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NOMENCLATURE

ao  = Speed of sound in the undisturbed gas

E = total energy (cL=Z), energy/unit length (a=l), energy/

unit area (a=o)

E, = see equation 11

f = nondimensional velocity

g = nondimensional pressure

h = nondimensional density

J = constant defined in equation 26

Jo = value of J when y ->o

M = Mach number

p = pressure

r = distance from site of energy source

R = shock radius

Ro  = explosion scale radius (equation 34)

R = nondimensional shock radius (equation 42)

t = time after start of energy input

t = duration of energy input

u = velocity

U = shock velocity

W = proportionality constant

x = r/R
VII



y = 1/M Z

a = geometry index = 2 (spherical), I (cylindrical), 0 (planar)

Y = ratio of specific heats

X = decay coefficient (equation 17)

ko  = decay coefficient when y - o

p = density

V ill



ABSTRACT

A brief review of the literature on blast wave theory is con-

ducted. Special attention is devoted to the variable energy blast

wave because of its possibie applicability to two-phase detonation

phenomena and the ignition of liquid monopropellants by shock

waves.

The zero order solution for a variable energy spherical blast

wave in which the total energy release E is deposited proportionally

to , where t is the time, is shown to be

R 4 P o 5 (t/ti) 8/5 . Z/5

where R is the shock radius and t i is the duration of energy input.
The factor J is related to the flow field via

Sample calculations of this equation on the basis of possible
energy release from ethyl nitrate droplets and a comparison with

experimental results are made. It appears that valaes of 5
and t i = 10 P sec give reasonable agreement. However, more
accurate theoretical calculations need be made and more experi-

mental data need be obtained before firm conclusions could be

drawn.
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INTRO DUCT ION

The classical blast wave theory refers generally to the propaga-
tion of shock waves in a gaseous medium due to an instantaneous
energy input in an infinitesimally small region of that medium. The
energy input can be in a point, along a line, or in a plane, with the
resultant wave and attendant flow fields being spherical, cylindrical,
or planar, respectively. Interest in the theory started in the early
forties with the pioneerng analysis of G. 1. Taylor (Ref l),which
was not published until 1950. Since then a very large amount of
work on the subject h .s been published in the international literature.
For comprehensive "eviews, the reader is referred to the works of
Sakurai (Ref 2), Se, ov (Ref 3), and Lee, Knystautas and Bach (Ref 4).
The proliferation c.f analyses naturally has resulted in different and
sometimes confusing sets of nomenclatures. A comparison of the
symbols used by important contributors for the pertinent parameters
is presented by Oppenheim et al (Ref 5).

Early treatment of the subject was based on the assumptions that
the energy input is instantaneous and that transport properties are
unimportant. With these assumptions, dimensional analysis (Ref 3)
yields functional relationships between the energy input and distance,
arrival time, and velocity of the shock front without complete
solution of the relevant conservation equations. However, for detailed
characteristics of the flow field (i.e., pressure, density, temperature,
and velocity of the gas behind the shock), numerical solutions are
generally required (Ref 1,2). Solutions for the flow field near the
energy source region, where transport properties are important,
have appeared in the literature (see, e.g., Bowen (Ref 6) where the
method of asymptotic matching technique is used). Problems in
which the effect of the energy source mass is important (piston
problem) also have been analyzed (Goldsworthy (Ref 7), Grigorian et al
(Ref 8)). Also, Laumback and Probstein (Ref 9) treat the case of
point explosion in a variable density atmosphere.

While the assumption of instantaneous energy input is adequate
for most cases and certainly for time periods much greater than the
input times, there are processes in which the energy input, though
very fast, can be considered time dependent. Examples are
discharges, exploding wire phenomena, accelerating hypersonic
body, and chemical energy release. An example of the latter is the
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blis wav-e generated in two-phase detonaticns (Ref 10, 11) and shock
imt"io of liquid mnopropellant droplets (Ref iZ). A certain class
o* t-c dependent energy input is knoxn to be amenable to a similarity
s-Iatio (Ref 2). Free.man (Ref 13) treats this problem in some

aib cancmes his treatment to a cylindrical geometry, since
ave was wmeresed rainly in applying his results to spark discharges

e 14). Thiis report will be concerned with the variable energy
bList wave md us application to two-phzse detonations.
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BLAST WAVE EQUATIONS

The conservation equations applicable to blast waves are as
follows:

3 P 1 + ()
it 3r Or r

3 _ u + u "I _ 1 p _ (2 )
'I)t 'ar p r

(pp + u ____ (pp-)= 0 (3)
-r

for mass, momentum.and energy, respectively. Here transport
terms as might appear in the momentum and energy equations are
omitted. The symbol a characterizes the geometry considered.
Thus,

