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u limit of scan along u
[}
Au differential steering angle in sin o
v error function lattice vector
Av differcntial steering angle in sin §§
v sinf
v, limit of scan along v
w displacement vector in {(u,v) space
X horizontal aperture conordinate
> x cvaluated at minth lattice point
\ vertical aperture coordinate
Yien y evaluated at mnth lattice point
a scan angle off normal toward x
e scan angle off normal toward y
Y, ith bit state function
A difference operator
CMER y) x difference pattern amplitude weighting (illumination) function
Gy(k’ y) y difference pattern amplitude weighting (illumination) function
(5“._' = 6x(xi , yj)

i Kranecker delta function

€, s €., error in sina, sinf

€ differential phasc error for bit i
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Lmn total differential phase error at element mn
A ravelength
By lattice vectors
g element phase error
I3 position vector of mnth element
mn
P distance from array center
Tu \
Ov
o > rms error in subscripted variable
@,
S )
o commanded phase angle
o actual phase angle
Pci commanded phase of ith column for steering inu
¢rj commanded phase of jth row for steering in v
¢sij space feed collimation phase at element ij
Poi insertion phase of the ith bit in a phase shifter
¢ij commanded phase at element ij

Underlined symbols represent vectors. The non-underlined symbol of

a vector quantity represents the scalar magnitude of that vector.
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1. INTRODUCTION

The major contributors to angular measurement crrors in phased

array radars include receiver noise, instrument noise, and target glint,

At long range. the errors tend to be dominated by noise at the receiver.

At shorter range where the SNR is high, the instr.u ient errors can pre-
dominate. At very short range, angular error due to target glint can provide
the dominant source of error. Propagation and multipath can also cause
substantial errors, but these will not be considered in this paper.

In situatinns where a radar is used to control the intercept of a target
by an interceptor, the SNR at the intercept range is often quite high and
object tracking c¢rrors tend to be dominated by radar instrument errors.

If, furthermore, the same radar is used to track both target and interceptor.
fixed or slowly varying instrument bias errors do not, to a first order,
affect the error in measuring the relative position of target and interceptor.
For such problems it is the randomly varying (i. e., with angle) componcnt
of the angular instrument errors which is of greatest concern,

Attention here is thus confined to the randomly varying component of
phased array angular instrument errors. The cffect of these errors on
tracking accuracy depends both on their magnitude and spatial corrclation
properties, i.e., the manner in which these errors change with beam
pointing angle, In many analyses these instrument errors are assumed to
be statistically uncorrelated from pulse to pulse. In practice thesc errors
will tend to decorrelate at a rate which depends on the angular rate of the
object being tracked. The assumption that these crrors arc statisucally
uncorrclated can lead to a scerious underestimation of angalar tracking
crrors (and hence mterceptor nuss distance),

The principzal contributors to the random angular instrument errors

considered in the analysis are:

a. Finite computation accuracy in the beam steering computer,

including word truncation in row and column adders




b. Truncation of steering commands in the digitally controlled

array phase shifters
c. Phased array element differential phase errors.

These phase errors in the antenna aperture illumination produce errors in
the position of the null in the monopulse difference pattern. An error can
also arisc¢ from an error in the slope of the monopulse difference pattern,
but it will be assumed here that the target being tracked is very close to
the null of the difference pattern so that this error can be safely neglected.

The manner in which phase errors influence angular measurement
errors depends on the statistical properties of these phase errors across
the array face. A spatially periodic behavior in the errors can produce
very large angular measurement errors at certain pointing angles. ({Sce,
for example, Sec. 7.2 of [1].) It is well known [t], [2] that the use of
space feed collimation or the addition of a random phase shift (appropriately
compensated in the beam steering command) to each element will tend to
smear out these spatial periodicities so that the angular measurement errors .
do not become very large in certain directions.

Additionally, certain techniques can be employed in the radar to eusure
that these errors become largely decorrelated from pulse to pulse. These
include the use of angle dithering, frequency dithering and phase dithering.
The effectiveness of these dithering *cchniques has been analyzed with the
aid of a specially developed computer program for modeling phased array

angular instrument errors. The results are illustrated for a typical pnascd

array configuration,




II. METHOD OF ANALYSIS

Beam steering in a planar phased array antenna is achieved by
establishing a linear phase gradient across the aperture which, in turn,
provides the desired direction of wave-front propagation. As is expected,
amplitude and phase errors across the aperture face will cause errors in
both the transmitted wave front direction and the measured angle-of-arrival
of reflected energy. Angle-of-arrival of energy reflected from an object
is determined by processing both the output of the sum beam and the mono-
pulse difference output [3]. It has been shown by Nester (4] that when
amplitude and phase errors across the aperture are small, angle measure-
ment errors are given to a first order by a weighted sum of the phase errors
in the monopulse difference pattern illumination function. In particular,
Nester's analysis shows that angle measurement errors are independent, to
a first order, of sum pattern amplitude and phase errors and difference
pattern amplitude errors.

