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ABSTRACT

This report describes an adaptive state estimator that can significantly
improve the passive range and depth determination of a randomly maneu-
vering target. The target in this study is a submarine, which, while being
tracked, performs large-magnitude depth changes at times unknown to the
tracking submarine.

Present passive tracking techniques usually utilize a Kalman filter to
process the azimuth and/or elevation observations. A Kalman filter will
theoretically give the ""best'" estimates of target range, depth, and velocity
when the system and measurement errors can be modeled as Gaussian proc-
esses, The main difficulty inusing a Kalman filterin passive tracking appli-
cations is that large bias errors invariably develop as the target makes
large alterations in velocity or depth. A technique for including a feedback-
type learning processor in conjunction with the Kalman filter has been found
to greatly reduce bias errors produced by the maneuvering target. This
error elimination is accomplished with a negligible increase in computer
storage and a small increasein computation time, The method is general in
nature and can be applied to other types of tracking situations in which a
target randomly undergoes large-magnitude changes in motion,
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AN ADAPTIVE ESTIMATOR FOR PASSIVE RANGE AND DEPTH
DETERMINATION OF A MANEUVERING TARGET

INTRODUCTION

The usual mathematical analysis of a tracking situation consists of
describing the target dynamics by a set of state-variable equations that are
driven by a zero (or known) mean Gaussian noise process. Knowledge of the
state variable x would then enable one to compute the position, velocity,
course, etc., of the moving target. Unfortunately, not all state variables are
directly observable, and those that are usually appear in the argument of an arc-
tangent function. The observation process z(t), which is corrupted by additive
Gaussian noise, is then operated upon by a Kalman filter to provide the best
(minimum mean square) estimate of the state variable x(t). From the estimate
at time ty, denobed _k,\ the desired target-motion parameters are compubed
In addition, ._k is utilized to form the one-sbep predlcbed estimate xk +1» Which
facilitates linearization of the next observation Zp 4.

This type of analysis works very well until the target in question makes a
significant alteration of course, speed, or, in this specific case, depth, When
this occurs, the depth estimate of the Kalman filter becomes very inaccurate be-
cause a large bias error develops from faulty knowledge of the new mean value
or (unknown) deterministic system input. To illustrate the magnitude of this
error, consider the computer-generated curves shown in figure 1. The heavier
curve represents the actual (unknown) relative target depth plotted versus time;
the lighter curve is the depth estimate of the Kalman filter computed from a
measurement of elevation angle. At time k equal 200, the target transits to a
new mean depth that is unknown to the tracking submarine. The magnitude of
resultant steady-state bias error in the estimate is readily apparent, and it is
precisely this error that has been largely eliminated, This is demonstrated by
figure 2, which shows the response of the adaptive state estimator operating
under identical conditions,

To model the large variations in depth to which a modern submarine can
decend, certain discrete depths (states) d;, dg, ..., dn are chosen. These n
states describe in discrete terms the continmuum of an infinite number of possible
states. It was found that, due to the pull-in feature of the adaptive filter, n
need only be approximately four for a conventionally powered submarine to
provide accurate depth estimation at any target depth.
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To statistically model the maneuvering target, it will be assumed that
the n states can be described by a semi-Markovian process. A semi-
Markovian process is a probabilistic system that makes its state transitions
according to the probability matrix of a Markovian process.1;2 However, the
time spent in state i before the next transition to state k is a random variable
governed by density function hjx(r). By incorporating the semi-Markovian con-
cept into a Bayesian estimation scheme, an adaptive state estimator was de-
veloped that can handle the maneuvering target problem,

Computer simulations have been accomplished with elevation-angle obser-
vations only. It is recognized that this is an inadequate approach to the complete
tracking-system problem, but it does clearly illustrate the adaptive technique
described in this study. To show development of the adaptive filter, a brief re-
view of Kalman filtering theory is presented. Development of the processor
equations is then followed by a description of the system simulation and the
results obtained. An introduction to the theory of semi-Markovian processes
is presented in the appendix,

KALMAN FILTERING THEORY

The basic technique concerns the optimal estimation of a state vector x(t)
from a noisy set of observation vectors z(t) that is related to x(t) in some
functional manner, For example, the state vector x might represent the posi-
tion and velocity of a satellite and the observation vector z the slant range from
a ground radar site,

In 1960, Kalman and then Bucy presented a new approach to the state esti-
mation problem.3’ 4 Their approach consisted of modeling all random processes
by state equations and then working with covariance matrices rather than corre-
lation functions. The reason for adopting this approach was to ease the problem
of implementation for online operation of a digital computer, The Kalman-Bucy
filter is developed from a pair of differential equations instead of the much more
difficult Weiner-Hopf integral equation of the past; it also provides a solution to
a much broader class of filtering and estimation problems than could previously
be solved.

