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ABSTRACT 

This report describes an adaptive state estimator that can significantly 
improve the passive range and depth determination of a randomly maneu- 
vering target. The target in this study is a submarine, which, while being 
tracked, performs large-magnitude depth changes at times unknown to the 
tracking submarine. 

Present passive tracking techniques usually utilize a Kaiman filter to 
process the azimuth and/or elevation observations. A Kaiman filter will 
theoretically give the "best" estimates of target range, depth, and velocity 
when the system and measurement errors can be modeled as Gaussian proc- 
esses. Themain difficulty in using a Kaiman filter in passive tracking appli- 
cations is that large bias errors invariably develop as the target makes 
large alterations in velocity or depth. A technique for including a feedback- 
type learning processor in conjunction with the Kaiman filter has been found 
to greatly reduce bias errors produced by the maneuvering target. This 
error elimination is accomplished with a negligible increase in computer 
storage and a small increase in computation time. The method is general in 
nature and can be applied to other types of tracking situations in which a 
target randomly undergoes large-magnitude changes in motion. 
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AN ADAPTIVE ESTIMATOR FOR PASSIVE RANGE AND DEPTH 
DETERMINATION OF A MANEUVERING TARGET 

INTRODUCTION 

The usual mathematical analysis of a tracking situation consists of 
describing the target dynamics by a set of state-variable equations that are 
driven by a zero (or known) mean Gaussian noise process.   Knowledge of the 
state variable x would then enable one to compute the position, velocity, 
course, etc., of the moving target.   Unfortunately, not all state variables are 
directly observable, and those that are usually appear in the argument of an arc- 
tangent function.   The observation process   z(t),   which is corrupted by additive 
Gaussian noise, is then operated upon by a Kaiman filter to provide the best 
(minimum mean square) estimate of the state variable  x(t).   From the estimate 
at time  t^,   denoted £k»   the desired target-motion parameters are computed. 
In addition,   x^ is utilized to form the one-step predicted estimate  xk+1, which 
facilitates linearization of the next observation  z^^. 

This type of analysis works very well until the target in question makes a 
significant alteration of course, speed, or, in this specific case, depth.   When 
this occurs, the depth estimate of the Kaiman filter becomes very inaccurate be- 
cause a large bias error develops from faulty knowledge of the new mean value 
or (unknown) deterministic system input.   To illustrate the magnitude of this 
error, consider the computer-generated curves shown in figure 1.   The heavier 
curve represents the actual (unknown) relative target depth plotted versus time; 
the lighter curve is the depth estimate of the Kaiman filter computed from a 
measurement of elevation angle.   At time k equal 200, the target transits to a 
new mean depth that is unknown to the tracking submarine.   The magnitude of 
resultant steady-state bias error in the estimate is readily apparent, and it is 
precisely this error that has been largely eliminated.   This is demonstrated by 
figure 2, which shows the response of the adaptive state estimator operating 
under identical conditions. 

To model the large variations in depth to which a modern submarine can 
decend, certain discrete depths (states)  dj, d2, ..., dn are chosen.   These  n 
states describe in discrete terms the continuum of an infinite number of possible 
states.   It was found that, due to the pull-in feature of the adaptive filter,   n 
need only be approximately four for a conventionally powered submarine to 
provide accurate depth estimation at any target depth. 
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To statistically model the maneuvering target,  it will be assumed that 
the n  states can be described by a semi-Markovian process.    A semi- 
Markovian process is a probabilistic system that makes its state transitions 
according to the probability matrix of a Markovian process.I»2   However, the 
time spent in state  i before the next transition to state  k is a random variable 
governed by density function  hjj^T).   By incorporating the semi-Markovian con- 
cept into a Bayesian estimation scheme, an adaptive state estimator was de- 
veloped that can handle the maneuvering target problem. 

Computer simulations have been accomplished with elevation-angle obser- 
vations only.   It is recognized that this is an inadequate approach to the complete 
tracking-system problem, but it does clearly illustrate the adaptive technique 
described in this study.   To show development of the adaptive filter, a brief re- 
view of Kaiman filtering theory is presented.   Development of the processor 
equations is then followed by a description of the system simulation and the 
results obtained.   An introduction to the theory of semi-Markovian processes 
is presented in the appendix. 

KALMAN FILTERING THEORY 

The basic technique concerns the optimal estimation of a state vector   x(t) 
from a noisy set of observation vectors   z(t)  that is related to  x(t)  in some 
functional manner.   For example, the state vector  x  might represent the posi- 
tion and velocity of a satellite and the observation vector   z  the slant range from 
a ground radar site. 