The phase error at each array element in the monopulse difference
pattern illumination function consists of a bias component, i.e., insertion
phase error, and a variable error which depends on the commanded phase.
The insertion phase errcr, as Nester shows, gives rise tc a fixed instrument
bias error. Since instrument bias errors are of no concern here, inser‘ion
phase errors will be ignored in this paper. The variable phase errors are
due to finite computation accuracy in the beam steering computer, truncation
of steering commands in the digitally controlled phase shifters, and element
differential phase errors. The latter errors are associated with the bit
setting of each phase shifter and will be defined, along with the other error

sources in Sec. 1I-C,

A, Phased Array Geometry

The antenna face is assurmed to consist of a regular planar lattice of
elements, A typical array geometry is shown in Fig. 1. As shown, x and ;

are orthogonal car esian coordinates across the aperturce face, and the »
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coordinate, normal to the face aperture, is chosen to form a right-handed
coordinate system. The element spacing is determined by lattice vectors p
an! v which are not necessarily orthogonal and do not necessarily line up
witl. the x or y axes.

The beam direc.tion is determined by the angles o and B, wherc o is the
anzle between the beam and the yz plane, and B is the angle between the beam
and the xz plane, as shown in Fig. 1. It is most convenient to express point-
ing angle by sine coordinates u = sine and v = sinp. The array in Fig. 1 is
shown as circular with an equilateral triangular grid structure, but the method
of analysis is not restricted to this case. The geometry of Fig. 1 is assumcd
for all the cases analyzed in this paper, however.

The position of a given element in the lattice is characterized by
indices m and n, and the vector displacement of the mnth element in the

aperture face £ rn is given by

Prvn mp + nv . {H

The x and y components of the vector £.n 2T€ simply

= v
X n mp.x+n % 12)

(%83

= + nv t
y my

Y

mn

where Mo and “y are the x and y components of p and Vx and Vy are the x and
y components of V.

In the lattice ctructure, the array elements can also be put on a
rectangular grid which is lined up with the x and y axes, as shown in Fig. 1.
The indices i and j denote the column number and row number of the rectan-

gular grid. When the array lattice is non-rectangular, only certain i j comn-

ations are occupied by phased array elements.




B. Error Formulas

The angular measurement errors are computed from a weighted sum,
extending over the aperture, of phase errors at each element, as derived by
Nester (see Eq. (60) of Ref. [4]). The two orthogonal angle errors,

expressed in sine-space coordinates u and v are-

Z 6xmngmn
m,n

€ = (4}
u Y‘
k,(_f’xmnxmn

m,n
’ Z Bymngmn
_ m,n .
¢, 5 (5)
Zf’ymnymn
oa. m,n

The quantities appearing in these expressions are defined as {ollows:

€ error inu

error in v

m
t

éxix, v) < x monopulse difference pattern amplitude weighting

(illumination) function at coordinates x, y

o
®
<
!

= y monopulse difference pattern amplitude weighting

(illumination) function at coordinates x, y

Throughout this analysis pointing angles will be expressed in sine-space
coordinates. In particular, the errors € and ¢, are expressed in

tnillisines (ms),

i}
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) =6 _(

X
xmn x*mn'Y )

mn

5 -6 (x )

ymn y mn’ 'mn
£(x,y) - phase error at the conrdinates x, v

£(x

mn mn’

[1a4]
i

Yenn!

. 25
propagation constant = ek

=
i

Note that 6x is odd in x but even in y, while 6Y is evenin x and odd in y, It
is readily apparent from (4) and (5) that a constant phase error across the
arrvay face does not contribute to the angular errcry. It is evident that once
the aperture, i.e., shape, lattice structure, etc., and the difference patrern
weighting function have been defined, the only quantities that vary with scan
angle are the gmn' In particular, the denominators in the above two expres-
sions are merely normalization constants. It is of interest, therefore, to

cxamine the sources of the errors which determine the §mn.

C. Scan Dependent Phase Errors

Each digitally conirolled phase shifter controls the phase at each
element to a binary submultiple of 2r radians, i.e., 180°, 90°, 45°, etc.
In practice, each bit of the phas.e shifter introduces a phase shift, say Doy
in the "off'" state and Poi + 2‘:7/21 + € in the "'on' state where i denotes the
bit number, with bit 1 controlling 180°, bit 2 controlling 90° and so on.
With all phase shifter bits in the "off" position, the total phase shift is
z;iq)oi'
phase, which varies from element to element due to manufacturing tolerances,

This residual phase is called the irsertion phase. This insertion

is independent of phase shifter setting and hence does not change with beam
pointing angle. It is readily seen from Eqs. {4) and (5) that these insertion
pnases introduce fixed bias errors in the angular measurements. Since the
constant insertion phase error generates only bias errors, the 9o 27€ taken

to be zero. The error €, represents the phase error corresponding to the

ith bit if it is "on." These errors are the differential phase errors and result




—

from manufacturing tolerances, The statistical properties of these
differential phase errors depend, of course, on the manufacturing pr-cedures
employed. Since these errors are scan dependent, their contribution to the '
measurement errors, € and €, must be taken into account,
A major source of phase error at each array elen.ent is due to truncation
of the binary phase shift commands in the beam steering computer and at the
element phase shifters, In order to determine how these truncation errors
affect angle measurement errors, consider how the phase shift commands
are generated for each array element. The beam steering command for the

ijth element, ¢ij’ is given by the sum

¢..-¢i+¢rj+¢..

ij c sij

where
¢ci = commanded phase of ith column for steering in u
¢rj = commanded phase of jth row for steering in v
sij = space feed collimation phase at coordinates X yj.
¢ .. = 0if no space feed collimination is present. The linear phase gradient

sij
commands for row and column steering are given in terms of the angle
coordinates u and v by

¢ . =kxiu (6)

¢ .= kij (7)




where

x; - horizontal aperture coordinate of the ith column
y; = vertical aperture coordinate of the jth row,

The space feed collimation phase ¢sij for the ijth element is determined from

1/2
_ 2 2, 2 .
Qsij =k [(F +xi 1 yj) - ] (8)

where F is the focal length of the space feed structure.