=0 -- planar case

a -- cylindrical case

= 2 -- spherical case

Combination of equations (3) and (1) yields

22P +U _P _ Yp /u+ au (4)76t -6r r r - 4

if the position of the shock at time t after the initiation of energy
input is R from the input location, then the velocity of the shock is
given by

dR (5)U--
dt

4
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The boundary conditions that can be used to solve equations (1), (2),
and (4) are the normal shock conditions. Thus, since the velocity
of sound in the undisturbed medium is

a = JYPoo- (6)

and the Macn number of the shock wave is

M = U/a o  (7)

the boundary conditions at r = R are

u A 1M2  1- ) (8)

p y_ Mz  
_- _ 1()

Po +1 y +

(Y -)M(+ (10)

These conditions, together with the conditions relating the energy
input to the kinetic energy and the internal energy change in the gas
behind the shock, are, in principle, sufficient for a complete
solution of the problem. The latter condition can be written as:

E R P-P-c rAdr (11)

11where: E o  Energy input per unit area

E 1 -- . (Energy input per unit length)

EZ 1 . (Energy input)
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The blast wave equations can be transformed in terms of
two independent variables which are chosen to fit the similarity
solution. These variables are

x = r/R (12)

and = /M2  (13)

The dependent variables then are

u U f(x,y) (14)

p Po g (x,y) (15)
Y

S=Po hkx, y, (16)

where f, g, and h are to be determined. If a decay coefficient is
defined as

dny
dt.nR

d .nU

dnR

Rd2 R/dtZ

- (dR/dt)L

Then equations (1), (2), ad (4), after using equations (12-17), can

be transformed, respectively, to
(fxBh bh (} __

(f-X) + Xy = - h +_ (1)
1'b x /- A

2 f + (f-f _ _ 169 (19)
2 -+ y - -Yh 'bx

f af- xg + (f -x) - -  g- / f  fi _ (20)
x +ky y Tg "
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The boundary conditions of equations (8) to (10) are changed to

YI
f(l,y) =- (1-y) (21)

When an explosion scale radius is defined as (2

RO~~2 =-;"M/ -1- (4

then condition (11) becomes

y(Ro/Rim' = - Y-1)(25)

g~~i(a+, - y (

where

;J -(Y + --- ) x (26)

It can be seen that when M2 1 y -) 0 and therefore equations
(18-20) become ordinary differential equations. Furthermore, the
boundary conditions (21-23) are simplified, and the last term in
equation (25) can be neglected. Despite these simplifications,
however, the integral J must still be numerically calculated after
numerical calculation of f, g, and h. The zero order value of J,
i.e, J0 , underothese simplifications, isfoundtobe, forY 1.4
(see Sakurai, Ref 2)

= 0.596 (spherical)

= 0.878 (cylindrical) (27)

= 1.696 (planar)

7
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It should be mentioned that these values are applicable for the case
where E. is instantaneous. Under this condition, equations (25) and

(24) show that

Ra =o y 1Crti (28)

and since the independent variable y from equation (13) is

2 a dRV4a /- (29)

then by combining (28) and (Z9) and integrating, it is found that

R C = T- 3 + E a  a

R -t 2 a (30)
Pojo

and

dR 2 t [+3 2 Eao c+3 (31)

dt a+3 1+ 2 Poio

These are the functional relationships of the shock position and its
velocity for the zero order solution. The decay coefficient X in
equation (17) can be found to be

X = C + 1 (32)

The decay coefficient for y > 0 has been calculated by Sakurai
(Ref 2), Freeman (Ref 13) and Goldstine and von Neumann (Ref 15).

In this case the flow field does not exhibit similarity, and resort
to first and higher order solutions must be made for its accurate
description (Ref 2, 13).

8



VARIABLE ENERGY INPUT

As was mentioned before, Freeman (Ref 13) analyzed in detail

the case for a constant rate of energy input in a cylindrical geometry.
In this section the zero order solution for the general case will be
presented and compared with the instantaneous energy input case.

For this, the energy input is assumed to vary with time as follows:

E := Wt6 (33)
a a

where W. is a dimensional constant of proportionality whose dimensions
depend on the power 8. The case of the instantaneous energy input
is covered by setting 3 = 0. If an explosion scale radius is defined
as

(34)

it can be shown that the shock radius can be written as

R = Ktn (35)

where (

L(36)

0 0

and 8+2
n (37)

Also the decay coefficient becomes

X Z(1<-S) (38)

o 2+6

91



It is to be noted that when 6 = 0, equation (35) reduces to equation
(30) since Wq = E. and equation (38) reduces to (32). While Jo
appears in the general case. it must be mentioned that its value
depends on the flow field (see equation 26). Since the flow field
depends on S via ) in equations (19) and (20), the value of J for
constant a has a different numerical value for different 8. or
example, if v = 1.4 and - = I (cylindrical case), JO = ."78 for 8 = 0,
and J = .561 if 6 = 1. Freeman (Ref 13) calculated Jo fcr a = 1,

= 0 and I for various 4; but apparently Jo for the spherical
case has not been calculated for i - 0 (Ref 16).

