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ESTIMATION OF A CONVEX COMBINATION or PROPORTIONS

ABSTRACT

This report discusses three sampling procedures available for

estimating convex combinations of proportions and illustrates the feasi-

bility and practical usefulness of these procedures. The first procedure

is an analogue to simple random sampling from a single population. The

remaiting two procedures are infinite population analogues to optimum

and proportional sapling from a single finite population. The practical

aspects of selecting a procedure are discussed and numerical examples

are given.
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ESTIMATION OF A CONVEX COMBINATION OF PROPORTIONS

INTRODUCION AND SM"MARY

Interest in the subject of this report arose recently from an investigation

of appropriate testing plans for the Improved Hawk and SAPI-D missiles. The

testing objectives for the two missile systems are similar and involve

hyPothesis testing om the true value of a certain convex combination of

proportions. Aside from missile testing, however, parameters of this type

are of general practical interest since they occur naturally in a variety of

statistical problems. The purpose of this report is to discuss sampling tech-

niques available for estimating convex combinations of proportions and to

illustrate the feasibility and practical usefulness of these techniques.

Specifically, three sampling procedures are discussed in Sections 3 and A.

The first procedure, it will be shown, may be considered as an analogue to

simple random sampling from a single population. The remaining two pro-

cedures are infinite population analogues to optimum and proportional sampling

from a single finite povulation. (See Reference 1, Sections 5.3 and S.S.)

In Section 5 the practical aspects of selecting a particular ssmpling

procedure will be dio-.c- .-4 in Stc.a-i 6 sitmericai examples of these

. procedures will be Riven.

2. NOTATION AND NOMILNCLNTURE

A di ~a8 pop t-:ion is defined to be a population (finite or infinite)

in which a proportion p, say, of the items have a certain characteristic and

proportion l-p of the items do not have it. Throughout this report it .ill

be assumed that there are k infinite dichotomus populations denoted symbolicaily

by PP,.,,,PK* ALso, if an item drawn at random from one of these populations

has the characteristic of interest then it will be said that a eu-eos has

been realized.

Let F and VAR denote expectation and variance, respectively, and let X.

be the random variable



if an item drawn at

random from Pi results

1 in a success

0 otherwise

i=l,...,k. It is assumed that Prob(Xi =)=pi, where () <pi< 1, i-i,. 4 .,k.

Observe, also, that E(X.)=pi, and VAR(X.)a.(1-P.), i-l,...,k.
1. 1 1 1 1

If fit i=l,...,k, aie numbers such that 0 <- f. and

k
1= E fit

then

k
P _ r fiPi

is a convex cox -&-.on *f Pl"""'Pk The results derived in the Temainder

tit tnis paper are based on the assumption that the f. 's ero known constants,

e Pi's are unknown 'areters and a.. t p is the parameter to be estimated,

3. .RAiN. ALLOCATION

In considering an estimate of a p.rameter the experimenter, of course,

is mainly interested i~n how mvch confiderce he has that The estimato will be

close to the true value of the pay-met.r, It would seem, therefore, thAt

to have a hig? degr'e of confidenc.. in an ostimats of p would re~ui.e that

sTplc b.i taken from each of the k populations. If this ir true, then vo

rA;tain a 'good" Citi~te, of p,, when k is largo, may be a very formigaIlA task,

indeed. Fortunately. however, this is not the case.
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A procedure shall be presented in this secion that will enable an

experimenter to estimate p without necessarily having to sample from each

of the populations. This procedure is not detrimental to the interest of

the experimenter since the precision and all other statistical properties

of the proposed estimator depend only on the sample size and not on the number

of populations. Otner desirable properties of this estimator will, also,

be presented in the sequel.

Exact distribution theory is derived in this section, too, that will

allow one to construct operating characteristic curves to test hypothesis

on the true value of p. Also, the analogy of this procedure to simple

random sampling from a single dichotomus population shall be discussed.

The procedure is defined next.

Definition 3.1

Let n be the total sample size. For the rth observation, r=l,...,n,
choose one of the populations Pl""*'Pk' with the probability of selecting Pi

equal to fiv i-l,...,k. Let Pt denote the population selected. Next choose

an item at random from Pir and observe whether or not a success was obtained.

This procedure is called rap&d aZZooation.

