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I. INTRODUCTION

This report provides a discussion of seven guidance techniques. Some

of these techniques are considered to be advanced in that their targeting re-

quirements are minimal. It is believed that these advanced techniques are

potential candidates for future space or weapon system guidance programs,

and that guidance software for advanced vehicle systems should not be restricted

to current guidance schemes. The advanced guidance techniques included in

this report require a higher speed, greater capability, and generally a more

versatile guidance computer. Crude estimates of computer speed and capacity

are provided in Table I for each of the techniques discussed in the report.

The seven guidance techniques are:

I. Q

2. Delta (or A)

3. Explicit

4. Numerical Integration

5. Linear Tangent

6. "Optimal"

7. Parameter Optimization

A summary of the features of these guidance techniques is given in Table 1.

Note that Q guidance is included for completeness, although this technique is

obsolete.

It has been noted that there is considerable variation in the computer

requirements for each of these techniques. The requirements are minimal

for Q and a guidance; in fact, these techniques were developed for computers

that were not equipped with a hardware divi.dc instruction. Their computer

technology is of the 1956 era. As a result, these techniques were extremely

difficult to target (i. e., to obtain all guidance constants).

-1-
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As time progressed, computers became available that were more

versatile. Then the "explicit" guidance techniques became practical and

were devised by several contractors. Targeting routines were still

required in order to obtain the gravity-turn pitch program for flight through

the atmosphere. However, a complicated least squares computation pro-

gram to obtain polynomial expansion coefficients was not required as it was

for the Q and A mechanizations.

The computer requirements for Numerical Integration guidance are

quite large (20, 000 words, I lisec). The targeting requirements are mini-

mal since only a booster pitch program is required.

The Linear Tangent Guidance Program uses an approximate integra-

tion of the rocket equations of motion. The program is as easy to target as

the Numerical Integration technique, since a multistage capability is

included. In addition, the computer requirements are not much greater than

those for explicit guidance programs.

The "Optimalt" Guidance Program is based on a calculus of variations

solution that requires machine computation (iteration and integration). The

compuvtation complexity is therefore somewhere between the two previous

techniques. This technique also requires only an input pitch program and is

therefore easy to target.

Parameter Optimization guidance is self-targeting and also has the

greatest computation requirements on speed and capacity. It is equipped

with an optimum capability for guided flight through the atmosphere and has

the greatest capability for fast reaction of any of the previous techniques.

With the ever advancing computer technology, it is possible that an airborne

digital computer will one day be designed to permit usage of this technique

for the weapon systems.

-3-



II. PURPOSE OF GUIDANCE EQUATIONS

The purpose of the vehicle guidance system is to utilize certain

measurements of the vehicle's state and to alter the course of the vehicle in

order to achieve the desired end conditionb in the presence of disturbances,

which include but are not necessarily limited to the following:

* Winds

* Non-standard propulsion parameters (thrust, specific
impulse, engine misalignments, centering, etc.)

* Drag and li . uncertainties

* Weight errors

* Control system dispersions

The basic guidance system may be either radio or inertial. Wkhen a radio

guidance system is used, the measurements consis•t of range, asimuth and

elevation angle (R, A, E). In some cabes, rate measurements may also be

obtained. These measurements are then processed in a Kalman filter to

obtain the vehicle navigation data, as shown in Fig. 1. All computations

shown in Fig. I are performed in the gronnd guidance computer. The

steering commands are sent to the vehicle over the guidance data link,

decoded, and fed to the vehicle control system.

When an inertial system is employed, the sensed measurements are

obtained from the vehicle accelerometers. These measurements are then

processed on board the vehicle in the Flight Digital Computer as shown in

Fig. 2. Note that the mechanization shown in Fig. 2 assumes that the

accelerometers are mounted on an inertially stabilized platform. The navi-

gation loop would appear different when a strapdown inertial system is

employed.

The guidance equations blocks for either the radio or the inertial

methods may be quite similar. The role of guidance is (either implicitly

or explicitly) to specify the corrective action such that the actual vehicle

state will become the desired vehicle state at the burnout point (or at orbital

insertion).

P5.ece ln page blank
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This report discusses only the philosophy of the guidance equations.

Some insight into the derivations is given. In general, the airborne dig,.al

computer used with inertial guidance systems may contain many functions in

addition to what has been referred to as explicit guidance. A possible list-

ing of some of these functions and the computer words of storage and timing

estimates are given in Tab.,t 2.