To see the effect of energy input duration, we focus our
attention to cases where the total energy is constant. Thus,
equation (33) can be written as

Ea = WCtt i  
(39)

where t i is the duration of input energy. Substituting equation (39)

in (36) and using (351, we find

2  \ I+2[a 0E2 ++".5

oL ) .t (40)

Thus, for the same -, as t i increases, for tne same time after the
start of energy deposition, the shock radius is decreased. A
similar argument holds for the shock velocity. To see the effect of
., equation (40) can be written as

8+2

R= (t/t) (41)

where 2 1

R=R/ (-. E i)(42)

0 0

10



Equation (41) is plotted in Fig 1 for a = 2 and several 9 (;0). The
nondimensional radius R decreases with incrasing S,and because of
the change in the value of n and the expected change in Jo, the

04
actual shock radius is expected to decrease with increasing 9 also.

While we have focused our attention on the zero order solution,
it must be mentioned that techniques for higher order solutions
also are available. However, these are somewhat involved; but
they certainly should be used in the future when a more accurate
description of the problem is warranted.

11



COMP-ARISON OF SOME EXPERIMENT-L RESULTS
WITH TIE VARLABLE ENERGY BLAST WAVE EQUATION

As was mentioned in Lhe Introduction, shock ignition of mono-
propellant droplets can result in a blast wave emanating from the
wake of the drop. Figure 2, reproduced from the work of Lu and
Slagg (Ref 12), shows clearly a distorted spherical shock wave
surrounding a 2 mm ethyl nitrate drop ignited by a Mach 3.3 shock
wave in oxygen. It is reasoned that, in such a phenomenon, the
reaction requires a finite time for the energy release, and therefore
comparison of the experimental results should be made with the
variable energy blast wave solution.

For ccmplete combustion in oxygen, ethyl nitrate liberates 345
Kcal/mole, which amount to approximately 7 x I08 ergs for a 2 mm
drop. For spherical symmetry, equation (40) can be written as

2 t( 43)

Using the values of:

E = 7x 10 ergs

Po = 5.6 x 10-3 g/cm 3 (oxygen at Mach 3.3)

y = 1.4

J= .596 (assumed not to vary with 9)

12



3

we obtain

R = 1.71(t/10) 2 / 5  for - (44)

= 1.45(tlti) i5(tliO)2 / 5  for e - 1 (45)

= i.29(tlti)2l5(t/l0)2/5 for 3 = 2 (46)

ltl.3/5 t/IOZ5
= 1. 18(t/t.)/(t/10) for 3 = 3 (47)

= i. lO(tt)45(t 10)2l5 for =4 (48)

'/5= 1.03(t/t)(t/i0 )  for = 5 (49)

where R is in cm and t, t. in usec.
L

Equations (44), (47), and (49) were selected for comparison
with limited experimental results of Lu and Slagg (Ref 12). In
Fig 3, it can be immediately seen that the experimental data cannot
be expiained by the instantaneous energy input case, Equation 44,
and that the best fit is obtained by the case where 8 = 5 (Equation 49)
when t. is taken to be 10 asec. It should be recalled that this equation
is applicable up to time t = t i . Beyond that time, R is expected to
drop off from what the equation indicates, due to the fact that the
energy deposition ceases beyond that time. While more data and
more accurate calculations of J are needed before final conclusions
can be drawn, the idea of interpreting the consequences of mono-
propellant ignition by variable energy blast wave theory seems to
be reasonable. The behavior of energy release in a chemical
reaction is usually exponential in nature, and a manifestation of this,
judging from observations of the behavior of the blast wave, appears
also to be true for liquid ethyl nitrate.

13
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CONCLUSIONS AND RECOMMENDATIONS

It appears ihat analysis of the experimental data on shock
ignited liquid monopropellant behavior can be profitably made on
the basis of variable energy blast wave. Extensive data, if
compared with more accurate theory than described here, should
lead to estimation of energy release time and hence to the initial
exothermic reaction time.

It is recommended that:

I. The zero order solution for variable energy blast

wave be obtained for various values of , by deter-

mining Jo.

Z. The flow field within the blast wave be evaluated
more accurately than obtainable by the zero order

solution, using first and higher orders for J's and

3. The flow field and shock velocity be assessed at times

after the cessation of energy release.

4. More data on ethyl nitrate and other monopropellants
be obtained and compared with the more comprehensive
theory.

14
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Fig 2 3 mm propvl nitrate drop after the passage of a Mach 3. 31
shockrl x.a%-e in cxygen (t -10 .-- (-)
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