
S B BI Research COMPUTER SYSTEM (1)

Stephen J Boies

August 23, 1972

RC 4169

o N
07

, - ->,Z

I I

LI,-

\','

<'

USER BEHAVIOR ON AN
INTERACTIVE COMPUTER SYSTEM

by

Stephen J. Boles

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

The results of an analysis of user behavior on an interactive system are pre-
sented. Empirical data on user behavior is presented concerning 1) the duration
and frequency of user terminal sessions, 2) the use of language processors,
3) user response time and 4) command usage. The results are discussed in terms
of the behavioral literature revelant to the design of interactive systems.
Suggestions are made with respect to those areas which should be investigated
by behavioral scientists.

RC 4169 (#18013)
August 23, 1972 (Rec'd. 1/2/73)
Life Sciences

Work on this manuscript was done while the author was supported, in part, by a contract
from the Office of Naval Research.

Approved for public release and sale; distribution unlimited.

Reproduction in whole or in part is permitted for any purpose of the United States

Government.

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication elsewhere and
has been issued as a Research Report for early dissemination
of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of outside
publication.

Copies may be requested from:
IBM Thomas J. Watson Research Center
Post Office Box 218
Yorktown Heights, New York 10598

Security Classification

DOCUMENT CONTROL DATA - R & D
(Secwtrt elaaaifiaetlen of title. body of abetract and ndezxn4 annotation must be entered when the over-ll report is cleassifie•)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

International Business Machines UNCLASSIFIED
Thomas J. Watson Research Center 2b. GROUP
Yorktown Heights, N.Y. 10598 None

3. REPORT TITLE

User Behavior on an Interactive Computer System

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report Interim
S. AUTHOR(S) (Firet name, middle initial. last name)

Stephen J. Boies

6. REPORT DATE 7.. TOTAL NO. OF PAGES 37b. NO. OF RES

January, 1973 63 I 17
Ga. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

N00014-72-C-0419
b. PROJECT NO. RC 4169

NR-197-020
9b. OTHER REPORT NOIS) (Any othor numbers that may be assigned

this report)

d.

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

n Engineering Psychology Proovramsnone I Department of the Navy
Office of Naval Research

13 ABSTRACT Arlinqton, va. 22217

The results of an analysis of user behavior on
an interactive system are presented. Empirical data on user
behavior is presented concerning 1) the duration and
frequency of user terminal sessions, 2) the use of language
processors, 3) user response time and 4) command usage.
The results are discussed in terms of the behavioral literature
revelant to the design of interactive systems. Suggestions
are made with respect to those areas which should be
investigated by behavioral scientists.

DD ,NOV R51473
Security Classification

Security Classification _

14 LINK A LINK 8 LINK C
KEY WORDS ROLE WT ROLE WT ROLE WT

Security Classification

PAGE 1

INTRODUCTION

While it is increasingly recognized by system designers

that behavioral data must be considered in the

implementation of future systems there is almost a complete

lack of behavioral data in a format which can be used by

such designers. The current state, however, does not

suggest that behavioral data relevant to system design is

not available or that the behavioral sciences lack the

techniques necessary to develop additional data. Rather, it

only indicates that the experimental psychologists and the

human factor engineers must organize existing data and

levelop new data in a fc.Lmat which is most useful to the

system designers. This paper is an attempt to show how the

methodologies of the behavioral sciences can be used to

provide data which -is useful to the designers of complex

information-processing systems.

There are several techniques developed by the

behavioral sciences which will lead to better interactive

systems. First, the behavioral sciences are now in a

position to develop a quantitative description of how

existing systems are being used. This description can lead

to an understanding of what features of existing systems

should be retained and what should be deleted or changed in

PAGE 2

future systems. Second, the behavioral sciences have

developed a number of techniques for controlling human

behavior in complex information processing tasks. As will

be suggested below these techniques might serve to provide

solutions to various problems in man-machine systems which

are less costly than previously proposed hardware solutions.

Third, the behavioral sciences are continually developing an

understanding of human behavior in complex tasks. This

understanding should be used as the basis for the design of

future systems rather than relying on the judgment of the

system designer. In addition, behavioral experiments can

be designed to address those issues of system design which

have not been addressed in the current basic literature.

This paper is a summary of an ongoing project at the

T. J. Watson Research Center which has as its goal the

development of a basic understanding of the behavioral

factors which limit and determine human performance in

interactive computer systems. While the project as a whole

is using a number of techniques (literature reviews, basic

behavioral experiments, development of prototype systems

based upon behavioral principles, etc.), this report will

concentrate on the results of an observational analysis of

user behavior in a complex interactive system, TSS/360.

PAGE 3

The paper is divided into three sections. The first

provides a brief description of TSS/360 and the methods used

in this study. The second section reviews some results

concerning user behavior in the systems. Among the issues

discussed are; 1) the duration and frequency of user

terminal sessions; 2) user response time and its

determina~ts; 31 command usage; and 4) the use of language

processors. The final section of the paper suggests how the

techniques of the behavioral scientist can be used to gain

additional information relevant to system design.

SYSTEM and METHODOLOGY

General Description

The interactive system which served as the basis for

this analysis was the TSS/360 system which operates at IBM's

T. J. Watson Research Center. Until the recent introduction

of the Time Sharing Option, TSS/360 was IBM's major large

scale interactive system. It is described in detail in a

number of publications and user manuals (IBM 1970, 1971a,

1Q71b; Thompson, 1971). Briefly, it is a general purpose

system which is designed to be used both in program

development as well as in interactive applications.

PAGE 4

The users interact with TSF/360 through remote

terminals. While most terminals are in the user's office or

laboratory, a few terminals are in terminal rooms. Most of

the terminals are the IBM 2741 Communications Terminal. The

keyboard of this terminal is almost exactly like that of the

IBM Selectric Typewriter with the only notable exception

being that the index key is replaced by an attention key.

The maximum typing rate of the terminal is 14.8 characters a

second.

The user population of the TSS/360 system at the

Research Center is varied. It ranges from the system

programmers who are doing system development and maintenance

to the users who only know how to sign on to the system and

invoke the application program which will lead them through

the sequence of steps necessary to perform their tasks. A

total of 375 users are permitted to use the system and on an

average day between 30 and 45 users are using the system at

any one time.

Recording Techniques

The data for this analysis was collected using SIPE

(System Internal Performance Evaluator). SIPE is a

collection of recording techniques which were developed to

PAGE 5

record what aspects of the system were being used and to ,

provide information concerning the failure rate of different

system modules (cf. Deniston, 1969). At the Research Center

SIPE is being used to record: 1) the line of type that is

transmitted; 2) the user identification code; 3) the system

and user response times; and 4) the system function which

generated the transaction for each line that the system

sends to the user and the user sends to the system. If the

command system analyzer detects a user-defined procedure

during execution, then a record of the primitive commands

which were invoked is made. During the user session this

information is written out to magnetic tape. Enough

information is present on the output tape to completely

reconstruct the terminal session for each of the users.

After the user has signed on to the system, the system

prompts the user to make a request by unlocking the keyboard

on the user's terminal. The user can then type in the

command or commands that he wants the system to perform.

The system does not start working on the commands until the

user depresses a carriage return. At that time the system

locks the keyboard so that additional requests cannot be

entered and begins working on the task. When the system has

completed the task, it again unlocks the keyboard. With

PAGE 6

this type of arrangement it is possible to divide the user

session into alternating periods of user and system response

times. The user response time (URT) is defined as the

period of time between when the system prompts the user to

enter the next command (by unlocking the keyboard) and when

the user depresses the carriage return. The system

response time (SRT) is defined as that period of time

between when the user depresses the carriage return and when

the system unlocks the keyboard for the next request. It

should be noted that both the URT and the SRT include typing

time. It should also be noted that the SRT is the amount of

time which it takes the system to complete the request and

not the amount of time which it takes the system to begin

working on the request.

