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FOREWORD 

This report presents the results of a Study of Radar Wave 

Direction Sensors for Coastal Research conducted by Raytheon Service 

Company, a Subsidiary of Raytheon Company, for the Coastal Engineering 

Research Center (CERC), U.S. Army Corps of Engineers, under 

Contract DACW72-72-C-0008. 

The primary objective of the study was to assess the feasibility 

of using a radar system to measure the direction of arrival of 

ocean waves arriving at a shoreline, flj 

The study was conducted at the Headquarters of Raytheon Service 

Company under the direction of Mr. Walter L. Mudgett as Principal 

Investigator, with the staff of Mr. Raymond C, Remington, Field 

Engineering Manager. 

Some of the initial concepts leading to this study were developed 

by Mr. Leo C. Williams of CERC (retired). Successful implementation 

of the study was largely due to Dr. D. Lee Harris of CERC, who pro- 

vided the initial direction and guidance, and to Mr. Rudy Savage, 

CERC Research Division Chief. 

Many groups within Raytheon contributed concepts to this study. 

We especially mention Messrs. Edward F. Hudson, Alan H. Greene, 

and Aaron S. Soltes of the Equipment Division, and Dr. David 0. Cook 

of the Submarine Signal Division. 
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ABSTRACT 

A study was conducted to assess the feasibility of using an 

on-shore radar  to measure the azimuthal arrival direction of medium 

period ocean waves arriving at a shore. 

In a survey of the  applicable oceanographic and radar  literature, 

little was found of direct relevance to measuring wave direction with 

a radar,   including radar-like laser systems,   even amid the extensive 

literature on radar clutter signals backscattered from the  sea,   or 

the literature on wave height sensors.     No applications of Bragg 

scattering concepts were  found that were directly applicable to 

measuring wave direction. 

A theoretical model was developed  for  the needs  of this study, 

emphasizing the  idea of measuring wave direction by locating the 

radar azimuth exhibiting a suitable maximum of observed doppler 

shift in the radar backscatter signal.     The principal remaining 

limitations of this model are in its  treatment of three areas: 

(1)   estimation of the clutter coefficient   0*°(which is essentially 

the fractional reflectance,  or albedo,   of the sea surface relative 

to an ideal lambertian surface) ;   (2)   doppler spreading of the back- 

scattered radar signal,   caused principally by small-scale phenomena 

like capillary waves and spray;  and   (3)   estimation of the value and 

precise consequences of the critical grazing angle 0    (so-called 
c 

pseudo-Brewster angle) between the plane of the mean sea surface and 

the radar illumination ray, below which 0"* falls off very rapidly. 

The effect of the uncertainty in (T0, and the principal effect of 

the uncertainty in 0 , are to create uncertainties about precisely 

how much transmitted radar power is required under extreme (and 

statistically rare) conditions. The uncertainty in doppler spreading 

also ultimately has implications on required radar power, plus a more 
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fu.   amental implication on measurement accuracy and ability to 

discriminate/resolve between multiple wave systems.    The uncertainty 

in 0    limits available geometries.    None of  these limitations pre- 

vents a firat order calculation of the desired system parameters. 

Subject to these model limitations,   conceptual radar systems were 

derived and analyzed for an inexpensive unattended surveillance radar 

("Type I")   and for a more flexible research system   ("Type II"). 

Existing radars potentially suitable for evaluation of these Type I 

and Type II conceptual designs are discussed. 

A brief plan for suggested further research is presented. 

Emphasis is on limited field trials,  using an appropriately 

modified existing radar,   to validate the basic model and to derive 

more accurate design data,   in the areas of  limitation of the model, 

from which the detailed design of Type I  and Type II radars could 

proceed. 
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EXECUTIVE SUMMARY 

Study Oblective 

The general objective of this study is to assess the suitability 

of radar for measuring the azimuthal direction of arrival of medium 

period ocean waves at a shore. The principal individual study 

objectives are to: 

1. Review the state of the art of applicable radar technology. 

2. Study economically and logistlcally feasible radar equip- 

ment configurations for measuring wave direction, with 

emphasis on two particular applications: 

Type I - A simple configuration suitable for unattended 

operation in surveillance networks. 

Type II - A more flexible version for general coastal 

research. 

3. Briefly study appropriate field trials which could 

experimentally verify the theoretical findings of the study. 

4. Report on any findings in the course of the literature 

search indicating that signal information on wave character- 

istics other than direction (such as height, period, or 

wavelength) may also be present in a radar backscatter 

s ignal. 

Findings 

This study arrives at the following findings: 

1. There Is little in the literature for radar, or for ocean 

processes, that is directly relevant to the use of a radar 

to measure wave direction. 
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2. There is a great deal of published information on the 

general character of radar backscatter signal returns from 

the sea, primarily in studies where the sea return is 

viewed as a contaminating or obscuring "clutter" signal. 

Many studies treat the clutter spectrum (power spectral 

density within the signal band), and report theoretical and 

experimental findings of the effects on spectra of such 

parameters as radar wavelength, sea state, and orientation 

of the radar illuminating ray with respect to the local 

vertical and the local surface wind direction. 

3. There is a small but growing body of literature on radar 

wave height sensors.  One typical class of wave height 

radars is the frequency modulated continuous wave (FMCW) 

radar, similar to existing aircraft altimeter radars; 

evaluations are typically in experiments where the radar 

is mounted on a fixed tower or pier, and aimed straight 

down at the nearby sea surface.  Other typical types 

include continuous wave or short pulse versions (pulse 

lengths of a few nanoseconds, corresponding to range 

resolution of a few feet) operated at various illumination 

ray aspects, from aircraft and satellites.  Laser "pro- 

filometers" are reported, which are in effect optical 

wavelength radars. 

4. Imaging radars of several types exist.  In the side looking 

radar (SLR), an aircraft or satellite carries a highly 

sophisticated, synthetic antenna aperature radar that can 

produce radar photographs comparable in resolution with 

optical photographs. Most of the literature on SLR types 

is classified. Typical SLR systems do not measure wave 

direction directly. 
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5. No substantial  information was  found  in the literature to 

suggest that wave characteristics  other than direction and 

height can be measured directly with a radar,  except for a 

diffuse kind of correlation between radar signal spectral 

characteristics and such loosely defined wave characteristics 

as  "sea state".    Among the possibilities  for indirect 

measurements,  measurement    of wind direction seems often 

implied;  use of conventional marine surface search radars 

with plan-position indicator   (PPI)  displays  fall in this 

category. 

6. Within the scope of this study,   conceptual designs for 

Type I and Type II radar applications are developed,  and an 

analysis of their performance is presented. 

7. The principal limitations of the  theoretical model used to 

develop the Type I and Type II designs  are in: 

(a) Estimation of the lower bound on the clutter 

coefficient 

(b) Estimation of doppler spectrum spreading versus small 

scale effects. 

(c) Estimation of the value of the critical grazing angle 

0    between the radar illuminating ray and the sea 

surface,   and estimation of the detailed consequent 

rapid drop off in  (T0 for grazing angles smaller 

than 0  . c 
Uncertainties (a) and (c), and to a lesser extent (b), limit 

the calculation of maximum radar power required for extreme 

conditions. Uncertainty (b) also limits calculation of 

available performance even if unlimited radar signal power 

were available. Uncertainty (c) implies limits on the 

available combinations of radar on-shore antenna tower 
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height and range coverage to seaward.    None of the 

limitations prevents a first order calculation of the 

desired system parameters. 

8.    Relatively simple experiments are configured which can pro- 

vide validation data for the theoretical models developed 

in this  study,   and provide more accurate design data for 

ultimate equipment design for Type I  and Type II 

applications. 

Recommendations 

1. In the light of present good prospects  for development of 

Type I and Type II radars,  the radar approach to wave 

direction measurement in the coastal region should be 

pursued further. 

2. A limited program of field measurements should be implemented 

to validate the conceptual designs,   and to obtain refined 

design data for equipment design. 

3. The field trials should be conducted for a limited time at 

a very well instrumented site — either at a shore or in a 

tank as found most convenient.    Instrumentation to obtain 

"true" wave direction during these trials should be care- 

fully chosen.     Photographic coverage,   and ehe use of 

arrays of wave height gages are suggested methods. 

4. Radar equipment for the trials should be chosen from 

existing equipment,  modified as required for the controlled 

tests.    No new equipment design is warranted until the 

results of these trials have been evaluated. 

5. Further theoretical studies should be planned,  but should 

not be extensively implemented until the findings of the 

field trials have been evaluated. 
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1. INTRODUCTION AND SUMMARY 

1.1 Study Oblective 

The general objective of this study is to assess the suitability 

of radar for measuring the azimuthal direction of arrival of medium 

period ocean waves at a shore. The principal individual study 

objectives are to: 

1. Review the state of the art of applicable radar technology. 

2. Study economically and logistically feasible radar equipment 

configurations for measuring wave direction, with emphasis 

on two particular applications: 

Type I - A simple configuration suitable for unattended 

operation in surveillance networks. 

Type II - A more flexible version for general coastal 

research. 

Z.    Briefly study appropriate field trials which could 

experimentally verify the theoretical findings of the study. 

4. Report on any findings in the course of the literature 

search indicating that signal information on wave 

characteristics other than direction (such as height, 

period, or wavelength) may also be present in a radar 

backscatter signal. 

1.2 General Background 

For many of the Coastal Engineerina Research Center's researches 

in ocean wave and coastal processes,  there is a need for more 

successful automatic,  real-time sensors for measuring the directions 

of arrival of medium period ocean wave systems incident upon a 

coastline.    Improved wave direction sensors would be especially 

useful in fulfilling the Center's major mission in research on 

sand transport by shoaling wavep. 

J 
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For operational surveillance networks, and for some types of 

research, a sensor very commonly used until recently has been a 

human observer, who visually determines both the number of wave 

directions and also their various direction azimuths of arrival 

(or of departure for outgoing waves). This approach has been 

valuable in the very practical work of re?.l-time surveillance and 

warning systems, and in collecting large quantities of data from 

which broad climatological statistics could be derived. 

However, wave theory has developed to the point where a more 

automatic, objective wave direction sensor is needed to continue 

the development of the theory of wave information, propagation, and 

interaction with and effect on shoreline features. ' The presently 

known wave direction sensors of many types do not fully meet all the 

needs of research for accuracy, automaticity, portability, ability 

to determine direction for a single wave system under conditions 

where chop or the like is superimposed upon the waves, ability of 

the sensor to resolve and distinguish wave systems from multiple 

directions, or ability of the sensor to respond only to a determined 

range of wave periods. 

Of the several possible types of wave direction sensors 

presently known, radars in various configurations, especially 

coherent doppler radar, offer many potential advantages for wave 

direction measurement that have not been fully exploited either 

analytically or in field use.  However, a large body of partially 

relevant theoretical and field experience has been accumulated for 

such radars, primarily by users whose interest in wave dynamics was 

only in connection with the unwanted radar clutter signals waves 

produce, plus a few applications where very localized wave dynamics 

were of interest for navigational, geodesic, or surveillance purposes. 

8 
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This study Is Intended to begin a more concerted exploitation 

of this extensive radar art to fill the needs of coastal research. 

1.3 Study Rationale and Approach 

Because of the multidisciplinary nature of this study task, a 

major requirement has been to maintain a balanced presentation of 

material. For specialists in either radar or coastal processes, 

some of the material will seem so familiar as to be almost 

tutorial, while their counterparts of the other discipline may find 

the same material enlightening. This use of tutorial communication 

has been adopted as the most effective way of meeting these inter- 

disciplinary needs. 

Within these tutorial implications, many types of radars are 

treated at least briefly, including such marginally applicable types 

as optical wavelength radars using a laser t 3 the radar transmitter, 

and imaging types such as the side looking radar (SLR) with a large 

synthetic antenna aperature derived from vehicle motion and 

sophisticated signal processing. 

However, the major emphasis Is on relatively simple doppler- 

shift measuring radars, either continuous wave (CW) or pulsed, that 

would measure wave direction by searching (actually or in effect) for 

a maximum magnitude of radar signal doppler shift when the horizontal 

component of the radar look direction vector is parallel with the 

velocity vector of the ocean wave motion. 

Ideally the active radar Industry would by now have produced 

equipments that were fortuitously just what is needed for Type I and 

Type II wave measuring applications, or at least just right for 

experimental trials, but none has yet been found that is unequivocally 

an ideal wave radar. However, radars have long been designed, and 
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often built, on a modular basis, so that modifying an existing radar 

(or collection of radar functional modules) for tests should not be 

difficult or expensive, and subsequent actual equipment design of 

wave radars should not require unique or intensive skills, nor 

extensive design efforts beyond the normal requirements for a new 

model of an existing series. 

1.4 Findinas 

This study arrives at the following findings: 

1. There is little in the  literature for radar,   or  for ocean 

processes,   that is directly relevant to the use of a radar 

to measure wave direction. 

2. There is a great deal of published information on the 

general character of radar backacatter signal returns from 

the sea,  primarily in studies where the sea return in 

viewed as a contaminating or obscuring  "clutter"  signal. 

Many studies  treat the clutter spectrum  (power spectral 

density within the signal band),  and report theoretical and 

experimental  findings of the effects on spectra of such 

parameters as radar wavelength,  sea state,  and orientation 

of the radar  illuminating ray with respect to the  local 

vertical and the local surface vdnd direction. 