In addition, Appendix A is included to show the detailed equations

associated with an actual gu'dance computer program. The bloc!r flow diagrams

apply to the Radio Guided Gemini launches using the Titan launch vehicle.

The total computer size (Burroughs Al at ETR) .was 3200 words including an

auxiliary memory unit. Thus, one may get a feeling for the size, complex-

ity, and logic loops when the computer permits storage in excess of 10, 000

words. Some filtering is included in the time-to-go and steering command

computation blocks; however, this is easy to recognize and may be ignored

for inertial guidance applications.

Table 2. Typical Missile-Borne Computer Programs*

Words Timing (tps)

Executive Program 500 10,000

Navigat;on 500 2,500

Explicit Guidance 1500 2,500

Atmospheric Steering 200 200

Vehicle Sequencing 200 100

Coast Equations ?U00 100

Ground C/0 and Calibration 2000 --

Backup Modes 100 100

Digital Flight Control 5000 50,000

Digital Attitude Control 1000 30,000

11,200 60,000 Worst
Path

Estimate by J. Shaul, The Aerospace Corporation

-8-



-- - -- --. . - " ' l ' ' ' ' I J q ' ' ' •

III. TARGETING

An important figure of merit of any set of guidance equations is the time

required to target the equations. At the present'time, a wide disparity exists

for the various techniques. This figure includes the time required by all com-

puters involved to compute all input constants required by the guidance equa-

tions in order to "fly" the mission. It also includes the time to transmit,

insert, and verify these constants into the launch guidance computer. Thus,

it is clear that the targeting time may be the vehicle flight reaction time. Of

course, in some cases it is possible for vehicle or guidance hardware flexi-

bility limitations to be the pacing item in some fast reaction launch situations.

The normal method for vehicle targeting (using explicit guidance equa-

tions) is to use a large high-speed ground-based computer equipped with a

multi-vehicle simulation (MVS) program to generate an open-loop trajectory.

(A simplified block diagram of a vehicle simulation is shown in Appendix B.)

This trajectory is tested using dispersion runs to verify acceptability.

The trajectory is then used to generate the guidance constants. The vehicle

simulation then runs a closed-loop trajectory using the guidance constants.

Dispersion runs are again run to verify that the trajectory still satisfies the

vehicle constraints. If the closed-loop trajectory fails the test, a recycle of

this procedure is required. A block diagram of this procedure is shown in

Fig. 3. Targeting times using this technique vary from two weeks to several

months.

The targeting procedure may be speeded up by using prestored pitch

programs and autopilot gains, as shown in Fig. 4. These are generally

functions of the payload weight, altitude of injection, and desired orbital

inclination. The reaction time is further decreased by programming the actual

vehicle guidance equations into the vehicle simulation and using these directly

as the search tool to obtain the closed-loop reference trajectory. In addition,

a print denoting satisfaction of the constraints should be furnished. If the

-9-
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reference trajectory is not satisfactory, the operator must modify the selection

of launch azimuth or injection altitude manually in order to obtain a satisfactory

nominal trajectory. In the event that the fast reaction procedure cannot find a
satisfactory reference trajectory, it is desirable to use an N-dimensional

search and optimization procedure. Mission reaction times of several hours

may be obtained when this technique is employed. Even faster reaction times,

of the order of minutes, are achievable when dictated by program requirements.

The passage of time and the increase in comput : efficiency has seen

guidance equations become more and more sophisticated with the result that

targeting requirements have become minimized. An enormous targeting

burden was associated with the Q and A guidance equation formulations. Each

of these techniques may contain 30 to well over several hundred constants that

must be determined by the targeting computer. Even the gravity computation
contained constants that required specification during the targeting procedure.

Either the general purpose or the fast reaction technique may be used

with "explicit, " "numerical integration, " "linear tangent, " and "optimal"

guidance techniques. The fast reaction targeting technique works particularly

well with the linear tangent guidance equations because of their built-in multi-

stage capability. In the case of "Optimal" and "Explicit" guidance techniqt.es,

it may be necessary for the fast reaction targeting routine to specify "Aim

Points" for each of the exo-atmospheric vehicle stages.

-12-



IV. Q-GUIDANCE

Q-guidance is described in Refs. 1 and 2, and has been used

successfully in Short-Range Ballistic Missile applications.

