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MODIFIED   DIPOLES 

I.     THEORETICAL   AND   EXPERIMENTAL   STUDY 

By 

Peter S.   Kao 

Division of Engineering and Applied Physics 

Harvard University   •     Cambridge,   Massachusetts 

ABSTRACT 

The  'modified dipole' has its origin in the consideration of the ge- 

neral properties of a satellite antenna which bears great resemblance to 

a dipole modified to incorporate at the center a conducting volume which 

is used to radiate electromagnetic waves and to house a power supply and 

radio frequency generators,   etc.     The object of this research is to pursue 

a theoretical and experimental exploration of the effects induced by the 

presence of the conducting volume on the antenna performance,   i. e. ,   in- 

put characteristics,   current distribution along the surfaces of the entire 

radiating structure and radiation properties. 

In Volume I a mathematical model consisting of a perfectly con- 

ducting sphere from which project the ends of a thin biconical antenna is 

chosen to simulate the actual sphere-centered thin dipole.     The conical 

antenna is driven at its junction with the sphere by a rotationally symmetric 

electric field maintained across the gap by a biconical transmission line 

excited by the TEM mode.     The attractive features of this model include 

the fact that it has  surfaces that permit a simple specification of boundary 

conditions and,   hence,   a rigorous formulation for the electromagnetic 

fields and a shape such that its properties  should come reasonably close 

to those of a modified cylindrical antenna as the cone angle becomes quite 

small. 

The measurements of both input admittances and current 

distributions  on modified dipoles  (with either conical or cylindrical 

-i- 



antenna projecting from the sphere) arc also presented in  Volume I. 

Comparisons were also made between modified conical and cylindrical 

antennas with the same sphere radii and antenna heights.     The radius of 

the cylindrical antenna is the same as the smaller end of the cone.     The 

fact that the admittance curves for modified cylindrical and conical 

antennas involve only slight shifts suggests that  by introducing an 

equivalent antenna length that is a little longer than the actual physical 

length of the conical antenna a good approximation is obtained for the 

cylindrical antenna. 

An infinite set of algebraic equations was solved numerically in 

Volume II for small cone angles.     Comparisons were made between the 

modified conical antenna and its limiting biconical antenna which provides 

both an extrapolatory numerical check for the modified conical antenna 

with shrinking central sphere and an understanding of the underlying 

physical phenomena.     Theoretical and experimental results are in very 

good agreement. 

Accepted for the Air Force 
Joseph R. Waterman, Lt CoL USAF 
Chief, Lincoln Laboratory Project Office 
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A.     THEORETICAL   STUDY 

1.    INTRODUCTION 

Great advances have been made in the fundamental understanding of 

the properties of a cylindrical antenna over a planar surface for the past 

decades  [l]-[2],   but  relatively little has been known about the current 

distribution,   input admittance and radiation pattern of a dipole antenna that 

is modified to incorporate a conducting volume at the center.     Such an 

antenna has immediate practical application to spacecraft antennas,   broad- 

casting antennas erected on a hilltop,   self-contained field probes,   etc. 

During the past years there has been considerable interest in obtaining 

information concerning the effects of central modification upon the behavior 

of a dipole.     Some of the possible modified thin dipoles are shown in 

Fig.    1-1  in which a sphere-centered thin dipole seems attractive because 

it is mathematically tractable and still general enough to permit the 

estimation of the effect of the vehicle shape on the antenna performance by 

approximating the actual vehicle by the sphere.     An earlier work by Papas 

and King [3] was done on the surface current distribution on a conducting 

sphere excited by a dipole along which a sinusoidal current is assumed. 

Later some experimental measurements of a monopole over a metal 

hemisphere on a ground plane were made by Iizuka [4] for (3   h=7r/2,   TJ and 

Z-jr as a function of p   b(= . 4-1. 3).     Tesche and Neureuther [5] have computed 

radiation patterns for two monopoles on a conducting sphere. 

As shown in Fig.    1-2,   an approximation has been made by replacing 

the cylindrical dipole by a thin biconical antenna which has great 

mathematical advantages in permitting the convenient specification of the 

boundary conditions and thus allowing a rigorous formulation.     The earliest 

analysis of the biconical dipole was performed by Schelkunoff [6] who 

introduced the symmetric biconical antenna as a convenient model for 

studying the impedance properties of dipole antennas.     In that paper is 

presented the limiting case of the thin symmetric biconical antenna.     In 

later publications [7]-[8] he treated wider angle biconical antennas.     Further 

work on symmetric biconical antennas was  reported by Tai [9]-[ 10] and by 

Smith [ 11J.     Papas and King [12] have calculated the input impedance of a 



(a) SPHERE-CENTERED THIN   DIPOLE 

A 

(b) CYLINDER-CENTERED   THIN   DIPOLE   TYPE    1 

(c)  CYLINDER-CENTERED THIN DIPOLE  TYPE 2 

(d)  PILLBOX-CENTERED THIN DIPOLE 

FIG. 1-1    SOME MODIFIED  THIN   DIPOLES 



(b) (a) 

FIG. 1-2    (a)  MODIFIED THIN CYLINDRICAL ANTENNA 

(b)  MODIFIED THIN CONICAL   ANTENNA 
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wide-angle conical antenna fed by a coaxial line in which only the TEM 

mode in the antenna region and a series of modes in the  radiation region 

were considered.    Recently Bolle and Morganstern [13] obtained the in- 

put impedance and far-field pattern of a single conical antenna protruding 

from a sphere. 

The present analysis consists of determining the distribution of 

current,   the driving point admittance,   and the  radiation field.     The study 

of this modified conical antenna can be made more revealing by con- 

stantly making comparisons with the corresponding limiting case of the 

biconical antenna which serves both as an extrapolatory check for the 

modified conical antenna and as a measure in selecting comparable 

sizes of cylindrical and conical antennas. 

2.     FORMULATION   OF   THE   PROBLEM 

(A)       Equations for Spherical Waves with   Rotational Symmetry 

The first problem encountered in elucidating the radiation due to a 

spherical configuration (i. e. ,   the boundary conditions of the radiating 

configuration are expressed conveniently in spherical coordinates R,0,ff) 

is that of finding suitable  representation for the field.     This arises 

because the components of the intensity in spherical polar coordinates do 

not satisfy independent equations as do the Cartesian coordinates. 

Generally speaking,   however,   any electromagnetic field in a homogeneous 

isotropic medium in free space that is free from charges and currents 

can be expressed in terms of an electric Hertz vector and a magnetic 

Hertz vector both along a direction which can be chosen at will [14]. 

Thus,   for a homogeneous  region with dielectric constant e and 

permeability u.,   the electromagnetic field at points in space outside the 

radiating system is calculated from Hertz potentials using 

E =  -  vf + (3
2

TT    -jwVxu (1-1) 
em 

and 

B--Vg+(3277      +    &—  V x 77 (1-2) 
m u e 

where the time factor has been taken as e      , (3      u)  |JL<    is the wave number 



-5- 

in the dielectric medium;   u is the angular frequency,   f and g are 

arbitrary scalar functions and 77    and 77     are Hertz potentials of electric 
' em' 

and magnetic type respectively.     The part of the field computed from 77 

is  said to be of electric type and the part computed from 77     of magnetic 

type.     Since 77    and 77     are mutually independent,   fields of electric and 71 em ' * 
magnetic type are independent. 

The Hertzian potentials are defined in general to satisfy the 

following equations in free space: 

Vx^xTf      - (3277     + Vf       0 (1-3) 
e e 

V x v x 77 
m P   77       +  Vg   -   0 

m 
(1-4) 

By specializing the Hertzian potentials to point in radial direction (i. e. 

77    -  77 D  R and 77 e        eR r 
f and g,   namely 

77    n n  R and 77 77     T-.  R) and introducing the following definitions for 
e        eR m mR ° 

977 
f    = 

eR 
dR 

377 mR 
dR 

1-3) and (1-4) are reduced to 

d-5a) 

(l-5b) 

a277. 

dR 
1   +    ^.•«R + P    *R=   ° (1-6) 

"R 77  D  or 77    D eR mR 

-here   V 
0.« 

is that part of the Laplacian operator in spherical coordinates 

that involves differentiation only with respect to 0 and ff. 

It  should be noted that the above representation is only valid in 

general at points in free space.     Thus the field due to an electric dipole 

not situated at the origin cannot be expressed in terms of 77  „  and 77    „ r eR mR 
alone in any region which includes the dipole unless the dipole is directed 

along the radius vector.     The same is true of the radial magnetic dipole. 

For the case of interest at hand,   it is  convenient to assume 

complete  rotational symmetry about the polar axis.     Consequently,   two 
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simplifications to equation (1-6) can be accomplished:    first,   all the 

terms involving differentiation with respect to 9 become zero;   secondly, 

only the components of the field of electric type derived from the 

Hertzian potential TT „ are involved.     Therefore,   (1-6)  reduces to r eR 

2 
9   VR 1 9 97T.= R 2 
 ^Y   +   —5    — {sin0   ~~^] + P  v R ° (1"7) 

9R R   siny    9(9 d8 e 

and the non-vanishing field components in spherical coordinates are to be 

obtained from 

(1-8) 

(1-9) 

(1-10) 

ER    : 

a2 
9

    W    D                      ? 

:    »2   + P '•* 

E
y     = 

,      9^   D 1          eR 
R     dBdR 

B, 
-IP2     9*eR 
uR 90 

(B)        Modified Conical Dipole 

(1)        Mathematical Model 

As shown in Fig.   1-3,   a modified conical dipole consists of two 

main parts:    one of these consists of the two identical conducting cones 

DOD with half cone angle 6    and conducting cap DED that are segments of 

the boundary sphere of radius a;   the other part is an inner conducting 

sphere of radius b concentric with the boundary sphere.     The axis is 

along the polar axis of the spherical coordinates  (R,y,$) with the cone 

apex at the origin.     The whole modified conical structure is  rotationally 

symmetric about the polar axis and is immersed in air.    It is center- 

driven by an idealized point generator at the apex of the cones with no 

internal impedance and an emf V      .     The protruding portion of the cones 

which extends from R      b to R      a functions as a dipole antenna while the 

remaining portion along with the inner sphere forms a biconical trans- 

mission line with angle 9. ,   which supports mainly transverse 



REGION I 

FIG.   1-3    MODIFIED   THIN   CONICAL   ANTENNA 
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electromagnetic waves excited by the point generator at the origin.     As a 

result,   a finite radial E-field exists in the narrow band along the junctions 

between the cones and the sphere. 

