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1.  INTRODUCTION 

Suppose we have a connected network G(N,A) consisting of a 

set of nodes N and a set of arcs A. Let the Integers 1 - 1,2 P 

represent the nodes and the two-tuples (l,j) (1 ■ 1,2,... ,P; 

J - 1,2,...,?; and i ^ J)  represent the eves.    Let node 1 corre- 

spond to the source and node n correspond to the sink. The arcs 

are assumed directed so that the order (1,J) Implies an arc directed 

from node i to node j. 

Let M  ^ 0 represent the Initial flow capacity of arc (i,J), 

Y it 0    represent the added flow capacity, and X  i 0 represent 

the actual flow in the arc. Let Q represent the net flow through 

P 
the network from node 1 to node 9. Let B 2 0 be the total 

resource budget available and let a  i 0 be the cost per additional 

unit of capacity added to  (i,J). 

The capacity expansion problem for a flow network was first 

studied by Fulkerson (1959) .  He referred to it as the parametric 

budget problem and stated it as follows: Find nonnegative values 

of X   and Y   which 

maximize    Q, (la) 

subject to    I  (XJJ-X^)  - Q, 

I (X^-X^)  - 0 (1 - 2,3 P-l), (lb) 

I  (Xpj-Xjp)  - - Q, 

Xij   ' Y1J * MiJ ((i'J)  € ^ <1C) 

I IK VU * B- (ld) 



In contrast  to Fulkerson we write the budget constraint  (id)  In 

Inequality form although It Is obvious  that equality will hold at 

optlmallty If    Y        Is not required  to be Integer valued. 

An easy way to solve  (1)   Is  to construct a network having 

two parallel arcs In place of each original;  one with a cost of 

zero and one with a cost of    a     .    The capacity of  the arc having 

zero cost would be    M       while the other would be Infinite.    A minor 

modification of  tne Primal-Dual algorithm of  Ford and Fulkerson  (1957) 

can  then be used  to find the maximal  flow which can be allocated  for 

the available budget.    The resulting algorithm Is,  In fact,  the one 

given by Fulkerson (1959)  In his presentation of the parametric budget 

problem. 

In  this paper we would like to first consider the special  form 

of  (1) when    M      • 0.    We will state the associated optimal solution 

and prove  It constructively using the decomposition principle for 

linear programs  (Dantzig  (1963)).    We will  then present an algorithm 

for bolving the general form of  (1) which makes use of the topological 

dual of the network. 



2. OPTIMAL SOLUTIONS WHEN M  - 0 

The form of (1c) reduces to 

when M  - 0 and. In fact, la equality for all arcs since the 

budget will be used up In obtaining the maximal possible flow. We 

can 'herefore, drop (1c) from further consideration If we rewrite 

(id) as 

I lk  .^j - I. (2) 

The optimal solution to     (la.b)  and (2)  Is given by the 

following theorem. 

Thwiem:   The. maxAmcU. ilou} uiUZ be itnt oveA thcut chain   c 
IB 

dtAected ^m touxce. to 6lnk vohich. -c* the. AhoKteAt loute. uthtn 

the (Vic tejigth oi    (i,j)    l* &eJt equal to   a.  .   The vatat o^ 

the maxAjml liow and the liatt capacity in each OAC o^ that 

chain l& given by 

max Q -   " Y<4' 
y y    a   ^ 

m 

The ilou) capa.ci£ie& in aZZ otheA aAc&  a/ie rcAo. 

Proof: Let us begin by adding an arc (P,l) to the network 

and then write (lb) as EX - 0 where E Is the node-arc Incidence 

matrix of our augmented network, X Is the augmented column vector 

of arc flows (with X-.  In the last position), and 0 la null 



column vector. We write (2) as aX £ B where a ■ (a. .) is a row 

vector with a . - 0 in the last position. Our problem is then to 

find    X i 0    whicti 

maximize    X     , (3a) 

subject  to    EX - 0, (3b) 

and    aX £ B. (3c) 

In decomposed form we will combine  (3a)  and  (3c)  into the 

m    ter program.    The flow conservation equations  (3b) and    X i 0 

will be the constraint set of  the subprogram.    The master program 

is  therefore  to  fin'    X.  i. 0,    x    2 0    which 
1      s 

maximize V bX^X , (4a) 
1       1 

subject to T aX(iV + x - B. (4b) 
'r is 

If the network has m arcs then b is an 1 * m + 1 vector con- 

sisting of zeros in the first m positions and a one in the last 

position.  The subprogram is to find X 2 0 which 

maximizes  [b - ira]X, (5a) 

subject to EX - 0. 