The anriloty of this procedure to simple random sampling is of particular

inteiest. Let P be a dichotomus population and suppose that the proportion

of items in P that have the characterittic of interest varies. Specifically,

assue that at any given ifistant the probability is f that the proportion of

-temas in P with the charactaristic of intozest is Pi, i=l,...,k. Hence, if

cmv draw% an itm. at random from P then the probability is

k
p= X_ fipi

i=l

that A Suce0sS is observed. One may, therefore, simply assume that P is 3

dichotowus population with the proportion of Ii wit. the characteristic

of interest ejul to p. Thus, randoik s*locatIion, from this point of view,

merel7 describes the process of taking a rsndom swp e of size n from P.

9



A statistical analysis of this procedure will now be developed.

Let . be the random vectorr

xr= (Xlr,* '..x kr),

where

1 if rth item is drawn

from Pi and a success is

X ir obtained

0 otherwise

Since selecting a population is statistically independent from drawing

an item it follows that

Prob(Xiruwl)ufip i,

i=1,...,k,r=1,...,n. Now, let

k
YXir

r-l,...,n, and note that the events that deter= ine Ir are disjoint. It

follows then that

k
ProbCYr=l). ' f iP,

i-l

r=1,... .,n. That is, Y1 "...'Yn are independent Bernoulli random variables with

mean p. Observe, also, that

10



[th
1 if rth observation results

in a success[ Yr

0 otherwise

r=l,... ,n.

The maximum likelihood cticiate (MLE) of p will be given in the next

theorem. It will be shown later that the MLE is, in fact, the "best"

estimate of p when data arise from random allocation.

jheorem 3.2

For a total sample of size n the MLE of p from random allocation is

n
P ranurE Yr/n. (3.1)

i.e., the MLE of p is the mean number of successes in the sample.

Proof

It is straightforward to show that the likelihood function for the

experiment is

kn /I \xi./\ E

n r=Il i~i1ip ir tlp/ i/ l . (3.2)

Now, note that fipi may be written as cip, i=l,...,k, where

k
E ci1l.

Hence, (3.2) becomes

11



k
1 z X.

e&( X () i (
r=l

T~hus,
n k

log L(xlO..,xn)r=l E ir log c + n log (l-p)

n k
- E X. log (l-p).
r=l i=l ir

Setting the derivative of log L(I .6.0n) equal to O it follows that

n k ni
E E Xir/p - r E X - =o

ral i=I r=l i /

Therefore,

n k

ran r~l i=l

Since

k

r i= Xirp

r=l,... ,, the theorem is proved.

A result conccrning the distribution of fipran will be given next. Notice

that this result does not depend on k.

Theorem 3.3

The distribution of n~ran is Binomial with parameters (n,p).

i.e., Prob(p ranml=()p (l-pn-rn

m=O,l,... ,n.
12



Proof

Since YI,..,Y are independent Bernoulli random variables with mean p then

n
zy

r=l r

is a Binomial random variable with parameters (n,p*. 1he theorem is proved

because

?n

~ranSnPran riY r •

r-l

Some optimum properties of pran are given in the following theorem.

Theorem 3.4

Thle MLE pran of p has the following optimum properties:

(i) sufficient (i.e., uses all the information available from random

allocation in estimating p).

(ii) unbiased (i.e., the expectation of pran is p).

(tii) efficient (i.e., has the smallest variance among all unbiased estimates

of p ob "ained from random allocation).

(iv) strongly consistent (i.e., pran will always converge to p as n becomes

large).

Cv) converges in (i.e., Prob(Ipran-p I<c)-l as n- for any

probability C>O).

i.



Proof

(i) By (3.3) the likelihood function may be written as

where

k nPran
An II C.
i,,

and

B=p ran (1) n - n p ran

This factorization is a necessary and sufficient condition to insure that

ran be sufficient. (See Reference 2, Section 5.5.1.)

(ii) This follows directly from Theorem 3.3.

(iii) One can show that the likelihood function, given by (3.3), implies that

the information, I(p), in the sample (Reference 2, 6.1.3) equals

-1
n[p(l-p)] .

is The Cramer-Rao lower bound for an unbiased estimator of p (Reference 2, 6.1.3) ]
-1

[I(p)] = n p(lp).

But by Theorem 3.3

VAR (p)an n(l-p).

14



That is, VAR(Pran) equals the lower bound. This gives the de ired

result.

(iv) Since Yl,...,n are independent, .dentically distributed random variuDles

the strong law of large numbers (Reference 3, 2c.3) implies that as n gets

large,
n
Z Yr /n

converges to E(Y1). But

E (Y1 )Wp.

(v) Strong convergence, given by (iv), implies convergence in probability

(Reference 3, 2c.2).

