
AD-754  812 

CRITICAL   TEMPERATURES   OF   ISING   LATTICE 
FILMS 

G .   A .   T .   Allan 

Cornell   University 

Pre pared  for: 

Advanced   Research   Projects   Agency 

1970 

DISTRIBUTED BY: 

KTÜ1 
National Technical information Service 
U. S. DEPARTMENT OF COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 



•\ 

^ 
/ 
^/ R 

00 

t> 
Q 

CRITICAI.,    TEMPERATURES    OF 

ISING    LATTICE    FlfcMS 

' 

By 

G. A. T.   Allan 

Baker Laboratory,   Cornell University, 
Ithaca,   New York  148 50 

D D Ov 

Ail 

^^/^' /^ ^^ 

33^^ .A&tP •&'**// 
Roproducad by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U S Dtportnant of Commttc» 
59ring«l«ldVA221SI 

' 

RRd* document h-s BSro approvtd 
Ifor pal       ■"   ■";■, p"1^ ,,a^e' "3 

leu«:' -1 ■ • ■.    '■ it»4          



ABSTRACT 

Ising lattices consisting of    n = 2, 3, 4,   and  5 interacting plane square 

lattice layers are studied by exact high temperature series expansions. 

Specifically 7 to 9 terms of the zero-field susceptibility expansion have been 

obtained for (a)  free  surface boundary conditions  (in which each surface spin 

interacts with only five nearest neighbors); and  (b)  periodic boundary condi- 

tions  (in which all  spins interact equivalently with six nearest neighbors). 

Initial estimates of the critical temperatures    Tc(n) have been made by ratio 

and Fade approximant techniques.     The results are consistent with the con- 

jectures that    T  (») - T  (n)    varies with thickness    n    as    n        with    \ = 1 
c c 

in case (a) and  \ = 'i/\>3~ 1'5b in case ^'   but other,especially, larger values 

of    X    are not excluded. \ 
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1.      INTRODUCTION 

The properties of the Ising model have been investigated extensively for 

many two- and three-dimensional  (and even higher-dimensienal)   lattices. 
_ 4 

In addition Kramers and Wannier,     Onsager and Ferdinand and Fisher    have 

considered one case of what might loosely be called "intermediate" dimen- 

sionality,   namely the    nX«    square lattice torus  (or cylinder).     In this 

case for finite    n    there is no true   phase transition but the height and 

location of the maximum of the specific heat peak were studied.     In this 

paper we present some results for the analogous situation intermediate be- 

tween the infinite two-dimensional square lattice and the infinite three- 

dimensional simple cubic lattice,   namely an    n x » x »    simple cubic lattice 

"film"  formed by stacking    n    layers of the plane square lattice.    (A section 

of such a lattice for    n =■• 3    is  shown in Figure  1.) 

The two layer film (n - 2) has.   in fact,   been considered previously by 

Ballentine5    We have confirmed his numerical calculations and,   in addition, 

obtained high-temperature expansions for the zero-fie.'c susceptibility for 

three and four layer lattices.    A true phase transition occurs now for each 

value of    n .     Our ultimate aim has been not only to determine the critical 

temperatures    T  (n)    for the individual values of    n ,   but also to estimate, 

as far as possible,   the form of the dependence of    Tc(n)    on the number of 

layers  for large    n .     Knowledge of this dependence would be valuaoie in 

interpreting experiments on a varietv of real films.    The present work repre- 

sents a first step in this program. 

In the simple two-layer case (n = 2)    all  sites are equivalent (having a 

coordination number of five) which greatly simplifies the work of deriving the 

series coefficients.     But this simplification is evidently lost for    n s 3    when 

the surface spins  still have coordination five while the non-equivalent interior 
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Sites have coordination number six.     On the other hand,   we may alternatively 

impose periodic or cyclic boundary conditions in the vertical direction by 

merely assuming that a spin on the top layer interacts via a direct nearest 

neighbor bond with the corresponding spin on the bottom layer.     In this 

case all sites are again equivalent  (and no identifiable "surface" layers 

exist).     This cyclic model is clearly analogous to the    n x »    torus or 

cylinder considc-ed in Refs.  3 and 4,     Although it does not correspond 

closely to any physically realizable geometry,   it is theoretically interesting 

in assessing the significance of "surface" effects as distinct from "finite- 

thickness" effects.     We have therefore calculated series for cyclic multi- 

layer lattices with    n = 2, 3, 4 and  5 layers. 