We are using n to represent the simplex multiplier associated with 

(4b).  Each X    usid in the master program is a homogeneous solu- 

to the subprogram and therefore we have no ^ ^ " 1 constraint in 
i 

the master. 



The iterative solution procedure begins by finding the basic 

feasible solution x = B to the first restricted master which has 
s 

only one variable; namely,    x  .    The multiplier    n    is when determined 

and used to provide the first objective function for the subprogram. 

If a solution to the subprogram can be found such that 

[b - ita]X > 0 (6) 

then we use that solution, call it X  ,  to generate a new coeffi- 

cient vector for the restricted master. The second restricted master 

program would then be: Find X, 2 0,  x 2 0 which 
1      s 

maximize bX  A , 

subject to aX 'x. + x - B. J Is 

A new value of n would be e'etermired and used to generate a new 

objective function for the subprogram. A new solution to the subproblem, 

(2) 
X  , would be determined and tested using (6). If it fails the 

test then the solution process terminates.  If it passes the test 

then it Is used to create a new restricted master program involving 

variables X,, X., and x . 
1   Z       s 

The process terminates after the Ic ' iteration where X 

is the first solution from the subprogram to fail the test. The 

optimal solution X* can be obtained f -om (7). 

X* - I X X(i)- (7) 
1-1 



The basic feasible solution to the first restricted master 

was observed to be x «• B. Because there Is a zero coefficient 
s 

Tor x  In (4a) we get TT * 0 as the value of the simplex multi- 

plier for the restricted master and the objective function for the 

subproblera Is therefore bX ■ Xp1. A homogeneous solution to the 

first subprogram Is easily provided by selecting any cycle directed 

from the source to the pink and back to the source which Includes 

arc (P,l)  and allows as much flow as possible to pass over it. 

Since there are no flow capacity restrictions in the subproblem we 

could have Xp1 -♦■ «>.  If the solution to (3a, b, c) is unbounded 

this condition will be provided by X. -»• « for some solution in 

(4a, b) so we need only send 1 unit over the cycle la the sub- 

problem to indicate the homogeneous solution route. Thus, we return 

to the master with the vector X    consisting of plus ones corre- 

sponding to arcs on the cycle selected and zeros elsewhere. Note 

that [b - TTa]X = 1 > 0 so (6) Is satisfied. 

which 

The next restricted master program is:  Find X1 2 0, x s u 

maximizes X1 , 

subject to aX^ ^X. + x - B. 

The optimal basic feasible solution to this problem is obviously 

x « 0 and s 

i §  > 1   ll a« 



where    C.     denotes the cycle just chosen in the subprograr.    The 

associated value of    TT    IS given by  (8). 

II •ij 

The objective of the subprogr?m is then to maximize 

(8) 

aX 
lPl II 

(9) 

•ij 

In other woras, the "cost" for sending flow over an arc in the sub- 

program is 

a, 11 
II 

(10) 
lij 

for all original arcs of the network and -1 for arc (P,l). 

The maximum value of (9) for a flow of one unit would be 

obtained by selecting that cycle which had the cheapest "cost" from 

source to sink and which returns to the source via arc (P,l). 

Suppose we denote this cycle by C?. The associated solution will 

be X(2) if (6) is satisfied. And (6) will be satisfied if (9) is 

positive. The value of (9) for this solution is 

1 - 

II 
C, •ij 

•« 



and therefore (9) will be positive only if 

ss ^ U v (11) 

Thus we Introduce a new coefficient vector into the restricted 

master only if the route we found on the second visit to the sub- 

program was shorter in the sense of the a  's than on the first 

visit. 

Suppose we assume that (11) is true. The new restricted 

master then has the form: Find A :» 0,  X i 0, x 2:0 which 
JL M S 

maximizes ^i + ^o' 

subject to aX(1V + aX(2)X0 + x = B. "* 1 Z        s 

The optimal solution to this master is    X.« x    ■ 0    and 

X, B 

2 

C2 

becavse of   (11).    The associated value of    n    is 

~        > 

C2 

and the new subprogram objective function is 

Y      aX 
^Pl " 

C2 



■ 

The new "cost" of sending a flow over an arc Is therefore 

111 

c2 « 

(12) 

for arcs of  the original network. 