The fact that Pram converges in probability does not, in itself, reflect the

precision the experimenter may expect in this estimator. That is, it does not

tell him for a sample of size n what degree of confidence he has that

Ipran-p

is small. The next theorem attempts to answer this question. It is important

to note that this result is independent of k, the number of populations.

Theorem 3.5

For any e>O and for any n'>l

Prob(Iprn-pl<c) 1-1/4nE2 .

Proof

By the Chebyshov Inequality (Reference 3, 2c.2)

prob(jpran-pI>C) < VAR(prim)/C 2 .

15



Bu VAR(pn p(l-p)/n < 1/4n,

since 0 <p <. Thus,

Prob(iP ra-pl!_c) l/4nC2

or equivalently,

Prob(Ipan -p < ) > 1-1/4nC2 .

Another result, independent of k, which iq of practical significance for

large sample size is the following.

Theorem 3.6

Let n be the total sample size and let qsl-p. Then the asymptotic

distribution of

Pran p

is Normal (0,1), as n-.

Proof

This is a direct result of the Central Limit Theorem (Reference 3, 2c.5).

Remark

Whereas Definition 3.1 specifies that an item te drawn immediately after

the population is selected this is not, in practice, necessary. In practice

random sample sizes nl,...,nk,say, may be determined first, where n, is the

number of items to be drawn from Pi,iul,...,k, and

k
no E n-.

,fter these sample sizes are determined, samples are drawn from the respective

populations and Pran is obtained.

16



4. OPTIMUM AND PROPORTIONAL ALLOCATION

If independent random samples are taken from each of the k populations

it seems natural to estimate pi by the mean number of successes in the sample

from '.,i=l...,k Moreover, the convex combination of these estimates would,

also, seem the natural function to use as an estimate of p since the weights

f f are assumed known. This approach to estimating p is considered in

this section.

For a fixed total sample size n the question arises as to how one should

Nwp 1ign the ... l ie o p In .k. ur the size of the sample to be

drawn from ,i=l,...,k This section discusses two procedures for determining
these sample sizes so as to obtain estimators of p which have certain desirable

properties. It is t be remarked that these procedures are analogus to
montimum and proportional sampling methods from a finite population.

Let Pi be the moan number of successes in a sample of size n i taken from

Pi,i=l,...,k. The corresponding estimator for p is then

* kpa E f ipi

jul Jul

Now, Pi is the MLE of Pi,i=l,...,k. Further, pi is an unbiased estimator
of pi,i=l,...,k, and, also, enjoys having the smallest variance of all such

estimators. In general, unbiamwras and minimn variance are very desirable
proertesfor an estimator to possess. By virtue of the fact that_ pi is a

unbinsed estimator it follows that ; is, also, an unbiased estimator since

k 1
E(p)- Z; f iE(pi)-p.

Observe, also, t.hat

A k -2k 2
VAR(p) Z i T VAR(pi )  E iPi(l'Pl)/nl •  (4.1)

17



From the above, it is seen that the variance of p depends directly on the

sample sizes ni,ial,...,ks which are chosen by the experimenter. The problem

of allocating the ni to insure that p will have the smallest possible variance

will be considered next.

Theorem 4.1

For a total sample size n, VAR(p) is minimized if

ni =w in,

where

w. = k(4.2)
E .[p.(l-pj)]1/2

j=l j

i=l ,. . .,k.

* Proof

Minimizing VAR(p), given by (4.1), subject to nl+...+nkan is equivalent

to minimizing

k£f2pi (l-Pi)/nl+X (nl~n2+  kn (4.3$)

where X is a Lagrange multiplier. Taking the derivative of (4.3) with respect

to ni and setting this equal to 0 yields

_f~p. (l-pi)/n2+X=0. (4.4)

Thus,

n i fi[Pi(l-Pi)]I/2/ I/2 , i-Il,... ,k. (4.S)

18



Since

k

n= L n.
j=l

Equation 4.5 implies that

1/2 k 1/2
= f[P(l-p) //n.
j=1

Hence, wi, given by (4.2), is immediate for iul,...,k.

Definition 4.2

Let n be the total sample size, hen ni=win , wi given by (4.2),

i=,. ..,k, the procedure is called optimim aZZocation and p is denoted by

Popt.

The weights wi may or may not be known in practice. If they are not

known then, of course, optimum allocation cannot be employed. Another

allocation method which is always feasible in practice is defined next.

Definition 4.3

Let n be the total sample size. When ni=fin, i=l,...,k, the procedure

is called proportionaZ alZoation and p is denoted by pprop-

In the next section a comparison of the three allocation procedures

presented in this report will be made. This comparison will be based on a few

important factors which, it is felt, should be taken into account when

choosing among these procedures. One point of interest will, of course, be

the relative precision of the corresponding estimators.