The layout of the paper is as follows.     The derivation of the series 

expansion coefficients is outlined in Section II.     The series are analyzed 

by ratio   and Fade approximant techniques in Section III to obtain estimates 

of the critical temperatures    T (n) .     The form of the variation of    T      with c c 

the numoer of layers    n    is discussed in the last section where plans for 

future work are mentioned. 

II.    CALCULATION OF THE SERIES 

The Hamiltonian of the Ising model with nearest neighbor interactions 

in an external magnetic field    H    is 

Jt = -J   E      s.s. - mHEs. , (1) 
<i.j>     ' j i   i 

where    s. = ± 1    is the spin variable associated with 1th  lattice site, 

(i = 1, 2, 3, ...N)    and the first sum runs over all nearest neighbor pairs 

of lattice sites    <i, J) .     For a ferromagnet the coupling parameter or 

; 
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exchange constant    J    is positive; lastly    m    denotes the magnetic moment 

per spin.     This isothermal susceptibility,     x ■ öM/aH,   may be expanded at 

high temperatures in zero field in powers of 

v = tanh(j/kT) U) 

in the form 

(kT/m2)Xn(v)   =    1 +  E    a vr. (3) 
u r=l    r 

where    a      is twice the term linear in    N,   the total number of lattice sites, 
r 

in thö number of way::, of embedding all possible magnetic graphs of    r    lines 

12   6 
on the lattice in question.   '   '      A magnetic graph is one which contains two, 

and only two,   odd vertices,   i.e.,   vertices at which an odd number of lines 
7 

meet.     The embeddings we consider are "weak",     in the sense that two ver- 

tices of a graph    G    embedded on adjacent lattice sites need not be joined 

by a line of the graph.     The number of (weak) embeddings per lattice site is 

17   7 
the (weak)  "lattice constant"  '   '     and is denoted    (G). 

For    n = 2    it is convenient to distinguish    v = tanh(j/kT)    for the in- 

layer or horizontal x-bonds,   from v' = tanhd'/kT)    for the between-layer or 

vertical z-bonds.     The main feature in the calculation of the lattice constants 

is then a  subdivision into contributions from embeddings involving zero,   one, 

two,   ...   z-bonds,   the remaining bonds being x-bonds.    As a trivial example 

we see that the lattice constant    (—)    for a single line can be written 

(-)  =   (2, *) 

where the first figure,   2,   refers to the embeddings with no z-bonds,   while 

the second figure,   ^ ,   is the number of embeddings  (per site) with one z-bond. 

By calculating the more elaborate constants  similarly one generates a douule 

power series for    XQ    in    the two 

j 
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variables    v    and    v1.     We have determined the lattice constants for the 

fifty magnetic graphs containing nine lines or less that can be embedded 

in the two-layer lattice thus obtaining all terms in the expansion of   Xn 

of the form    v v"      for    r + s s 9 .     On setting    v ■-■■ v'    we obtain the 

series for the standard two-layer lattice discussed by Ballentine.5    Our 

coefficients agree exactly with those he found which provides a welcome 

check.     On the other hand by setting    J- = Z]    and re-expanding    v'    in 

terms of    v    we obtain the correct expansion for the two-layer cyclic 

lattice since,   in effect,   this lattice is  simply the ordinary free surface 

lattice with an extra vertical bond between each site in the "top" layer 

and its neighbor in the "botto.n" layer. 

In the case    n = 3    the cyclic lattice with periodic boundary condi- 

tions is "close packed" in the sense that polygons of odd length,   including 

triangles,   occur on the lattice.     Consequently a number of additional lattice 

constants have to be evaluated in each order.     In fact 84 graphs now con- 

tribute up to eighth order which is as far as the calculations have so far 

been extended.     Since all lattice sites are still  equivalent,   however,   the 

calculation of these lattice constants follows  standard procedures.    The 

calculations for the four- and five-layer cyclic lattices are simpler because 

of the absence of triangles even though odd polygons of length 5, 7, 9,  ... 

can occur on    the five-layer cyclic lattice.     For this reason we have been 

able to extend the calculations up to ninth order on these lattices without 

excessive effort. 