The only exceptions to the above cycle are when the

user depresses the attention key. If the system is working

on a user request when the attention key is depressed the

system suspends processing and unlocks the keyboard. If the

system is waiting for the user to enter a request when the

attention key is depressed, the system ignores anything the

user might have typed in up to that point and re-issues the

prompt to enter a request.

For purposes of this analysis a user was defined on the

PAGE 7

basis of the user identification code in the system. While

most individuals have only one identification code and only

use their own, there are a few individuals who have more

than one code or who use other people's code.

The analysis is based upon the commands which the user

issued to TSS/360 or to REDIT, a conversational context

editor on the system (Thompson, 1971). Responses to user

application programs or responses to prompts for additional

information which are occasionally given during the

execution of a command were excluded from the analysis.

This study was based upon the terminal sessions which

occurred during the working days of the months of September,

1971 and January 1972. There were 21 days in both September

and January.

PERFORMANCE ANALYSES

Duraticn and Frequency of Terminal Sessions

The analysis in this section is based upon the terminal

sessions which occurred during the month of September, 1971.

The duration of a terminal session was defined as the total

time between when the user signed on to the system and when

PAGE 8

his terminal was disconnected from the system, regardless of

what caused the disconnection.

A total of 182 different users signed on to the system.

Figure 1 is a histograph of the number of days each user

signed on the the system. As can be seen in the figure, a

large number of users signed on to the system only a few

days in the month. In fact 36 users, about twenty per cent,

signed on to the system on only one day, while over 43 per

cent of the users signed on the system on five or less days.

A few users, however, used the system on almost a daily

basis. Eleven users signed on at least 20 of the 21 days

and about 25 per cent of the users signed on 15 days or

more. Figure 2 is a histograph of the number of terminal

sessions for each user. About 34 percent of the users have

five or less terminal sessions during the month while only

about 10 per cent of the users had more than 51 terminal

sessions during the month. Thus the community of users is

made up of a relatively small number of frequent users and a

large number of relatively infrequent users.

During the 21 day period there were 3409 terminal

sessions or about 162 terminal sessions per day. The total

time for all the terminal sessions was about 3712 hours or

an average of about 176 hours per day. The upper line in

PAGE 9

Figure 3 is a plot of the cumulative per cent of the

terminal sessions accounted for by the terminal sessions

between 0 and 600 minutes long. As can be seen in the

figure there are a large number of very short terminal

sessions. Over 20 per cent of the terminal sessions are

less than 5 minutes long, over 50 per cent were less than 10

minutes long, and about 75 per cent were less than 75

minutes long. The lower line in Figure 3 is the cumulative

per cent of the total connect time accounted for by the

terminal sessions between 0 and 600 minutes long. The

terminal sessions less than 5 minutes long accounted for

less than one per cent of the total connect time. Thus,

while there is a large number of relatively short terminal

sessions they account for only a small per cent of the total

connect time.

The above analysis suggests that a relatively small per

cent of the users account for a large per cent of the

terminal usage. Figure 4 is the result of, first, rank

ordering the users from high to low in terms of the total

connect time and then plotting the cumulative per cent of

the terminal usage as a function of the cumulative number of

users. As can be seen in the figure the 7 per cent of the

users who are most active account for 25 per cent of the

PAGE 10

total connect time while the 13 per cent of the users who

are most active account for over 50 per cent of the connect

time. At the other extreme, the fifty per cent of the users

who are least active get only 5 per cent of the total

connect time. An analysis of the number of terminal

sessions, the lower line in figure 4, revealed similar

results.

In the above analysis the duration of the terminal

session was defined as the j eriod of time between when the

user signed on to the systemand when he was disconnected.

It is, of course, clear that the user might not have been

using his terminal all the time'he was connected. In fact,

it is quite probable that many users leave their terminals

for extended periods of time.

An alternative definition of the length of the terminal

session which attempts to address the issue of how much the

users are actually using the system is to define the length

of the user terminal session as the duration of time between

when the user signed on to the system and when a significant

break in the work occurred. A signficant break in the work

includes, of course, when the user's terminal wps

disconnected from the system. In addition, a signficant

break in the work can be defined as when the user fails to

PAGE 11

respond to the system for some long period of time. For

this analysis ten minutes was selected. If after a

signficant break the user started working again, a new

terminal session was recorded if he issued more than one

comuand.

Using this definition of user terminal sessions there

were 4580 terminal sessions over the 21 day period. A total

of 1647 terminal sessions were terminated by a failure to

respond for over 10 minutes. As can be expected, the main

effect of this definition was to increase the number of

terminal sessions which lasted between 25 and 75 minutes

long while decreasing the number of terminal sessions which

lasted over two hours. The total connect time was reduced

from 3713 hours to 3428 hours. This is a reduction of 281

hours or about 16 hours a day. Since this is a more

accurate indication of the amount of time the user is

actually using the system, it will be used in the analysis

below.

Figure 5 is a plot of the total number of hours each of

the users were signed on to the system. For base line

purposes it should be noted that the system was up about 232

hours or about 11 hours per day. Only one user signed on to

the system for more than 100 hours and only 16 users signed

PAGE 12

on for more than 60 hours. At the other extreme over half

of the users accumulated less than seven hours of connect

time during the month. Figure 6 plots the average amount of

time which the users used the system on days which he was

actually signed on to the system. Thus, this is a plot of

the total connect time divided by the number of days the

user was signed on to the system. Seventeen per cent of the

users were signed on to the system an average of three or

more hours on each day that they used the system. Over 50

per cent of the users were signed on for at least an average

of 1.25 hours.

The most striking result of this analysis is the high

per cent of usage accounted for a relatively small number of

users. Looking at the amount of terminal time it was

demonstrated that while 13 per cent of the users who were

most active accounted for 50 per cent of the terminal time,

the 50 per cent of the users who were least active accounted

for only 5 per cent of the terminal time. It should be

pointed out that this inalysis is based upon users who

actually used the system during the month. While about 375

users are authorized to use the system only 182 actually

signed on. A second aspect of the data is the number of

days which the users actually signed on during the month.

PAGE 13

Only 25 per cent of the users signed on for 15 or more days.

An important question which should be investigated is how

the usage of the user who signed on frequently is different

from the user who signed on infrequently.

The data collected here bear upon two important issues

in system design. eirst, it is clear that many users are

leaving their terminals for relatively long periods of time.

During this period of time the only demand that the users

place upon the system is holding a port. Since the user

often returns only to sign off, it is clear that many users

would not be harmed if the system dropped their line after a

fixed length period of time had elapsed. Just as most

current systems allow the user to specify the amount of CPU

time which can elapse before the system deletes the task,

perhaps future interactive systems should allow the user to

specify the longest keyboard-open time which would be

permitted before the system deletes the task. This analysis

suggests that such a procedure would reduce the number of

ports required to service the same number of users. Second,

TSS/360 maintains a user's data sets on-line even when he is

not signed on to the system. The fact that many users sign

on only occasionally suggests that removing the user's data

sets from on-line storage when he is not signed on to the

PAGE 14

system is a technique which should be explored as a method

of supplementing or replacing existing data migration

systems. The use of such a system should permit the same

service to a larger number of users with fewer on-line disk

packs.

Language Processors

One of the original goals of interactive systems was

the facilitation of the production of user programs.

TSS/360 has two facilities designed to aid the programmer:

the interactive language processors and the program control

statements. This part of the analysis will describe how the

interactive language processors are being used on TSS/360.

Later studies are planned to explore the use (or lack of

use) of the program control statements.

There are three fully supported language processors on

TSS/360: FORTRAN IV, Assembler, and PL/I. The first two

language processors are interactive in two senses. First,

the user can write his program in the language processor.

In this mode each line of the program is checked for syntax

as it is entered. If an error is detected the language

processor types an error message and prompts the user to

correct the line. Thus the user has immediate feedback

PAGE 15

concerning the correctness of each line and a chance to

correct it. Second, if the language processor detects an

error when it is processing a stored program it will type

out the offending line on the user's terminal, indicate the

nature of the error, and prompt the user to modify the line.