Now, by the way optimum allocaticn was defined it is known that

VAR(Popt) o VAR (pprop).

19



The relationship between the variances of pprop and Pran will be considered

next.

Theorem 4.4

Let n be the total sample size. Then

VAR( p )= f p. (l-p.)/n. (4.6)
Propii 1

Proof

This result follows easily since

k
VAR(p ) E f.ip(l-pi)/nipropii

and

n i f in iffl,.... k

Theorem 4.S

VAR(Pprop) < VAR(Prand

Proof

Let n > k be the total sample size. By (4.6)

k
VAR(Pprop)n r f i p(l-Pi)/n

and by Theorem 3.3

VAR (pran) p(l-p)/n,

20



where, of course,

k
p- Z fipt.

i'l

Observe, now, that

VAR(pprop)x f 1 i p i (1-p.P-Pi)/n

k 6k=£fi(1-p)/n Z fipi(p-p!=)/n

i-w1tisw 
h

k•VA (P ran )+ i1: fiPj i(P) In.

It will next . -i shown that

k fp i (p) o (4.7)
i=I

To show this, cunsider e rando variable Z vwlich assumes the values

Pj...P k , and suppose that

Prob(Z-p.)Wf.

i= ,....,s P.ecalI here that

k
: fil.
i,,1

Observe, now, thnt

21



iP1 (P-i) Xifl Z f

A- R(Z).

Since VAR(Z) is nornegative (4.7) is established and, henCe, the theorem

is proved.

The next theorem gives two asymptotic properties of Popt and Pprop as the
total sample size increases.

Theorem 4.6

"the estimators Poptand Pprop of p have the following properties:

(i) strongly consistent (i.e., popt(Pprop) will always converge to p as

n becomes large).

(ii) converges in (i.e., Prob(--p<c)-*- I as n -,-, for any e>O
probability papopt oPprop"

Proof

The proof is similar to the one given for Theorem 3.4 (iv) and (v) and
is, therefore, omitted.

In Theorem 3.5 a result was given that, in practice, would aid an
experimenter to assess the confidence he may place in Ptar as an estimator
of p for a certain sample eize n. The key to the result was the fact that

VAR Prp)up(1-p)/n - 1/4n.

This inequality is,. in fact, sharp; i.e., it cannot be improved on. In this
section it has been shown that

VAR(Popt ) ! VAR(Pprop ) < VAR(p ran),

22



with equality if p , Pk

Consequently, 1/4n is an upper bound of, the variances of Popt and
and the bound is, also, sharp. The sipifi-ance of the follewing theorem

is, therefere, established.

Theoren 4.7

Fot any g>O and for any n>k

PrbClp-p<c) > l-l/4nC2 ,

PaPopt- Pprop

Proof

The proof is emitted because of its similarity to the proof of Theorem 3.5.

Another result which may be useful when the sample size n is large will

be given next.

Theorem 4.8

Let n be the total sample size. Then the asymptotice distribution of

[VAR(;)] 1/2

is Noral(O,)l, as n-, where Popt" Pprop"

Proof

This result follows immediately from the Central Limit Theorem (Reference 3,
2c.S).

23
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5. SELECTION OF A SAMPLING PROCEDURE

In this section some of the practical aspects of choosing among the three

sampling procedures presented in this report shall be discussed. This

discassion may, also, serve as a brief review of some of the basic properties

of these procedures.

It is difficult, if not impossible, to consider all possible situations

ar, experimenter may face when selecting a sampling procedure. It may, also,

be difficult to ascertain which procedure is the "best" to use in practice

for a particular situation. It may happen in practice that a procedure is

rbast" only because of its computational simplicity or possibly because the

theoretical aspects are easy to explain to ones employer. The following

discussion, however, is general in nature and is intended to serve only as

a guide when selecting a procedare.

Regardless of any other considerations, the experimenter must usually

make at least two basic decisions before he selects a sampling procedure.

Firstly, he must decide whether the chief purpose of the experiment is to

estimate p or to test a hypothesis on the true vulue of p. Secondly, he

must decide whether or not the sample size n will be larger than k, the

number of populations. The choice of a sampling procedure for these four

basic situations shall be discussed.

Suppose first that it is decided that k>n. Immaterial of whether the

experimental goal is estimation or hypothesis testing, the only appropriate

procedure to use is random allocation. Hypothesis tests are baied on the

statistic npran, which by Theorem 3.3, has a Binomial distribution.

