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GLOSSARY

A aperture area

D aperture diameter

d column spacingx

d row spacing
y

F" focal length

i,j element index in rectangular aperture coordinates or
general integer variable

k propagation constant z- 27r/k

rn, n lattice indices

N number of phase shifter elements

p integer variable

Q phase sh;fter quantization level spacing (radians)

q phase shifter quantization levels (bits)

R (Au, Av) autocorrelation function of E

R (Iu,Av) autocorrelation function of Cvv

R aperture radius

r row and column adder quantization level (bits)

s beam steering computer quantization level (bits)

U error function lattice vector

it sin a

ix
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U limit of scan along u
0

Alu differential steering angle in sin a

V error function lattice vector

Av differential steering angle in sin

"sing

v limit of scan along v
0

W displacement vector in (u,v) space

x horizontal aperture coordinate

% x caluated at ninth lattice point

Swvertical aperture coordinate

y evaluated at mnth lattice point

ci scan angle off normal toward x

scan angle off normal toward y

ith bit state function

A difference operator

6 -,xy x difference pattern amplitude weight-Ing (illumination)function

6 (X, y) y difference pattern amplitude weighting (illumination) function

6xi6 (x.,y.)

6. Kronecker delta function

CE' CV error in sinoa, sing

c differential phase error for bit i

x



;mn total differential phase error at element mn

x ,avelength

11,v lattice vectors

9 element phase error

-mn position vector of mnth element

p distance from array center

T-u

T"V

Ta. rms error in subscripted variable

0 commanded phase angle

0' actual phase angle

Oci commanded phase of ith column for steering in u

Orj commanded phase of jth row for steering in v

Osij space feed collimation phase at element ij

Ooi insertion phase of the ith bit in a phase shifter

Oij commanded phase at element ij

Underlined symbols represent vectors. The non-underlined symbol of

a vector quantity represents the scalar magnitude of that vector.
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1. INTRODUCTION

The major contributors to angular measurement errors in phased

array radars include receiver noise, instrument noise, and target glint.

At long range, the errors tend to be dominated by noise at the receiver.

At shorter range where the. SNR is .high, the instr.u ient errors can pre-

dominate. At very short range, angular error due to target glint can provic!,

the dominant source of error. Propagation and multipath can also cause

substantial errors, but these will not be considered in this paper.

In situatinns where a radar is used to control the intercept of a target

by an interceptor, the SNR at the intercept range is often quite high and

object tracking errors tend to be dominated by radar instrument errors.

If, furthermore, the same radar is used to track both target and interceptor.

fixed or slowly varying instrument bias errors do not, to a first order,

affect the error in measuring the relative position of target and interceptor.

For such problems it is the randomly varying (i. e., with angle) component

of the angular instrument errors which is of greatest concern.

Attention here is thus confined to the randomly varying component of

phased array angular instrument errors. The effect of .hese errors on

tracking accuracy depends both on their magnitude and spatial correlation

properties, i. e., the manner in which these errors change with beam

pointing angle. In many analyses these instrument errors are assumed to

be statistically uncorrelated from pulse to pulse. In practice these errors

will tend to decorrelate at a rate which depends on the angular rate of the

object being tracked. The assumption that these errors are statis-'ically

uncorrelated can lead to a serious underestimation of angular tracking

errors (and hence interceptor miss distance).

The principal contributors to the random angular instrument errors

considered in the analysis are-,

a. Finite computation accuracy in the beam steering computer,

including word truncation in row and column adders

1



b. Truncation of steering commands in the digitally controlled

array phase shifters

c. Phased array element differential phase errors.

These phase errors in the antenna aperture illumination produce errors in

the position of the null in the monopulse difference pattern. An error can

also arise from an error in the slope of the monopulse difference pattern,

but it will be assumed here that the target being tracked is very close to

the null of the difference pattern so that this error can be safely neglected.

The manner in which phase errors influence angular measurement

errors depends on the statistical properties of these phase errors across

the array face, A spatially periodic behavior in the errors can produce

very large angular measurement errors at certain pointing angles. (See,

for example, Sec. 7.2 of [iW.) It is well known [1], [2] that the use of

space feed collimation or the addition of a random phase shift (appropriately

compensated in the beam steering command) to each element will tend to

smear out these spatial periodicities so that the angular measurement errors

do not become very large in certain directions.

Adiditionally, certain techniques can be employed in the radar to ensure

that these errors become largely decorrelated from pulse to pulse. These

include the use of angle dithering, frequency dithering and phase dithering.

The effectiveness of these dithering ttchniques has been analyzed with the

aid of a specially developed computer program for modeling phased array

angular instrument errors. The results are illustrated for a typical phased

array configuration.

2



II. METHOD OF ANALYSIS

Beam steering in a planar phased array antenna is achieved by

establishing a linear phase gradient across the aperture which, in turn,

provides the desired direction of wave-front propagation. As is expected,

-- amplitude and phase errors across the aperture face will cause errors in

both the transmitted wave front direction and the measured angle-of-arri'ral

.)f reflected energy. Angle-of-arrival of energy reflected from an object

is determined by processing both the output of the sum beam and the mono-

pulse difference output [3]. It has been shown by Nester [4] that when

amplitude and phase errors across the aperture are small, angle measure-

ment errors are given to a first order by a weighted sum of the phase errors

in the monopulse difference pattern illumination function. In particular,

Nester's analysis shows that angle measurement errors are independent, to

a first order, of sum pattern amplitude and phase errors and difference

pattern amplitude errors.