It should be noted that changes are made to the source

program as well as being reflected in the output of the

language processor. The PL/I language processor is not

interactive in either of the above senses.

The purpose of this analysis was to determine how users

of TSS/ 360 were using the language processors and to

determine if the unique features of such systems were

actually being used and were aiding programmer performance.

The first question dealt with how many users were

invoking the language processors. In a five day period

(1-24-72 to 1-28-72) 39 users invoked one or more of the

language processors. During this same time period a total

of 114 users signed on to the system. Thus only 34 per cent

of the users who signed on to the system were using the

language processors. Of the users who invoked a language

processors 87 per cent used only one. The PL/I and the

FORTRAN language processors were used by an equal number of

users (ea.ch accounted for 35.90 per cent) and by about twice

PAGE 16

as many users as the Assembler language procesor(15.39 per
A

cent). The 13 per cent of the users who invoked more than

one language processor were almost uniformly distributed

among the four possible intersections. As expected, most of

these users were system support personnel.

Other questions were asked concerning what was

happening when a program was presented to the language

processors. Over a five-day period (1-24-72 to 1-28-72) 113

programs were submitted to the FORTRAN language processor.

The language processor found an error in only 15.93 per cent

of the programs. In the remain-'g cases either the complete

program was processed error free (77.87 per cent) or the

user terminated the language processor before an error was

detected(6.20 per cent). In the same period 66 programs

were presented to the Assembler li.nguage pr.ocessor. In

12.12 per cent of the cases this languag;. processor detected

an error, in 25.76 per cent of the cases the user terminated

the process before the language processor detected an error,

and 62.12 per cent of the cases the complete program was

processed without detecting any errors. There were 139

programs presented to the PL/I language processor during

this period. Errors were detected in 16.55 per cent, 10.07

per cent were terminated by the user before an error was

PAGE 17

detected, and 73.38 per cent were processed completely

without an error.

That these results are not urique to the particular

circumstances studied is suggested by the results of Moulton

and Muller(1969) who found that 66 per cent of

student-submitted DITRAN przoqrams compiled correctly. The

data presented here are very reliable: evaluation of another

five-day period showed essentially the same results. These

percentages of syntactically correct programs are

considerably higher than the verbal estimates given to us by

many computer scientists prior, during and after data

collection. Like other important behavioral results, these

may seem intuitive after the fact (though of course they

were not obvious at all prior to the study).

One might ask what per cent of new programs compiled

when first submitted. Although this seems like a sensible

question, in fact it is arbitrary if not impossible to

define what a "new" program is on interactive system. The

critical fact, from the point of view of designing computer

systems for people, is that syntactic errors do not seem to

be a major bottleneck in computer programming, but occur in

only about one in five programs.

PAGE 18

It is possible, however, to measure the change which

has occurred in the program between successive submissions

to the language processor. In the 231 FORTRAN, PL/I and

Assembly Language programs that contained no syntactic

errors there was an average of 11.87 changes to existing

lines and 3.01 lines added between submissions. For the 23

programs that the language processors both completed and

found errors in there was an average of 12.12 changes and

31.88 lines added between submissions. Thus there is some

support for the assertion that there is a positive

relationship between the amount of modification between

resubmissions and the probability of detecting a syntactical

error.

When the FORTRAN or Assembly language processor in

TSS/360 detected an error, a diagnostic message and the

offending line were displayed on the terminal and the user

was given a prompt to correct the error. In the 26 programs

in which this occurred, only once did the user correct the

errors in the program. Twice the user corrected some, but

not 411, of the errors. The most common response was to

request the language processor to continue without

correcting the error(ten times). Seven times the user

terminated the language processor when an error message

PAGE 19

occurred. The remaining six times the system crashed or

the user session ended while the language processer was

waiting for the user to correct the program. These results

clearly demonstrate that the users almost never need the

interactive error correction features of the language

processors and even when they could use them, fail to do so.

Finally, it should be noted that TSS/360 has the

facility for checking the syntax of the program as it is

typed at the terminal. We found that this facility is

almost never used and when usedtthe program is usually very '

short.

There are two types of explanations which can be

offered to account for the lack of use of the interactive

facilities of the language processors. The first suggests

that while the concept of interactive language processors is

a good idea, the implementation on TSS/360 is inadequate in

one or more respects. The second suggests that interactive

language processors are not really a good idea and any

implementation would be used about the same.

There are four weakness which are commonly attributed

to the TSS/360 implementation. First, many users feel that

using the interactive syntax checker to input a program

PAGE 20

slows down the system response even when an error is not

found in the input line. Most of these users probably feel

that since the language processor must check the syntax it

will take longer for the system to respond. Actually,

however, there is little or no a priori reason to expect

that the interactive syntax checker will increase the length

of the SRT. When a task is dispatched from a terminal wait

it is given a burst of computing resources which is probably

sufficient to analyze the syntax of most lines of code.

Therefore, if there is a difference in responsiveness it

deals only with the difference in the amount of CPU time

required to input a line or to input a line and perform the

syntactical analysis. However, user behavior is probably

more controlled by expectations than reality.

Second, it is generally agreed that the text editing

facilities in the language processors are not as powerful or

as easy to use as the text-editing facilites found in other

sub-systems. This is often used as the basis for suggesting

that the users invoke the other editors because it is

easier to make the correction. This argument has some face

validity to those who do not actually use the system.

However, those who have experience with the system know that

the actual editing is cily a small part of the work that is

PAGE 21

required if a different sub-system is used to make the

modifications. For example, if the user is going to use

another editor to correct an error in a program he must

first terminate the language processor, invoke the the text

editor, open or load the program, make the necessary

changes, file or close the program, terminate the text

editor, and re-invoke the language processor. Even if the

user had to retype a 100 character line it is hard to see

how one can maintain that it is "easier", at least from the

standpoint of the whole editing process, to use the other

editing facilities.

Third, the language processors on TSS/360 can only be

used in the interactive syntax check mode with new programs.

Since most programmers spend a great deal of time making

relatively small changes to existing programs it is expected

that this type of facility would be used little. It has

been suggested that if the language processors were changed

to work when the user was making changes to old programs

they would be used much more. It is, of course, not

possible to evaluate this suggestion on the basis of

available data. However, it should be pointed out that the

implementation of this type of an interactive syntax checker

would present several very complex problems, both behavioral

PAGE 22

and computational in nature.

Finally, it has been suggested that the interactive

features of the language processors on TSS/360 are not used

because at one time they did not work reliably. The

suggestion here is that the facilities are not used because

the users are not sure that they will work. There is

considerable informal evidence to suggest that an unreliable

aspect of any computer system will take years to live down

its bad reputation. However, one would also expect that if

the feature were truly helpful to the user he would continue

to try to use it. For at least two years prior to this

study the interactive aspects of the language processors

were as reliable as any other aspect of the system.

There are five arguments which suggest that this type

of interactive language processor, regardless of of the

strengths and weaknesses of a particular implementation,

will not be useful to the programmer. First, the number of

programs which have syntactical errors is quite low. Even

if all the other objections to the interactive language

processors could be met it would be necessary to evaluate

their usefulness in terms of their expected frequency of

use. Second, the correction of certain types of errors can

cause the language processor to re-scan code. Thus while it

PAGE 23

may not take• any longer to detect an error, the process of

interactively correcting a number of errors can greatly

increase the amount of computer resources required to

process a program. Third, ianzy times the program is entered

by someone other than the author. Under this condition the

only type of error feedback which would be useful would be

the typing errors which might be made. Fourth, embedded

within the notion of interactive error correction is the

notion that the errors will be "local" in nature. It is

possible to define two different classes of syntactical

errors. First there are those statements which are invalid

(i.e., "X=4.0*Z-T)" is invalid because of unbalanced

parentheses). Second, there are those statements which are

valid if considered by themselves but which are in conflict

with some other aspect of the program(i.e., the statement

"100 X(I,J,K)=A" is valid only if statment number 100 is
A

not defined elsewhere and if X is defined as a three

dimensional array, etc.). In the first type of error one

can see where a line by line syntax analysis with the

potential for immediate correction may be of some use.