In 1960, Kaiman and then Bucy presented a new approach to the state esti- 
mation problem.^»^  Their approach consisted of modeling all random processes 
by state equations and then working with covariance matrices rather than corre- 
lation functions.   The reason for adopting this approach was to ease the problem 
of implementation for online operation of a digital computer.   The Kaiman-Bucy 
filter is developed from a pair of differential equations instead of the much more 
difficult Weiner-Hopf integral equation of the past; it also provides a solution to 
a much broader class of filtering and estimation problems than could previously 
be solved. 

Since 1961 there have been many alternative derivations of the basic Kaiman 
filter.   The Bayesian approach developed by Ho and Lee5 is, perhaps, the easi- 
est to understand.   However, because of the length of the derivation, only the re- 
sults will be presented.   The set of linear, discrete, time-varying state equations 
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representing the stochastic process (in this application, target motion) is given 
by system model. 

*k+l = *(k+1» k)S5k + r(k+1» k>ffk + ^k+1* k)ak a) 

and observation model 

%+1 = H(k+l)5k+1+vk+1, 

where w^ and vk+1  represent white Gaussian noise and uk is a deterministic 
input that, when summed with Wfc,   yields a quantity that has a nonzero mean 
Gaussian distribution,   m (his report random processes wjc and yjj+j will be 
considered uncorrelated because it has been shown by many authors that augment- 
ing the state vector x(t) by the correlated noise process yields a new (larger 
dimensioned) set of system and observation equations that can be written with un- 
correlated inputs.     Notice that the observation process is a linear one, and, in 
addition, the following a priori probabilistic knowledge is known about the inputs 
w and v: 

■k *]>B(kwkj 
E[*k £]- 0. (2) 

To obtain the optimal estimate £k+1  for state vector xk+1   (given by equa- 
tion (1)), the criterion for optimization will be minimization of mean-square 
error.   This results in the conditional mean6 

ml»,  [E^ - «/ ^ - ^)] = E^l zj = ^ O) 

The conditional mean $k = E[^k|^k] is defined as the expected value of 
state vector   x   given the data sequence   Zk   defined by   z±.  z2 , ..., z^. 
Practically speaking, the choice of minimization of mean-square error is not 
nearly as restrictive as it sounds.   It is shown by Meditch and others that for 
any symmetric, convex-upward cost function the best estimator is always the 
conditional mean. 
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With this background in mind, when the system and environment are known 
exactly the design equations for the optimal estimator can be expressed as 

Kn - *K + *\ + Vi <Vi -»% - H*\> <4> 

with the auxiliary equation defined by 

Kaiman gain matrix K       = M      H   (H1VL     HT + R)~ 

M.   . =*P.4>T + rQTT 

k+1 k 

Error covariance matrix P       = (I - K     H)]VL     , (5) 

where 

H = H(k+1), 

* = *(k+l,k), 

R = R(k+1), 

Q = Q(k), 

r = r(k+i,k). 

An examination of equation (4) shows that the state estimator x^+i can be 
recursively computed by updating the previous state estimate 3^ with a simple 
summing and multiplying operation.   In order to compute   x^+j» M^+i   is first 
calculated from the previous value of error covariance matrix  Pj^;  K^+^ is then 
computed, used in solving equation (4), and utilized again in updating P^+i for 
the beginning of the next cycle. 

Figure 3 illustrates the entire Kaiman filter.   Note that the Kaiman gain 
matrix  K^+j   is time varying and eventually reaches steady state only for 
linear time-invariant systems. 
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DERIVATION OF ADAPTIVE ESTIMATOR 

Consider a target maneuvering in depth.   It will have a continuous range 
in which to choose its next depth; however, because a submarine is approxi- 
mately 50 ft from keel to sail top and since the adaptive filter has a strong "pull 
in" power, only a small number n need actually be chosen. Next, the n possible 
depth increments are defined as states  dj, d2, ..., dn,   and the time spent in 
state  dj before the next transition to state  dj  is assumed to be a random vari- 
able   (TJJ) that is governed by a time density function of the form  \UT) = Ce~^T 

In addition, the probability p»^j  is defined as the probability that the next tran- 
sition is to state  j  given that the last transition was to state  i.   A good choice 
would be equally probable   (1/n),   or pg could depend upon the tactical situation 
in which the target and tracking submarine were involved. 

