«  applied 

aloe trie flald, tha charactarlatlca of the aodtuo. «ad tba aiactroa MUM lator- 

tccloa.    Nrbapa tha flrat calcolatloa of tba earraat-ooltai« ralattoa raavUlaf 

fraa charfa la|ac«fa« ma 4m f i, J. HMMOO * .    HMMOO utmni chat ff<aar tha 

caUo4a the tajoctod eloctroaa trnrn a raado« oalaclty «0 |lvoa hy tharaek aqalllttaa 

vith th« tea aad that tha daaalty of electrooe la tha gaa U wolf or» «ad af averof« 

ealoa • •   thla tapllaa that OMTO to • hach-dlffaalaa carrast ilow hy MVQ/4 . 

la tha UM— af aa apfllad flald, tha carraat vtll ha tfrnm hy J«aae «^are i 

U tha drift «olacltf.   Ihaa II J0 U tha iota! UJactad carraot. «a «at fraa 

!•• feell   J0-J-^0/*  .  a^ 

Id ^ aad iMh * tomd  tkat M- (D fl^M raaaoaahle fit to mfftmmt  oaly 

if «0 i« retaterfteted aa the iMtaga «aloaltf of aalaalao. lahlarlaa  tarroeod 

tha theory Nrthor hy tahlat (he haah-dlffealaa corraat ta ha • »»j'4 •**  «ha 

mmmmmtw4  ««treot to ha a a« Mhara a aatf «are the doaaltlM af alactraaa «ear 
• y        • 

tar fre» tke catKod« rooyoctlealf.    Tha ayyllcaailltr af tha theory yra«aated 

le aolte rootf Uted eeoa la lia aadlflad for».    Theohald S feaad that thara 

to a larfa doaiteoae<T hetweon theary aad aapariaeat «a*oa the MtoalM aatoclty 

laaa thaa the drift ««toalty.    to aort a taaa hach-dlffoaiaa laaa 

I niioi  ■'« reavlt   faU«.    «aothar alteattaa «Hare la-   O) MT he 

^a fell to «*M tha htih ilffoalaa MM la «ader tha etroag laflaaMa af 

tha iMf* flald pradMad hy tha tojMtad aleatraM.    to aach it aaM -ha rotor« af 

20 



• Uctroos to lh« cached* U not given by b«ck-dlffusion «ion«. 

Porhopt th« correct approach tc tha aoludon of tha probleu would be to do 

a Mont* Carlo calculation Includlat all tha field« experienced by tha alactrona 

and all tha luponem acattarlnf procaaaaa «ncountor by th* elect rone. This Is s 

vary tlaa coosualng cslculstloa. Ons elaplifled spproach to thia uaa uad* by 

Young and Iradbury  who calculated tha return currant aeauBlng only reflection 

of slactrooa in their first encounter with gsa «tew« or aolaculas. They found 

that for J/J0<0.2 the current ia given by 

if?     l«o j 
(2) 

& U cba Men frss path, I U ehs «pplUd fisid sad c0 is chs snsrgy of ths 

tajsctsd electron.. Oafortanstsly tha vslidity of 1^. (2) is difficult to sccsss 

•• tlMr« U no elaple «ay of eetlaatlng tha affacta of aultipla acattaring 

la thie paper, we ehall praaaat two thaorotlcal aodals for ths stssdy ststs 

«Isctres mj.ction currMts. Ths first aodsl is s ■odificstioo of ths Young end 

•rsdbury aedsl to sccouat for tha affacta of both iaaga field and aultipla acattaring. 

rhr Mtel U eppllcebl« to ceeee where tha alactroo Bowntta and «oargy re leitet Ion 

rates ara slaw. Tks saco«d aodsl is s two fluid aodal ia which th* *l*ctrooe ere 

dividsd into s hot sad s thsraalissd coapoosot. Th* current« ars derived by solution 

of ths co~tio«itr si current, s^ustic«. .hi. aodsl is spplicsbl* when ths noMntia 

end energy re least Ion rstss of ths electron, ere fast. 

it. tiaslifisd Monte Carlo Modal 

!• thl« eeetlon ua preeent s ela^lIfle-l Konte Carlo set hod for cslculstiog 

tha cuneoi Is en espsrlasntsl Sltustloo depleted ia Pi«. 1.  An electron ia injected 

iitta tha aadlua «rtth aaargy t-.    In tha aadlta tha alactroo axpariancaa tha total 
J 

potaKtial »(■) coaaiatia« of tha las^e potential - ^ end the applied potential 

21 



-eEx.  Let us consider first the case In which the scattering of the electron Is 

claatlc.  In our simplified modal we shall mal a the following basic assumptions: 

(a) The scattering of an electron with a particle In the medium Is s-wave. 

(b) The direction of motion of the electron after each collision Is Inde- 

pendent of tha previous collision. 

