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ABSTRACT

Mellen and Moffett (-1, 3) have derived models for parametric sonar
radiator design following Westervelt's (2) theory. Their models analyze
both absorption and saturation limits in both the near field and far field.
This memorandum is concerned with the far field zone expansion of the far
field beam pattern and pressure into a series of eigenfunctions which can
be integrated term by term. After summing over the terms, we-can show that
the far field beam pattern is a product of the teo primary beam patterns.

a The conversion efficiency reduces to an experimental integral which appears
*in Reference (b).

ADMINISTRATIVE INFORMATION

This memorandum was prepared under Project No. A65405, Task No.
ZROO0101, "Parametric Sonar Research," Principal Inestigator Dr. R. H.
MWl]pn2 Code PA41. The sponsoring activity is C/LMA./T 033, Dr. J. H.
Huth.

The author of this memorandum is located at the Newport Laboratory,
Naval Underwater Systems Center, Niewport, Rhode !sland 02840.
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INTRODUCTI ON

The 1.1rpose of this memo is to present in some detail a derivation
of the far field zone beam pattern of a parametric sonar. Moffettl has
derived from Westervelt's theory the two fold expression

4p 2cef 'oi t f f f e () e r r *< fo

O P 0..u. .ei I d v " o e - i k ( r . r ) S 2 - ' ) r 1 > l o

Ill -

for the pressure of the secondary wave where R is the primary wave
collimation distance. The volume integral is ?o be performed over the
region occupied by the primary wave. In this expression is the distance
(r-r) between the field point and the integration point. The other terms
are defined in the section "Glossary of Terms."

The first integral in Equation (1) represents the contribucion to the
far field from near field interactions. It is evaluated in references (1)
and (3). The essence of these papers is that the secondary beam pattern is
a product of the two primary beam patterns. The parametric efficiencyl rP I
is derived in both references and the directivity index DI is derived IF--
in reference (3). Curves of the directivity index and parametric efficiency
are presented in refer:ence (3).

The second integral represents the contribution to the far field from
the spherically spreading region. It is the intent of this memorandum to.
eva]uate this integral.
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FAR FIELD INTERACTION ZONE

We rewrite the second integral in Equation (1) in the form

Pp() 2P*Rlk2eiwt fff o i r.r(
P . . .. dr" - e~i '  2...(r"

p 2 -0 (2)
47rPoc | e r-r'I

where . has been replaced by lr-r'J e distance between the field point r

and the integration point r . S2 (r ) is the source function. The volume
element dv' is r 2 sin V/ dr' d 'and r' extends from R2 to'. The distance
R2 is defined to be koRo and is called the spherical wave distance.

The justification for extending the range of integration from Ro to R2
was that most of the contribution in the first integral in Equation ?1) came
from on the axis and the integrand was non oscillatory up to r*= .2. Thus the
near field contribuLion was extended out to the siliericai wave distance .rd
the far field or spherically spreading form was assumed to begin at R2.

The quantity jz exp Ik ir-ro ) is the Green's function for the Helmholtz
operator. It has the expansion

I r -ik (2n~l) P n (Cos el j n(kr') h n(2)(Wr), r">r'>t

1-0

(3),
where P (Cos 0) = P (cosO cos 0' +sin 0 sin 0' cos 4")

n
P n(COS 0) Pn (cos 0') + 2Z (n m= 1 n-- m!

(.,

Pn(cos 0) Pn (Cos Cos . 4

n J n 4
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The terms Pnm(cosO) are the asssociated Legendre polynomials of order n.
If we integrate over the azimuthal angle p , we have from (4)

27rf P(cOs 0) dn 2 7Pn(cOs 0) Pn(cos6). (S)

0

in the far field we use the second of the expansionsin Equation (3).
Combining the results of Equation (5) with the expansion in Equation (3)
we rewrite Equation (2) as

p2k2 2it

2pf (-ik)E (2n+1) P n (cos 0) P (cos 0") x

i~ 2c 2o

(6)
J n (kr') hn(2) (k r ) T2 (r*) e-ikr" P S. 1 P 0' dr d0'.