Existing formulations of the A and Q guidance equation mechanizations

involve the concept of the required velocity vector. The required velocity

vector, VR (x, t) is defined as the velocity that is required at the present

position, x, and time, t, to satisfy the mission requirements assuming an

impulse burn to achieve VR. The vector K is measuzed from the center of

the earth in an inertial coordinate system. The ballistic missile is to be

steered such that the velocity to be gained

g R

goes to zero at burnout where V = x denotes the instantaneous velocity vec-

tor. With this steering philosophy, it is obvious that only a limited number

of injection constraints may be satisfied. For example, the three components

of the desired velocity vector at burnout can be achieved. If a variable coast

period to the target is allowed, then one additional constraint may be satis-

fied. A complete description of the constraints that may be satisfied is given

in Refs. 1 and 2.

The flexibility offered by the impulsive burn definition of the required

velocity vector is completely satisfactory for the minimum energy type of

trajectory. In this type of mission, it is only required to hit a target. The

dispersions in the velocity vector when the target is hit are of no concern.

This approach is generally not sufficient for satellite injection purposes

where both the altitude and velocity must be steered to the desired values.

A typical altitude dispersion that would result from use of the impulsive VR

approach is several miles.

-13-



The guidance equations further limit the specification of VR (x, t).

This vector must be defined such that any freely falling particle for which

V = VR initially will continue to have V = V R at all subsequent positions

and time.

From the definition of VR' it follows in general that

d R 3 avR dxk a R
t - t+ (2)

aR=1 a

whe re

S~1
x = x

2x
3

x =z

and x, y, z denote coordinates in the earth centered inertial computational

system.

For the particular class of required velocity vectors acceptable for

Q guidance, it may be shown that

3
R k aVR

-7-7 R +(3)

R=1Y VRxa

The rocket equation for ballistic missile flight is written as

-. dVg = at- aT (4)

-14-
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where aT denotes the thrust acceleration. The above equations may be

combined to give the Q-guidance equation

3 -
avR k

"Vg = -aT " A Vgk (5)

I ' V 1 V 2= andx

where

V 1 V I Vr = V , and V 3=V
g gX g gy g gz

0-guidance has one very desirable feature in that it does not require a

complete navigation determination. That is, the missile does not need to

know its velocity or position vectors in order to determine V . This quan-

tity is obtained using a single integration of the Q-guidance equation. It is

necessary to specify the initial conditions V (0) and the Q matrix

Q R (i,j, = 1, 2, 3) (6)
iU axJ

It has been shown that these quantities may be chosen as constants for an IRBM

mission. An involved targeting search routine is required in order to provide

this determination and still keep the guidance equation injection errors within

acceptable bounds. In general, the Qij matrix coefficients are complicated

functions of time involving many empirical constants. These constants must

be determined as a result of extensive computer programs.

The steering procedure used with some Q guidance mechanizations

requires that the unit thrust vector •, be directed along V g

V
V9 (7)

g

-15-



This is equivalent to issuing a commanded turning rate, wc to torque the

rate integrating gyros in the missile control system as

x V2 g
W c g

For practical reasons, the gain on the vector cross product may be replaced

by a simple time varying function to avoid the singularity that occurs when

Vg -=0. This singularity is particularly troublesome when the thrust mis-

alignments are significant.

In many space missions, it is desirable that the vehicle contain instan-

taneous position and velocity information. When this information is necessary

for other purposes, then the advantage of the Q mechanization is less attractive.

-16-
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V. DELTA GUIDANCE EQUATIONS

Delta guidance has been effectively used for the past fifteen years and

is still in use (Ref. 3). It is a viable method for space missions; however,

targeting and the lack of one flight trajectory control variable motivate

against its use.

In this mechanization, the V R vector is represented by expansions of

the type

VRx = VRxn + A(x - xn) + B(y - yn) + C(z - zn) + D(t - tn) (9)

plus second order terms as required. Similar expansions are used for VR, and

VRz* Variations in this specification exist, but the general philosophy is the

same.

As in the Q-guidance problem, the question of constant determination

(A, B, C, D,...) may require many hours on a large capacity computer. The

targeting procedure involves the determination of many possible burnout

points and least squares fitting of this data to the selected polynomial

expansions.

This method of guidance has been used in the past in small capacity

airborne computers that did not have built-in divide and square root instructions.

The A mechanization does require a navigation loop to determine position

and velocity. The gravity computation is also an expansion with one formulation

of this system. That is, because of computer limitations, g is computed using

an expansion of the form

gx = K(x- x0 IoC + cI x + C2 z + C 3 x2 + C4 zZ + C 5 x z] (10)

-17-



with similar terms for gy, gz rather than the explicit form

g= K -g " x
r

r = Vx + y z

Steering with the A guidance mechanization is discussed in detail in Ref. 3.