The phase error at each array element in the monopulse difference

pattern illumination function consists of a bias component, i.e., insertion

phase error, and a variable error which depends on the commanded phase.

The insertion phase error, as Nester shows, gives rise to a fixed instrument

bias error. Since instrument bias errors are of no concern here, inser'ion

phase errors will be ignored in this paper. The variable phase errors are

due to finite computation accuracy in the beam steering computer, truncation

of steering commands in the digitally controlled phase shifters, and element

differential phase errors. The latter errors are associated with the bit

setting of each phase shifter and will be defined, along with the other error

sources irn Sec. II-C.

A. Phased Array Geometr~

The antenna face is assumed to consist of a regular planar lattice of

elements. A typical array geometry is shown in Fig. 1. As shown, x and ?

are orthogonal car esian coordinates across the aperture face, and the z

3
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coordinate, normal to the face aperture, is chosen to form a right-handed

coordinate system. The element spacing is determined by lattice vectors 4_

and v which are not necessarily orthogonal and do not necessarily line up

witi, the x or y axes.

The beam dire,:1ion is determined by the angles a and P, wherc a is the

angle between the beam and the yz plane, and P is the angle between the beam

and the xz plane, as shown in Fig. 1. It is most convenient to express point-

ing angle by sine coordinates u = sina and v = sinp. The array in Fig. 1 is

shown as circular with an equilateral triangular grid structure, but the method

of analysis is not restricted to this case. The geometry of Fig. I is assunivci

for all the cases analyzed in this paper, however.

The position of a given element in the lattice is characterized by

indices m and n, and the vector displacement of the mnth elemeot in the

aperture face Emn is given by

Pmn : mj+nv + )

The x and y components of the vector Pnn are simply

X mn m4x +nv + m

Y mn =n~ my. + niy ,

where tx and g y are the x and y components ofE and vx and vy are the x and

y components of v.

In the lattice -tructure, the array elements can also be put on a

rectangular grid which is lined up with the x and y axes, as shown in Fig. 1.

The indices i and j denote the column number and row number of the rectan-

gular grid. When the array lattice is non-rectangular, only certain i J conlon-

ations are occupied by phased array elements.

5



B. Error Formulas

The angular measurement errors are computed from a weighted sum,

extending over the aperture, of phase errors at each element, as derived by

Nester (see Eq. (60) of Ref. [41). The two orthogonal angle errors,

expressed in sine-space coordinates u and v are:

•2 6 xmngmn
S- n (4}
u k7."6 x

4.d xmn mn
m, n

E 6ymn mn

C= m,n (5)
kF6ymnYmn

jn,n

The quantities appearing in these expressions are defined as follows:

F = error in u
u

c =error in vv

x (x, y) 2 x monopulse difference pattern amplitude weighting

(illumination) function at coordinates x, y

6 (x, y) y monopulse difference pattern amplitude weightingY
(illumination) function at coordinates x, y

Throughout this analysis pointing angles will he expressed in sine-space

coordinates. In particular, the errors e and ( are expressed inu v

,nillisines (mis).

6
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6 xmn x (x(mnYmn)

ymn y mn, mn

S(x, y) - phase err'or a! the conrdinates x, y

9mn 9n(X n'ymn)

k propagation constant =.L'"

A

Note that 6x is odd in x but even in y, while 6y is even in x and odd in y. It

is readily apparent from (4) and (51 tha'l a constant phase error across the

array face does not contribute to the angular errors. It is evident that once

the aperture, i.e., shape, lattice structure, etc., and the differe:w¢c pattern

weighting function have been defined, the only qwuntities that vary with scan

angle are the n" . In particular, the denominators in the above two expres-

sions are merely normalization constants. It is of interest, therefore, to

examine the sources of the errors which determine the 9 nln

C. Scan Dependent Phat-e Errors

Each digitally controlled phase shifter controls the phase at each

element to a binary submultiple of 21r radians, i.e., 1800, 900, 450, etc.

In practice, each bit of the phase shifter introduces a phase shift, say 00i

in the "off" state and 0oi + 21 /2i + Ei in the "on" state where i denotes the

bit number, with bit t controlling 1800, bit 2 controlling 900 and so on.

With all phase shifter bits in the "off" position, the total phase shift is

110 This residual phase is called the ir.sertion phase. This insertion

phase, which varies from element to element due to manufacturing tolerances,

is independent of phase shifter setting and hence does not change with be,Žam

pointing angle. It is readily seen from Eqs. (4) and (5) that these insertion

phases introduce fixed bias errors in the angular measurements. Since the

constant insertion phase error generates only bias errors, the 0oi are taken

to be zero. The error fi represents the phase error corresponding to the

ith bit if it is "on." These errors are the differential phase errors and resuit

7



from manufacturing tolerances. The statistical properties of these

differential phase errors depend, of course, on the rmanufacturing pr-cedures

employed. Since thes, errors are scan dependent, their contribution to the

measurement errors, cuand evo must be taken into account.

