AD-755 192

STUDY OF BLOCK CORROSION IN TRUCK, CARGO, 1-1/4 TON, 6x6, M561

Charles B. Jordan, et al

Coating and Chemical Laboratory Aberdeen Proving Ground, Maryland

November 1972

DISTRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

2

00

10

50 10 10

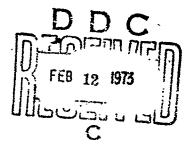
AD

ý,

and been water and the set of the

AD

CCL REPORT NO. 317


and the second second

FINAL REPORT

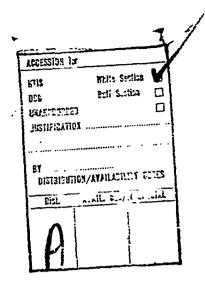
A STUDY OF BLOCK COLROSION IN TRUCK, CARGO, 1-1/4 TON, 6X6, M561

BY

CHARLES B. JORDAN JAMES H. CONLEY AND PERRY C. REYNOLDS

NOVEMBER 1972

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED


Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Logarithent of Commerce Springfield VA 22151

U. S. ARMY

MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT CENTER COATING AND CHEMICAL LABORATORY

ABERDEEN PROVING GROUND

MARYLAND

.

İ

ş

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DOCIMENT CON	NTROL DATA - R	£ D .	•
Security classification of title, body of abottact and indexts		entered when the	
JSA Nobility Equipment Research Development	nt & Center	1	CURITY CLASSIFICATION
Coating and Chemical Laboratory		Unc I	assified
Woerdeen Proving Ground, MD 21005			
REPORT TITLE		4	
A STUDY OF BLCCK CORROSION IN TRUCK, CARG	0, 1-1/4 TON,	6x6, M561	
DESCRIPTIVE HOVES (Type of report and inclusive dates)			
- AUTHOR(S) (First name, middle initial, last name)	······		
CHARLES B. JORDAN, JAMES H. CONLEY and P	PERRY C. REYNO	LDS	
November 1972	74. TOTAL NO. 0	75. но. ор REFS Ц	
. CONTRACT OR GRANT NO.	I & ORIGINATOR	S REPORT NUM] 9g(#(\$)
AMCMS Code No. 502E.11.80300			
L PROJECT NO.		CCL <i>≣</i> 317	
1T062105A109	S. OTHER REPO	RT NOIS) (Any -	for numbers that may be assigned
	Atta report)		•
د			
ON DISTRIBUTION STATEMENT Approved public release; distribution unl			
Details of illustrations in this document may be better studied on inforofishe		MILITARY ACTI my Materiel on, D. C.	Command
The object of this study was to determine the aluminum block of the Gaema Goat tact Ton, 6X6, M561). Severe corrosion was fo than 10,000 miles when water plus the sta had been used in the cooling system. / Dynamometer tests conducted by the engine of the inhibitor and aluminum block at ob standard simulated service test was modif field observations and with the results o Under controlled conditions, it was deter block corrosion, these were: (1) composi	ical wheeled bund after this andard militar e manufacturer served operat fied so that the of the dynamom mined that fo ition of the b is the coolant, e engine coola	vehicle (The s vehicle for y corrosion showed ind ing tempera he results eter studio ur factors lock, (2) p (3) high nt passages	ruck, Cargo, 1-1/4 had been operated less h inhibitor, 0-1-490a compatibility of the atures of 240°F. A correlated with the es. are involved in the phosphate in the engine operating
corrosion, inhibitor when water is used as temperatures and (4) configuration of the restriction of coolant flow in areas of h Means of reducing the cavitation/corrosio determined as follows: (1) reduce the op the phosphate from the corrosion inhibito (3) use ethylene glycol solution as the m	on of the Gamm berating tempe or when water	rature of t is used as	the engine, (2) remove the coolant and
corrosion, inhibitor when water is used as temperatures and (4) configuration of the restriction of coolant flow in areas of h Means of reducing the cavitation/corrosio determined as follows: (1) reduce the op the phosphate from the corrosion inhibito	on of the Gamm berating tempe or when water	rature of t is used as	the engine, (2) remove the coolant and

-

:

....

٩

1

.

	Class!/icstion				LINI	< A	LIN	K B	LINK C	
	XEV W	ORDS .			ROLE	WT	ROLE		ROLE WT	
		الإختارية معدود بعدن	ويتعاديه فيستهوه							
					1					
	-									
										ł
	•				1					ļ
				-]
				-						ĺ
					1 1					
					 		i i			1
							1		1	
					1					
					1					l
							1			
									[
										{
										ļ
]			
							£		1	
							1 :			
					• (***•	:]			
				-				·		
	•			-				· ·	i	1
									1	
					1	ļ				
					1	l		l	I	
						1	1		ł	
	· · ·				Į			ł		
					[
				•						1
					ł				1	ļ
			•		Į					
						ł	1		1	l
						ł				
_	•		- •		1	•	1		1	l
•					1	ł	1	1	ł	
		-			ł	-		1		
	•		•			ľ	ł		1	Ì
				-	1	1	1	l	1	I

ì

Security Classification

;

1

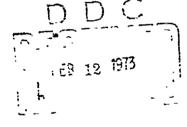
UNCLASSIFIED

CCL REPORT NC. 317

FINAL REPORT

A STUDY OF BLOCK CORROSION IN TRUCK, CARGO, 1-1/4 TON, 6X6, M561

BY


CHARLES B. JORDAN

JAMES H. CONLEY

AND

PERRY C. REYNOLDS

NOVEMBER 1972

and and a standard and a standard and a standard and a standard a standard a standard and a standard and a stan

AMCMS CODE NO. 502E.11.80300

DEPARTMENT OF THE ARMY PROJECT NO. 1T062105A109

U. S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT CENTER COATING AND CHEMICAL LABORATORY ABERDEEN PROVING GROUND MARYLAND 21005

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

UNCLASSIFIED

ib

TABLE OF CONTENTS

Page No.

นองหมะครองกลากครามสามารถหมายสมครั้งมีสามาร์จาก จะส่วนสมครั้งมีสมครั้งมีสามาร์

١

TITLE PAGE	i
ABSTRAGT	ii
INTRODUCTION	1
DETAILS OF TEST	1 - 2
RESULTS OF TEST	2 - 3
DISCUSSION AND CONCLUSIONS	3 - 5
RECOMMENDAT! ONS	5
REFERENCES	5
APPENDIX A	6
Figure 1	7
APPENDIX B	8
Tables i - III	9 - 11
APPENDIX C	12
Photos 1 - 17	13 - 29
DISTRIBUTION LIST	30 - 31
DD FORM !473	32

Preceding page blank

and the state of the state of the second states and the second sta

and the second state of the second state and the second state of the

A THE PARTY IN A

iii

I. INTRODUCTION

Production testing of the Gamma Goat (Truck, Cargo, 1-1/4 Ton, 6X6, N561) under high ambient temperature conditions was conducted at Yuma Proving Ground, Arizona in mid and late 1970. To provide maximum heat transfer efficiency, water plus corrosion inhibitor 0-1-490a was used as a coolant, as recommended in TB-750-651. During a breakdown inspection of the engine, (Detroit Diesel Aluminum 3-53), it was discovered that excessive cavitation/corrosion of the aluminum block had occurred in the upper cylinder area (see Photo No. 13 and Figure No. 1). This corrosion resulted in leakage of water into the crankcase in some cases. anustradictional marking and and and and and and and

The problem was relayed to the engine manufacturer who conducted extensive dynamometer tests on the engine using various coolants. It was found that at 240°F., which was the approximate operating temperature of the engine, cavitation/corrosion occurred when corrosion inhibitor 0-1-490a was used in the water. It was also found that a 50% solution of some commercial antifreezes decreased the cavitation/corrosion.

The problem was brought to the attention of this Laboratory, the custodian of 0-1-490a and military antifreeze specifications. It was deemed advisable that a study of the cause and mechanism of the corrosion be made.

11. DETAILS OF TEST

A. Structure of Engine.

The engine (Detroit Diesel Aluminum 3-53) contains aluminum block, Alloy No. 355, and three cast iron cylinder inserts. The composition of the block is listed in Table I. Figure 1 represents a drawing of one cylinder area showing the coolant flow path, the area where cavitation/corrosion takes place, and the leakage path of the coolant after corrosion takes place.

