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ABSTRACT

Mellen and Moffett (1, 3) have derived models for parametric sonar
radiator design following Westervelt's (2) theory. Their models analyze
both absorption and saturation limits in both the near field and far field,
This memorandum is concerned with the far field zone expansion of the far
field beam pattern and pressure into a series of eigenfunctions which can
be integrated term by term. After summing over the terms, we--can show that
the far field beam pattern is a product of the two primary beam patterns.
The conversion efficiency reduces to an experimental integral which appears
in Reference (b).
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INTRODUCTICN

The purpose of this memo is to present in some detail a derivation
of the far field zone beam patte§n of a parametric sonar. Moffettl has
derived from Westervelt's theory“ the two feld expression

sp 2wzci(ﬂt -ik c‘.ra) — 3
P(r)e f{fdv‘ e tH s2(r") r°<n,
J
Amp,co”
(1)
int 2
sp zwze R -
LT [ B D s oo,
41pgcy” (r")? <

for the pressure of the secondary wave where R 1is the primary wave

.collimation distance. The volume integral is Lo be performed over the
region occupied by the primary wave. In this expression b is the distance
(£=T') between the fieid point and the intcgration point. The other terms
are defined in the section “Glossary of Terms."

The first integral in Equation (1) represents the contribucion to the
far field from near field interactions., It is evaluated in references (1)
and (3). The essence of these papers is that the secondary beam pattern is
a product of the two primary beam patterns. The parametric efficiency| rP
is derived in both references and the directivity index DI is derived ‘RyP
in reference (3). Curves of the directivity index and parametric efficiency
are presented in reference (3).

i ' The second integral represents the contribution to the far field from
r " the spherically spreading region. It is the intent of this memorandum to.
evaluate this integral.

w—T

<
‘
i
r
i
|
}
1
J




-

™ No.
- PA4~313-71

FAR FIELD INTERACTION ZONE

We rewrite the second integral in Eqguation zi) in the form

BPo2R2Kk2elut R.2

-+, 4 -
P(r) = /j/dv‘ o e.ik{r + lr-r l] 82(::)
47p zcz 1"2 (2)

o ]r-r‘l

. —p
where U has been replaced by ]r-r"%pe distance between ihe field point-;’
and the integration point r”, 82(r )} is the source function. The volume
element dv/ is r? sin® dr’ d¢ dé’and r’ extends from Ry to” . The distance
Ry is defined to be k, R, and is called the spherical wave distance,

The justification for extending the range of integration from R, to Ry
was that most of the contribution in the first integral in Equaticn ?1) came
from on the axis and the integrand was non oscillatory up to r’= R,. Thus the
near fieid contrivuiion was extended oul to ihe spierical wave distance and
the far field or spherically spreading form was assumed to begin at R2.

. 1
The quantity 73§ exp (-ik|r-r"]) is the Green's function for the Helmholtz
operator. It has the expansion

-
-3 .r’
e~ik(r-r?) -ik ¥ (2ne¢1) P, (cos 6} jn(krﬁ,hnfz)(kr')‘ £2573{

[ ST SRR t J n.o
-

|r-x” |

-ik £ (2nen) Py (ees 03 5 (k) n (P (kr), rrrosc

n-o
| | (3)
where Pn(cos 6) = Pn(cose cos 07 +sin 0 sin 6° cos &%) z
’ n
[ ) = Pn(cos 0) Pn(cos 6°y + 2% (n-m)!
. m=l(n+mj) !
(4

m n . i
. (Pn (cos 6} Pn (cos 6°) cos @~ . 4
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The ierms an(cose) are the asssociated Legendre polynomials of order n.
If we integrate over the azimuthal angle ¢ , we have from (4)

2n
f P, (cos 8) d¢ = 2nP (cos 8) Pn(cose'). (s)

(o]

In the far field we use the second of the expansionsin Equation (3).
Combining the results of Equation (5) with the expansion in Equation (3)
we rewrite Equation (2) as

P = BPo2k2R,2elVt

1K) T .
, ( )n-o (2n+1) Pn(cos 8) Pn(cos 0%) x

ZDco

Rzo
(6)

. 2 oy _-ikr”
Iy h B r) 2ty e piacy|26in 8- aras-,

The source function 82(—;”) has been resolved into a product '1‘2(1"),?(8' )[2‘
where T4(r”) is a linear taper function and ‘ F( @) {2 is the prcduct of che two
primary beam patterns. In the far field Hankel functicn hn( (kr) can be
written as

h (2)(kr) = i (cr~4(n+l) n] - 4n#l o-ikr
n kr kr

We then have )

P = Bpozkznozeiwt-ikr o T
0

[f I (2n+}) 30 p ‘
| Rz o neo ) n(cos 8) Pn(cos 87). x

2
cho kr

. .