A major source of phase error at each array element is due to truncation

of the binary phase shift commands in the beam steering computer and at the

element phase shifters. In order to determine how these truncation errors

affect angle measurement errors, consider how the phase shift command.5

are generated for each array element. The beam steering command for the

ijth element, QSi' is given by the sum

ij ci rJ sij

where

Oci - commanded phase of ith column for steering in u

rJ = commanded phase of jth row for steering in v

0sij z space feed collimation phase at coordinates xis y..

Osij = 0 if no space feed collimination is present. The linear phase grad;ent

commands for row and column steering are given in terms of the angle

coordinates u and v by

loci kx.u (6)

Orj = kyjv (7)

, 8



where

x. = horizontal aperture coordinate of the ith colum,.

yj :vertical aperture coordinate of the jth row.

The space feed collimation phase sij for the ijth element is determined from

0i = k F2 + x2 4 Y - F] (8)

where F is the focal length of the space feed structure.

In the beam steering computer the quantities 0 ci' Orj and 0sij are

computed to s bits and truncated to r bits. These quantities are then added

and the result truncated to q bits, which is the number of bits requirAd to

control the phase shifter.

Figure 2 illustrates how these beam steering operations are simulated

in the computer error analysis program in order to obtain the element phast,

shift errors t which are needed to determine angular errors c u and fv.

For any chosen lattice points m and n, the row and column indices i and j arv

computed with the aid of (2) and (3). Oci and 0 rJ are then computed from (6)

and (7) using the commanded pointing angles u and v and the cartesian

coordinates of the elements x. and yj. If present, the collimation phase is

readily calculated from (8). The row and column addition indicated is

performed as described above and the result is truncated to q bits. The 1)(,ox

labeled "compute differential phase error, etc." represents a bit-testing

function that senses the phase shifter bit setting and determines which bits

are "on." In the computer simulation, the differential phase error for each

bit in the array is separately generated with the aid of a random number

generator and stored for use by the program. For each bit that is "on," the

corresponding differential phase error is recalled from storage and added

to the phase developed at the phase shifters. Comparing the phase thus actually

developed with the desired phase, results in the elemental phase error,

9
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Reference to Fig. 2 shows that the collimation angle 0 sij has to be

computed or recalled many times, typically once for each phase shifter

element. It has been shown by Hatcher [ 51 that this computation can be

simpilfied considerably by expanding this collimation term as a sum of two

terms where the first depends only on x. and the second only on y.. This

procedure reduces the number of collimation computations to the sum of the

number of rows and columns. The expression for the collimation phase can

be expanded in a Taylor series-,

0 ý: _a- (x 2 + y?) + higher order terms ofsii XF ~i i even powers of xi and y

Thus 0.s 0. 0..' where 0s ix xA/XFauO 0 Tsj yj It. The su•mmation
siJ 1'O 3 3l i

of the higher order terms, which are even power; - x anr- j., weighted by the

odd difference pattern illumination functions, vanishes i6entically in the calcu-

lation of E u and f as defined .',y Eqs. (4) and (5). Thus the omission of these

higher order terms does nol contribute to the angular errors but does produce

some degradation In main beam gain and sidelobe levels, as discussed by

Hatcher 1 51. Nevertheless, this degradation does not prove to be serious in

most situations of interest. A schematic diagram of this mode of operation is

shown in Fig. 3. The quantities 0 ci' Orj' Osi' and 0sj are computed in the beam

steering computer to an accuracy of s bits. The row and column commands

are then added and truncated to r bits. From this point on, the sequence of

operations in Fig. 3 is identical to that of Fig. 2.

The approximate method for calculating the collirr;ation phase as described

above was used for all applicable cases analyzed in this paper.

11
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D. Randomized Quantization Levels

A q bit phase shifter has uniformly spaced quantization levels (ignoring

differential phase errors) with spacing

ir

The generation of phase shifter quantization errors is illustrat.::l in Fig. 4.

The solid line represents the desired phase. The dashed staircase function

is the actual phase due tn quantization. The difference between these functions

gives a periodic sawtoot[i error with amplitude Q/2. This sawtooth is an odd

function of commanded phase. An erroj' of this type results wherever a binary

number representing phase is truncated.

In the situation where a linear phase function is applied across the

aperture face, quantization errors will cause errors which will be periodic

across the face of the aperture. As noted earlier, spatially periodic phase

errors produce angle m-asurement errors in certain directions which can

be quite large. It is well known that the space feed collimation correction

tends to smear out these periodicities and thereby substantially reduces the

maximum angular error [I], [ 21. A more direct approach sometimes

employed on corporate fed arrays is to deliberately vary the starting position

(but not the spacing) of the quantizationi levels in a random way from element

to element. This randomization may be implemented in some types of arrays

by randomizing the length of cable (or waveguide) which drives each element

of the array, and compensating for the differential delay path by adding an

appropriate compensation phase number to the commanded phase for each

element at a point prior to truncation of the beam steering command in the

q bit phase shifters.

The dramatic improvement in accuracy which results with the use of

randomized quantization levels is illustrated schematically for a worst case

situation in Fig. 5. To simplify the illustration, a one-dimensional case

has been considered where the desired phase is a linear function of the

13
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aperture coordinate x. As illustrated in (a), the beam steering off the array

normal is small, and the commanded phase causes only the phase shifters at

the very edge of the aperture to switch out of the zero state. As seen from

part (b), the difference between the commanded and actual phase functions is

a linear phase error term which will cause an angular error approximately

equal to the commanded steering angle. Part (c) of the figure illustrates the

effect of randomized quantization levels. The horizontal dashes indicate the

location of the nearest quantization levels for each phase shifter. In all

cases, the commanded phase is quantized to the nearest available quantization

level. The resulting phase errors at each phase shifter, shown in part (d) of

the figure, are seen to have a random character which will not give rise to a

large angular error.