In the beam steering computer the quantities Pir ¢rj’ and ¢sij are
computed to s bits and truncated to r bits. These quantities are then added
and the result truncated to q bits, which is the number of bits requir-.d to
control the phase shifter.

Figure 2 illustrates how these beam steering operations are simulated
in the computer error analysis program in order to obtain the element phase
shift errors gmn which are needed to determine anguiar errors € and €,
For any chosen lattice points m and n, the row and column indices i and j are
computed with the aid of (2) and (3), ? and q)rj are then computed from (6}
and (7) using the commanded pointing angles u and v and the cartesian
coordinates of the elements X, and yj. If present, the collimation phase is
readily calculated from (8). The row and column addition indicated is
performed as described above and the result is truncated to q bits. The box
labeled '"compute differential phase error, etc.'' represents a bit-testing
function that senses the phase shifter bit setting and determines which bits
are "on.'" In the computer simulation, the differential phase error for each
bit in the array is separately generated with the aid of a random number
generator and stored for use by the program. For each bit that is "'on," the
corresponding differential phase error is recalled from storage and added
to the phase developed at the phase shifters. Comparing the phase thus actually

developed with the desired phase, results in the elemental phase error, gmn.,

————————gpeperrar e sawanansssinssnln st
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Reference to Fig. 2 shows that the collimation angle ¢sij nas to be
computed or recalled many times, typically once for each phase shifter
element. It has been shown by Hatcher [5] that this computation can be
simplified considerably by expanding this collimation term as a sum of two
terms where the first depends only on X, and the second only on Y This
procedure reduces the number of collimation computations to the sum of the
number of rows and columns., The expression for the collimation phase can

be expanded in a Taylor series:

0 .. == x?' + y?\ + higher order terms of
sij AF \"i /
even powers of X, and Y,

-

Thus Oy ™ Oy ¢s_]’ where 9. =X /)\F and 9 o3 - -rry /)\1‘ . The summation
of the hlgher order terms, wh1ch are even powers 7 ¢ x and -, weighted by the
odd dilference pattern illumination functions, vanishes wentlcally in the calcu-
lation of €y and €, s defiried y Eqs. (4) and (5). Thus the omission of these
higher order terms does nol contribute to the angular errors but does produce
some degradation in main beam gain and sidelobe levels, as discussed by
Hatcher | 5. Nevertheless, this degradation does not prove to be serious in
most situations of interest. A schematic diagram of this mode of operation is
shown in Fig. 3. The quantities Peir Prs i’ L and ¢ are computed in the beam
steering computer to an accuracy of ] blts. The row a.nd column commands
are then added and truncated to r bits. From this point on, the sequence of
operations in Fig. 3 is identical to that of Fig. 2.

The approximate method for calculating the collimation phase as described

above was used for all applicable cases analyzed in this paper.
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D. Randomized Quantization Levels

A q bit phase shifter has uniformly spaced quantization levels (ignoring

differential phase errors) with spacing

1
Q= —ZE:T

The gen=ration of phase shifter quantization errors is illustrat=1 in Fig. 4.
The solid line represents the desired phase. The dashed staircase function
is the actual phase due tn quantization. The difference between these functions
gives a periodic sawtoott' error with amplitude Q/2. This sawtooth is an odd
function of commanded phase. An erroci’ of this type results wherever a binary
number representing phase is truncated.

In the situation where a linear phase function is applied across the
aperture face, quantization errors will cause errors which will be periodic
across the face of the aperture. As noted earlier, spatially periodic phase
errors produce angle m-asurement errors in certain directions which can
be quite large. It is well known that the space feed collimation correction
tends to smear out these periodicities and thereby suhstantially reduces the
maximum angular error [1], [2]. A more direct approach sometimes
employed on corporate fed arrays is to deliberately vary the starting position
(but not the spacing) of the quantization levels in a random way from element
to element. This randomization may be implementied in some types of arrays
by randomizing the length of cable (or waveguide) which drives each element
of the array, and compensating for the differential delay path by adding an
appropriate compensation phase number to the commanded phase for each
element at a point prior to truncation of the beam steering command in the
q bit phase shifters.

The dramatic improvement in accuracy which results with the use of
randomized quantization levels is illustrated schematically for a worst case
situation in Fig. 5. To simplify the illustration, a one-dimensional case

has been considered where the desired phase is a linear function of the
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aperture coordinate x. As illustrated in (a), the beam steering off the array
normal is small, and the commanded phase causes only the phase shifters at
the very edge of the aperture to switch out of the zero state. As seen from
part (b), the difference between the commanded and actual phase functions is
a linear phase error term which will cause an angular error approximately
equal to the commanded stcering angle. Part (c) of the figure illustrates the
effect of randomized quantization levels. The horizontal dashes indicate the
location of the nearest quantization levels for each phase shifter, In all
cases, the commanded phase is quantized to the nearest available quantization
level. The resulting phase errors at each phase shifter, shown in part (d) of
the figure, are seen to have a random character which will not give rise to a

large angular error.