When we compare  (12) with (10) we see that only the denomina- 

tors differ.    Recalling that    a     2 0    for all arcs we then realize 

(2) that the next solution to the subprogram will be Identical to    X 

because we will get  the same cheapest route cycle.    The inequality 

(6) will be violated and the solution process will terminate.    The 

cycle    C.    therefore consists of the chain    C      defined In the 
2. m 

theorem and arc (P,l). The value of X.  Is therefore 

m 

because a™ * 0. 

(2) The optimal solution to (3a, b, c) is X* - X_XV   where A- 

is given by (13). Thus the arcs on the chain having the shortest 

length in the sense of a
{J'

s between the source and sink should 

have a flow of X. and their Increased arc capacities should be A.. 

The maximal flow under these conditions will be A.  through the 

network. 

The following corollary Is an immediate consequence of the 

theorem if a . = k for all arcs. 
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ConoWviy:   IjJ   a1   = k   fafi aZl OKU OfJ -Öie we^wo/tfe #ien tht 

optimaZ Aolation Xi ^o 4,pe.nd att 0(J t/ie badgeX on the, chauin. 

having the. taoa t nimbm o^ OACA between the. AouAce. and the. 

4>ink.   I(J thli> chain hai>    r   aAci, then 

maxQ-^-Yy. 

MheAe.   Y      -a ^ie CÄpacöti/ OjJ an a^c on   c ,    and aJUL otheA 

cuici, have. zeJio capacity. 
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3.  FINDING AN OPTIMAL SOLUTION WHEN M +  0 

While the decomposition approach could be used to solve the 

problem when M.  j* 0, it would be very inefficient. Fulkerson's 

modified primal-dual algorithm is probably the most efficient. How- 

ever, an Interesting alternative scheme is suggested by the approaches 

of McMasters and Mustin (1970) and Doulliez and Rao (1971) for looking 

at problems involving capacity reduction and expansion. These 

approaches require the use of a topological dual and, as a conse- 

quence, are not particularly efficient. They do, however, have a 

conceptual appeal. 

Both papers present solution algorithms which involve dual 

shortest route problems for identifying the cut sets of the primal 

flow problem. They are, unfortunately, restricted to planar net- 

works. This restriction has recently been overcome by McMasters 

(1971) who defines a pseudo topological dual associated with a two- 

dimensional representation of the primal network.  In that paper the 

special form of the dual shortest route problem is also stated and 

an algorithm for solving the problem is presented. This information 

for both undirected and directed primal networks is contained in 

Appendix A of this paper for the convenience of the reader. 

The solution algorithm presented below begins with the con- 

struction of the topological dual or psuedo dual for the primal 

network. The length of the shortest and second shortest routes 

through the dual are then determined for dual arc lengths equal to 

the free capacity M   of the intersected primal arcs. The length 
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of the shortest route Is then Increased by spending some of the 

resource budget on that arc of the shortest route.  If the entire 

budget can be spent without Increasing the route's length to that 

of the second shortest route then the procedure terminates.  If, 

on the other hand, there Is still a portion of the budget left when 

the shortest route reaches the length of the second shortest route 

then the length of the third shortest route Is determined and both 

the minimum a   arcs of the first and second shortest routes are 

Increased until the budget Is used up or the two routes attain the 

length of the third shortest route. The process continues In this 

manner until the budget Is used up. 

Algorithm: 

1. Assign the   M        values as the arc flow capacities  In the flow 

network (primal network).    Construct Its topologlcal dual using 

the procedures described In Appendix A.    Find the shortest route 

through the dual and Its length    L       .    Set    n - 2. 

2. Find the    n        shortest loopless route through the dual network 

of step 1 and Its length    L       .    Appendix B contains an    n 

shortest loopless route algorithm due to Pollack (1969) and 

describes the modifications needed If the primal  network Is 

nonplanar. 

3. Compute 

B^"1) ^L2  
n-1 

I \ k-l    K 
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where a, = min a,.  associated with the arcs on the k 
k      ij 

shortest route of the dual.  In the case where the (k-1)   and 

k   shortest routes have a "min a..."    arc in common then set 

a, - 0. If modifications were required in Pollack's algorithm 

because the primal network is nonplanar then any shortened arcs 

appearing on the k   route should not be included in the a, 

determination (see Appendix C). 