ThR source function S (r") has been resolved into a product T (r)IF(o )"T2 r s a lier2IT('J('f

where T2(r) is a linear taper function and I F( U)12 is the rcduct of zhe two
primary beam patterns. In the far field Hankel function hnV)(kr) can be
written as

h (2)(kr) = e-i r(r-(n+l) n in+l e-ikr
nkr kr

We then have

P- OP 0 2kOR 0 iwt-ikr 7

2pc 2 kr J J (2n+1) in Pn(cos 8) P n(cos 6.).x
0 R20 n=O

(7)

jn (kr *) T2 (r) e i k' C(O*) 2 sin 0' dr* (3G.
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This expression can be written symbolically as

-ikr

P Ke . Z (2n.1) in anb n Pn (cos 0), (8)
n

kr

Io

where an fR2 T2 (r'*) Jn(kr) e-ikr * dr' (9)

bn  f IF()1 2 Pn(cos 0') sin 0' dW. (10)

The inlegiand has been resolved into a series of eigenfunctions
which can be integrated term by term. We proceed first with the
integration over the angle 0

Each of the primary beams is assumed to have the beam pattern

2J I (k a sine)

ko a sin e'

where a is the radius of the transducer and ;-o is the average
primary wave number. The aperture a is related to the primary
wave collimation distance Ro by

k a0 . (12)
0
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for a circular pistons the coefficients b Secomes in Equation
(I0)

(I i k a sin 82b f 4 sine' dO' (13)
n

Lkoa sin 8'

; The square of the Bessel function has tke representation

2 (-1)"(m21:(.}x)
J1  (x) _____...._

M-0

ml (m+2)l [(m.1l!! 2

Thus b becomes
n

= (-1) (2,.+2)! (1/2 k a)
bn 4 0 i 2m+o

U-O ... (isn2)! O(Pn(cos 0o) de',
m! (m+2)! 0P+1)! (m+ )!

(14)

Let x cos 0 . Then

4 (-1)' (2m-2)! (1/2 kj (1-2)m pn(x) dx. (15)
-n 4mI (m+2)! (ne+l)! (m+i)! .

7
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It is obvious that b n = 0 for n odd since P n(x) is odd for
n odd. By induction it can be shown that

(1-x 2 )m P2n(X) dx

(-1) n (2n)! 2 2m+1 (W!) 2 (m-n)!
(16)

(2m+2n+1)! (m-n)! (n!) 2

Using this result we have

b 4 (-1) m+ n (1/2 k a) 22m'1 (2n)! (m+n)! (2m+2)! m!n1 (2m+2n+l)! 0(m+2)! (m+l)! (rn+l)! n!(m--n)! (17)

(rn+l)! (m+2)! (k0oa) 2 L - 2ka

+1 2m 2moa(+2

When 1 4 1) (1/2 k a) 2m 22 2 m
-O2  0 0 0

(2m+3) (n$+l)! (+2)!

16 (~ (2ka)r
-- 1 J 1  2 + 3 J2 (2k a) - 3 n/2 (2ko a ) Ho (2k a)

( (19)

J0 (2k a) if ( 2k aj)
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In this case H0 (2k 0a) and H1(2koa) are-Struve functions of
orders 0 and I and argument 2k a. Using the Lagronge Duplica-
tion formula, we con represent% 2 n as follows:

(-1) ' 3Ln(n! 32 F4(3/2, 1, 1; 3. 2, n+3/2, (2n;0) k 2a2)

2(n!) r(I-n) r(n+3/2)

where 3 F4 (o, 02, 0131 Pil' P2P P3, N; Z) is a generalized
hypergeometric function.

Returning to Equation (9) we calculate

-a f T2 (r) jn (hr') eJikr' dr'.

where n is even since b 2 n+1=0. Following tlk work of Mel len
and Moffett 3 t we choose

1X ih-1 r**/RO 2 (21)

.Th* etem earrepresents the abscrbtion of 1l;,e primary wave
and the term [I+(X/2 sinh -1 rl/R.)21 -1/2 is due to the propa-
gation of the sawtooth *wavo, (see Equation (.'9) of reference

9
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If we let r" = RoP, we have

/ ea OP e'itkoRo j2 (akoRop) dP,

101+x sinhb'P(22

where . represents the downshaft ratio fo k 0 The first
two spercal Bessel functions are 0

jo(Z) = sin z-T-) z = ak oRp

iJJ2(z) =Q( -DI sin z -3-2 Cos Z (".3)

Z -2 -2-Ssin z .- o ' I

It is expected that because the variable of integration is large
to start with that the term in parenthesis in 12 will contribute
very little to the integral since each of the terms is oscillatory
and cancels each other out. It is expected that !2n(z) can be
set approximately to (-1)n j 0(z).