3. There is a small but growing body of literature on radar 

wave height sensors.     One typical class of wave height 

radars is the frequency modulated continuous wave   (FMCW) 

radar,  similar to existing aircraft altimeter radars; 

evaluations  are typically in experiments where the radar is 

mounted on a fixed tower or pier,  and aimed straight down 

at the nearby sea surface.    Other typical types  include 

continuous wave or short pulse versions   (pulse lengths of a 

10 
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few nanoseconds, corresponding to range resolution of a few 

feet) operated at various illumination ray aspects, from 

aircraft and satellites.  Laser "profilometers" are reported, 

which are in effect optical wavelength radars. 

4. Imaging radars of several types exist.  In the side looking 

radar (SLR), an aircraft or satellite carries a highly 

sophisticated, synthetic antenna aperature radar that can 

produce radar photographs comparable in resolution with 

optical photographs. Most of the literature on SLR types is 

classified. Typical SLR systems do not measure wave 

direction directly. 

5. No substantial information was found in the literature to 

suggest that wave characteristics other than direction and 

height can be measured directly with a radar, except for a 

diffuse kind of correlation between radar signal spectral 

characteristics and such lossely def ned wave characteristics 

as "sea state". Among the possibilities for indirect 

measurements, measurements of wind direction seems often 

implied; use of conventional marine surface search radars 

with plan-position indicator (PPI) displays fall in this 

category. 

6. Within the scope of this study, conceptual designs for 

Type I and Type II radar applications are developed, and an 

analysis of their performance is presented. 

7. The principal limitations of the theoretical model used to 

develop the Type I and Type II designs are in: 

(a) Estimation of the lower bound on the clutter 

coefficient (T*. 

(b) Estimation of dcppler spectrum spreading versus small 

scale effects. 
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(c)  Estimation of tho value of the critical grazing angle 

0   between the radar illuminating ray and the sea 

surface, and estimation of the detailed consequent 

rapid drop off in cr* for grazing angles smaller than 

*c' 

Uncertainties (a) and (c), and to a lesser extent (b), limit 

the calculation of maximum radar power required for extreme 

conditions. Uncertainty (b) also limits calculation of 

available performance even if unlimited radar signal power 

were available. Uncertainty (c) implies limits on the 

available combinations of radar on-chore antenna tower 

height and range coverage to seaward. None of these 

limitations prevents a first order calculation of the 

desired system parameters. 

8. Relatively simple experiments are configured which can 

provide validation data for the theoretical models developed 

in this study, and provide more accurate design data for 

ultimate equipment design for Type I and Type II applications. 

1.5 Recommendations 

1. In the light of present good prospects for development of 

Type I and Type II radars, the radar approach to wave 

direction measurement in the coastal region should be pur- 

sued further. 

2. A limited program of field measurements should be implemented 

to validate the conceptual designs, and to obtain refined 

design data for equipment design. 

3. The field trials should be conducted for a limited time at a 

very well instrumented site — either at a shore or in a 

tank as found most convenient.  Instrumentation to obtain 

12 
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"true" wave direction during these trials should be care- 

fully chosen. Photographic coverage, and the use of 

arrays of wave height gages are suggested methods. 

4. Radar equipment for the trials should be chosen from existing 

equipment, modified as required for the controlled tests. 

No new equipment design is warranted until the results of 

these trials have been evaluated. 

5. Further theoretical studies should be planned, but should 

not be extensively implemented until the findings of tha 

field trials have been evaluated. 

1.6 Organization of the Report 

The remainder of this report is organized as follows:  Section 2 

summarizes some of the elementary wave and coastal processes theory 

needed to define the scope of the radar design problem. 

Then Section 3 outlines the general requirements for a wave 

direction sensor.  In Section 4, different categories of possibly 

suitable sensors are discussed qualitatively, including both radar 

and non-radar types. 

Beginning in Section 5, the field of possibilities is narrowed 

to radar types (broadly construed) exclusively, and Section 5 gives 

additional qualitative details for various types. In Section 6, 

quantitative system analyses are presented which take into account 

the detailed sensor requirements developed in Section 3, and the 

various signal processing characteristics of the radar types 

discussed in Section 5, plus the interaction of these elements 

with the backscattering properties of the sea and local geometry. 

In Section 7, candidate designs-for Type I and Type ZI radars 

are presented.  Section 8 discusses the availability of existing 

suitable radars. 

13 — 
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Section 9 discusses proposed field trials to validate the 

findings of this study and to develop more refined design data. 

Final conclusions and recommendations appear in Section 10, 

followed by the references and appendices. 

14 
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2.   SHOALING WAVES 

2.1  Scope 

This section presents a brief synopsis of some selected topics 

in elementary ocean wave theory. The presentation here is limited 

to the scope and detail needed to define the present study program. 

The viewpoint of the radar designer and general system engineer is 

emphasized. 

The treatment here is lucidly and more extensively treated in 

Bascom 
130 104 

Skolnik  , and Harris 
111 

Bascom's 
130 

popularized 

treatment is particularly useful to non-specialists in oceanography. 
104 

Skolnik   is a major milestone in the documentation of radar, and 

although it is highly specialized toward its subject, the material 

in it that is relevant here is notably free from unnecessary 

jargon; it is highly recommended that users of this study should 
104 

also read the entirety of Section 26 "Sea Echo" in Skolnik 

The material in Harris   is specific to several of the problems 

of interest here, especially in three areas: (1) the discussion of 

why wave spectra are often subject to almost contradictory inter- 

pretations (display conventions, statistical convergences, degree of 

bimodality); (2) the discussion of arrays of wave height sensors, 

which we suggest are Important candidates for instrumentation to 

calibrate and evaluate any wave direction radar; and (3) the 

photographs, figures   15-17, which (with other photographs 

available to Harris, private communication) are useful in 

establishing conceptual definitions of wave motion parameters. 

2.2 Wave Theory 

Ocean waves are characterised in principle by their height, 

wavelength, and period as shown in Figure 1 (Figures 1 through 6 

15 
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DIRECTION OF WAVE MOTION 
PILING 

Figure 1.    The parti of a wave.   The period of the wave is the time spent for 
two successive crests to pass a fixed point such as the piling. 
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Figure 2.    The ocean wave spectrum 
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Figure 3.   The development of waves (conceptual).   The fetch, within tL« dashed 
line, is the area of water on which a wind blows to generate waves. 
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Figure 4.   Wave spectrum for fully arisen seas caused by winds of twenty, 
thirty, and forty knots,    (after Pierson, Neumann and James11) 
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Figure 5.   Wav« group advance.   As the center of the wave group advances from 
A to B, wave number 1 dies out and wave number 4 forms behind. 
Since waves number 2 and 3 are moving at normal velocity, the 
velocity of a group of waves is only half that of the individual waves. 
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are after Bascotn  ) . The various possible kinds of waves, classified 

by wave period, are summarized in Figure 2 (the energy distribution 

cited in Figure 2 is not in itself directly relevant here) . The 

12-hour and 24-hour tidal components appear at the far left, the 

typical 20-minute seismic sea waves (tsunamis, also called "tidal 

waves") peak at about 1200 seconds. The surf beat, swell, sea, 

chop, and ripples complete the principal types shown, with the sea 

and 'jwell  portions being of primary interest here. 

The seas and swells of principal interest are generated by 

winds blowing for a period of time along a fetch as shown in 

Figure 3. For ideal sinusoidal assumptions, wavelength Aw  and 

period T are related by T-i irkw (i) 

where g is gravitational acceleration,  and both Aw and T are 
(ideally) independent of wave height H. Figure 4 shows the relative 

2 
energy (proportional to H ,   for fully developed seas for some typical 

wind speedb of interest.  It should be emphasized that the single- 

peak (unimodal) distributions of Figure 4 are now regarded as 

atypical. More often than not there is a second peak of comparable 

amplitude and spectral frequency. See Harris   for additional 

details, including the sensitivity of apparent modality to display 

conventions. 

These ideal waves travel with a wave velocity (individual 

wavesj of 

C = / q Aw  tanh   2^*^w (2) = = / SL-iw 
H   21^ Aw 

where c is the depth of the water (mean surface to bottom) For 

deep and shallow waves respectively, the wave velocity simplifies to 

22 
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c  ,/gd 
w V w 

for 0.5«-—., "short" or "deep" waves 

(3) 

for —ZL<4£ 0.05,   "long" or "shallow" waves 
Ay, 

As shown in Figure 5, the group velocity of a train of swell waves 

moving across the open ocean is only half that calculated above for 

individual waves. 

Until bottom drag and the like become significant, a particle 

of water, or a particle of foreign matter in the water, is not 

transported along at the wave velocity or group velocity, but Instead 

principally "orbits" in place, only very slowly migrating in the 

direction of wave travel. 

The orbiting motion of the particles adds to the wave velocity 

c from equation d},  constructively at the wave crests and 

destructively at the troughs, so that the local foreward speed is 

highest at the crests and lowest in the troughs. 

Figure 6 shows the kinds of waves again, here arranged by water 

depth and wave period. This figure is useful in explaining 

several phenomen. associated with the variable propagation speed c 

in equation (2). For instance, tsunamis have very long periods, 

(T'v» 1000 s*) and hence their wavelength  w from equation (1) is 

also very long, much longer them the depth of even the deep ocean 

basis, making the tsunamis "shallow" waves as defined in equation (3). 

As the wave approaches a shore, shoaling effects set in. Wave 

period is less effected, but wavelength adjusts to fulfill the 

relationships cited. Waves running perpendicular to the shore may 

be greatly amplified at certain near-shore depths, and at different 

such depths for waves of different period. Waves running parallel 

*SI units and unit symbols are generally used in this paper; e.g. 
see Westman  . 
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to a shore experience less amplification, but tend to turn toward 

the shore If the shoreline Is long enough. 

104 
2.3 Wave Types and Terminology - Sea States (After Skolnlk  ) 

The terminology the oceanographer uses to describe the sea is 

often unfamiliar to the radar engineer. Some common terms and 

concepts are given below : 

Wind wave;  a wave resulting from the action of the wind on a 

wat r surface. While the wind Is acting on it, it is a sea; there- 

after, it is a swell. 

Gravity wave;  a wave whose velocity of propagation is controlled 

primarily by gravity. Water waves of wavelength greater than about 

5 centimeters are considered to be gravity waves. 

Capillary wave (also called ripple, or capillary ripple);  a 

wave whose velocity of propagation Is controlled primarily by the 

surface tension of the liquid In which the wave is traveling. Water 

waves of wavelength less than about 2.5 centimeters are considered 

to be capillary waves. 

Fetch;  (1) (Also called generating area) an area of the sea 

surface over which seas are generated by wind action usually 

assumed to be wind of constant direction and speed); (2) the length 

of the fetch area, measured in the direction of the wind generating 

the seas. 

Internal wave; a wave generated, and principally acting within 

the water, under the surface. 

Duration;  the length of time the wind blows in essentially the 

same direction over the fetch. 
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Swell;     ocean waves that have traveled out of their generating 

area.     Swell characteristically exhibits a more regular and a longer 

period and has  flatter crests  than waves within their fetch. 

Sea;    waves generated or sustained by winds within their 

fetch;   opposed to swell. 

Wave spectrum;    a graph showing the distribution of wave heights 

(or square of the wave heights)   as  a function of wave frequency,   as 

in a wave record. 

Sea state;     the numerical or qualitative description of ocean- 

surface roughness.    Ocean sea state may be defined more precisely 

as the average height of the highest one-third of the waves observed 

in a wave train,  referred to a numerical code as shown in Table  la 

(see further below). 

Fully developed sea  (also called fully arisen sea);     the 

maximum height to which ocean waves can be generated by a given 

wind force blowing over sufficient fetch,  regardless of duration,  as 

a result of all possible wave components  in the spectrum being 

present with their maximum amount of spectral energy. 

Significant wave height;     the average height of the one-third 

highest waves of a given wave group.     (Height is the vertical distance 

between a crest and a trough) . 

Three numerical scales have been commonly used to describe sea 

and wind state.    Two of them are shown in Table la.    The Douglas 

scale has been widely used; World Meteorological Organization  (WMO) 

Code 75    has been proposed to replace it.    The Douglas  scale in its 

complete form specifies two numbers,  one to describe the sea and the 

other the swell;  only the sea-state number is shown here.    A third 

system is the Beaufort wind scale for reporting wind speeds shown in 

Table lb.    The Beaufort number,   in addition to specifying the wind 
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Table 1  Sea-State and Wind Scales 

! 

I 
IJ 

t 
I 
I 

a. Douglas and WMO Sea-State Scales 

Douglas Scale 
Sea-State 
number 

WMO Code 75      1 
wave height, f«at 

Wave height. Description 
feet 

0 0 0 Calm 
1 0-0.33 Under 1 Smooth 
2 0.33-1.67 1-3 Slight 
3 1.67-4 3-5 Moderate 
4 4-8 5-8 Rough 
5 8-13 8-12 Very rough 
6 13-20 12-20 High 
7 20-30 20-40 Very high 
8 30-45 Over 40 Precipitous 
9 Over 45 Confused 

b.    Beaufort Wind Scale 

Beaufort Descriptive Wind speed. 
number term knots 

0 Calm Under 1 
1 Light air 1-3 
2 Light breeze 4-6 
3 Gentle breeze 7-10 
4 Moderate breeze 11-16 
5 Fresh breeze 17-21 
6 Strong breeze 22-27 
7 Near gale 28-33 
8 Gale 34-40 
9 Strong gale 41-47 

10 Storm 48-55 
11 Violent storm 56-63 
12 Hurricane Over 64 
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speed, has been used to describe the  corresponding effect on the sea. 