In one system, the unit thrust vector is directed as

K V' + V * dta, 9r a T f g
t
0

where the * on V denotes that the pitch (p) and yaw (y) components of Vg g
have been modified by adding on the tangential component, as follows:

V, V + K V
gp gp + gt

V gy gy 2 gt

where K1 and K are determined by the procedure to minimize vehicle propel-

lant losses which occur during the closed-loop-g A3ance phase of flight. Note

that V and V"' still vanish at final s..age burnout, since this event is com-
gp gy

manded when Vgt = 0. The integral terms in the steering equation have been
found to compensate well for thrust misalignments.

The A guidance equation mechanization has been tested with success

for flights as complex as the synchronous equatorial mission. The procedure

essentially required that VR values be specified to hit space target (position)

-18-



vectors. Prediction polynomials were th•,- used, also in the form if

expansions, to compute velocity comprr.nents at the end of coast periodz. The

prediction polynomials were also used to calculate the time of flight during

the coast periods. Note that this mechanization requires that verniers be

used to cut off each stage precisely at burnout. This follows from the fact

that an assumption is made in the equations that the ta:rgec (position) vector

is actually hit. That is, it is assumed that V = 0 at orbital insertion.
g

Obviously, the target would not be hit if a large velocity error were made in

the equations. The above problem is probably solvable, but the machine time

and complexity of equations would increase several times in the event that a

vernier was not used for orbital insertion, especially when a long coast

period followed main engine burnout. This problem area would prob,,ly be

even more critical and difficult to cope with for ihe Q-guidance mechanization.

-19-



VI. EXPLICIT GUIDANCE EQUATIONS

The explicit guidance equation mechanization has been used on a

number of space missions. This technique is consistently effective and will

probably be used for several more years, especially with all-inertial systems.
Details on explicit guidance are given in Refs. 4 through 8. The derivation

of the explicit guidance (and steering) procedure is generally credited to

Duncan MacPherson.

The principal use of explicit guidance mechanizations has been for

guiding a single rocket stage. When additional stages are used, the concept
of Aim Points has been used. That is, the equations are designed to cause

each stage to pass through a pre-designated aiming point. The Aim Points

are obtained during the targeting procedure.

Explicit guidance equation formulations imply that closed form solu-

tions to Newton's equations of motion are employed in the computations.

At Aerospace, the explicit concept implies that closed form solutions are

also used in the computation of commanded thrust attitude or thrust attitude
rate. Thus, thb Aerospace explicit guidance equation mechanization takes

into account the finite thrusting characteristics of engines (as opposed to the

impulsive burn assumptions of the Q and Li mechanizations). This pro-

cedure allows additional constraints to be satisfied at burnout.

Five constraints can be satisfied with the Aerospace explicit guidance

equation mechanization. These include not only the three components of the

velocity vector, but also the two lateral components of the position vector.

The tangential component of vehicle position cannot be constrained without

excessive loss in performance because the vehicle is not equipped with
engine thrust magnitude control.

The explicit solution of the rocket equations is computed in the pitch
plane using three controls: (1) the initial (constant) value of thrust attitude,

- 4 Preceding page blank
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(2) the thrust attitude rate, and (3) the final (engine cut-off) time. The

lateral position and velocity are also controlled by using corresponding

attitude degrees of freedom in the ,aw plane. A summary explanation of

the explicit guidance technique is given below for motion in the pitch plane.

The differential equations of motion for the thrusting vehicle in the

atmosphere are given as:

(r26) = raT cos + (D, L)
(14')

r6 .2 GM+ a sin + (D, L)

r

where

r = distance from center of earth to misaile

e = angular displacement between the present
position to a future position measured from
the center of the earth

aT = thrust acceleration

(D, L) = small aerodynamic drag and lift terms

= thrust attitude measured from the local
horizontal

Equations (9-14) may be written in terms of VY where

V = inertial velocity magnitude

Y = elevation angle of the velocity vector
with respect to the local horizontal

-ZZ-
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using the transformation

rV sinY

r6 :V cosy

The above equations then become

V = aT cos (4 -Y) -GM sin 2 +(DL)
z

V 2 Cos 2 y GM
r aT sint I+ GM + (D, L) (15)

r

These equations may be approximately written as

S=T + Small Terms

r aTL + Small Terms (16)

It has been shown that choosing the pitch or yaw thrust attitude as a

linear time function will result in efficient flight. This assumes that the

thrust vector is oriented such that it is nearly normal (within 10 deg) to

the local gravity vector. Then

=o + o t (17)

The form of aT is

a T a TO (8
1- TO t

-23-



Thus, the first of these equations may be readily integrated to obtain

an approximate time-to-go, tg, until the stage burns out and the desired

value of the final velocity is achieved.