When the saturation parameter x in Equation (22) is non
zero, the integral cannot be evaluated in closed form. A
series of machine computations was made by Mr. Marvin Goldstein
of the New London computer laboratory for tho following sets
of parameters as shown in Table I.
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TABLE I

Parameters Used in Evaluating Equation (22)

x 1 1 k R

a 2aRC

0 5 1 100

.02 10 iO

.04 20 100

.06 50 1000

.08

.10

For the case I/a =  10 and 1 100, the following results arc

.shown in, Table i1. 2aR 0

TABLE II

Values of 0 2n 2

0
2  022 042 062

0 .8271x10 2  .8271x10 2  .8271x10 2  .8256x10 2

.02 .8240x20 2  .8241xi0 - 2  .824)x10 2  .8226x10-2

.04 .8150x10-2  .8151x10- 2  .8151Y10 - 2  .8136x10-2

.06 .8004x!0 2  .8004x10-2  .800'xl0O 2  .7990x10-2
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The values of ao 2 , 1021, and 1041 2 agree to 1 part in
i04 apd the value of 1a61 2 agrees wit the others to 15 parts
in 10-. However, the series for ja I was converging so
slowly that the agreem,- ,' could beclose- As a very good
upproximation jand 7.i.. wlich was expect...' all values of 102r1 2

can be expected to be the same as 1001 2. We now return to
Equation (8). The fact that a1 , a 3 , ... 2-+1 was not calulted
is not important since the b2n+I is identicaly 0. We can write
Equation (8) as

P Ke a Z (2n+1) in (-i)n b P (Cos 0) (23)
kr o nfnfn

since 02 = (-1) n ao . Th'is becomes

K-ikr o1

P = kr 2a Z JIF(e)1 2 (2n+l) P (cos 0) P (cos') sin 8"dO', (24)kr0n -2 nn

The terms (2n+1) Pn(cos d) Pn(cos e-) are normalized signfunctions

and by the c osure property

Z0 U (x) U3 (x') =(x-x) (25)

Thus

P2a J F(0')12 (cos 01- cos 0) sin 6" d" (26)

0

Ke"ikr 2 . "

kv 2a '(O)
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Strictly speaking, the beam pattern in the far field is a
very weak convolution of the two primary beam patterns but
to a very good approximation as shown in Equation (27), the
beam patterns ,n the far field is a product of the two primary
beam patterns.

If one considers a value of the saturation parameter x to be
zero, Equation (22) can be integrated in closed form. Let us
write the pressure distribution as

P = PP 2 R° 2 k2  e iwt e -ikr IF(0)12 kRO e 2 Ropi koR op

Pc 2  kr

Jo( a koRop) dp,

and considerf e -2oR 0 p-irR0 P jo(koRoP) dp

S_2aRoP O J 2oRop - 2ickoRoP dp,

2iokoRoP

E2"- "12a I(cR O)2ia koR °  o o

For imaginary koRo  200 , z e 'E 1(z) I.

!IT h~ j(2a a(2R -2ik
+2ik. R 0

2Ro .- 2i"k R
0 0

C13
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Hence
pp 2 R 2k 2  iwt -ikr F 2P 0 e e ,F(B). kR 0 1 El1(2aRo)

PC 2  "r I t o 2io" koRo  C

Taking the value of the parametric efficiency I rP- I , we have
IR oPo0

SrP x k E2R F

R 0p 2 k0

which is the same value as Equation 35 of Reference I. Equation
(35) of Reference I is the on axis value of the far field parametric
efficiency.

CONCLUSIONS

This memorundum has shown that the secondary beam pattern
of the far field interaction zone is a very weak convolution of
the two primary beam patterns which to a very good approximation
'is a product of the two primary beam patterns. The pressure ampli-
tude of the secondary wave was calculated using all the off axis
contributions and agrees with that calculation made on the basis
of the on axis contributions in References I and 3. This gives
great credence to the approximations made in these two references
so that all the quantities and curves appearing in these two
references can be considered to have much validity.
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GLOSSARY OF TERMS
00 Coefficient of radial integral

Ibo Coefficient of angular integral

c Speed of Sound in Water

f Average primary frequency0

Secondary frequency

'k 0 Average primary wave number

k Secondary primary wave number

K i 22t

2pc2P - Primcry peak pressure amplitude0

P Secondary peak pressure amplitude

R Primary wave collimation distance0

2 k R
0 0

r Field Point

r Integration point

S(r) Source Function

T(r) Amplitude tapes function

a Absorption coefficient

-3 Non linear numbev for wate'r + 4 4 4

0 Angle off main bcam axis

o" -, " Angular Integration variables
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rr-ri Distance between field point and
integration point

p Density of water

f k
0 Reciprocal of downshift ratio =r-

0

x Saturation number = P 0 k0 R0

* Angular frequency of secondary = 2irf
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