(Any qualitative description of the sea Is not as meaningful to the 

radar designer as specifying the value of IT* the radar clutter 

coefficient or relative reflectivity that corresponds to the sea 

conditions). 

2 
Kinsman gives the estimates of the percentage occurrence of 

wave heights for the ocean as a whole shown In Table 2a.  Thus 45 

percent of the ocean waves are less than 4 feet (1.2 meters) high, 

80 percent are less than 12 feet (3.7 meters) high, and only 10 per- 

cent are greater than 20 feet (6.1 meters) high. These numbers give 

an Idea of the kinds of wave heights that may ultimately arrive at 

an unobstructed shoaling region from the open sea. 

Sea waves are generated by the wind and differ from swell In 

both physical appearance and In their effect on radar echo. 

Individual sea waves are more peaked than pure sine waves and tend 

to be skewed In the direction of propagation. They are Irregular, 

chaotic, short-crested (length along the crest of the same order of 

magnitude as the wavelength), mountainous, and unpredictable except 

In a statistical sense. Sea waves contain many small waves super- 

Imposed on the larger waves, and their spectra cover a wide range 

of frequencies and directions.  Swell waves are more regular than 

sea waves, are longer-crested, have more rounded tops, and are more 

predlcatble. Their spectrum covers a narrow range of frequencies 

and directions.  Swell waves In the absence of wind, return 

considerably less microwave radar echo than  sea waves, when viewed 
at low grazing angles. 

Gravity-wave characteristics are controlled by gravity.  Both 

wind-generated sea waves and swell are gravity waves. Their 

properties are given Ideally In equations (1) and (3), and Figures 
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Table 2 Wave Height Distribution 
Worldwide and Fully Arisen Conditions 

a. Distribution of Wave Heights for the Ocean as a Whole 
(After Kinsman ) 

Wave height, feet Frequency of occurence^ % 

0-3 20 
3-4 25 
4-7 20 
7-12 15 

12-20 10 
Over 20 10 

b. Conditions in Fully Developed Seas (After Bascom 
130v 

Wind Distance Time Waves                1 
Length of H10, avg. Period where 
fetch. Average H3. of the most of energy 

Velocity, nautical height. sig. highest is concentrated 
knots miles hours feet hert. 10%.  ft. seconds 

10 10 2.4 0.9 1.4 1.8 4 
15 34 6 2.5 3i5 5 6 
20 75 10 5 8 10 8 
25 160 16 9 14 18 10 
30 280 23 14 22 28 12 
40 710 42 28 44 57 16 
50 1420 69 48 78 99 20 
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1 to 6. Equation (1) to (3) apply to Individual sine waves, and It 

should be cautioned that they might not correctly describe measure- 

ments of the average parameters of an Irregular sea. 

Capillary waves have periods less than 0.1 second.    Like  sea 

waves,  they are generated by the wind but surface tension rather 

than gravity  Is the force controlling their characteristics.    Waves 

with a wavelength of less than about 2.5 centimeters are considered 

capillary waves.     (Waves of longer period and length for which surface 

tension cannot be neglected are sometimes classed as  "ultragravlty" 

waves.)     Capillary waves are fairly sensitive to the wind.     If the 

breeze that generated the capillary waves dies out,  they soon flatten, 

and the sea abruptly becomes smooth again.     If the wind generating 

gravity waves stops,  they continue to run and become swell.    The 

phase velocity of capillary waves decreases with Increasing wave 

height,  opposite to the behavior of gravity waves.    When capillary 

waves Interact with the longer gravity waves,  the capillary waves 

appear to be concentrated,  at times,   on the forward face of the 
.44 

gravity wave  just before the sharp crest       .    Capillary waves seem 

to be the dominant scatterer when the sea Is viewed by radars at 

the higher microwave frequencies   (X band* or greater). 

Wave height Is not fixed in relation to the wavelength but 

depends on the wind generating it.    Theoretical considerations  show 

that a wave becomes unstable and breaks if the angle formed by the 

crest approaches 120    and that the height can be no greater them 

one-seventh of the length.    Observations of gravity waves indicate 

the height-to-length ratio varies from 0.1 to 0.008  (see Reference 2). 

The ratios for capillary waves can be greater. 

* See Tables 3 and 4 for a definition of radar bands,    x band 

usually Implies a radar wavelength In the range 2.8 to 5.8 cm,   and 

a frequency of 5.2 to 10.9 GHz. 
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Table 3 Nominal Radar Frequency Bands (after Skolnik  ) 

Nomenclature Frequency range. Wavelength range, 
gigahertz centimeters 

VHF 0.03-0.3 1000-100 
UHF 0.3 -1 100-30 
P band 0.23-1 130.4-30 
L band 1-2 30-15 
S band 2-4 15-7.5 
C band 4-8 7.5-3.75 
X band 8-12.5 3.75-2,4 
K band 12.5-18 2.4-1.667 
KU band 18-26.5 1.667-1.132 
K band 26.5-40 1.132-0.75 
Millimeter Over 40 Under 0.75 

. 
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TABLE 4 

Detailed Band and Subband Letter Designations 
108 for Microwave Radar Bands  (after Westman      ) 

c 
D 
li 
0 
D 
I 
I 
I 
I 
I 
I 

Subband 

(None) 

P 
c 
1 
y 
t 
s 
X 
k 
f 
z 

t 
t 
c 
q 
y 
g 
8 
a 
w 
h 
z* 
d* 

< 

Frequency 
gigahertz 

P Band 

0.225 
0.390 

L Band 

0.390 
0.465 
0.510 
0.725 
0.780 
0.900 
0.950 
1.150 
1.350 
1.450 
1.550 

S Band (and C Band*) 

1.55 
1.65 
1.85 
2.00 
2.40 
2.60 
2.70 
2.90 
3,10 
3440 
2.70 
3.90 
4.20 
5.20 

31 

Wavelength 
centimeters 

133.3 
76.9 

76.9 
64.5 
58.8 
41.4 
38.4 
33.3 
31.6 
26.1 
22.2 
20.7 
19.3 

19.3 
18.3 
16.2 
15.0 
12.5 
11.5 
11.1 
10.3 
9.67 
8.32 
8.10 
7.69 
7.14 
5.77 
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TABLE  4 (Continued) 

Frequency 
Sabband gigahertz 

X Band (and C Band*) 

5.20 
a* 5.50 
q* 5.75 
y* 6.20 
d 6.25 
b 6.90 
r 7.00 
c 
•i 8.50 
1 9.00 
8 9.60 
X 10.00 
f 10.25 
k 10.90 

K Band (with ^ Band **) 

10.90 
P 12.25 
s 13.25 
e 14.25 
c 15.35 
u** 17.25 
t** 20.50 
q** 24.50 
r 26.50 
m 28.50 
n 30.70 
1 33.00 
a 36.00 

Q Band 

36.0 
a 38.0 
b 40.0 
c 42.00 
d 44.0 
a 46.0 

Wavelength 
centimeters 

5.77 
5.45 
5.22 
4.84 
4.89 
4.35 
4.29 
3.53 
3.33 
3.13 
3.00 
2.93 
2.75 

2.75 
2.45 
2.26 
2.10 
1.95 
1.74 
1.46 
1.22 
1.13 
1.05 
0.977 
0.909 
0.834 

0.834 
0.790 
0.750 
0.715 
0.682 
0.652 
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TABLE 4 (Continued) 

Frequency 
Subband qiqahertz 

V Band 

a 
46.0 
48.0 

b 
c 
d 
e 

50.0 
52.0 
54.0 
56.0 

W Band 

None 
56.0 

100.0 

Wavelength 
centimeters 

0.652 
0.625 
0.600 
0.577 
0.556 
0.536 

0.536 
0.300 

d 

II 
it 

i 
i 
i 
i 

k 

* C Band Includes S Band through X Band, 3.90-6.20 gigahertz, 
z y 

7.69-5.22 centimeters 

** K, Band includes K Band through K Band, 15.35-24.50 gigahertz, 
1 u q 

1.95-5.22 centimeters 
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Once the wind   Is blowing.   It takes a finite time for a sea 

to develop.    The term fully developed sea describes the condition when 

the ocean waves have reached their maximum height for a given 

generating wind force and fetch length.    Table 2b gives an 

Indication of the range of parameters involved. 

2.4      Statistics and Prediction 

Theories for predicting wave processes «ire developed in Pierson, 

Neuman,  and James       .    Less accurate but quicker methods are con- 
205 talned in Sverdrup and Munk      ,   and in Reference 206.    Many recent 

advances make extensive use of digital computers and such techniques 

as the Fast, also called "Finite" Fourier Transform. 

These and related theories treat both amplitude-wave length- 

period calculations,  and also the theory of diffraction and refrac- 

tion that so heavily influences shoaling activity near any shore. 

When separate wave systems, arising from separate fetches, 

affect the same coastal point, many theories combine the separate 

components by linear superposition.    Any such treatment Ignores 

actual dependence of other wave parameters upon wave height,  statis- 

tical problems and their practical effects such as breaking seas 

or swells When wave crest angles exceed the maximum permls sable 

120 degrees, and other effects.    More accurate combinatorial methods 

are used principally   .'\ly for accurate specialized research work. 

Any complete theory or other description of waves must account 

for the fact that they rarely occur as long ranks of parallel crests. 

For the most part, waves appear,  from instant to instant, to be made 

up of seemingly all kinds of "humps" that appear,  disappear, and 

move with considerable independence one fron another. 
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The resultant real spectra and statistics are extensively treated 

in Pierson, Neuman,  and James       .    These statistical reinforcement 

phenomena, with or without  the additional reinforcement of multiple 

wave systems, mean that  "wave direction" can be difficult to define, 

let alone to measure.    Statistical estimation theory relevant both 

to the wave process themselves,  and even more especially to radar 

signals from a wave direction sensor,   is given in Blackman and 

Turkey 126 and elsewhere.     Statistical estimates of actually occuring 

wave parameters are reported in many places in the hydrographic 

literature. 

For the radar designer,   it would be convenient  if the existing 

body of statistical technique and data could readily transform to 

well known radar target scintillation dynamics, but such is not the 

case.    Stationarity and ergodicity are often substantially absent, 

especially over intervals longer than about 20 minutes.     Sampling 

intervals and sample populations are often inadequate.    Assumed 

distribution function become unreliable.    Much of the data on radar 

returns from the sea fall to specify even such basics as whether there 

was a substantial current present, which affects most matters of 

interest to either the oceanographer or the radar design engineer. 

These problems are treated further in Section 6.2. 

2.5      Monlinearitv Mid Other Problems 

The radar designer should be aware that nonlinear processes can 

result in energy coupling from one wave system to another.    High 

frequency components in a wave system can  "fail"   (be  substantially 

attenuated)  as the system crosses em area like the Gulf Stream, but 

may-reappear.    Shear phenomena can become substantial.    Deep focusing 

becomes frequency dependent when dw becomes less than Aw/2.    All 

these factors influence the radar backscatter signal In the coastal 

zone. 
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3. SENSOR REQUIRED 

f In the context of the application concepts developed in 

Section 2,  the principal present requirement is for wave direction 

I sensors with approximately the following characteristics: 

[1. Deployment:    As portable as feasible.    To be located out 

of water on the shore or on a pier.    Any tower, required to give 

i required antenna height,  to be part of the sensor system,    /or the 

' Type I application (as defined in Section 1.1),  the individaal radar 

i may be semlpezu.dnent.ly Installed, but the basic concept should 

* permit portability.     For the Type II application,  the unit should 

| Ideally be self-contained,   for example in a van. 

2. Angular coverage:     180 degrees in azimuth to seaward  (assuming 

I an essentially straight local shoreline). 

f. 3. Angular accuracy:  Goal of 5 degrees for single incident 

1 wave systems, best conditions. 

i 4. Angular resolution  (of ambiguities):     Goal of ability to 

distinguish wave systems with arrival-angle differences of 15 degrees, 

best conditions. 

5. Have parameters of waves of Interest   (which are the only 

waves the sensor should Ideally respond to): 

- Period:    Approximately 3 to 15 seconds, preferably 5 to 

12 seconds,   obtained by adjustable signal processing If 

feasible.     (Waves in this rzmge of periods eure typically the 

major cause of sand transport). 

- Wavelength:    Consistent with wave period for typical 

shoreline conditions. 
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- Wave amplitude: Consistent with Beaufort scale condition 

nurtber 1 to 8 (approximately the same as Douglas or WMO 
+    + 

Code 75 sea state number 0 to 6 , see Table 1), wave height 

0.5 to 15 feet,(0.15 to 4.6 meters). Wave height not 

Itself a principal limit except as an Indication of sea 

conditions. .^ 

- Wave and group propagation velocities:  Consisfeelrt with wave 

period for typical shoreline conditions. 

- Sea state:  See wave amplitude above. 