B. Dynamometer Tests (Detroit Diesel).

The tests run by Detroit Diesel consisted of a series of 100 nour runs on the Gamma Guat engine at 110 hp, 2800 rpm, with the coolant temperature controlled at 230-240°F. Detroit Diesel stated that these tests, though accelerated, gave close correlation to actual field conditions experienced in summer test work. Tests listed in Table II were conducted and reported to the Project Manager's office.

C. Simulated Service Tests.

These tests were conducted in accordance with ASTM-D 2570, modified by using a water pump from a 1970 Buick. This water pump is an all aluminum pump of an alloy comparable to the aluminum block of

1

2 محملهم والأطلاح والمراجعة المطارحة وأحمد المراجع والمراجع والمعارية والمعارية والمعارية والمعارية والمعارية وال

the 3-53 engine. Visible and quantitative cavitation/corrosion caused by the different test solutions was found in the impeller area of the pump which was subjected to the highest liquid velocity. The system was operated under 15 psi pressure. The coolant temperature, controlled by band heaters on the reservoir, was controlled at 240 + 2°F. The standard duration of the tests was 700 hours. Tests conducted on the simulated service unit are listed in Table 111. Excellent correlation between the results of these tests and the results of dynamometer tests was obtained. The results of the simulated service tests also correlated very well with results reported in the field. This study was based on the modified simulated service test for economical reasons. This type of test saves both time and money.

D. Coolant Corrosion Inhibitor System.

The basic corrosion inhibitor system employed in this study was 0-1-490a. This inhibitor is composed of sodium tetraborate, mercaptobenzothiazole (MBT), and disodium phosphate. The sodium tetraborate provides the buffered alkalinity, the MBT is present primarily to provide corrosion protection to copper and copper alloys, the disodium phosphate was added to the system in 1965 to provide protection to aluminum components. These same ingredients are widely used in commercial coolants and derivatives are used in MIL-A-46153, the new single package antifreeze specified for Army use. Tests in this study were conducted in water solution with varying amounts of phosphate, and with and without the MBT additive.

III. RESULTS OF TEST

A. Dynamometer Tests (See Table II and Photos 14 thru 17).

These tests showed that water plus 0-1-490a corrosion inhibitor gave severe cavitation/corrosion of the aluminum block in the area of the block below the liner flange counterbore. A 50% ethylene glycol solution without inhibitor gave only slight signs of cavitation/corrosion. Tap water without inhibitor did not cause cavitation/corrosion. Commercial inhibitors in water caused varying degrees of cavitation/corrosion. Inhibitor No. 1 caused approximately 1/3 the corrosion evidenced when 0-1-490a was used. This inhibitor was analyzed and found to contain the same ingredients as 0-1-490a, but in approximately 1/3 of the concentration. Inhibitor No. 2 showed only slight cavitation/corrosion. One hundred percent ethylene glycol was similar to 50% glycol, however the poor heat transfer properties resulted in oil sludging and poor cylinder condition.

B. Simulated Service Tests (See Yable III and Photos 1 thru 12).

The first tests showed that there is excessive cavitation/ corrosion of the aluminum pump in the area of the impeller when water plus 0-1-490a is run at 240°F. A 50% solution of MIL-A-46153 gave no cavitation/corrosion nor did a 50% solution of a commercial antifreeze solution which contained a corrosion inhibitor package similiar to that found in MIL-A-46153. When phosphate was removed from the inhibitor, there was only very slight corrosion in a water-borate inhibitor solution. If the phosphate is doubled, weight loss on the aluminum test specimen in the reservoir is increased and severe cavitation/corrosion is experienced. If the phosphate is halved, weight loss in the reservoir test specimens is sharply reduced, but severe corrosion is still experienced. When mercaptobenzothiazole (MBT) was removed from the 0-1-490a, excessive corrosion was still evident. As shown in Photos 5 and 9, if the test temperature is lowered to 220°F., no cavitation/corrosion occurs with phosphate present.

IV. DISCUSSION AND CONCLUSIONS

AND STATES

All tests showed that there would be a problem with the aluminum 3-53 engine if water plus 0-1-490a were used as a coolant. This problem occurred due to the incompatibility of the aluminum block with 0-1-490a at the high operating temperature of the Gamma Goat. The phosphate appears to be the culprit in the 0-1-490a inhibitor. This phosphate was originally added to the inhibitor formulation to protect aluminum in the cooling system, and the inhibitor performed satisfactorily for many years in all types of vehicles in all climatic areas. The value of the phosphate is based on the formation of a thin protective coating on the aluminum which is more durable than the aluminum itself. The high temperature operation evidently precludes the formation of this hard coating, and the coating which is formed in easily removed, exposing the bare metal to attack. The borax and MBT portions of the inhibitor do not promulgate this type of phenomenon.

The composition of the aluminum block (Table I, Appendix A) makes it highly susceptible to cavitation/corrosion. The high silicon content and relatively high iron and copper content are considered the primary causative factors.

An investigation was made of the M551 (Sheridan) engine, 6V53AT, which has the identical metal composition to the aluminum 3-53 engine. More than 100 used blocks located at Anniston Army Depot, Alabama, were inspected without any evidence of block corrosion. Based on the assumption that high operating temperature occurred in some of the vehicles and since no cavitation/corrosion was found this would indicate that the configuration of the aluminum 3-53 coolant passages may be a contributing factor to the corrosion found in the 3-53.

The coolant flow of the 3-53 is more restricted at the 'hot-spot' adjacent to the cast iron liner. This fosters nucleate boiling, which results in bubble formation in the hot areas. These bubbles implode and cause metal cavitation at the point of the metal surface to which they are momentarily attached. Since the operating temperature of the vehicle approaches the boiling point of the water (247°F. at 15 psi) this

nucleate boiling takes place more readily when water is used as a coolant than when ethylene glycol is used as a coolant. (A 50% solution of ethylene glycol boils at 264°F. at 15 psi.) Thus a 50% ethylene glycol antifreeze solution will cause less cavitation/corrosion than water and is safer to use in a high heat output engine, engine, even though the specific heat of the antifreeze solution is only about 0.9 compared to water which has a specific heat of 1.0. If the operating temperature of the vehicle is lowered (such as demonstrated in the tests which were run at 220°F.), less cavitation takes place.

The restricted flow below the liner flange counterbore also causes an increase in velocity of the coclant which flows through this area. This will increase metal erosion and metal particles which are present will be more easily removed from this area of restricted flow.

Part of the corrosion may be electrolytic due to the galvanic cell which would be present due to the close proximity of the aluminum block and the cast iron sleeve. This type of corrosion was not judged to be of a magnitude which would cause the difficulty found in the present situation.

A summary of the causes of the cavitation/corrosion of the aluminum 3-53 block is as follows:

1. High operating temperature.

2. Aluminum metal alloy (with high silicon, iron, and copper content) more susceptible to cavitation/corrosion at high temperatures.

3. Unusual action of phosphate at high operating temperatures in the presence of water.

4. Higher temperature in upper cylinder area.

5. Restricted coolant flow and increased velocity of flow in the area of the liner flange counterbore.

6. Nucleate boiling of water at 240°F.

7. Electrolytic cell set up between aluminum block and cast iron sleeve.

A positive effort was made by the vehicle manufacturer to reduce the operating temperature of the Gamma Goat. A shroud was installed near the engine which redirects the air flow across the engine to give better cooling efficiency. Also the No. 65 fuel injector was reduced to a No. 50 injector to decrease the amount of fuel injected into the cylinders. These modifications reduced the operating temperatures in ambient climates about 10 to 15°F below those temperatures previously experienced. This reduction in temperature should decrease the observed cavitation/corrosion.

Based on the dynamometer and simulated service tests, a recommendation was made to the M561 project manager's office that a 50% solution of MIL-A-46153 be used in all Gamma Goats in the field. Subsequently, a directive was issued to this effect. During the past year, since the implementation of this policy, there have been no reports of cavitation/ corrosion in the Gamma Goat engine block.

Work is continuing on the development of an inhibitor system which will perform satisfactorily in this vehicle when water is used as a coolant.