Since 1961 there have been many alternative derivations of the basic Kalman
filter. The Bayesian approach developed by Ho and Lee® is, perhaps, the easi-
est to understand, However, because of the length of the derivation, only the re-
sults will be presented. The set of linear, discrete, time-varying state equations
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representing the stochastic process (in this application, target motion) is given
by system model.

Xy yq = SkHL k) + DR+, k)w, + ¥ik+l, K, 1)
and observation model

= Hk+ +
By = HEH) X 0

where wy and vp., represent white Gaussian noise and up is a deterministic
input that, whensummedwith wy, yields a quantity that has a nonzero mean
Gaussian distribution. In this report random processes wk and yj;; will be
considered uncorrelated because it has been shown by many authors that augment-
ing the state vector x(t) by the correlated noise process yields a new (larger
dimensioned) set of system and observation equations that can be written with un-
correlated inputs,~ Notice that the observation process is a linear one, and, in
addition, the following a priori probabilistic knowledge is known about the inputs

w and v:

E[yk !T]= 0. @)

To obtain the optimal estimate gkﬂ for state vector Xxp.; (given by equa-
tion (1)), the criterion for optimization will be minimization of mean-square
error. This results in the conditional mean®

min. ets, -5 s, - 5] =12, 5 ®

The conditional mean gkg E[x k|Zk] is defined as the expected value of
state vector x given the data sequence Zj defined by z;. z9, ..., 2Z-
Practically speaking. the choice of minimization of mean~-square error is not
nearly as restrictive as it sounds. It is shown by Meditch and others that for
any symmetric. convex-upward cost function the best estimator is always the
conditional mean,

%]
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With this background in mind, when the system and environment are known
exactly the design equations for the optimal estimator can be expressed as

gk+1 B cpgk +¢Ek " Kk+1 (Z'k+1 Hq)ﬁk ku ()

with the auxiliary equation defined by

. T T -1
Kal tri =
alman gain matrix Kk+1 Mk+1H (HMk+1H +R)
- T T
Mk+1 = d)Pkcb +TIQr
Error covariance matrix P =( - Kk+1H)Mk a1 6]
where
H = H(k+l),
P = pk+1,k),
R = R(k+l),
Q = Q(k),
I = I'k+l,k),

An examination of equation (4) shows that the state estimator Xy can be
recursively computed by updating the previous state estimate 3(_‘1{ with a simple
summing and multiplying operation, In order to compute Sk +1° Mgy is first
calculated from the previous value of error covariance matrix Py; Kj,q is then
computed, used in solving equation (4), and utilized again in updating Py 4 for
the beginning of the next cycle.

Figure 3 illustrates the entire Kalman filter, Note that the Kalman gain
matrix Ky, is time varying and eventually reaches steady state only for
linear time-invariant systems.
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DERIVATION OF ADAPTIVE ESTIMATOR

Consider a target maneuvering in depth. It will have a continuous range
in which to choose its next depth; however, because a submarine is approxi-
mately 50 ft from keel to sail top and since the adaptive filter has a strong "pull
in'" power, only a smallnumber n need actually be chosen. Next, the n possible
depth increments are defined as states dy, dg, ..., dy, and the time spent in
state d; before the next transition to state d; is assumed to be a random vari-
able (rij) that is governed by a time density function of the form hij(-r) = Ce~Cr .
In addition, the probability pjj is defined as the probability that the next tran-
sition is to state j given that the last transition was to state i. A good choice
would be equally probable (1/n), or Pij could depend upon the tactical situation
in which the target and tracking submarine were involved.