For the three- and four-layer lattices with free surfaces the evaluation 

of the lattice constants is appreciably more arduous because of the non- 

equivalence of surface and interior sites which prevents the straightforward 

application of the usual techniques.     For these lattices we have decomposed 

each lattice constant into contributions from embeddings which span one,   two. 



three and four layers. If (G)n denotes the lattice constant for a connected 

graph G on the cyclic lattice of n layers and (G)5^ denotes the contri- 

butions to    (G)n    from embeddings which span exactly    I    layers we clearly 

have 

(G)n =    2    (G)"   . W 

2 
When    n = 2    we see,   recalling the previous discussion,   that    (G)1    is Just 

the lattice constant for embeddings involving no z-bonds while    (G)2    is the 

sum over those embeddings involving one,   two,  ... z-bonds.     It is also clear 

that 

(G)f =(G)J  -   ..     =K (5) 

f
nr all    n.     More generally if we consider the     (n+l-O    vertical transla- 

tions of an embedding which spans exactly    I    layers we easily see that 

(G)1^ =nl{.n+l-l)HG)\ . ^ 

Thus for a three-layer lattice,   for example,   we can use the two-layer data 

to obtain    (G)^ = (4/3) (G)^    and hence we need to count only those new 

embeddings of    G    that span all three layers ie.   to evaluate the constant 

(G)3 a     For any finite graph there is a maximum number of layers,    L(G) 

which can be spanned.     A check on the calculations is thus provided by 

the tabulated constants for the simple cubic lattice    (corresponding to n=«) 

since by combining (4) and (6)  and letting    n-»»    we obtain 

(G)s-C-   = (G)00 =     E     UG); . (7) 

Nevertheless the labor involved,   particularly in countii.    the linear chains 

manually,   is considerable.     (In this initial study we have not used a 

computer to assist directly in the counting task.)    We have thus obtained 

1 



the series for the three- and four-layer free-surface lattices only up to 

seventh order. 

The coefficients for all the series studied are presented in Table I. 

III.      ANALYSIS OF THE SERIES 

To estimate the critical temperatures    T  (n)    from the series given 

in Table I we have utilized the well-known ratio and Fade approximant 
2  8 

techniques.'       Figure 2 illustrates the ratio plots for the various free 

surface and cyclic lattices together with the limiting cases    n'= 1    (plane 

square)  and    n = »    (simple cubic).     For both free and cyclic boundary 

conditions the plots for finite    n a 2    exhibit appreciable curvature.    This 

is particularly noticeable for the cyclic lattices where,   in fact,   the ratios 

Ur(n) = ar(n)/a^j (n)    depart from the values    nr(oo)    for the simple cubic 

lattice,   only for    ran.     This phenomena represents a changeover from 

characteristically three-dimensional behavior at low values of    r (<n)    to 

characteristically two-dimensional behavior at high values of    r(>n). 

More specifically the initial terms will tend to exhibit a  slope    g = y-1 

on the ratio plot corresponding to an exponent    y = y- = le25    while the 

high order terms are expected to yield an asymptotic slope of    y = y7 = 1.7b 

1      7 
typical of the standard two-dimensional lattices.   '       Correspondingly when 

T    exceeds    Tc    by an appreciable amount    Xg    wil1 behave roughly like 

(T-Tp    3    where    T• >T   .   while close to the true critical point    T ,   the 
-y 

characteristically two-dimensional variation as    (T-T )    2    is expected to 

take over.     (This type of behavior can be seen explicitly in the spherical 

model in the corresponding situation intermediate between three- and four- 

dimensional lattices; then    Y3 = 2    and    Y4 = D    For the two-layer lattices 

■ 



•   - 

where the series are sufficiently long  (about four times the number of layers) 

to span the changeover region the apparent limiting behavior of the ratio 

plots provides airect support for the above surmise.     For the lattices with 

more layers,   however,  the present series are shorter,   both in proportion to 

n    and absolutely.     Consequently the available ratios do not clearly pass 

through the changeover region.     Some estimate of the extent of curvature 

of the ratio plots must thus be made if the    r = »    intercepts,   and hence 

the critical temperatures,   are to be determined wr.th reasonable precision. 

Accordingly we have examined plots of    ^(n)    versus    l/(r+e)    with various 

value of    e    (In the range   0 to 2).     The variation of    e    has no effect on 

the leading asymptotic behavior but suitable values of    e    yitld straighter 

plots at low values of    r.     In estimating the limiting intercept we have 

chosen values of    e    such that the overall slope of the plot was close to 

the expected value    g = 1,75-1 = 0.75. 

The values of    v      and the critical temperatures obtained with this 
c 

procedure are listed in Table II with an indication of the range of uncer- 

tainty. 

Owing to the relative shortness of most    of our series the precision 

is much less than obtained for the standard two- and three-dimensional 

lattices.1,2    (We also feel that  Ballentine overestimated somewhat the 

precision of his own estimate for the free two-layer lattice,   namely, 

v   = 0.3012 ± 0.0002.)    We plan to obtain longer series which will yield 
c 

increased precision and,   in addition,   enable us to study lattices with more 

layers. 