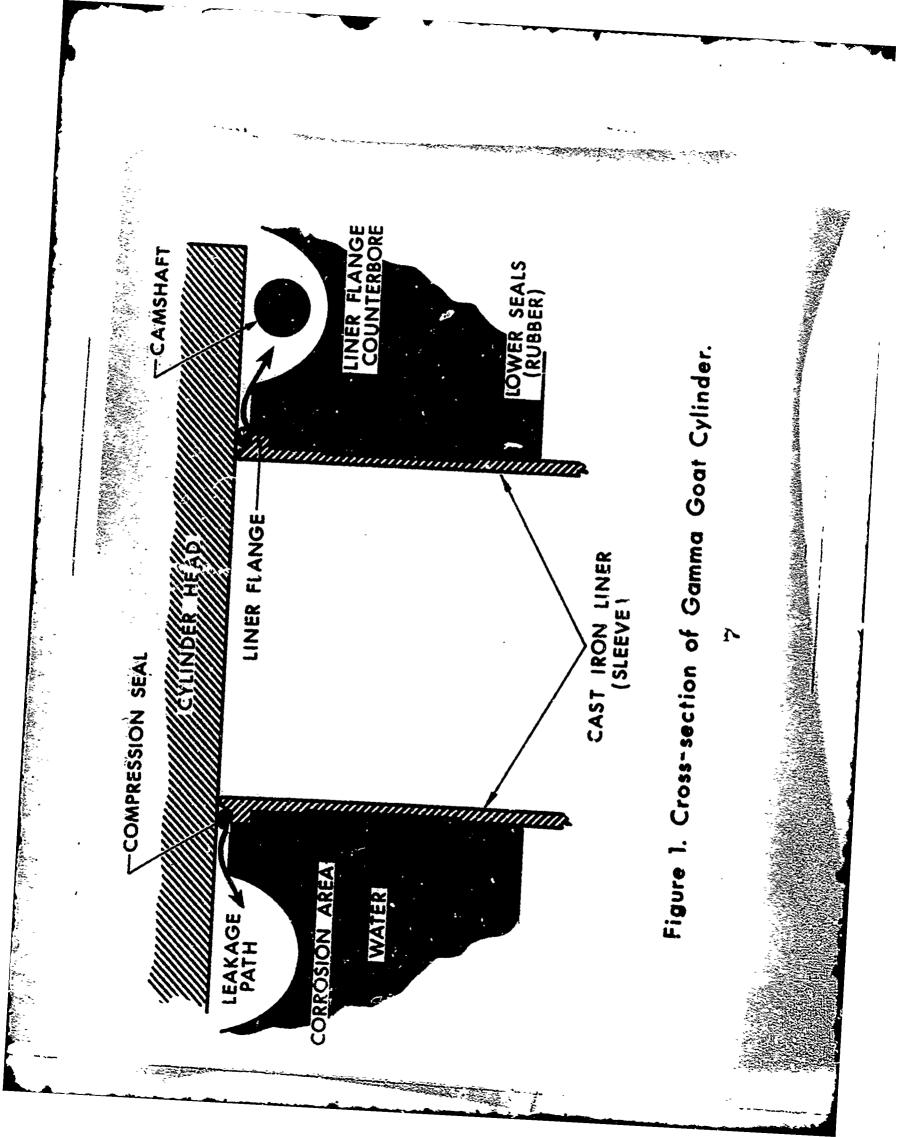
V. RECOMMENDATIONS

Based on all studies conducted to date it is recommended that a 50% solution of antifreeze meeting NLL-A-46153 continue to be used as the coolant in all climates in vehicles containing the Detroit Diesel Aluminum 3-53 engine, particularly the Gamma Goat (Truck, Cargo, 1-1/4 Ton, 6X6, M561).

VI. REFERENCES

 Federal Specification, 0-1-490a, Inhibitor, Corrosion, Liquid Cooling System, 26 April 1965.

- Federal Specification, 0-A-548, Antifreeze, Ethylene Glycol, Inhibited, 30 December 1958.
- Military Specification, MIL-A-46153, Antifreeze, Ethylene Glycol, Inhibited, Neavy Duty, Single Package, 19 October 1970.
- Technical Bulletin, TB-750-651, Use of Antifreeze Solutions and Cleaning Components in Engine Cooling Systems, 22 January 1971.


.

.

1

APPENDIX A

.

APPENDIX B

ţ

.!

Ţ

TABLE I

Composition of Aluminum Block in Truck, Cargo, 1-1/4 Ton, 6X6, M561*

<u>Hetal</u> 1/	Percent
Silicon	5.80
Ch romi um	0
Copper	1.55
Lead	0.56
Zinc	n
Magnesium	0.60
iron	0.20
Aluminum	Remainder

 $\frac{1}{2}$ Determined to be Aluminum Alloy No. 355.

*Analysis performed by Materials Laboratory, Tank Automotive Command in Warren, Michigan. . 1

TABLE II

Dynamometer Tests Conducted on the Gamma Goat Engine By Detroit Diesel

(100 Hrs, 110 HP, 2800 RPM, 230-240°F.)

Coolant

- you have a second of the second haven

1

с г.

Mary N 192

Ben uny

Results

Tap water

Tap water plus 0-1-490a

50% anzifreeze, 0-A-548, Type 11

100% antifreeze, D-A-548, Type II

Tap water plus commercial corrosion inhibitor No. $1\frac{1}{2}$

Tap water plus commercial corrosion inhibitor No. 22/

50% antifreeze, HIL-A-46153

50% antifreeze, PlL-A-46153 after 255 hours Severe cavitation/corrosion

No cavitation/corrosion

Very slight cavitation/corrosion

Very slight cavitation/corrosion

Hoderate cavitation/corrosion (1/3 of 0-1-490a)

Very slight cavitation/corrosion

Very slight cavitation/corrosion

Slight to moderate cavitation/corrosion

i/This inhibitor contained the same ingredients as 0-1-490a but in lesser quantities.

2/This inhibitor shows corrosion on cooling system metals at low operating temperatures.