Inasmuch as the techniques involved are general, the states of the target 
are assumed to be  sj, S2» ...» sn,   where — depending on the type of analysis 
desired — sj  could represent an azimuth increment, depth increment, or depth 
and relative-target-velocity pair.   To derive the adaptive estimator, the discrete 
time form of the condition mean is 

^h^K^^^' (6) 

\ 

where   Z^ = £}• z2, ..., z^  represents the data sequence.   Defining p(sjc = 
si|?.k)  as the probability that the system (target) is in state  s^  at time  t^ given 
the data sequence   Z^,   the second term in equation (6) can be expressed 

n 

P^|^k)=2p^|VSk = Si)p<Sk = Si|V- (7) 

i=l 

Combining equations (6) and (7) yields 

n 



and then interchanging the order of summation gives 
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4=24<si)p(sk = si|V 
i=l 

where 

4<Si> 
*k 

VrV 

(8a) 

(8b) 

Equation (8b) represents a conventional Kaiman filter whose internal param- 
eters are conditioned on the target being in state  sj.   The form of the adaptive 
filter given by equation (8a) is a bank of n  Kaiman filters, each multiplied by a 
time-varying weighting function of yet undetermined form.   However, when cer- 
tain practical assumptions are made, the form of the adaptive filter is greatly 
simplified. 

The basic form was first developed by Magill7 to solve the problem of the 
unknown, nonvarying stochastic system.   It next appeared in the solution of the 
Markovian switching-environment problem as formulated by Ackerson and Fu,8 

and later in the random-switching stochastic system problem of Moose and 
Wang.2   Upon cursory examination, equation (8a) would appear to be essentially 
the same as previously reported (by Magill and by Fu); however, there is a major 
difference, and it lies in the computation of the time-varying weighting functions 
p(sk=si|Zk). * 

To recursively compute the a posteriori probabilities  P(sj{+j = sj |Zk+i), 
the computational sequence is as follows:   first the previously stored value 
p(sk - 8a\ Zk)  is updated by a semi-Markovian prediction process to  p(sk+j * 
Si|Zfc);   then a new measurement is taken, and p(sjc+1 = Si|Z_k+1) is computed, 
used in the adaptive filter, and stored to begin the next cycle. 

The preceding qualitative procedure can be expressed in mathematical 
terms by a set of equations in which data sequence   Z^+j £ (Z^, z^+j)  is utilized. 
By Bay es rule, 

p<Vi = silW = 
P^ilVi°si-gk»P'Vi = si I ?k> 

'"     ■■■'■» (9) 

i ■■■»■ i . i 
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It has been pointed out that the denominator is common for all weighting terms 
and can be replaced by a constant.   Therefore only the numerator is of interest. 
It is possible to show that P(?k+ll sk+l = si» ?fe) is approximately normally dis- 
tributed and can be represented by the known Gaussian density function established 
from the Kaiman filtering algorithms conditioned on  sj — that is,   N JH^sj)^ (sj), 
[SMk+l(si)HT+E]}»   which is just a number when evaluated.    Note that 
the term p(sk+i = sj JZ^) in expression (9) is the predicted value that will be 
generated by the semi-Markovian process.   Expanding p(sjc+j = 8* jZ^) yields 

p(s 
k+1 

= si|V=£p<£ 
k+i 

= s. s. = s , Z. ) p(s. = s 
a -k        k      a V (10) 

a=l 

The first term of equation (10) is conditioned on both s^ = sa and data se- 
quence   Zfc.   It has been established that   Z^  and p(sjc = sa) are strongly de- 
pendent; in fact,   Zk  actually aids in determining p(sjc = sa), but, inasmuch as 
this is already given,   P(Sk+i = si|sk = sa» ?k^  can be expressed as  p(Sk+i = 
si|sk ~ sa)«   T^e second term p(sk = s^Z^)  is known from the previous re- 
cursive calculation.   Combining equations (9) and (10) yields 

p(s 
k+1 MV (CONST) P(Vl| 'k+1 

=w 
or=l 

p(s 
k+1 ■ s. Is i    k = 8   ) or 

•p(Sk = S«|% (11) 

The only term undefined in equation (11) is  P(Sk+i = Sjlsk = sa); the implication 
of this conditional probability can be expressed as PR [system is in state (i) at 
time tfc+i I system is in state (or) at time tk], but this is exactly the same defi- 
nition given in the appendix as the "random starting" probability 6a^(t^+i - t^). 
Therefore equation (10) can be expressed in its final form as 

e<Vi = silW=(CONST) p(z 
=k+llSk+l 

= s.,Z,) 

or=l 

P(8k=8a|V 

•« A+l " V (12) 

Notice that only  n  terms need be stored from sample to sample. 