(7)
3,ke7) (%) KT M0y 12 g5 00 4 woe,
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This expression can be written symbolically as
-1k
P = Ke kr L (2ne+l) it agb, P (cos 0), (8)
n
kr
o0
where a_ -./ﬂ T2(r") jp(kr”) e-ikr gy° (9)
. R2
L] .
b, =f [F(e%)|? P, (cos ©°) sin 67 d8°, (10)
o :

-

The integiand has been resoived into a series of eigenfunctions
which can be integrated term by term. We proceed first with the

integration over the angle 6 .

Each of the primary beams is assumed to have the beam pattern

23,(k_a sind)
F(6°) = ° (11)

ko a sin 0°

where a is the radius of the transducer and ¥, is the averoge
primary wave number. The aperture a is reluted to the primary
wave collimation distance R by

ltoa2 .
Ro - ——r (12)
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for a circular pistons the coefficients b becomes in Equation

(10)

T Ji(k,a sin 87
bn = . 4 sin 6% d0”, (13)

koa sin 87

" The square of the Bessel function has the representation

2 o (-1)"(2me2)1 (ax) 72
Jl (x) s 3 ) .
, n-0
g n! (m+2)! [(me1)?)2
Thus bn becomes
n
@ (=1)" (2m2)! (1/2 k a) "
= 4 ¥
L2 a-0 fsin 2m+l 8°Ppl(cos 8°)
m! (m+2)! (m+l)! (m+l)!d o

] ' . Let x = cos 8, Then

e (-D" @me2) (1/2 K a)2® 1 ,
bn 7 bt o 2% 5 ¢
* .n 'm0 m! (m+2)! (okl)! (mhl)! [1 - QA=) (x) dx. (15)
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It is obvious that bn = 0 for n odd since
n odd, By induction it can be shown that

1
f (1--x2)m P. (x) dx
-1 Zn

Pn(x) is odd for

D" et 2 2™ 42 (o)

_ X 16) ;
(2m+2n+1) ! (m-n)! (n!)
Using this result we have
b = 4§ DT @2k % 2?™ n)t @)t G2t w
20 w0 Gt D T ()T D T ety w40
When n = O bo = 4 go ('l)m (l/'2 koa)Zm 22m+2 ] 16 [ Jl(Zkoa)]
m= — 2 1- 2 __°
@D @) ! (k_a) siga 4 a8y J
When n = l bz = 4 g (‘l)uﬁ.l (1/2 kca)zm szzm A
m~
(2m43) (m+1)! (m+2)!
f

16

;’E_J (Zkoa):} e 3 0o ,
(koa)zi 1 % a 2 (2koa) -3 7/2 [Jl(Zkoa) H, (2 a)

(19)

=Jo(2k a) H_ (Zkoa-)]}
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in this case H (Zkou) and H|(2k°a) ore Struve functions of

orders 0 and | and argument 2k _o. Using the Lagronge Duplica-
tion formula, we can represent°b2n as follows:

D" 272 onyy reag2) (20)
b, = 3 F,03/2, 1, 1; 3, 2, n43/2, 1-n; -4k 2,2
(o]

(12 r(1-n) I'(n+3/2) |

where 3F4(a,, a2, a3, By, Ba, B3, Byi 2z) is o generalized
| hypergeometric function,

Returning to Equation (9) we calculate
i
- o0 2

! - %2 '

b

ﬁ where n is even since b2n+'=0. Following the work of Mellen )
and MoffeH3, we choose

. e-Zar‘
T (x) =

-1 r* 21
1+(X sinh lr /Ro)z (1)
2

»

ar

! The term e~ represents the abscrbtion of ite primary wave )
? and the term [1+(X/2 sinh =1 r]/Rc,)z] -1/2 s due 1o the propa-
gation of the sawtooth wave, (see Equation (:9) of reference

| (1).
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It is expected that because the variable of integration is large
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If we let r° = ROP, we have
-2aR p
a = e o -iok R p
2n f_____._ e 00" j, (ok R 0) dp,
- n" oo 22
/%) 4x s1nn™2® @)
2
where -3?' represents the downshaft ratio fo =k ., The first
two spherical Bessel functions are ~5 —E—?-
sin z
3, (2) = -
. o . z okoRop
J,(z) = (3_=-1) sinz -3, cos z )
- 1
=~" 8inz+ 3 (sin z - cos_ 2
z zJ z¢

to start with that the term in parenthesis in j2 will contribute
very little to the integral since each of the terms is oscillatory
and cancels each other out. It is expected that j2,(z) can be
set approximately to (-1)P j (z).