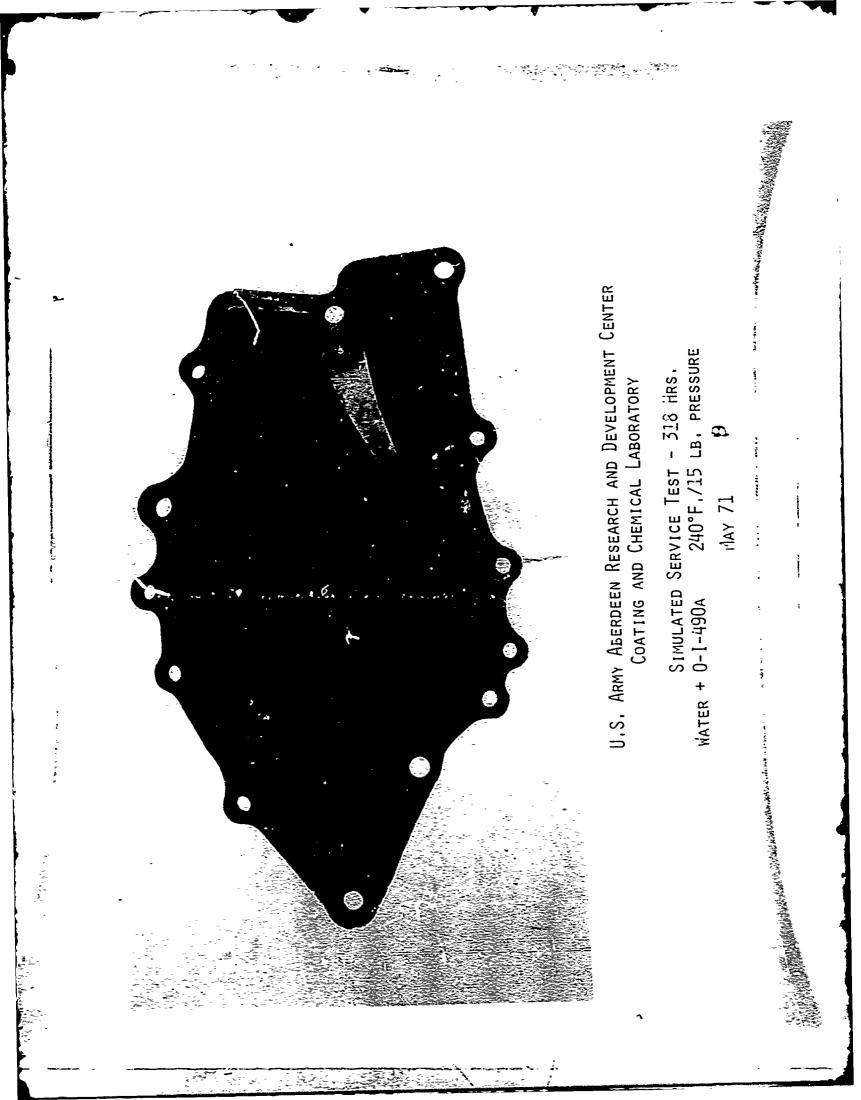
- - -

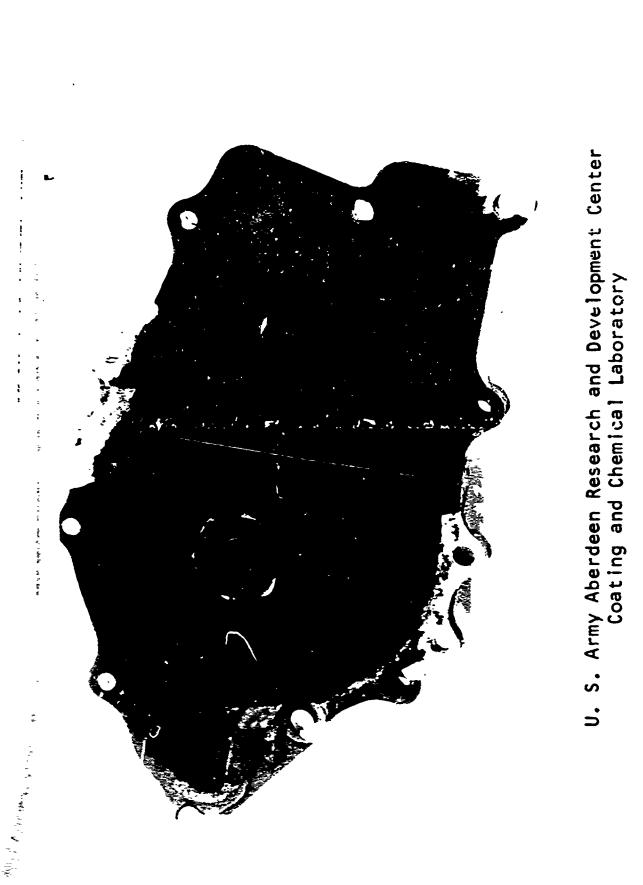
TABLE 111

Simulated Service Test Results

Pump Condition	Moderate cavitation/corrosior	Severe cavitation/corrosion	No cavitation/corrosion	No cavitation/corrosion	No cavitation/corrosion	Severe cavitation/corr	No cavitation/corrosion	Severe caritation/corrosion	No cavitation/corrosion	Severe cavitation∕corrosion (less than #2)	Severe cavitation/corrosion (less than #2)	cavi t
Duration, hrs.	318 M	717 S	1020 N	1064 N	700 N	712 S	762 N	713 S.		713 Se	700 Se	690 SI
Reservoir	Aluminum	Aluminum	Cast lron	Cast Iron	Cast Iron	Cast lron	Cast iron	Cast Iron	Cast Iron	Cast fron	Cast Iron	Cast lron
Metal Components mp Radiator	Cuppe r	Copper	Copper	Copper	Copper	Copper	Coppe r	Aluminum	Copper	Copper	Copper	Copper
Metal Co Pump	Aluminum	Aluminum	Aluminum	Aluminum	Aluminum	àluminum	Aluminum	Al um num	Aluminum	Aluminum	Aluminum	Aluminum
Coolant Composition*	Water + 0-1-490a	Water + 0-1-490a	50% MIL-A-46153	50% commercial antifreeze	Water + 0-1-490a	Water + Borax + Na2HPO4	Water + Borax	Water + 0-1-490a	Water + Borax + Na ₂ HPO4	Water + Borax + 2 X Na ₂ HPO ₄	Water + Borax + 1/2 X Na ₂ HPO4	Water + Borex + MBT
Tes t Temp, °F.	240	240	240	240	220	240	240	240	220	240	240	240
Test No.	-	2	m	4	ŝ	و	7	89	6	0	Ξ	12

*All tests solutions made up with ASTM corrosive water containing 100 ppm SO4, Clj and HCO3.

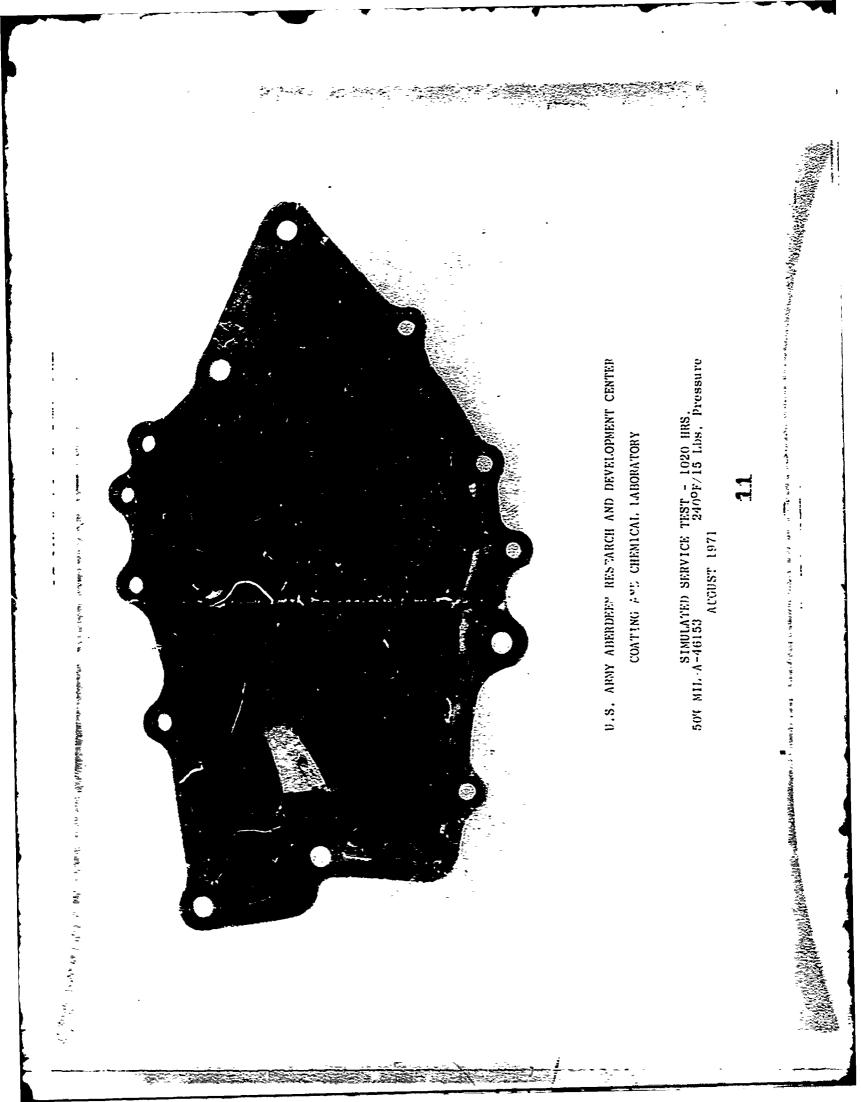

: :