Fade approximant analyses of the series yielded results similar to 

those found from the ratio plots.    In particular the location of the poles 
-4/7 

of direct Fade approximants to the function    [x0 (v)J    /  ,   which is expected 

to have a simple pole at    v ,   were quite consistent with tht estimates in 



Table II.     Thus,   by  way of example,   a diagonal or near diagonal sequence of 

Fade estimates of   v      for the    n = 4    periodic lattice is:    0.2392,   0.2335, 

0.2314,   0.2304,   0.2303,   0.2305.     These compare with the corresponding 

linear extrapolants of the ratios   iar (4)     with    e = +2 viz:    0.2232,   0,2288, 

0.2263,   0.2290,   0.2283,  0.2306.     As  seen in Table II our estimate of the 

critical parameter for this lattice is    v    = 0. 2305± 0. 0010 . 

IV.      DEPENDENCE OF CRITICAL TEMPERATURE ON NUMBER OF LAYERS 

The solid curve labelled (a) in Figure 3 shows the variation of 

v (n) = tanh[j/kT (n)J    versus    l/n    for the lattices with free surfaces, c c 

Figure 4(a)  is the same plot for the cyclic lattices.     In both cases there 

are clear departures from linearity with    n        but these are most pronounced 

for the cyclic lattices where    v (n)    approaches the three-dimensional value 

v (»)    rather rapidly.     For large   n    it is natural to expect a power law of 

the form 
en = 1 " y^ /Tc(oo) Z c0/nX        (n "* ^  • (8) 

If we attempt to determine the c /nstants    X    and    c0    by a direct fit to the 

simple two-parameter formula 

vc(n) - vc(co) - A/nX (9) 

we find that surprisingly good fits can be obtained for both free surface and 

cyclic lattices with    \ = 1.27 ± 0.05    and    X = 2.00 ± 0.08,   respectively and 

A ^ 0.196 (in both cases).     These fits are shown by the dashed lines labelled 

(b) in Figures 3 and 4 respectively.    The uncertainties of the fits are princi- 

pally determined by the lack of precision in the values of    T (n) . 
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However,   we are not aware of any other arguments that would support 
c 

the validity of the fitted values of   X .     On the contrai/ Fisher and Ferdinand" 

have argued that for lattices with free surfaces one should rather expect 

X = 1    (as n-»«).    This follows simply from a mean field argument.    Thus 

if    q    is the coordination number of the lattice,   mean field theory predicts 

kTc = qj (10) 

For an   n-layer simple cubic lattice with free surfaces the mean coordina- 

tion number is reduced from    q =  6 to 

q = (6n - 2) /n (ID 

and so the mean field prediction becomes 

en ■ (D/n. (U; 

Similarly the Bethe approximation for a uniform lattice gives 

vc = tanh(j/)cTc) = l/(q-l) (13) 

which on using (11) q    leads to the relative shift 

e   = [cn + (c, /n) + ... J /n      (free surface) n        u        i 
(14) 

with    c0 = 0.4i32 in place of    c0 = ^.     Higher order terms like those in 

(14) must be expectod generally.    They may be allowed for by fitting to the 

modified expression 

V fo) -v>) = A/(n-hr c ^ (15) 
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which is asymptotically equivalent to (14).     Such a  fit with the exponent fixed 

at    X = 1    is shown in Figure 3 curve  (c):    the parameter values are    h = 0. 60 

and    A = 0.116± 0.001.     Evidently the fit is quite satisfactory and certainly no 

worse than the ad hoc fit (8).    The value of   A    corresponds to a constant 

CQ *■ 0. 55    which compares reasonably with the Bethe predictlcn of 0.41. 

In the case of the cyclic lattices the coordination number    q    remains 

unchanged (at q = 6)    and the mean field and Bethe approximations,   both of 

which take no account of closed polygons on the lattice,   predict no change 

in    T   .    To the extent that    T (n)    approaches    T (•)    rrach more rapidly 

for the cyclic lattices than for those with free surfaces this prediction is, 

roughly,   confirmed.     Indeed the fit (b)  in   Figure 4,   corresponding to    X = 2, 

is consistent with (14)  if    c0 = 0    but    c, / 0.     On the other hand some 
9 

general heuristic arguments    suggest that when    n    is large   the deviations 

from the infinite simple cubic lattice susceptibility should first become sig- 

nificant at temperatures  so close to    T («)    that the range of correlation In 

the infinite lattice,     ? (T) ~a(AT/T )~V3,   is of the same order as    na,   the 

"circumference" of the finitely-layered lattice (a    being the lattice spacing). 