When the approximate value of t is obtained, the second equation

may be integrated, neglecting the small terms, as

(t9

(19)

rf = r0 + o tg + f/9(t -r) aTr)[F+ 0Td00 0 0to+ d

Equations (9-19) are then solved for ' 0 and ' , such that the mission aoit-

tude and flight path angle requirements will be approximately satisfied.

The effect of the small terms is then evaluated as a perturbation solution

and a small adjustment in time-to-go, attitude, and attitude rate is made.

The use of the Aerospace explicit guidance equations is not wasteful

of propellant for exo-atmospheric flight. This is evidenced by the fact that

this procedure has been used effectively to generate nominal trajectories

at Aerospace. It is even possible t,: develop a targeting routine by flying

the first stage using a gravity (zero lift) turn through the atmosphere. The

explicit guidance technique is then used for controlling the upper stages.

This targeting technique requires iteration on the gravity turn and also on

Aim Points if several upper stages are required. However, propellant

waste is not a serious problem. The explicit technique allows the satisfac-

tion of additional constraints as required for satellite injection whete both

the lateral position and velocity must be constrained at burnout.

A second principal advantage of this mechanization arises in the area

of targeting. Only a minimum number of trajectory dependent constants is
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required. No additional constants to provide optimum trajectory shaping

need be determined.

There is a third advantage of explicit guidance techniques. This

method explicitly solves for the required initial attitude and attitude rate

required to accomplish the end conditions at burnout. The 0 and A steering

formulations command error quantities to the control system that are func-

tions of V . Then V--0 as a result of a control system damping procedure.
9 g _

That is, in the Q and A mechanizations, the lateral components of V 9will go

to zero as the solution of a first, second, or third order system (whichever

is the case), exhibiting the transient response characteristics of these

damped systems. Hence, system stability is of primary concern with sys-

tems of this nature. This type of solution behavior is not obtained with the

highly predictive explicit mechanizations. In this mechanization, the

approach to the desired end conditions is monotonic without overshoot, under-

shoot, or any significant damped oscillation. This follows from the fact

that the system is not designed to null small departures from some pre-

specified nominal trajectory.
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VII. NUMERICAL INTEGRATION GUIDANCE

This guidance technique has been used to guide large rocket vehicles

using radar data (R, A, E) measurements. As a result, a high-speed, large

(32 k) digital computer is employed to perform all the computations.

Attitude profiles are devised as shown in Fig. 5 for both pitch and

yaw. Note that there are three controls in pitch, 0o, 60 and 0f as well as a

similar number in yaw plus a final engine cut-off control T. Hence, seven

parameters at orbital insertion can be steered with this technique. These

include

h = attitude

Y = flight path angle

op = final pitch attitude

y = sideways position
y = sideways velocity

ey = final yaw attitude

V = velocity magnitude

In order to illustrate the operation of the guidance technique, it is only

necessary to consider the controls and constraints in the pitch plane.

Hence, we assume the following controls and corresponding constraints:

0o0.-.- y
0

6f - f
T .. V-.
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It is now convenient to consider a large powered flight simulation, with all

powered stages contained in the guidance computer. A nominal run is made

using the best estimate of Q,, 8o, 6, and T in the computer. Four dispersed0si0

runs are then made in which each of the four control parameters is varied

one at a time. Note that, when the final attitude is constrained, there is

essentially one less control parameter because the following approximate

relation exists between 0o, 0f and T:

o + 0 (T - AT) + Of AT = Of" (20)8o o

Thus, when final attitude is controlled, the following three equations are

obtained:

3Vf 8Vf 8Vf
AO + .'f AG + AT = AVD (21)

88 ao f aT

8hf a hf * + hf
AO + 8  + - AT = A hD (22)be0 af 8T

bYf aYf aYf
- AG + -- AOf + - AT = D (23)
a 80f a T

where the partial derivatives are obtained by numerical differencing of the

four dispersed runs from the nominal. The deviations on the right-hand

side of the equations are the deviations of the nominal from the desired burn-

out conditions. The set of three equations is solved for A6 , Aaf, and AT.

The values for Eo, Go, 0f and T are then obtained using the nominal values

and the previous attitude constraint relation.