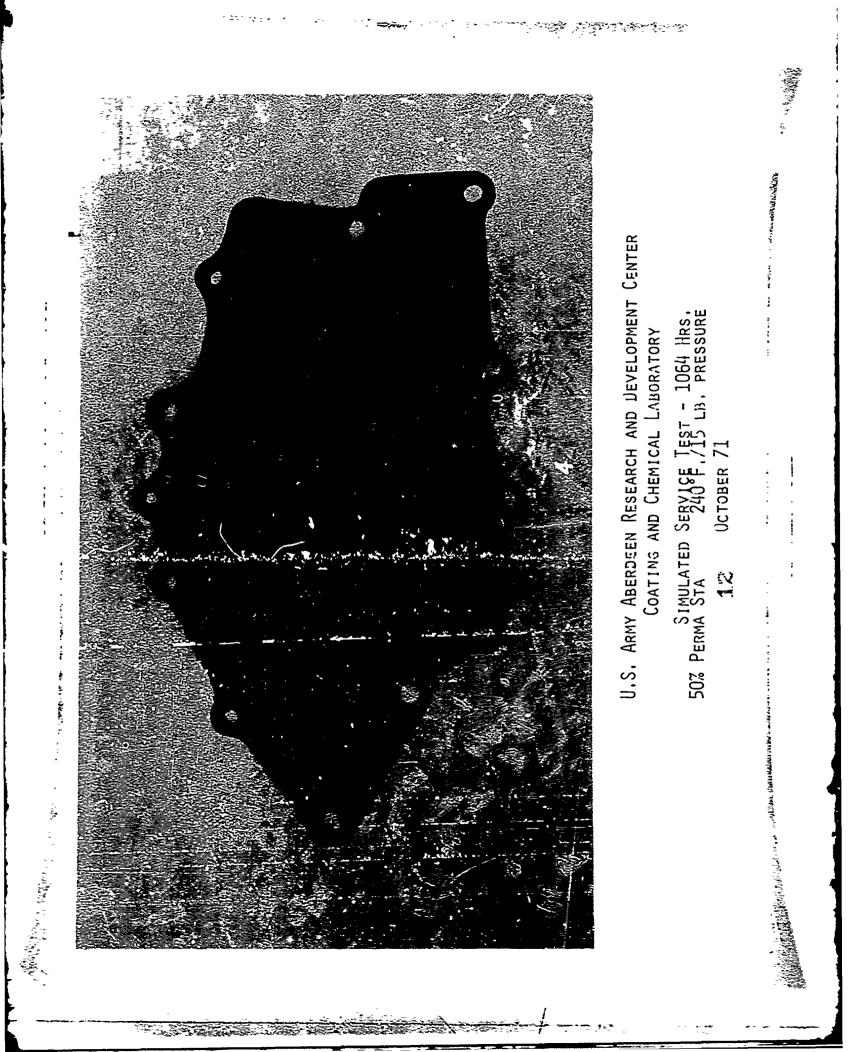

-

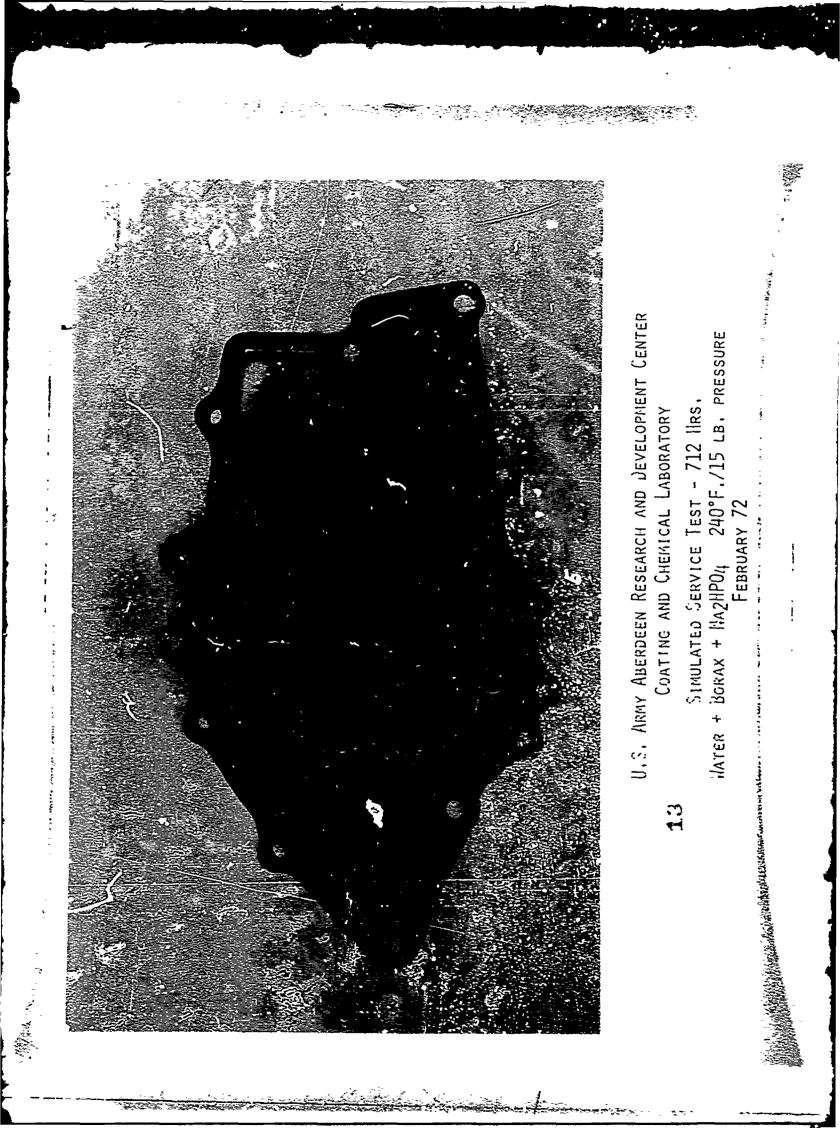
APPENDIX C

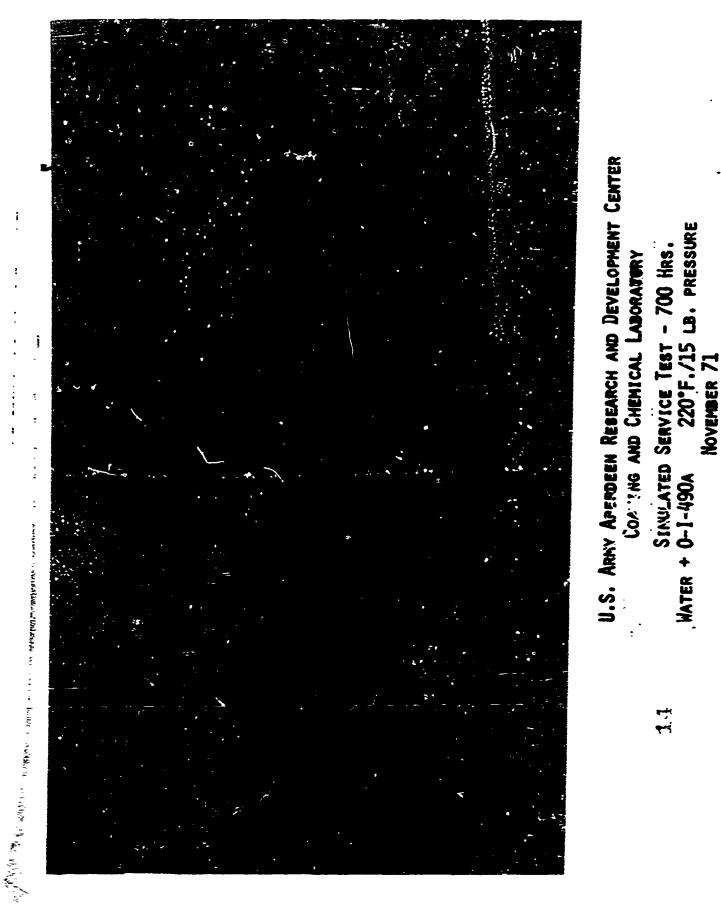
2

i2

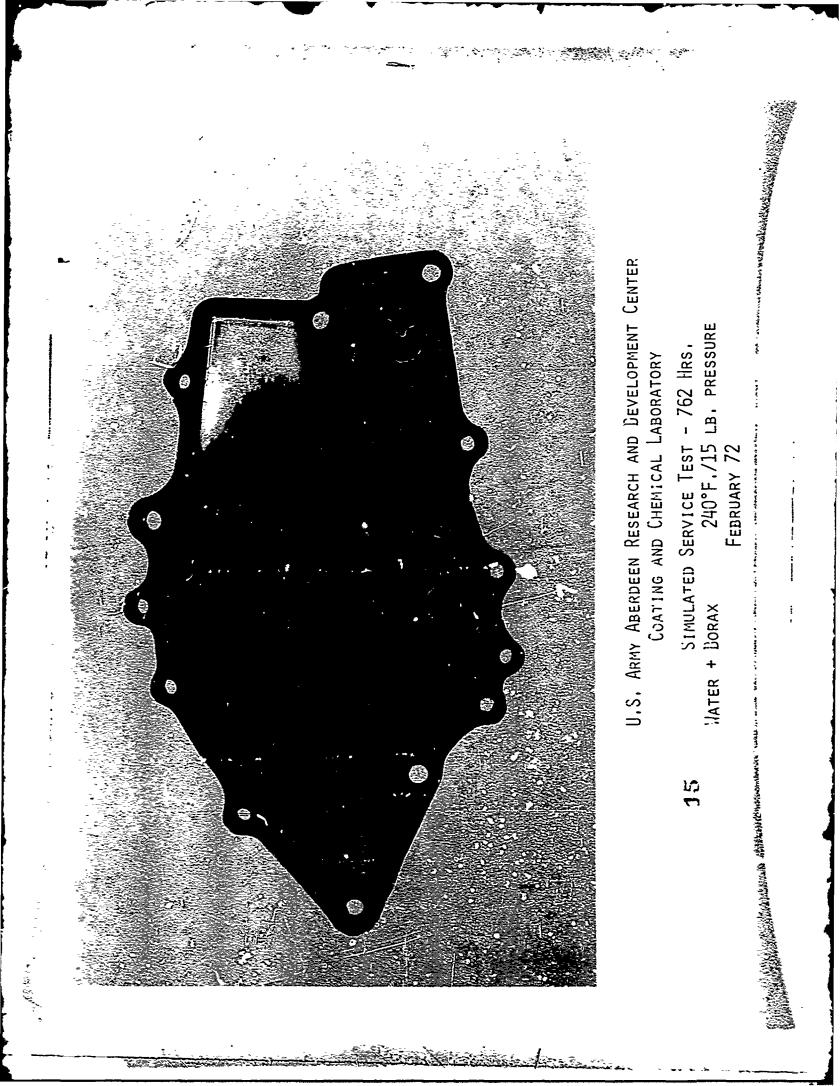