E.  Evaluation of the RMS Angular Error

A formula for the rms angular error is developed in this section for the
case where phase shifter phase errors are spatially uncorrelated. The
assumption of uncorrelated errors is valid only if some means of phase
randomization exists, such as the method of randomized quantization levels
discussed in the previous section. Space feed collimation also provides a
form of spatial decorrelation, although regions of correlation remain, as will

be discussed later. The condition for uncorrelated phase errors is given by
mn°’m'n' mm' nn'

E g :U’zé §

where the bar denotes mathematical expectation (in this case an ensemble
average) and 6. is the Kronecker delta function. For the error sources

. I
considered, the mean square phase error ogis the same for all elements.
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From Eq. (4), noting that Emn = 0 (since insertion phase errors have been

set to zero), it follows that LA 0. The variance of u, o’i is then given by

DI
2 2 "g m'naxmn

. g = € = —
u u 2 2
| o)
mpn

. (9)

An exactly analogous expression can be derived for 03

2 2
o¢ bymn
2 =ti _ m, n
v

v . 2 2
k (Z 6ymnymn)
m,n
2

2
These expressions are easily evaluated numerically. Values of L and o

- (10)

computed for various difference pattern weighting functions are given

in Appendix A. The estimates of variance from computer simulation
generated sequences of € and €, are in excellent agreement with values
calculated from the above formulas in those cases where quantization level
randomization or space feed collimation is employed.
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III, PERIODICITY AND SYMMETRY PROPERTIES
OF ANGULAR ERRORS

In this section we shall derive some of the more useful periodicity
and symmetry properties obeyed by the phased array angle measurement
errors, These properties aid in the interpretation of computed error func-
tions and enable the amount of computation to be substantially reduced.
These properties arise from periodic behavior of the array lattice, the
particular symmetry properties of the lattice structure considered, and the
symmetry and periodicity properties of phase errors due to truncation of
binary steering commands in each element phase shifter,

in addition to the lattice properties specified by the lattice vectors p

and v, we make use of the following relationships:

6x(x, y) = 6x(x, -y) = -Bx(-x,y) (1
6y(x. y) = 6y(-x,y) = -6y(x,-y) (12)

and, as seen from Fig. 4,
E(¢) = -&(-¢) (13)
E(¢) = E(¢ + Q) (14)
where § is the phase shifter quantization error (in the absence of quantization
level randomization) and ¢ is the commandcd phase. The commanded phase at

the point (x, y) for a commanded angle (u, v) is, ignoring collination,

¢ = k(xu + yv) . (15)
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With ihese relationships, Egs. (4) and (5) can be put in the following forni,

where proportionality constants have been omitted:

¢l v) ~ Z 8 *mn’ Ymn) §[k(xmnu * ymnv)l

m,n

¢ v) ~ Z 6Y(xmn’ Vmn! §[k(xmnu + ymnv)]

m,n

(16)

(17)

Thesec relationships are now in a convenient form for deriving the desired

properties of the error functions.

Let w be a vector with components (u, v)., w represents a vector
pointing angle in (u, v} space. Periodicities in (u, v) spacce arc found by
determining values of Aw which leave € and < unchanged, 1t can be

verified by direct substitution in the above equations that displacemcnts

Aw = U and Aw =V leave €, and €, unchanged, where

yo Qex@xy) . Q- oy
Lx iy X k(2ve - (pew?)

ve QEx(uxw) QWi - (pyw

T ke xp-lvxy k(pzv2 - (Jﬁ‘x)z)

Writing eu(u.v} - eu(gv_), it follows that

eu(\l +m'U +n'V) = e“(va_/_)

20
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for arbitrary integers m' and n', and any w. Similarly

L =
ev(\_w__ +m'U 4+ n'V) ev(ﬂ) . (21)

Thus, the lattice periodicity of the array leads to a lattice periodicity in the
7 error functions ¢, and €, characterized by the lattice vectors U and V.. It
can be readily shown, in particular, that an equilateral triangle lattice
gives rise to angle error functions which also have an equilateral triangle
lattice structure.

Consider now the symmetry properties of € and €, in (u, v) space.

Using (13) together with (16) readily gives

eu(-u. -v) = -eu(u, v) . (22)

Similarly,

ev(-u, -v) = -ev(u, v) . (23)

These relations can be written more concisely as

e (W) = “e (W) (24)
e (~w) = -e (w) . (25)
Equations (24) and (20) can be combined to give

1
tu(m’g 9.'\_[_+\l) = -eu(&'U + 8 l-\l) (26)
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and
e\S +§-V+w = -¢ 2—U+2 V -w (27)

tor arbitrary intcge.s m! and n'. The error functions thus have anti-
symmetry points about the basic luttice points and mid-lattice points (i.e.,
midway between lattice points) of the error surface.