*In practice, an exact implementation may be used for the attitude constraint
relation.
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Rate steering commands in pitch are then sent to torque the vehicle

control system rate integrating gyros as follows:

w = k+ +c At

where

0 = actual vehicle pitch altitude estimated by the Kalman filter

At = steering command computation interval (= 0. 5 sec)

k = gain factor chosen to provide system stability ( k = 1).

I A similar computation is made for yaw steering commands. In general, c will

be limited to some value, generally less than 2 or 3 deg/sec. Thus, when the

computed value of wc exceeds the limited value, then the limited value is used.

When T - AT < t < T, it follows that one of the controls is lost. Generally

closed-loop attitude steering may be terminated at this time and the constant

values for 60 and 6f employed on an open-loop basis. The cut-off computation

to obtain updated values for T is still performed approximately every 0. 5 sec

until cut-off countdown.

Several variations of this general guidance technique may be used.

It is often very wasteful of propellant to steer the final insertion attitude

as a control variable. In addition, it is often unnecessary for mission suc-

cess to control final attitude. In many missions, the payload can perform its

desired function regardless of the insertion attitude. In this cass. the

numerical integration guidance technique may be employed eliminating Of as

a control (i. e., set AT = 0). The attitude constraint equation will not be

applicable for this case. The three controls (in the pitch plane) are then
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-0 Y

60 - h

and the operation proceeds in a manner similar to the previous description.

The advantage of numerical integration guidance is that it is flexible in

adapting to vehicle configuration constraints. The disadvantage is the require-

ment for a high-speed large capacity computer.
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VIII. LINEAR TANGENT GUIDANCE

Linear tangent guidance was devised at Aerospace by F. M. Perkins

and is described in Refs. 9 through it. Although the technique has not

been employed for guidance of any launch vehicle, it has been used in

several targeting simulations. One problem with this guidance formula-

tion is that a "flat-earth" gravity model is used in the derivation. Correc-

tion terms for this ipproximation are subsequently added on. A princi-

pal advantage of these equations is that they have a multi-stage capability

without the need for Aim Points as is generally the case with the "explicit"

guidance equations.

The simple derivation for the basis of the linear tangent formulation

given herein differs considerably from that given by Perkins.

It may be assumed that it is desired to obtain the thrust vector steering

profile that will minimize the expended thrust velocity. Then a suitable cost

function is obtained as

J = 0( aT(T)dt. (25)

However, the purpose of guidance is to steer the vehicle such that the posi-

tion, XD, velocity, XDo and possibly vehicle thrust attitude, ND, are

constrained. The augmented cost function may then be formed as

IT
J f a(T)dt +-

(26)

where r, _p, V are constant Lagrange multiplier vectors, and the subscript f

denotes the value at t = T. The flat earth rocket dynamics equations are then
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x= AT g+ g (27)

where g is assumed to be constant. This equation may be integrated

to obtain position and velocity as

,T

x= x + gT + f aT ('r) (T) dr (28)

and

xf = + 0T + gT + aT () (T-T) (') dr (Z.9)

The result of substituting into the augmented cost function Eq. (26) is

J- =1 aT 1 + ('.lT) + U . (T) (T-r) + •l7) 5(T-T) dt (30)

+ fixed terms

where 6 (T-t) denotes the Dirac Delta Function. It is then clear that the

augmented cost function is minimized by choosing

S(t)' X+ ýt (T-t) + 1 6(T-t) (31)

where the symbol -denotes parallelism. Since is constrained to be a unit

vector in the direction of the thrust acceleration, this equation must be

normalized. ,-S

The derived form of the vector t(t) is subject to some interpretation.

Note that the guidance constants. are the Lagrange multipliers A, JA, and 7.

Further, it follows that thrust velocity is minimized by using constant attitude
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steering when it is desired to control only the final velocity vector. If it 's

also desired to control the final position, then A ;d 0 and an attitude rate is

required to achieve optimality. It also follows that, in the event that the

final attitude is constrained, the vehicle should change its attitude to the

desired value of attitude and shut off engines simultaneously. Since an

attitude rate maneuver such as this would generally break up the vehicle,

several seconds (210) must generally be allowed for this maneuver. Note

that this was done in the case with numerical integration guidance, where

AT = 10 seconds.

It is easy to demonstrate the relation of the above derivation to the

linear tangent guidance formulation. Consider the figure below:

I#

The figure shows the gravity vector acting down along the unit vector d. The

thrust attitude vector can then be decomposed along the local horizontal unit

vector, h, and d as

IAh+ Lh(T-t)] h + [)d + '4d (T -t)] d2

N(t)
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where N(t) is the normalization factor required to cause " to be a unit

vector. Then it follows that

INd+ Ad(T-t)
tan 0 - h + Ph (T-t) (33)

Thus, it is shown that the local tangent vector, as also derived in Ref. 9, is a

bilinear function of time.