The basic properties to be studied are the distribution of the total 

current along the surfaces of both the conical dipole and the hemisphere 

and the input admittance characteristics of the dipole as seen at the 

terminal of the biconical transmission line.     Hence for purposes of 

theoretical treatment,   it is convenient to consider the antenna excitation 

as being applied across the gap at R = b.     The gap width (i. e. ,   b x 0. ) is 

assumed to be much smaller than the free space wave length.     The 

driving voltage over the gap is defined as the line integral of the 

0-component of the electric field along the meridian of the radius b,   i. e. , 

77-0 
I Eebd9-   VQ

e (1-11) 

For simplicity,   the structure is assumed to be constructed of a 

perfectly conducting metal,   the tangential component of the E field must 

disappear on the metallic surfaces,   i. e. , 

n   x   E   =    0 (1-12) 

is true on all conductors.     Therefore,   the specific boundary conditions 

on the conductors are 

ED  =  0 and     b «R « a (l-13a) 

0 = eo 

e = *-eo 

e $0o 

e >1T-0n 

E^       0 and     R =  a (1-13b) 

Ey       0 7T - 9Q - t\    - 0   -   0Q i 0 and R  -  b (l-13c) 

E V 
6 2b- fn(0     0j)- sinf 

V-^V(T 

77 - 0Q - 0j * 0 < rr - 0O 

and R = b (l-13d) 
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°0 °0 * °\ ln(0    0)       ln(cot -y)  -  ln(cot ) (l-13e) 

In applying the boundary conditions  (l-13a-d),   it is convenient to 

treat the whole  region in two parts (Fig.    1-3):    an internal region I 

between the boundary  sphere of radius a and inner sphere of  radius  b,   and 

an external  region 11 occupying all space where R  > a.      The conditions for 

the internal  region are given by (1-1 3a, c, d);   that for the external   region 

by  (1-1 3b).     In addition,   a condition of the field at infinity is necessary 

to ensure uniqueness.     This condition is that the field behaves like out- 

ward traveling waves.     In precise mathematical terms,   these conditions 

are 

| RE |   < K and | RB |   < K 

R- (u R x B + (3E) 0 (l-14a) 

R- (pR x E - uB) 0 (l-14b) 

uniformly with respect to direction as    R •* co. 

We note the boundary conditions  (l-13a-d) are the same as those 

for the biconical antenna except for (1-1 3d) which accounts for the 

presence of the central sphere.     One would expect that the complication 

introduced by satisfying the boundary conditions,   (l-13c,d),   would lead 

to the appearance of a large number of non-negligible complementary 

modes  (TM modes) along with the TEM mode in the antenna region,   and 

that these modes are important in the sense that they are closely 

connected with the current distribution.     A l/sin(i dependence of the 

()-component of the electric  field over the gap is  employed to 

characterize the voltage maintained by the biconical transntission line. 

It is  significant to note that for thin cones with a narrow driving gap, 

this assumption closely approximates the coaxial line which is used in 

the actual experimental set-up. 

(2)        Boundary Value Problem 

The solution is formulated by considering two fundamental  regions: 

the antenna  region    b < R < a,   ()    •   0   •    77  - 0     and the radiation  region 
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Il r*  a,   0  *; 6  ^   77,   in which the non-vanishing components of the fields, 

E^,   JEp  and B    are expanded in series of functions appropriate to the two 

regions.     The unknown constants in these series are determined by 

guaranteeing the continuity of B    and Erf across the boundary sphere at 

R = b. $Q ^e =s 7i - e 

(i)     General Solution of the Wave Equation 

The solution of (1-7) is accomplished by the well-known method of 

separation of variables by setting 

7ieR =  T(0)SIR) (1-15) 

where T and S denote functions of 6 and R respectively.     The substitution 

of (1-15) in (1-7) and the division of both sides by T and S lead to the 

following equation: 

-R2<5$ + P0>   •   T lib!) '""«§>] <'-1(» 
oK 

Since the left-hand member of (1-16) is a function of R alone while the 

right-hand member is a function of 0 alone,   the two expressions  can be 

equal only if both are equal to a constant.     Let this be v(v +1),   where v 

is an arbitrary number.     The resulting two ordinary differential 

equations are 

^|   +    [P0
2-   ^^]S=  0 (1-17) 

dR U RZ 

(sing   4?)  + v(v +  1) T -  0 (1-18) sint^    dO  K       "    d9' 

The radial equation (1-17) is Bessel's equation of order v + 1/2; 

its solutions are well-known and can be expressed in terms of general 

cylinder functions,   namely, 

SV      Vv4 V^oK) • BvNv4VipoR) (1"19) 

Alternatively,   (1-19) can be expressed in terms of the so-called 

spherical Bessel functions as follows: 
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S((3R) p   R  |a   J   (pnR)   t   b   n   (|3,,R)j (1-20) (J 0      L   v v     0 v   v     0 

where 

jv(x)       Vir/2x Jwl Jx) (l-21a) 

nv(x)       V7r/2xNv+1/2(x) (l-21b) 

and   A   ,   B   ,   a    and b      arc arbitrary constants, 
v'      v'     v v 

Equation (1-18) may be reduced to a more familiar form known as 

Lcgendre's equation by changing the independent variable from 6 to 

u      cosW.     The transformed equation is 

2 
(1  - u2)   ^-J   -    2u   —  +    v(v+ 1) T .   0 (1-22) 

du du 

A general solution of (1-22) is 

T c1  P   ((j.) + d' Q   (u) (1-23) 
V V V       V   r 

where    P   (u.)    is a  Leeendre function of the first kind and    Q   (a)    a 
v v 

Legendre function of the  second kind,   both of order v;   c'     and    d'     are 

arbitrary constants.     When    v    is not an integer,   solutions of (1-22) may 

be written in the following form: 

T c   P  (UL)   +  d   P   (-UL) (1-24) 
V V V       V       ^ 

It is to be noted that    P   (u) is unity at   9-0,   whereas    P   (-u) is 
v v 

logarithmically infinite there. 

So the genera]  solution of the original  equation  (1-7)  is a  linear 

combination of the following form: 

7T 2  S   (PnR)T   (6) (l-25a) 
L'R v    0 v 

v 

2   P0R[avJv(P0R)  +  bvnv(p()R)| 
v 

|c'  P   (u) + d' Q   ((j)| ( 1 -25b) 

-   P0R[avJv(P0R)  1  bvnv(PQR) 

[c    P   (|j)  id   P  (-ii)l (l-25c 1    V      V  • V      V      '      ' 
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(ii)       Antenna Region I 

The entire field in the antenna  region is the sum of the fields for the 

dominant mode (i. e. ,   v      0) and the complementary modes  (v / 0).     Since 

0      0    and the origin is not included in the antenna region,   both Legendre 

functions and spherical Bessel functions of the second kind have no 

si ngulariti es. 

To construct the appropriate form of the solution in the antenna 

region   b '   R  *   a,   it is convenient to separate the purely transverse 

electromagnetic (TEM) waves from the transverse magnetic waves (TM) 

in general.     The former case has some useful analogies with transmission- 

line theory.     For v      0, 

(%R'v   0 [Cfl + B    ln(cot|)].   (a0sin(30Rb-b0cos(30Rb)       (1-26) 

where   R, - R - b.     Hence the non-vanishing components are 

<EA-0 I^RCT <abCOSPoRb + bvsineoV (1"27a) 

(B-)      _    =   -5 "p   •   a (a' sin[3_Ru - b' cospnR,) (l-27b) 
97v=0 27Tv  Rsin(i     0       r0   b        0       r0   b 

where    §„    ls t^e characteristic impedance of free space (i. e. ,   1 ZOTT ohms) 
17 

and    v      the reluctivity of space (i. e. ,    — x 10    meter/henry).     The 

expressions for Efl and   B      in (l-27a,b) may be interpreted as re- 

presenting standing spherical waves while treating the protruding bi- 

conical structure as a terminated transmission line. 

The boundary condition that must be  satisfied in  region 1 is  given by 

(l-13c),   i. e. ,   ER = 0 at d  =  6     and 77 - 0      for b ^ R  % a,   together with 

the property of anti-symmetry of ER  with respect to the equatorial 
I 1 

plane (6 =  7l/2 - plane),   i.e..   E    {6) -   -ER{ir-9).     These conditions lead to 

the following equations: 

where 

T   (V)   -    2c    L   (0) (1-28) 
V V      V 

Lv(«)        j [Pv(cos0) - Pv(-cos^)] (1-29) 
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which satisfies the  Legendre equation (1-12). 

For a given half cone angle 0      therefore,   there is an infinite set of 

characteristic values designated by v.     These values must be determined 

from the  characteristic  equation,   i.e., 

L   (0J       L   (TT  - Bn)      0 (1-30) v    0 v () 

The fact that the use of (1-24) instead of (1-23) eliminates at the 

outset  the  possibility that v may be an  integer may seem to be a  severe 

limitation.     Actually this is not the case at least for the application to the 

thin conical antenna for which the present analysis is intended.     That this 

is true  can easily be  seen by applying the  same  set of boundary conditions 

to  (1-23) and assuming that there  is an integral    v   n.     Then the anti- 

symmetric property of E     requires that P   (u) and Q   (u) cannot both be 

used due to the  fact that  P   (-u)       (-l)"p   (u.)  and Q   (-u)       (-l)n+1Q   (u). 

Then the vanishing of ED along the conical  surfaces leads to either 

P  (un)      0 for n even or Q   (un) -  0 for n odd.     For the small cone angle 

6..  ^4   ,   the first possible values of n for P   (u„)      0 are approximately 

equal to x.  /0    (not necessarily an integer) where x    -   2.405 is the first 

root of Bessel function    J   (x   ) =  0.     Therefore unles 6    =   2. 405 x 10 

radians (n- 100) the possible first integer is far greater than 100;^while 
0 for  Q   (fJ.n) -  0,   the possible solution for n is    l//(n+l) -   -v- ln(sin -=-) which, 

again,   is satisfied only at a special angle.     Therefore,   the use of (1-23) 

is actually quite general enough to cover the range of interest. 

Accordingly,   the non-vanishing complementary components of the 

electromagnetic fields in region I are obtained from (l-25c),   with 

(l-c)-(l-lO) and (1-30).     They are 

(E0> -^     ^   R;.(P0R)T;.(tf) (l-31a) 
v 

(E^y j~,       2   v(v+l)R   (P   R)JL  (9) (l-31b) 
R v 

2 

(Bj)v/0 -^      2    Rv(P0R)L;^) (1.31C) 
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where primes  on R     and  L     denote differentiation with  respect to the 
v v r 

arguments,   and 

Rv(pQR) a;. JMPQR) + tVN^(P0R) (l-32a) 

J   (x)    -    xj   (x) (l-32b) 

N   (x)        xn r(x) d-32c) 

the arbitrary constants a'    -   c'  a      and   b'        c' b   .     The summation signs 
' V V      V V V      V ° 

in (l-31a-c) indicate that contributions from all the roots of   L   (^   ) =  0 

must be included in the formulation. 

To satisfy another boundary condition (1-1 3d),   let 

,1, ab?o 2*o 
y'R=b 277b sint^ b v r0        v 

z£   g(M0> d-34) 

where   g(9, Un) is a function describing the driving condition of the system 

and 

+ Sgn(9+6Qi6rir)-sgn(6+90-Ti)} (1-35) 

where  sgn(x)  denotes the Heaviside unit function equal to  1  if    x > 0    and 

zero if   x < 0. 

It is well known from the theory of Legendre functions and the 

characteristic equation,   i. e. ,   L   (9   )      0,   that the set of functions 

l/sin(i,   Li' (9)    form a set of orthogonal functions in the region 

9     '  9  *    TT-^n    *n ass°ciation with a weighting function sin^,   namely 

v-e0 
L' (9) L.U0) simi 69 6 (1-36) 

s t st 

"0 
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where 6       is  the  Kroneeker delta: 
st 

1 if     s   t 

st 0        if     s/t 

and s and t are the  roots of the characteristic equation L   (0 n) -   0. 
^ v    0 

In order to determine the constant a'   and the  relation between a' 
0 v 

and b'   from (1-34),   first integrate (1-34) with respect to 0 from 6  - 0 

to 0      ft-0   .     Since from (1-30),   the second term in (1-34) integrates to 

zero,   it follows that 

e e 
*  V0 V0 ao -  ^     zr (1"37) 

5 Qln(cot —) 

where Z     -   1Z0  ln(cot ^r-) is the characteristic impednace of the conical 
c L 

antenna. 

