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ESTIMATION OF A CONVEX COMBINATION OF PROPORTIONS

ABSTRACT

This report discusses three sampling procedurcs available for
estimating convex combinations of proportions and illustrates the feasi-

bility and practical usefulness of these procedures. The first procedure

is an analogue to simple random sampling from a single population. The
remairing two procedures are infinite population analogues to optimum
and proportional sampling from a single finite population. The practical
aspects of selecting a procedure are discussed and numerical examples

are given.
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ESTIMATION OF A CONVEX COMBINATION OF PROPORTIONS

1. INTRODUCTION AND SUMMARY

Interest in the subject of this report arose recently from an investigation
of appropriate testing plans for the Improved Hawk and SAM-D missiles. The
testing obizcuives for the two missile systems are similar and involve
hynothesis testing on the true volue of a certain convex combination cf
proportions, Aside from missile testing, however, parameters of this type
; are of general practical interest cince they occur naturaliy in a variety of

statistical problems. The purpose of this report is to discuss sampi{ing tech-
3 niques availuble for estimating convex combinations of proportions and to
’é illustrate the feasibility and practical usefulness of these techniques.

Specifically, three sampling procedures are discussed in Sections 3 and 4.
The first procedure, it will be shown, may be considered as an analogue to
simple random sampling from a single population, The remainirg two pro-
cedures are infinite population analogues to optimum and proportional sampling
from a single finite population. (See Reference 1, Sections 5.3 and 5.5.)

3 In Section S the practical aspects of selecting a particular sampling
3 procedure will ba diecwesad and in Scction 6 numerical examples of these
srocedures will bhe given,

2. NOTATION AND NOMENCLATURE

A diehotomus population is defined to be a population (finite or infinite)
in which a proportion p”, say, of the items have a certain characteristic and
. proportion 1-p” of the items do not have it. Throughout this report it -:ill
be assumed that there are k infinite dichotomus populations denot2d symbolicaily
by Pl,..,,PK. Also, if an item drawn at rarndom from onc of these populations
has the characteristic of intorest then it will be said that 8 success hss
been realized,

% Let FE and VAR denote expectation and variance, respectively, and lat xi
5,2 be the random variable

7
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1 if an item drawn at
random from P, results

X, = . i
1 1N 8 success

0 otherwise

i=1,...,k. It is assumed that Prob(xisljapi, where 0 <p <1, i=i,.44,ke

i=l,... k.

Ohserve, also, that E(Xi)xpi, and VAR(Xi)-pi(l-Pi),

1f fi’ i=1,...,k, aie numbers such that 0 f'fi and

k
WY

then

is a convexr combingiion of PyseeesP, . The results derived in the remainder
ar inls paper are based on thz assumption that the fi's ere known constants,

the po's are unknown parapeters and ..t p is the parameter to be estimated,
v

3. RANDOM ALLOCATION

In considering an estimate of 2 perameter the experimenter, ol course,
is mainlv interested in how m:ch confiderce he has that ~he estimate will be
close to the true value of the pavemetar, It wonld seem, therefore, that
to have a high degree of confidenn: in an estimate of p would require that
sampler be taken from each of the k populations. If this is true, then vo

si:tain a “3ood™ estimzte of p, when Kk is larze, may be a very formidabl: task,
indeed, Fortunately, however, this is not the casu,
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A procedure shall be presented in this sactilicn that will enable an
experimenter to estimate p without necessarily having to sample from each
of the populations. This procedure is not detrimental to the interest of
the experimenter since the precision and all other statistical properties
of the proposed estimator depend only on the sample size and not on the number
of populations. Other desirable properties of this estimator will, also,
be presented in the sequel,

Exact distribution theory is derived in this section, too, that will
allow one to construct operating characteristic curves to test hypothesis
on the true value of p. Also, the analogy c¢f this procedure to simple
random sampling froa a single dichotomus population shall be discussed.

The procedure is defined next.

Definition 3.1}

Let n be the total sample size, For the rth

observation, r=1,...,n,

choose one of the populations Pl,...,Pk, with the probability of selecting Pi
cqual to fi’ i=1,...,k. Let Pir denote the population selected. Next choose
an item at random from Pj  and observe whether or not a success was obtained.

This procedure is called random allocation.

The anslogy of this procedure to simple random sampling is of particular
interest, Let P bhe & dichotomus nopulation and suppose that the proportion
of items in P that have the characteristic of interest varies. Specifically,
assuc that at any given instant the probability is fi that the proportion of
items in P with the characteristic of intesest is Ps» i=l,...,k. Hence, if
cn, draws an itam at random from P then the probability is

k
p= I f.p
jel * i
that & sucuvess is observed. One may, therefore, simply assume that P i3 2
dichetopus population with the proportion of itrms witis the characteristic
of intercst equel to p, Thus, random silozation, from this point of view,

merely describes the process of teking a random sampie or size n from P.
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A statistical analysis of this procedure will now be developed.