- General conditions:  Sensor should be capable of dealing 

   -with either sea or swells, within stated sea state limits. 

A further general requirement Is that the sensor should lend 

Itself to being Incorporated Into automatic networks; sensors 

requiring some real-time digital computer processing at a central 

location in the network may be acceptable. 
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4*    SENSOR TYPES - GENERAL 

Many satisfactory sensors exist with which to measure a 

variety of wave properties. Table 5, after Bascom,   gives a 

representative list. 

It is to be noted that the only wave-direction sensor listed 
130 in Table 5 is the Rayleigh disc, and Bascom    says "No wave- 

direction recorder has ever worked very well... (because of multiple 

arrival directions, etc.,.including the ) ... Rayleigh disc...". 

According to Willard Pierson (recent private communication) there 

is still none. 

Some partially successful wave-direction sensors include the 

following: 

1. Rayleigh disc.: A giniballed or tethered bottom mounted 

disc that rides in the waves, and orients itself with the horizontal 

component of ita  normal vector parallel to the direction of the wave 

motion; Typically requires fixed mount, in part to allow sensing of 

disc orientation, and thus either electrical or other connections to 

the shore. Cannot of itself resolve ambiguities when waves arrive 

from multiple directions, except possibly by complex external cal- 

culations. 

2. Human observers:  They are used in many functioning observa- 

tional networks, and the observer can "intergrate " over the entire 

field of his view to derive a usable azimuthal datum from a very complex 

wave field, but the sensor is insufficiently accurate, or automatic 

for future needs. 

3. Mathematical analyses of the results, from various kinds of 

wave amplitude sensors, resulting in after-the-fact determination of 

direction of arrival: Cumbersome, and usually non-real-time except 

in interferometer schemes such as in (4) and (5) below. 
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Table 
130 

(Adapted from Bascom  ) Instruments for Measuring Waves 

Property to 
be sensed Means of sensing How used 

Light reflec- Visual Camera Many ways 
tion Side Looking Radar 

(SLR)* 

Float in pipe Standard tide gauge 
Spar buoy In deep water with deep 

damping disk 
Aneroid barometer Measures heave of ship 

Height of water Radio waves Radio altimeter on low-flying 
surface aircraft, or satellite 

Echo sounder Pointed down from buoy in 
shallow water or up from 
submarine in deep water 

Step gauge Water closes contacts between 
spark plugs 

Paired wires For model tank experiments with 
very small waves 

Flexible bellows 
plust 

Bourdon tube uncoiling tube drives pen 
Potentiometer Bridge circuit to galvanometer 

Pressure at 
Variable 

inductance 
Measures change in magnetic 

field 
sea floor 

Thermopile Measures adiabatic heating of 
air 

Strain gauge Measures change in length of 
metal 

Air bladder Directly drives pen via air 
hose to surface 

Vibrator Changes frequency as pressure 
changes 

Accelerometer Mounted on buoy to measure 

Water motion 
(velocity or 
acceleration) 

Accelerometer- 
pressure combina- 
tion 

acceleration of waves 
Shipboard wave recorder that 

computes wave height for 
several sensors 

Measures currents caused by 
Rotor waves 

Drag Strain gauge 
1 

Senses wave forces acting on 
special pile 
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Table 5 (Continued) 

Property to 
be sensed Means of sensing How used                i 

Direction Rayleigh disk Orients itself parallel to 
wave front                i 

Impact 

Dynamometer 

Diaphragm 

Piezoelectric 
disks 

Sliding bar moves to show     | 
maximum force 

Same as above plus hydrostatic 
force                    I 

Electronic amplification of   | 
force                    j 

*    SLR operates at microwave frequencies,  gives image resolution 
comparable to optical photographs 

' 
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4. 2-point Interferometer of amplitude sensors:  Cannot resolve 

ambiguities if waves arrive from multiple directions; not usually 

portable. 

5. 5-polnt interferometer of amplitude sensors: Better than 

2-point Interferometer, but still not good enough at resolving 

ambiguities; not usually portable. 

6. Experimental articulated stick-like devices:  Typically 

not portable, and unless the hinges have intersecting axes, trouble- 

some cross coupling terms occur. Also, the number of hinges deter- 

mines the number of degrees of freedom of the sensor, and only a 

very complex, many-hinged systems can even in principle accomcdate 

many multiple wave directions simultaneously. 

7. Laser backscatter devices:  Proposed to measure direction 

by a variety of doppler-shift and signal intensity dependence 

principles.  Both continuous wave and pulsed varieties suggested. 

Such systems suffer from extreme loss of signal in the presence of 

capillary or other small scale phenomena.  Sometimes the principle 

signal backscatters in a direction other than to the laser receiver. 

(Such a device is actually an  electromagnetic radar, but because 

of the later introduction of such short wavelength devices, and the 

special phenomena that are characteristic of such wavelengths, it is 

still customary to arbitrarily exclude these devices from the category 

"radar"). 

8. Photographic techniques: If a photograph of the sea, typi- 

cally taken fron an overflying aircraft, «hows the wave structure of 

the sea surface, then in principle one can determine the wave direction 
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as being perpendicular to the line of crests. Single frame data would 

not permit determination of direction sense (e.g., seaward versus 

landward). Requires clear seeing at the wavelength used. This 

technique Is basically a variation on the approach of using human 

observers. 

9. Side looking radars: As discussed in the next section, 

these expensive systems can potentially provide photographic quality 

resolution in photographs that are taken essentially at the radar 

wavelength. Basically a variation of (8) above. Clearer seeing 

under a wider range of weather conditions, depending on choice of 

radar wavelength. 

10. Search radars: Conventional pulse radars, employing Flan- 

Position Indicator (PPI) displays. Typical varieties Include marine 

surface search radars, and airborne weather radars. Also basically 

a variation of (8) above. Known to be of use to marine interests, 

as a convenience of opportunity, but largely unpredictable as to 

availability of a suitable signal. 
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5.   ELECTROMAGNETIC SENSOR TYPES - RADAR 

5.1 General 

The definition of "radar" is now so broad that it includes any 

instrument that radiates electromagnetic waves from one or more 

transmitters to one or more receivers in such a way that the received 

signal tells something about some target. Extreme examples might 

include a laser interferometer for laboratory evaluation of optical 

components; or the radio networks that have been described as 

monitoring nuclear bursts and missile launches from beyond-the- 

horizon distances by noting signal changes resulting from changes 

in the ionosphere caused in turn by the target.  Some now call 

sonars acoustic radars. 

5.2 Wavelength 

The radar principle has been applied over the wavelength/fre- 

quency range from a few megahertz (e.g., 1 MHz—^ 300 m) to ultra- 

violet laser radars (e.g., 300 nm-^1000 THz) . Virtually all the 

radar processes have some version available at most wavelengths. 

A wave direction radar can be built (whether cheaply or not) at any 

wavelength likely to be of interest. 

5.3 Coherence 

The primary meaning of "coherent" in radar has come to mean 

that the phase of the electromagnetic signal is controlled and 

utilized.  In a coherent radar the transmitter usually amplifies, 

and in a pulse type also time gates, some phased replica of the 

waveform being generated in some internal reference oscillator. The 

radar makes use of some form of this reference signal in a heterodyne 

mixing process somewhere in the receiver. Pulse magnetron trans- 

mitters, in which the magnetron power oscillator is turned on and 
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off,  are thus noncoherent transmitters and a radar using a pulsed 

magnetron Is usually noncoherent. Radars like police speed radars 

are often said to be partially coherent:  In the receiver heterodyne 

process, frequency components above and below the transmitted fre- 

quency are "folded" together In a "hcmodyne" process where the 

reference for the frequency mixer Is at the Identical frequency as 

the transmitted frequency. This folding makes the radar Incapable, 

without adding features given up to attain its simplicity, of 

distinguishing positive from negative doppler shifts, and hence of 

distinguishing one direction sense from another. 

Some "COHO" radars use incoherent transmitters, e.g., magnetrons, 

but "recohere" the receiver local oscillator to each transmitter 

pulse, and for the echo returns from that pulse the receiver is 

coherent - the magnetron frequency stability is usually good 

enough during a ringle pulse to permit this type of operation. 

Some noncoherent radars measure doppler shift by determing the total 

shift of their continuous spectrum, rather than using the character- 

istic method for coherent radars of measuring the spectral shift of 

lines in the discrete spectrum for the coherent radar. Radars of 

this type require very large doppler shift if the radar is to be 

effective. 

The approach to wave direction measurement being followed here 

makes use of doppler shift. A coherent radar is almost certainly 

required. The homodyne "beat to zero" approach might have limited 

or special applications, especially since the homodyne system is 

simple and cheap. 

5.4 Modulation 

Radars usually modulate the basic continuous wave (CW) reference 

oscillator signal in some way to transmit a more complex waveform. 
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The simplest types use no modulation et ell,   end ero celled CM 

radars.    Pulse types Interrupt transmission ee one kind of amplitude 

moduletion;  they ere characterized by e pulse length,  e pulse 

repetition rate,   end e duty fector or "duty cycle" which ie the 

fraction of the time the transmitter  ie on.     Frequency/phase 

modulation types   (FM end PM) very the pheee engle of the trenemitter 

reference oscillator signal.    FM end PM ere different ways of 

describing whet is essentially the same process;  the differences ere 

important in the subtleties of radar design,  but ere usually not of 

much interest to the ueer. 

Mixed types,  marginal types,  and redundant designations exist. 

A pulse doppler   (PD)   reder usually hes a high pulse repetition rate 

and a large duty fector,  perhaps 0.3.     It is usually a complicated 

system for such applications as weapon fire control in a high per- 

formance eircreft.    Altimeters are often "FMCW";   the redundant "CW" 

comes from the feet thet originally most altimeter radars were pulse 

types,  and the  "FM"  tells how they modulate.    Finally,   "coded"  and 

"noise"  radars use such a complex modulation that the angle and 

amplitude modulation processes are not separable. 

Pulse radars are convenient for measuring range,  and CW types 

for measuring velocity  (actually "range rate",   the time derivative 

of the length of the peth from trenemitter to receiver).    But each 

can alao measure the other variable.    The more important difference 

is that pulse reders can be made to not see targets at certain 

ranges,   and CW coherent radars can be made to not see targets at 

certain speeds. 

For our application a CW radar will be recommended because it 

seems adequate end ie  far simpler.    But the added ability of a 

pulse reder to control the irea of the sea to be measured may be 
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wanted for a Typ« II application, or even a multimode system with 

selection options ("multimode" in radar usually means something 

else — such as combined PD radar and passive infrared systems). 

5.5 Processing 

The term "processing" is often used to describe a radar which 

obtains very fine resolution along the radar-to-target range 

direction, or in the angular directions perpendicular to the range 

direction, or in some other sense, through the use of elaborate 

signal proceusing. The term processing haa always been a diffuse 

one, and seems to be growing more so. 

In a synthetic aparature, side looking radar (SLR), the typical 

configuration employs a coherent radar in an aircraft or satellite, 

with the radar real antenna pointing at the sea or ground in a 

direction perpendicular to the aircraft's velocity vector. A large 

synthetic antenna aperature is created by signal processing that 

combines the signals received at different times from a target, while 

the antenna occupies successively different positions along the line 

of aircraft travel. The antenna is made effectively longer, and the 

antenna beam is thus narrower, giving finer angular resolution. A 

signal processor commonly used has been the optical signal 
104 

processor  , in which the electrical signal in the radar receiver 

is converted to a modulated light beam, and the light beam passes 

through lenses and weighting-function filters, and ultimately is 

reconverted to a spatially filtered electrical signal again. 

For resolution in the range direction, pulse compression radars 

can similarly process long-pulse signals to produce the equivalent 

of a very-short-pulse radar, thus giving fine range resolution. 

Pulse compression radars can also employ an optical signal processor 

for certain required functions. 
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Holograms,  either at optical or microwave wavelengths, can be 

used to produce a quasi S-dlmenslonal Image,  giving added information 

that can be compared to additional resolution. 

Two-dimensional Images are readily produced by such a "passive 

radar" as a camera viewing the sea illuminated by sunlight.    Adding 

a flashbulb or searchlight transmitter makes the system active; 

using a laser Instead of the flashbulb makes the system coherent; 

using a holographic configuration extends the image to an essentially 

3-dimensional character. 

Even ordinary Incoherent pulse search radars form a 2-dimensional 

image of a sort in a plan-position indicator   (PPI)  display. 

All of the sophisticated processing systems are of interest 

principally as possible standards of comparison during proof trials 

of a wave direction radar,  but otherwise are of little interest here. 

Without adding even: more complexity to a typically already very 

complex and expensive system,   they do not produce anything like a 

direct measurement of wave direction. 

Simpler imaging systems such as produce ordinary photographs also 

are not automatic.     PPI presentations are often useful to experienced 

marine operators in determining things about wave direction, but 

the performance of the typical system   is errat.» J in practice and 

difficult to predict even under fairly well controlled  (or known) 

conditions. 

None of the processing radars or imaging systems seems applicable 

here, with the possible except .on of some Dutch work cited in 

Section 10.1 
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5.6    Antennas 

In principle, the radar antenna can take many forms. If actual 

spatial selectivity is required, then real beam antennas are indi- 

cated, otherwise configurations like active interferometers (the 

limiting case of so-called partially filled arrays) are possible. 