Inasmuch as the techniques involved are general, the states of the target
are assumed to be sj, S, ..., S, Where — depending on the type of analysis
desired — s; could represent an azimuth increment, depth increment, or depth
and relative-target-velocity pair., To derive the adaptive estimator, the discrete
time form of the condition mean is

Elx |2,]=%& =Z:_<kp(:_ck| Z) (6)
e

where Zy = 23, Zo, ..., Z) represents the data sequence. Defining p(sy =
Si IZk) as the probability that the system (target) is in state s; at time t; given
the data sequence Zi, the second term in equation (6) can be expressed

n
P(§k|Zk) =E P(’jk‘zk.sk =s,) p(s, = si|zk). ()

i=1

Combining equations (6) and (7) yields

n
S {Z’—‘k PE |48, =5 P8y =8, Z)s
ék i=1
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and then interchanging the order of summation gives

nge pley = 5, |Z,) (8a)

where

| :_ck i

Equation (8b) represents a conventional Kalman filter whose internal param-
eters are conditioned on the target being in state s;. The form of the adaptive
filter given by equation (8a) is a bank of n Kalman filters, each multiplied by a
time-varying weighting function of yet undetermined form. However, when cer-
tain practical assumptions are made, the form of the adaptive filter is greatly
simplified.

The basic form was first developed by Magill7 to solve the problem of the
unknown, nonvarying stochastic system. It next appeared in the solution of the
Markovian switching-environment problem as formulated by Ackerson and Fu,
and later in the random-switching stochastic system problem of Moose and
Wang.2 Upon cursory examination, equation (8a) would appear to be essentially
the same as previously reported (by Magill and by Fu); however, there is amajor
difference, and it lies in the computation of the tlme-varymg weighting functions

Pk = Sl|zk)

To recursively compute the a posteriori probabilibties P(S+1 = Si |gk+1),
the computational sequence is as follows: first the previously stored value
P(sk = 8,] Zx) is updated by a semi-Markovian prediction process to p(sy+] =
8i|Zk); then a new measurement is taken, and p(sy . = S;|Zk+) is computed,
used in the adaptive filter, and stored to begin the next cycle. '

The preceding qualitative procedure can be expressed in mathematical
terms by a set of equations in which data sequence Zk+1 a (Zk'—k+1) is utilized,
By Bayes rule,
=8

Py 4] Sk1 = Sp L) PBag = 54| &)

@©
p(—k+1lgk)

PGy =8| G’ =
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It has been pointed out that the denominator is common for all weighting terms

and can be replaced by a constant. Therefore only the numerator is of interest.

It is possible to show that p(z.q|Si4+1 = 8i» Zk) is approximately normally dis-
tributed and can be represented by the known Gaussian density function established
from the Kalman filtering algorithms conditioned on s; — that is, N {Hd(sj)% (si),
[HMi+1(s)HT +R]}, whichis just a number when evaluated. Note that

the term p(si+ = 8; |Zk) in expression (9) is the predicted value that will be
generated by the semi-Markovian process. Expanding p(sy.; = s; |Zk) yields

n

p(Sk+1 = Silzk) = E p(Sk+1 = SiISk = Sa’ Zk) p(Sk = Sa |Zk) . (10)

a=]1

The first term of equation (10) is conditioned on both si = s, and data se-
quence Zi. It has been established that Z;, and p(siy = s,) are strongly de-
pendent; in fact, Zi actually aids in determining p(sy = s,), but, inasmuch as
this is aiready given, p(siy4 = 8|Sk = Sq» Z,) can be expressed as p(sg4] =
sj|sk = Sq). The second term p(sk = s, | Zy) is known from the previous re-
cursive calculation. Combining equations (9) and (10) yields

n
= = = 'z - =
P(S, silgkﬂ) (CONST) p(zkﬂlsk+1 852 ) E PS4y sxilsk s,)
=1

*Pls, = 5,|Z)] - 11)

The only term undefined in equation (11) is p(sj 43 = Si|Sk = Sq); the implication
of this conditional probability can be expressed as PR [system is in state (i) at
time tg4 | system is in state (a) at time t; ], but this is exactly the same defi-
nition given in the appendix as the "random starting'' probability OaiMe sy - ti)e
Therefore equation (10) can be expressed in its final form as

n
Py yq = 8| Zyyy) = CONSTI P@E 8y 45 =55 Z) z : P, =8, |4)
a=]

* Uit ~ 5 |- (12)

Notice that only n terms need be stored from sample to sample.