(c) The thermal velocity of tha scatterers in '.he medium are negligible. 

(d) The trajectories of the electron bvtween collisions are linear and 

tbtir path lengths a dlatributed according to exp(-e/X) «here X is the 

uomentum exchange mean free path. 

Assumption (a) can be easily corrected to Include other partial waves. 

Aasunption (b) la valid If the average collision duretion of an electron with 

the scattering center la much shorter than the time between collisions. Assumption 

(c) limits our presentation to mediums with extremely low temperature. In these 

cases the electron loses its kinetic energy at each collision only through the 

recoil of ths scatterer and the amount lost is simply calculated. This assumption 

shortens our Honte Csrlo calculation considersbly but it is by no means necessary. 

At higher temperatures, one can for examply assign a haxwell-Beltzmann distrlbu ior, 

of velocities to the particles in the medium. The change in kinetic energy of the 

electron after a collision can then be computed from the collision kinematics. In 

this paper, we only preaent the T-0*K results. 

Assumption (d) is correct if the mean free path of the electrons is so short 

that between collisions they don't pick up (or lose) enough kinetic energy from 

the field to deflect their trajectories significantly. In this case the problem 

reduces to a straight diffusion problem and it can be handled simply for example 

by solving a Boltcmann equation treating the field as a perturbation. We shall be 

Interested in cases where the influence of the image and driving fields ere strong 

so thet assumption (d) has to be corrected to teke into account trajectories with 

22 



turning points and the fact that most trajectories will be bent towaru the 

direction of the field.  Since such calculations would require a tremendous 

amount of computer time, we correct for the effect in the following approximate 

way. Let us consider an electron located at a position x to the right of the 

potential maximum x  as shown in Fig. 1. The probability that the electron will 
M 

be reflected backward by the fields at that point will be proportional to the 

8 
return one  , 

»«■»^-[Ä]  1 (3) 
We shall define a reflection coefficient, r(x) and a transmission coefficient t(x) 

for an electron at a distance x>xM from the cathode to be r(x)-'n(x)/Air and 

t(x)-l-r(x) . For x^ , r(x) and t(x) simply exchange roles. In our model we 

assume as in (d) that the trajectories are linear, but correct it approximately 

by weighting the forward and backward trajectories according to t(x) and r(x) 

respectively. Thus our simplified Monte Carlo calculation proceeds as follows: 

(1) Electrons are injected into the medium with energy CQ and with an 

initial angular distribution £ (8 ,<)» ) . In the present calculation we tak<*. tn 
0 0 u 

to be monoenergetic and f (Sn*0 to be in the forward direction so that the current 

can be correlated with Injection into vacuum where the escape cone is expected to 

be small. 

(2) The length of the trajectory a of a given electron is determined by 

-Unr, where r is a random number between 0 and 1, and X is the momentum exchange 

mean free path. 

(3) At the end of the trajectory where a collision event has occured, the 

fa- 
molecule, m and M are the masses of the electron and the scatterer respectively 

electron losses approximately Tp(l-cose) of its kinetic energy to the recoil of the 

and 6 is the angle between the incident and final velocities of the electron. 
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(4) After the collision, the direction of motion of the electron with 

respect to the x axis is given by e.cos^r «here r is a random number between 0 

and 1 . The choice of 9 in the forward or backward direction is weighted according 

to t(x) and r(x) respectively. 

(5) Taking the angle i f step (4) as the new initial angle we repeat the 

process of generating the tr Rectories until the final point where the kinetic 

energy becomes less than the potential maximum VM . Then the electron is considered 

transmitted if its final position x is greater than Xj, and returned otherwise. 

(6) If in addition there ere inelestic processes in the medium, we need 

to know all the posaible modes of energy transfer and heir respective cross-section». 

The number of each type of Inelastic events is then generated In direct proportion 

to their cross sections. 

The results for the Honte Carlo calculation of the current as a function 

of E/N where E is the strength of the applied field and N is the density of particle 

in the medium is shown by the solid curve In Fig. 2. In these calculations two 

atomic -«ses were considered. H-2 and M-40, and only elastic scatterings were 

-15 2 
Included. The scattering «rosa section waa taken to be 10  cm and the density 

1021 atoms per cm3 . The results are Independent of the »asses to within the 

stetistlcal fluctuation due to the finite number of electrons (10 ) Injected. 

The Young and Bradbury result Is shown by the dashed curve. The agreement betweem 

the Ycung and Bradbury result and the Monte Carlo result is quite good at high fields 

for the dens .ty and cross-eectlon considered.Under such conditions it is reasonable 

to neglect the Image field and the alngle scattering approximation is valid because 

the transmission coefficient rapidly becomes one. At lower fields, the Monte-Carlo 

results gives lesser and lesser currents compared with the Young and Bradbury results. 