XA a beam antenna, if the bean is narrow in the azimuth 

direction, the radar always sees signals from essentially a single 

direction (contaminated more or less by side lobes in the antenna 

beam pattern).  If the beam is also narrow in the elevation direction, 

the entire beam illuminates only, and sees echos reflected only, 

from a small patch of ocean surface. At very low grazing angles the 

patch can become quite long in the range direction unless pulse 

modulation is used.  If the bearawidth is sufficiently small, all the 

area seen at any one time is seen at essentially the same grazing 

angle; thus eliminating seme grazing-angle variation problems. 

The real beam, or the synthetic beam of an interferometer, must 

be scanned appropriately to provide the wanted doppler-versus- 

azimuth information. For a real beam, the antenna must be physically 

moved (except Jn elaborate versions of little interest here). For 

an Interferometer, the direction of the synthetic beam is controlled 

by electrically phasing the transmit and receive antennas, so great 

ease and flexibility of beam steering is possible in more elaborate 

versions. 

Finally, antennas can be multiple.  In multistatic radars the 

transmitter's) and receiver(s) are not at the same place. No 

advantage of Interest here can be associated with any such disjoint 

or diverse geometry. 
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A possibillly considered was to place 2 or more fi.ced antennas 

with their beams pointing to seaward In different directions. Each 

such antenna would support a separate radar (or the radar could be 

simply switched at. ong the antennas). From each antenna a different 

doppler would be received for each Incident wave system.(See 

Section 6.3 for details) .  From this set of doppler data the arrival 

directions of the Incident wave systems could possibly be determined 

without the need for mechanical beam scanning.  Such an approach was 

judged so probably too expensive for ^pe I applications, and so 

Inflexible for Type II applications, that It was not pursued further; 

the approach might have limited application to field trials of basic 

techniques, or for accumulating climate o\ta. 

For the major applications of interest here, a fairly straight- 

forward mechanically scanned beam antenna is judged optimum. 
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6.       RADAR SYSTEM CALCULATIONS 

6.1    System Concepts 

' From the many considerations presented In Section 5,   It appears 

clear that the: appropriate configuration for a wave direction radar 

. Is a relatively simple,  coherent doppler radar, with doppler sense 

capability,  and with a mechanically scanned beam antenna — either a 

| continuous    wave  (cw)   type for the simplest version  (especially for 

Type I applications) or a pulsed type if its additional capability 

to reduce the extent in range of the illuminated area of the sea is 

!. found necessary, or desirable for flexibility in a Type II research 

application. 

The remainder of Section 6 is organized as follows.    Section 6.2 

summarizes the known radar signal properties of the sea, with emphasis 

on the effects of grazing angle, radar wavelength,  and sea state 

upon the magnitude and doppler characteristics of the radar echo 

signal from the sea. 

In Section 6.3 the relationships between doppler shift,  and 

radar look direction relative to wave direction,  are discussed in 

detail to establish the basic measurement functions of the radar. 

Section 6.4 gives detailed geometry calculations dealing with 

antenna beam «ridth, antenna height,  -md the location and extent of 

the illuminated sea area in the range dimension. 
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Section 6.5 treats the propagation path calculations (the 

so-called radar reuige equation). 

In Section 6.6 the required antenna dimensions are derived 

from the desired antenna beam size parameters. 

Section 6.7 completes the primary calculations by selection of 

radar power (and some other parameters) to provide a system with 

adequate signal to noise In the final processed signal available 

from the radar. 

Section 6.8 treats various available methods of data output. 

Including local displays, and data transmission to remote locations. 

Section 6.9 treats sane topics In personnel safety for unattended 

applications. 
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6.2     Sea Echos 

The basic problem for this study has three principal parts: 

(1) what signals, especially doppler signals, does or can a radar 

receive from a patch of the sea as a target, (2) what techniques 

will in principle extract from the signal the desired wave direction 

information, and (3) what are the conceptual design parameters and 

I system configuration for an actual Type I or Type II radar? this 

section deals with the first of those questions. 

Clutter Coefficient 

A basic quantity of interest is the radar cross section a", 

which is the equivalent collecting area of the illuminated target 

under the assumption (for purposes of numerical normalization only) 

that the energy backscattered to the radar arises from Isotropie 

(non-directional) re-radiation from the target of all the energy 

collected by the target. 

Since the extended surface of the sea completely fills the 

radar antenna beam, the radar cross section depends on the antenna 

D 
L 
D 
[ 
C 
0 
II 

beam size. 

y A normalizing clutter coefficient   (T^    is introduced,  defined 

t by crO ■=   &" /31 ,  where a.  is the sea area illuminated 

by    he radar.    Alternatively,   some authors normalize the radar cross 

I section to the projected area a    by introducing a quantity 

I 
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I jf TT   d~fdp also called a clutter coefficient   (hence con- 

. fusion with       fT"9 ),  defined by    jf-ssi (T0 CSC <h      > where 0 is the 

grazing angle. 

\ Estimates ot (T^    vary.     Spizzichino' s facet theory      predicts 

where    /£.    is a parameter with value about unity at X band     (wave- 

length    about    3cm)  and in the millimeter wave region, but with a 

value about 0.1 at UHF (wavelength about 30 cm) . 

But Katzin      estimates that  in the interference region  (see 

below) 

m* 
and. that 

A * 
where H.0 is the wave height exceeded by 10% of the waves. /< r 

is the radar wavelength, and 0 and 0 are the grazing angle and 
c 

critical angle. 

* 6L is the angle for which tan ^J    is the root mean: square 

slope of the facets. 
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The whole subject of clutter coefficient variation with grazing 

angle and other variables is discussed in detail in Appendix 1. 

The variation of clutter coefficient with grazing angle is summarized 

|      in Figures 7 and 8. Figure 7 shows a composite from several sources 

described in Appendix 1. Figure 8 is a conceptual general example. 

Doppler 

Some of the fluctuations observed in sea echos result from the 

doppler frequency shift produced by the motions of the individual 

scatterers. The different doppler shifts beat with one another to 

I      generate observed fluctuation. The analysis of the amplitude fluc- 

tuations as the superposition of the doppler contributions is equiva- 

lent to the analysis assuming the superposition of signals with time- 

varying phase shifts caused by the relative motions. Measured spectra 

of sea echo amplitude fluctuations at microwave frequencies show the 

spectral width to be proportional to the radar frequency, as it should 

be if due to a doppler effect.  The tpectral width corresponds to a 

few knots velocity. 

The observed peak doppler corresponds more closely to the 

medium period wave motion as a whole if the radar wavelength is 

commensurate with the sea wavelength, and less closely for much 

shorter radar wavelengths where wind driven components of the sea 

wave begin to dominate. 

t 
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[ 

t 
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t 
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Key: X - X Band (->- 3cm, lOQHz) 
L = L Band {^ 30cm, 1GHz) 
VP - Vertical Polarization 
HP - Horizontal Polarization 

Grazing angle (6,  degrees 

Figure 7.  Composite of (T data for "medium" sea. 
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Figure 8.    Representative example of the variation 

of    <r0  with grazing angle. 1 
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Polarization 

Radar polarization effects the radar signal,  and especially 

so at low grazing angles.    However nothing in the available theory 

seems to permit detailed calculation of polarization effects for a 

wave direction radar.    Diverse polarization capability would be 

desirable in a Type IZ radar. 

Amplitude Fluctuations 

Sea echo can exhibit large,  rapid fluctuations in the amplitude 

of the total received signal.    A Raylelgh probability density func- 

tion  (pdf)   is often assumed,  and would be valid if the fluctuation 

arises from the combined contributing    of    many independent    scatter- 

36 37 ers of about equal size.    Other suggestions    '       are for a log- 

normal pdf, which agrees with some high resolution results.    A 

log-normal pdf results in an increase in the large-signal portion 

of the distribution. 

Pulse Lencrth 

When the illumination cell of a pulsed radar is smaller than 

the wavelength of the sea,  the radar can resolve the ocean waves. 

The resolution of the waves depends on both the range and angle 

resolution of the observing radar.    Thus pulse radars can provide 

a kind of sea wavelength discrimination,   and hence of period discrim- 

ination depending upon wave velocity. 
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6.3    h Doppler Approach 

The basic method proposed for wave direction determination Is 

as follows.    Figures 9,   10,  and 11 describe the process for a radar 

located on a shoreline.    Figure 9a shows one wave system  (perhaps 

of several),  travelling toward the shore with a specified heading 

and speed.    The radar line of sight  (LOS,   shown here projected onto 

j | the horizontal plane) has a heading       0       .    Figure 9b shows the 

r- doppler component v. of the total speed c    experienced by the radar 

for various directions of the LOS.     (The   sinusoidal curve Is shown 

I dotted for values that would require the radar to look to landward; 

, If the radar were mounted on a tower In open water,  doppler could 

still be measured In the directions shown dotted.) 

I The maximum negative doppler shift,   v    = -c  ,  occurs when 

fl d3 s Ä « which In this example Is to the rlqhc of 

Figure 10 develops the same doppler geometry further.    Axes I 
1) 
£     wave heading.  For the same set of Ä and  fl  values as previously, 

I 
I 

k 
■ ■   .   '  .     ' ;, : _ ^ —   ~~^" '■■'wwpy 

as In Figure 9a eure designated x and y. Another orthogonal set u 

and v are aligned respectively perpendicular and parallel to the 

the length of the vectc v Is such that the two circles shown 

constitute, versus LOS angle   0  , the loci of terminators (free 

ends) on of the v, vector, a 

t^'Mgl 



RADAR LINE OF SIGHT 

\ 
*w ■ WAVELENGTH 

e   = WAVE SPEED 

SHORE 

(J = SCAN DIRECTION 

1. Plan View 

b. Doppler Vtloclty vtnut Radar Look Dlraction 

Figure 9.    Basic doppler relationships 
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Continuing the same geometry in Figure 11,  the solid figure in 

Figure lla represents the doppler spectra for various values of 

A       .    Along any cut of the solid figure at some angle   Q 

the resultant spectrum is as shewn in Figure lib.    The solid figure 

in Figure lla has a sharp ridge, whose projection onto the x-y plane 

is the pair of circles in Figure 10; the ridge is made sharp for 

emphasis,  although the doppler spectrum would not actually be cusped. 

The determination of wave heading for a single wave system 

consists conceptually of locating the orientation of the solid fig- 

ure in Figure lla.    For multiple wave systems there will be such a 

figure for each system,  and the signal power densities will be 

additive.    The object of the signal processing in the radar  (see 

Section 6.8 below) will be to locate the orientation of each of the 

solid figures.    Note that measurement of wave heading is not depen- 

dent on the scale of doppler shift being exactly that for which v. d 

has a maximum magnitude equal to c  . 
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a. Geometry 

SIGNAL POWER DENSITY 

b. Doppler Spectrum 

Figure 11.  Doppler Spectrum versus Geometry 
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ireas of the Illuminated cell are A    and A. ;  the axes of 
P     i 

6.4 Geometry 

The radar site geometry is shown in Figure 12. A dish antenna 

of diameter D is located at a height H above mean sea level. The 
a a 

slant range to the illuminated sea is R along the LOS. The projected 

and act 

the illuminated elipse are d and d , The antenna beamwidth is 0. 

and the grazing angle is 0 .  The horizontal range to the illumin- 

ated elipse is R . 

H and R eure related by 

H = R ten 0 

and the extent of the elipse in range is related to H by 

(6) 

JL 
d 

H 
d 

sin ei tan fj 

% 

r\j Jäl 
% 

(7) 

0  small 

For a pulse radar of pulse length f     i  tbe full elipse is not 

illuminated. 
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Summarizing the various relationships 

Value of 0 Type of Radar d 
a r         l 

i Large CW 

Pulse 

Reb 

Reb         1 

Small CW Re. sec 0    i 

Pulse 2 Cr^" 8ec ^ 1 

where c    is the velocity of electromagnetic propagation.    These 

relationships will be used in Section 7 for the candidate designs. 

6.5    Propagation 

For a point target,  one expanded form of the propagation portion 

of the so-called radar equation is 

VT^-VHW-^-^NWX ^'5r'i;'^ (9) 
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where the numbered terms are: 

(1) pi, = trauiflmitter power output 

(2) I«. ■ transmitter system loss 

f (3)  G = transmitter antenna gain 

f(4)  R ■ radar range; total denominator term is "spreading 

lOSS" -e.  HWR 

I (5)0.= one-way propagation loss 

mi (6)  0" = radar cross section 

(7)  as in (4) for return path 

I (8)  as in (5) for return path 

(9) ^ = radar wavelength; term is the collecting area of an 

Isotropie (non-directiona]^ receiver antenna illuminated 

j_ at wavelength A *- 

(10) G = receiver antenna gain 

(11) L = receiver system loss 

(12) P = received power 

so 

(10) 

66 



iWij!U'l!» RAYTHEON f 
Equation (10) will be used In subsequent calculations. Effects 

due to the distributed (extended target) are treated in the next 

Section. 
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6.6 Antenna System 

Treated here are the antenna system itself, and seme of the 

effects of the distributed sea target. 