Let Yr be the random vector

xr=(xlr,..~.xkr):
where
1 if rth item is drawn
from Pi and a success is
xir = obtained
0 otherwise
iclgo--’k,r'l’oocpno

Since selecting a population is statistically independent from drawing
an item it follows that

Prob(xirsl)sfipi,

i=1,...,k,r=1,,..,n. Now, let

k
Y=ZIX,_,
T a1 ir
r=1,...,n, and note that the events that deterxine Xr are disjoint. It

follows then that

k

Prob(erl)-iflfipi,

r=l,...,n. That is, Yl,...,Yn are independent Bernoulli random variables with
mean p. Observe, also, that

10
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1 if rt observation results

in a success
0 otherwise
r=1l,...,n.
The muximum likelihood e<tinate (MLE) of p will be given in the next
theorem, It will be shown lacer that the MLE is, in fact, the "best"

estimate of p when data arise from random aliocation.

Jheorem 3,2

for a total sample of size n the MLE of p from random allocation is

n
P =Ly /n, 3.1
ran __,’r (3.1)

i.e., the MLE of p is the mean number of successes in the sample,
Proof

It is straightforward to show that the likelihood function for the

experiment is

k
1- 1 X,
n X X, . ir
b =]
Lo, ) = T igl(fipi) 1 (1-) N . (3.2)

Now, note that fipi may be written as ;P i=1,...,k, where

k
c,=l,
ie1 1
Hence, (3.2) becomes
11
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X, =]
L(Xl....,xn)= nn (cié) T (1-p) . (3.3)
i=1

r=1 i=

Thus,

n k
log L(Xl,...,xn)= E -g X;, log c¢;p + n log (1-p)
r=1 i=1
n k
- X, log (3-p).
r=1 i=1 ¥

Setting the derivative of log L(X,,...,% ) equal to 0, it follows that

n k n k
g zx./p-(n-z zx.)/(x-)=o.
rel i=] ir r=] i=} i

Therefore,
n k
Pran'rz‘1 iflxir/r"
Since
k
Yr'iflxir’

r=1,...,n, the theorem is proved.

A result concerning the distribution of 8P an will be given next. Notice
that this result does not depend on k.

Theorem 3.3

The distribution of "Dran is Binomial with parameters (n,p).

t.0., Prob(p , =m)=()p" (1-p)" ",

m=0,1,...,n,

12
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Proof

Since Yl,...,Yh are independent Bernoulli random variables with mean p then

n
IY
r=] r

is a Binomial random variable with parameters (n,p,. Tiae theorem is praved
because

n
=zyr.

np
ran .1

Some optimum properties of are given in the following theorem.

pran

Theorem 3.4

Tne MLE Pran of p has the following optimum properties:

(i) sufficient (i.e., uses all the information available from random
allocation in estimating p).

{ii) unbiased (i.e., the expectation of Pyan is p).

? (1i1) efficient (i.e., has the smailest variance among all unbiased estimates

f} ) of p ob:ained from random allocation).

‘: ‘ (iv) strongly consistent (i.e., Pran will always converge to p as n becomes

3 large).
3 (v) converges in (i.e., Prob(lprm-pke) ~+1 as n=e o, for any

i probability €>0).

b |
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Proof

: (i) By (3.3) the likelihood function may be written as

L el it Bz bt o it AL

L(Xl,...,xn)sAoB

where

and

5 n
B=p

S WA A B a0 ke, R IR |

pran(l_p)"'“pran.

Ay
&

This factorization is a necessarv and sufficient condition to insure that

=
Z
3]

: Pran be sufficient, (See Reference 2, Section 5.5.1,)

(ii) This follows directly from Theorem 3.3,

(iii) One can show that the likelihood function, given by (3.3), implies that
the information, I(p), in the sample (Reference 2, 6.1.3) equals

3 alp(-p1 .

The Cramer-Rao lower bound for an unbiased estimator of p (Reference 2, 6.1.3)
is

-1 -1
(1M = n"'pep).

But by Theorem 3.3

VAR(pr,n)-n’lp(I-p).

E 14
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That is, VAR(p,.,,) equals the lower bound. This gives the de-ired

result,
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(iv) Since Yl""'Yn are independent, identically distributed random variaples
the strong law of large numbers (Reference 3, 2c¢.3) implies that as n gets

s e

E large, g
3 Y /n §
g r=1 T §
converges to E(Yl). But %

%

Z

E(Y,)=p. 2

(v) Strong convergence, given by (iv), implies convergence in probability

(Reference 3, 2c.2).
The fact that Pran converges in probability does not, in itself, reflect the

precision the experimenter may expect in this estimator. That is, it does not
tell him for a sample of size n what degree of confidence he has that

|Ppqn-P!

is small. The next theorem attempts to answer this question. It is important
to note that this result is independent of k, the number of populations.

Theorem 3.5

For any ¢>0 and for any n>1

Prob(lpran-p|<e) > 1e1/4ne2,

Proof

By the Chebyshev Inequality (Reference 3, 2c.2)

Prob(|p . -pl2€) < VAR(p_  )/e?.

15
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VAR(p, ) = p(1-p)/n < 1/4n,

since 0 < p < 1. Thus,

o
=
~
3
Y
2
=
=

Prob(lpr‘n-plzp) < 1/4ne?
or equivalently,
Prob(lpr‘n-p|<e) > 1-1/4ne2,

Another result, independent of k, which is of practical significance for

large sample size is the following.

Theorem 3,6

Let n be the total sample size and let q=1-p. Then the asymptotic
distribution of

VR0 PR VT 0 e ey

"
-]
]
o

is Normal (0,1}, AS n = o,

TV LR P P T

Proof

This is a direct result of the Central Limit Theorem (Reference 3, 2c.S§).