The differences arise from Inclusion of the image field and multiple scattering. The 
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deviation will become smaller If we consider finite temperature cases as part of 

the current will thermally diffuse across the potential barri ", 

III. The Diffusion Model 

When there is rapid momentum and energy relaxation it becomes simpler to 

calt ' .e the current by a diffusion model. First we shall discuss the injection 

of monoenergetic electrons into the medium where the momentum exchange m.f.p. is 

X and the strength of the inelastic electron-medium Interaction is given in terms 

of an average lifetime T.   Because we use only a single relaxation time 

the system can be characterized by a two-components fluid, i.e. hot electrons, 

th« density of which are given by p^ , and the thermalized electrons with p 

specifying their density. Because V*(J.+j ^-0 , we have simply Eos the case of 

planar geometry: 

"fe^V -ph/r"0 (A) 

where 

V-Dh-^+Wh (E—2>Ph (4a) 

•nd -^-(Jt)+i.-0 (5) 

where J.- - D -^+H.(B" "TT^ tS«) 
■. * , 

In these equations D is the diffusion constant, u is the mobility and « 
■ 

is the dielectric constant of the medium which we shall set equal to 1. Since 

Eq. (A) is decoupled from the thermal component we can find its solution inde- 

pendently. One boundary condition is given by the current balance at one 

acai erlng m.f.p. from the emitter. One part of the electron current injected 

is scattered back without appreciable energy loss and is given by the Thomson's 
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tern p. (X)<v (X)> .   <v (>.)> Is the average over all angles of the x component 
h    x x 

of the velocity at X in the presence of the applied and image fields. If we define 

<V (X)>=c(X)v0   where v0 , is the average emission velocity, then c(%)  must approach 

the Thomson value of 1/4 as X becomes larger or of the order of x^  , the position 

of the potential maximum. The details of the calculation of cu) are shown in 

appendix 1. Another part of the current at X is that diffusing into the medium 
00 

and given by IT p. (x)<||  . Consequently for current balance at X , the boundary 

X 
condition is 

Jo-ca^a^+r^p^d 
(6) 

X 

where JQ Is the current supplied by the emitter. Another boundary condition we shall 

U8ei8 Jv(-)-0. (7) 

Integrating Eq. (4) from x tc » and using (7) gives 

00 

J^Cx) - T"1fph(x)d« (8) 

x 

We shall show that the measured current j can be derived from jh(x) alone. We 

start by discussing the T - 0 K case. At T - 0 R, the diffusion part of the thermal 

current given by Bq. (5a) /anishes as Dt-0. At x - x^j, the field driven current 

also vanishes as the field is sero at xM . Thus Jt(xM) " 0 , and the measured 

current 

JCT-O)-^-^)  . (9) 

For finite temperatures, Jt is nonvanlshing at x^. and we have to adopt another 

method. Since 1 - J. (x) + V (x) we get after substituting Eq. (5a) for i and - — 
ri     t     • t    dx 

for the total field the following equation, 
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. w ^   n dPt    dV J-Jh(x) --Ot —-ytl;rpt 

Solving this equation for p we get 

x J (x')-J 
Pt(x) - exp-[(pt/Dt)V(x)]/ -^ expt(iit/Dt)V(x')ldx' + pt(0)       (10) 

As x-*«, we don't expect p to diverge, but since V(x)-^«>, we must require that the 

Integral In Eq. (9) vanishes.  Thus we obtain 

i  Jh(x)exp[eV(x)/kT]dx 

i m~~7Z 1  (11) 
/ exp[eV(x)/kTldx 
0 

where we have made use of the Einstein relation Ut/^t 
m ym '    We 8ha11 U8e E<1' W 

and Eq. (11) to calculate the current and as mentioned earlier, they depend only 

on JhCx) . 

We now discuss the derivation of Ph(x) from which Jh(x) can be calculated. 

Substituting Eq. (4a) into Eq. (4), we get 

A2 

* ph       «  dPh  *S,e   i 

Equation (12) can be solved exactly by numerical method. Typical solutions are 

shown in Fig. 3. Here we shall present a simple approximate solution and discuss 

its validity. We note that if the terms in Eq. (12) arising from the image field 

can be neglected, then the remaining equation can be solved analytically. We expect 

that the approximation might be justified for x above a certain distance x  for 
dph      f SD 

which -Dh-gj- » Ujj j p. , and we call this the strong diffusion approximation 
4« 

(SDA). Estimates of xSD are given in detail in appendix 2. The SDA solution to 
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Eq. (12) is simply 

ph(x) - ph(X) e"
Y(x"X) (13) 

where 

Y  2D. * LS2D. ' + X0 J (14) 

2 
and x« - D,T 

0   "h' (15) 

Applying the boundary condition (6), and D - -Av0 „ we find 

J0 r^/^v.  X  .-1 
Ph<

x) - f1 [c(x)+ —"äl 
V0     ^0 

(16) 

The comparisons of the SDA solution with the exact solution are shown in Fig. 3. 