10
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For uniform sampling, the case of primary concern, 6 (t 4 - )=
Oori [(k+1)T - kT] = 0,3 (T), which depends only upon the sample spacing T. A
good engineering approximation is to let 85 =0.95 and 6;;=0.05/n-1 for i #j.

One other item needed in the computation of p(sy.j = 8;|Z,y) is the
initial probability of being in state s; at time zero. It was found that the adap-
tive filter was relatively insensitive to the choice of initial probabilities, Inas-
much as the adaptive filter rapidly learns the true system configuration, as data
are observed, one might choose equally probable a priori estimates with little
degradation in performance.

To simplify the optimal adaptive estimator given as equation (8a), assume
that the R(sj) and Q(sj) covariance matrices are identical. This assumption
is not overly restrictive inasmuch as the mean (uj), which is of primary con-
cern, can be any value., With this assumption, the Kalman gain matrices be-
come identical for all n; and itthenfollows fromequations (1) and (8a) that the
adaptive estimator can be expressed in its final form as the simplified adaptive
estimator

e _ _ _ A -
Bt ~ B T+ Ky [7yy - BB - B ]
where a0 , as)
Y = § :Bk(si)p(skﬂ =51 %)
i=1

and  p(Sk+1 = 8i|Zk+1) 1s given by equation (12) and Kp,; = Kalman gain
matrix equation (5),

Equation (13) has the form of a single Kalman filter with an external learn-
ing feature @k, which is the estimated (unknown) deterministic target depth com-
mand, Figure 4 shows the form of the adaptive filter to estimate the range and
depth of a maneuvering target. It is this form of the adaptive filter that will be
used in the computer simulations that follow,

11
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%
KALMAN qo1
FILTER (RANGE AND DEPTH)
o0
LINEARIZED L l
INPUT FROM ©
MANEUVERING
TARGET ‘ R
LEARN ING Y%
SECTION

Figure 4, Block Diagram of Adaptive Filter

SIMULATION AND RESULTS

To approximate target motion in the xy plane, a set of two second-order
differential equations is written. The system equations are next converted to a
set of four state equations, sampled at uniform discrete intervals, and then
transformed to the familiar matrix difference equation form

X =¢x_+ Tw +u).

The vector uj contains the unknown deterministic (random to the filter) sequence

of depth commands, and, in addition, an input is generated to make the relative
target range slowly increase with time. The observation process is of the form

12
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X
-1/ 3
* = -
Zpe1 o (xl) * Vk+1

where the magnitude of elevation-angle error vi4; is chosen to represent meas-
ured data of a present-day Fleet sonar system. The nonlinear observation pro-
cess is next linearized by the series expansion of

tan'l x3(k+1)
X (k+1)
1
around the predicted value of the previous estimate gk as shown in figure 5. By
so doing, the observation process is converted to a linear time-varying measure-

ment vector containing state variables x; and x5 representing, respectively, x
and y.

In figure 5, the data-generation process is shown to the left of the broken
line, and to the right the adaptive filter is within the dashed line with the linear-

ization process directly below.

In designing the adaptive filter, four depths dj, dg, d3, and dg4 are
chosen. To model the inaccurate relative target velocity initially estimated
from external sources, a pair of relative opening velocities v..q,v.o 1s chosen.
This leads to a selection of n =8 states where each state s{ is the pair (dj,
vri). The increase in computation time over that of a conventional Kalman filter
was approximately 37 percent, which was determined by noting that the compu-
tation time to perform 400 complete cycles on the UNIVAC 1108 was increased
from 8 to 11 seconds upon changing from the Kalman to the adaptive filter,

Numerous computer runs were made to compare the performance of range
and depth estimation of the conventional (Kalman) filter with that of the adaptive
filter. Inasmuch as elevation angle was the only parameter measured, a good
estimate of initial range was assumed. Figures 6 and 7 each show the unknown
true target depth (heavier curve) and the estimated depth (lighter curve) plotted
versus time for conventional and adaptive filters, respectively. An initial
depth error was assumed at k= 0, and at unknown times k=174 and k=280
the target underwent major depth changes. A comparison of figures 6 and 7
shows that the large bias error is eliminated by the adaptive filter.