Remark

Whereas Definition 3.1 specifies that an item te drawn immediately after
the population is selected this is not, in practice, necessary. In practice
random sample sizes N seeeshy,SBY, DAY be determined first, where n, is the
number of items to be drawn from Pi,i-l,...,k, and

k
F n=In..
i=1 *
L 3 : fter these sample sizes are determined, samples are drawn from the respective
g populations and p . is obtained.
- 16
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4. OPTIMUM AND PROPORTIONAL ALLOCATION

If independent random samples arc taken from each of the k populations
it seems natural to estimate p, by the mean number of successes in the sample
from Pi,i=l,...,k. Moreover, the convex combination of these estimates would,
also, scem the natural function to use as an estimate of p since the weights
fl,...,fk are assumed known. This approach to estimating p is considered in

this section.

For a fixed total sample size n the question arises as to how one should
assign the sample sizes nl,...,nk, where ni is thc sizc of the sample to be
drawn from Pi,i=l,...,k. This section discusses two procedures for determining
these sample sizes so as to obtain estimators of p which have certain desirable
properties. It is 2. be remarked that these procedures are analogus to
ontimum and proportional sampling methods from a finite population.

Let P; be the mean number of successes in a sample of size n taken from
Pi,i=l,...,k. The corresponding estimator for p is then

.k .
L

Now, 5i is the MLE of pi,i-l,...,k. Further, ;i is an unbiased estimator
of pi,i=l,...,k, and, also, enjoys having the smallest variance of all such
estimators. In general, unbiaaness and minimum variance are very desirable
properties for an estimator to possess. By virtue of the fact that ﬁi is an
unbiased estimator it follows that p is, also, an unbiased estimatcr since

- k R
E(P)'. b3 fiE (Pi)'P.
1

Observe, also, that

Y k PS k
VAR(p) = I £2 VAR = 25 (le
p in1 i (Pi) iflfipi(l Pi)/ni. (4.1)

17
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From the above, it is seen that the variance of ; depends directly on the
sample sizes ni,itl,....k, which lre.chosen by the experimenter. The problem
of allocating the n, to insure that p will have the smallest possible variance
will be considered next.

Theorem 4,1

For a total sample size n, VAR(p) is minimized if

n;=v.n,
where
1/2
£, [p; (1-p;)1/
w, = , (4.2)
ik 1/2
- r £;lp;(1-py)]
j=1 7
izl,.oo’ko
é Proof
3 Minimizing VAR(;). given by (4.1), subject to n +...+n =n is equivalent
3 to minimizing
g ) 2
iElfipi(l-pi)/nid(nlmz»--mk-n) (4.3)
] where A is a Lagrange multiplier. Taking the derivative of (4.3) with respect
2 to n, and setting this equal to 0 yields
“E2p. (1-p.)/n2er=
£<p, (1-p;)/n{+2=0. 4.4)
3 Thus,
1/2,1/2
1 n=f [p; (1-p) )1 " /A, is=l,. k. (4.5)
18
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tquation 4,5 implies that

SRR

|
o

172
A / =.£.fi[pi(l’pi)11/2/n‘
= - ° d

J

3 Hence, Wis given by (4.2), is immediate for i=l,..,,k.

Definition 4.2

3 Let n be the total sample size, When n,=w.n, w, given by (4.2},
i=1,...,k, the procedure is called optimum allocation and p is denoted by

popt’

E The weights Wy may or may not be known in practice. If they are not
known then, of course, optimum allocation cannot be employed. Another
allocation method which is always feasible in practice is defined next,

Definition 4.3

Let n he the total sample size, W&en ni=fin, i=1,...,k, the procedure
is called proportional allecation and p is denoted by pprop'
In the next section a comparison of the three allocation procedures
- presented in this report will be made. This comparison will be based on a few
E important factors which, it is felt, should be taken into account when
chousing among these procedures., Ome point of interest will, of course, be
the relative precision of the corresponding estimators.

s

e

Now, by the way optimum allocaticn was defined it is known that

; VAR(D, ) < VAR(p ).

19
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The relationship between the variances of pprop and p
next,

Theorem 4,4

Let n be the total sample size. Then

X
VAR = -
Al (pprop) 1§1fipi(1 p;)/n.

Proof

This result follows easily since
(pprop im] ip 1-py )/,

and

Theoren 4,5

Proof

Let n > k be the total sample size. By (4.6)
k

and by Theorem 3.3

VAR (p__ )=p(1-p)/n,

20

ran will be considered

(4.6)
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Observe, now, that

k
AR (Pprop)* I FiPs (3-pep-py)/n

k 3
:.}: fipi(l"P)I“’.z fipi(P'Pi)/ﬂ
i=} i=1

k
- vm(pm,)*iflfipi (p-p;)/n.

It wil} next ha shown that

1 R

. 'lfipi (p-p;3< 0. (4.7)

»

To show this, cunsider 2 random variable Z which assumes the values
Pysecesbys and suppoge that

Prob{Z-pi)-f.,
i=l,...,k. Recall here that
k
z fo.l‘
=1 ¥
Ohserve, now, that
;
! :
H 21
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= - VAR(Z).

Since VAR(Z) is nornegative (4.7) is established and, henze, the theorem
is proved.