Equation (1-37)  shows that the constant   a'     is determined uniquely 

if the driving voltage and conical angle are specified. 

Since the determination of the relations for   a'     and b1     involve the v v 
driving condition,   it is convenient to begin 'with the multiplication of (1-34) 

by h'(0) sinO dfc) and continue the integration with respect to 9 from 9=9n 

to Oji-O With the orthogonal properties of L' (0) in (1-36),   it follows 

directly that 

a'     =    a     - n   b' (1-38) 
V V ' V     V 

whcre voWV 
%   iiv7?v(Kb)fn(vvv(v+i> (1"39a) 

N' ((3   b) 

"v        JMpTbi (1"39b) 
v     0 

and 
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J [L,1 (0)1    sin0 dO 
VV a V J 

2(1-^)   3L  (u)      9L  (|X) 

^—]| (l-39c) (2v+1) 9 v 3(JL JJL   u„ 

Therefore,   the non-vanishing components of the electromagnetic fields 

can be rearranged as follows: 

,1 ?0 
Ee      ZTTR sine (aocosPoRb + bbsinfW 

2(3 
-^   S   [av J;(P()R) + b;Mv(P()R)] L;(0) (l-40a) 

v 

ER \    S   v(v+l)[avJv(PoR)+b;Mv(PoR)]Lv(0) (l-40b) 
R       v 

*\   =    ZTTvJRsine    (a0SinP0Rb " bb COBP0
Rb) 

J2PQ 
-     —5^     2[Q    J   ((3_R) + b'M   (p.R)l L' (0) (l-40c) 

U)R L   v   v r0    ' v    vvr0      J     v    ' 
v 

where 

M   (x)    -    N  (x) - T? r J   (x) (1-41) 

(iii)    Radiation Region II 

In the region external to the antenna (i. e. , R > a),   the fields are 

also of the TM type.     However,   the angular functions must be periodic 

and finite for all values of 6 from 0-0 to 6   TI.     So the appropriate 

expression for the Hertzian potential in the radiation region II is given by 
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*eR f   CkRk(PoR,Pk(^ (1"42) 
k 

RR(x) xhj.Z,(x) (1-43) 

and the prime on the sign of summation denotes that the sum is over odd 

values of k,   i. e. .   2?  -  2 ,. .     The even values  of k are  excluded 
'   k       k- 1, 3,5- • • 

due to the fact that the   radial  electric  field is  odd in (i ,   further,   the 

radial  function R, ,   which is  a  solution of (1-17),   has the  required 
K 

property that R,    * exp(-j(3   R)  for R -• oo. 

So the non-vanishing components of the  electromagnetic  field are 

obtained from (1-8) - (1 - 10),   they are 

ii      -J?o bk      Rk
{(3oR) 

'B 277R     ~     k(k+l)     Rk(PQa) k1 

11 -J W> E
D o 5-2    2"    b.     D   ,-      .     P. (0) (l-44b) R 2TIU(   Rc k   Rk(PQa)        k 

11 -1 bk Rk(f30R) 

B       Z1     —      —-—    P' (0) (l-44c) 
°<D 2TTV0R    ~      k(k+l)      Rk(PQa)     *VU ll   ^C; 

The primes on R,   and P.   denote differentiation with respect to the ' k k r 

argument.     We have to note that there is no TEM mode in the region II. 

It remains to impose conditions at the inner boundary of region II 

so that the tangential electric field vanishes on the spherical caps of the 

antenna and the entire electromagnetic field is continuous across the 

rest of the mathematical boundary sphere.     The conditions are 

0*0 * e0 

E*1 0 at     R   a (1-45) '6 

KB Kti 

77-^Q   « 0   -    7T 

0Q  •   U  -TJ  - 0Q        at      R   a (1-46) 
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Since the continuity of tangential magnetic field B    implies the continuity of E_ , 

it follows that it is sufficient to impose at boundary the continuity of E,, and B^. 
a T 

The substitution of (1-44) in (1-45) gives 
b
k 

= ' k(FFT) p
k
(0)^oa)      ° (1-47> 

(o^8 ^e0, 77-  eQ ^e =s 77) 

Where R'(x) 
Pk(x) ^ (1-48) 

k 

Similarly the substitution of (l-40a) and (l-44a) in (1-46) gives 

Vk(POa) i 
= '       k(k+l)      P'k^>    =    ±g(auCOSPoh+bOSinP0

h) 

+ j4iru e0 S [ayP (PQa) + b;M;(^a)]L;(0) 

(6Q ^9 *£ 77 - 6Q ,   R = a) (1-49) 

where   h   a-b denotes the antenna height. 

Finally substitution of (l-40c) and (l-44c) into (1-46) gives 

= ' ku^TT) Pk(y)  -   ±9 (ao sinPoh-b'o cos?oh) 

+ J477UCQ S [avJv((30a) + b^M^a) pV(0) 

{6Q ^0  ^ 77  - dQ,   R =  a) (1-50) 

The above system of equations involves two independent sets of 

orthogonal functions whose ranges of orthogonality are different for the two 

regions,   i. e. ,   R <   a and R > a. 

Some important properties of integrals involving products of Legendre 

functions are listed in Appendix A.    Solutions for (1-47),   (1-49) and (1-50) can 

be carried out by first integrating (1-50) with respect to 9  from 9 -  9     to 

77  - 0ft.     This gives 

bo      aotanPoh j 57   *' kTkTT) pk<V (1"51) 

cos6_h ln(cot-j-) 

The determination of constant   b'     begins with the multiplication of (1-50) by 

L' (9) sinO dO and the integration with respect to 0 from   0      6-   to   77 - 9~. 
v ° r 0 0 

It follows directly that 
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47TU)e0v(v+l) Mv(p   a)Jyv    k 
£' b. J   .   - a 

k   vk       v Mv(P0a) 
d-52) 

An additional  relation between    b'   and b    is obtained from (1-47) 
9P  1(9) k 

and (1-49) by first multiplying by 
9 

sin.6 d(' and then integrating 

with  respect to 9  from 9       0 to 77.     This gives 

2 b 

2rTT   P r(V       -  Z|(a0 CO8P0
h + hQ ^0^ Pr(V 

4 J47TCJC0 2[avJ^(p0a) + b^M^(pQa) j r(r + 1)J 
v r 

(1-53) 

or,   after rearrangement and substitution of (1-37),   (l-39a) and (1-52) 

into  (1-53),   one  obtains 

2PJPn
a> rvr0 

2r+l r 
b     + 

2tanPohPr(V Pk(gQ) 

——U— =     k(k+l,     
bk 

ln(cot -j-) 

J     J   . M' (p.a) 
r(r+1) 2   s.      vr   vk v    °        b 1        '        7     v(v+l)J       M   (p.a)      k v   k vv       v r0 

Z   eosp  h    Pr<0) + J4^e   r(r+1; 
c 0 

J   (pa M'   pa) 
E'  a   J      U'(6   a) v    ° v    ° 24    QvJvrlJv,POa) M   (Pna) v v     () 

d-54) 

Note that  in  (1-52)  and  (1-53)    r    had only those values  assumed by k    in 

the sum    2'  ,   i. e. ,   r is odd in (1-54). 
k 

Further siniplication of (1-54) can be accomplished by means of the 

fact that 

v r   vk -^2v+i)(i-^)Pk(ypr(V 
[k(ki 1) - v(v+l)][r(r-rl) - v(v+l)]   da 

(1-55) 
0 
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and the Wronskian 

M  J'   - M' J      -    -  1 (1-56) 
V    V V     V 

With substitution of (1-55) and (1-56) into (1-54) and some rearrangement 

of the formulation,   we obtain the following infinite set of linear equations: 

2' C   . b. -D=-D.-D- (1-57) rk   k r rl r2 k 

r =   1   3   c 

where 

2JV0Pr(V D   i    =       i    in? 5~u (l-58a rl r(r+l) Z    cos P„h 

M 2\        9V 

-J V _      . ^0      9 un 

D „   -   —TTT- 
p (0J   2'   c      , \.,   r  . ^1x . rrn-A       (i-58b) r2 60 r    0 v   v(v+l        r(r+l    - v(v+l)|A v L v 

L  (9   +6   ) 
C     V    U i  (l-58c) 

(l-^fB^^flj)  L;(u0) 

Ay      =    Mv(PQa)J;(P0b) (l-58d) 

and 

C,     =    V+E5B. (l-58e) rk rk rk        rk     k 

-240tanPohPr(VPk(V 

rk Z    k(k+l)  r(r+l) U-5»l) 

Erk   =    - Z^ Pr(V Pk(0O 

8v 
2v+l      M;(p0a) ^ 

~'   VMT)    Mv(P0a)      [k(k+l)-v(v+l)][r(r+l)-v(v+l)] 
'0 

d-58g) 
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B, (Zr+1)  r(r+1) 
(1 -58h) 

Since  r and k can only assume odd integral values,   the  subscripts 

used in (1-57) do not indicate the actual position of the elements in the 

coefficient matrix,   but rather C   .   denotes the element in the  (r+l)/Z row 
' rk 

and (k+l)/Z column in the corresponding coefficient matrix.     The same 

is  true for the column vectors b.   and D   .     Hence,   a   3  x   i  matrix looks 
k r 

as follows: 

Cll      C13     C15 

C31     C33     C35 

C51      C53     C55 5 

D. 

D, 

Dr 

D   ,   and D   _. on the right-hand side of (1-57) can be interpreted as the rl rZ ° r 

source functions for generating the coefficients b, 's,   while D   -.  is 
K r l 

related to the conical antenna and D   _. is mainly associated with the rZ ' 
presence of the inner conducting sphere.     The effect of the inner conduct- 

ing sphere is readily measured by the magnitude of D  .  relative to D   .. 

The infinite set of linear equations  (1-57) is formulated on a general 

basis with no restrictions on the cone angle 6_,   the sphere radius b and 

antenna length h.     However,   (1-57) has a singular term when the antenna 

height approaches \/4,   3X./4 •   •   •   ,   namely 

V 
rk 

tan(3   h — co        and 1) 
rl 

sec (3   h — co 

(pQh =TT/Z,   3TT/Z •   •   •) 

The singularity can be removed by multiplying both sides of (1-57) by 

cos (3nh and then letting h approach a quarter wave length.     This gives 

2, W b       ^0 
T       k(k+l)     k 1Z0 (1-59) 



-22- 

Equation (1-59) is actually nothing more than (1-51) which ex- 

presses the constant b'   in terms of a'   and a linear combination of the 

b, 's.     The procedures which lead to the expression for b'   in (1-51) were 

not valid since both sides were divided by a quantity which vanished at 

the particular antenna lengths. 

To find an appropriate formulation for  the solutions at the above 

particular antenna lengths,   it is necessary to look back at the more 

fundamental equations i. e. ,   (1-47),   (1-49),   and (1-50) and take different 

procedures in deriving an infinite set of linear equations. 