10 
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For uniform sampling, the case of primary concern,  ^(tfc+i - t^) = 
eai [(k+l)T - kT] = 6»ai(T), which depends only upon the sample spacing T.   A 
good engineering approximation is to let 8^ = 0.95 and fly = 0.05/n-l for i 4 j. 

One other item needed in the computation of Pfs^ = s^Z^) is the 
initial probability of being in state s^ at time zero.   It was found that the adap- 
tive filter was relatively insensitive to the choice of initial probabilities.   Inas- 
much as the adaptive filter rapidly learns the true system configuration, as data 
are observed, one might choose equally probable a priori estimates with little 
degradation in performance. 

To simplify the optimal adaptive estimator given as equation (8a), assume 
that the  R(s^) and Q(sj) covariance matrices are identical.   This assumption 
is not overly restrictive inasmuch as the mean  (u^),   which is of primary con- 
cern, can be any value.   With this assumption, the Kaiman gain matrices be- 
come identical for all n;  and it then follows from equations (1) and (8a) that the 
adaptive estimator can be expressed in its final form as the simplified adaptive 
estimator 

where n (13) 

i=l 

and     P(Sk+i = S|| Z^+j)   is given by equation (12) and R^+i - Kaiman gain 
matrix equation (5). 

Equation (13) has the form of a single Kaiman filter with an external learn- 
ing feature %,   which is the estimated (unknown) deterministic target depth com- 
mand.   Figure 4 shows the form of the adaptive filter to estimate the range and 
depth of a maneuvering target.   It is this form of the adaptive filter that will be 
used in the computer simulations that follow. 

11 
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Figure 4.   Block Diagram of Adaptive Filter 

SIMULATION AND RESULTS 

To approximate target motion in the xy plane,   a set of two second-order 
differential equations is written.   The system equations are next converted to a 
set of four state equations, sampled at uniform discrete intervals, and then 
transformed to the familiar matrix difference equation form 

x,   , =*x,  + 
-k+1      ~k %k

+sk>. 

The vector  u^ contains the unknown deterministic (random to the filter) sequence 
of depth commands, and, in addition, an input is generated to make the relative 
target range slowly increase with time.   The observation process is of the form 

12 



TR 4375 

B*     = tan    I— I + v ■0 zk+i
=tan iTrVi- 

where the magnitude of elevation-angle error  v^+j   is chosen to represent meas- 
ured data of a present-day Fleet sonar system.   The nonlinear observation pro- 
cess is next linearized by the series expansion of 

tan •ir*3<k+i>i 

around the predicted value of the previous estimate  x^  as shown in figure 5.   By 
so doing, the observation process is converted to a linear time-varying measure- 
ment vector containing state variables  xj  and x3  representing, respectively,   x 
and y. 

In figure 5, the data-generation process is shown to the left of the broken 
line, and to the right the adaptive filter is within the dashed line with the linear- 
ization process directly below. 

In designing the adaptive filter, four depths   dj, d2, d3, and d4  are 
chosen.   To model the inaccurate relative target velocity initially estimated 
from external sources, a pair of relative opening velocities  vrl, vr2   is chosen. 
This leads to a selection of n = 8  states where each state  sj  is the pair (dj, 
vri).   The increase in computation time over that of a conventional Kaiman filter 
was approximately 37 percent, which was determined by noting that the compu- 
tation time to perform 400 complete cycles on the UNI VAC 1108 was increased 
from 8 to 11 seconds upon changing from the Kaiman to the adaptive filter. 

Numerous computer runs were made to compare the performance of range 
and depth estimation of the conventional (Kaiman) filter with that of the adaptive 
filter.   Inasmuch as elevation angle was the only parameter measured, a good 
estimate of initial range was assumed.   Figures 6 and 7 each show the unknown 
true target depth (heavier curve) and the estimated depth (lighter curve) plotted 
versus time for conventional and adaptive filters, respectively.   An initial 
depth error was assumed at k = 0,   and at unknown times  k = 74 and k = 280 
the target underwent major depth changes.   A comparison of figures 6 and 7 
shows that the large bias error is eliminated by the adaptive filter. 