A principal result of the Perkins linear tangent guidance program is

that the vacuum flight rocket equations with constant gravity are exactly

integrable. Hence, Perkins includes a Newton-Raphson technique for obtain-
ing the Lagrange multipliers X and ji. The values for the partial derivations

are also included.

The advantages of the linear tangent technique are many. It has a
multistage capability, provides fast reaction, and is readily targe'able.. The
disadvantages arise from the approximate computation of gravity. However,

Perkins includes a technique that has been extensively simulated and works

well.
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IX. OPTIMAL GUIDANCE

A guidance technique generally referred to as "Optimal Guidance"

is described in Refs. 12 through 18. Although this technique has not been

used to guide tbs fight of ;, rocket vehicle, the program has been simulated

for use with good results.

The basis for this guidance technique is best illustrated by the

Pontryagin Maximum Principle. A brief description of this principle

is given in Appendix C.

Using this procedure, the augmented cost function is obtained as

J = (x(T), T) + 1 +X. (V - x) + [9 (x) + aT- dt (34)

where 0 (x(T), T) denote end contraints to be satisfied. The rocket flight

dynamics constraints are used as

x=V

V = g(x) + a T

with 70 V 0 given, where X denotes the inertial vector from the center of the

earth to the rocket vehicle. As before, aT denotes the vehicle thrust

acceleration magnitude and ý its direction.

The Hamiltonian is then obtained as

H 1+ A+ V+ [g(x)+a a (35)
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It is now necessary to choose the value for • which minimizes the

Hamiltonian. It is clear that this value is obtained as

(36)

When this value for • is substituted into the Hamiltonian, the reduced

Hamiltonian HEI is obtained as

H = I + x'V + .g(x) - aT (37)

Application of the Pontryagin equations then gives:

3H,= -= (38)
dx ax

and

aH* = (39)

Thus, the following result is obtained:

(40)
ax

and the optimal direction of the thrust vector is specified as

8(41)



Note that in general there are six parameters to be specified, e. g.,

and

except that these reduce to five when the constraint that be ý. anit vector is

applied. Note that this is exactly the number of injection parameters that may

be specified at engine burnout (orbital insertion) when final vehicle attitude is

not controlled.

In the case where g is approximated as a constant (as in linear tangent

guidance), the following result is obtained:

S- 0 (42)

or

0 +0 t (43)

which corresponds exactly to the result obtained in the previous section.

When the customary round earth expression for gravity is used

G M -x (44)

3

1.. GM F 26- -

P3 j=l I

where ft, i = 1, 2, 3, denote the three components of the vector f±, x are the

components of the vector -, and 6.. denotes the Knonecker Delta.
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The above program has been developed at IBM to include many cases

for orbital insertion alternatives. For example, velocity, altitude, and

orbital inclination can be controlled as well as many other possibilities.

The advantages of this approach are that gravity is handled directly in

an optimal fashion. In addition, it is reported that the program size and speed

requirements permit use in an on-board digital computer.

The disadvantages of the technique are that it is difficult to include the

effects of atmospheric (drag and lift) forces in the optimization. In addition,

it is difficult to compensate for other path constraints on staging angle of

attack, heating vehicle rate limiting, etc. Even so, the technique is a very

powerful one and may find wide usage in future rocket flight applications as

well as targeting software systems.
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X. PARAMETER OPTIMIZATION GUIDANCE

This technique has never been used to guide a launch vehicle. The

computational speed requirements exceed those of the other techniques

described by possibly an order of magnitude. It is required that a highly

modeled powered flight vehicle simulation be run one or more times each

guidance computation cycle (zlsec). The technique described herein

has been used effectively as a general vehicle targeting technique. However,

the guidance application requires a program that will run in real time. It is

possible that this ir achiev-able at the present time for radio guidance appli-

cations using a large ground-based guidance computer. However, it is felt
that some computational speed enhancement will be required before the tech-

nique can be used with inertial systems.

This guidance technique employs an n dimensional search and optimiza-

tion procedure to determine all the discrete parameters of a rate steering

profile such as the one shown in Fig. 6. A three-stage rocket vehicle is

depicted in this figure. Note that ten attitude turning rates are shown (five in

Stage I, two in Stage II, and three in Stage III). Experience indicates that

this is an adequate number of parameters to implement even the most exotic

mission requirements. In addition, the final engine shutoff time, Tf I is

shown as a control. The problem now is to find the values of all the control

rates and Tf such that all vehicle constraints are satisfied and a cost function

(related to maximum payload or minimum propellant wasted) is minimized.