Solutions for (1-47),   (1-49),   and (1-50) can now be obtained by first 

integrating (1 -47) with respect to 9 from 9 - 9 _ to 9 ii - 9 ~.     This gives 

i Vk((3oa) bb-abcotp0
h wi f JLJ^~ pk<v 

ln(cot-Asinp   h k(k+l) 
L (1-60) 

The determination of the constant b'   begins with the multiplication of 

(1-49) by L' (9) sin9 d.9 and continues with the integration with respect to 

9 from 9 - 9    to jr - 9 It follows that 

-j ; % 
j
v«y> 

bv  • 4TIUCQ      v(v+l) M;(P0a) Jvy     f Vk(P0a)Jvk"av   M^(PQa) 

(1-61) 

An additional  relation between b'   and b,   is obtained from  (1-47)  and (1-50) 
3Pr(9) v k 

by first multiplying by    —r-g    sin0 d# and then integrating with respect 

to 9 from 9 - 0 to 9 - 77.     This gives 

2b b 

2rfl -   P     MkTT)   [Pk^O^-^Qrk 
k 

-  2j(a^sinpoh-b^cosp0h)  P^6Q) 

+ j477UC0   2'   [QvJv(PQa) + b^Mv(PQa)] r(r+l)Jvr (1-62) 
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here vvnere 
?0 « 

Q ,      Q,     = ( rk kr Pi {0)  P' (0) sinO dO 
k r 

d-63) 

0 7J-0 
0 

Rearrangement and the substitution of (1-60),   (1-61),   (]-37a),   (1-55) and 

(1-56) into (1-62) gives 

f  Crk\ 
k 

D'        - D1 ,   - D' 
r r 1 re 

(1-64) 

where 

D 
2Jvopr

(V 
rl Z    sinp   h-r(r+l) (l-65a) 

1) 

9v 

Jv0 2 fv ^0 
pJdn)t    -^0

)   ~    A^     [r(r+l)-v(v+l)] r2 60       r^O' 
(l-65b) 

and 

Av     =  Mv(P0
a)  Jv(P0

b) 

C ,       D'      + V'     + E' .   - 5   .   B' . 
rk rk rk rk rk     rk 

(l-65c) 

(l-65d) 

D 
rk        r(rtl) k(k+l) 

(l-65e) 

rk 

-240cotpohpk(poa) Pk(gQ) Pr(0Q) 

Z    k(k+l)  r(r+l) 
c 

(1-65 f) 

'rk -2(l-n   )pk(Po.)Pr(0o)Pk(0   ] 

2v + ] Mv(PQa) 
8v 
8u, 

X     v(v+l)       M;,(PQa)    [k(k+l)-v(vfl)][r(r+l)-v(v+l) 

d-65g) 
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B' .-   ,., —-n (l-65h) 
rk (2r+l)- r(r+ 1) 

It is convenient to denote (1-57) as the  first set of linear equations 

in which the antenna lengths (3   h = ir/Z,   3^/2,   . . .   are excluded,   and 

(1-62) as the second set of linear equations in which Pfth =  7T,   27T,   . . -   are 

excluded.     The combination of the first and second sets of linear equations 

adequately covers the whole range of antenna lengths. 

Note that the driving terms in both the first set (i.e.,   - D   ) and 

second set (i. e. ,   - D' ) are linearly proportional to the driving voltage 

V    across the gap.    Hence,   the solutions for both sets of linear equations 

(i. e. ,   b, 's)    are also in linear proportion to V As a result of the 

linearity of Maxwell's equations,   all the field quantities must also be in 

direct proportion to the values of V_. 

(iv)      Electromagnetic Fields in Antenna Region 

The electromagnetic fields (i. e. ,   E,,,   ER,   B_) in the antenna 

region I are of special interest in the present analysis,   since all of the 

important characteristics of the modified dipole,   i. e. ,   the  current 

distributions and the input admittances,   depend largely upon how accurately 

these fields are calculated.     These fields are related to the current and 

charge distributions over the surfaces of the antenna by the following 

boundary conditions; 

n x  13       - Id/vQ (1-66) 

and 

Veo (1"67) 

where r) , is the surface density of free charge and I , the surface density 

of conduction current.     The current at the driving point determines the 

input admittance.     All the fields inside  region I can be expressed in terms 

of linear combination of the b. 's,   which are the solutions of the infinite 
k     ' 

set of linear equations (1-57) and (1-64). 

To find explicit expressions for the B. in terms of the b, 's,   the 

first set of linear equations will be examined first.     The substitution of 
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(1-37),   (l-39a),   (1-51) and (1-52) into (l-40c) with the aid of the formulae 

in the appendices leads to (1-68) below.     Note,   however,   that the   b, 's 

are linearly related to V     so no generality is lost by replacing b,   by 
e e t>i V_ where b,   denot€?s the solution for  V^       1.     Thus, k    0 k 0 ? 

(B^jtf.R)-   (B^),D+  (B^)1C + (B^)]E (1-68) 

where the subscript 1 denotes the first set of linear equations,   and 

ve 

^lD 27rvnZ°Rsing   ["j(sin P0 Rb " cos P0 Rb tan P0h) 

0     c 

120 cos PR, b 
+        cosp/ f     kO^T)   Pk<Vl (1-69^ 

T -sin0  V* 2v+l PJ0J 
(Bl)_    =      ,_„  p   °     2'    2 *'lC 2TTV  R 7" v(v+l)   [k(k+l) - v(v+l)] 

I^(ji)        Mv((3QR)       9v 

VJ»n)     MjP0
a)      % 

b, (l-69b) 
V  '   U -"v 

^ -JPQ sin^ V^ 2v+l 

2UR(1-UQ)    inW^J^     v     v(v+l) 
(B*>1E ,     "        2, " ,   ,     S    —7,     VW 

LvWlWl       9^   [ Mv(P0a) J^(P0b) 1 

(l-69c) 

The magnetic field can be decomposed into three parts.     Thus, 

(B^),,,    is the contribution solely from the dominant modes inside the 
$ ID T       

J 

antenna region,   whereas    (B-)1(~    represents essentially the contributions 

from the complementary modes and (B   ) the contributions due to the 

presence of central sphere.     It is noted that    (B,),„ vanishes when the 



• 26- 

inner sphere is shrunk to zero.     However,   the identification of    (B_)1T-, 

with the inner sphere is not entirely clear-cut since the b, 's involved in 
11 

(B   ) and   (B   ) have already taken account of the effect of the inner 

sphere in the solution of the infinite set of linear equations. 

Similarly,   substitution of (1-37),   (l-39a),   (1-51) and (1-52) into 

(l-40a) and (l-40b) gives 

(E*)j(0,R) =  <E*)1D +   (4)1C t (4>1E d-70a) 

where 

(E^1D ZTrR^Z   "sine    [cosP0Rb + tanP0hsinP0Rb 

r    Ve 

,1, *0     0 

c 

j 120 sin PR b 

z   cosPnh    f  kTkTT) Vo» (1"70b) 
c 0 k 

^osind vo r„,  „    2v+1 pk(V 
(Efl'ir   " -?TT-Q [ 2'    2 J0;1C 2TTR L

 f V(V+1)     [k(k+l) - v(v+l) 
1C V 

L^(H)        M^(PQR)       8V 
b. ] (l-70c) 

and 

L;(^0l       Mv(P0a)       a^Q      k 

sin0v!r 1 2v+l 
(Ej)1F   =    r          2          L  (0    +9   ) 

y IJL 2R(1-UQ)    fntf^flj)   v     v(v+l)       v    U 

8v      Mv(P0a)j;(P0R)-M;(P0R)Jv(P0a) 
L;W[H^0,1       8^[  Mv(P0a) Jv(P0b) 1 

(l-70d) 

(E^^R,^   =    (E^)1C + (E^)1E (l-71a) 

where 
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I 4 
VS v   (Zv^nL^y^)       Bv 

(E    ) 
R 1E      2(i^J)pofn(0o,a1)R

2 v     [L;.(^0)]
2 auQ 

Mv(P()a) Jv(P()R) - Jv(Poa) Mv(P()R) 
[" Mv(P0a) j;.(P0b) J (1-71b) 

T J (2v+l) M   (P   R) 
1    R'lC 277WC0R £      ~   [k(k+l)-v(v+D]     Mv(PQa)    *VV 

dv b. 
k 

9M-0   L;>0) 
(l-71c) 

By the same procedures,   the corresponding expressions for the 

electromagnetic fields in  region I associated with the second  set  of 

equations may be obtained by substituting (1-37),   (l-39a),   (1-60) and 

(1-61) in (l-40a-c)  separately.     Comparisons between corresponding 

formulae for the first and second sets of equations show that with a 

simple replacement of terms,   the fields for the second set of equations 

can easily be obtained from formulae for the first set of equations and 

vice versa according to the following  rules;   i. e. , 

E-M Fields for  1st Set E-M Fields for 2nd Set 

Vk(Poa> 
7T/2 + p0h 

Mv(P0a, 

J'(P0a) 

\ 

Poh 

M 
\ ,(P0a) 

J \ ,<P0a) 

(1-72) 

(v)        Current Di stribution 

Distributions of currents over the surfaces of the modified dipole 

structure are obtained from the boundary condition (1-66).     The boundary 

condition    n -   B     0 is satisfied automatically since it is obvious from the 



-28- 

fact that the only currents excited in the present case are   IR    along the 

conical surface and   lfl    on the surface of the conical cap and the inner 

sphere. 

The currents on the different parts of the antenna for the first set 

of equations [formulae for the second set can easily be obtained by using 

(1-72)] may be expressed as follows: 

Along the surfaces of inner sphere: 

Current density 

WM)  =   UWJD^WIC^WIEJ
0 

V(B*,lD(b'0) + (Bi>lC(b>0) + <Bi>iE(b'fl)]0     d-73) 

Total current 

VM)     -    KV,D + (Its)lC + (Its>lE]e 

277b sintf I ,   (b, 6) (1-74) 

Along the surfaces of the conical dipole: 

Current density 

d-75) 

Total current 

1tc(R^0)   "   I^ID+^IC + ^IEI* 

=    277R sin0Q Idr(R,0Q) (1-76) 
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Along the surfaces of the conical cap: 

Current density 

vOl(B*,lD(a'W) + <Bi)iC(a'^)  +   (Bl
4»lE(a'9,]°      (1_77) 

Total current 

Va'0)   -   [(V'D+ Vic + VIE
1
 " 

Zua sintf Id   (a,tf) (1-78) 

(vi)       Input Admittance 

The input admittance of the modified dipole is defined in the 

following manner. Over the circular gap at R b between conical 

antenna and inner sphere exists an electric potential V       i. e. f 

V0 E8bd6   =   -2- (1-79) 

% 

From (1-76),   the total current in the antenna at the driving point, 

i. e. ,   at R - b,   is given by: 

l0 ^c^'V 27TV0b Sin°0 {Bl)(h'0O
] (1"80) 

The terminal admittance at    R    b   is then defined by 

YQ ^ (1-81) 

More explicitly, 

Y0 YlDiYlC +  YlE U-82) 
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where 
2 120 b 

Y
ID      z-U tanPoh+7olT^   ='  kiFTT) Pk(VJ (1"83a) 

C UK. 