The curves shown in figures 8 and 9 illustrate target range versus time 
for the conventional and adaptive filters, respectively.   It is seen that the mean- 

13 
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square error of (r - r)2  steadily increases with increasing time with the con- 
ventional filter but remains fairly constant with the adaptive filter.   This set of 
curves illustrates the effect of a faulty knowledge of relative target velocity of 
the same degree of accuracy as that of present Fleet sonar systems. 

CONCLUSIONS 

It now appears feasible to statistically model a maneuvering target as a 
semi-Markovian process and then incorporate the statistics into the design of 
an adaptive state estimator that consists of a Kaiman filter with a learning 
algorithm connected in a feedback manner.   The performance of the adaptive 
estimator was compared with that of a conventional Kaiman filter in estimating 
the range and depth of a maneuvering target by using only measurements of ele- 
vation angle. The simulations show that once a target makes a significant alter- 
ation of depth or speed the Kaiman filter develops a significant bias error that 
the adaptive estimator largely eliminates.   Bias in the Kaiman filter has been 
shown to arise from imperfect knowledge of the deterministic control vector u^, 
which acts as a mean vector when summed with the Gaussian white-noise system 
input wk. 

The superior performance of the adaptive filter was gained at the expense 
of increased computation time — approximately 35 percent greater than that of 
the Kaiman filter.   This disadvantage is minor if a good estimate is desired 
rather than a bad one.   Although range and depth were the target parameters of 
interest, the processor equations were developed in such a manner that they 
would apply to other tracking situations as well. 
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Appendix 

SEMI-MARKOVIAN PROCESSES 

To fully understand the adaptive state estimator, one must have a basic 
understanding of semi-Markovian statistics and the manner in which they apply 
to large-scale dynamic systems containing random switching parameters.   The 
distinguishing feature of a semi-Markovian process is that the time of transition 
between states is a random variable, and the process is Markovian only at the ac- 
tual time of transition. This type of process is very general in nature and contains 
as special cases the discrete and continuous-time Markovian processes. 

Much of the summary concerning the semi-Markovian process presented 
in this appendix was taken from a very fine paper by R. A. Howard that ap- 
peared in the Institute of Electrical and Electronics Engineers Transactions on 
Military Electronics (reference 1 of the basic text).   It is precisely because 
semi-Markovian statistics are so little known, but potentially such a powerful 
tool, that this appendix is written. 

DEFINITION OF TERMS 

A semi-Markovian process is a probabilistic system that makes its state 
(parameter vector or system configuration) transitions according to the transi- 
tion probability matrix P of a Markovian process. However, the time spent in 
state  i before the next transition to state j  is a random variable, and it is 
this property that distinguishes a semi-Markovian process from a Markovian. 
The objective is to calculate 0ij(t-to) £ PR [that a system is in state j at time t, 
given that the system entered state  i at time zero]. (For the very important 
practical case of exponential density functions I^WT), the conditional probabili- 
ties 9u(£) can be simply computed and then directly incorporated into the adap- 
tive filter.) 

In order to do so, begin by establishing the following set of definitions. 
Let pij be the conditional probability that the next transition is to state j, 
given that the last transition was to state  1.   Define T^  as a random variable, 
the time spent in state  i,   given that the next transition is to j;  then let hjj(-r) 
be the probability density function governing T^.   Therefore, to completely 
specify the semi-Markovian process for an n state switching system, n^  elements 
pjj  and n2  elements  hy(T) are needed and must satisfy the following conditions: 
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J-l 
p« = 1 

i hij(T)dT = l (A-l) 

With this a priori probabilistic knowledge concerning the switching system, 
suppose that the process enters state  i  and chooses as its successor state  j, 
but that an observer does not know the successor chosen.   The best one can do to 
make an estimate of the time TI  (time spent in state  i) is to calculate the 
weighted average of the holding-time density functions  hy^r).   Defining W^T) as 
the waiting-time density function governing rji this can be expressed 

.Py hyt-r). (A-2) 

DERIVATION OF CONDITIONAL STATE PROBABILITIES 

To proceed with determination of the conditional state probabilities for a 
semi-Markovian process, define 0ij(t) as the conditional probability that the 
system is in state j  at time  t,   given that the system entered state  i at time 
zero.   There are two mutually exclusive ways for  0y(t) to occur. 