Vehicle constraints can be quite general. The following inequality

constraints are typical:

1. Dynamic pressure: q < qmax

2. Angle of attack: ce < a0 at qmax and a < as at Staging

3. Heating indicator: fqV < Ho

4. Radar and telemetry antenna look angle constraints

5. Vehicle turning rates: Iw < max
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In addition, the mission equality constraints may be listed:

1. Velocity magnitude

2. Flight path angle

3. Velocity azimuth

4. Attitude

5. Out-of-plane position

Constraints on the final attitude may be added if required. It should also be

noted that the five orbital insertion constraints defined above could be written

in many different coordinate systems, such as ECI, launch pad inertial, or

even orbital parameters such as apogee, perigee, inclination period, etc.

When all the prespecified vehicle turning rates are obtained by means

of the general n-dimensional search and optimization procedure (NDSOP), it

is only necessary to command the vehicle to follow the specified rates. The

time to shut down the engines is obtained as TV

It is clear that the key to a successful parameter optimization guidance

program depends upon the computational speed associated with the NDSOP.

The core of the program is a steamlined vehicle simulation of sufficient

accuracy for guidance purposes. It is felt that the simulation can be simpli-

fied in several areas and still be accurate enough for guidance. For example,

it is probably not necessary that the thrust model be altitude dependent. In

addition, the breaktimes associated with the discrete rate parameter specifi-

cation may be fixed rather than variable.

The operation of the n-dimensional search and optimization procedure

will be briefly explained. Consider a cost function

J = (u11) (46)

to be minimized, where ucl denotes the control vector. In the example, there

are a= 1, . .. , 11 controls denoting 1i " 1110' Tf. The augmented cost
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function is formed by using Lagrange multipliers to adjoin the constraints

as

J* (u) = ,(ua) +p GP (ua) -G (47)

where GP(ua) and GP denote the actual and desired constraints. Index nota-D
tion employing the summation convention for twice repeated indices will be

used. Greek indices range over the number of control variabl.3s, Arabic

indices range over the number of equality and inequality constraints. Inequality

constraints that are violated are treated as active equality constraints. Thus,

the number of constraints may change from iteration to iteration, and program

control logic must be included to perform this bookkeeping and counting function.

It is assumed that an initial estimate of the values of the control vari-

ables, uct and AP, is available. It is now desired to find Aua and Axp such that

the augmented cost function will be minimized. Then,

J*=* (ua+ Aua) + (NP+ 6AA) [GP(uo' + Au') - GP] (48)

This expression for J* may be expanded to obtain

o +ouC [+XP GP]+ AdaAufl[ + AP GaP1
0 0 OajL3 0

+A A• -(ua) + GPAp Aua (49)
p 0o

where J J* (Uao) andAGP = GP(u') - GP
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The cost function may be minimized with respect to &u by

differentiating to obtain

8 J* M•+ GPAp +,Aup M' 0
p a a0 (50)

where

ap *c hp XGp

The cost function may be minimized with respect to the Lagrange multiplier

by differentiating to obtain

3J*_(Ab) AGp + GP,&ua = 0 (1

8(AXb)

It is now necessary to solve these two equations for Aua and &0. The

solution may readily be shown to be

A [AGP - GPl14, 1,] [GP Mý'G•

&Up MC-pl[Ma + GapAXP]

These correction values are then added to ;,q and uA, respectively, to obtain

an improved trajectory. It is felt that the procedure should converge within

several iterations (<10) to obtain an optimum trajectory prior to launch. It is

then conjectured that a single computation of the procedure every 1 to 10 sec

during the total powered flight operation would be adequate for guidance.

(The 10-sec computation time interval is probably achievable at the present

time; however, the 1 -sec interval is not. )
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The parameter optimization approach has been simulated as a trajectory

optimization and a targeting tool. It has been noted that a very accurate com-

putation of the gradients, 4, and GP, is essential. In order to obtain the

desired speed, it is recommended that the simulation compute the gradients

analytically each time a run is made rather than to numerically difference

the runs. It has also been shown that inaccurate second derivatives, tp

and GP , are quite acceptable. These can probably be precomputed prior

to launch.
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APPENDIX A

GEMINI GUIDANCE EQUATIONS
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