Consider, finally, array lattices which have raflection symmetry about
the x and y axes. The triangular lattice shown in Fig. 1 is an example of
such a lattice. Then if we replace Xn by “X n and/or Yoan 2Y “Ypan CVETY-
where in the array, the lattice structur> remains unchanged. Replacing

Xn by "X n in (16) yields, using (1),
eu(u. v) = =€ (-u,v) . (28)
Replacing Yran Y “Ymp i? (16) yields, using (11),

eu(u, v) = eu(u. -v) . (29)

In a similar manner one can show

ev(u, v) = ev(-u, v) (30)

and

ev(u'; Vs () (31)
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For the particular lattice structure shown in Fig. 1, the vector U

is aligned with the u axis, For an arbitrary integer m' it follows that

t = 1
eu(u + m'U,v) = eu(.x,v) . (32)
Combining this with (28) gives
m' _ m!
‘u( ) U+, v) = -eu(—-z U -u, v) . (33)

One can show in a similar :manner

' |}
ev(% U+ u, v) = ev(% U =, v) . (34)

Additional symmetry relationships could certainly be derived using similar
methods.

It can be shown that pioperties of the error functions derived above
still remain valid if a space feed collimation term is included. These
properties wil] be destroyed, however, by the inclusion of quantization level

randomization or element differential phase errors or both.
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IV. ARRAY ASSUMPTIONS AND FORMAT OF COMPUTATICNAL RESULTS

The array example used in this paper is a circular array with an
cquilateral triangle lattice structure, as shown in Fig. 1. The arsay parame-
ters, as given below, are representative of those which have been considercd

for command guidance intercept applications.

dx (column spacing) = 0.5001
dY (row spacing) = 0.289 1
Mo (lattice parameter) = 0.5001
by (lattice parameter) = 0.289 1\
Ve (lattice parameter) = 0.000n
Vy (lattice parameter) = 0,578\
D (aperture diameter) = 26.41\
R (aperture radius) = D/2=13,2\
N (number of elements) = 1891
6 (difference pattern = sin mx/R
* amplitude weighting

function)
6 (difference pattern = sin wy/R
Y amplitude weighting

function)
F (focal length in the = D

space feed mode)
q (no. of phase shifter -3

bits)

The boresight beamwidth of this array 1s approximately 2.6°.

25
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The computer error analysis program produces graphs of the angle
eTTOT € and €, asa function of u and v, and an autocorrelation function of
these errors, denoted Ru (Au, Av) and RV(Au, Av), plotted as a function of
differential steering angle, Au and Av. The sample point spacing for the
simple planar cuts was chosen to be 0.25 ms, The computed rms value of
the angular error annotated on each graph refers only to the scan sector
actually shown. Unless otherwise indicated, the differential phase errors are
set equal to zero for reasons to be discussed later.

Many of the plots shewn in the subsequent section are perspective views
of the angle errors and the corresponding two-dimensional autocorrelation
function, In each of these cases, the sample point spacing was chosen to be
0.5 ms in both u and v, The properties of this perspective plot are illustrated
in Fig. 6. Each of the perspective plots is viewed at 60° clockwise from
the u axis at aa elevation angle of 35°. The limits indicated in the figure

are

u v 20 ms for error surfaces

Auo Avo 15 ms for autocorrelation surfaces

The computation scan is performed parallel to the u axis at constant v,
similar to an ordinary raster scan. The 6400 point error surface thus
obtained was used to compute the corresponding autocorrelation functions.
The plotting lines are drawn at the computation interval, viz., 0.5 ms. Edge
effects were neglected in the computation of these autocorrelation functions,
which were generated by incrementing Au and Av in one quadrant only, Points
in the remaining quadrants were obtained by symmetrically transposing poits
about the origin as justified by symmetry properties of the autocorrelation

function,
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The computer error analysis program is written in FORTRAN for
usc on the IBM 370/155, Special truncation and bit sensing functions that
operate on the binary representation of words are required. Because of the
32-bit word structure peculiar to this machine, reference phases are com-
puted to 24 bits, i.e., the quantization step size of computed phase errors
is 2 w/224. The amount of storage required for any particular array lattice
is given approximately by 3N 32-bit words plus N(2 + q) 16-bit words.
Execution time is approximately 120N wsec to compute both € and € for one

beam position and 3-bit phase shifters, including differential phase errors.

A. Quantization Lobes

In the absence of quantization level randomization and space feed
collimation, the angle error exhibits large peak values, called quantization
lobes, near the array normal and at integral multiples of the error periods
U, V. These lobes in the sine alpha error €0 which are not unlike grating
lobes, are apparent in the computer generated plot, Fig. 7. Note the linear
portion of €, with slope of -1 in the region -5<u <+ 5 ms. In this region, all
phase shifter phase commands are smaller than half the quantization level
spacing Q. Since none of the phase shifters switches out of the zero state,
the resulting error is the negative of the commanded steering angie. The
angle at which the magnitude of the error reaches a peak is approximately
where the phase shifters at the edge of the array just start to switch into the
first quantizing level. The values of u for which this maximum occurs is
given approximately by |ul = max |eu! ~ 5ms. The normalized autocorrelation
function of €y is shown on the right side of Fig. 7. The autocorrelation func-
tion and the rms error in Fig. 7 are ".ot representative of the large sector
average due to the predominance of the large peak in the sample interval,
Figures 8 and 9 show the two-dimensional error surfacese u(u, v) and ¢ V(u, v),
respectively,  Note that the curve in Fig, 7 represents a planar cut through
the surlace ¢ u(u, v) of Fig. 8 normal to the v axis and at v 0. The sym-

metry properties as discussed 1in Sec. III are clearly visible in both €. and ¢y
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B, Addition of Space Feed Collimation

The case presented in Fig. 10 is exactly the same as the case presented
in Fig. 7 except that space feed compensation has been included. The colli-
mation was computed on a row and column basis as discussed in Sec. II-C.

