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FOREWORD

The research reported herein was conducted by the staff
of the Monsanto/Washington University Association under the
sponsorship of the Advanced Research Projects Agency, Depart-
ment of Defense, through a contract with the Office of Naval
Research, N00014-67-C-0218 (formerly N00014-66-C-0045),

ARPA Order No. 876, ONR contract authority NR 356-484/4-13-66,
entitled "Development of High Performance Composites."

The prime contractor is Monsanto Research Corporation.
The Program Manager is Dr. Rolf Buchdahl (phone 314-694-4721).

The contract is funded for $7,000,000 and expires

30 June, 1974.
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ABSTRACT

A technique is presented which, by means of plating and
etching processes, permits the creation of a wide variety of
crack propagation gages. High precision gages of arbitrary
size and shape are easily prepared. Specific gage con-
figurations are shown for center notch, edge notch and
cleavage type specimens. Optimum gage design is discussed

and typical readout circuits are shown.
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AN EXPERIMENTAL TECHNIQUE FOR MONITORING DYNAMIC CRACKS

R. E. Lavengood, D. Peretz, F. L. Brissey and E. M. Wu

The study of propagating cracks has traditiorally been
hampered by the lack of a convenient technique for monitoring
crack growth. High speed photography can cover a wide enough
field to satisfy most needs, but the peripheral equipment is
quite expensive, and the data reduction is slow and laborious.
Ultrasonic transducers are occasionally used to impose a
sinusoidal variation on the existing state of stress, thereby
causing ripples on the fracture surface which may be used
as timing marks. This technique is acceptable with some elastic
materials, but may not be used with viscoelastic materials
because the properties of such materials are strain rate
dependent. An alternate approach, which is adequate for
many specific applications, involves bonding on crack
propagation gages, which are commercially available from
strain gage suppliers. These devices are similar in appear-
ance to bonded strain gages, however, the gage section is
shaped like a ladder. The lead wires are co;nected to the sides
of the ladder, and the change in resistance is monitored as
the crack breaks the successive rungs. The major disadvantage
of this approach is the very small size of the gages (typically,
1/8" wide). The path of a freely propagating crack can usually

not be anticipated with sufficient accuracy to insure correct
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piacement of these small gages. This paper describes a new
technique which permits crack propagation gages of arbitrary
size and shape to be applied to specimens with great precision.
ni:e basic approach consists of plating the surface of
ihe specimen with a thin, continuous film of copper. and then
using a state-of-the-art printed circuit technique to
selectively etch away copper to leave a grid of parallel
conductors perpendicular to the direction of crack propagation.
If the specimen is conductive, it must first be painted with
a "stop-off" lacquer Or other insulating film. such lacquers,
plating and etching supplies are readily available from Shipley.,
Kodak, DuPont or MacDermid.
The simplest way to detect an advancing crack with such

a gage is to put the gage in a D. C. Wheatstone bridge and

monitor the output voltage. If the bridge is initially balanced
and each element of the gage has the same resistance, the

breaking of one element would produce the following change

in the output of the bridge:

N Vs
AV = (1)
(2N + n)? - 2N-n

where AV = change in output voltage of the bridge
Ve = excitation voltage on the bridge
N = total number of elements in the gage

n = number of broken elements in the gage.



With polymeric materials, V3 must be kept small to
minimize the heat generated in the gage. Therefore, as N
becomes large, the AV associated with the breaking of the first
element becomes very small. This makes detection difficult.

As each successive element is broken, a larger voltage change
ig induced; thus the detection problem is associated primarily
with the first element. The magnitude of this initial change
decreases as the number of elements is increased. This is
illustrated in Figure 1 which shows this initial AV as a
function of the number of elements in the gage. Resolution
problems usually limit this type of gage to 8 or 10 elements.
Even then, it is sometimes difficult to trigger an oscilloscope
properly.

This problem can be somewhat alleviated by making gages
in which the elements do not have uniform resistance. This
can be accomplished either by varying the lerngth of the elements,
or the width. Experimentally, it is usually more convenient
to change the length, therefore, wherever possible, we use a
tapered gage, such as the one shown in Figur; 2. This gage is
used with the classical center-notched specimen. The gages
are tapered so that the first elements to be broken are the
shorteét, and therefore lowest resistance. This increases the

initial AV and reduces the nonlinearity in the bridge output.
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The extra conductor marked "T" is used to trigger the sweep
circuit on an oscilloscope. The left and right hand gages
are connected as two active arms in a four-arm bridge and the
output is displayed on either an oscilloscope or an oscillo-

graph, depending on the time scale involved.

For edge notched specimens, the crack inevitably starts
at one edge and travels completely across the specimen in one
direction. This direction éan be controlled by making one of
the notches somewhat sharper than the other. The gage shown

in Figure 3 is used with this type test. The trigger loop,

marked "T", is used as before and the four gages are connected

as a four arm bridge and readout on an oscilloscope. This

set-up requires that each gage be shunted by an external
resistor so that continuity is maintained after all elements
of a gage are completely broken. Figure 4 is a schematic
illustration of the detection circuit used with this type
gage. The four normally closed switches are used to simulate
the gages breaking. This facilitates calibrétion of the
readout device. Figure 5 is a photograph of an oscilloscope
screen showing a typical output for gages mounted on glass-

reinforced epoxy.
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The above techniques are particularly well suited for
rapidly propagating cracks, but there is also a need to monitor
the progress of slowly growing cracks. The gage shown in
Figure 6 was designed for this purpose. Each of the four
segments of this gage is connected as the input resistor on
a high gain operational amplifier with resistive feedback.

This circuit, shown schematically in Figure 7, is effectively
a summing circuit. The output voltage of the operational

amplifier is given by:

R R
= f f

VO = VS [—R ]: -n VS [—R ] (2)
g e

where Vo = output voltage

<
]

excitation voltage

Rf = feedback resistance

o
]

gage resistance

R, = the resistance of an individual gage element

4

n = the number of unbroken elements

Equation 2 shows that the output voltage is directly

proportional to the number of unbroken elements. The change in

voltage resulting from breaking one element is therefore constant,

and is given by:



n R =R (1-n) R
av, = [Re ] Vg [ R ] Vg = R, Vs (3)

This linearity is a consequence of putting the crack
transducer in the input network of the operational amplifier.
The output of this amplifier is monitored and rec%fded by a
PDP-12 digital computer manufactured by Digital Equipment
Corporation. When all the elements of one gage are broken,
the coumputer automatically switches to the next gage. Present
equipment permits up to 10 gages with as many as 30 elements
each for a total of 299 monitored increments. As each element
breaks, the computer calculates the crack velocity and generates
an output signal which is used to control an MTS closed loop
testing system. With this equipment the researcher can specify
a desired crack propagation rate, or propagation rate profile,
and the equipment will automatically adjust the loading
conditions as necessary to.produce the desired crack propagation.

The above discussion is intended to ;llustrate the
versatility of this technique for monitoring dynamic cracks
rather than to recommend a specific gage configuration. The
photographic nature of the process gives the researcher the
freedom to design gages which are optimized for each research

problem.
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Figure 1. Change in bridge output corresponding to the

breaking of the first element of the crack
propagation gage.




Figure 2.

A tapered crack propagation gage for use with a
center notched specimen.
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Figure 3. Typical configuration of a crack propajation a
gage for edge notched specimens.
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