It is observed that the deviation is greater for electrons of lower energy and 

shorter mean free path. This deviation is to be expected since under these con- 

ditions the diffusing electrons are more exposed to the influence of the image 

field. Their random velocity becomes also more sensitive to the change in the 

potential energy and the electrons undergo more scattering events c'oaer to the 

emitter where the retarding field is high. 

We can now calculate the SDA expression for the current by substituting 

(13) into (8) and then use (9) or (11). We shall discuss here the T-OK case 

only as the following simple . nalytic expression for J ollows from (9), 

4-0 - -^-älCU) + -^-r] a"Y(VX) 

3yx0      3YX0 (17) 

A typicel current versus E/N curve is shown by the solid curve in Fig. 4. 

For illustrative purposes we choose the medium to be nitrogen with a density of 

28 



u 
22 1 

10     aoUculM /cm .    Mt «MIM M IMIMCIC proc... U «dlcli M «UctrM 

lo...  0.2S «f at  Meh  colll.Ion with • croaa  MCtlOQ of   lO"1' €■'.   Mi «•  i«k« 

th« BOMntia Mch«n«« croM MCüM   o tr  ) ■ io"U cm2.    Ihm «UccroM .c 

Injaccad vlth m«rgy t •!•?.    UM fUU 4«P«I4MC« of tlw cvrrMt «•!•» ihrw^h 
1/2 

^ •  («/«U)       .     By  changint  thm  «pplLd  (t«ld  th«  pot*At 1*1  MBlMB CM k« 

•hlft«d( in chl« «My thm UMf« barrUr prob». CIM «fati«! tfUtrlbvttM of (IM IMI 

oloctroo«.    At low floldo, «^ u  Urg« ood • Uri« portion of thm hot •loctroo« 

rolosoi boforo reaching tho potootUl MIIMM.    ThU glvoo rloo to oo npinmiil 

drop lo the currant givoo by 

- ir"o Jo-o   ' g(X/^)/(0f ^-) (|g) 

At    Urge   field.,   Y  bOCOMS   quite   «Mil     V M B^/^g«   2     «id 

Jo   c(A)*^   ca);„*? 
0 (It) 

«hlch 1. .1^1, g,.   (1).  thm pT#4Utl0(l of   a-tkAl4 5 ^ j^i      It u |n |u 

to oocic« tbot lo th. high floldt li»lt. tho diffualoo .odol pr«dteto that Uo 

curroot 1. lodapwdant of th.   UMlootlc proc..-..    Tbo MM« It thot «Mt oloctrooa 

oro   relaxing  beyond   tho  potential   mailBu.   In  thU   Malt. 

W« »MV« oUo   Inv.tlg.ted  «hot  woulö  h.ppen   if  th. diffoolOO «edol  ware  not 

•pplicblo «ul tho Moot. Corlo «odol IMWO to bo «^.    Tho rmmmltm or« fo«»to* 

in fig.  ♦.     ID tho high fi.ld  r.glon   (.hovn by doto)  agfoMot  U tV- ordor of 

Mgnitud« of th« curroot coo bo ochiovod only by «oUg  «   . ttlO'^m2 mi 

\ - io 18c.2. ^ lm n^ to m itmlmBtlc ftoe9%9m u ^^  ^   ^ 

fUld dor^ooc. h« cW, goo. owor to th. g*" h^ior.    I. th. h« fi.u 
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wll «HU ^ • l.«U«"W o1 «rf «| • l^•-|i«|,.   TW «lMr«9«MiM to toto 

M4«l   «•*•  MMlly  «to «ffMlt« %f «MtM«!»!!^  IW CMW» MTVMM  tofMM 

to« r*c«r« iraj«ci*rlM •*• i9tnim%94 H «i»«!^« M«iM.    «vi«Mitt mt+* m 

tto raton ir«|««t«rto« *f clwir rvtlMtto» tMlfftotoM« ptwu «alv « parttol 

cofTMtiM to UM MtaU Mrwi p^M.   totoaUf «to iitt«*i«« «M*t «to ito 

M»«i» UtU aM«! t>f*««f4 tor« to«« «•!«• «lftoi/*«i «MtutoilKf.    to to»tto4 

It to «M MM MMltlM MM M MM UM itMfllflM Mt M#M  «M«< 

■Mt  •! OTT «toMMtoM  to UU M«*IM M« toM4 «•  Ito  fM  »M«»«!«». 