E. Evaluation of the RMS Angular Error

A formula for the rms angular error is developed in this section for the

case where phase shifter phase errors are spatially uncorrelated. The

assumption of uncorrelated errors is valid only if some means of phase

randomization exists, such as the method of randomized quantization levels

discussed in the previous section. Space feed collimation also provides a

form of spatial decorrelation, although regions of correlation remain, as will

be discussed later. The condition for uncorrelated phase errors is given by

2

n 9 1 1 = 6mm, 6nn'
mn mmnnn

where the bar denotes mathematical expectation (in this case an ensemble

average) and 6.. is the Kronecker delta function. For the error sources
2

considered, the mean square phase error 0-g is the same for all elements.

16



From Eq. (4), noting that mn = 0 (since insertion phase errors have been
mn2set to zero), it follows that ru = 0. The variance of u, ru is then given by

2 2na =E mF (9
k-(1:6xmnxmn)

An exactly analogous expression can be derived for 2
V

o.2 6 5mn1

W =rn(0)

v (E6ymnymn)

2m,n 2
These expressions are easily evaluated numerically. Values of a and a
computed for various difference pattern weighting functions are given

in Appendix A. The estimates of variance from computer simulation

generated sequences of Eu and E v are in excellent agreement with values

calculated from the above formulas in those cases where quantization level

randomization or space feed collimation is employed.

17
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III. PERIODICITY AND SYMMETRY PROPERTIES

OF ANGULAR ERRORS

In this section we shall derive some of the more useful periodicity

and symmetry properties obeyed by the phased array angle measurement

errors. These properties aid in the interpretation of computed error func-

tions and enable the amount of computation to be substantially reduced.

These properties arise from periodic behavior of the array lattice, the

particular symmetry properties of the lattice structure considered, and the

symmetry and periodicity properties of phase errors due to truncation of

binary steering commands in each element phase shifter.

in addition to the lattice properties specified by the lattice vectors

and v, we make use of the following relationships:

6 (x, y) 6x (x,. -y) =- - 6x(-x,y) (1)

6 y(x, y) = 6 y(-x,y) = -6y(x,-y) 02)

and, as seen from Fig. 4,

9(0) =-9(-0) (13)

9(0)= ( + Q) (14)

where g is the phase shifter quantization error (in the absence of quantization

level randomization) and 0 is the commandLd phase. The commanded phase at

the point (x, y) for a commanded angle (u, v) is, ignoring collination,

S= k(xu + yv) (15)
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With ihese relationships, Eqs. (4) and (5) can be put in the following form,

where proportionality con3tants have been omitted:

r u(u, v) - E 56x(xmnn' Yrnn [k(Xmnu -- YmnV)] (t6)

m, n

C v(U, v) - E y(x, Vn'mn) r [k(xmnU + YmnV)] (17)

m, n

These relationships are now in a convenient form for deriving the desired

properties of the error functions.

Let w be a vector with components (u, v). w represents a vector

pointing angle in (u, v) space. Periodicities in (u, v) space are found by

determining values of Aw which leave eu and cv unchanged. It can be

verified by direct substitution in the above equations that displacements

Aw = U and Aw V leave F and f unchanged, where

v - oQ( x (a, x Y)) oQ( 2V - (1-)
-- 2x (_X x') k2 2

k(.ý 0 ( x k(i2 V2  (kjY)2)

WVriting ci(u, vI u (w), it follows that

fu(w + m'U + n'V) r(w) (2O)
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for arbitrary integers ml and n', and any w. Similarly

v(W + m'U + n'V) = v(W) . (21)

Thus, the lattice periodicity of the array leads to a lattice periodicity in the

error functions cu and Ev characterized by the lattice vectors U and V. It

can be readily shown, in particular, that an equilateral triangle lattice

gives rise to angle error functions which also have an equilateral triangle

lattice structure.

Consider now the symmetry properties of Eu and v in (u, v) space.

Using (13) together with (16) readily gives

fu(-u, -v) = -Eu(u, v) (22)

Similarly,

cv(-u, -v) = -E(u, v) . (23)

These relations can be written more concisely as

(u(-W_) = - Eu(W) (241

fv(-W) =-v(W) . (25)

Equations (24) and (20) can be combined to give

(mI + w E + - n' n' 
(

•u(E -U + " v + V +• • M )• J a i_ (26)



and

(m' n' w) m' n' w)

Cv -IN _+- V2 + - 2 U +i-V -__(Y

for arbitrary intcge.s m' and n'. The error functions thus have anti-

symmetry points about the basic Lttice points and mid-lattice points (i. e.

midway between lattice points) of the error surface.