In comparing this figure to Fig. 7, it is noted that, in addition to a 10:1 change
in vertical scale, the resulting error is much more ""random." As expected,
the error function is still anti-symmetric about the origin, as discussed in
Sec, III. The autocorrelation function exhibits a 3 dB width of about 1.7 ms.
The rms error is found to be 0. 149 ms, which happenc to agree well with the
predicted large sector rms value of 0. 1486 ms calcutated from Eq. (9). In
the case of the sine beta error, € which is symmetric about the origin, the
rms error is 0. 203 ms, which compares with a value of 0.148 ms calculated
from Eq. (10). This apparent discrepancy is due to the fact that the space
feed collimation is not completely effective in randomizing phase errors
across the array face. Phase errors of neighboring elements still tend to be
correlated. Thus the rms angular errors calculated from a limited scan
sector cannot be expected to conform closely with errors predicted from
Eqgs. (9) and (10).

Figure 11 is the sine alpha error surface in the vicinity of the array
normal and shows the same scanning region as Fig. 8 and 9. This figure
shows that eu(u,v) is zero whenever u is zero, consistent with the anti-
symmetry properties discussed in Sec. III. In fact, careful inspection of
Fig. 11 reveals the presence of other symmetry properties as discussed in
Sec. III. Figure 12 is the two-dimensional autocorrelation funrtion Ru(Au, Av)
of eu(u, v), i.e., of the error surface shown in Fig. 11. The shape of
Rv(Au, Av) is generally similar. This autocorrelation function, as well as
the one shown in Fig. 10, shows significant spatial correlation for differential
angles of 2 ms and beyond. This spatial correlation could significantly degrade

radar performance for applications such as command guidance intercept.
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Thus far the number of bits carried in the beam steering computation
is large so that truncation errors are not significant. Figures 13 and 14
illustrate the importance of row and column truncation errors. Figure 13
shows the effect of truncating row and column steering commands to 5 bits.
The rms error is increased noticeably to 0.228 ms. In Fig. 14, the row and
column steering commands have been truncated to 4 bits, and this results in
a situation where the row and column truncation errors dominate the phase
shifter truncation errors, even though 4 bits are employed in the adder and
only 3 bits in the phase shifter. The rms error for this case is 0,45 ms.
This computational result has been corroborated with an approximate
theoretical analysis.

Note that the antisyrnmetry property of ¢ a is preserved. Furthormore,
it has been observed that the error €,n the present case with 4-bit rcw and
column truncation is almost periodic, with a period which is half the period
given by the 3-bit phase shifter, The error is not exactly periodic at the half-
pericd intervals because of the presence of the error due to the 3-bit phase

shirter,

C. Effect of Randomized Quantization Levels

As discussed in Sec. II-D, quantization level randomization is an
effective technique for eliminating spatially correlated phase errors which
give rise to quantization lobes, i.e., large angle errors, in certain directions.
Figure 15 illustrates the error obtained in the absence of space iced coliima-
tion but with quantization levels randomized. Note the absence of any symmetry.
As expected, the rms error is very close to the theoretically predicted value
of 0.149 ms. The autocorrelation function width is not materially different,
however, when compared to the autocorrelation functions of the previous
cases, Figure 16 shows eu(u,v) in the same scanning sector as Figs., 8 and 11,
Some of the regular features discernible in Fig. 11 are absent in the present
case, The € surface has a generally similar character. Figure 17 shows
the autocorrelation function Ru(Au, Av). R‘,(Au, Av) has a similar shape.

Ihe shape of these surfaces near the central peak is very similar to that
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shown in Fig, 12 for the space feed collimation case. This result indicates
that the spatial statistics of the angular error in the case of randomized
quantization levels is generally similar to the case where space feed collima-
tion is employed. The width of the central peak at the 3 dB point is still about

2 ms, as it is in those cases employing collimation.

D. Differential Phase Errors

Thus far differenti .’ - .ase errors have been ignored. Figure 18
illustrates the effects of including moderately large differential phase errors
in an array with randomized quantization levels. In this configurationa 10°,
one-sigma random differential phase error is generated for each bit with the
aid of a gaussian random number generator and stored for later use by the
computer program, The errors so generated are independent from bit to bit,
even within the same phase shifter element. The increase in the rms error
shown in Fig. 18 is representative of the large sector average increase in
rms error due to 10°, one-sigma differential phase errors. To comparz
the relative magnitude of these differential phase errors to the quantization
error for the case of 3-bit phase shifters, consider the total differential

phase error Cran 2t element mn:

where

m
f

ith bit differential phase error, i = 1,2,3

ith bit state function, i =1,2,3

4
1]

1 if bit i is "on"

1

0 if bit i is "off"
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The subscript mn has been omitted from e i and A for brevity. By appropriate

averagi.g over te states of ‘{i, and ensemble ~veraging over the states of e T

2 1 2
at=z U€2+G€2+0€
= 1 2 3

With r‘l =0 = U‘j = 10°, the rms differential phase error, denoted g

it is readily shown that

, i8

g

UC = 8,67°

The error gmn (in the absence of differential phase errors) is uniformly
distributed over the interval +Q/2 (= £22.5°). Therefore, for q = 3 and € = 0,

ag =13.0

The inclusion of the differential phase error of 8.67° causes the error og to
increase from 13.0 to 15.6°. This increase affects Ty and o, proportionately,
as shown by Eqs. (9) and (10).