A.  Increase the lengths of the arcs associated ni^h a
1 >
a
? 

a _<i 

by the amount AY    where 

AY(n) -min{L(n) - L^"1*, B^"^}. 

a) If AY(n) - B^11"1^ then terminate. The budget ha.s been 

consumed and the optimal capacity increase of the primal 

arc associated with a  (r = 1,2,...,n-1)  is 

W  '    I    AY(k). 
«   k-r 

For the special case where a  was set equal to zero in 

step 3 do not compute Y^  . All other primal arcs will 

have no increase in arc capacity. The value of max Q Is 

equal to L(n"1) + AY(n). 

b) If AY(n) - L(n) - L(n"1) < B^'^ then increase n by 

one and return to step 2. 



4.  AN EXAMPLE 

Consider the flow network of Flgvive 1 with directed arcs and 

nodes numbered from 1 to 5. The source Is node 1 and the sink 

Is node 5. The numbers on each arc represent M ,  a  .  The value 

of B Is assumed to be 8. The preliminary steps of the dual con- 

struction are shown on Figure 1 by the dashed lines and nodes with 

letter labels. 

\ 
3^4 

SOURCE 

Figure 1, 

The topologlcal dual Is shown In Figure 2. The numbers on 

each arc represent the arc's length and Its associated a   value 

In that order. The dual origin Is node a and the destination is 

node e. 

The shortest route through the dual Is a - b - e with a 

total length L   - 3 which is the maximal feasible flow that the 

primal network can handle without paying for capacity. The second 
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shortest route without loops is a-d-c-b-e with a length 

(2) L 

(a.b). 

= 5. The value of a  is 1 and Is associated with arc 

Figure 2. 

Note that B(1) - B/a - 8. Because AY(1) - L(2) - L(1) - 2 < B(1), 

t:*o  unitb of budget resource can be consumed before the length of the 

(2) 
shortest route equals L  . 

The third shortest route Is a-d-c-e with a length 

(3) L   - 6. The value of a , associated with arc (d,c), is 2 

(2) 
and B   - 2. We lengthen the arcs associated with a. and a. 

by the amount AY(2) - L(3) - L(2) - 1. 

(4) 
The fourth shortest route Is a - d - e with L   - 8. We 

get a. * a. because arc (d,c) has the minimum a   value on both 

routes and Bv y - 1. This results In /Yv ' - 1 and the algorithm 

terminates. 
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The lengthened dual area are  (a,b) and  (d,c). Arc  (a,b) 

has been lengthened by the amount tX^ *  + AY^ ' + tX* '  - 4.  Arc 

(2) (2) 
(d,c)  has been lengthened by the amount AY   + AYV  - 2.  The 

primal arcs Intersected by (atb) and  (d,c) are arcs (1,3) and 

(3,4) respectively. The capacities of these arcs have therefore 

been increased by 4 and 2 respectively. The maximal flow that 

the network can handle has been increased from 3 to 7 units. 

The optimal flow through each arc which would give this maxi- 

mal flow can be easily obtained by setting the arc lengths of  (a,b) 

and  (d,c) at their final values and determining the shortest dis- 

tances from the origin to all nodes In the dual.  It has been shown 

(Sakarovitch (1970)), McMasters (1971)) that the optimal flow through 

a primal arc in a maximal flow problem will be equal to the difference 

between the shortest route distances to the dual nodes incident with 

the intersecting dual arc. To illustrate this property we consider 

Figure 3 where arcs  (a,b) and  (d,c) have been increased in length 

according to the optimal solution above. The value V  associated 

with each node of Figure 3 is its shortest route distance from node 

a. Therefore, the optimal flow through primal arc  U,3) is 5 

units since V ~ V "5,    The other optimal arc flows are shown in 

Figure 4. The numbers on each arc correspond to *n/(M. ,+Y..). 
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Figure 3. 

2/3 

Figure 4, 
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5.  EXTENSIONS OF THE PROBLEM 

Nonzero Lower Bounds — Consideration of nonzero lower bounds 

on arc flow were not explicit in Fulkerson's problem statement. 

Problems having negative lower bounds can, of course, be handled by 

replacing the primal arc by two oppositely directed arcs having zero 

lower bounds and positive upper bounds. 