The curves shown in figures 8 and 9 illustrate target range versus time
for the conventional and adaptive filters, respectively. It is seen that the mean-

13
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square error of (r - T)2 steadily increases with increasing time with the con-
ventional filter but remains fairly constant with the adaptive filter. This set of
curves illustrates the effect of a faulty knowledge of relative target velocity of
the same degree of accuracy as that of present Fleet sonar systems,

CONCLUSIONS

It now appears feasible to statistically model a maneuvering target as a
semi-Markovian process and then incorporate the statistics into the design of
an adaptive state estimator that consists of a Kalman filter with a learning
algorithm connected in a feedback manner, The performance of the adaptive
estimator was compared with that of a conventional Kalman filter in estimating
the range and depth of a maneuvering target by using only measurements of ele-
vation angle. The simulations show that once a target makes a significant alter-
ation of depth or speed the Kalman filter develops a significant bias error that
the adaptive estimator largely eliminates. Bias in the Kalman filter has been
shown to arise from imperfect knowledge of the deterministic control vector ug,
which acts as a mean vector when summed with the Gaussian white-noise system
input wi.

The superior performance of the adaptive filter was gained at the expense
of increased computation time — approximately 35 percent greater than that of
the Kalman filter. This disadvantage is minor if a good estimate is desired
rather than a bad one. Although range and depth were the target parameters of
interest, the processor equations were developed in such a manner that they
would apply to other tracking situations as well.
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Appendix

SEMI-MARKOVIAN PROCESSES

To fully understand the adaptive state estimator, one must have a basic
understanding of semi-Markovian statistics and the manner in which they apply
to large-scale dynamic systems containing random switching parameters. The
distinguishing feature of a semi~Markovian process is that the time of transition
between states is a random variable, and the process is Markovian only at the ac-
tual time of transition, This type of process is very general in nature and contains
as special cases the discrete and continuous-time Markovian processes.

Much of the summary concerning the semi~Markovian process presented
in this appendix was taken from a very fine paper by R. A, Howard that ap-
peared in the Institute of Electrical and Electronics Engineers Transactions on
Military Electronics (reference 1 of the basic text). It is precisely because
semi~Markovian statistics are so little known, but potentially such a powerful
tool, that this appendix is written,

DEFINITION OF TERMS

A semi-Markovian process is a probabilistic system that makes its state
(parameter vector or system configuration) transitions according to the transi-
tion probability matrix P of a Markovian process., However, the time spent in
state { before the next transition to state j is a random variable, and it is
this property that distinguishes a semi-Markovian process from a Markovian,
The objective is to calculate 61j(t-t,) A PR [that a system is in state j at time t,
given that the system entered state i at time zero]. (For the very important
practical case of exponential density functions hij(-r), the conditional probabili-
ties 6;4(T) can be simply computed and then directly incorporated into the adap-
tive ﬂl{er.)

In order to do so, begin by establishing the following set of definitions.,
Let pij be the conditional probability that the next transition is to state j,
given that the last transition was to state i, Define Tj; as a random variable,
the time spent in state i, given that the next transition is to j; then let hyj(r)
be the probability density function governing rjj. Therefore, to completely
specify the semi-Markovian process for an n state switchingsystem, n? elements.
Pij and n2 elements hjj(v) are needed and must satisfy the following conditions:
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pij=1

* il

j h'ij('r) dr=1 (A-1)
0
T.pij 2 00

With this a priori probabilistic knowledge concerning the switching system,
suppose that the process enters state i and chooses as its successor state j,
but that an observer does not know the successor chosen, The best one can do to
make an estimate of the time rj (time spent in state i) is to calculate the
weighted average of the holding-time density functions hij(-r). Defining wy(r) as
the waiting-time density function governing i, this can be expressed

n
w,(T) =Zpij by (). (A-2)
=1

DERIVATION OF CONDITIONAL STATE PROBABILITIES

To proceed with determination of the conditional state probabilities for a
semi-Markovian process, define 6jj(t) as the conditional probability that the
system is in state j at time t, given that the system entered state i at time
zero. There are two mutually exclusive ways for 6jj(t) to occur,

Consider the first case,in which 1 =j and the system has remained in
state i for 7;>t. This can be expressed

o0

PR[r, >t] = J’wi(f) dr)é;,
t

t
Case I=|1 - Iwi('r) dr aij , (A-3)
0
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ENTERS
STATE i
AT TIME
ZERO

Figure A-1, Diagram of Possible State Transitions for Case II

where 8ij» the Kronecker delta function, ensures that the preceding term only
exists for 1 =j.