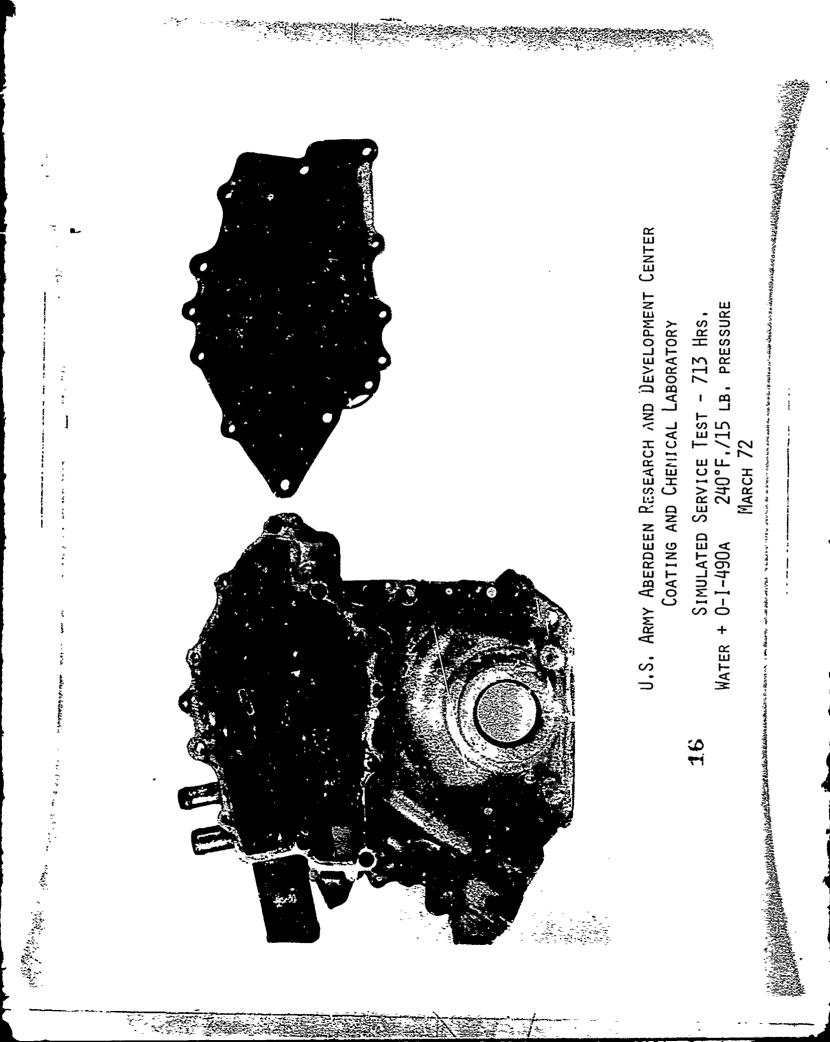

÷

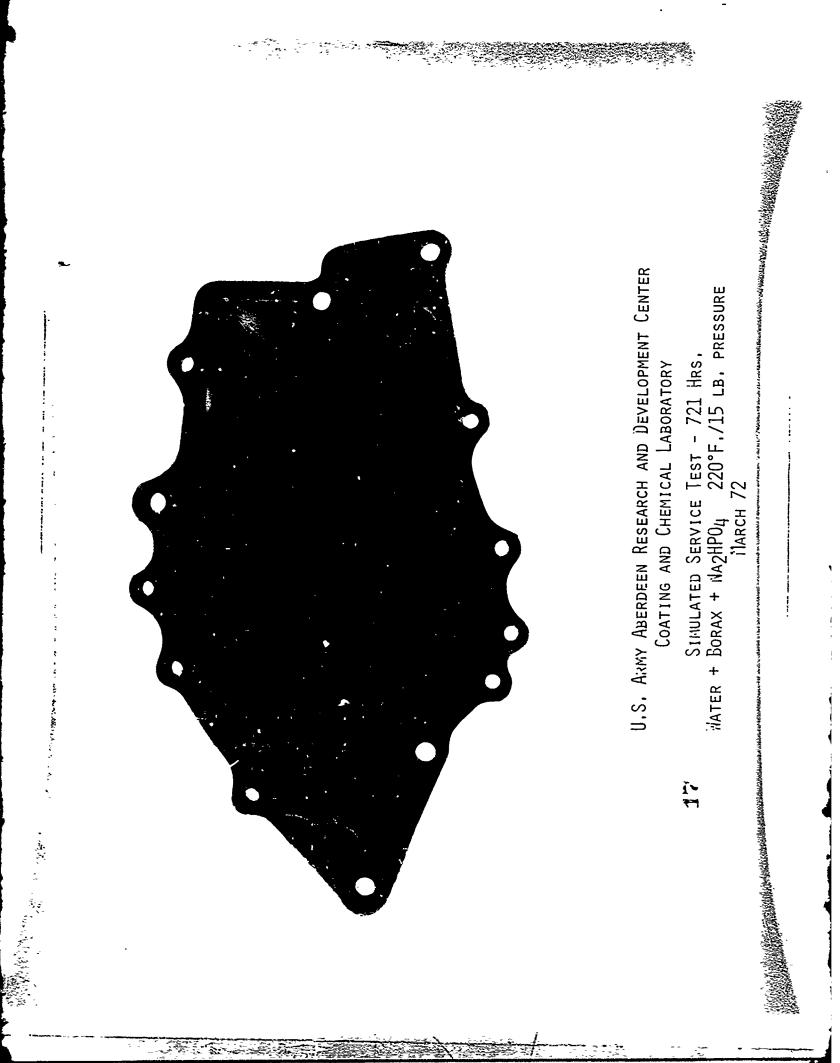

Simulated Service test - 700 hrs. Water + 0-1-490a 240°F/15 1b. pressure May 71 10