The next theorem gives two asymptotic properties of Popt and pprop as the
total sample size increases,

T Ty Y P IR WEATATV STPRTSTR, e oT ARy AT

Theorem 4.6

AT

The estimators p__and p

opt prop of p have the following properties:

(i) strongly consistent (i.e., popt(pprop) will always converge to p as
n becomes large).

(1i) converges in (i.e., Prob(';-p|<e)--1 as n - », for any >0
probability p'popt’pprop)'

Proof

The proof is similar to the one given for Theorem 3.4 {iv) and (v) and
is, therefore, omitted,

In Theorem 3.5 a result was given that, in practice, wouid aid an
experimenter to assess the confidence he may place in P gy 8% an estimator
of p for a certain sample 2ize n. The key to the resul: was the fact that

VAR(prﬁn)-p(l-p)/n < 1/4n,

This inequelity is, in fact, sharp; i.e., it cannot be improved on. In this
3 section it has been shown that

VAR(popt) < VAR(ppro,i,) S VAR(p,..)»

22

A A e : it R e mn P e N A s A x
- - v ey e " =3 - b M ~a b’ R i "~ = el e o
" b = Bols alirs g R
. Paiilr ® Al 2~ its i i eamer o o1 - =



R g i £ B S S g R

e B D R L A T P B S N A T B I R T T T T I =

with equality if Py *Py = cee * Pyo

Consequently, 1/4n is an upper bound on the varisaces of Popt and Porop
and the bound is, also, sharp. The significance of the follewing theorem

L Gt AR e S TS T LAY s
/ ’ b ALR
?

is, therefere, established.

Theoren 4.7

For any ¢>0 and for any n>k

Prab(]p-pl<c) > 1-1/4ne2,

Proof

The proof is smitted because of its simiiarity to the proof of Theorem 3.5.

{ Another result which may be useful when the sample size n is large will
E: be given next.

Theorem 4.8

N
R TV A o eg 50

Let n be the total sample size. Then the asymptotice distribution of

—tp
[vm(;)] 1/2

is Normal(d,1), as n—»w, where p = pcpt. pp .

Proof

This result follows immediately from the Central Limit Theorem (Refercnce 3,
2¢.5).

:
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5. SELECTION OF A SAMPLING PROCEDURE

In this section some of the practical aspects of choosing among the three
sampling procedures presented in this report shall be discussed. This
discussion may, also, serve as a brief review of some of the basic properties
of these procodures.

It is difficult, if not impossible, to consider all possible situations
an experimenter mey face when selecting a sempling procedure., It may, also,
be difficuit to ascertain which procedure is the '"best" to use in practice
for a particular situation., It may happen in practice that a procedure is
"best" only because of its computational simplicity or possibly because the
theoretical aspects are easy to explain to ones employer. The following
discussion, howsver, is general in nature and is intended to serve only as
a guide when selecting a procedure.

Regardless of any other considerstions, the experimenter must usually
mrke at least two basic decisions before he selects a sampling procedure.

Firstly, he must decide whether the chief purpose of the experiment is to
estimate p or to test a hypothesis on the true value of p. Secondly, he
must decide whather or not the sample size n will be larger than k, the
number of populations, The choice of a sampling procedure for these four
basic situations shall bhe discussed.

Suppose first that it is decided that k>n, Immaterial of whether the
experimental goal is estimation or hypothesis testing, the only appropriate
procedure to use is random allocation. Hypothesis tests are based on the
statistic )T which by Theorem 3.3, has a Binomial distritution,

Consider, now, the case when k<n and the purpose of the experiment is to
estimate p. For most problems encountered in practice it happens that

VAR(Pypy) < VAR(py o) < VAR(D,..)

prop

Since the estimator with the smallest variance is generally considered to be
best it follows that optimum allocation should be used if possible. The
weights wi,i=l,...,k, given by (4.2) may not, of course, be known in practice.
If this is the case then proportional allocation is the appropriate sampling
procedure,

24




GRS S LA S i i

e R SN e £ 5 £ BT

Y o i e e BT A S N s T R R O S L R

PV e i N e A R T L IR R AR

Finally, assume that k<n and the experimenter wishes to test a hypothesis
on the true value of p. In this case a statistic with a known distribution
that depends on p must be available, Distributions, in a closed form, of
statistics obtained from optimum and proportional allocation are not known
to the author. However, by Theorem 3.3, the distribution of "Pn is Binomial
with parameters (n,p). It appears then that random allocation is generally
the appropriate procedure to use under these circumstances, It is, also,
remarked that if n is very large relative to k then the distributions of
popt and pprop’ properly normalized, are approximately normal with mean zero
and variance one, Unfortunately, the normalizing factors are functions of the
individual pi,i=1,...,k, and not explicitly a function of p. It is further
noted that if n is very large reclative to k, then proportional allocation and
random allocation are approximately the same procedure. That is, the sample
sizes to be drawn from the individuel populations are approximately equal.