However, the proper correction of the second type of error

depends upon understanding the program as a whole. When

these types of errors are presented line by line it seems to

emphasize the local nature of the error rather than pointing

PAGE 24

toward the more general orientation which is necessary to

properly correct the program. Fifth, when a programmer is

entering code at a terminal he is usually thinking about the

"correctness" of the code in terms of whether it is the best

way to perform the task that he has to do. It may be rather

distracting and annoying to be told that a rather trival

syntactical error has just been made. Being told that an

error exists and given the opportunity to correct it may

very well serve as a disruption to the on-going process of

writing the program.

The results of this analysis strongly suggest that the

syntactical errors, at least those detected by a language

processor on TSS/360, are not a major bottleneck in program

development. In addition, the results clearly indicate that

the users do not utilize the interactive error correction

features of the language processors even when syntactic

errors are detected. There are, of course, many possible

explanations for the lack of use of this facility. The

important finding is, however, that syntactical errors do

not represent a major source of delay in the development of

programs.

These results strongly suggest that investments in

advance techniques for detecting and eliminating syntactical

PAGE 25

errors in programs will not lead to payoffs in terms of

faster program development. The results do suggest,

however, that techniques which permit the user to rapidly

make relatively small changes to his program on the basis of

information which he gets from attempting to run the program

would lead to the reduction in the amount of time which is

required to program a given application.

Command Usage

This analysis is based upon the commands issued to

TSS/360 and REDIT, the locally implemented context editor.

It should be noted that this analysis is based upon the

commands which the user issues from the terminal. User or

system-defined procedures, therefore, atre not broken down

into primitive TSS/360 commands. In addition, the responses

which the user gives to user programs are eliminated from

this analysis. Callaway, Considine and Thompson (1971) have

recently described user applications running on TSS/360 at

the Research Center which make extensive use of the unique

and powerful features of TSS/360 programming environment.

Included in the analysis are the user responses which

occurred during the week of January 24, 1972 to Janiary 29,

1972. Tables 1 and 2 present the 20 most-frequently used

PAGE 26

TSS/360 and REDIT commands, respectively.

One of the most striking features of the data is the

very high per cent of commands which were text-editing

commands: over 63 per cent are commands issued to REDIT. In

addition, eleven of the most heavily used TSS/360 commands

are text-editing commands. Altogether over 75 per cent of

the commands issued during this time period were text.

editing commands. This points to the extreme importance of

having an excellent text-editor on any general purpose

interactive system.

The very high use of the text-editing commands and the

relative low use of TSS/360 commands, especially

programmer-oriented commands such as the Program Control

Statements, raises some question as to how TSS/360 is being

used. In an attempt to answer this question the command

usage for each of the users was examined in an attempt to

classify each user as to the type of work he was performing.

On the basis of a preliminary analysis four different types

of users were defined: programming (defined by the use of

the language processors and DDEF commands), netting (defined

by the user of commands to ship jobs to the Research

Center's 360/91 over a high-speed link), manuscript

preparation (defined by the use of RUNOFF and the lower-case

PAGE 27

mode in the text editors) and miscellaneous (defined by the

absence of the other criteria). Most of the users in the

last category issued only a few commands and these commands

were of a general nature. Several users, for example, only

signed on, read their mail and the news and then signed off.

In almost all cases the user could easily be assigned to one

of the four categories. The only major exception is that

several users who used the netting feature also made

relatively frequent use of the RUNOFF facility.

Table III presents the results of a separate analysis

of the command usage for each of the four groups. The first

aspect of this data is that while 39 per cent of the users

were classified as being in the miscellaneous category, they

account for only 6.81 per cent of the commands issued. This

confirms the results which were based upon the amount of

terminal time used and indicated that a relatively large per

cent of the users accounted for only a very small per cent

of the total system load. The second aspect of the data is

the command usage of those users who invoked a language

processor. These users issued slightly more TSS/360

commands than REDIT commands and accounted for about 41 per

cent of all commands issued. The users involved in

manuscript preparation and netting combine to account for

PAGE 28

52.32 per cent of the commands issued. Over 80 per cent of

the commands issued by these users were text-editing

commands. An analysis of the commands which were not text-

editing commands indicated a high usage of commands dealing

with public storage (i.e., searching for a data set,

transferring data sets between migrated and public storage,

printing and erasing data sets, etc.). Thus, while these

users make little or no use of such TSS/360 features as

virtual memory, program control statements, and interactive

language processors, they make good use of the excellent

context-editing facility and those features unique to

TSS/360 which deal with the allocating and use of on-line

storage. It is of particular interest to note that very few

users who ship to the model 91 use the language processors

on TSS/360. This can be interpreted as providing converging

support for the generality of the results discussed in the

section on language processors. This is based upon the

assumption that the user would use the language processors

on TSS/360 (FORTRAN and PL/I) as relatively fast turn-around

syntax checkers prior to shipping the job to the batch OS

machine if they expected P syntax error.

An analysis of all commands issued revealed that there

were many cases in which the user would issue a REDIT

PAGE 29

command while in the TSS state or a TSS command while in the

REDIT state. While a small percentage of these may be the

result of errors in the analysis program, most are the

results of the user issuing the wrong command for the state

that he was in. (Excluded from consideration here are the

cases where the user intentionally issued a TSS/360 command

while in the REDIT state using the underscore facility).

Because of the apparent failure on the part of the user to

remember what command state he is in, considerable caution

should be used in assigning the same command name for

different or even similar functions in different command

substates. For example, if the command to leave the REDIT

state had the same name as the command to terminating the

user session then a number of users would find their

terminals disconnected when they thought they were only

leaving the edit substate.

This result, of course, does not establish that the

same name should not be used for similar or different

functions in different substates. Rather it only suggests

that if this had been done on TSS/360 it would have lead to

the users making a number of rather serious errors.

However, if techniques could be implemented where the user

did not lose track of the substate that he was in using the

PAGE 30

same command name in different subsystems of the command

language could lead to faster acquisition of the command

language.

There are several interesting aspects of the command

usage in REDIT. The first is the high frequency of the FILE

command, for which there are probably two reasons. First,

many users invoke REDIT to make only a few changes to the

program. After the changes have been made the user issues

the FILE command to make a permanent copy of the data set on

public storage. REDIT currently loads the entire data set

into virtual memory when the user is working on a data set.

Thus if the user only wants to change one line in a 300 line

program, considerable unnecessary burden is placed upon the

system in having first to load all the user's program into

virtual memory and then to write all the program out on

public storage.

In view of the relative high frequency of minor

modifications to the program, it would seem advantageous to

adopt other procedures for at least some of the loads.

Perhaps the user should be given the option of using either

the record I/O or virtual memory mode of operation. Using

virtual memory to store a program is clearly advantageous if

a large number of changes are to be made to an existing data

PAGE 31

set. If only a few changes are to be made to an existing

data set, however, it would seem that using record-I/O would

result in better overall responsiveness. The second reason

for the high rate of FILE commands is the fear of system

failures. Since REDIT maintains the data set in virtual

memory, the modifications which were made since the last

FILE are lost if the system crashes. Thus users commonly

file several times while making extensive modifications to

the data set out of fear of losing work because of a system

failure. This is a good example of how the system dynamics

can modify the behavior of users in ways which result in a

high demand being placed upon the system's resources.

The second aspect of REDIT usage is the techniques used

to move between parts of the data set. REDIT has two

commands to perform context searches between lines, LOCATE

and FIND. Together these commands account for only 6.79 per

cent of the commands issued to REDIT. There are six

commands used to move the current line pointer on the basis

of lines or line numbers associated with the data set

(POINT, NEXT, TOP, BOTTOM, UP and NP). These commands

account for 26.89 per cent of the commands issued to REDIT.