Consider, finally, array lattices which have rnflection symmetry about

the x and y axes. The triangular lattice shown in Fig. I is an example of

such a lattice. Then if we replace xrnn by -xmn and/or ymn by -ynmn every-

where in the array, the lattice structur.2 remains unchanged. Replacing

xmn by -xmn in (16) yields, using (ii),

fu(u, v) = u(-U, v) (28)

Replacing y n by -ymn in (16) yields, using (Ii),

u (u, v) = u(u, -v) (29)

In a similar manner one can show

Ev(U, v) = (-U, v) (30)

and

f (U, v) - (u, -v) (31)

22



For the particular lattice structure shown in Fig. 1, the vector U

is aligned with the u axis. For an arbitrary integer m' it follows that

f (U + m'U, v) = Eu(u. v) (32)

Combining this with (28) gives

(u(M - + Uu, V) -CuW U, -uv (33)

One can show in a similar mranner

Ev( U + u, v = Ev( U - u, v) . (31)

Additional symmetry relationships could certainly be derived using similar

methods.

It can be shown that poperties of the error functions derived above

still remain valid if a space feed collimation term is included. These

properties will be destroyed, however, by the inclusion of quantization level

randomization or element differential phase errors or both.

23



IV. ARRAY ASSUMPTIONS AND FORMAT OF COMPUTATIONAL RESULTS

The array example used in this paper is a circular array with an

equilateral triangle lattice structure, as shown in Fig. t. The ar,-ay parame-

ters, as given below, are representative of those which have been considered

for command guidance intercept applications.

d (column spacing) = 0. 500 Xx

d (row spacing) = 0. 289 Xy

Ix (lattice parameter) = 0. 500 X

Sy (lattice parameter) = 0. 289 X

V (lattice parameter) = 0.000X

v (lattice parameter) 0. 578 Xy

D (aperture diameter) = 26.4 X

R (aperture radius) D/Z = 13.2 X

N (number of elements) = 1891

6 (difference pattern sin ux/R
X amplitude weighting

function)

6 (difference pattern sin nry/R
Y amplitude weighting

function)

F (focal length in the - D
space feed mode)

q (no. of phase shifter - 3
bits)

The boresight beamwidth of this array is approximately 2.6'.

25
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The computer error analysis program produces graphs of the angle

terror E and E as a function of u and v, and an autocorrelation function of

these errors, denoted R (Au, Av) and R (Au, Av), plotted as a function ofU V

differential steering angle, Au and Av. The sample point spacing for the

simple planar ctits was chosen to be 0. 25 ms. The computed rms value of

the angulai error annotated on each graph refers only to the scan sector

actually shown., Unless otherwise indicated, the differential phase errors are

set equal to zero for reasons to be discussed later.

Many of the plots shocn in the subsequent section are perspective views

of the angle errors and the cnrresponding two-dimensional autocorrelation

function. In each of these -ases, the sample point spacing was chosen to be

0.5 nins in both u and v. "he properties of this perspective plot are illustrated

in Fig. 6. Each of the perspective plots is viewed at 60' clockwise from

the u axis at an elevation angle of 35'. The limits indicated in the figure

are

v 20 ms for error surfaces

Au Av° 15 ms for autocorrelation surfaces

The computation scar is performed parallel to the u axis at constant v,

similar to an ordinary raster scan. The 6400 point error surface thus

obtained was used to compute the corresponding autocorrelation functions.

The plotting lines are drawn at the computation interval, viz., 0. 5 ms. Edge

effects were neglected in the computation of these autocorrelation functions,

which were generated by incrementing Au and Av in one quadrant only. Points

in the remaining quadrants were obtained by symmetrically transposing poi-its

about the origin as justified by symmetry properties of the autocorrelation

ftunct i on.
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"Fhe computer error analysis program is written in FORTRAN for

use on the IBM 370/155. Special truncation and bit sensing functions that

operate on the binary representation of words are required. Because of the

32-bit word structure peculiar to this machine, reference phases are com-

puted to 24 bits, i.e., the quantization step size of computed phase errors

is 2 1T/224. The amount of storage required for any particular array lattice

is given approximately by 3N 32-bit words plus N(2 + q) 16-bit words.

Execution time is approximately i20N Lsec to compute both E u and cv for one

beam position and 3-bit phase shifters, including differential phase errors.

A. Quantization Lobes

In the absence of quantization level randomization and space feed

collimation, the angle error exhibits large peak values, called quantization

lobes, near the array normal and at integral multiples of the error periods

U, V. These lobes in the sine alpha error Eu, which are not unlike grating

lobes, are apparent in the computer generated plot, Fig. 7. Note the linear

portion of c with slope of -i in the region -5 < u <+ 5 ms. In this region, all

phase shifter phase commands are smaller than half the quantization level

spacing Q. Since none of the phase shifters switches out of the zero state,

the resulting error is the negative of the commanded steering angle. The

angle at which the magnitude of the error reaches a peak is approximately

where the phase shifters at the edge of the array just start to switch into the

first quantizing level. The values of u for which this maximum occurs is

given approximately by Iu Imax Ic .5ms. The normalized autocorrelation

function of c is shown on the right side of Fig. 7. The autocorrelation func-u
tion and the rms error in Fig. 7 arp -,nt representative of the large sector

average due to the predominance of the large peak in the sample interval.