The general expression for a lower bound constraint for the 

parametvic budget problem could be written as 

L^ i. X^ + W^ (17a) 

where W   represents the amount of reduction in L...  If each 

unit of reduction costs b   then (Id) would take on the following 

form: 

nAiVij + VijlÄB- (17b) 

The lower bound addition to the problem, regardless of the 

sign of L.., is easily handled by the algorithm since there is always 

a dual arc corresponding to the lower bound on flow (see Appendix A). 

In the example these arcs had zero length since L  « 0 for all arcs. 

The b   values are assigned to the lower bound arcs in the 

same way as the a   values are to the upper bound arcs in the 

Appendix A procedure. The algorithm then considers the b  's as 

merely a   values associated with certain dual arcs. 

To prevent an arc associated with some L ,  or M   from 

beinji selected as an a.  arc, merely assign it a b.. or a 
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value very large.  If it is not selected it will not be changed. 

This is, in fact, the reason for specifying infinite values of 

a   for the zero lower bound arcs in the procedures of Appendix A. 

Nonlinear Convex a(Y..) — When the cost to increase capacity 

a(Y  )  is nonlinear but convex and is zero for Y  ■ 0 then a 

piecewise linear fit to the cost function for each arc can be made 

such that the algorithm can be used with minor modifications.  Hu 

(1966), for example, suggests a linear segment for each unit of 

capacity change. Let a(Y )  represent the general form of the 

cost function and suppose it looks xlke Figure 5. 

•-Y, lj 

The linear segment spanning    0 s Y      £ y      would have a slope 

alJ W 
aCy^ 

the segment spanning    •/- .1 Y.    £ y-    would have a slope 
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a(y2) - a(y1) 

aiJ(y2)=s  y,-y. 

and so on. 

The algorithm should begin by associating a (y.) values 

with each dual arc.  It would proceed without change until a "mln 

a.." arc reaches Its y.  value. If enough budget resource was 

available to further Increase network capacity then the "mln a " 

arc should have Its a..  value changed to a.. (y.)  and a reappraisal 

of the a.. values for arcs of the dual route currently under con- 

sideration should be made to see If some other arc now has a lower 

a,, value.  If so, the length of the new "mln a." arc should 

be Increased and the first one Ignored. The equation for B 

In step 3 of the algorithm should be modified to Incorporate these 

changes In a,  and an additional term should be added to the Y 

equation in step 4 to accommodate the break points y1 ,  y„, etc., 

In the plecewlse linear fits to the a(Y )  curves of the dual arcs 

being lengthened. 

These modifications would be directly applicable to problems 

having linear a(Y ) cuLves but upper bounds on Y   values. 

An Interdiction Problem — The Interdiction problem studied 

by McMasters and Mustin (1970) seeks to spend money to reduce the 

maximum possible flow of an enemy's supply network,  'his is done 

by reducing the capacities of certain arcs of the network.  If Z.. 

is the amount of capacity reduction of arc  (i,j) and a..  Is the 

unit reduction cost then (Id) would have the form 
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If M, Is the arc capacity before interdiction and m.. i 0 is 

the least possible capacity after interdiction then (18) and (19) 

describe the bounds on    Z..    and    X... 

0 s ZJJ « M^  - m^. (19) 

0 s X^ i M^  - Zti. (20) 

The algorithm of section 3 is easily modified to solve this 

problem.    The    a.    arc of the dual shortest route would be shortened 

in length until it reached its    m        value or the budget is spent. 

If  the    m        value is reached first then shorten the arc having the 

next smallest    a        value until it attained its    m        value or the 

budget is spent.    Repeat this process for each successive arc of the 

dual shortest route.    The final length of the r'ute should then be 

recorded. 

The dual second shortest route should be analyzed in the same 

fashion and its fin?! length compared with that of the shortest route. 

That route having the shortest final length is retained for further 

comparisons.    This process must be repeated for each route through 

the dual.    The shortest final route crosses the primal arcs to be 

Interdicted.    The amount of effort allocated to each primal arc depends 

on the length of the intersecting dual arc. 
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The algorithm presented In the McMasters and Mustln paper has 

this same flavor but is more efficient if m  > 0 for some arcs. 

Their procedure begins by finding the shortest route through the 

dual when all arcs of the dual are set at their m   values. The 

amount of money needed to attain the 'hortest route length is then 

computed.  If it exceeds the budget then some "unspending" is required. 

If it does not exceed the budget the problem is solved. 