6. NUMERICAL EXAMPLES

In this section several numerical examples shall be given which will
demonstrate the practical significance of the three sampling procedures
presented in this paper. Before these examples are givei, it should be
rointed out that if one is sampling from a dichotomus population and the
probability of a success is equal to a fixed constant for all trials, then
the population is infinite, This observation will be useful in the folloing
examples,

Fxample 1

At the end of the development period of a certain surface-to-air
missile system, the Army wishes to conduct tests that will demonstrate, at an
appropriate significance level, a particular performance requirement of the
system, This requirement is not concerned with the detection of threatening
aircraft but only with the performance of the missile from launch to
detonation of the warhead,

This missile is designed to destroy air-breathing aircraft and several
factors such as target speed and range, use of electronic counter measures
and others are assumed to affect this capability, These factors, taken
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E together in various combinations yield a total of 52 possible states that a
3 threat may assume. In the event of an enemy attack the probability that a

missile will encounter an aircraft presenting a particular threat is known.
However, it is not known what the probability is that a missile will destroy
; an aircraft given that the aircraft is presenting a certain threat.

A

The unconditional probability that a missile will destroy an aircraft
is called the expected kill probability (EKP) and it is required that testing
demonstrate that this probability is sufficiently high before the production
phase of the missile system is begun.

T T o o

T P o EL e,

Suppose that the 52 possible states a threatening aircraft can assume
§ are numbered and let f.1 be the known probability of state i, i=1,...,52.
Further, let Ps be the unknown probability that a missile will destroy an
aircraft imposing a threat in the ith state, i=1,...,52. From this notation
3 it follows that the EKP is

o A

A Because of cost only 40 missiles can be allocated for the testing.

Ag Also, since 40, the sample size, is less than 52, the number. of possible
threats, and hypothesis testing is the goal, then the random allocation
procedure is appropriate. In general terms the null hypothesis, Hy, and the
alternate hypothesis, HA, are defined as:

Hy: EKP is acceptable
4 HA: EKP is not acceptable,

The decision to accept or reject HN is to be based on the statistic
3 40pran’ which, by Theorem 3.3, has 8 Binomial distribution with parameters
g (40,p). It is decided that if 40pran is at least 25 then HN is accepted
: while if 4opran is less than 25 then HN is rejected in favor of HA. The
4 corresponding operating characteristic (OC) curve, which is based on Binomial
probabilities, is given in Figure 6.1,
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True Value of p(EKP)

Figure 6.1 Operating Characteristic Curve for a
Sample Size Equal to 40 and an
Allowable Number of Failures Equal to 15

For a particular value of p on the abscissa of this curve the resulting value

on the ordinate is

40
z

»2s

Prob(npran > 25|p) = 3 (4g) quuo-j,

where q = l=-p.
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For purposes of a numerical example the missile tests were simulated on a
computer using the values of the fi's and pi's given in Table 6.1 (Note that
in practice the fi's are known but the pi's sre unknown). The simulation
: produced first the number of missiles to be fired at aircraft presenting the
E different threats. These numbers, denoted by n,, i=1,,..,52, are given in

Table 6,1, Next the missile firings were simulated and Si’ i=1,...,52, given
in Table 6.1, are the number of successful firings. This simulation yielded

a value of 30 for 40pran' Therefore, the null hypothesis, Hy, should be
accepted implying that the EKP is acceptable.
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TABLE 6.1 [INFORMATION AND SIMULATED DATA PERTAINING TO HYPOTHESIS
TEST ON THE EKP
Destroy ~Sample Successtul
: Threat Frequency Probability Size Firings
f i fi Py n, Si
1 .0576 .72 3 3
2 .0144 .60 1 1
: 3 .0384 .66 1 0
E 4 .0384 72 2 1
5 .0096 .60 0 0
6 .0256 .60 2 2
7 .0096 .55 2 2
8 .0064 .55 0 0
9 .01728 72 2 1
10 .00432 .60 0 0
11 06912 .60 2 0
3 12 01152 .72 1 1
3 13 .00288 .60 0 0
14 .04608 .60 2 2
15 .01728 .55 1 0
3 16 .01152 .55 0 0
17 .0192 .72 0 0
5 18 .0048 .60 0 0
1 19 .0128 .72 0 0
20 .0032 .60 0 0
3 21 .0480 .72 3 3
3 22 .0120 .60 0 0
23 .0120 .60 0 0
E 24 .1440 .72 4 4
25 .0360 .60 2 2
26 .0360 .60 1 1
3 27 .0030 .58 0 0
28 .0090 .55 0 0
3
E |
3 29
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Destroy Sample Successful

, Threat Frequency Probability Size Firings
i £ Py ny 51
f 29 .0396 .72 2 2

30 .0099 .60 0 0

31 .0044 .60 0 0
52 .1188 .S5 6 2
53 .0297 .55 1 1
34 .6132 .72 1 1
35 .0011 .60 0 0
36 .0033 .72 0 0
37 .0020 .72 0 0
38 .0005 .55 0 0
39 .0060 .72 0 0
3 40 .0015 .55 0 0
E al .0016 .72 0 0
3 a2 .0004 .69 0 0
a3 .0144 .72 0 0
M .0036 .60 0 0
15 .0016 .72 0 0
16 .0004 .60 0 0
g a7 .0144 .72 1 1

18 .0036 .60 0 0
-_ 49 .0008 .72 0 0
50 .0002 .55 0 0
3 51 .0072 .72 0 0
3 52 .0018 .55 0 0
] 52 52 52
EKP = T fipi = 0,643883 ns= ‘: n, = 40 MPran = E §;
3 i=) ix] i=1
E = 30
c
30




Example 2

Consider again the missile testing problem discussed irn Example 1.
Suppose now that instead of hypothesis testing the Army wishes to estimate
the EKP from data obtained from random allocation. How large should the
sample size n be in order for the Army to have an a priori probability of at
least 0.95 that the estimator Pran will differ from the true EKP, p, by less
than 0.1? That is, what value of n will insure that

Prob(|p

ran - p' < .0.1) 3-0095?