Since the differential phase errors can be made significantly less than
10° rms, these results provide good justification for ignoring differential
phase errors as an important source of angular mecasurement error. It is for
this reason that differential phase errors have been ignored in the other cases
presented,

A plot similar to Fig. 18 for the case of space feed collimation shows
that the presence of differential phase errors destroys the symmetry and
periodicity properties noted earlier. To the extent that the differential phase

errors are small, these symmetry and periodicity properties are approxi-

mately obeyed.




V. DLDECORRELATION TECHNIQUES AND
COMPUTATIONAL RESULTS

If the pulse~to-pulse correlations in the angle measurement error
prove to be of consequence, it may be desirable to implement one of several
dichering techniques to reduce these correlations. The principal techniques
for accomplishing decorrelation zre (a) phase dithering, (b) frequency
dithering, and (c) beam dithering. These techniques produce decorrelation:
of the angle errors by forcing random fluctuation of the element phase
commmands from look to look.

The angle correlation is due to phase error (gmn) correlation from
look to look. The purpose of the dithering techniques, therefore, is to
generate commands that will tend to make the element phase error uncorre-
lated from lock to look. Typicall;, the element phase error need only

change by a phase of Q/4 (Q = 27/2%) to effect nearly complete decorrelation,

A. Phase Dithering

The phase dithering technique consists of generating a random phase
angle (from 0 to 2w) and adding it to each phase shifter phase command.
This is most easily dcne in the beam steering computer, where the randomly
generated angle can be adued to each row or column command. The
resultant change in the zbsolute phase of the wave front leaves the direction
oi the beam unchanged and is of no consequence for many applications. In
general, the only situation of interest in which the random phase could be
undesirable is the case of second time around returns (or higher order
range ambiguities) from clutter, if phase coherent clutter rejection
techniques are required. .

Fig.re 19 shows the sine alpha error surface € in the same scan
sector as the previous perspective plots, In this case, however, phase

dithering has been added to the ordinary row and column collimation
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configuration whose results were presented in Sec. IV-B, While this error
surface appears to be much "hashier' than the surface of Fig. 11, the
really dramatic change in the correlation properties can best be seen in the
subsequent plot of Ru(Au, Av) in Fig, 20, The behavior of Rv(Au, Av) is
identical to Ru(Au, Av). The error decorrelates completely in a differential
angle equal to the spacing between locks, in this case, 0.5 ms. Actually,

it is not necessary to move the beam at all to obtain decorrelation with
phase dithering.

The time-~-domain autocorrelation function of the measurement error,
with or without beam motion, contains an identically large central peak with
complete decorrelation in a time equivalent to the inter-pulse period, i.e.,
the rate at which the phase shifters are dithered. This technique is equally

effective in space-fed and corporate-fed arrays.

B. Frequency Dithering

The essential array design requirement for effective decorrelation
through frequency dithering is that the phase shifter phase command include
an angle which compensates for the feed-to -phase shifter propagation delay.
Thus, if the frequency is changed, the compensation phase changes, result-
ing in a new phase error., All space-fed planar arrays fall into this category.
A corporate fed structure with varying cable lengths to each array element
could also be designed to employ frequency dithering.

Frequency dithering, while not as easy to implernent as phase dither-
ing, is a technique which will often be available for other reasons. In
particular, frequency agility is sometime implemented for ECCM or
increased detection range against scintillating targets. In these cases,
instrument error decorrelation is an additional benefit to consider. Fre-
quency dithering has the disadvantage of destroying pulse-to-pulse phase
coherence which might be desirable for coherent integration and/or clutter

~

rejection,

47




—-

e R T NI T AR =
s Jr%r/%i«ﬂuw/@nr 3

Au

,/rgy//.ul./
RSN NI

T SN\
ﬂ/,sz NS W/l%l/ ,#AV

 NSINGS WY
%ﬁ@.ﬂﬁﬂyﬂﬁw )

48

Fig. 20 Perspective View of the Sine Alpha Autocorrelation Function
with Collimation and Phase Dithering




Figure 21 shows that frequency dithering is equally effective in
decorrelating the error. This space-fed configuration was scanned over
the same sector as Fig. i11. The total range of frequency dither in this
case is 10% (£5%), uniformly distributed across the band. On each radar
look, a new operating frequency within the band is chosen on a random
basis. It is easy to show that a 5% change in frequency causes most of the
phase shifters to change by at least Q/4.