The "unspending" looks for the most expensive arc (that corre- 

sponding to max a ) on the dual shortest route. The length of 

that arc is then increased until it reaches its M   value or the 

budget constraint is satisfied. If it reaches its M   valu ; first 

then the next most expensive arc is also lengthened. The process 

repeats until the budget constraint is satisfied. The firal length 

of the shortest route is recorded. 

The second shortest dual route based on m   values is next 

determined and its length checked against the final length of the 

shortest route.  If it is longer than that final length the problem 

is solved; otherwise one or more arcs of the second shortest route 

are lengthened to meet the budget. The final length of the second 

shortest route is compared with that of the shortest and the route 

with minimum length is retained for further comparisons. The process 

continues until all dual routes have been examined ot 3ome dual route 

having all arcs at their m   values exceeds in length the shortest 

preceding route meeting the budget constraint. 
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6.  APPENDIX A 

Construction of the Topological Dual — The original flow network 

will be called the primal network. A mesh of a planar primal net- 

work is any region surrounded by nodes and arcs but containing 

neith?. in the plane on which the network is constructed. The region 

of the plane completely jjTounalng the primal network will be called 

the external me.-h. The construction of the dual of a source-sink 

planar directed network consists of the following steps (McMasters 

(1971)). 

1. Denote the original maximal flow network as the primal network. 

Connect an artificial arc between the sink and source of the 

primal and position it below the network. The resulting network 

will be referred to as the modified primal network. 

2. Place a node in each mesh of the modified primal including the 

external mesh.  Let the origin of the dual be the node in the 

mesh involving the artificial arc and the destination be the node 

in the external mesh. 

3. For each arc in the primal (except the artificial arc) construct 

two oppositely directed arcs that intersects it and Joi; with 

nodes in the meshes adjacent to it. 

4. Assign the value of the upper bound capacity of the primal arc 

as the length of the intersecting dual arc having the same 

direction that the primal arc would have if it were rotated 90° 

counterclockwise. Assign to the oppositely directed dual arc a 

length equal to the negative of the lower bound capacity of the 

primal arc (these lengths will all be zero for problem (1)). 
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If the primal network Is not scurce-sink planar then modify 

step 1 above to read: 

1. Construct a two-dimensional representation of the flow network 

such that all arcs are straight lines. Assign a psuedo node to 

every intersection of arcs not at a node in this representation. 

Connect an artificial arc between the sink and source of this 

representation and position it below the network. The resulting 

network will be referred fo  as the modified primal network. 

The remainder of the steps for dual construction are the same as 

above. 

Assignment of a..  Value — Assign the a., values of the original 

primal network to those dual arcs having lengths equal to the M 

values. Assign a.. « °° to all dual arcs corresponding to the lower 

bound capacity of the primal arc. 
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7. APPENDIX B 

AD n   Shorteat Loopless Route Algorithm — We are interested In 

loopless route« (contain no cycles) through the dual because «re want 

those routes corresponding to primal cut sets which disconnect the 

primal into two subgraphs, one containing the source '.nd the other 

the sink. We know that any route containing a cycle would not corre- 

spond to such a cut set (Ford and Fulkerson (1956)). We are also 

interested in having an algorithm which allows us to get the next 

shortest route at any time. Pollack (1969) developed the following 

algorithm which has both of these feature?. 

1. Determine the shortest route through the network using an algo- 

rithm such as Dijkstra's if all arc lengths are non-negative or 

Yen's if some arc lengths are negative (see Dreyfus (1969)).** 

2. To determine the second shortest route remove the first arc from 

the shortest route and solve for the shortest route through the 

remaining network. This route is a candidate for the second 

shortest route. Record the route and Its length and replace the 

arc. Remove the second arc of the shortest route, solve for the 

shortest route through the remaining network, record its length 

and replace ehe second arc. Continue this process until all arcs 

A cut set of a connected graph is defined to be a disconnecting set 
of arcs which contains no proper subset which also disconnects the 
graph. 

2 
Negative arc lengths will occur in the dual networks of problems 
having positive lower bounds on arc flows. An infeasible flow is 
detected by a cycle of negative length in the dual (McMasters (1971)) 
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on the shortest route have been removed and replaced.  Examine 

the list of second shortest route candidates. That candidate 

having the shortest length Is the second shortest route.  In the 

case of a tie between two candidates arbitrarily select one as 

the second shortest and specify the other as the third shortest. 