Consider, now, the case when k<n and the purpose of the experiment is to

estimate p. For most problems encountered in practice it happens that

VAR(Popt) < VAR(p rop) < VAR (Pra).

Since the estimator %.dth the smallest variance is generally considered to be

best it follows that optimum allocation should be used if possible. The

weights wi,i=l,...,k, given by (4.2) may not, of course, be known in practice.

If this is the case then proportional allocation is the appropriate sampling

procedure.

24



Finally, assume that k<n and the experimenter wishes to test a hypothesis

on the true value of p. In this case a statistic with a known distribution

that depends on p must be available. Distributions, in a closed form, of

statistics obtained from optimum and proportional allocation are not known

to the author. However, by Theorem 3.3, the distribution of npran is Binomial

with parameters (n,p). It appears then that random allocation is generally

the appropriate procedure to use under these circumstances. It is, also,

remarked that if n is very large relative to k then the distributions of

popt and pprop' properly normalized, are approximately normal with mean zero

and variance one. Unfortunately, the normalizing factors are functions of the

individual pi,i=l,...,k, and not explicitly a function of p. It is further

noted that if n is very large relative to k, then proportional allocation and

random allocation are approximately the same procedure. That is, the sample

sizes to be drawn from the individual populations are approximately equal.

6. NUMERICAL EXAMPLES

In this section several numerical examples shall be given which will

demonstrate the practical significance of the three sampling procedures

nresented in this paper. Before these examples are given, it should be

pointed out that if one is sampling from a dichotomus population and the

probability of a success is equal to a fixed constant for all trials, then

tho population is infinite. This observation will be useful in the follo'ing

examples.

Fxample 1

At the end of the development period of a certain surface-to-air

missile system, the Army wishes to conduct tests that will demonstrate, at an

appropriate significance level, a particular performance requirement of the

system. This requirement is not concerned with the detection of threatening

aircraft but only with the performance of the missile from launch to

detonation of the warhead.

This missile is designed to destroy air-breathing aircraft and several

factors such as target speed and range, use of electronic counter measures

and others are assumed to affect this capability. These factors, taken

25



[together in various combinations yield a total of 52 possible states that a
threat may assume. In the event of an enemy attack the probability that a

missile will encounter an aircraft presenting a particular threat is known.

However, it is not known what the probability is that a missile will destroy

an aircraft given that the aircraft is presenting a certain threat.

The unconditional probability that a missile will destroy an aircraft

is called the expected kill probability (EKP) and it is required that testing

demonstrate that this probability is sufficiently high before the production

phase of the missile system is begun.

Suppose that the 52 possible states a threatening aircraft can assume

are numbered and let fi be the known probability of state i, i=l...,S2.

Further, let pi be the unknown probability that a missile will destroy an
aircraft imposing a threat in the ith state, i=l,...,52. From this notation

it follows that the EIP is

52
p= E fipi

i=1

Because of cost only 40 missiles can be allocated for the testing.

Also, since 40, the sample size, is less than 52, the number- of possible

threats, and hypothesis testing is the goal, then the random allocation
procedure is appropriate. In general terms the null hypothesis. HN, and the

alternate hypothesis, HA, are defined as:

HN: EKP is acceptable

HA: EKP is not acceptable.

The decision to accept or reject HN is to be based on the statistic
40p ran, which, by Theorem 3.3, has a Binomial distribution with parameters

(40,p). It is decided that if 40pran is at least 25 then HN is accepted
while if 40pran is less than 25 then HN is rejected in favor of HA. The

corresponding operating characteristic (OC) curve, which is based on Binomial

probabilities, is given in Figure 6.1.
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Figure 6.1 Operating Characteristic Curve for a
Sample Size Equal to 40 and an
Allowable Number of Failures Equal to 15

For a particular value of p on the abscissa of this curve the resulting value

on the ordinate is

40
Prob(npran !.2SIp) - 2 (40) pjq40-j,25

where q = l-p.
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For purposes of a numerical example the missile tests were simulated on a
computer using the values of the fIs and Pi'S given in Table 6.1 (Note that
in practice the f.'s are known but the Pi's are unknown). The simulation

produced first the number of missiles to be fired at aircraft presenting the

different threats. These numbers, denoted by ni, izl,...,52, are given in

Table 6.1. Next the missile firings were simulated and Si, i=l,...,S2, given

in Table 6.1, are the number of successful firings. This simulation yielded

a value of 30 for 40rran* Therefore, the null hypothesis, HN, should be

accepted implying that the EKP is acceptable.
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TABLE 6.1 INFORMATION AND SIMULATED DATA PERTAINING TO HYPOTHESIS
TEST ON THE EKP

Destroy Sample Successful
Threat Frequency Probability Size Firings
i f i Pi n S .