It is known from Theorem 3.3 that "Pran has a Binomial distribution
with parameters (n,p). Hence,

Prob(lprm -pl <0.1) = Prob(lnprm - np| < 0.1n)

. I (n)px R
|x-np| < 0.1n X

where

q = lep and the summation is extended over the values of x for which

|x « np| < 0,In, One can see the difficulty in attempting to determine
directly an n so that no matter what p is the inequality

n\ x n-x
L P q"* > 0.95
ix - npl io.m(")

holds. By using the results of Theorem 3.5 one may, however, easily find
such an n, Now, by this theorem

Prob(|p .. - Pl < 0.1) > 1-1/(0.1)2 4n.

Therefore, if

1-1/(0,1)2 4n > 0,95

31




R T R T i e T T von T D A e S DTN SRR T, i 0N, R T Vo Ty T ST AT 388 gl

e I " ey

R o

A then it follows that

n > 25/0,05 = 500,

Consequently, if 500 or more missiles are fired then the a priori probability

_ is at least 0.95 that Pran will differ from the (unknown) EKP, p, by less
than 0.1.

E Inasmuch as the above result is correct, it will next be shown that
a much smaller sample size n will, also, suffice. The derivation of the
é smaller sample size will be based on the fact, given in Theorem 3.6, that
3 P ran is approximately normally distributed if n is sufficiently large. From
practice, it has been observed that a sample size of 30 or more is generally
* sufficiently large to insure that this approximation is adequate. Hence, if

n > 30 then
prob(lp, ., - »l < 0.1)
% "’0¢ ]. pran-p 00 l
3 = Prob(—3- < m <= )
. 0.1/0
3 -t2
E £/§—.—I‘-f e t°/2 dt
4 T e0.1/0
x wvhere

17,
o= (pq/n)

and "#" denotes "approximately equal to."

From a table of cumulative standard normal probabilities one finds
that if

0.1/¢ > 1.96

T

(2]
to




o e S g

then

001/0
2
—lf e t/2 gt > 0.95.

=0.1/p

Hence, if

n > (19.6)%/4 2 96
then

Prob(|p ,, - Pl < 0.1) > 0.95

regardless of the unknown value of p. That is, a sample size of 96, instead
of 500, is large enough to obtain the required precision,

This estimation problem was simulated on a computer using the values
for the fi's and p;'s given in Table 6.1 and a total sample size of n = 96.
In Table 6,2 n, is the number of missiles to be fired at aircraft presenting
the ith threat and Si is the number of successful firings, i=1,...,52. From
Table 6,1 the true value of the EKP is

p = 0.643883
and from Table 6.2 the simulated estimate of p is

praﬂ = 0.614583.
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TABLE 6.2 SIMULATED DATA PERTAINING TO THE ESTIMATION OF THE EKP
FROM RANDOM ALLOCATION

Sample Successful Sample Successful
Threat Size Firings Threat Size Firings

i n. S. .
i i i n1 S

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

2
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n
22X %)

N
=

. p =
1 ran .

52
L S./n
1=

1 1

[N
"
—

L]
(o]
=)

=0,614583
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It has bzen noted before, and is well worth mentioning again, that the
statistical properties of Pran 27© independent of k, the numver of dichotomus
popuiations, This means that a sample size of 40 {96) would still yield the
same OC curve (precision) in Example 1 (2) even if the number of possibie
threats was not 52 but any arbitrarily large number., Observe, also, that
the number of threat states actuaily sampled from was only 20 in Example 1
and only 31 in Example 2,

Examgle 3

Suppose & small, inexpensive item is produced by a certain factory
for the Amy and the Army wishes to estimate the fraction of defective items
produced from a total sample size of 1000, Three assembly lines contribute
to the factory's production of the item and because of difforences in
machinery and personnel the fractions of dcfective items produced by the
assembly lines differ. However, after production the items are stored

together and are not distinguished as to the particular assembly line which
produced them,

Ordinarily, a random sample of 1000 items would be taken from the
storage area and the fraction of defective items produced by the factory
would he estimated by the mesn number of defective items in the sample. If
the proportions fl’ fz, fs, say, of the items produced by Assembly Lines 1,
7 and 3, respectively, are known then the random allocation procedure may, also,
be used to estimate the fraction of defective jtems produced. Any additional
cffort or cost it may take tc¢ implemeiit the random ailocation procedure would
probably not be justified since, in Section 3, it was noted that this pro-
cedure and the random sampling procedure are statistically equivalent. Thus,
it is immaterial which of the two procedures is used because the respective

estimators afford the same precision.

Assuming that the fi's are knoun the Army may, also, use the pro-
portional allocation procedure since 1000, the sample size, is greater than 3,
the number of assembly lines, This procedure, it has been pointed out,
generaily yields a more precisc estimator than does random allocation., Becau-e
the fi's are easily obtainable from the manufacturer the Army decided to use

e Y AR Tty
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the proportional allocation procedurs and take advantage of this extra
precision in estimating the fraction of defective items produced.