.'igures 8 and ') show the two-dimensional error surfaces c (u, v) arid V(up v),

rspctv'ly. Note that the curve in Fig,. 7 represents a planar cut through

tht, .urit' 1, C• ýU,, 0 of Fig. 8 normal to the vN axis and at v 0. The sym -

,w•clr properties. as dliscussed in Sec. III are clearly visible in both c and
U v

28
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Fig. 8 Per-3pective View of the Sine Alpha Error Illustrating
Phase Shifter Quantization Lobes
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1U

Fig. 9 Persepctive View of the Sine Beta Error Illustrating
Phase Shifter Quantization Lobes
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B. Addition of Space Feed Collimation

The case presented in Fig. 10 is exactly the same as the case presented

in Fig. 7 except that space feed compensation has been included. The colli-

mation was computed on a row and column basis as discussed in Sec. II-C.

In comparing this figure to Fig. 7, it is noted that, in addition to a 10:1 change

in vertical scale, the resulting error is much more "random." As expected,

the error function is still anti-symmetric about the origin, as discussed in

Sec. III. The autocorrelation function exhibits a 3 dB width of about 1. 7 ms.

The rms error is found to be 0. 149 ms, which happen? to agree well with the

predicted large sector rms value of 0. 1486 ms calcuiated from Eq. (9). In

the case of the sine beta error, c v' which is symmetric about the origin, the

rms error is 0. 203 ms, which compares with a value of 0. 148 ms calculated

from Eq. (10). This apparent discrepancy is due to the fact that the space

feed collimation is not completely effective in randomizing phase errors

across the array face. Phase errors of neighboring elements still tend to be

correlated. Thus the rms angular errors calculated from a limited scan

sector cannot be expected to conform closely with errors predicted from

Eqs. (9) and (10).

Figure i is the sine alpha error surface in the vicinity of the array

normal and shows the same scanning region as Fig. 8 and 9. This figure

shows that E (u,v) is zero whenever u is zero, consistent with the anti-
u

symmetry properties discussed in Sec. III. In fact, careful inspection of

Fig. Ii reveals the presence of other symmetry properties as discussed in

Sec. III. Figure 12 is the two-dimensional autocorrelation funrtion Ru (u, Av)

of u (u,v), i.e., of the error surface shown in Fig. it. The shape of

R v(Au, Av) is generally similar. This autocorrelation function, as well as

the one shown in Fig. 10, shows significant spatial correlation for differential

angles of 2 ms and beyond. This spatial correlation could significantly degrade

radar performance for applications such as command guidance intercept.
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Fig. 12 Perspective View of the Sine Alpha Autocorrelation Function
in the Presence of Collimation



Thus far the number of bits carried in the beam steering computation

is large so that truncation errors are not significant. Figures 13 and 14

illustrate the importance of row and column truncation errors. Figure 13

shows the effect of truncating row and column steering commands to 6 bits.,

The rms error is increased noticeably to 0. 228 ms. In Fig. 14, the row and

column steering commands have been truncated to 4 bits, and this results in

a situation where the row and column truncation errors dominate the phase

shifter truncation errors, even though 4 bits are employed in the adder and

only 3 bits in the phase shifter. The rms error for this case is 0.45 ms.,

This computational result has been corroborated with an approximate

theoretical analysis.

Note that the antisyrnmetry property of c u is preserved. Furthrmore,

it has been observed that the error e u in the present case with 4-bit rcýv and

column truncation is almost periodic, with a period which is half the period

given by the 3-bit phase shifter. The error is not exactly periodic at the half-

period intervals because of the presence of the error due to the 3-bit phase

shi ite r.

C. Effect of Randomized Quantization Levels

As discussed in Sec. II-D, quantization level randomization is an

effective technique for eliminating spatially correlated phase errors which

give rise to quantization lobes, i. e., large angle errors, in certain directions.

Figure 15 illustrates the error obtained in the absence of space feed collima-

tion but with quantization levels randomized. Note the absence of any symmetry..

As expected, the rms error is very close to the theoretically predicted value

of 0. 149 ms. The autocorrelation function width is not materially different,

however, when compared to the autocorrelation functions of the previous

cases. Figure 16 shows u (u, v) in the same scanning sector as Figs. 8 and 11.

Some of the regular features discernible in Fig. 11 are absent in the present

case, The ( surface has a generally similar character. Figure 17 shows

thet .altocorrelation function RU (.u, -v). R ,(-•u, Av) has a similar shape.

I hlt, .Iialt of lhtst, surfaces near the central peak is very similar to that
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AV

Fig. 17 Perspective View of the, Sine Alpha Autocorrelation Function

in the Presence of Randomized Quantization Levels
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shown in Fig. 12 for the space feed collimation case. This result indicates

that the spatial statistics of the angular error in the case of randomized

quantization levels is generally similar to the case where space feed collima-

tion is employed. The width of the central peak at the 3 dB point is still about

2 ms, as it is in those cases employing collimation.