The POINT command alone accounts for eight per cent. This

finding suggests that users often have a relatively new

PAGE 32

listing of the data set which they are editing. This view

is supported by the high use of the TSS/360 PRINT command.

It has been proposed that text-editing systems be

designed to function where the user does not have a hard

copy of the data set he is working on. The assumption

commonly is that if one has a fast local output device,

usually a scope, one can reduce or eliminý.te the need for

hard copy. These results indicate that in a typewriter,

based system such as TSS/360 the user is clearly relying

heavily on hard copy. The reliance is apparently so heavy

that it is reasonable to question if a fast local-output

device will change the usage pattern. A second and related

point is that unless the user has information concerning the

structure of the data set (i.e., the line numbers, etc.),

context will have to be relied on to perform searches,

locate information, etc. An analysis of most text

processing applications suggests that the data set, whether

it be a manuscript or program, will have too much redundancy

to make context searches useful. Searching through almost

any data set for a character string, unless the string is

very long, will result in a number of false positives. This

is especially true if the searc•ies are based upon strings,

as they are in almost all existinr- text editors, rather than

PAGE 33

on words or symbols. For example, a search for the variable

"I" in a program will stop at occurrences of "WRITE", "IF",

"ISCORE", etc., if they occur prior to an occurrance of "I".

Likewise, a search in a manusc5 ipt for all the occurrAnces of

the string "THE" will almost certainly locate a number of

strings such as "THEN", "THEY", "THERE", etc. Thus even in

a system which has a fast local-output device, it seems that

context searches will not serve as an adequate replacement

for the POINTS, NEXT, etc. which are used in current

systems.

There are a number of reasons which combine to make it

important to develop an understanding of the behavioral

criteria which should be used in designing command languages

for interactive systems. First, the command language is the

users' major interface with the system. A system can have

all the functions desirable but still be useless to the user

if he does not know how to invoke the commands. Second, the

command languages on many system seem to be a real

bottleneck to getting work done. This is illustrated by the

large number of users who know only a very few commands, who

use only the simplest form of the commands which they use,

and who often use a lengthy sequence of commands to

accomplish what one command could do. Finally, the format

PAGE 34

in which the command langauge is implemented makes little or

no difference to the system designer. Hence, behavioral

criteria can be used as the basis for selecting the format

of the command language without adding to the cost or

complexity of the system.

One of the first behavioral questions which should be

addressed deals with how many commands should be in a

command langauge. Given that the number of functions or

things which the user can do with the system are held

relatively constant, the system designer could implement a

command language where there were a large number of commands

but each command had only a few parameters: or the designer

could implement a command language where there were a small

number of commands but each command had a large number of

parameters. From the standpoint of the design and

implementation of a system it would make little difference

which of these alternatives were used. However, it is

reasonable to suggest that the two different implementations

might have very different effects upon user performance.

Behavioral studies should be undertaken to explore how these

two different types of command formats influn'?be6 user-

performance.

A second issue deals with user-defined commands.

PAGE 35

TSS/360 has two different facilities for implementing user

defined commands, the PROCDEF and the BUILTIN facilities.

The first is oriented toward the user and represents,

usually, either a sequence of commonly-used commands grouped

into one command or a command which has some of the

parameters pre-set to special values. The second facility

is oriented toward the system programmer and is based upon

assembly language code. It is usually used when the system

programmer is implementing a new function which is designed

for the the users of a particular system. It seems

necessary to evaluate the usefullness of both of these types

of facilities for extending the command langauge. It seems

particularly important to evaluate the usefulaness of the V

first type of facility in systems which are oriented toward

the non-EDP professional. It may very well be that in such

systems only the BUILTIN type facility will be needed or

used.

A third issue deals with the organization of the

command parameters. This will be most important in command

languages which have only a few commands with a large number

of parameters assoica'ted with each command. However,

virtually any command language will have parameters

asso~iFted with at least some of the commands. In current

PAGE 36

V command langnaiges there are three basic techniques used to

specify command parameters: the positional, keyword, and

mixed formats. Basic behavioral work should be undertaken

to explore the advantages and disadvantages of the three

formats from the standpoint of user performance.

The above series of questions deal with command

ylangauges which are based upon the current state of the art.

It is also important for the behavioral scientist to begin

to explore alternative types of command languages. There is

general agreement that all the problems of a command

language will be solved when a command language is

implemented in the natural language of the user. There is

not, however, general agreement concerning what a natural

command language will look like.

There are two different notions with regard to a

natural command language. The first general idea is that

the command language should have a syntax which is the same

as the syntax of the natural language of the user. The

system would be able to understand the command as long as it

was in a syntactically voilid form and the words were in the

lexicon. Thus the user could say eithp- "print the data set

named paper.sipe.rev on the white line p::inter with the

default line spacing" or "on the white line printer print

-_ V1 "A . - 'A

PAGE 37

paper.sipe.rev using the default line spacing" or any other

syntactically valid combination of words.

The second type of analysis suggests that what is

important is to make the communication natural rather than

having the communication in a natural language. This

analysis suggests that the primary fact which characterizes

communications between members of a work group is not that

most transactio are syntactically valid. If anything, most

transactions do not conform to "english teacher syntax".

Rather the communication between members of a work group is

sucessful because it is based upon a common understanding. V

There are at least three aspects to this common

understanding. First, the members have an understanding of

the terms and words which are used. Second, the members

have an understanding of the general and specific goals of

the group. Third, the members of the group know what is

reasonable to do in order to accomplish the goals of the

group. This implies that if the computer is to be made an

effective member of a work group it must have the common

knowledge which is shared by the other members of the group.

This line of reasoning suggests that the computer must,

among other things, be capable of correctly inferring what

to do on as few clues as possible. For example if the user

PAGE 38

issues the command "print paper.sipe.rev,source.sipest" the

command system analyzer should be able to figure out that

the first file should be printed on the white printer and

the second file should be printed on the standard printer.

It is clear that these two different notions concerning

what constitues a "natural language command" system have
,A

quite different implications for system design. A system

which supports a natural language syntax will not

necessarily be able to understand what the user is trying to

say. Likewise, a system which is designed so that it can

make reasonable inferences about what it should be doing may

not have to allow input in a wide range of syntactical

forms. The need for behavioral work to evaluate the

usefulness of these two different approaches to command

languages is clear.

User Response Time ok

Since the introduction of interactive systems designers

have looked for information which would provide accurate

characterization of the URTs in a system. This information

is of interest to the system designer for estimating the

amount of load that each user will place upon the system.

In addition, since the URT can be seen as measure of user

PAGE 39

performance, it is important to understand how various

system parameters, such as the SRt, are related to URT.

This part of the paper is an attempt to provide a

characterization of the URT in TSS/360. It is based upon

the user sessions which occurred in the month of September,

1971.

The mean of the user response ' was 59.89 seconds,

the median was between 9 and 10 seconds, and the mode was

four seconds. As indicated by the differences between the

mean, median and mode, the URT's form a very skewed

distribution. Table IV presents the data regarding the

number of user response times which are less than each one..

minute interval between 1 and 14 minutes and the number of

user responses above 14 minutes. The first line in the

table indicates that over 90 per cent of the URTs are less

than one minute long and the mean of these responses is

12.61 seconds. As can be seen in the last two lines of the

table only about one per cent of the URTs are over 14

minutes. The inclusion of these times in the analysis,

however, more than doubles the average URT.

An analysis of the long (above ten minutes) URTs

indicates three things. First, many of these response times

are very long (two or three hours). Second, often a long

PAGE 40

URT will follow a long SRT. Third, over seventeen per cent

of the very long URTs (over 600 minutes) are commands to log

off. Many other times the user issues only one or two

additional commands and then logs off.

These data indicate that during the time the user is

actively interacting with the system he is maintaining a

very high rate of responding. This is most clearly

indicated by the fact that over 50 per cent of the URTs are

less than 10 seconds long. It is also clear that users tend

to leave their terminals for relatively long periods of

time. The overall mean of the user responses is based

therefore upon the combination of two very different

distributions and probably has very little value as a

characterization of the "average URT".