One imagines the "mode of propagation" of the conflations must change when 

significant correlation occurs "around" the lattice.     If the deviation 

T (•) - T (n)    were of the same order as this effect one would expect, 

\ =  l/v3,   that Is 
1/v, 

e   *• c0/n      3 (cyclic lattices) . (16) 

To test this hypothesis  (while allowing for the higher order corrections which 

must still be expected) we have fitted the cyclic critical points to (16) with 

\ = 1.56*" 1/v    . An shown by the line (c) In Figure 4 the fit Is very rea- 

sonable for n » 3 with h = 0.75 but Is less satisfactory for n = 1 and 2; 

but this may not be very surprising since the underlying picture loses credi- 

bility for such "thin" lattices. 
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In summary then,   the conjectures:     (a)  [free surface]    X. = 1 ,   and 

(b) [cyclic]    X = l/v3,   based on the various heuristic theoretical arguments 

are quite consistent with the estimated critical points and yield reasonable 

two-parameter fits for    na2.     However,   the shortness of the present series 

limits both the precision of the estimated critical temperatures and the number 

of layers that can be studied.    As a consequence the theoretical conjectures 

must not be regarded as unambiguous!    confirmed; in particular,   the larger 

values    (a)    X3- 1.27 and    (b)    Xa'2.0    provide ad hoc,   but equally satis- 

factory,   fits to the available results.     To resolve this question longer series 

ore clearly essential.     We are undertaking the calculation of further terms by 

using the computer-based methods of enumerating lattice configurations devel- 

oped by Sykes,    Martin and their coworkers.     We also hope to extend the 

work to the Heisenberg and related models. 
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IHBLE    I 

Series Coefficients for High Tenr.perature SusceptiLUity of 
Simple Cubic Lattices with    n    Layers önd Cyclic or Free Boundary Conditions 

n n ■ 2 n s 3 n ■ 4 n= 5 
Free Cyclic Free Cyclic Free Cyclic Cyclic 

1 5 6 5^ 6 5* 6 6 
2 20 28 m 30 25 30 30 
3 80 130 I02f 148 114£ 150 150 
4 304 564 433^ 706 506 724 726 
5 1, 152 2,438 l,822f 3,322 2,234 3,490 3,508 
6 4.236 10,132 7,478f 15,364 9,660 16,490 16,690 
7 15, 528 41,794 30,569^ 70,222 41. 648 77,826 79.234 
8 55.924 169,652 317,574 362,356 373.106 
9 200,803 682,870 1.684,966 1.751.810 

10 712, 868a 

a.    From ßallentlne (Ref.   5) 
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TABLE    II 

Critical Parameters for the Simple Cubic Lattices of    n    Layers 

vc =tanh(j/kTc) kTc(n)AJ Tc(n)/Tc(«) 

Cyclic                         Free Cyclic      Free Cyclic       Free 

1 0.4142136 0.5672963 0.50311 

2 0.269±0.001           0.300±0.001 0.604      0.646 0,804       0.717 

3 0.240±0.001           0.267±0.001 0.681       0.685 0.906      0.810 

4 0.2305±0.0010       0.252±0.003 0.710      0.706 0.945      0.861 

5 
i 

0.226± 0.002 0.725 
i 

\ 
,                                   1 

0.964 
1 

i 

00 0.21815 0.75172 1.0000 

■•""——"'.'■ mmmmmmt** »*•:» 
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FIGURE   CAPTIONS 

Figure  1.  A section of the three-layer simple cubic lattice with free surfaces 

Figure 2.   Ratios    |i   = a (n)/a    t{M    of successive coefficients of the suscep- 

tibility expansions versus    1/r   for (A) the free surface and (B) the 

cyclic n-layer lattices.     [The simple cubic lattice corresponds to 

n = oe.] 

Figure 3. Plots of the critical constants    v   = tanh(j/kT )    of the n-layer free c c 

surface lattices versus   (n-h)        with (a) X ■ 1, h ■ 0«   (b) X = 1.27, 

h = 0,   and (c) X = 1, h = 0.60. 

Figure 4.   Plots of the critical constants of the    n-layer cyclic lattices versus 

(n-h) -\ with (a) X ■ 1, h ■ 0,   (b) X ■ 2, h « 0, and (c) X = 1/v, ■" 1. 56, 

h = 0.75. 
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