This estimation problem was simulated on a computer when Assembly
Line 1 produces items 5 percent defective and accounts for 25 percent of the
production; Assembly Line 2 produces items 4 percent defective and accounts
for 35 percent of the production, while Assembly Line 3 produces items 3
percent defective and accounts for 40 percent of the productiuvn., Of course,
the fraction of defective items produced by each assembly line would be
unknown in practice.

The simulation results are given in Table 6.3, where n, is the number
of items to be grawn from Assembly Line i and Si is the number of defective
items in the sample, :=1, 2, 3, The actual fraction, p, say, of defective
items produced by the factory is

p = 0.0385.
The estimate of p, resulting from the simulation, is

pprop = 0.0330.

TABLE 6.3  INFORMATION AND SIMULATED DATA PERTAINING TO THE ESTIMATION OF THE
FRACTION DEFECTIVE FROM PROPORTIONAL ALLOCATION

Assembly Proportion of “Fraction of Sample Number of
Line Production Items Defective Size Defectives
i f. P: n. S.
i i i i
1 0.250 0.050 250 7.
2 0.350 0.040 350 16
3 0.400 0.030 400 10
P £ 0.0385 2 3
p= p; = 0. n= I n |p =% £S5 /n
ja1 11 jx1  pprop ;- i i/m
= 1000 = 0.0330
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Lxample

Consider again the estimation problem discussed in Example 3. Suppose
tne manufacturer informs the Army that from past experience with the manu-
facturing of similar rype items the production pro esses of the three assembly
lines usually exhibit a certain reiationship. Particularly, the variation of
the production process for Assembly Line 2 is generally about 20 percent less
than the variation of the producti~n process for Assembly Line 1. Also, the
variation of the production precess for Assembly Line 3 has been observed to
usually be about 40 percent less than the corresponding variation for Assembly
Line 1. The Jdifferences in the age and design of the machinery in the three
assembiy lines were given as the primary reason for the differences in the
production processcs. With this information the Army may use the optimum
allccation procedure to estimate the fraction of defective items produced

by the factory and, thercby, obtain the best possible precision.

Again let fi be the proporiion of the production contributed to
Assembly Line i and, also, let Py be the fraction of the items produced by
Assembly Line i which are defective, 1=1, 2, 3. For a total sample size n
it fcllows from Theorem 4.1 that the sample size ni to be taken from Assembly

Line i is

" = oL, ((’°1)

where

From remarks made in Section 2 it is known that if
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1 if an item drawn at random from
Assembly Line i is defective

0 otherwise

then E(Ui) =p; and VAR(Ui) = pi(l-pi), i=1, 2, 3,

Hence,

£ [W\n(u.)]l/2

W, =
' x £, [VAR(U )] s
j=1 )

131,2,30

Also, from the information provided by the manufacturer it is known

that VAR(UZ) is approximately equal to 0.8 VAR(UI] aud VAR(U ) is epproximately
equal to 0,6 VARCUI). Regarding these as actual equalities one has that

£
2 1/2
n = ?- 0.8) / n, (6.2)
and
n =f3~(o 6% n (6.3)
L PO - .

1

Therefore, for a total sample size of n it follows that

f
nx[u-l(os) fi(os) ]n.
1
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Consequently,
£ f
n o=n/fs+ 22 0.8% 4 22 0.6)'7. (6.4)
1 f1 f1
If, in fact
VAR(UZ) = 0,8 VARCUI) (6.5)
and

then the sample sizes given by (6.2) - (6.4) are optimum for a fixed total
sample size n, If the variances of U and U3 are given only approximately
by the right-hand sides of (6.5) and (6.6), respectively, then the sample
sizes nl, n2 and n3 are, of course, only nearly optimum,

For a total sample size of n = 1000 this estimation problem was
simulated on a computer using the Same fi's and pi's given in Example 3, The

exact relationships between the variances of Ul, 02 and U3 are determined
from p1 p2 and p3 and are:

VAR(UZ) = 0,808 VAR(UI) 6.7)

and

VAR(U.) = 0.613 VAR(U ). (6.8)

For the simulation the sample sizes u , 0, and n_ were determined

assuming that the relationships (6.5) and (6.6) hold., The resulting sample
sizes are:

39




n1 = 286; (6.9)
n2 a 359; (6.10)

n3 = 355, (6.11;

These saiple sizes are only nearly optimum. The ftrue optimum sample sizes,
based on Equation (6.1), are:

n1 = 285;

n = 358;
2

n = 357,
3

Clearly, then, the sample sizes given by (6.9) - (6.11) may, for all practical
purposes, be considered optimum,

The simulation results are given in Table 6.4, where n, is the number
of items to be drawn from Assembly Line i and Si is the number of defective
items in the sample, i=1, 2, 3, From Table 6.3 the true fraction of defective
items produced by the factory is

p = 0.0385,

The estimate of p, obtained from this simulationm,is

popt = 0.0335.
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TABLE 6.4 SIMULATED DATA PERTAINING TO THE ESTIMATION OF
THE FRACTION DEFECTIVE FROM OPTIMUM ALLOCATION

Assembly Sample Number of
Line Size Defectives
i ni Si

286 10
359 15
355 9

3

= 1000 = 0,0335

41 Next page is blank.

M xR b s e e L R i S L Lo S R R b it Fh v Y SR s A X -l B

=& v:g:&";‘:,,vacﬁ-}ﬂ




Cochran, W. G, (1953).
Lindgren, B, W. (1962).