(2v+l) PJV 
Y._    =    -  2(1 - |x~)    2'    2 

1C v       r0'    "     "   l v(v+l)      k(k+l) - v(v+l) 
K        V 

Mv(pQb) 8v 
(l-83b) 

Mv(P0
a) d[X0       k 

-j (2v+l)     Lv(«0,^1)      3v 

IE        60 fnlt^Q^j)  ^   [ v(v + l)      L;>0) a^ 

Mv(P0a)Jv(P0b)  -Mv(P()b)Jv(P0a) 

Mv(P0
a) Jv(P0b) 

(vii)     Far-field Pattern 

The far electromagnetic field in the radiation region II is easily 

obtained by substituting the asymptotic form of the Hankel function of the 

second kind in  (l-44a, c),   i. e. , 

let    R - oo 

Rk(x)    -    xh[2,(x) 

^    exp [-j(x - *—-*)] d-84) 

and 
(2) (2)' Rj^x) ^   U)  + x h[^'  (x) 

«*   ^exp [-j(x - ^-77)] (1-85) 

S° II -?0exp(-jp  R) Ve 

4     - 2ffR 
F("> (1"86) 
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^ 

rxp(-jp0R)   V 
0 

2TTV0R 
F(0) (1-87) 

where    F((')    is the radiation factor 

F(0) k(k+l 

Pk(0> 
1) 

(k+1) 

(1-88) 

The  radiation factor is  zero at 0     0.     The far field should decay as    l/R. 

If the field decays faster than    l/R    in a certain direction,   the  radiation 

pattern must have a zero in that direction.     On the other hand,   if the 

field decays slower than    l/R,   then the radiation pattern should be 

infinite in that direction as in the case of an infinite cylindrical antenna. 

The far-field radiated power is 

•n 

j     I EQ  •< H^ 2TIR
2
 sin0 dfl 

0 

60(VQ)
2

   2 

2 

k        (2k+l) k(k+l)       |R   (|3   a) 
(1-89) 

(3)        Biconical Antenna 

An important limiting  case of the modified conical  dipole is when 

the  radius  of inner  sphere approaches  zero.     In this  case,   it becomes 

a symmetrically excited biconical antenna.     This is of special interest in 

the present case.     One of the modifications made in formulating the 

theoretical approach was  to  replace the thin cylindrical antenna  pro- 

truding out from a  conducting sphere with a thin conical antenna under 

the assumption that in the limit (i. e. ,   cone angle becomes  small),   their 

performances  should become   reasonably the same.     A rigorous 

theoretical  formulation  for the  input impedance of a biconical  antenna 

was obtained by Tai  [ 1 J,   and extensive knowledge of the cylindrical 
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antenna is also available  [l]-[2].     Therefore,   one would expect that a 

comparison of the properties of conical and cylindrical antennas would 

serve as a convenient way of studying the validity of the above-mentioned 

modification in the theoretical treatment.     Furthermore,   since the 

limiting results obtained for the modified dipole with a shrinking inner 

sphere correspond to those for the biconical dipole,   this latter serves 

as a check on the internal consistency and accuracy of the numerical 

calculations. 

First,   we will list below the infinite set of linear equations and the 

general solution for the infinite set of linear equations and the general 

solution for the input impedance of the biconical dipole obtained by 

Tai  (see Fig.   1-4).     The infinite set of linear equations is 

Pr((30h) 

-§J3-   dk + r(r+l) Pr(0o) S-   2  *(v, r, k) P^) dR 

k      v 

-    - Pr(0n) d-90) 

(r = 1, 3,5, ...) 

where 

2v+l (l-u0) Lo} 

^v>r>k> v(v+l)    [k(k+l) - v(v+l)] [r(r+l) - v(v+l)] 

9v      J;((30h) 

9^0      Jv(P0
h) 

(1-91) 

and 
bk 

dR        i* (1-92) 
m 

The d   ' s are the complex coefficients for the electromagnetic field in the 

radiation region II,   and   1        is a constant defined by 6 ' m } 

j v
e 

J      0 (1-93) m Z   (cosPAh + jZ    Y,    sin B.h) c r0 Jcla r0 
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Note that    I        is the  maximum current.     When    Y,     -   0,   I I^/sinS^h 
m la        '    m       0 0 

at   R =  h - \„/4    (which corresponds to I      = 1,,/sinS-h at Z  - h - ^«/4 
0 r m        0 0 0 

for the cylindrical antenna with sinusoidally distributed current),   and 

Y is the apparent dominant-mode terminal admittance which is defined 

as follows 

Y.      =    (Re      + jXe    )/(Z   )2 

la mc mc c 

j?0 1 
—1    2'        dkPk(V (1~94) 
7fZ^       k k(k+l)        K      R      U 

c 

By analogy with    Y.       for the two-wire line with end effects,   Y,       is the 
' 6/ la '       la 

apparent load at the end of the biconical transmission line if only 

dominant-mode current and voltage are considered. 

The driving point impedance Z_ is 

zo =   Ro + Jxo 

Z        sin (3  h  -  iZ    cosB.h 
=    Zc (-SS ^ L-S L°_) (1-95) 

Z    sin(3»h - iZ        cos S„h 
c 0 J    mc 0 

With some necessary modifications,   formulations for the 

symmetric center-fed biconical antenna are derived in a manner almost 

equivalent to that leading to (1-57) and (1-64) of the modified dipole. 

Note that:    (1) Since the origin is now included,   Bessel's functions of the 

second kind which have a singularity at R =  0 must be excluded.     This 

is equivalent to setting the arbitrary constants   b   's    equal to zero in 

(l-25a-c).     (2) As noted for the modified dipole in (1-37),   the arbitrary 

constant   a'     for the dominant modes is quite insensitive to the way in 

which the antenna is being driven.     It is  uniquely determined by the 

driving voltage as well as the conical shape.     On the other hand,   the 

arbitrary constants (i. e. ,   a1 s    and   b' s) for the complementary modes 

are closely dependent upon how the antenna is driven.     This dependence, 

however,   becomes less significant as the radius of the inner sphere 

becomes smaller until finally,   when   b becomes zero,   complementary 



35- 

modes play no  role at the driving point.     This can easily be seen by 

checking the leading term of the complementary modes of   Efl    at a very 

small radial distance    6    from the apex,   i. e. , 

[4>v/0 
(v +1)2   ] IKv +1) v   -1 

(P0S) 
Vl-J 

(1-96) 

where    v.    is the  smallest root of the characteristic equation    L   (t)   )       0. 

As will be seen later,   in the range of interest    v.    is always greater 

than unity.     Therefore,   at the apex (b      0),   the driving condition (1-34) 

can still be used without loss of generality.     The whole system (b =  0) is 

now insensitive to the way it is driven and only the total driving voltage 

and the shape of the cone are significant.     Accordingly,   carrying out the 

same procedures as used for the modified dipole,   one obtains the following 

for the biconical antenna: 

(a)    Infinite Set of Linear Equations 

( i)    First set of linear equations   ((3   h/Tr/2,   i-jj/Z, . . . ) 

F(Crk>bbk 
k 

D d-97) 

where 

<Crk>b Vrk +  (Erk>b " 6rk Brk 
(l-98a) 

lErk>b 2(l-^)Pr(fl0)Pk(fl0)Z 
(2v+i; 

vMv . 1, 

J
v(Poh> 

Jv(P0
h) 

av 
[k(k+l) - v(vf l)][r(r+l) - v(vfl)]     8uQ 

(l-98b) 

and D V   .   and B   ,     in (1-97) are identically the same as those given in 
r'      rk rk 

l-57a) and (l-58d) with the substitution of h for a in those equations 
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(ii)    Second set of linear equations 

f   <Crk>bbk 
k 

D' (1-99) 

where 

(Crk> Drk + Vrk + <Erk>b - 6rk Brk 
l-100a) 

and 

(E;k»b -2<1^O)Pk(Poh)Pr(0O)Pk(yO)    Sj^ v   l 

3v 

jMPQh)      [k(k+l) - v(v+l)][r(r+l) -v(v+l)J 
(l-100b) 

and    D'      D'    ,   V , ,   and B1 ,   are the same as those given in (l-65a) and r'       rk'       rk' rk ° 
(l-65d) with the substitution of   h   for    a   in those equations. 

Comparing the corresponding infinite sets of linear equations for the 

modified dipole and the conical dipole,   one observes that the latter can 

easily be derived from the former by taking the asymptotic limit (i. e. , 

b -* 0).    An extra source term (i. e. ,   D   _ for the first set and D' _ for the '       r2 r2 
second set) which is a function of both $n and 9.,   has been added to the 

formulation for the modified dipole to take account of the inner conducting 

sphere.     Two quantities are of special interest since they serve as 

convenient parameters for studying the effects of the central sphere on the 

performance of the dipole antenna.     One of them is    A    = M   (P^a) J   (P~b) r- r v v    0 v    0 
for the first set or   A'   = M' (3„a) J' (3„b)    for the second set.     Both   A' 

v v r0        v    0 v 
and A    approach infinity as the radius b of the sphere becomes smaller. 

Hence the importance of the second source term (i. e. ,   D   n or D1 _) r '       re. rZ 
decreases for a shrinking radius b.     The other quantity is B     =   M' (S„a)/ ' v v    0 
M   (3„a)    for the first set or    B'   =   l/B      for the second set. 

v    0 v        '    v 

In the limit as    b -• 0. 

B 
v 

Jv«V> 
Jv

(Poa) 
and IV 

Jv«V> 
Jv(V> 
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which implies that    E   .   — (E   , ),     and E' .   — (E1 , ),     which makes the 
' rk rk b rk rk b 

coefficient matrix of the modified dipole approach that of the conical 

antenna.    So the difference between   B      and J'/J      also measures the 
V V        V 

effect of the central sphere. 

Accordingly,   formulae for the current distribution and the input 

admittance for the biconical dipole can also be conveniently obtained by 

taking the asymptotic limit of the corresponding equations for the modified 

dipole. 

(b)    Electromagnetic Field in Region I 

^1(U>R) ^ID+^IC ;i - ioi) 

•where 

K>1D 
V 

0 
-x -—-—:—73-    -j sinP-R -  cos p_R tan SAh) 
277v_Z    Rsint/    L   J r0 0 r0 

0     c 

120 cos(3nR b 

f    klkTT)   Pk<Vl cos Pnh (l-102a) 

(B^1C 

sintf V 
0 

27rvQR 
2'    S 
k      v 

(2v+l) pk(V 
v(v+l)   [k(k+l) - v(v+l)] 

HMn)    UPnh>      ^ vvr0'    Jvxr0 0 
(l-102b) 

(E^tf.R) (4>1D+(4>1C (1-103) 

where 

<4>1D 

e 
£     V 

ZTTRZ   sin 6     lcoSp0R + tanP0h sinP0R 

120 sinPQR 

Z     cosP„h 
c 0 

£' 
k(k+l)        kv   0 PJ^n)] (l-104a) 
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(E 
9'lC 

•jg0
si^ vo 

277 R 
S1 

k 

(2v+l)  Pk(^Q) 

[k(k+l) - v(v+l)] v(v+l) 

and 
J 
'R'l 

L^(,X)    JV(P0R)   av 

H(n0)  W*   a^o     k 

(ECj.(J,R) ^R'IC 

(l-104b) 

277we0R 
2' 2 
k    v 

2v+l 

[k(k+l) - vlv+1)] 

J
V<PQ

R
> 

(1-105) 

Note that all the terms associated with the central sphere vanish.     The 

fields for the second set of equations  can easily be obtained from 

formulae for the first set of equations by using (1-72). 