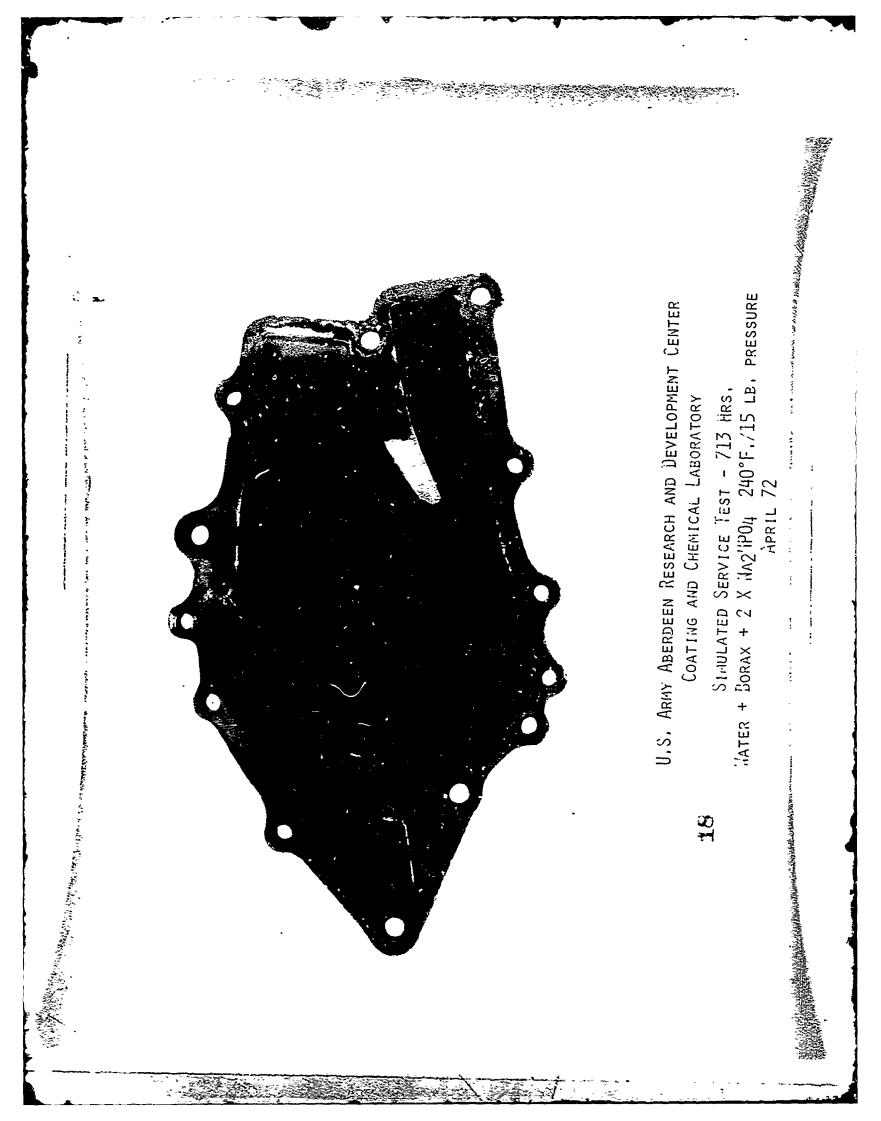

and the second second second size and second sec

Ę.