C. Beam Dithering

The angle errors, as shown in Sec. IV-B, indicate that correlations
for the particular array studied never exceeded more than a few millisines,
A natural decorrelation technique, therefore, is to steer the beam slightly
more than necessary, in a random way, so as to enhance the natural
decorrelation that already exists, The resulting degrad.tion due to off-axis
tracking is small, since the total excursion due to dithering can be chosen
to be much less than a bcamwidth. The implementation of this technique
is also quite simple. It is entirely contained in the beam steering computer.
A random number generator selects two angles within specified limits,
These are then simply added to the beam steering computer input steering
commands,

In order to generate an error surface which has the correlation
properties shown in Fig. 22, a random angle generator was used which
produced variates with a uniform distribution from -5 ms to +5 ms, or
about 20% of the beamwidth. The beam is ditkered to a new random angle
(both u and v) on each radar look, The correlation function is seen to drop
very rapidly to a small pedestal and then becomes very small. This tech-
nique n.ight be improved by changing the distribution of the randomly varying
angle commands, although this possibility has not been investigated. A
disadvantage of beam dithering is that the total beam excursion is limited
somewhat by off-axis degradation. In situations where MTI is employed to
reject clutter, beam dithering may seriously degrade MTI performance. It
is concluded that beam dithering is a good decorrelation technique but is less

attractive than frequency dithering.
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Fig. 21 Perspective View of the Sine Alpha Autocorrelation Function

with Collimation and Frequency Dithering
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Fig. 22 Perspective View of the Sine Alpha Autocorrelation Function
with Collimation and Beam Dithering
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Vi. SUMMARY

This paper describes an analysis of the random instrumentation angle
measurement errors of phased array radars. A number of calculations of
angle measurement errors were performed for a particular, though typical.
array configuration. These calculations were aided by a comprehensive
computer program, which was de.eloped in sufficiently general form to
permit its application to a wide class of phased array radars. The program
simulates finite computation accuracy in the beam steering computer, trun-
cation of steering commands at the row and column level, truncation of
steering commands at the phLase shifters, and the effects ot differential phase
crrors. The example array was examined in various modes of operation,
with and without quantization level randcmization and with and without space-
feed collimation., The effects of row and column adder computation accuracy
were examined, The statistical behavior of the angle measurement error
with and without several dithering techniques was determined. For the typical

array configuration considered, the following conclusions can be drawn:

a. A beam split ratio (neglecting bias errors) in excess of 300:1

can be achieved with the use of only 3-bit phase shifters.

b. Truncation of row and column steering commands was found to
dominate the angle error in certain array configurations. In
these cases the heam split ratio may be reduced below 100:1
and the angle error is nearly periodic at a submultiple of the

array period.

c. Differential phase errors as large as 10°, one-sigma per
bit were found to have only a minor effect on rms angular
measurement error. The rms error increased only about

20%. A bias error on the order of 0.1 ms was also observed.

d. A steering angle of approximately 2 ms in any direction will

cause a 50% drop in the autocorrelation of the angular errors.
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The horizontal cross section cof the central peak of the
two-dimensional autocorrelation function is roughly circular,

i.e., there are not strong ''preferred' correlation directions.

The phase dithering technique was shown to be completely
effective in annihilating all angle measurement error correla-
tions. Results were presented for a typical sector scan, but
beam steering is not necessary. This technique is very easy

to implement.

Frequency dithering was also shown to be an effective decorrela-
tion technique. Beam dithering was found to be somewhat less
effective than frequency or phase dithering. Both frequency and
beam dithering involve compromises which may make them

unacceptable for certain applications.
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APPENDIX A
RMS ERROR FOR VARIOUS APERTURE WEIGHTING FUNCTIONS

The Eqs. (9) and 10) show thai the rms angle measurement error is
dependent on the diffe.ence pattern amplitude weighting functions §_ and 6y'
It is the purpose of this appendix to show that the rms error is only weakly
dependent on the actual shape of the difference pattern. It is intuitively
obvious that those weighting functions that tend to place more weight on the
phase shifters at the edges of the array will tend to produce lower rms angle
errors. On the other hand, such functions tend to produce larger sidelobes.
To illustrate the effects of various difference pattern weighting functions on
the rms error, Eqs. {9) and (10) were numerically evaluated on a small
p-ogrammable desk calculator (HP910CA). The results are compared in
Table A-1.

Only the x-difference pattern weighting i"inction is illustrated in
Table A-1. Note that this is assumed to be independent of y. The y-difference
pattern weighting function was assumed to be the same as the x-difference

pattern with the variable y replacing x. To summarize,

Gx(x! y) = Gx(x)
X, = =
5y( y) Gy(y) 8, (y)
Other applicatle parameters are as defined in Sec. IV. The results in
Table A-1 show that the rms error spread is likely to be less than 25% of a

representative mean value for all those weighting functions of practical

interest.
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Table A-1 RMS Angle Measurement Er:or for Various
Amplitude Weighting Functions

WEIGHTING FUNCTION I ONE-SIGMA ERROR

‘ sin ZX g =0,1486 ms
/'\_ u
SINE
( ;' g =0, 1485 ms
v
X
<§'> g, = 0.1258 ms
LINEAR
R X av =0,12"3 ms
X 1y _ (X ]
R [ ®) = 0, 1406 ms

fy a ,
cusiC uf\ u
R X ¢, =0, 1404 ms

o =
R X g =0.1775 ms
1. x>0
UNIFORM — | *<° g = 0.1464 ms

| R X 9, = 0.1482 ms
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