(c)    Input Admittance 

The driving voltage is now defined as 

77-0, 0 
V 

I) 
E„bd6   =    V 

0 
'6. 

Hence the input admittance is 

(1-106) 

120 

'Vi 

or 

<Y0>2 

[jtanpnh+    5-r   2'    ,,;,,,  Pj0n)] lJ 0 cosp.h k(k+l)     k    0  J 

(PQh /TT/2,    377/2,...) 

1 120 
T [-J-°tp0h 

Pk(P0h) 

sinp^h k(k+l)     *W1 

(PQh /TT,   277,   ...) 

(1-107) 

(1-108) 
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where subscripts  1  and 2 denote the first and second sets of linear 

equations  respectively. 

(C)       Driving by a Radial Delta-Function 

It has been shown by Chang [15] that the same integral equations, 

hence the same current distribution,   obtained for a tubular dipole 

excited either by an axial delta-function generator or by a radial delta- 

function generator on the outside surface of the antenna.     Further studies 

have been carried out when a radial l/p   excitation is used instead of the 

radial delta-function generator.    It has been found that both theoretical 

models give a satisfactory description of the current behavior away from 

the driving point.     However,   near the driving point,   the model with the 

delta-function driving gives a logarithmically increasing current,   while 

the model -with a finite gap excitation gives a finite current and remains 

in good agreement with the experimental measurement.     Therefore,   in 

this section for the purpose of comparison,   the formulation for the 

modified dipole will be carried out -when this is excited by a radial delta- 

function excitation.     Only (1-34) describing the driving condition has to be 

modified to account for the delta-function source,   namely, 

ve 

^R^b   =    2¥   i^(d -0Q) + ^(0-Ti+ 90)} (1-109) 

e / 
where    V  /2    is the voltage maintained across the infinitely small gap. 

Again,   the arbitrary constant a'   is still determined uniquely by the 

driving voltage and the cone shape,   while the relation between the 

arbitrary constants a'   and b'   differs only by a slight modification of the 

constant a   .     Thus, 
v 

-voL>o'"-^' 
\ 2P0v(v+l)JvvJv(Pob) (1-"°» 
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In carrying out the derivation of the infinite set of linear equations, 

one observes that the only difference from those for the finite gap occurs 

in the second driving-source term.     Therefore,   a simple modification in 

the source term gives the formulation for the delta-function generator. 

The quantity in question is  [from (l-58c)], 

c =     -vw 
v    (^HS^VV 

In the case of the delta-function generator, 

Lim        C     m,  1 (1-111) 

Therefore,   the quantity C    has the special function of measuring the effect 

of the width of the gap. 

In short,   the presence of the central sphere is well represented in 

the second source term,   i. e. ,   C  /A  .    A    accounts for the size of the 
'      v     v v 

sphere while C    takes into account the driving gap.     Therefore,   in the 

case of the vanishing sphere,   A    — co ,   the second source term is 

relatively much smaller than the first source term.    Hence,   the effect of 

C    is also greatly affected through the vanishingly small factor  1/A   . 

In other words,   the -whole system is now insensitive to the method of 

driving.    Generally speaking,   C    is a relatively slowly-varying function 

with respect to 6 ..     For narrow-gap driving,   it has little or no effect 

upon the field in the radiation region.     In the actual numerical 

calculation,   it has been found that for driving gap as large as 2. 5   ,   C 
-3 V 

differs from 1 by 10     .     This means that it is possible to set C    -   1 in 

solving the infinite set of linear equations without introducing any 

appreciable errors provided the gap is not large.    It is also instructive 

to note that in the formula for the admittance,   only Y is affected by the 

gap width,   and it is an imaginary quantity.     Therefore,   the effect of 

driving gap will only appear in the input susceptance. 
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B.     EXPERIMENTAL   STUDY 

1.    INTRODUCTION 

In the preceding section (and later in Volume II),   it is established 

that:    (i) With an appropriate average characteristic impedance,   the 

theoretical performance of a conical antenna is quite comparable to that 

of the cylindrical dipole which has been studied extensively and thoroughly 

[2] both in theory and experiment.     On the other hand,   it is difficult to 

drive the thin conical antenna with a coaxial line without introducing 

significant complementary-mode currents into the definition of the 

impedance of the cone.     The experimental difficulty arises primarily in 

the complexity of the analysis of the effect of the terminal zone near the 

junction of the line and antenna.     Therefore,   little quantitative information 

is available except for wide-angle cones [12].    (ii)    Except for very small 

central modifications,   the performance of a modified conical dipole differs 

significantly from that of a corresponding thin conical dipole.     But the 

latter serves as an extrapolatory check for the former with a vanishing 

central sphere. 

Therefore,   the purpose of this experimental study is to establish 

the adequacy of the theory of the modified conical dipole just presented 

for a representative set of antennas and central modifications included 

within the scope     of the theory,   and then to compare experimentally the 

performance of the modified conical dipole with the corresponding 

modified cylindrical antenna to justify the approximation made in the 

theoretical treatment in replacing a cylindrical antenna by a conical one. 

The experimental difficulty encountered with a simple conical 

dipole is somewhat reduced in the case of the modified conical antenna 

due to the fact that the driving condition has been changed from an 

experimentally unattainable point generator to a quite well-understood 

coaxial line feed.     By determining the apparent load impedance as seen 

from the coaxial line together with a proper terminal correction,   a 

measurable quantity is defined. 
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As was observed in the preceding section the formulae for the 

biconical antenna are actually the asymptotic forms of those for the 

modified conical antenna with a shrinking central sphere.     Also,   numerical 

results presented in Volume II suggest that the performance of the 

modified conical dipole with a small central sphere comes quite close to 

that of a biconical antenna.     Therefore,   the present experiments also 

serve as an indirect experimental check for the biconical antenna for 

which generators that are equivalent to a singularity with electric field 

do not exist and are difficult to approximate. 

In this experimental study,   it was considered essential to observe 

the current distribution ober the entire antenna structure as well as 

the terminal properties i. e. ,   the input admittance or impedance.     The 

measurement of the radiation pattern was not considered of fundamental 

importance since the correlation between experimental and theoretical 

current distributions constitute a more critical measure of the validity 

of the theory than the radiation patterns.     Due to the technical difficulty 

in preparing a set of metal hemispheres with various sizes,   the 

experiment was performed on a fixed installation for which only the 

frequency and antenna length could be varied.     The operating frequency 

range in this experiment was chosen to be  100-600 MHz with a correspon- 

ding free-space wave length of 300 cm to 50 cm so that even with one 

hemisphere (b -   12.4 cm),   it was possible to obtain various central 

modifications (Pnb -  0. 31-1. 51)  covering the whole range of interest. 

The physical size of the antenna that was under test was chosen to range 

from  10 cm to 60  cm with a half cone angle    0       1.1.     As a result of the 

previous theoretical analysis,   the performance of the cone is known to 

change drastically as the central sphere becomes larger.     Therefore,   a 

relatively large physical size of the hemisphere was chosen so that an 

electrically large hemisphere would fall in the neighborhood of the 

frequency 500 MHz for which the original image screen was designed [18]. 

In this manner less  experimental error was introduced and a more 

critical comparison between experiment and theory could be achieved. 
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2.     ANTENNA   STRUCTURE 

The physical configuration used was intended to represent as 

closely as possible the mathematical model involved in the theory.     The 

theoretical conical transmission line was  replaced by a coaxial line.     In 

Fig.    1-5,   is shown the cross-sectional view of the experimental antenna 

structure with dotted lines added to represent the corresponding 

mathematical model.     The modified antenna structure consists of a 

hemisphere,   a coaxial measuring line which penetrates the ground plane 

and goes to a hole in the hemisphere where the outer conductor is 

attached to the conducting spherical surface and a removable conical 

antenna of various lengths is  connected to the inner conductor of the 

coaxial line.     The coaxial line spacing produces an annular gap at the 

end of the radial hole,   the antenna is driven by the fields in the  region 

and hence the input admittance is also defined here.     The fact that this 

annular gap is a very good, though not perfect,   representation of the 

conical transmission line can be seen in Fig.    l-5b where the driving 

part has been much exaggerated for purposes of explanation.    For small 

angles 0 _ and #       the transverse electric field maintained by the TEM 

mode in a coaxial line is inversely proportional to radial distance from 

the axis,   i.e., 

Ep   - -   1/p (1-112) 

while for conical transmission line,   Efl is inversely proportional to sin0 

(angle in spherical coordinates) i. e. , 

EQ    <-   l/sin0 (l-113a) 

or 
^   l/(b0) for small    0 (1-113b) 

The fact that $n and 0     are small implies that side QQ' which is 

approximately equal to {a.   -a.   )0     is negligible as compared to (a   -a   ). 

So the two sides  PQ and PQ' are practically coincident.     Hence E     is 
P 

indeed a good representation of E,,.     A photograph showing an overall 

view of the hemisphere with a conical antenna mounted is in Fig.   1-6. 
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The size of the antenna structure depends largely upon what is 

available in the commercial market and upon the range of parameters,   to 

be covered.     In order to obtain a sphere with electrical radii ranging from 

P„b =  0. 3 to 1. 5 in the operating frequency range of 100-600 MHz,   the 

radius of the sphere should be about 5 inches.     The smallest available 

size of hollow brass tubing (which should,  however,   be large enough to 

accommodate the motion of current probes) has the outside diameter (OD) 
3"... 1" -T-7-     and inside diameter (ID) -5-   .     Once the size of the inner conductor was 
lb o 
chosen to obtain a conical antenna with half angle 1. 1     (which value is 

selected so that the available theoretical data can be used for comparison 

directly) the size of the sphere turned out to be one with radius 4. 88" 

which was exactly in the desired range.     Again,   the choice of the outer 

conductor    of the coaxial line to make the annular gap formed present an 
o 5'' angle of 1. 5    with respect to the origin,   required a brass tube with ID — 

11" 
and OD -yr   •     The characteristics of the measuring line will be discussed 

later. 

Due to the shape of the conical antenna,   it is difficult to construct 

a model with continuous variation in height.     Instead,   antennas were 

built with lengths varying in the form of steps.     The stepwise variation 

in height was chosen small enough to provide sufficient experimental data. 

Because of the small cone angle,  the cone antennas of shorter length with 

small end caps were carefully machined from a solid brass rod.    A 
1  " radial slot of width -^~     was formed along the conical surface.     The slot 

enables the exploration of current distribution along the antenna by means 

of probes mounted inside a tube which is embedded along the conical 

surface.     The probe is of the same size as the inner conductor of the 

coaxial line so that the probes used in the antenna can also be used for the 

coaxial line.     The lengths of the antennas actually constructed range from 

10 cm up to 35 cm in steps of 2. 5 cms.    As the antenna became longer, 

the cap surface was  soon large enough to allow machining.     Thus,   for the 

longer cone antenna (> 35 cm),   sets of short section were made,   each 

2. 5 cm in height,  with continuous variation in width in conformity with 

the shape of the cone antenna.     These sections could be added successively 

to the longest brass antenna (h = 35 cm) to make still longer ones.    Thus, 
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th e longest antenna is 60 cm.     In Fig.   1-7,   are shown photographs of the 

conical antennas. 