New York.

Rao, C. R. (1968).
Wiley, New York.

REFERENCES

Sampling Techniques, Wiley, New York.

Statistical Theory, The MacMillan Company,

Linear Statistical Inference and its Applications,

43

Next page is blank.




T
wnﬂ, 203CWISY uoredop(r feuotddodody ¢ 20IrwIISd vOLILOLEP 103uwiiso worirtre] (v [ruotdodoly “t  J03uwilisd uvotILsO(fr
f nzildp ¢ H0BTWIISI UOTIBIOF[P wopury ‘7 SUOTICUTGUOD XIAUOI JO SIILWIIS| ‘| wnuiady ¢ A0IEWIISO WOLILIO[[L WOPUPY 7 SUOTIRUIQUOD 2IAUCI o sInwIINg C
] !
203cw13Sd uotirdofic fruvtizodosy 103w} 180 uolrdofie jruotiaodosy
lolcui3sd uoizedol(c wnatidp 103ewi3sd uotiesofe anaiidp
103pwllsd uotiedo](e wopuey Loy Iso uolvaofIn wopuey
SUOTILUTQWOD XJAUOD JO sIIRWIISY SUOTIPUIYWOD XIAUOD JO So3ratlsy .
i
]
sSmI3] XIpup ooexy SWAdL Xopup ddwal
. TL6T 11ady *T£01°0L2ZT "ON dpOD SHOWY TL61 113dy *1E01°0LTT “ON IPOD SKOWY :
5 INYSHY “%0dD i A24mT ‘SNOLINOJO¥d A0 NOLLYNISNOD XFANOD V 40 NOILVIILS] SVVSHY ¢ #02D) °fl £L3r7] ‘SNOIL¥O40Wd 40 NOILVNIGWOD XJANOD ¥V 40 NO11VKILS3
i
X/ AI1Z1SSVIONN 310doy ‘9§ *oxn 3s0ddy [EIIUYIDL VVSHY ‘SO0IC pucliavy A31418SVIONN 330doy ‘98 cox 120doy [EITUYIOL VWSKHY ‘S001T purjliey
3 ‘punoxy Futaory usapaaqy *{vvsky) Loualy sisdieuy swoisdg fotralen Lwiy °s*n ‘punoasy Jupaoag udSPIAQY * (VVSHY) Loualy sis{iruy swddsds (otdale) {wiy sq
)
A
,ﬂ. 103T81350 Uolledo({e sopury av SUOIIBUIQUOD XJAUOD JO SIIewidsy (111
W
f__
«. 1031ewWL3sd uotjesolte feuotirodory “‘  J0INWIISO UoTITdO]fE 103eW1Isd uotILdolIE fruoilzodosry cp  JoIvmiasd uoledollr
m. unmtidp Y 103BWMIISO UOTILJO[[B WOpPUBY ° SUCTICUTMOD XIAUOD JO SOICWMIISy | wnwtdy ¢ 203TWIISO UNIIELDO]]E WOPUEY 7 SUOIILUIQWOD XJAUOD 3O sarutisy °f
"
£ 203EW13Sd uotiedoffe [ruotizodosy 103rmldsd uopvdollr Iruotisodory
b 203Pw13sd uotryedofir wnuyydp JOJCWIISI HOLILIO [t wnwyIdo
» 203eWEISI uotiedof (e wopuey J03CE]IS3 YOIIENO] [n WOpULY
m, SUOTICUTQEOD XIAUOD JO SIIemLIsT SUOILULQUOD XIAUOD JO SIEWILSY
3
SWAI] XApu] dswsl SULaf XOpUf aresg
3 226t 11ady “[E01°0LTT TON APOD SHOKWY TIGE LAY CIL00°IL. T TON PAD SKORY
m_ IYVSIY *%03D i S2ael 'SNOTLYOJO¥d {0 NOLLVNIHR0D XTIANOD V A0 NOLIVKILS SVVSIY 8020 )i K231 *SNOLLNOJONS 40 NOELVNIARNDD VIANOD ¥ 40 NOLIVKIEST
e
3
i IAISSYIONN 320day *0g co] 3x0day [eoTUYID] YVSHY ‘SO0IC punglary WHAISSVIOND 330403) 98 *oN 130doy [ratuyaag \VSiy *S001T  puc]sacy
s cpunodn JUTACL§ UIIPAIQY *(VVSKY) oually sisdpruy swajshs [attaje Sody S spunody FULA0d,) UIPIAGY (VIS ) SM0RY s1s{rety smasss [atlageg suay c§tql
! “H 237 woa) w CNOIPHOJONA JO SOLIVNIENG) YWIAN0D A A0 SOLIVKREER [1i}
"
i

O N e R 4 e

Lt §3tar i . 5918 KA A % ek A L " 3 UV IPOVEY Srent -t ™ St VR . i Y. 30 A

3
) o g b

SR s g L e gLk il b E Y Rl i § b it bl 4

(ot s Ly gl 4