D. Differential Phase Errors

Thus far differentj .1 >--ase errors have been ignored. Figure 18

illustrates the effects of including moderately large differential phase errors

in an array with randomized quantization levels. In this configuration a. 100,

one-sigma random differential phase error is generated for each bit with the

aid of a gaussian random number generator and stored for later use "by the

computer program. The errors so generated are independent from bit to bit,

even within the same phase shifter element. The increase in the rms error

shown in Fig. 18 is representative of the large sector average increase in

rms error due to W0, one-sigma differential phase errors. To compare-

the relative magnitude of these differential phase errors to the quantization

error for the case of 3-bit phase shifters, consider the total differential

phase error mn at element mn:

Fmn I + IE 2Y2 + 1 Y3

where

= ith bit differential phase error, i = 1, 2, 3

y= ith bit state function, i = 1, 2, 3

1 if bit i is "on"

0 if bit i is "off"

42

- - -- --- ------



-~ w

J'

LL'

grii

0

00

0 0
4' IX

ini inw

0o %0 -

~i=i _I-li

zz

m~ui w w

004

00 0
o LL I(sw) P~I 3NISx '!O3±NIUIlSýl3ON

w Mix oo43



The subscript mn has been omitted from c i and yi for brevity. By appropriate

averagi ,g over ¶'ie states of Yi, and ensemble averaging over the states of e

it is readily shown that

u 2y+(T +"

t" 4 q ( 2 3)

With ••IE = crc2 = Lf3 = 10', the rms differential phase error, denoted a, is

given by

S=8.670

The error ýmn (in the absence of differential phase errors) is uniformly

distributed over the interval -LQ/2 (= *-Z.5*). Therefore, for q = 3 and c. = 0,

ai 13'0

The inclusion of the differential phase error of 8.670 causes the error T to

increase from 13.0 to 15. 60. This increase affects a-u and ov proportionately,

as shown by Eqs. (9) and (10).

Since the differential phase errors can be made significantly less than

100 rms, these results provide good justification for ignoring differential

phase errors as an important source of angular measurement error. It is for

this reason that differential phase errors have been ignored in the other cases

pre sented.

A plot similar to Fig. 18 for the case of space feed collimation shows

that the presence of differential phase errors destroys the symmetry and

periodicity properties noted earlier. To the extent that the differential phase
errors are small, these symmetry and periodicity properties are approxi-

mately obeyed.
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V. i£ECORRELATION TECHNIQUES AND

COMPUTATIONAL RESULTS

If the pulse-to-pulse correlations in the angle measurement error

prove to be of consequence, it may be desirable to implement one of several

dithering techniques to reduce these correlations. The principal techniques

for accomplishing decorrelation ere (a) phase dithering, (b) frequency

dithering, and (c) beam dithering. These techniques produce decorrelation

of the angle errors by forcing random fluctuation of the element phase

commands from look to look.

The angle correlation is due to phase error (tmn) correlation from

look to look. The purpose of the dithering techniques, therefore, is to

generate commands that will tend to make the element phase error uncorce-

lated from look to look. Typically, the element phase error need only

change by a phase of Q/4 (Q = 2Tr/2q) to effect nearly complete decorrelation.

A. Phase Dithering

The phase dithering technique consists of generatir.g a random phase

angle (from 0 to 2rr) and adding it to each phase shifter phase command.

This is most easily done in the beam steering computer, where the randomly

generated angle can be added to each row or column command. The

resultant change in the absolute phase of the wave front leaves the direction

ol the beam unchanged and is of no consequence for many applications. In

general, the only situation of interest in which the random phase could be

undesirable is the case of second time around returns (or higher order
range ambiguities) from clutter, if phase coherent clutter rejection

techniques are required.

Fig'.:re 19 shows the sine alpha error surface f u in the same scan

sector as the previous perspective plots. In this case, however, phase

dithering has been added to the ordinary row and column collimation
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configuration whose results were presented in Sec. IV-B. While this error

surface appears to be much "hashier" than the surface of Fig. it, the

really dramatic change in the correlation properties can best be seen in the

subsequent plot of Ru(Au, AV) in Fig. 20. The behavior of R v(AU, Av) is

identical to R (Au, Av). The error decorrelates completely in a differential

angle equal to the spacing between looks, in this case, 0. 5 ms. Actually,

it is not necessary to move the beam at all to obtain decorrelation with

phase dithering.

The time-domain autocorrelation function of the measurement error,

with or without beam motion, contains an identically large central peak with

complete decorrelation in a time equivalent to the inter-pulse period, i. e.,

Lhe rate at which the phase shifters are dithered. This technique is equally

effective in space-fed and corporate-fed arrays.

B. Frequency Dithering

The essential array design requirement for effective decorrelation

through frequency dithering is that the phase shifter phase command include

an angle which compensates for the feed-to-phase shifter propagation delay.

Thus, if the frequency is changed, the compensation phase changes, result-

ing in a new phase error. All space-fed planar arrays fall into this category.

A corporate fed structure with varying cable lengths to each array element

could also be designed to employ frequency dithering.

Frequency dithering, while not as easy to implement as phase dither-

ing, is a technique which will often be available for other reasons. In

particular, frequency agility is sometime implemented for ECCM or

increased detection range against scintillating targets. In these cases,

instrument error decorrelation is an additional benefit to consider. Fre-

quency dithering has the disadvantage of destroying pulse-to-pulse phase

coherence which might be desirable for coherent integration and/or clutter

rejection.
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Fig. 20 Perspective Vie~w of the Sine Alpha Autocorrelation Function

with Collimation and Phase Dithering
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Figure 2 1 shows that frequency dithering is equally effective in

decorrelating the error. This space-fed configuration was scanned over
the same sector as Fig. ii. The total range of frequency dither in this

case is 10% (±57o), uniformly distributed across the band. On each radar

look, a new operating frequency within the band is chosen on a random

basis. It is easy to show that a 5% change in frequency causes most of the

phase shifters to change by at least Q/4.

C. Beam Dithering

The angle errors, as shown in Sec. IV-B, indicate that correlations

for the particular array studied never exceeded more than a few rnillisines.