The conical antenna is mounted on the inner conductor of the 

coaxial line at the driving point,   through a rather fragile but effective 

connection shown in Fig.    l-8b,   in which the inner wall of the conducting 

tube was  reduced to l/64" by removing  l/64M from the outside.     The 

connecting section of the conical antenna was also reduced to 11/64'1 by 

removing l/64" from the inside.     The longitudinal slot along the coaxial 

line was aligned to the radial slot of the conical antenna so that probes 

could be moved freely from the coaxial line to the antenna.    A set of 

cylindrical antennas  (with lengths 20 cm,   30 cm,   50 cm) with the same 

radius as the inner conductor were prepared.     Three pieces were quite 

enough since the inner conductor itself could be extended to function as a 

monopole antenna. 

Slots were also cut along the spherical surface in a plane containing 

the antenna so that a small shielded loop probe could be moved along a 

circumference by pulling the attached cable by means of a carriage on a 

rack behind the ground plane (Fig.   l-8a). 

The metal hemisphere was bolted to a removable antenna mounting 

plate -which was permanently attached to a movable horizontal coaxial 

line.     The line was attached to the hemisphere through a mating flange 

near the ground plane. 

3.    MEASURING   LINE 

(A)       Mechanical Characteristics 

The measuring line,  the tubes for positioning the antenna and probes 

were patterned largely after those constructed by Mack [19],   Simpson [20] 

and to some extent,   after that of Andrews [18].     The design of the probes 

used to explore the distribution of current and voltage along the line (as 

well as the current on the entire antenna structure) followed the work of 

Whiteside [21].    A schematic diagram showing the essential features in 

the construction of the measuring line is in Fig.   1-9.     The entire 

measuring line is mounted on an 11 ft.   long and 1-l/Z in.   thick plywood 
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plank which is on  rollers and a track on top of two 7 ft.   long tables. 

The dimensions of the line are the result of compromises among 

the several requirements mentioned earlier.     The outer conductor is a 
10" 5 " brass tube of 77      (ID);   the inner conductor is  made of -77-      (OD)  brass 16 j   ,, 16 

tubing with a longitudinal  slot of width -zr~     which extends about 75 in.   from 

the point at which the line penetrates the image plane to the power input 

connection.     The center conductor is positioned by means of a handwheel 

and rack and pinion mounted behind the main coaxial line.     A probe 

actuating tube of  1/8"   (OD) provides  both mechanical and electrical 

connection to the probes by means of a miniature coaxial cable inside the 

tube.     The probe is also positioned with carriages driven by means of a 

rack and pinion assembly. 

The main coaxial line is completely filled with high density 

(3. 3 lbs./ft.    ) expanded polystyrene ("Styrofoam HD-300")  resulting in 

an electrically and physically continuous  structure in which the current 

and charge distributions are measured in determining a load impedance. 

Filling the line completely -with styrofoam eliminates the difficulties 

associated with a sagging center conductor or with discontinous dielectric 

supports.     This material is  carefully machined for a tight fit inside the 

outer tube with a  sliding fit on the inner tube.     A narrow slot was cut into 

the styrofoam to make room for the probes to enter through the slot in 

the center conductor. 

A desirable feature of the probe system is that it can be used 

simultaneously for transmission-line measurements and for measuring 

the current distribution on the attached conical antenna whose probe slot 

is at a slant angle with the transmission line. 

A photograph showing an overall view of current and charge probes 

is  shown in Fig.    1-10.     Instead of attaching the probe directly to the 

probe actuating tube,   a  section of miniature cable is used between them 

to enable the  probe to traverse the bent antenna.     Some difficulty was 

experienced with this flexible part of the probe system as it moved inside 

the coaxial line.     There was a quite unpredictable twisting  or side-motion 

of this  part and this  caused  some  intermittent  irregularities  in the 
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distribution measurements in the line and the antenna.     The difficulty was 

solved by the installation of a series of thin tubular  springs,   a little 

smaller than the inside; diameter of the center conductor,   and attached to 

the miniature coaxial cable with sections of plastic tube as spacer between 

them.     In this manner sufficient flexibility to permit passage through the 

junction of antenna and transmission line was  combined with the strength 

needed to withstand either compression  or extension without   noticeable 

change in length.     Another versatile feature of the probe system is the 

mterchangeability of current and voltage probes for transmission-line 

measurements.     Due to the smallness of the inner conductor,   the 

available microdot connection could not be fitted into the center conductor. 

A specially designed connection was prepared to connect the miniature 

coaxial line with the probe actuating tube. 

Power is fed to the measuring line through a coaxial input connector 

whose inner conductor makes a sliding contact with the 3/16'' tube.     The 

back cavity,   i. e. ,   the section of line behind the feed point should be X./4 

to present as high a shunting impedance as possible.     Since at the lowest 

operating frequency the  cavity would have had to be as  much as   75  cms 

long and this would require an increase in the overall length of the line 

and probe transverse assembly too great to be accommodated in the 

available space,   a modified so-called re-entrant cavity [ZOJ was used. 

This allowed the internal distance from the line feed point to the ultimate 

short circuit in the back-cavity to be effectively increased.     This was 

accomplished by sliding the short-circuiting piston   (2)  (see Fig.    1-9) to 

the right,   thus continuously increasing the length of the back-cavity until 

it is stopped by the movable collar and tube assembly.     Further motion 

toward the right will successively open the circuit at (3) and (4).     The 

outer cavity tube  (1-11/16"  OD)  remains in sliding contact with the fixed 

collar at (4).     This device,   when fully extended,   essentially triples the 

length of the back-cavity. 

(B)        Electrical  Properties 

Coaxial lines are among the most  commonly used  for all  transmission 

lines especially at higher  frequencies.      This is largely because of the 
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convenient construction and practically perfect shielding between fields 

inside and outside of the line.     The coaxial measuring line is character- 

ized by its characteristic impedance,   Z   ,   its phase constant (3 and its 

attenuation constant a. 

These constants may be evaluated from the circuit parameters of a 

unit length of an infinite line [22]. 

U   ln(a2/al> 

27re/ln(a2/ai; 

27To-/ln(a2/a.) 

277    2a        'a.        a   ' c 1 Z 

Z„   -    [(Z1 + juie)/(g + juc)] 

l-114a) 

l-114b) 

l-114c) 

l-114d) 

l-114e) 

The several quantities in (1 - 114a)-( 1 - 114e) are the external 

inductance,   the  capacitance,   the leakage conductance and the internal 

impedance per unit length and the characteristic impedance of the 

infinite line.     In these formulae a.  and a? are the inner and outer radii 

of the coaxial line conductors which have the permeability u   ,   and 

conductivity a   .     For the line described in the preceding section,   the 
7 

tubular conductors are brass with u    - u    and with a   =   1. 29 x 10     mhos/m. ^c      'o c 
The average measured X. (sec.   5) was found to be X   /X . =   1. 0365 i. e. , 

e. =   1.0744.     Accordingly,   from (1-114) 

?e   =    2.408 x 10   7 

c    r-.    0. 046 x 10 -9 

henry/meter 

farad/meter 

(l-115a) 

(1-115b) 

and the characteristic impedance for a low-loss line can be written 

approximately as 

i 
69. 07(1  - j -) (1-116) 

2ui 
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4.    IMAGE   SCREEN 

For the measurement of current distributions  and driving-point 

admittances of the antenna,   a metallic image plane was used so that the 

observer and the  equipment were  completely shielded from  the field due 

to the antenna under test.     The existing image screen,   which is   17 x 20 ft. f 

is attached to the side of Cruft Eaboratory.     A small number of radial 

conductors,   being distributed as uniformly as possible,   are added to the 

screen to extend the effective size of the existing screen by approximately 

a factor of two.     The detailed structure of this image screen and the 

additional attached conductors can be found described in Andrew's  [IS] 

and Simpson's  [20] work.     They used the image plane for an experimental 

study of the dipole at 600 MHz and the top-loaded antenna at 50-250 MHz. 

For purposes of assessing the adequacy of the image screen for the 

present experiment,   the input admittances of ordinary brass monopole 

antennas with lengths 55 cm and 20 cm were measured over the frequencies 

of interest (100-600 MHz).     The lengths chosen correspond approximately 

to the extreme sizes of the modified antenna to be measured.     The 

results of the measurements are shown in Fig.   1-11  and are found to be in 

good agreement with both the theoretical and experimental data obtained 

by others. 

It is felt that this test gives  a good indication of the  usefulness of 

this image screen for experimental measurements on the modified 

conical antenna in the frequency  range of 100 MHz-600 MHz. 

5.    ADMITTANCE   AND   CURRENT    DISTRIBUTION 

MEASUREMENTS 

A block diagram of the experimental equipment appears  in Fig.    1-12, 

and a photograph  showing the  measuring  set up is  shown in Fig.    1-13. 

Great simplification  resulted from the use of a Hewlett-Packard Model 

8405  Vector  Voltmeter which  replaced the conventional superheterodyne 

system in which a local oscillator,   a mixer and an I-F amplifier and 

detector are needed for admittance measurements and an additional phase 
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reference line and coaxial hybrid junction are required for current 

distribution measurements.     Basically,   the vector voltmeter converts two 

RF signals of the same fundamental frequency from  1 to  1000 MHz to two 

20-KHz IF signals.     The IF signals retain the same amplitude wave forms 

and phase relationship.     Consequently,   the fundamental components of IF 

signal have the same amplitude and phase relationship as the fundamental 

components of RF signals.     Accordingly,   a small part of the driving 

voltage is fed to channel A of the vector voltmeter to serve as a reference 

signal both for amplitude and phase measurements,   while the output of a 

charge or current probe is fed to channel B.     The amplitude and phase of 

the current or charge along either the transmission line or the antenna 

can be  read directly from the vector voltmeter -with channel A as reference. 

The practical maximum length of the coaxial measuring line is 

about 2 meters in which the useful range of traverse of the probe is 

estimated to be somewhat less than 1 meter,   the additional length being 

required to feed the line and to avoid regions of field distortion near 

discontinuities.     The difficulty that the available probe traverse is less 

than \/Z at the lower frequencies (<  150 MHz)  can be resolved by the 

interchange of current and charge probes.     With this expedient a quarter 

wavelength traverse is sufficient. 

The dielectric constant of the styrofoam was determined using a 

known frequency for the input signal (a precision electronic counter 

Hewlett Packard 4425L was used to measure the frequency of the driving 

oscillator).     The wavelength in the line was measured over a range of 

frequencies at which at least two nulls were observable b}   obtaining the 

distance between the sharp minima resulting from the use of a short 

circuit on the line.     With the frequency and line wavelength known,   the 

velocity of propagation was easily computed.     This varies inversely as 

the square root of the dielectric constant.     An average of the measured 

results yielded K  /X^ =   1.0365,   i.e.,   c     -   1.0744. 
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6.    RESULTS 

(A)       Input Admittance 

Due to technical reasons,   the conical antenna was prepared with 

fixed stepwise variation in length and the limited size of the image plane 

imposed a restriction on the antenna length.    Accordingly,   the 

experimental data obtained for the input admittance over the range of 

operating frequencies  (Table  1) do not cover the whole range of antenna 

lengths  (Pnh -   0. 6 to 3. 9),   e. g. ,   for (3   b smaller than 0. 4 the available 

data fall mainly in the region of the first resonant antenna length while for 

(3   b >  1. 11 the available data are shifted toward the  region of antiresonant 

length.     Furthermore,   an increase in the operating frequency electrically 

lengthens the stepwise variation.     Therefore,   at the higher frequencies, 

the data points become so sparsely distributed that they can only provide 

point checks for the theoretical curves. 