1 .0576 .72 3 3
2 .0144 .60 1 1

3 .0384 .6G 1 0

4 .0384 .72 2 1

5 .0096 .60 0 0

6 .0256 .60 2 2

7 .0096 .5s 2 2
8 .0064 .5S 0 0

9 .01728 .72 2 1
10 .00432 .60 0 0

11 .06912 .60 2 6
12 .011S2 .72 1 1
13 .00288 .60 0 0

14 .04608 .60 2 2

i5 .01728 .55 1 0
16 .01152 S5S 0 0

17 .0192 .72 0 0

18 .0048 .60 0 0

19 .0128 .72 0 0

20 .0032 .60 0 0

21 .0480 .72 3 3

22 .0120 .60 0 0

23 .0120 .60 0 0

24 .1440 .72 4 4

2S .0360 .60 2 2

26 .0360 .60 1 1

27 .0030 SS5 0 0

28 .3090 s55 0 0
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TABILE 6.1 (CONTINUED)

Destroy Sample Successful
Threat Frequency Probability Size Firings
i fi Pi ni Si

29 .0396 .72 2 2

30 .0099 .60 0 0

31 .0044 .60 0 0

32 .1188 .55 6 2

33 .0297 .55 1 1

34 .0132 .72 1 1

35 .0011 .60 0 0

36 .0033 .72 0 0

37 .0020 .72 0 0

38 .0005 .55 0 0
39 .0060 .72 0 0

40 .0015 .55 0 0

41 .0016 .72 0 0

42 .0004 .69 0 0

43 .0144 .72 0 0

4,4 .0036 .60 0 0

45 .0016 .72 0 0

46 .0004 .60 0 0

47 .0144 .72 1 1

48 .0036 .60 0 0
49 .0008 .72 0 0

50 .0002 .55 0 0

51 .0072 .72 0 0

52 .0018 .55 0 0

52 52 52
EKP Z ftPjO 0.643883 n I n - 4 0  npran Si

= 30
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Example 2

Consider again the missile testing problem discussed in Example 1.

Suppose now that instead of hypothesis testing the Army wishes to estimate
the EKP from data obtained from random allocation. How large should the

sample size n be in order for the Army to have an a priori probability of at

least 0.95 that the estimator pran will differ from the true EKP, p, by less
than 0.1? That is, what value of n will insure that

Prob(Ipran - Pl < 0.1) > 0.9S?

It is known from Theorem 3.3 that nPran has a Binomial distribution

with parameters (n,p). Hence,

Prob(lpran - p 0.1) - ProbInp ran- npl <O.ln)

x- npl 0. Oin X/e

where

q u 1-p and the summation is extended over the values of x for which

Ix - npj < 0.1n. One can see the difficulty in attempting to determine
directly an n so that no matter what p is the inequality

ix np <. 1n()pX nx > 0.9

holds. By using the results of Theorem 3.5 one may, however, easily find

such an n. Now, by this theorem

Prob(lpran - pl < 0.1) ! .- 1/(0.1)2 4n.

Therefore, if

11/(O.1)2 4n 3_ 0.3



=mo

then it follows that

n > 25/0.05 = 500.

Consequently, if SOD or more missiles are fired then the a priori probability

is at least 0.95 that Pran will differ from the (unknown) EKP, p, by less

than 0.1.

Inasmuch as the above result is correct, it will next be shown that

a much smaller sample size n will, also, suffice. The derivation of the

smaller sample size will be based on the fact, given in Theorem 3.6, that

Pa is approximately normally distributed if n is sufficiently large. From

practice, it has been observed that a sample size of 30 or more is generally

sufficiently large to insure that this approximation is adequate. Hence, if

n > 30 then

Proh(IPran - PI < 0.1)

Prob(an < Pran-P 0.1

A 0.1/0
1 I t/

e 2/2 dt

-0.1/0

where

a (pq/n)
1/2

and "Al" denotes "approximately equal to."

From a table of cumulative standard normal probabilities one finds

that if

0.1/c > 1.96
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then

g~ ~ 0,I/o~t/

j e 2"1 dt > 0.9S.Lv( -0. 