The relatively large number of fast URTs can be used to

support the inference that users go to the terminal with

their work planned out relatively well. In addition, it

suggests that users can use some of the time while a system

is responding to command N to prepare for command N+1.

The realization that there are so many very fast URTs

leads to a better understanding of the effects which changes

in the SRT will have upon user performance. For example,

PAGE 41

suppose that the decision is to have either a 10 or a 20

second SRT. If one uses the mean URT as the base then the

average command cycle (URT and SRT) is changed from about 70

to 80 seconds, a relatively small percentage increase. An

alternative way to view the increase is that the command

cycle will be changed from between 10 and 20 seconds to

between 20 and 30 seconds in over fifty per cent of the

time. This results in a much larger percentage increase in

the command cycle time and gives a much more realistic

estimate of the effects of a long SRT on user performance.

There are a number of factors which are related to the

length of the URT. First, the length of the URT is related

to the type of activity which the user is engaged in. The

average (the mean of those responses less than 600 seconds)

URT for TSS/360 commands was 32.24 seconds while the average

URT for REDIT commands was 19.28 seconds. Second, previous

work (Boles and Gould, 1971) has indicated that the URT is

related to the complexity of the command. Third, there is

evidence from this study that URT is related to the length

of the SRT. There is a marked tendency for the length of

the URT to command N+1 to increase as the length of the SRT

for command N increases. The correlation coefficient

between the SRT to command N and the URT to command N+1 is

PAGE 42

.837 (Pearson's r). As the SRT increases from 1 to 10

seconds the URT increases, almost monotonically, from about

15 to 24 seconds.

It is not yet clear how these various factors are

interrelated. For example, it is unclear how much of the

difference between REDIT and TSS commands can be accounted

for by the fact that TSS commands tend to be more complex.

Likewise, the fact that there is a strong correlation

between system and URTs does not establish that a long

system response time causes a long URT, although there are a

number of lines of converging evidence to suggest that it is

reasonable to assert that there is a causal relationship

between the two variables. Additional work, both the

continuation of the SIPE analysis and basic behavioral

experiments, is being planned to develop a better

understanding the relationship between these various

factors.

PAGE 43

DISCUSSION

In the introduction it was suggested that there were

three general techniques which were available to the

behavioral scientist to use to provide information relevant

to the design of computer systems. The purpose of this

section is to review those techniques in light of this

study.

The first method which was proposed was the

observational analysis of existing interactive systems. It

was suggested that by knowing what features of current

interactive systems were being used a better understanding

of the facilities which should be incorporated into future

systems could be reached. The behavioral sciences have in

the past developed techniques to characterize the

performance of individuals in various tasks. This analysis

extends the same techniques to complex information

processing tasks.

Analysis of the use of language processors provides

support for the notion that this type of approach will lead

to better systems. The results presented in this paper

indicate that the users of TSS/360 seldom need the

interactive error-correction features of the language

PAGE 44

processor. In addition, in those cases when the user could

use the correction features, he seldom does. Thus, it seems

reasonable to assert that in designing future interactive

systems one could expect that a larger payoff, in terms of

programmer productivity, would result from investments in

areas other than interactive language processors.

This analysis of use of the language processors,

together with the other results presented in this paper,

point to the importance of implementing SIPE-type data

collection systems. If intelligent decisions are to be made

concerning the effectiveness of various interactive systems

and their sub-systems adequate behavioral data must be

available. The techniques originated in SIPE are suitable

for this purpose and should be extended to other systems.

The second procedure which the behavioral scientist has

available is the application of behavioral control

techniques to the behavioral problems in interactive

computer system. The emphasis here is attempting to use

what is already known about human performance in complex

information processing tasks to improve human performance in

computing systems. With this procedure the behavioral

scientist searches the basic literature for a solution to a

problem and then demonstrates that the solution which worked

PAGE 45

in the basic studies also works in the setting of an

interactive computing system.

In the present analysis a good demonstration of this

technique is the analysis of the relationship found between

SRT and URT. Perhaps the best known behavioral "fact" about

interactive computer systems is that users do not like a

long SRT. The results presented here indicate that a long

SRT is related to a long URT. The problem then is to

attempt to find a behavioral control technique which can be

used to reduce the undesirable effects of a lorg SRT. It

should be noted that various hardware solutions have been

offered to this problem. However, most solutions of this

type are very expensive. The problem for the behavioral

scientist is to attempt to reduce the SRT-URT relationship

without adding to the cost or complexity of the system.

In the basic psychological literature a number of

studies have explored the relationship of temporal

uncertainty (TU) on human performance in speeded information

processing tasks. TU is the amount of uncertainty which the

subject has with regards to when he will be presented

information which he needs for the next response. It can be

controlled by having either a long and/or variable

inter-trial interval (ITI). The ITI is equivalent to the

PAGE 46

SRT. A number of basic studies (Kiemmer, 1957; Karlin,

1959;, Nickerson and Burnham, 1969) have demonstrated that

as the TU in a task increases the user performance in the

task decreases (i.e., it takes him longer and/or he makes

more errors). Basic studies (Kiemer, 1957; Posner and

Boies, 1971) have also demonstrated that the effects of a

long and/or variable ITI on performance can be reduced or

eliminated by the introduction of a warning signal. In most

tasks the warning signal is a brief auditory or visual

stimulus which is presented shortly (usually 500 msec.)

before the onset of the stimulus which is to be processed.

It seems reasonable to assert that the introduction of

a warning signal just prior to the completion of the SRT

would reduce the correlation between the SRT and the URT.

It is, of course, difficult for the computer to determine

when it is "almost ready". To avoid this it would be

possible to have the computer respond "almost ready" when it

was in fact ready and to respond "ready" shortly thereafter.

While this would increase slightly the SRT (about 500

msec.), it would probably reduce the total command cycle

(the URT and the SRT) because of the high postive

correlation between the SRT and URT.

It should also be noted that most studies which have

PAGE 47

employed high TU in a task report that the subjects dislike

the task and get bored and tired very quickly. However,

when the subjects participate in a study which has a speeded

task with a warning signal, they generally show considerable

interest in the task and substain a very high rate of

performance over relatively long periods of time. This

suggests that the introduction of ;. warning signal into an

interactive system would not only improve user performance

but would also improve user acceptance of the system.

It should be pointed out that the introduction of a

warning signal into an interactive system could be done for

little or no additional cost. For example, one could use as

the warning signal several printable characters separated by

idle characters. The "cost" of this solution compares very

favorably to the cost of providing enough hardware in the

system and limiting the number of active users to insure

that the SRT never increases beyond some limit.

These suggestions concerning the implications of the

results of the basic studies of TU for the design of

computer systems will have to be verified by experimental

techniques before it is reasonable to incorporate these

procedures in the design of computer systems. The

behavioral science group at IBM Research is presently

PAGE 48

undertaking an effort to accomplish this experimental test.

The third technique which the behavioral scientist has

available is the development of a laboratory approach to

problems which are limiting human performance in computing

systems. This technique would be used when there is a

clearly defined behavioral problem in a computing system but

existing behavioral control techniques do not provide an

adequate solution to the problem. The basic literature,

however, will most likely point to the techniques which can

be used to develop the experiments necessary to provide the

answers.

An example of the need for this technique can be seen

in the command usage on the system. The command language of

TSS/360 is very rich. Counting the REDIT commands there are

well over 300 commands which the user can issue to perform

his task. However, the results indicate that only a very

small number of commands account for a very large per cent

of the total command usage. In addition, one does not have

to look very far to discover sequences where the user

emitted several commands where one command would have

performed the task. This results, of course, in additional

burdens being placed upon both the system and the users. It

is not surprising that most users do not develop very

PAGE 49

sophisticated approaches to their computing problems. If

one is limited to about ten verbs (commands) one does not

produce very interesting or efficient text of any kind.