Consider the first case, in which i = j  and the system has remained in 
state  i for TJ > t.   This can be expressed 

PR[T,>t] = (jwiMdTk 

Case 1=11-  I W.(T) dT I *.. , (A-3) 
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ENTERS 
STATE i 
AT TIME 
ZERO 

*L,(t~r) 

Figure A-l.   Diagram of Possible State Transitions for Case n 

where  6u,   the Kronecker delta function, ensures that the preceding term only 
exists for i = J. 

The second manner, case II, in which 0y(t) can occur is for the system 
to leave  i at time  T,   go to some Intermediate state  k,   possibly itself, then 
eventually proceed from state k to final state j  in the remaining time   (t - T). 
As figure A-l shows, these two happenings are independent of each other, and 
therefore the probabilities multiply.   Summing over all intermediate states  k 
and integrating over all possible time T  spent in state  i yields, for case n, 

Case 

n i 

n^Plk/hik(T)ökj(t-T)dT- 
k=l o 

(A-4) 

When equations (A-3) and (A-4) are combined, the final expression for the con- 
ditional state probabilities is given by 

1 -   f Wt(r) dr) |y +]£pik    f hik(T) yt-x) dr.        (A-5) 

>   o      /    k=i    i 

Equation (A-5) is an integral equation in  fyj.   However, it is easily solved be- 
cause the last term represents a convolution in the time domain that becomes a 
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product in the complex frequency domain.   Hence, upon taking the Laplace 
transform, 

n 

eij(s) -I(i - wtw) *y ♦>Vifc«»> ekj(s). (A-6) 
k=l 

The algebraic expression given by equation (A-6) is still a very cumber- 
some form to manipulate.   It is possible, however, to express the results in a 
matrix manner by defining a very special form of matrix multiplication with the 
symbol denoted by » .   Upon expanding equation (A-6) term by term and re- 
grouping like elements, the following expression can be developed: 

1   0 ... 0" 

0  1 ... 0 

• • • 

Lo     ... lj   L 

Pllhll-"Plnhln 

P21h2l"-P2nh2n 

Pnlhnl-"pnnhnn 

en $u ... eln 

721 • • •    V, 2n 

L* nl • • •        Ö nn- 

1 
s 

(1-Wj) 0 

d-w2) 

(1-w ) 
n J 

(A-7) 

where all matrices are of dimension n x n.   Now pause and examine the second 
term on the left side of equation A-7.   Each term  cy   is equal to  p^h..(s); 
therefore, define the special matrix multiplication C|A» B,   whereby each 
element cu £ aijDij«   With this convention,   I being the identity matrix, equa- 
tion A-7 can be expressed 

[I-P. H(s)] 0(s)=-i-[l-W(s)] , 

which yields the basic transform pair 
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e(8)=^-[l-P.H(8)]"1[l-W(8)] 
s 

e(t) - L"1 [6(B)] . (A-8) 

The matrix 6(t) has n    elements O^At),   which are exactly the condition- 
al state probabilities that were to be determined.   They result when the inverse 
Laplace transform of each element of the matrix expression  9(s)  is taken.   In 
order to illustrate equation (A-8 ) and to derive some meaningful results, an ex- 
ample is presented that includes all of the previous design techniques. 

EXAMPLE OF A CONTINUOUS TIME DENSITY FUNCTION 

An important example, the results of which will later be incorporated into 
the simulation of the adaptive filter, is the following:  Consider  n possible 
states (system configurations), each having identical exponential density func- 
tions  hij(t) = ae"a* and an arbitrary transition matrix P  containing n2  ele- 
ments py.   It is desired to determine the  n"  conditional state probabilities 
0ij(t).   From equation (A-2), for w^(s)t 

V "* -at        -at 
wi(t) V ^piiM    =ae 

j=l 

00 

w.(s)»   f (ae'*Vst dt =-i- . (A-9) II s + a 
0 

With this information the terms needed in the basic design equation (A-8) can be 
computed: 

TP-WHS-TI)1 (A"10) 

[I-POH(S)]=I-(747)P. (A-ll) 
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Upon combining equations (A-8), (A-10), and (A-ll), the transform pair of the 
conditional state probability matrices can be expressed as 

0(s)= [sl+afl-P)]"1 

e(t) = e-<I-p)at. <A"12> 

Equation (A-12) shows that the case of identically distributed, exponential den- 
sity functions leads to the important result that 0(t) = exp(At),   where the 
matrix A is given by the known quantity  -a (I - P). 
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