In practice the radar uses the same antenna for transmit and 

receive, so 

00 

The antenna beamwidth Q. is related to the antenna diameter 

by 

% 

(10.) 

k© 
/v/ / 

For the assumed conlcol  ("pencil") beam,  the solid angle    ^L 

subtended by the conical beam of included plane angle 9,   is 
b 
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But the power gain G of em antenna is 

Gi * *C. ^  

6-^ 

so we get the relation 

r*j 
10 k^ 
et Ov 

a* * s 
k6Xr 

("J 

And the area Illuminated Is 

a, * R*^ Ü7) 

or 

Bt ~  ^  ^ 

= /? 
a «a 

^c* 

6^) 
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So the distributed sea target has a cross section 

A ^.A. i X 

r^r'ai /v fii") 

And the radar equation.  Equation  (10)  becomes 

f(r^4 
ör 

which is independent of wavelength 

(-*•) 
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6.7 Signal Versus Noise 

The competing thermol noise power N In the radar receiver Is 

where  »C = Boltzmann's constant 

■ 1.380 xlO"23 JK-1 

l0 =   receiver reference absolute temperature 

3 ■ effective bandwidth of receiver 

Hf=    factor receiver noise factor 

and T Is usually chosen so that o * 

kT     = 400 x  10"23J = 4 x 10"2lWHz     , o so 

T    = kT    = 400 x  10 
o       Q      —  

-23L 

1.380 x  lO-23^"1 
289.86K 

But the doppler shift   T]   due to a signed wave doppler velocity v 

is 

f. 

fj rv-» 

r- ^ 

^^ 

£ 
Cr~iSl      'r 

(A**) 

and to cover a range  A oft        of doppler velocities, with a corres- 

ponding band of doppler frequencies   A'TJ        require a bandwidth 

B - A-f, = 
as a minimum. 
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Thus the receiver noise Is at least 

Q*) 
M ^ 

Ar 
and the receiver signal-to-noise power ratio is 

N 

Ar 

(pr/ 

or  x ^ k^DSArP^0 

ATr^ki; Ic^ R%&**4 KP LiLrL,v ^ä; 

for a CW radar. For a pulse radar similar derivations take into 

account that the receiver bandwidtn for no doppler at all must be of 

the order of  "B -s < / t. 
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6.8 Data Outputs 

Using the concepts of Figures 9, 10, and H in Section 6.3, there 

are several ways to use the radar to measure wave direction. A very 

simple approach would be to equip the radar with a doppler frequency 

meter, and rotate the antenna in azimuth to obtain a maximum magnitude 

of doppler shift. At this azimuth the radar LOS is pointing in line 

with the direction of wave motion, and the waves are approaching or 

receeding according to whether the sign of the doppler shift is 

respectively positive or negative. ^ -  . 

In any 180 degree interval of azimuth scan, there will be at 

least one LOS angle that produces a maximum magnitude of doppler, and 

another angle, located 90 degrees from the first, at which the doppler 

shift is passing through zero. As a practical matter, it may be 

difficult to locate the angle of maximum doppler magnitude accurately 

because there the slope of the curve of f versus LOS angle is zero, 

as shown in Figure 9b. But in the region of zero doppler, where the 

magnitude of the slope is largest, feedthrough of transmitter 

leakage signals in a CW radar can make the measurement difficult, or 

require expensive equipment to reduce the leakage, and the signal 

return at that azimuth may be at a minimum anyway. 

If more than a single wave system is present, then each system 

will in effect produce a separate solid describing figure in Figure 

11a. These describing figures will in general differ in orientation 

(wave direction), diameter (wave effective speed), and height from the 

plane (amount of signal return). The total describing figure for 

the set of wave systems would be a composite of the individual 

describing figures. At each intersection of one or more Individ 

describing figures, the total power spectral density would be 

sum of the incoherently added power spectral densities of the 
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individual describing figures unless the waves were somehow correlated. 

At each LOS angle,  the total power spectral density corresponding 

to Figure lib would generally show one peak, or mode, for each 

individual wave system present. A simple frequency meter would be 

unsuitable for analyzing such a spectrum. 

The output of the radar could also be a spectrum analyzer screen 

displaying something like Figure lib as the antenna scanned in 

azimuth. To locate a maximum, or a zero-doppler null, it would only 

be necessary to keep track of the changes of each of the modes 

separately. Tracking one of the modes through a point where another 

mode crossed it would present some problems, but use of the continuity 

of f. versus LOS angle should make it feasible to cross the inter- 

section properly. 

A more elaborate local display could be an oscilloscope display 

superficially like that of a plan-position indicator (PPI) display. 

Position on the scope would indicate position on the land and sea, 

as in a PPI display.  Through signal processing in the radar, the 

scope could display some version of the Figure 11a, where Increasing 

intensity on the scope would represent increasing power spectral 

density. The required memory to keep a full display continuously on 

the screen could be supplied internally, or by the phosphor of the 

display cathode ray tube as in a PPI display. 

Some convention would be required to distinguish positive from 

negative doppler values of f , but any convenient coding would do, 

for instance use of two colors. 

The maximum magnitude of doppler shift for any one wave system 

would be in a mode centered at f, ■ 2c /Ar. For example even if the 

wave speed were as high as c =40 knots =. 20.6 ms  , and the radar 
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wavelength as small as Ar s. 3 cm s 0.03 m   (f    =10 GHz),   the doppler j. 

magnitude would be only f    =   (2) (20.6 ms     )/(0.03 m)   = 1372 Hz,   and 

the required receiver bandwidth for a CW receiver would be only 

B =   (2) (1372 Hz)   = 2744 Hz.     And B would be even smaller for slower 

waves  and longer radar wavelengths. 

This range of frequencies,   translated down to the VF   (Voice 

Frequency)  band,   could easily be handled by a good quality voice 

grade telephone line, which will usually carry analog data over a 

Irandwtdtlr of something like 3500 Hzwltlr reasonably" usefuT slngal- 

to-noise ratios.. 

It could therefore,  be quite feasible  to transmit the entire 

instantaneous output of the wave radar receiver to a remote location. 

At  the remote location,   sophisticated time shared computer processing 

in a single system could supply the equivalent of elaborate data or 

signal processing at  the  individual radars.     If desired,   and a 

separate telephone  line were available to return data to the radar, 

then even a Type II radar could be simplified. 

6.9    Safety 

A problem of potential concern is that unattended wave radars 

might cause RF hazards to personnel that were casually in the area. 

At the modest power levels that a wave radar would use, the principal 

hazard would be from damage caused by heating of tissue, especially 

damage to the eyes and testes. 

In the past year or so, much new emphasis on this kind of 

hazard has come from the widespread new use of microwave ovens in 

homes, vending areas, restaurant kitchens, and aboard large 

commercial aircraft, as well as from continuing growth in the use 

of microwave heating in industry, and clinical and therapeutic use 

of microwave diathermy. 
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The U.S. Department of HEW has recently become very active in 

this field, as have the governments of Massachusetts and one or two 

other states.  Initial confusion has among public officials been 

reported to exist over the highly technical distinctions between the 

problem of a microwave oven hurting passengers in a 747 aircraft, 

and the danager of the microwave oven interferring with critical 

electronic systems in the aircraft. 

Thus there is a fair degree of widespread new confusion over 

what is safe, and how to treat the matter legally. No new sub- 

stantive regulations are known to have been made by government, but 

are rumored to be imminent. 

104 
The older standards   still in effect set limits on the time- 

integrated power density (from the Poynting vector) where the 

personnel are located.  In general, the accepted limit for continuous 
-2 -2 

expose is 100 Whi  (=10 mWcm ) average power. 

The far-field power density of exposure in the peak of the 

antenna beam is 

f*= fv v v ^F- -H 
-f.= -Mi- 

(All 

where P , L , G , and R are as in Section 6.5, and the final factor 
C     b     w 

of 4 in the top line arises from the assumption that there is perfect 

reinforcement between the direct ray and a ray reflected from the 

earth. 
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7. TYPE I & TYPE II DESIGNS 

Using the design equations developed In Section 6, basic 

parameters for radars for suitable Type I and Type II applications, 

as well as an Intermediate case, uere derived as follows. 

I 
I 
I 
I 
I 

Parameter 

Radar wavelength Ar 

Radar frequency f 

Antenna height above sea H. 

Grazing angle 0 

Illuminated elementwidth d 
c 

Illuminated element length 
d r 

Ground range R. 

Slant range R 

Antenna diameter D 
a 

Antenna beamwidth 9, 

Unit 

cm 

GHz 

m 

degrees 

m 

m 

Type 
_I  

15 

2 

10 

5 

5.7 

66 

Inter- 
mediate 

30 

1 

15 

5 

12.9 

148 

Type 
II 

40 

0.75 

20 

5 

15.3 

175 

m 114 172 230 

m 115 172 230 

m 3 4 6 

degrees 2.9 4.3 3.8 
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Parameter 

Antenna gain G 

Peak doppler velocity 
accomodated v^ 

Doppler Bandwidth B 

Ante'.ma constants, k_ 

Clutter coefficient 

Noise  figure    MF 

Transmitter losses    L 

Receiver losses L r 

One-way Losses L 

Transmitter Power    P 

Signal-to-noise ratio    » 

Power density at K=10 »n 

* dB above 100 Win"2 

Unit 

dB 

knot 

Hz 

dB 

dB 

dB 

dB 

mW 

dB 

* 

Type 
_I  

38 

38.9 

530 

1 

1 

0.1 

5 

3 

3 

4.5 

1 

+79 

-14.9 

Inter- 
Mediate 

35 

38.9 

270 

1 

1 

0.1 

5 

3 

3 

4 5 

1 

+77 

-18.5 

Type 
II 

36 

38.9 

200 

1 

1 

0.1 

5 

3 

3 

4.5 

1 

+76 

-17.4 

For both types,  a mechanical scan is recommended,  with any 

convenient rate not less than 1  scan per minute. 

The value of CW power chosen,   1 mW,   is rather arbitrarity 

chosen;   any convenient value  in  the range  1 uW to IW would be 

satisfactory  (except for the radiation level at a distance of 10 

meters). 
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The describing-figure display  (pseudo-PPI)   discussed  in 

Section 6.8  is recommended  for Type II application;   a phone line 

connection to a central processor,   as discussed in Section 6.8 is 

recommended for Type I applV^tions. 

For the Type II application,   an additional pulse mode with 

controllable pulse length down to 10  ns  (approximately 5-foot 

resolution)  is recommended. 

For  the Type II application,   especially for early evaluation, 

polarization diversity is suggested.    A variety of antenna feed 

structures are available to provide this function,   and even switch- 

able polarization may be advantageous. 

Although a specific frequency is assigned to each radar  in the 

tabulation above,   it would be very desirable  to have  the radar 

tunable over as wide a frequency range as can be readily obtained, 

with a maximum tuning time  that is less than 20 minutes by an order 

of magnitude or more. 
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8    EXISTING SUITABLE RADARS 

One of the general objectives of this study has been to 

identify, if possible, an existing radar type that could serve as a 

Type I or Type II radar in its existing form. 

To the time of this report, no such radar type already in 

service has been identified that meets even most of the requirements, 

and the more examples that are considered, the les;i promising the 

prospect becomes. 

Sophisticated doppler, pulse doppler, and short pulse radars 

of many kinds are available, but all are clearly too complex and 

expensive for even a Type II application. 

Ordinary pulse surveillance radars, including marine search 

radars, are incoherent, and doppler processing is thus impossible 

in the existing configuration. 

It had been hoped that existing police radars might be applicable 

but they are found to be typically of the homodyne type, in which the 

received signal is "beat-to-zero" by heterodyning it with the trans- 

mitted frequency, and these radars thus do not distinguish doppler 

polarity in their existing forms.  This seems a major disadvantage, 

although the radars are inexpensive and reasonable modifications 

cb ild possibly give them doppler sense capability. Another disad- 

vantage of the police radar is that it is usually at the fixed 

FCC-assigned frequency at 10.525 GHz (2.85 cm), when a lower fre- 

quency has been indicated, and flexibility for evaluation is so 

desirable. 

It is felt that of the radar types we have seen, none could be 

so easily modified for immediate service, without any further sub- 

stantial evaluation or field authentication, that such an effort 
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could be justified. 

It is therefore our suggestion that emphasis for the immediate 

future should be on a careful definition of proof experiments dealing 

with the sensing technique itself, and that equipments suitable for 

the more limited objectives of the tests should be sought instead. 

Many potent inlly suitable equipments for experiments are readily 

available.  The appropriateness of each candidate equipment depends 

so strongly on the detailed choice of experimental details that we 

suggest that the experimental details should be developed before 

even a trial radar should be chosen. 

Typical candidates for evaluation include several in-house pro- 

totype equipments at Raytheon, and other major radar producers would 

undoubtedly also have such residual equipment. Some radars in pro- 

duction at Raytheon and elsewhere might be inexpensive to procure 

as-is, or in parts, before experiencing the substantial added value 

of extensive testing for its normal application. But the details 

depend so strongly on the particulars of the manufacturer's pro- 

duction schedule that no long range plans along these lines are 

fees ible. 

A radar could also be assembled from commercially available 

modules for many of the radar functions needed for trials.  For 

example, Hewlett-Packard offers 35300 Series X-Band Doppler Radar 

Modules, providing an entire transmitter-receiver combination at a 

price in the $200 range.  These units also use the homodyne config- 

uration, lack doppler sense capability, and the present series is 

fixed in frequency in the band 9.35 to 10.6 GHz (3.21 to 2.83 cm). 