M mmmilmm4 Mf tfr.  U» MMI  MlMto» I« tto MMlMlIf •« <««fMl ««MUM 

MB M MtotoM ««»ffiMUf.    U to «f tot«f«M to MtlMto «to MM« to to« 

•U«KrM B.ff.p. «M tel  «toctf^t llf«tlM If mm wm» tto Mt «M»!      A« 

Mttoat«« «r« pfttMtto I« tot«!! to t$9milm U).   to timd tto« tto ■» 

MMI MtotMtlMto« «totctM m.t.p. «M W—MMMI UfMlM.    IM •toctr«« 

mmttf «rtMto 1 •« tto •rr.f  I« ««u« «Mil. k»«MMc tOT «l«^«M M«f|y MtM 

0-l*v «^ «IMIM« •.f.f. «t «to »««»t «r to 1     tto •tf* «M J«Mi • fattM 

of   2.      Im  m mmpmtlmmmt.   UM «.MtMM «M «M«Uf  tojMtoi «It«   • Mtf«U MM«ft 

«UtffltotlM.     I« —fmdl*   («).   UM ^—4MM  »f  tto     -11   III «.Cf.  M« 

liffvtto» «« tto MMt^ «uifitotl«« «f tto I«|MI«« ««'«tt«« !, 

•tMIM «UtrltotlM« of toj««tM «IMIMM «M to) mm 4illl, (•) 

«l««toi« «U (c) ttomi««!«.    Tto tfc*f»t«*ic «utfitotl«« I« «f MMtol 

• IM« • Urt*r MM»! «f tto MittM «IMIMM toM l«Mf «M««IM     to<«M« -r 

UU   fMtM«   tto   tto   IMUMM   I«   Ihl«  CM«   •  tt««t«t  «tMf   tto«   I««   •<*•*   •«• 

4lMrltotl«M.    9m tto «rtr**« t«)««tlM •••?§» «f  I «V Mi M A     «.f.f. Ito 
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ttt N« tt» •■!!    fpmi 
It. 

iirt^i« «M !«• .^.Uftut •>• .i«,,« la^tM. ^«^ ^^ ^.^ ^u 

1W «UNM «tel Ml« If «. i.,^ «^ fM--i rfÄ .« tto|i ^ ^ 

taM» «UMM  U «Mil M UM   M   to »Mtol«  «• ♦-^«i «• 

!«• • «itr^tot ii i     ii Mi # Mü i    «to «MMII« «„»^ 

*• • •■■^ ••■#•• •MlHU Mf ••••m i*« 1%» ««»««M to «MMaM i* «»• 

•««M« Mtmtm toM%^i-Ni- ftofti.    »M 1«t   «I U# ftolü to» On «MI, 

*» «to im«»!«» ««toniM 

MBtoM» «w 9«tol«««i to 

«. If.,,  ^   ,*.   ^^   ^u       ^^   ^IMIM.  ^•M  M   to. fUl«. 

«  Ito  w^, ,«,  M »MM*!,   IMI^^M W   IH.   s^.  »M«MUI 

•M U. MMU M toM  M«MM«i «• mtf »tofto I* «M.     Itof •«•  ««toll- 

l«rr  «to «Oft »•  ^n^  l# # ^  t-^  M  ^*,.».,%1   #|t--|^      •-.  ^ 

• UMIM* «ill to it—iiii  j to «to 

•***••  *• ttol4   fti«!    UM*   «Mt^^to« •«>/>.     ffcto 

to to» t. t. to» i«^.. ^   f 

•«• ^••l*!«« to«^.« t «« ,i 

N*to»*   «to  ^t   Ito  i^raM** 

•I   MlMM   «to  M«ll««to  to 

t.  i.  Afto to—«ifc toftM 
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*—mln% tte ih.rMMi.t ion dt.tftoc« «^ • 100 i,    «• find th« crltlctl 

tflatMM s^ to b« 17 A   Mi 29 X   for UV aod 0.3 •? .l.ctron. r*sp«cciv«ly. 

Ihm    wry«,   in  fif.  ) «IMIM Chat  th« t&A SOltttioo and  th« exact  solution «trot 

tofMrf • critical  vUM of   x  .lightly   larg.i   th.n  that MtlMtod hor«. 

App.ndl«   III. 

In ord.r Co «.tlsat. th« arror In thr oloctroa «cattorlat O.f.p. and the 

bot «loctroo llfatlM d.riv.d fro» th. SOA, «#« aaka th. follovint gadankan 

• ■.•ri«-ni.  Wo Olli Inj.ct aonoan.rgat 1c oloctron currant 1  loco a Mdlia at 
o 

T^Oi and oaaaura tha coliactad currant uhlch is dstarol .ad by tha value of tho 

curroot at a^. Thla currant con ba calculated by solving niaorlcslly Iq. (12) 

for a..«aad «olooa of tha actual hot oloctron o.f.p. l._ and lifetime TAO,. 
mn ACT 

Mo than analyso tha aaM currant uaing tha SDA solution (17), and find 1_ 
SDA 

Md  'SOA* ^ rMÄlt» "■ •ho,»n lo Mfi * «*«rs two casaa, (a) c - laV and 

(h) c. • 0.J of ars shown. Tho o.f.p. and llfatlos sssuosd sra labeled XAM v ACT 

■^ 'ACT mA  tho*# o»»1«10^ **<*  SDA approaiaation ara XSDA and TsnA. raspactivsly. 