3. If there were no ties for the second shortest route, the third 

shortest route candidates are determined by removing an arc from 

the shortest and an arc from the second shortest routes and solving 

for the shovcest route through the remaining network. This muse 

be done for all combinations of two arcs from the shortest and 

second .hortest routes. The list of candidates Is then exemlned 

and the third shortest route 's that candidate having the shortest 

length. 

4. The n   shortest route Is obtained by first finding the shortest 

route through the remaining network after each combination of 

arcs, one from each of the preceding n-I shortest routes, has 

been removed. That candidate having the shortest length Is the 

n   shortest route. 

Modifications for a Nonplanar Primal — If the primal netwrrk Is not 

source-sink planar then loopless routes through the dual may not 

correspond to cut sets of the original primal. Modifications to 

Pollack's algorithm may therefore be required to insure selection 

of the correct dual routes. 
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Let the dual nodes be numbered 1,2,...»M where 1 

corresponds to the dual origin and N corresponds to the dual 

destination or terminal node. Let the group of four dual nodes 

surrounding a primal pseudo node $ be represented by  (l.j.k.m) . 

Let t be the set of all such groups in a dual network.  Let V 

represent the permanent label on dual node i after the shortest 

route from the dual origin (V ■ 0) to every dual node has been 

determined. Let I   .    be the length of the dual arc  (i,J)«  If, 

during each step nf Pollack's algorithm, 

Vj - V1 - Vm - Vk (18) 

for all node sets of $  then no modifications are necessary.  If 

(18) is not satisfied for some set then use the following subroutine 

to change the V  values. McMasters (1971) explains the reasoning 

behind condition (18) and proves that this subroutine does accomplish 

the desired result. 

Adjustment Subroutine: 

1. Compute a set of numbers Y.  (1 - 1,2,... ,N), where Y„ - Vu 1 ti n 

and 

Y - max(Y -I    ) 
k  T*1 1 iy 

for i - 1,2 N-l. 
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2.  For each sec  (I.j.k.m)   for which (18) is not satisfied compute 

the following numbers: 

i^)   -minU^YY^-Y,} 

l2(*) - minC-t^.Yj-V^Y^} 

If l.ii)  < i„(t)  for one or more sets then go to step 3; 

otherwise, go to step 4. 

3. Determine that set  (i.j.k.m)* corresponding to 

*2(*) ' t1(*) - maxU2U) - £1(v) | l^*)  < l2(4)) 

and change I..,    «,.., I,   , and £ .  of tl— arcs associated 
ij   j i   km'      mk 

with that set to 

% m lL - li(*) 

£Ji"£ik--£i(i)- 

Go to step 5. 

4. Select any set (i,j,k,m).  for which (18) is not satisfied and 
9 

change the values of I,.,    I..,    I,   ,    and I .     on the arcs 
^ ij   ji   km'      mk 

associated with that set to 

^■^■v^ 

'ii-1*"1!™' 
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5.  Recompute Che shortest routes from the dual origin to each node. 

(a) If (18) is not satisfied, return to step 1 of this subroutine. 

(b) If (18) is satisfied, record the shortest route through the 

dual and its length.  Identify any shortened arcs on this 

route.  If this route is later found to be the k   shortest 

route then theee arcs should not be "removed" on subsequent 

iterations of Pollack's alforithn. Return all shortened 

arcs to their original lengths and continue with Pollack's 

algorithm. 

The adjustment subroutine artificially reduces the lengths 

of certain arcs of the dual. At the end of the subroutine one or 

more of these arcs may appear on the shortest route.  In searching 

for the next shortest route using Pollack's algorithm, these 

shortened arcs should not be removed since "removal" is normally 

accomplished in shortest route algorithms by assigning an infinite 

length to the arc.  Increasing the original length of a shortened 

arc would result in the route Just determined by the adjustment sub- 

routine being also determined as a candidate for the next shortest 

route. 
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8.  APPENDIX C 

Selection of a.  Arc« for a Nonplanar Primal — The adjustment 

subroutine of Appendix B may cause arcs on a dual k   shortest 

route to be shortened.  Because Increasing the original length of 

a shortened arc would not increase the length of the k   shortest 

route we would gain no Increased primal flow capacity. Therefore, 

we should select that arc corresponding to "min a.." from only 

those arcs on the route which were not shortened by the subroutine. 
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