A natural decorrelation technique, therefore, is to steer the beam slightly

more than necessary, in a random way, so as to enhance the natural

decorrelation that already exists. The resulting degrad.tion due to off-axis

tracking is small, since the total excursion due to dithering can be chosen

to be much less than a beamwidth. The implementation of this technique

is also quite simple. It is entirely contained in the beam steering computer.

A random number generator selects two angles within specified limits.

These are then simply added to the beam steering computer input steering

commands.

In order to generate an error surface which has the correlation

properties shown in Fig. 22, a random angle generator was used which

produced variates with a uniform distribution from -5 ms to +5 ms, or

about 20% of the beamwidth. The beam is dithered to a new random angle

(both u and v) on each radar look. The correlation function is seen to drop

very rapidly to a small pedestal and then becomes very small. This tech-

nique night be improved by changing the distribution of the randomly varying

angle commands, although this possibility has not been investigated. A

disadvantage of beam dithering is that the total beanm excursion is limited

somewhat by off-axis degradation. In situations where MTI is employed to

reject clutter, beam dithering may seriously degrade MTI performance. It

is concluded that beam dithering is a good decorrelation technique but is less

attractive than frequency dithering.
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Fig. 21 Perspv~ctivv Viewv of the Sine Alphia Autocorrelation Function
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Fig. 22 Perspective View of the Sine Alpha Autocorrelation Function
with Collimation and Beam Dithering
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VI. SUMMARY

This paper describes an analysis of the random instrumentation angle

measurement errors of phased array radars. A number of calculations of

angle measurement errors were performed for a particular, though typical.

array configuration. These calculations were aided by a comprehensive,

computer program, which was developed in sufficiently general form to

permit its application to a wide class of phased array radars. The prograw

simulates finite computation accuracy in the beam steering computer, trun-

cation of steering commands at the row and column level, truncation of

steering commands at the phase shifters, and the effects ot differential phase

errors. The example array was examined in various modes of operation,

with and without quantizat'on level randonmization and with and without space-

feed collimation. The effects of row and column adder computation accuracy

were examined. The statistical behavior of the angle measurement error

with and without several dithering techniques was determined. For the typical

array configuration considered, the following conclusions can be drawn:

a. A beam split ratio (neglecting bias errors) in excess of 300:1

can be achieved with the use of only 3-bit phase shifters.

b. Truncation of row and column steering commands was found to

dominate the angle error in certain array configurations. in

these cases the beam split ratio may be reduced below 100:1

and the angle error is nearly periodic at a submultiple of the

array period.

c. Differential phase errors as large as 10%, one-sigma per

bit were found to have only a minor effect on rms angular

measurement error. The rms error increased only about

20%. A bias error on the order of 0. 1 ms was also observed.

d. A steering angle of approximately 2 ms in any direction will

cause a 50% drop in the autocorrelation of the angular errors.
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The horizontal cross section ef the central peak of the
two-dimensional autocorrelation function is roughly circular,

i. e., there are not strong "preferred" correlation directions.

e. The phase dithering technique was shown to be completely

effective in annihilating all angle measurement error correla-
tions. Results were presented for a typical sector scan, but

beam steering is not necessary. This technique is very easy

to implement.

f. Frequency dithering was also shown to be an effective decorrela-
tion technique. Beam dithering was found to be somewhat less

effective than frequency or phase dithering. Both frequency and
beam dithering involve compromises which may make them

unacceptable for certain applications.
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APPENDIX A

RMS ERROR FOR VARIOUS APERTURE WEIGHTING FUNCTIONS

The Eqs. (9) and !10) show thai the rms angle measurement error is

dependent on the diffcence pattern amplitude weighting functions 6x and 6y'

It is the purpose of this appendix to show that the rms error is only weakly

dependent on the actual shape of the difference pattern. It is intuitively

obvious that those weighting functions that tend to place more weight on the

phase shifters at the edges of the array will tend to produce lower rms angle

errors. On the other hand, such functions tend to produce larger sidelobes.

To illustrate the effects of various difference pattern weighting functions on

the rms error, Eqs. (9) and (10) were numerically evaluated on a small

p.ogrammable desk calculator (HP910CA). The results are compared in

Table A- I.

Only the x-difference pattern weighting ,inction is illustrated in

Table A-1. Note that this is assumed to be independent of y. The y-difference

pattern weighting function was assumed to be the same as the x-difference

pattern with the variable y replacing x. To summarize,

6x(xY) 6x(x)

6y(X, Y) = Oy(Y) = 6x(Y)

Other applicat-le parameters are as defined in Sec. IV. The results in

Table A- 1 show that the rms error spread is likely to be less than 25% of a

representative mean value for all those weighting functions of practical

interest.
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Table A-1 RMS Angle Measurement Err.or for Various
Amplitude Weighting Functions

WEIGHTING FUNCTION ONE-SIGMA ERROR

S-u 0.,,1486 ms
SINE\ S X a = O.1485 ms

v

R = O. 1258 ms

LINEAR = ~ m

CUR = 0. 1406 msCUBIC
SR X or = 0. 1404 ms

V

Texp- (- = O. 1775 msTRUNCATED / u
RAYLEIGH R X 0 = 0. 1775 ms

V

1. x>O

UNIFORM U =0.1464ms

R x 0 = O. 1482 ms

I1|.
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