When the saturation parameter x in Equation (22) is non
zero, the integral cannot be evaluated in closed form., A
ceries of machine computations was made by Mr, Morvin Goldstein
of the New London computer laboratory for the following sets
of parameters as shown in Table I,
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TABLE |

Parameters Used in Evaluating Equation (22)

X ] 1 koRo
o 2°Rc
0 5 | 100
.02 10 i0
.04 20 100
.06 50 1000
-, 08
.10
For the cose 1jo= 10 and _1 = 100, the following results arc
.shown in Table II, 2ok
TABLE 11
Values of %9, 2
X a, 2 aj 2 ay 2 ag 2
0 .8271x10"% .8271x10-2 .8271x10°2 . 8256x10"
.02  .8240x20-2 .8241x10"2 .8241x10°2  ,8226x10"

.04 . 8150x102 L8151x10°2  .8151x10°2  ,g136x10-2

.06 .8004x10"~2 .8004x10~2 .800/x10"2 . 7990x10

11
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The values of |ao 2,

Equation (8) as

-ikr

P = Ke 0N - n
R . a t2%(2n+1) i’ (~1) ann(cos 9) (23)

kr o

since Gy, = (-1)" a,. This becomes

-ikr

Ke
- P kr 2ao g

(o]

and by the c;osure property

n§0 u (x) w(x°) = 8(x-x")

Thus .
-ikr . :
P = Kek 2a jj |F(8|® 6(cos 6% cos 6°) sin 8~ do~ (26) :
r A :
~ikr 2 ,- ) 5
Ke ’ :
ky ZaOIF(G)l . 3

—

|02|2, and |c4[2 agree to 1 part in
10% and the value of Ja ] 2 agrees wit

in 107, However, the series for |a | '

- Q . :
slowly that the agreem~:' could be“closer As o very good :
approximation (and t.. wiich was expect.' all values of |°2r|2
can be expected to be the same os |o | 2, We now return to
Equation (8). The fact that Apr 37 oo

A2p+1
is not important since the b2n+’. is idenﬁca?ly 0. We can write

1
f [F(8-)[2 (2n+1) P (cos 0) P_(cos”) sin 8°d9”°,  (24)
2

"The terms (2n+1) P, (cos d) P (cos 8-) are normalized signfunctions
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the others to 15 parts
was converging so

B4 e ek Mk Y wk 4T

e LT

was not calculutad

R e Wt bV v E10 st < 3 9T e o o




T — T

TM No,
PA4-313-71

-

Strictly speaking, the beam pattern in the far field is a
very weak convolution of the two primary beam potterns but
to o very good opproximation as shown in Equation (27), the

beam patterns 'n the far field is a product of the two primary
beam patterns,

If one considers o value of the saturation parameter x to be
zero, Equation (22) can be integroted in closed form,

- _ Let us
write the pressure distribution as
‘ :

- 2, 2,2 . . . .
P = BP5R 7k ol Wi e-skr |*’(9)|2 kR°[ e-20R0p-s koRopx
2 kr /0'

pc

io( O‘kokop) dp,

amd consider
® -20R.p-icR .,
’[j&e of of |O(°'koRoP) dp

© «© . '
=f e-ZaRop do - f e-3°R°p - 2iok R p do, :
Vo —m—— /e

2ioR,, P
2ick ,Ryp
= ] E\f2 )
—; ) if 2Ry ) - .l Eyf2aRo + 2ikoR ],
) io oRo - fuckoRo -
For imaginary koRo = 200, z ez‘El(z) = 1.
3 1
’ : Thus E'(Eu_l-{_g-l'ZikoRo)gexp(ZZRO-z'koRo)
’ . o . »> O
20Ro 27k R
— o o

A
b
F

o Acnscamiiimuendentte
et e . B -
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Hence
p . BP R i ke (g2 KR, _ 1 E(2aR)
pc?2 ke 2ick R, & |
Taking the value of the paorametric efficiency '.[.E....’ , we have |
Rop.
PPl ko E(2eRr)) ;F(G)i 2,
| RoPo ko

which is the same value as Equation 35 of Reference |I. Equation
(35) of Reference | is the on axis value of the far tield parametric
efficiency.

CONCLUSIONS 1

This memorundum has shown thot the secondary beam pattern
of the far field interaction zone is a very weck convolution of
the two primary beam patterns which to a very good approximation
‘is a product of the two primary beam patterns. The pressure ampli-
tude of the secondary wave was calculated using all the off axis
contributions and agrees with that calculation made on the basis
of the on axis contributions in References | and 3. This gives
great credence to the approximations made in these two references
so that oll the quontities and curves cppeoring in these two
references can be considered to have much validity.

i, b
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GLOSSARY OF TERMS

Coefficient of radjal integrol
Coefficient of angular integrol
Speed of Sound in Water
Average primary frequency
Secondary frequency

Average primary wave number

Secondary primary wave number 1

Secondary peok pressure amplitude

Primary wove collimotion distance

k R

o o
T
Field Point

Integration point

Source Function
Amplitude tupes function
Absorption coefficient

Non linear number for water = | +

R
0
&~

Angle off main beam axis

Angular integration variables .
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! i
r-tt = Distance between field point and

integration point

Density of water

Reciprocal of downshift ratio = ff- = 1;—
L o
Saturation number = ﬁpokORo
pc?

Angular frequency of secondary = 2gf

16
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