Recent work in the field of experimental psychology has

been aimed at developing an understanding of how information

is stored in long term memory and the factors which

influence the success and speed of the retrepval processes.

It seems reasonable that an effort should be undertaken to

explore how the recent results of Meyer(1970) and Atkinson

and his associates(Juola and Atkinson, 1971) in this area

can be used to improve the number of commands which the user

has available.

References PAGE 50

Boehm, B. W., Seven, M. J., and Watson R. A., Interactive

problem solving-An experimental study of "lockout"

effects, Proceedings Spring Joint Computer Conference,

1971, 205-210.

Boies, S. J. and Gould, J. D. User performance in an

interactive computer system. paper presented at Fifth

Annual P17inceton Conference On Information Sciences and

Systems, 1971

Callaway, P. H., Considine, J. P. and Thompson, C. H.,

Virtual Memory systems on a scientific environment, IBM

Research Report, RC 3654, 1971.

Carbonell, J. R., Elkind, J. I., and Nickerson, R. S., On

the Psychological Importance of Time in A Time Sharing

System, Human Factors, 1968, 10, 135-142.

Deniston, W. R., SIPE: A TSS/360 Software measurement

technique AFIPS Conference Proceedings, Spring Joint

Conference, Vol. 34, 1969.

IBM System/360 Timesharing System: Command System User's

Guide, Order No. GC28-2001-6, 1971a.

IBM System/360 Time Sharing System: Concepts and Facilities

Order No. GC28-2003, 1971b.

PAGE 51

IBM System/360 Time Sharing System: Terminal User's Guide,

Order No. GC28-2017, 1970

Juola, J. G. and Atkinson, R. C., Memory Scanning for words

versus categories, Journal of Verbal Learning and

Verbal Behavior, 1971, 10, 522-527.

Karlin, L., Reaction time as a function of time-period

duration and variability, Journal of Experimental

Psychology, 1959, 58, 85-19.

Klemmer, E. T., Simple reaction time as a function of time

uncertainty, Journal of Experimental Psychology, 1957,

54, 195-200.

Meyer, D.E., On the representation and retrieval of stored

semantic information. Cognitive Psychology, 1970, 1,

242-300.

Miller, R. B., Response times in man-computer conversational

transaction, Proceedings of Fall Joint Computer

Conferences, Thompson Book Company, Washington, D.C.,

1968, 267-277.

Moulton, P.G. and Muller, M. E., DITRAN-A compiler

emphasizing diagnostics, Communications of the ACM,

1967, 10, 45-52.

Nickerson, R. S. and Burnham, D. W., Response times with

PAGE 52

non-aging time periods, Journal of Experimental

Psychology, 1969, 79, 452-457.

Posner, M. I., and Boies, S. J., Components of Attention,

Psychological Review, 1971, 78, 391-408.

Thompson, C. H., "User's Guide to the Research Context

Editor", IBM Research Report, Ra-28, 1971.

PAGE 53

Footnotes

1. R. N. Ascher performed much of the programming

required for this report, J. D. Gould provided the initial

guidance for the work, L. A. Miller made a jiumber of useful

comments on this paper, and Ms. Rebecca Stage assisted in

the manuscript preparation. Work on this manuscript was

done while the author was supported, in part, by a contract

from the Office of Naval Research.

PAGE 54

Table 1. Command frequency and per cent of overall usage
for 20 most used TSS/360 commands.

COMMAND FREQUENCY PER CENT OF PER CENT OF
TSS COMMANDS ALL COMMANDS

USER ATT 2171 15.25 5.53
REDIT 983 6.90 2.51
LOGOFF 732 5.14 1.87
ERASE 562 3.95 1.43
DDEF 408 2.86 1.04
LIST 379 2.66 .97
PRINT 344 2.42 .88
NETOS 330 2.32 .84

270 1.90 .69
RMDS 255 1.79 .65
INSERT 249 1.75 .64
DSS? 230 1.62 .59
DISPLAY 216 1.52 .55
NUMB 180 1.26 .46
END 179 1.26 .46
NETOS? 158 1.10 .40
PC? 155 1.09 .40
EDIT 154 1.08 .39
SET 151 1.06 .38
EXCISE 125 .88 .32

PAGE 55

Table 2. Command frequency and per cent of overall usage
for 20 most used REDIT commands.

COMMAND FREQUENCY PER CENT OF PER CENT OF
REDIT COMMANDS ALL COMMANDS

CHANGE 4303 17.22 10.97
POINT 1997 7.99 5.09
PRINT 1959 7.84 4.99
NEXT 1656 6.63 4.22
DELETE 1577 6.31 4.02
INPUT 1511 6.05 3.85
FILE 1397 5.59 3.56
LOCATE 1249 5.00 3.18
NP 1142 4.57 2.91
QUIT 1020 4.08 2.60
UP 843 3.73 2.15
TOP 799 3.20 2.04
LOAD 785 3.14 2.00
FIND 447 1.79 1.14
USER ATT 338 1.35 .86
BOTTOM 331 1.32 .84
OVERLAY 277 1.11 .71
DUPLICAT 226 .90 .58
BP 221 .88 .56
DELETEL 202 .81 .52

PAGE 56

44N

020

14.4 0 z'

0 04
0.0

E' $4 0 eqf
0 0 0"00

0 M ('

4-4 E-

on c
1.4 % 0 n ('4

ou 0
4.4 U) E

0 r.

0 $4 M NO 0 O
in 4) 0 n N Or A

040

E4)

H14 M 0D 0
0- co N ' N

00

U))

U) U)tD _
0 .4)

4.4 0

0x

4)

o) 04

U)I 0) 9:4 0~
z 0.

1.41 41.
4.4 0W$ O -

0) 1.o4 r
0U) ca ri0

,4 W 0) :0 41 4

E-) 04z X

U) - -) - 0 - -. I. . . - - 1-Xr % -wd -w

PAGE 57

0

0 oc % C N L L

•0

fn CO % %CS0 LOtM00 0
0 .4 . ..O .. IA D.D . .
A4n w jt - co~r a LA - nL % o 0

4.4

0

S0*

"> %D 0 0

0

4J > o4NM0M -r0aN f -

.4) T- 0:

.H
V

0 OzE-1

0-4 U) z4

U) 0

Q)

04) 4

E-4 .z

PACE 58

40

30

Ii.
o 20
"a
w

z
I00

2 4 6 8 10 12 14 16 18 20

NUMBER OF DAYS SIGNED ON

Figure 1. Histograph of the number of days each user signed on
to the system during the 21 days of the analysis.

40 ,

S30

S20

10 20 :30 40 50 60 61
NUMBER OF TERMINAL SESSIONS ormore

Figure 2. Histograph of the number of terminal sessions for each
user during the 21 days of the analysis.

|u

PACE 59

100

- number

•80
z
w

w6ZO

w 0.

LU - length

~40
-J

~20-

0 , I I I I , I
0 100 200 300 400 500 600

or
DURATION OF TERMINAL more

SESSION (in minutes)

Figure 3. Cumulative per cent of the number and duration of the
terminal sessions as a function of the duration of the
terminal session.

100

I- 80 connect\, /
z time /
w

w 60-
C.

00

w>/
40- /'--terminal

.J '/ sessions

20

0 20 40 60 80 100

CUMULATIVE PER CENT OF RANKS
Figure 4. Cumulative per cent of the terminal resources as a

function of the users ranked ordered on the amount of
terminal activity.

PACE- 60

120
110

' 9o
680

W 50-z
z40

O 20 40 60 80 100 120 140 160 180 200

USERS RANKED ON TOTAL CONNECT TIME

Figure 5. The total number of hours each user signed on to the
system during the 21 days of the analysis. The users
are ordered on this dimension.

7.0UO

06.0La. 5
0 55

W 5 D

~45-

z•4.0

W a521
3- .0 - i a i , i, i, ,

8z 2D
z
o 1.5-

1.0-
0O.5-

0
0 20 40 60 80 100 120 140 160 180 200

USERS RANK ORDERED ON TOTAL CONNECT TIME/

NUMBER OF DAYS
Figure 6. The average number of hours each user was connected

to the system on those days he did sign on to the
system. The users are ordered on this dimension.