Modifications to give doppler sense capability would not be pro- 

hibitive for these modular types or for typical police radars. 
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A satisfactory antenna system for tests could be readily 

assembled from surplus or inexpensive dish antennas, and surplus 

trackers such as the ubiquitous surplus AN/SCR-584 van. 

Finally, the Dutch work reported in Section 10.1 may lead to 

other equipment prospects. 

Providing a suitable, inexpensive radar for tests should prove 

no great or expensive problem when the details of the experiment 

are established. 
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9    PROPOSED OCPERIMENTS 

The absence of good design data with which to fully validate 

in advance the design of a wave direction radar suggests that 

exploratory experiments should be planned. 

The emphasis in such experiments should be on careful control 

of conditions and high quality of instrumentation, and not at all 

on any attempt to design a new radar, nor on long programs of mass 

data taking. 

Tests out of doors should ideally provide means for adjusting 

antenna height.  For example, the Naval Undersea R&D Center's 

Oceanographlc Research Tower in coastal water off San Oiego offers 

such a capability, plus a wide network of wave height sensors with 

which to form a realistic wave-direction validation sensor. 

Tests in-door° allow for close control of wind effects, 

especially in combined wind/wave tanks reported in the literature. 

A suggested detailed test plan would comprise at loast tha 

following elements: 

(1) A most careful definition of ocean truth for the simplest 

occuring wave systems at an outdoor test sice, or in an 

indoor combined wind/wave tank. 

(2) Review of the range of wave periods that must be disting- 

uished in the radar data, since the ability of the radar 

to ma.-e such a descrimination by signal processing alone 

is not promising, and the effectiveness of discrimination 

by use of the angular selectivity of the antenna has not 

beet, demonstrated to be effective, and in any case would 

be indirect because essentially based on wavelength 

rather than wave period. 
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(3) Choice of a compatible and inexpensive radar and antenna 

syetetn,  presumably from surplus or very inexpensive 

components   (even laboratory test equipment could simulate 

most of the important radar  functions other than the 

properties of the antenna). 

(4) For any outdoor range,   or indoor wind/wave tank,  an extensive 

planning effort to provide acceptable instrumentation to 

establish ocean truth during trials.    A combination of 

arrays of wave helg.it gages plus aerial photography or 

side looking radar surveillance seema Indicated for the 

outdoor range. 

(5) Careful pre-planning of the statistical analysis that 

would  follow data taking.     A relatively small amount  of 

data,   properly handled,  might clearly establish the 

feasibility of the concept. 

(6) Assembly of a small team of oceanographic and radar 

engineering personnel,  down to the technician level, with 

sufficient interdisciplinary complement to encourage the 

most  conclusive results possible. 
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10.1 

■ twSy,   »-■•   fol lowing w«r«  •<■•   of   lh«   prin^ip*;    «r*««   of   «••-   • 

(1)     OcmmnoqrmphY  in thm   Uttor«!   MMM.   ItnltlMi •«••nti««»  «« 

«rork  on rolovaM  ••noor« »mA cummfl «»«• proe««*»«, 

••p*cl«lly tutorial work of   l»t*ro«C  to th«  rsd««   'M-nKirmr. 

{2)     r.«4«r   tochnolo^y   Uncludinq  optical   *•■•'•' •«•i'n«     •«t»;-.:t-/ 

<Sc«ilim with thm  «••   ••  •   • »r i«f . 

())     Kodar  «cattorln? theory  in qmimwl,   knclitdlnq »rwm.   PH«. 

aiM) Rayloiqh acattaring  proccaa««  aa  ralavan«  to a  • •   ■• 

radar.      (too Appandlx   1   for  »or« datalla.) 

(4)     Dopplor and aaplituda  apoctra  charactarlatlca  and   «•■«♦.«--• 

♦or   umm  fwturna,   IncludinK  cluttar   ai^nnla.     Jp«.,-ifi 

«mp^aai« on corralation of dopplor  apactral chAr«<;c«r lat i^a 

with «ave  diroctlon. 

(i)    tfork  indicating otitar %-av« data   (haight.   pariod.  wava- 

langth.   ate.)   that eight  ba  containad  in tha  radar   iat«. 

t       Statistical  thaory whara  ralavant  to a wava  radar   aanaing 

para»atara of eoaatal  procaaaaa. 

(7) Marginal  topics auch aa  a Ida   looking  radara  and claaaifl»i 

literature  and applicationa with poaalbla unclaaaifiad 

applicationa to wava  radara. 

(8) Ralavant work by tha Dutch. 

Tfi»  principal   fimliaga ara givan  in Sactlon  1.4.     In addition, 

tha  following   litaratura  findinga  ara  raportad har«: 

(1)     Mo potantial wava radar  applicationa of Bragg acattctring 
209 thaory wara  found.   In work on aithar alcrowava  radar« 

or  laaar radara. 
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fl!     Me r«l«rrMit   «»cU*«tri*4 vatk   on  •!«•  lw*t«« n 

•p^llc«tia«M wrm  fa«A4.   to«  «at«««!«« «»ffl**«iri<>«4 i «M 

in tM«  ft«14 «r« report«* to ko  In pwyroo« ««1 UM 

proeont  •Itootlon «oy efeo«*« telwt—tlolly  I« tko noor 

future. 

(3) A ^rwtnq l'-iy of  literature on tmAt mm—m*mmm*  of wove 

height  end  eee  «tete «Mt  fouwl.   end Mony reteven«  tltloe 

ere Included In the refereneee five« hure.    Neeeurmente 

o' upvind-downMind differenoee   In  roder  «l^nele afte« 

Iroeely   implied thet the  reder  could Miev«ure »CBMithinv 

ebout  the  eurfece wind« theAeelve«. 

(4) Ho ngnificent   Indlcatlone «#ere   found of  ».->r>i  «u^oetlMi 

that other wave peranetei • could be neeauTM by radar. 

(5) Correepondence with Dutch %c«k«ra both  in the USA  and  in 

the Metherlende hea uncovered     private en—aunlcatlone)   thet 

Dutch redera at X bend end ahorter wevelenqtha were ueed 

over  tho watara neer Morwiiy to aeeeure wave direction to 

within en accuracy of 10 deqreee.     Thla work waa 

decleeaified by the Dutch only very  recently,  and ae of 

the dete of thla report proaleed coplea of the Dutch 

work had been received. 

10.2    Wuaerlcal   Llet  of  Referencea 
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APPENDIX 1 - SEA ECHO 

The material in this appendix treats two related topics:  (1) 

the effect of grazing angle on backscattered radar signals, and (2) 

the general mechanism of backscatterlng from the sea.  The treatment 
104 

here closely follows Skolnik  .  Reference numbers and Figure 

numbers used here refer to the same-numbered References and Figures 

In the main text, principally In Section 6. 

Grazing Angle 

Figure 2 depicts how (T0 typically varies as a function of the 
* 

grazing angle . Three distinct regions can be identified,  in the 

quasi-specular region near vertical incidence the radar echo is 

fairly large. Measured values of a (T at 90 often lie between 0 

and +10 dB. The large echo at vertical incidence is called the 

altitude return and is apparently due to specular scatter from facet- 

like surfaces oriented in the direction of the radar. (Altitude 

return is of importance in designing radars that operate over water 

since the echo at vertical incidence can be large enough to allow 

energy to enter the radar via the antenna sldelobes and interfere 

even when the main beam is pointing at some angle at which the sea 

echo is low.) 

Water waves cannot achieve too large a slope without breaking 

and becoming spray and droplets. Thus, below some grazing angle 

there will be little likelihood of significant specular return from 

the facets constituting the surface of the sea. The maximum in- 

cluded angle at the crest can be no less than 120 , where the min- 

imum grazing angle for quasi-specular reflection is 60 . The pla- 

*The term grazing angle is more commonly used than incidence 
angle. Grazing angle is measured from the horizontal, incidence 
angle from the vertical. The depression angle is also measured 
from the horizontal but at the radar antenna rather than where the 
radar beam Intersects the surface. 
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teau region is the name given tc that part of Figure 8 where the 

grazing angles are below those producing quasi-specular reflection 

from facets. Sometimes this is called the diffuse region. The 

boundary between the plateau region and the quasi-specular region 

is called the transition angle. The transition is a gradual one, 

and it is difficult to define a precise boundary.  The value of (T 

in the plateau region for vertical polarization decreases slightly 

with decreasing angle; some experiments show a decrease of about 

0.15 dB/deg at microwave frequencies. With horizontal polarization, 

the slope of the 0*'curve seems to be greater the lower the fre- 

quency.  Backscatter from the sea in the plateau region is similar 

to backscatter from a rough surface. The chief scatters are those 

elements of the sea that are of a dimension comparable to a radar 

wavelength. 

At very low grazing angles, of the order of several degrees 

or less for microwave frequencies, (T0 decreases rapidly with de- 

creasing angle.  In this region the direct wave interferes with the 

wave reflected froir Lhe surface in a manner similar to that ex- 

perienced for propagation over a smooth earth; hence the name inter- 

ference region.  The approximate angle at which transition occurs 

between the plateau and interference regions is called the critical 

angle. The critical angle is generally easier to identify experi- 

mentally than the transition angle. With sufficiently low frequency 

the critical angle may be high enough so that neither a critical 

angle nor a transition angle can be readily identified.  Below the 

critical angle, simple theory indicates that 0"° varies as the 

fourth power of the grazing angle. The critical angle is difficult 

to determine precisely but is found to depend on the frequency, 
8 

polarization, and sea state. 
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The echo at low grazing angles with vertical polarization is 
* 

also affected by the Brewster angle.  At the Brewster angle the 

reflection coefficient is a minimum, the forward scattered wave 

fir is small, and interference effects are less prominent. Also, at 

|'       low angles, shadowing of the area behind the waves can modify the 
} 

nature of the echo. 

Measurements of d" as a function of angle have been carried 

out in at least three different ways. The most convenient is from 

land lookin'over the water. Grazing angles at microwave frequen- 

cies are then usually limited to less than 10 .  In such experiments 

care must be taken to select sites that observe sufficiently deep 

I       water so that the effect of the shore does not enter into the meas- 

urements. Sea-echo measurements have also been made from bridges 

overlooking water.  Higher grazing angles can be obtained but bridge 

sites generally do not overlook water typical of ocean conditions. 

A third method for sea-echo measurements is an aircraft-mounted 

radar. Higher angles of elevation can be obtained from aircraft 

than from a land site. Aircraft have the further advantage that 

they can observe sufficiently far from land and can cover a wide 

region of the ocean. However, it is more difficult to know the 

environmental conditions and precise character of the sea from an 

aircraft and to 'oake an accurate, absolute calibration of the 

measurement apparatus. Blimps also have been used as airborne 

radar platforms for sea-echo measurement. 

  25 ♦According to Burrows and Attwood , this should be called 
the pseudo-Brewster angle for the case of the sea. The classical 
Brewster angle is observed only for reflections from pure dielec- 
trics. However, much of the literature on radar sea echo, includ- 
ing this chapter, fails to make this distinction. 
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Figure 7 shows a composite of data derived from the results 

of several experiments, chiefly from those conducted over the years 

by the Naval Research Laboratory.  It does not correspond to any 

particular set of experimental data but it represents the trends. 

As mentioned previously, the variability of experimental sea-echo 

data is great and does not warrant the preciseness with which Figure 

7 is apparently drawn.  Instead of a thin line to depict the data, 

a broad strip at least +3 dB in width should be drawn to indicate 

uncertainty.  (This was not done in this figure since it would 

have resulted in a confused drawing because of the overlap among 

the bands +3 dB in width).  Figure 7 was derived from a variety of 

data extending from 10- to 20-knot wind speeds.  Although this is 

a relatively broad range of wind and sea state, the variability of 

the available data does not permit narrower limiting of these para- 

meters at the time of writing. 

The sea state ranges from 2 to 4 for winds ranging from about 

10 to 20 knots. Thus Figure 7 data might be described as a medium 

sea and might correspond to a state 3 sea. Figure 7 also indicates 
22 

the frequency and polarization dependence. The data for 220 MHz 

(1.36 m) extended only to 14 but were extrapolated to higher angles. 

The experimental data for 50 MHz' ' (6 m) did not extend to low angles 

but, since this is in the interference region, the curve was extra- 

polated according to a ^*law.  Both the 220 MHz (1.36 ra) and the 

50 MHz (6 m) data were taken at a lower sea state than the higher- 

frequency data. 

Above about 10 the data for vertical polarization appear 

the same at both X and L bands. There is some indication that the 

sea echo with vertically polarized radiation is independent of 

frequency in the plateau region and the quasi-specular region if 
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19 
the frequency la below X band. '  Above X band the vertically 

polarized echo seems to increase with frequency, as indicated by 
9 

the data of Grant and Yaplee .  In the quasi-specular region, sea 

echo appears independent of both the frequency (at least at X band 

and below) and the polarization. 