The second manner, case II, in which oij(t) can occur is for the system
to leave i attime r, go to some intermediate state k, possibly itself, then
eventually proceed from state k to final state j in the remaining time (t - +),
As figure A-1 shows, these two happenings are independent of each other, and
therefore the probabilities multiply. Summing over all intermediate states k
and integrating over all possible time + spent in state i ylelds, for case II,

n t
Case I1 § E pik fhik(-r) okj(t--r) d-, (A-4)
k=1 0

When equations (A-3) and (A-4) are combined, the final expression for the con-
ditional state probabilities is given by

t n t
0,0 = |1 - f w(x) dr) 8, +Zp,k f by (1) 6, (t=7) dr.  (A-5)
0 k=1 0

Equation (A-5) is an integral equation in 6;5, However, it is easily solved be-
cause the last term represents a convolution in the time domain that becomes a
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product in the complex frequency domain, Hence, upon taking the Laplace
transform,

n
1
0,0 =5 (1 - ws) 5, +E Pyychy (8) 0y 6) « (A-6)
k=1

The algebraic expression given by equation (A-6) is still a very cumber-
some form to manipulate. It is possible, however, to express the results in a
matrix manner by defining a very special form of matrix multiplication with the
symbol denoted by o . Upon expanding equation (A-6) term by term and re-
grouping like elements, the following expression can be developed:

-y

F 1 r T 8
10...0 pllhll“‘plnh 6

In 11 912+ O

h, h

\IEROOC 21 *** Panan 631 e fop

Pa

_O so e l-J -P h

nl nl“‘pnnhnnJ eee 8

nl nn-
a -wl) 0

(@-w,)

1]
Y P

[} (A'7)

_O a -wn) |
where all matrices are of dimension n x n, Now pause and examine the second
term on the left side of equation A-7, Each term Cij is equal to pijhi (s);
therefore, define the special matrix multiplication C A A « B, whereby each

element Cyj 4 aijbij° With this convention, I being the identity matrix, equa-
tion A-7 can be expressed

[I- P H(s)] o(s) =%[I - W(s)] ,

which yields the basic transform pair
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0@)==[1-P « HE)] ™" [1- We)]

ot) =L [o@E)] . (A-8)

The matrix ©(t) has n? elements 044(t) which are exactly the condition-
al state probabilities that were to be determ{ned. They result when the inverse
Laplace transform of each element of the matrix expression ©(s) is taken, In
order to illustrate equation (A-8) and to derive some meaningful results, an ex-
ample is presented that includes all of the previous design techniques.,

EXAMPLE OF A CONTINUOUS TIME DENSITY FUNCTION

An important example, the results of which will later be incorporated into
the simulation of the adaptive filter, is the following: Consider n possible
states (system configurations), each having identical exponential density func-
tions h(t) = ae~8t and an arbitrary transition matrix P containing n? ele-
ments pyj. It is desired to determine the n? conditional state probabilities
04j(t). From equation (A-2), for wy(s),

n
-at -at
wi(t) = E pij ae =ae

1
w (e)= I @e e gt = - ia . (A-9)
0

With this information the terms needed in the basic design equation (A-8) can be
computed:

1
L[1-we) = (s55)1 (A-10)
[1-P-nE]=1-(553)P (A-11)
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Upon combining equations (A-8), (A-10), and (A-11), the transform pair of the
conditional state probability matrices can be expressed as

o) = [s1 +a@ - P)]”

o) = o~ Pt (A-12)

Equation (A-12) shows that the case of identically distributed, exponential den-

sity functions leads to the important result that Q(t) = exp(At), where the
matrix A is given by the known quantity -a( - P).
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