TECHNICAL REPORTS DISTRIBUTION LIST
CODE -4155

Director, Engineering Psychology (5 cys)
Programs, Code 455

Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

Defense Documentation Center (12 cys)
Cameron Station
Alexandria, Virginia 22314

Director, ONR Branch Office
Attn: Dr. C. Harsh
495 Summer Street
Boston, Massachusetts 02210

Director, ONR Branch Office
Attn: Dr. M. Bertin
536 S. Clark Street
Chicago, Illinois 60605

Director, ONR Branch Office
Attn: Dr. E. Gloye
1030 East Green Street
Pasadena, California 91106

Director, ONR Branch Office
Attn: Mr. R. Lawson
1030 East Green Street
Pasadena, California 91106

Director, Naval Research Laboratory (6 cys)
Technical Information Division
Code 2027
Washington, D. C. 20390

Director, Naval Research Laboratory (6 cys)
Attn: Library Code 2029 (ONRL)
Washington, D. C. 20390

I

Mr. John Hill
Navall bsearch Laboratory
Code 5634
Washington, D. C. 20390

Office of Naval Research
Mathematical Sciences Division, Code 430
Department of the Navy
Arlington, Virginia 22217

Office of the Chief of Naval
Operations, Op-095

Department of the Navy
Washington, D. C. 20350

Dr. John J. Collins
Office of the Chief of Naval

Operations, Op-987F
Department of the Navy
Washington, D. C. 20350

CDR H. J. Connery
Office of the Chief of Naval

Operations, Op-987M4
Department of the Navy
Washington, D. C. 20350

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code AX
Washington, D. C. 20380

Dr. Herber G. Moore
Hqs., Naval Material Command
Code 03R4
Department of the Navy
Washington, D. C. 20360

Chief of Naval Material
Prog. Admin. Personnel & Training
NAVMAT 03424
Department of the Navy
Washington, D. C. 20360

Chief of Naval Material
Ocean Engineering 6 Support Tech. Div.
NAVMAT 034
Department of the Navy
Washington, D. C. 20360

Commander, Naval Air Systems Command
Attn: Mr. Hal Booher, AIR 415G
Washington, D. C. 20360

Commander, Naval Electronics
Systems Command

Command and Display Systems Branch
Code 0544
Washington, D. C. 20360

Mr. Joseph B. Blankenheim
Naval Electronics Systems Command
Code 0474
Washington, D. C. 20360

Commander, Naval Facilities Engineering
Command, Plans & Programs Division

Code 031
Washington, D. C. 20390

Commander, Naval Air Systems Command
NAVAIR 340F
Washington, D. C. 20360

Mr. James Jenkins
Naval Ships Systems Command
Code PMS 302-43
Washington, D. C. 20360

Naval Ships Systems Command
Code 03H
Washington, D. C. 20360

Commander, Naval Supply Systems Command
Logistic Systems Research and

Design Division
Research and Development Branch
Washington, D. C. 20390

Mr. A. Sjoholm
Bureau of Personnel
Personnel Research Div., PERS A-3
Washington, D. C. 20370

CDR Robirt Wherry
Human Factors Engineering Systems Ofc.
Naval Air Development Center
Johnsville
Warminster, Pennsylvania 18974

Human Factors Engineering Branch
Code 5342 U. S. Naval Missile Center
Point Mugu, California 93041

Mr. Ronald A. Erickson
Head, Human Factors Branch, Code 4011
Naval Weapons Center
China Lake, California 93555

Human Engineering Branch, Code A624
Naval Ship Research & Development Center
Annapolis Division
Annapolis, Maryland 21402

Dr. Robert French
Naval Undersea Center
San Diego, California 92132

Mr. Richard Coburn
Head, Human Factors Division
Naval Electronics Laboratory Center
San Diego, California 92152

Dr. Gerald Miller
Human Factors Branch
Naval Electronics Laboratory Center
San Diego, California 92152

Dean of Research Administration
Naval Postgraduate School
Mcnterey, California 93940

Mr. E. Ramras (3 cys)
Technical Director
Personnel Research & Development Lab
Washington Navy Yard
Washington, D. C. 20390

Commanding Officer (3 cys)
Naval Personnel and Training

Research Laboratory
Attn: Technical Director
San Diego, California 92152

Dr. J. J. Regan
Human Factors Department, Code 55
Naval Training Equipment Center
Orlando, Florida 32813

Dr. George Moeller
Head, Human Factors Engineering Branch
Submarine Medical Research Laboratory
Naval Submarine Base
Groton, Connecticut 06340

CDR Thomas Gallagher
Chief, Aerospace Psychology Division
Naval Aerospace Medical Institute
Pensacola, Florida 32512

U.S. Air Force Office of
Scientific Research

Life Sciences Directorate, NL
1400 Wilson Blvd.
Arlington Virginia 22209

Dr. J.M. Christensen
Chief, Human Engineering Division
Aerospace Medical Research Lab
Wright-Patterson AFB, Ohio 45433

Dr. Walter F. Grether
Behavioral Science Laboratory
Aerospace Medical Research Laboratory
Wright-Patterson AFB, Ohio 45433

Dr. J.E. Uhlaner
Director, U.S. Army Behavior &

Systems Research Laboratory
1300 Wilson Blvd.
Arlington, Virginia 22209

Chief of Research and Development
Human Factors Branch
Behavioral Science Division
Department of the Army
Washington, D. C. 20310

Attn: Mr. J. Barber

Army Motivation & Training Lab
Room 239 Commnonwealth Bldg.
1300 Wilson Blvd.
Arlington, Virginia 22209

Technical Director
U.s. Army Human Engineering Labs
Aberdeen Proving Ground
Aberdeen, Maryland 21005

Lt Col Austin W. Kibler
Director Behavioral Sciences
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, Virginia 22209

Dr. Stanley Deutsch
Chief, Man-Systems Integration
OART, Hqs., NASA
600 Independence Ave.
Washington, D. C. 20546

Dr. Jesse Orlansky
Institute for Defense Analyses
400 Army-Navy Drive
Arlington, Virginia 22202

Mr. Luigi Petrullo
2431 N. Edgewood Street
Arlington, Vitginia 22207

Dr. Ward Edwards
University of Michigan
Dept. of Engineering Psychology
Ann Arbor, Michigan 48105

Human Performance Center
University of Michigan
Ann Arbor, Michigan 48105

Dr. Edwin A. Fleishman
American Institutes for Research
8555 Sixteenth Street
Silver Spring, Maryland 20910

American Institutes for Research
Library
135 N. Bellefield Avenue
Pittsburgh, Pa. 15213

Psychological Abstracts
American Psychological Association
404 East Lancaster Street
Wayne, Pennsylvania 19087

Dr. A. I. Siegel
Applied Psychological Services
404 East Lancaster Street
Wayne, Pennsylvania 19087

Dr. L. J. Fogel
Decision Science, Inc.
4508 Mission Bay Drive
San Diego, California 92112

Dr. Joseph Wulfeck
Dunlap and Associates, Inc.
1454 Cloverfield Blvd.
Santa Monica, California 90404

Dr. Robert R. Mackie
Human Factors Research, Inc.
Santa Barbara Research Park
6780 Cortona Drive
Goleta, California 93017

Dr. Amos Freedy
Perceptroncs, Inc.
17100 Ventura Blvd.
Encino, California 91316

Dr. C. H. Baker
Director, Human Factors Wing
Defense Research Establishment Toronto
P. 0. Box 2000
Downsville, Toronto, Ontario
CANADA

Dr. D. E. Broadbent
Director, Applied Psychology Unit
Medical Research Council
15 Chaucer Road
Cambridge, CB2 2EF
ENGLAND
Dr. Cameron Peterson
Decisions and Designs, Inc.

Suite 600, 7900 Westpark Drive
McLean, VA 22101