A« clearly shown tha SDA undarostlaataa X and overeatlaates t. Tha davlation 

U larger for lower lojoction energy and analler o.f.p. 

Appendix IV. 

In taroa of tho strong diffusion approximation at T - OK, tha aaasured 

currant doaa not dapond sapllcitly on tho onargy of tho injoctod electrons. 

If tho thermal 1 tat Ion dUtaaca itaalf waa energy Independent, ths snergy distri- 

bution of alactrona at th« barrier maxi.ua would be identical with the injected 

one. It would then be possible to correct for the effect of the energy distii- 

bution on the error in o.f.p. and llfatloe by weighting each with tha energy 

dlatrlbutlon function. However, the ssstaption of equal relaxation for elticttons 
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of different energies Is not realistic. It Is rather more reasonable to 

assign equal lifetime to all electrons. This way the relaxation distance 

becomes energy dependent according to the definition, 

«0 H [(2e0/m)
1/2(>T/3)]1/2 (A10) 

In the constant lifetime approximation, the low energy electrons have shorter 

thermallsatlon distance. The low energy electrons are more strongly attenuated, 

and therefore, their contribution to the measured current will be less. Another 

energy dependent effect comes in when we Introduce the image potential. Fig. 3 

shows that the hot electron density decrease faster in the exact solution than 

in the SDA solution. Thus the Image barrier also distorts the energy distri- 

bution of current at JI^. The two effects mentioned above were included in the 

estimate of errors produced by using the strong diffusion approximation. The 

error was estimated from the following procedure. For a selected value of the 

electron m.f.p. and for an assumed energy distribution of injected electrons, 

a numerical solution of the exact differential equation was sought. From the 

solution for each energy a contribution to the hot electron current is calcu- 

lated using Eq. (8). The total current is then found by averaging over all 

Incident energies e0 according to the energy distribution. For comparison we 

also analysed the current by the SDA method where the energy distribution of 

injected electrons is replaced by a monoenergetic one with €Q  equal to the 

average energy of the different distribution studied. The resulting dis- 

crepancies in X are shown in Fig. 7a, b, and c. In Fig. 7a the error 

derived from the exact solution and the SDA are shown for the monoenergetic 

case. The re~vlt will serve as a standard for evaluating the error in A 

whan the injection energy is not monoenergetic. In Fig. 7b, the assumed 

distribution is photoeUctric with £. (,/   ,2 e ^^     ^^ 
***     ■•* max 
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2 
emax * eav.1F/(« -4).   In Fig. 7c, the distribution Is thermionic with 

dT" exp i-*t*iJ- 

Figure Captlonfc 

Fig. 1 Schematic representation of electron injection into a medium. Due to 

the applied electric fiel'' and polarization of the emitter the electron potential 

• 1/2 

(.nergy has a maxipum at a distance x ■ (;■■ p ) 
m   •»«is 

Fig. 2 Comparison between results of Monte Carlo calculations and the simplified 

theory of Young and Bradbury. The ratio of the collected to t  injected current 

j/. as a function of the ratio of the applied field to number density N. The 
JO 

-15 2        21 ~3 
parameters are 6 • 10  cm and N - 10 cm . 

Fig. 3 Distribution of hot electrons are obtained from the numerical solution 

to Eq. 12 (solid line) and from the strong diffusion approximation (broken line) 

for different electron m.f.p.: 1)5A, 2)10A,  3)20A, 4)40Aj and for the energy 

of Injected electrons a) lev;  b)0.3 eV. 

Fig. 4 Comparison between the analytical solution obtained from the strong 

diffusion approximation (solid line) and results of Monto Carlo calculations. 

j/j is the ratio of the collected to the Injected electron current, E/N is 

the ratio of the applied electric field to number density of the medium. Param- 

—16  2        -IS  2 
eters: strong diffusion approximation op - 3x10  cm , ai » 10  cm •  Monte Carlo: 

—16 2 18 2 16 2 
triangles, o- ■ 1,9x10  cm , 0i - 2x10  cm .  circles, 0 - 4x10  cm , 

—18 2 22 3 
<*£ - 10  cm . Temperature OK, N - 10  molecules/cm . 