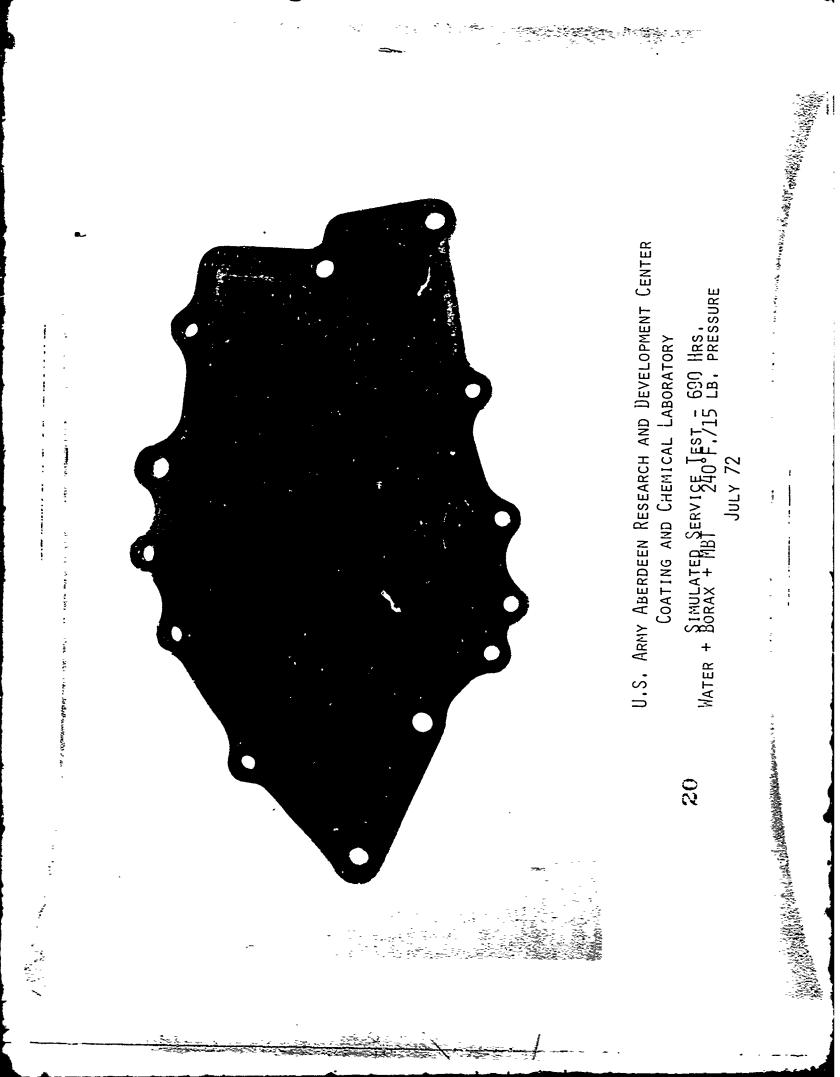


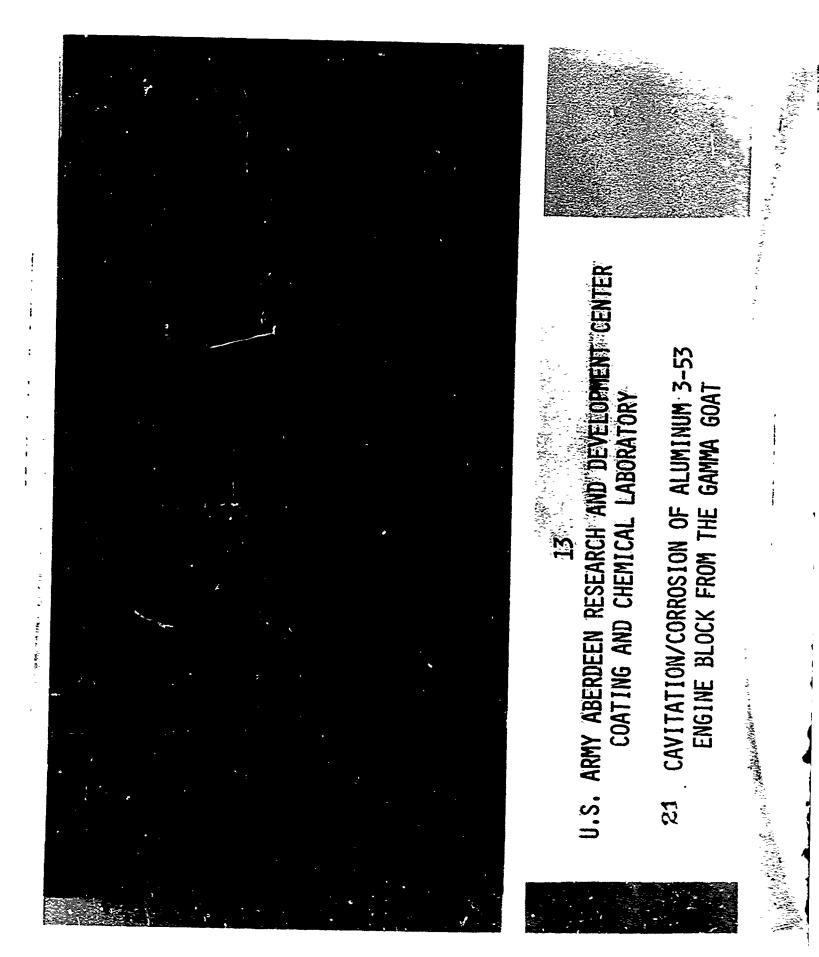

and a support of the support of the support of the support

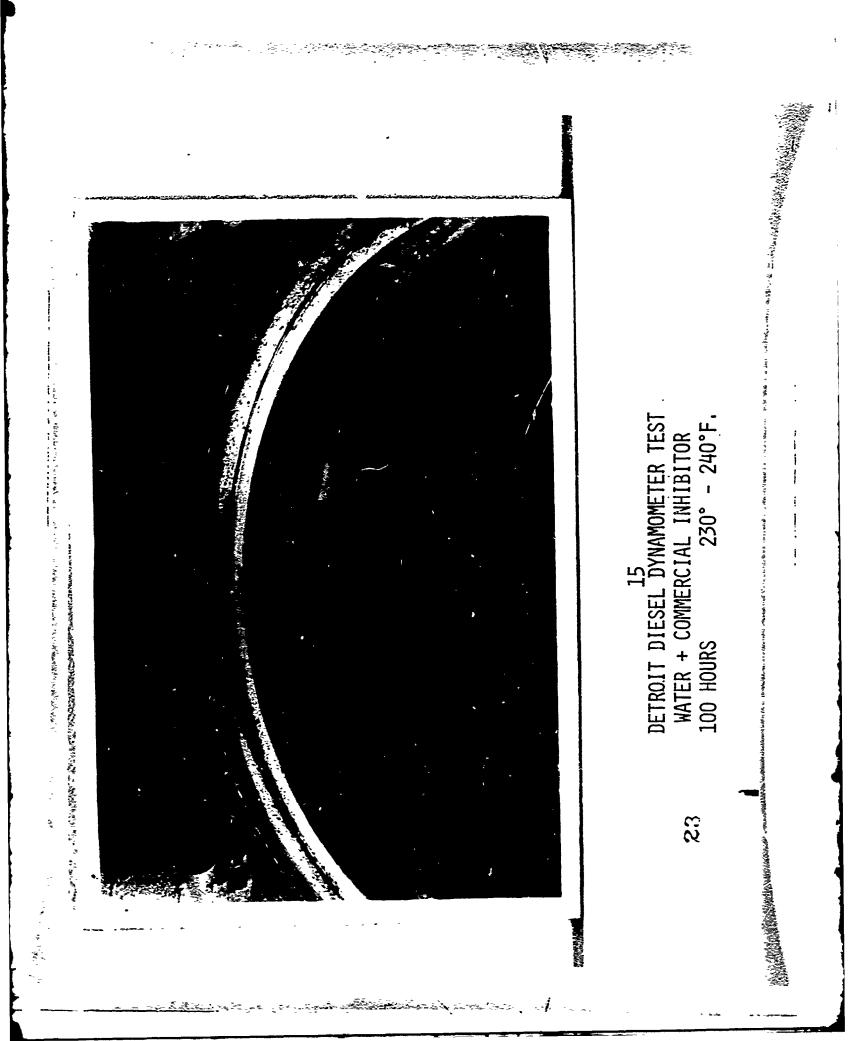

1

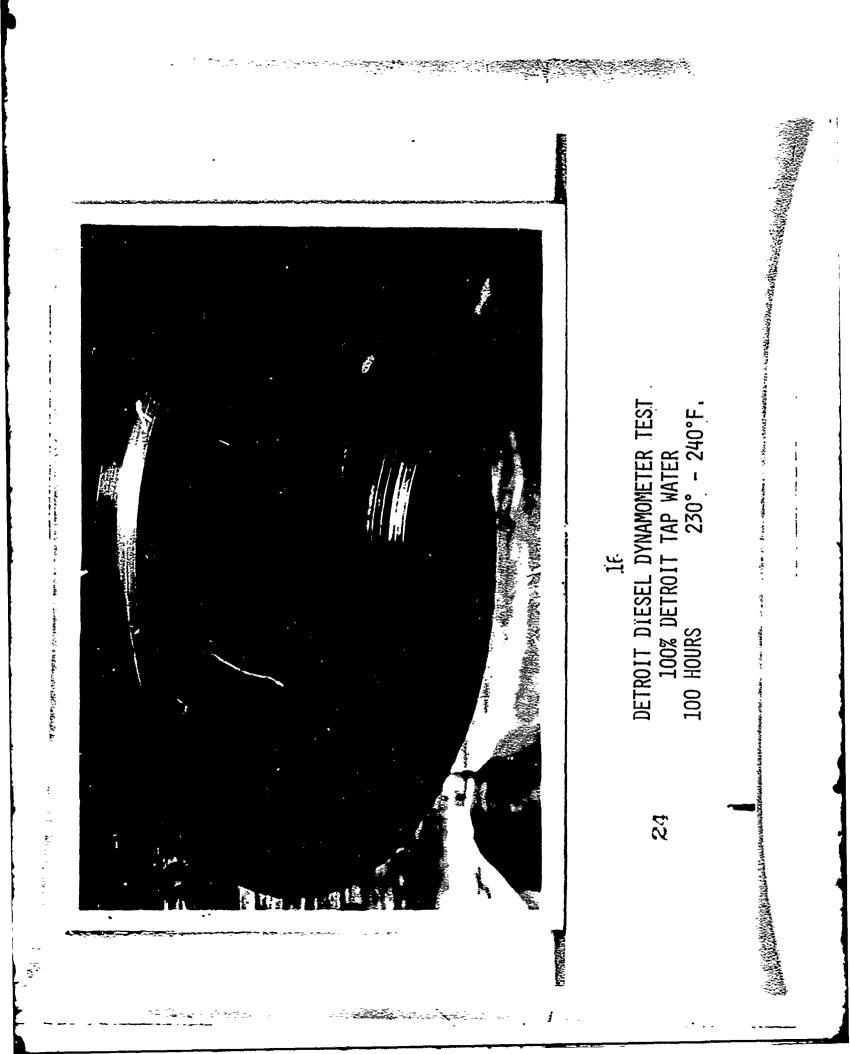

- ・・・・ 「」、とうないないないないです。 ディーンス ようないない ないない キュー

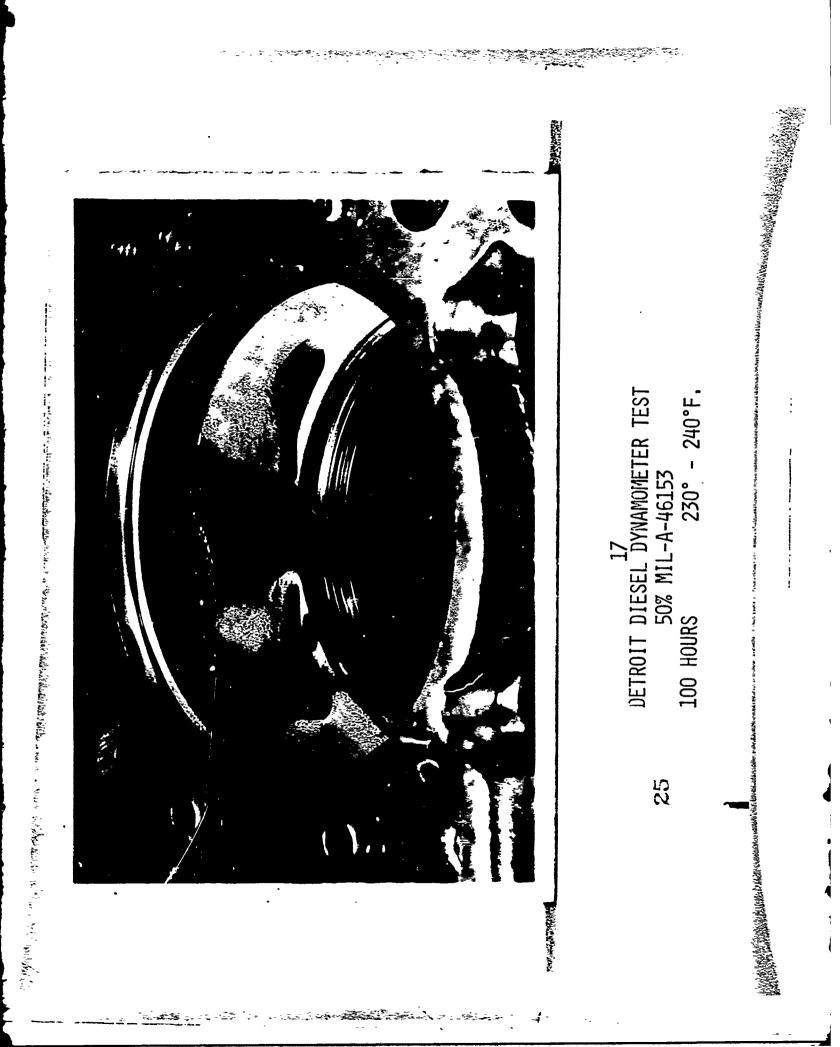
and the state of the











ż.

ALL'S STAT į 14 DETROIT DIESEL DYNAMOMETER TEST WATER + 0-I-490A 100 HOURS 230° - 240°F. そうかい ション・アイト そうしょうかい はいめい キャー・・・・ いいかい かいかい そう あいかい ないない ないない ないない ないないない ないない ほうちょう マイチャー・ション 5 1 ŝ 1111 -22 and the state of the Ţ The second s -÷. <u>ಎಕ್. ೧೯೭</u>-೧: -Ŧ