Hence, if

n > (19.6) 2/4* 96

then

Prob(IPran - PI < 0.1) ! 0.95

regardless of the unknown value of p. That is, a sample size of 96, instead

of 500, is large enough to obtain the required precision.

This estimation problem was simulated on a computer using the values
for the ftIs and Pi's given in TablP 6.1 and a total sample size of r, = 96.

In Table 6.2 n is the number of missiles to be fired at aircraft presenting
the ith threat and S. is the number'of successful firings, i=l,...,52. From

Table 6.1 the true value of the EKP is

p = 0.643883

and frm Table 6.2 the simulated estimate of p is

P ran = 0.614583.
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TABLE 6.2 SIMULATED DATA PERTAINING TO THE ESTIMATION 01 THE EKP
FROM RANDOM ALLOCATION

Sample Successful Sample Successful
Threat Size Firings Threat Size Firings
i n. S i n S.

1 5 4 27 1 0

2 2 1 28 1 0

3 6 5 29 3 2

4 2 1 30 2 2

5 0 0 31 0 0

6 4 3 32 9 7

7 2 1 33 4 2

8 0 0 34 1 0

9 0 0 35 0 0

10 2 0 36 0 0

11 4 , 3 37 0 0

12 1 1 38 0 0

13 0 0 39 0 0

14 4 2 40 0 0

is 2 1 41 0 0

16 2 0 42 0 0

17 4 3 43 1 1

18 0 0 44 1 0

19 1 1 45 0 0

20 0 0 46 0 0

21 2 2 47 2 1

22 1 0 48 0 0

23 0 0 49 0 0

24 15 7 50 0 0

25 4 2 51 1 1

26 6 s 52 1 1

52 52

i= n P ran Zi /n

= 96 =0.614583
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It has been noted before, and is well worth mentioning again, that the

statistical properties of p are independent of k, the number of dichotomus

populations. This means that a sample size of 40 (96) would still yield the
same OC curve (precision) in Fxample 1 (2) even if the number of possible
threats was not 52 but any arbitrarily large number. Observe, also, that

the number of threat states actually sampled from was only 20 in Example 1
and only 31 in Example 2.

Example 3

Suppose a small, inexpensive item is produced by a certain factory

for the Army ard the Army wishes to estimate the fraction of defective itoms

produced from a total sample size of 1000. Three assembly lines contribute

to the factory . production of the item and because of difforences in

machinery and personnel the fractions of defective items produced by the

assembly lines differ. However, after production the items are stored

together and are not distinguished as to the particular assembly line which

producd them.

Ordinarily, a random sample of 1000 items would b- taken from the

storage area and the fiaction of defective items produced by the factory

would he estimated by the mean number of defective items in the sample. If

the proportions fl, f. '- fS, say, of the items produced by Assembly Lines 1,
2 and 3, respectively, are known then the random allocation procedure may, also,

be used to estimate the fraction of defective items produced. Any additional

effort or cost it may take to implement the random ailocation procedure would

probably not be justified since, in Section 3, it was noted that this pro-

cedure and the random sampling procedure are statistically equivalent. Thus,

it is immaterial which of the two procedures is used because the respective

estimators afford the same precision.

Assuring that the f.i's are known the Army may, also, use the pro-
portional allocation procedure since 1000, the sample size, is greater than 3,

the number of assembly lines. This procedure, it has been pointed out,

generaily yields a more precise estimator than does random allocation. Becau-e

the fi's are easily obtainable from the manufacturer the Army decided to use
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the propoltional allocation procedura and take advantage of this extra

precision in estimating the fraction of defective items produced.

This estimation problem was simulated on a computer when Assembly

Line 1 produces items S percent defective and accounts for 25 percent of the

production; Assembly Line 2 produces items 4 percent defective and accounts

for 35 percent of the production, whle Assembly Line 3 produces items 3

percent defective and accounts for. 40 percent of the production. Of course,

the fraction of defective items produced by each assembly line would be

unknown in practice,

The simulation results are given in Table 6.3, where ni is the number

of items to be drawn from Assembly Line i and Si is the number of defective

items in the sample, ,-l, 2, 3. The actual fraction, p, say, of defective

items produced by the factory is

p - 0.0385.

The estimate of p, resulting from the simulation, is

Pprop a 0.0330.

TAB!LE 6.3 INFORMATION AND SIMULATED DATA PERTAINING TO THE ESTIMATION OF THE
FPACTION DEFECTIVE FROM PROPORTIONAL ALLOCATION

Assembly Proportion of Fraction of Sample Number of
Line Production Items Defective Size Defectives
i fi pi ni Si

1 0.250 0.050 250 7.