Fig. 5  Backseat taring coefficient cOO of hot electrons in the image field 

as calculated from Eq. (A 4) and (A 5) as a function of the electron m.f.p. X and 

energy of injected electrons t^. 
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Flg. 6 Evaluation of errors produced by application of the strong diffusion 

approximation to the analysis of the measured current at T-OK.  X.__, and 
ACT 

TÄCT are re*1 value8 of the hot «l^ctron m.f.p. and lifetime.  X   and T.-. 

are the corresponding quantities as determined from the strong diffusion 

approximation for energy of injected electrons a) e. «■ leV, b) e - 0.3 eV. 

Fig. 7 Evaluation of errors produced by applying SDA method to the analysis 

of collected current when the distribution of injected electrons is a) mono- 

energetic b) photoelectric, and c) thermionic. 
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similar rapid dccrMses in aoblllty as a function of fluid density.  In 

contrast to tht salf-irapped nodal, Eggarter and Cohen interpreted this 

data In tans of fluctuation trapping in their "pseudobubble" model.  Due 

to tba laportanca of distinguishing between the forms of electron trapping 

In thasa thaoratlcal models, ' » it was fait necessary to extend the 

mobility maasuraments even further as functions of temperature and pressure. 

Mobilities are determined from the measured electron drift velocity v. 
d 

The aaro field electron mobility \u  is defined as uA - lim v./E where 11  is 
^ 0  E-»0 d 

the alaccric field strength. The drift velocity was measured, in the present 

experiments, by use of a double gate tima-of-flight technique.7 A thin 

8 9 
film Al-Ai^-Au diode * waa used as a source of relatively low energy 

electrons (1 aV at injection); currants of about 10"13 to 10"11 amps being 

»ucccs«fully measured in the present apparatua. Measurements were made as 

a function of pressure at 7 7.3 K and 160.1 K by immersing the experimental 

high pressure cell in dawara of liquid nitrogen and frosan ethanol. Helium 

i*s of 99.93X purity waa paasad through a liquid-nitrogan-cooled charcoal 

trap and pressurized. Gas of 99.999SZ waa also used without any noticeable 

discrepancies between the measured drift velocities. Pressures were 

determined luing a Heise gauge and temperatures were monitored with a 

calibrated copper-constantsn thermocouple.  The gas number densities were 

calculated from an empirical equation of state,  errors estimated as being 

no greater than +.02 x 10  cm'3 at 77.3 K and +.04 x 1021 cm"3 at 160.1 K. 

Drift velocity measurements were taken at electric field atrengths of 

75 V/cm to 200 V/cm at 77.3 K, but only at 100 V/c- at 160.1 K since the field 

dependent data at the lower temperature appeared Linear in ttils range for 

21  -3 
dtneltie» greater than 1.0 x 10  cm  (Fig. 1).  Each point on the drift 
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velocity curves is the average of over 12 experimental traces from the 

spectrometer.  Over six harmonics were scanned In some Instances for a given 

point, whereas no less than two harmonics were measured for any given point. 

The precision of each averaged drift velocity is about 5% and the absolute 

accuracy of the extrapolated zero field mobilities is estimated to be on 

the order of 10%. 

The zero field mobility results of the present experiments are summarized 

in Fig. 2 where they are also compared with the recent data of Harrison and 

4 5 
Springett for both helium and hydrogen. *  As can be seen, our data at 77.3 K 

essentially reproduces the earlier data over the range at which it was taken. 

Also, the existence of two mobility branches is similar to that previously 

observed in hydrogen. The mobility branches, we observed, coexist over a 

21  -3 
density range of about .7 x 10  cm  at both 77.3 K and 160.1 K. The 

relative amplitudes of the drift velocity peaks were clearly density 

dependent, with the amplitudes of the high mobility data decreasing with 

increasing dennity and the amplitues of the low mobility branch correspond- 

ingly increasing. The amplitudes of each branch, at constant density, were 

normalized to one for a number of densities and are plotted in Fig. 3. It 

can be noted from the electric field dependence of these relative amplitudes, 

that, at a given temperature, the high mobility branch will extend to higher 

densities for higher field strengths. It also can be inferred from this 

data that, at constant field, the high mobility branch will extend to higher 

densities a the temperature increases. 

The correspondence between our helium data and the hydrogen data as 

shown in Fig. 2 (insert) is striking. The low mobility branch in hydrogen 

was attributed to the formation of H " or H~ ions by the high energy radio- 

active source used, although there was some doubt in this regard by the 

authors, who also felt that self-trapped "bubbles" were a possibility. 

50 



In the present experiment, where one does not expect the formation of 

negative helium ions11 siace a low energy electron source was used, the 

low mobility branch is due either to a "bubble" state or some negative 

ion impurity. As discussed later, we rule out the negative ion impurity 

as a possibility. This data. then, gives support to the contention that 

the low mobility branch observed in hydrogen is also due to "bubbles." 