General Mechanisms 

Understanding the physical mechanism causing radar sea echos 

permits design of radars for the detection of targets on or near 

the surface of the sea and the principles involved also apply to 

the measurement of wave direction.  If the precise physical nature 

of the sea were known, classical theory could be used to compute 

the nature of the radar echo.  It has proved difficult, however, 

to provide a realistic model of the sea that ccin account mathe- 

matically for all observed experimental data. There are several 

reasons for this situation.  The sea is an everchanging target 

affected by many forces.  However, the dynamic nature of the sea 

should not in itself prove a fundamental limitation since statis- 

tical methods might be applied, as in dealing with receiver noise 

or fluctuating target echoes. 

To understand the sea as a radar target, one must understand 

something about the hydrodynamics of the sea surface and the nature 

of the coupling between the sea and the wind. The theorist must 

have a knowledge of electromagnetic scattering theory and the theory 

of ocean surface waves. The problem is made difficult by the fact 

that the oceanographers who study waves on the sea are generally 

interested in water wavelengths considerably longer than those that 

affect radar, but radar scatter is primarily determined by the 

water waves of wavelength comparable to the radar wavelength. 

Figure 8 showed the three regions into which the grazing 

angle is divided: the interference plateau, and quasi-specular 
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regions. Although the goal is to identify a single mechanism 

that correctly describes the radar backscatter for any grazing 

angle, it has usually been found easier to consider models applic- 

able to each region separately.  For microwave frequencies observed 

in the quasi-specular region, scattering can be explained as being 

due to facets large compared with the radar wavelength.  In the 

plateau region the scatterers are the facets or capillary waves 

that are comparable in size to the radar wavelength.  In the inter- 

ference region the vector addition of the direct ray and the ray 

scattered from the water surface plays the dominant role. 
27 

Schooley  examined limiting cases of the radar sea return. 

One limiting case is a perfectly smooth surface of perfect con- 

ductivity. (The clutter coef f icient CT^ at normal incidence over a 

smooth surface is equal to one-fourth the gain of the radar antenna.) 

The decrease in (T0 with angle from the normal is fairly rapid. A 

perfect Lambertian surface produces a clutter coeficient (T's«/«"»*^ 

if the diffuse surface is perfectly conducting. A perfectly smooth 

surface predicts values higher than generally observed at normal 

incidence, and a perfectly rough surface predicts values higher 

than observed at angles other than normal. Thus it does not seem 

likely that the sea can be described as being either perfectly 

smooth or perfectly rough. 

Goldstein '  '  first attempted to explain sea echo by the 

application of diffraction theory to the large-scale sea waves, or 

macrostructure of the sea surface. He considered as a model a sin- 

usoidally corrugated mirror and employed conventional physical- 

optics techniques for analysis. The model resulted in a polar dia- 

gram for the scattered intensity like that of a grating and showed 

discrete peaks at the angles corresponding to the various grating 

lobes. Goldstein stated this obviously does not correspond to the 
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true situation .  (Later work indicates that under certain condi- 
33 tions grating lobes in the scattering pattern do exist  .)  Davies 

29 
and Macfarlene  made an attempt to consider a sufficiently irreg- 

ular model by assuming the sea to consist of sinusoidal waves, with 

successive waves having different amplitudes and wavelengths dis- 

tributed according to a gaussian law. 

Although these models gave qualitative agreement with some 

of the experimental data (in particular, they gave an angular 

dependence similar to that observed), they did not explain the 

differences with polarization, and the echo intensity calculated 

was* many orders of magnitude less than measure.  In hindsight it 

appears that the smooth surface of the sine-wave model is not real- 

istic for microwave frequencies.  It is known that a long, relative- 

ly smooth distributed target will scatter poorly in the back direc- 

tion unless there are discontinuities in the target or if the sur- 
13 

face is rough. Goldstein  stated that for the theory to explain 

the experimental results the "maximum sea wavelength which contrib- 

utes to the echo is only one-h?.lf wavelength". At microwave fre- 

quencies "these waves can thus only be small irregularities on the 

surface of the larger waves.  In fact these correspond to ripples 

smaller than have been as yet observed." These ripples do exist, 

and they can be important in radar scatter at microwave frequencies. 

Goldstein also examined the hypothesis that scattering results 

from spray droplets thrown up above the water surface.  Droplets 

over the water surface could explain qualitatively the polarization 

effects observed experimentally at low grazing angles,  it was 

suggested that the droplets are illuminated by a direct ray from 

the radar and a ray reflected from the surface of the water. These 

two rays combine vectorially at the water droplets. With horizontal 
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polarization, the magnitude of the reflection coefficient is very 

nearly unity and the phase shift on reflection is approximately TC 

radians.  Thus at 1CM grazing angles the two rays will destructively 

interfere, and little or no energy will illuminate the droplets. 

The less energy illuminating the target, the less will be the mag- 

nitude of the echo. 

A similar effect occurs with vertical polarization except for 

the important difference that at the Brewster angle the magnitude of 

the reflection coefficient is less than unity so that the direct 

and reflected rays do not produce as complete cancellation as 

observed with horizontal polarization. Thus the vertically polarr- 

ized waves place more of the radiated energy at lew angles and give 

a greater reflection than with horizontal polarization.  Simple 

theory predicts that the echo with horizontally polarized radiation 

over a perfectly reflecting surface will vary as ^ at  lew gr . ".ing 

angles. 

As the sea becomes rougher, the differences observed experi- 

mentally with the two polarizations become less. This is explained 

in the droplet theory by stating that as the sea becomes rougher 

the interference pattern, especially at the minima, tends to be 

destroyed.  Since the ("Tops are small compared with the wavelength, 
4 

the droplet theory predicts that the target echo should vary as f 
8 

in rough weather and f in calm weather.  This dependence of 

is not usually observed. Another reason to suspect the validity 

of the droplet theory is that the polarization dependence is obser- 

ved experimentally to be greatest in a calm sea when there is no 

spray.  For these and other reasons, Goldstein concluded that it 

is "rot likely that the drop mechanism represents the actual state 

of affairs". The major interest in the droplet theory is the polar- 
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ization dependence. This doet, not depend necessarily on the 

scatters being droplets, so that in seeking a better model one 

might look for a different type of scatterer but keep the concept 

of direct and reflected rays at lew grazing angles.  Breaking waves 

cause whitecaps and spray that result in a spiky echo of short 

duration.  Thus spray, droplets, or whitecaps can produce a radar 

echo but they do not seeir to be major contributors to the total 

echo from t ie sea. Although there may be a correlation between 

a whitecap and the appearance of a spiky echo, it is not clear 

whether tho major contribution to the echo comes from the spray 

of from the very peaked crest that develops before the wave breaks. 

(Continued on page 132) 
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Katzin suggested that. Instead of droplets, the scattering 

elements are small patches, or facets, that overlie the main large- 

scale wave pattern. He considered the surface of the sea to be the 

superposition of facets of various sizes, with orientations distri- 

buted about the main sea contour. He assumed that the phases of the 

signals scattered from the facets ware independent and reasoned that 

since the values of 0*° at low grazing angles were small (10  or 

less) the scattering mechanism should be rather highly directive. 

This suggested to him that the scattering properties of inclined 

flat plates (facets) be Investigated. Katzin claimed this theory 

accounts for the behavior in the interference region and the critical 

angle and that it explains the approximate polarization dependence, the 

approximate frequency dependence, and the behavior near normal incidence. 

It is also said to account for the spikiness observed with horizontal 

polarization at low grazing angles. 

Katzin*s facet theory failed to explain to observed upwinrl-down 

wind ratio of sea echo6'9'12'13,14'41.  Schooley14  suggested 

this was due to a lack of measurements of the facet size and slope 

distributions upon which to base calculations. Schooley measured the 

statistics of the facet sizes in a laboratory water wind tunnel and 

from these measurements calculated the upwind-downwind ratio as a 

function of depression angle at several frequencies. His results 

were in sufficient qualitative agreement with measurements as to lend 

support to Katzin's facet model. 

Both Schooley and Katzin assumed that the scattering from the facets': 
12 26 

was essentially Independent of the polarization. Wright '  has 

studied both experimentally and theoretically the scattering from 

capillary waves at Intermediate grazing angles in the plateau region. 

He suggested that the elemental scatterers are more appropriately 

thought of as patches of water waves whose scattering properties prove 
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to be strongly polarization-dependent. Capillary waves are small 

wind-generated ripples, of wavelength less than about,2.Son, that 

ride on top of the larger wave structure.  They eure important to the 

scattering mechanism at X band and higher frequencies since the 

scattering is attributed to water waves of propagation constant 

'T^sflffyAg which is related to the microwave propagation constant 

41* M/Xr  by   ■/? = ^2-^ <"•' /, where   A^ and ^a are the water 

wave and radar wavelengths, and <p  is the grazing angle. 

Wright derived a theoretical relation for the scattering from 

such waves and was able to obtain good agreement between theory and 

experimental measurements of the variation of cr0 as a function of 

grazing angle for vertical polarization. The agreement for horizontal 
12 

polarization was not as good. Wright's work  is of interest since 

he carried out his experiments under controlled laboratory conditions 

in a wave tank. Although the wave tank may not represent the ocean 

in all respects, controlled laboratory experiments give an understanding 

of the factors determining the radar echo from the real ocean. Wright's 

application of first-order (small-amplitude) scattering theory appears 

to have been more successful than previous attempts to associate 

quantitatively radar sea echo with the properties of the ocean waves. 

It seems to have been well established that theories describing 

radar scattering from the ocean must take account of the small-wave 

structure (ripples, capillaries, facets)as well as the large-wave 

structure. If the frequency is low enough the effect of the small- 

scale wave structure should be negligible and only the large waves 

will affect the sea echo. At the lowest practical radar frequencies 

the radar wavelengths are comparable to the water wavelengths that 

begin to interest oceanographers, and data on oceanwave spectra 

including these components are more likely to be a. liable them the 

spectra of the capillary waves that affect the higher microwave 

frequencies« 
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APPENDIX 2 - LIST OP SYMBOLS/GLOSSARY 

Symbol Meaning 

a.    Area of the sea Illuminated by the radar 

a     Project area corresponding to a. 

B     Receiver bandwidth 

ct>    Group propagation velocity of speed of water wave 

d a 

dr 

d w 

e 

exp 

fd 

f r 

g 

G 

H 

H 

fr-\: 

- 0.984 ft ns 

Antenna diameter 

Transverse (minor) axis of Illuminated ellpse 

Radial (major) axis of Illuminated ellpse 

Water depth (mean surface to bottom) 

2.718  

Exponential; exp x - e for any x 

Doppler frequency shift - 2Vj/X 

Radar transmitted frequency 

Acceleration of gravity 

Radar antenna * G    - G 

Receiver antenna gain 

Transmitter antenna gain 

Wave height of water wave (crest to trough) 

Height of antenna above sea level 
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MKS Jnlt 
2 

m 

Hz 

ms -1 

speed of electromagnetic propagation   ms 

2.998 xlO8 ms-1 

.-1 

-1 

m 

m 

m 

m 

* 

Hz 

Hz 

ms" 

* 

* 

* 

m 

m 

-2 
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Slgnlficsmt wave height; equals average of 

highest 1/3 of the waves 

Average wave height of highest 1/10 of the waves 

Wave height exceeded by 10% of waves 

Antenna gain constant = (]l.G/4'ft' 

m 

-1 (1) Propagation constant of water wave, k = 2^/A   m 

-23  -1 -l 
(2) Boltmann's constant - 1.380 x 10   JK JK 

*0 

k~ 
■ e 

Lo 

L r 

Lt 

Ll 

N 

HF 

pe 

R 

T 

Propagation constant for radar, k. = 2 IfZ/i 

Antenna gain constant ■ ^yP»/^* 
4       2 Defined by L  « L^L L. o    t r l 

Receiver system losses 

Transmitter system losses 

One-way propagation path loss 

Receiver noise power 

Receiver noise figure 

Power density (of exposure) 

Received power at radar receiver 

Radar transmitter power output 

Radar slant range 

Horizontal range from radar to Illuminated ellpse 

Wave period of water wave 

-1 m 

* 

* 

* 

* 

* 

W 

* 

-2 

W 

m 

m 

s 

' ■ L 
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Receiver reference noise temperature 

I 
n 

oC 

P 

s 
Ar 

Aw 

r 
a1 

0 

-1 Doppler velocity of radar target;  equals rate of change    ms 

of path length from radar transmitter to target to radar 

receiver 

Receiver signal-to-nolse power ratio * 

Water wave heading angle, measured as Ö rad* 

Radar line of sight  (LOS)  azimuth direction,  measured        rad* 

clockwise from the horizontal perpendicular to the local 

shoreline 

flL Angle for which tan   0Q Is the root mean square slope        rad* 

of the facets  In Splzzlchlvo's expression for    O" 

(T/a ; 
P 

see also (T Clutter coefficient 

Antenna beam width 

Radar wavelength 

Wavelength of water wave 

Paramteter In Splzzlchln's expression for (T 

3.14159... 

Radar cross section 

Clutter coefficient  (radar reflectance,  albedo) 

(T/tri see also ^ 

Radar pulse length 

Grazing angle:    accute angle between mean horlzor.tal 

water surface and centerline ray of radar illuminating 

beam, measured where ray Intersects the horizontal surface 
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rad* 

m 

in 

* 

* 

2 
m 

* 
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rad* 
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0 Critical angle (pseudo Brewster angle) 
C 

yi*.    Antenna beam solid angle 

rad* 

sr* 

♦Asterisked quantities are dimensionless. 
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