Frequency 
MHz 

P0b <P0h>min <Poh)max 

119. 37 0. 31 0. 6 1. 5 

157. 87 0. 41 0. 6 1. 98 

196. 38 0. 51 0. 6 2. 5 

273. 39 0. 71 0. 6 3.44 

350.40 0. 91 0. 75 4. 0 

388. 90 1. 01 0. 81 4. 0 

431. 68 1. 11 0. 9 4. 0 

504.40 1. 31 1. 06 4. 0 

581.43 1. 51 1. 22 4. 0 

Table  1.       Operating Frequencies 

Measurements of the input admittance were taken within the frequency 

range of 100-600 MHz.     In Table  1 are listed the actual operating 

frequencies  used in the experiments,   the corresponding    electrical size of 

the central sphere,   and the range of antenna lengths for which data were 

taken. 
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Measured admittances are compared in Fig.    1-14 with the 

numerical values obtained and presented in Volume II.     The experimental 

data can  readily be  compared with the theoretical  results  given in  Volume 

II  in which the admittance is defined at the terminals  of a  single generator 

of half the symmetric structure erected vertically on an infinite conducting 

plane.     Good agreement is  obtained between the  measured and theoretical 

admittances for all ranges of (3„h and Pnb,   except,   perhaps,   when h is 

long and possibly extended too far out from the ground plane.     It is also 

more difficult to center the antenna along the common axis. 

Since the input admittance is derived from the standing-wave 

distribution of the current away from the driving point, the effect of the 

higher modes at the open end is included in the calculation.     As a con- 

sequence,   the input admittance thus obtained is the apparent admittance 

in the coaxial line looking toward antenna,   and not the exact input 

admittance defined at the driving point.     King  [1 j has  shown that when a 

coaxial transmission line is connected directly to a cylindrical antenna 

over an image plane,   the principal junction effect can be accounted for 

by the addition of a small negative capacitance,   -CT,   -which has been 

determined approximately for cases of interest.     Thus,   uniform trans- 

mission-line theory can be used to define the apparent terminal ad- 

mittance,   Y     ,   and by the addition of a terminal-zone correction,-juC — , 
s a -L 

the terminal admittance Y„   can be determined.     For the modified biconical 

antenna,   approximately the  same  end correction would be expected as for 

a simple cylindrical monopole provided the cone angle and b/a are small. 

No attempt has been made here to determine the effect of the antenna 

shape upon the end correction. 

The value of -CT for a cylindrical antenna was obtained from Fig. 

38. 19 of Ref.   [1 ] which gave for b/a      0. 33 

C - 0. 23    picofarads 

In practice,   the correction was almost negligible,   for example,   at 

a  frequency of 300 MHz 

B„ - juC• - j0. 076    mmhos 
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Thus,   except in those eases  involving exceedingly small values of 

susceptance,   the influence of the terminal-zone correction was almost 

negligible:. 

It was observed that virtually no end correction was needed for the 

measured susceptances. 

The fact that very good agreement has been obtained for those 

extreme sizes of the  radiating structure (i. e. ,   Bb       1.51  and (3   h      3. 9) 

suggests that the restrictions imposed upon the present numerical 

analysis and computer program are far too conservative and that the 

computer program can be readily used for modified dipoles of larger 

size. 

(B) Current Distribution 

The measured current distributions of selected antennas and 

central spheres are shown plotted on the same graph in Fig.    1-15 together 

with the theoretical results.     Primarily the longest antenna (h -   35 cms) 

was used in the current distribution measurement,   since it provided 

antennas  ranging from (3  h =   1. 0 to 3. 2 with corresponding central 

spheres  ranging from (3   b =  0. 4 to  1. 2. 

In order to obtain an absolute current density distribution instead 

of a  relative one,   the experimental values for the antenna are normalized 

with respect to the apparent admittance and the circumference of the 

inner conductor,   i. e. ,   Y     /(27rb sin (J„).     Since it is difficult to move the '       sa 0 
probe close enough to the edge of the driving gap,   the current density on 

the sphere was normalized with respect to the theoretical value at an 

angle   12. 22    from the axis. 

The agreement between the theoretical and experimental curves is 

quite satisfactory. It is found that the agreement is better for the phase 

than for the magnitude of the  current. 

(C) Comparison of Modified Conical and Cylindrical Antennas 

The fact that very good agreement has been obtained between the 

theoretical and experimental  results for the modified conical dipole 
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justifies in the first place the analytic formulation presented earlier in 

this volume and the accuracy of the computed results given in Volume II 

and secondly equips one with a rather general tool for understanding the 

performance of modified dipoles in general.     To assess the validity of 

replacing a thin cylindrical antenna by a conical one in the preceding 

theoretical treatment,   a comparison of the measured admittances of 

modified dipoles with either conical or cylindrical protrusion is made 

with its length (3   h defined in the conventional way (i. e. ,   for a conical 

antenna,   the length is measured along the  radial direction from the 

driving-point up to the edge of the antenna;   -while for the  cylindrical 

antenna,   it is measured along the axis from the driving-point up to the 

tip of the hemispherical cap). 

In Fig.   1-16 are shown the comparisons of the measured ad- 

mittances of modified conical and cylindrical antennas for (3   b =  0. 51, 

0.71,   0.91,   and  1.01.     In general,   both curves are of comparable 

magnitude and nearly the same  shape except for a slight shift in Pnh. 

The measured curves for cylindrical protrusion are consistently shifted 

to the right of those for conical protrusion.     This means that the 

conical protrusion behaves like the cylindrical one with a slightly greater 

effective antenna length. 

The discrepancy between the admittance curves is partially due to 

the definition of antenna length in which the end cap of the conical antenna 

is  excluded.     Therefore,   in order to take the end cap into account,   it is 

more suitable to define the antenna length as the actual length along which 

the current flows;   in this way,   the end cap will provide an extra antenna 

length Ah for the conical antenna,   namely, 

Ah      (30atf0 (1-117) 

Accordingly,   for (3   b       1. 01,   Ah ranges from 0. 0Z to 0. 07 with (3   h 

ranging from 0. 0 to 3. 5.     The end cap effect just described is evident in 

the results  shown in Fig.    1-16 by looking at a  special case of (3   b       1. 01. 

The measured admittance of cylindrical protrusion is shifted from that 

for conical protrusion by approximately 0. 08,   which is of the same order 

of magnitude as  Ah. 
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FIG.  l-'6  COMPARISON   OF MODIFIED CONICAL   AND  CYLINDRICAL   ANTENNA 
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Another possible  reason which might be ascribed to the shift of 

measured admittances is the fact that in the experimental set-up,   the 

cylindrical antenna has a  radius which is the same size as the smaller 

end of the corresponding conical antenna.     This means that on the average 

the conical antenna should behave like a thicker antenna which tends to 

have shorter resonant antenna length. 

Therefore,   after accounting for the end cap effect and thickening 

effect of conical antennas,   a close correspondence of the results for 

modified dipoles with conical and cylindrical protrusion is accomplished. 

This means that the assumptions in the theoretical formulation are 

fairly well supported by the experimental results. 
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APPENDIX A 

INTEGRALS OF PRODUCTS OF LEGENDRE FUNCTION 

Let r and k denote integral numbers and v and p non-integral ones. 

The following integrals of products of Legendre functions exist [2]: 

77 

-> 0 

77 

P. (6) P   {9) sinO dO    -    0 (k / r) (A-l) 
k r 

|    P' (0) P' (0) sinO d6    -    0 (k / r) (A-2) 
_/0     k r 

and 

or 

71     2 
J Pjj(tf) sin0 dO 

?      r•,^-,2 
MkTT)        L   l^)]    sine 6B 

VBo 

°0 

n-8Q 

Jo 

2kTT <A"3> 

L   (0) L   (6) sinO d9   =    0 (v / p) (A-4) v p 

f L'v(0) L1 (0)  sinO dO    -    0 (v / p) (A-5) 

'0. 
0 

J     =  / [L   (0)\    sine dO 
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1 
v(v+l) 

|L' (0)}Z sinO dO 1    v       ' 

2(l-|i o' 
2v+l 

9LV(HL)        9LV(^) 

8v 9^ H-   H, 
(A-6) 

'vk 
L,   (0) P, (0) sinO dO 

V K 

or -6 
1 

k(k+l) 
L' (0) P! (0) sinO dO 

V K 

2d-H-0) 
P>n>   L'(HL) [k(k+l)-v(v+l)]     ^^0'      V^'V^Q 

(A-7) 
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APPENDIX   B 

BESSEL'S   FUNCTIONS 

W ronskian 

M   (x) J' (x)  -  J   (x) M1 (x) 

x(jv + x j;)(nv - rjv jv) - x jv[(nv - mv jv) + (n; + nv yv)] 

-    -1 (B-l) 

For computational purposes,   the following equations exist for large order 

v: 

Define: 

x.   = v sech a, x - v sech a (B-2) 
b b ' 

T   /            u     %            exp[v(tanh a-a) 1        .    T ,„   .,, 
J   (v sech a) ^      tJ - n~=T       A J B-3) 

(277v tanh a) 

J^(v sech a) %      (S14hv
2a) exp[v(tanh a-a)] A  J^ (B-4) 

\r   i            i.  „\           exp[v(a-tanh a)l A   _, ,_   _, Y   (v sech a) ^      c—» : r-r-i-       A  Y (B-5) 
(TTV tanh a/2) 

Y'(vsecha)^      (sinh  2a)1/2 exp[v(a-tanh a) 1 A Y' (B-6) 
v 7TV rl ' V 

where 

co       U   (cotha) 
AJ       =    1+2        -^—r-  (B-7) 

k= 1 v 

co       V, (coth a) 
AJ' 1+2       -Z—T  (B-8) 

k-1 v 
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oo 
AY 1 +   2   (-1) 

,     U, (coth a) 
(B-   9) 

AY' 
v 

i o 

1 +   2   (-] 
k   1 

,     Vk(coth a) 
(B-10) 

Therefore, 

P(x) 
,/ AJ' 

(^)   X     Jv(x)(l/2 + x sinh a   -^) (B-ll 

M
v

(x>   v*> - T^g Jv(x) 

(Tfx/2)1/2 Yv(xb)(tanh ab/tanh a)1' 2     • 

AJ   (x) AY   (x) 

"Ab GXP(V    >    AjV)     +    exP(-V    >    AYV(xJ 
v    b v    b 

(B-12) 

M' (x) 1/2 
AJ' (x) 

(n/2x)W^ Yv(xb)[l/2 + x sinh a    Aj
V

(x)   ] 

tanhub1l/2 
[-A     exp(v    ) + A     exp(-v    )] [- r  1      b x       ^ J Ltanh a 

(B-13) 

where [1/2 - x sinh a AY' (X)/AY   (x) ] 

[1/2 + x sinh a A J' (X)/A J   (X)] 
(B-14) 

[1/2 - x.    sinh a. AY'(x. )/AY   (x. ) 1     b b v    b v    b 
ll/2 + x,    sinh a. AJ'(X,)/AJ   (X.) 1   '             b                b        v    b v    b 

(B-15) 

a,   - a - tanh a,   - tanh a 
b b 

(B-16) 
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