A mming then, that "bubble" states give rise to the low mobility 

branch, we have calculated their radii at these higher temperatures using 

the semi-classical formula 

be  ,. 4 ___i2IS ] (1) 
^0 ' 6irnR     4nR(zirMkT)1/2 

where n is the viscosity. R the bubble radius, n the number density, and M 

the reduced mass between the bubble and a helium atom which we take to be just 

the «ass of the helium atom. We obtain a radius of 4.2 I at 77.3 K and A.5 A 

at 160.1 K. values which are somewhat too low when one consider, that the radii 

are on the order of 12 I to 20 1 in the liquid.12'13 It is «o^ewhat doubtful, 

however, whether one should use the helium «ass for M in this case since the 

"bubble" mass need not be large compared to that of the helium atom. 

For several reasons, we believe that impurities do not play a measure- 

able role in our present experiments. In the first instance, we used helium 

gas of two different purity levels without any noticeable differences in 

drift velocities. In the cafe of our two temperature runs, one would expect 

higher impurity levels and effects at 160.1 K than at 77.3 K; for example, any 

oxygen impurity would freeze out at 77.3 K but not at 160.1 K.  Such an impurity 

ion would then give a low mobility signal over a much longer density range than 

we have observed.7 Also, in regard to the relative peak amplitude« In the reg.on 

of overlap shown in Fig. 3, the signal strength due to a negative ion impurltv 

would increase in direct proportion to the density, an effect which has not 

er* 
been observed. *,•f, 



in order to obtain a theoreticai estimate of the zero field mobilities 

of the upper branch, we have used a modification of the semi-classical 

1A 5 
formula for gases and liquids  ' 

WQ - {4e/3a(2TrmkT)x/<'}(l+B1n) (2) 

where m is the electron mass, B. the second virial coefficient and a the 

21  -3 
s-wave scattering cross-section. At densities less than 1.0 x 10  cm  our 

data agrees to within 20% of these theoretical values, but for higher 

21  -3 
densities this agreement becomes gradually poorer until at 3.0 x 10  cm 

these theoretical values are about 45% too high. Trapping due to fluctua- 

tions (pseudobubbles) would lower this theoretical estimate to essentially 

the observed value, but the point here is that these calculations do 

suggest that we are dealing with free electrons in th« ilgh mobility branch. 

The primary implications that we have drawn from these experiments 

are that we have observed self-trapped bubbles in dense helium gas at high 

temperatures and pressures and that we have observed the coexistence of 

free electron and "bubble" states over a significant density range (where 

quite probably, coexisting free electrons and pseudobubbles lead to the 

high mobility branch and self-trapped states lead to the low mobility 

branch). This interpretation further suggests that we are dealing with a 

nonequllibrlum phenomenon (because of the branching) implying a long 

relaxation time to the low mobility states. This is of some interest in 

a 
view of the short lifetimes observed in the liquid and in view of the 

Intermediate mobilities observed at lower temperatures where fast relaxa- 

tion due to fluctuation trapping gives rise to thermal equillbriur between 

free and pscudobubble states.  It may be that the number and trapping 

cross sections of the states observed here are quite strongly dependent 

on density and temperature, giving rise to a longer trapping time than 
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that found Pt lower temperatures.  If one were to obtain a longer drift 

time by the use of a longer drift space or a lower electric field, one 

would expect, in this view, that the free electron signal strength would 

decrease with a corresponding increase in the "bubble" signal.  This 

change has indeed been observed as is shown in Fig. 3. 

Pi-om the data of Harrison and Spr^ngett4 for helium at 18 K, we had 

expected a gradual decrease in mobility at our higher temperatures rather 

than branching.  It is possible that branching also occurs st  these lower 

temperatures but was not detected by the single gate technique. We are 

presently extending our experiments to lower temperatures in order to 

draw some consistency between these two sets of data. 

The authors wish to thank J. P. Hernandez for many helpful discussions 

and P. Smejtek and T. Carruthers for their experimental advice. 
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FIGJRE CAPTIONS 

Fig. 1    Electron Drift velocity versus electric field strength at 77.3 K 

in a pressure range of 10 Kg/cm2 to 40 Kg/cm2. The drift velocity 

is nonlinear at 100 V/ctn at pressures less than 10 Kg/cm2. 

Fig. 2    Zero-field electron mobilities as a function of number density in 

dense helium gas. The dashed lines represent the earlier data of 

Harrison and Springett for helium. The inset compares our 77.3 K 

data for helium with the hydrogen dafa of Harrison and Springett 

at 31.7 K. Note the existence of high and low mobility branches 

in both cases. 

Fig. 3   Relative signal strengths of the high and low mobility branches 

versus number density at 77.3 K and 160.1 K. The figure for 77.3 K 

also shows the effect of the electric field on the relative inten- 

sities. The data for 160.1 K was taken at a field of 100 V/cm. 
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