2 0.350 0.040 350 16

3 0.400 0.030 400 10

3 3 3
p - I Z ifi i 0.0385 n = E n. P = Z f /n

in1ii ii1 n prop i=1 ii

= 1000 - 0.0330
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Lxample-

Consider again the estimation problem discussed in Example 3. Suppose

Ii, -tanufacturer informs the Army that from past experience with the manu-

facturing of similar type items the production pro esses of the three assembly

Iines usually exhibit a certain relationship. Particularly, the variation of

the production process for Assembly Line 2 is generally about 20 percent less

than the variation of the producti-n process for Assembly Line 1. Also, the

varia'ion of the production process for Assembly Line 3 has been observed to

usual Iv )(- about 40 percent less than the corresponding variation for Assembly

Lite 1. "lhe differences in the age and design of the machinery in the three

ass,-mby line.- n 'ere given :s tht' p:i,iary reason for the differences in the

production procvsscs. With this information the Army may use the optimum

allocation procedure to estimate the fraction of defectivc items produced

b>' the factory and, thereby, obtain the best possible precision.

Again let fi be the proportion of the production contributed to

Assembly Line i and, also, let pi be the fraction of the items produced by

Assembly Line i which are defective, 1=l, 2, 3. For a total sample size n

it follows from Theorem 4.1 that the sample size n. to be taken from Assembly

Line i is

; ,. (6.1)

.;'.here

wh.orl- -,. .; -"I

, " i i s

~From remarks made in Section 2 it is knoh1 that if



1 if an item drawn at random from
Assembly Line i is defective

[ i

0 otherwise

then E(Ui) =pi and VAR(Ui) Pi(l-pi), i=l, 2, 3.

Hence,

fi [VAR(U,)]/2

W . -
1 3 1/

E f. [VAR(U) ]
j : 1

i z 1, 2, 3.

Also, from the information provided by the manufacturer it is known

that VAR(U ) is approximately equal to 0.8 VAR(U ) mid VAR(U ) is approximately
2 13

equal to 0.6 VAR(U ). Regarding these as actual equalities one has that

n = f (0.8)1/2n (6.2)
1

and

f
n = -1 (0.6)1/2 n (6.3)

1

Therefore, for a total sample size of n it follows that

n - (1 - (0.8)1/2 .f (0.6)1/2]
1 1 1
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Consequently,

f2 3
n= n/[ +L (0.8)/2 (0.6) (6.4)

0

If, in fact

VAR(U ) - 0.8 VARCU) (6.5)
21

and

VAR(U3) = 0.6 VAR(Uj) (6.6)

then the sample sizes given by (6.2) - (6.4) are optimum for a fixed total

sample size n. If the variances of U and U are given only approximately2 3
by the right-hand sides of (6.S) and (6.6), respectively, then the sample

sizes n , n and n are, of course, only near y optimum.
1 2 3

For a total sample size of n a 1000 this estimation problem was

simulated on a computer using the same fiIs and pi's given in Example 3. The

exact relationships between the variances of U1, U2 and U3 are determined

from p P2 and p and are:
1 2 3

VARCU ) • 0.808 VAR(U ) (6.7)
21

and

VAR(U ) = 0.613 VAR(U ). (6.8)
31

For the simulation the sample sizes n , n and n were determined
1 2 3

assuming that the relationships (6.5) and (6.6) hold. The resulting sample

sizes are:
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n a 286; (6.9)
1

n a 359; (6.10)
2

n = 355. (6.11)
3

These sa;ple sizes are only nearly optimum. The true optimum sample sizes,
based on Equation (6.1), are:

n = 285;1
n = 358;2
n = 357.

3

Clearly, then, the sample sizes given by (6.9) - (6.11) may, for all practical

purposes, be considered optimum.

The simulation results are given in Table 6.4, where n. is the number

of items to be drawn from Assembly Line i and S. is the number of defective

items in the sample, i=l, 2, 3. From Table 6.3 the true fraction of defective

items produced by the factory Is

p = 0.0385.

The estimate of p, obtained from this simulation,is

Popt= 0.0335.
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[

TABLE 6.4 SIMULATED DATA PERTAINING TO THE ESTIMATION OF
THE FRACTION DEFECTIVE FROM OPTIMUM ALLOCATION

Assembly Sample Number of
Line Size Defectives

i n S
i Si

1 286 10

2 359 1s

3 355 9

33
,, E ni Popt i.3 fi Si/i

41000 N 0.0335

. 41 Next page is blank.
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