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1. INTRODUCTION

Suppose we have a connected network G(N,A) consisting of a
set of nodes N and a set of arcs A. Let the integers i = 1,2,...,P
represent the nodes and the two-tuples ({,j) (£ = 1,2,...,P;
j=1,2,...,P; and 1 ¢ j) represent the grcs. Let node 1 corre-
spond to the source and node n correspond to the sink. The arcs

are assumed directed so that the order (1,j) implies an arc directed

from node 1 to node j.

Let Mij 2 0 represent the initial flow capacity of arc (1,j),

Yij 2 0 represent the added flow capacity, and X,, > 0O represent

13

the actual flow in the arc. Let Q represent the net flow through
P

the network from node 1 to node g. Let B > 0 be the total

resource budget available and let a,, > 0 be the cost per additional

1)
unit of capacity added to (41,]).

The capacity expansion problem for a flow network was first
studied by Fulkerson (1959). He referred to it as the parametric

budget problem and stated it as follows: Find nonnegative values

of X and Y which

13 13
maximize Q, (la)
subject to § (X, .-X,.) = Q,
%
J x,,x, ) =0 (1 =2,3,...,P-1), (1b)
TR

§ (xpj-xjp) L = QI

Xy =Ygy SH, (1) €A, (1e)

R a; ¥y =B (1d)

e

[



In contrast to Fulkerson we write the budget constraint (1d) in
inequality form although it is obvious that equality will hold at

optimality 1f Y is not required to be integer valued.

1}
An easy way to solve (1) 1is to construct a network having

two parallel arcs in place of each original; one with a cost of

zero and one with a cost of aij' The capacity of the arc having

zero cost would be Mij while the other would be infinite. A minor
modification of tne Primal-Dual algorithm of Ford and Fulkerson (1957)
can then be used to find the maximal flow which can be allocated for
the available budget. The resulting algorithm is, in fact, the one
given by Fulkerson (1959) in his presentation of the parametric budget
problem.

In this paper we would like to first consider the special form
of (1) when Hij = 0, We will state the associated optimal solution
and prove it constructively using the decomposition principle for
linear programs (Dantzig (1963)). We will then present an algorithm

for solving the general form of (1) which makes use of the topological

dual of the network.



2. OPTIMAL SOLUTIONS WHEN Mij = Q

The form of (lc) reduces to

Xy Yy,

when Mij = and, in fact, is equality for all arcs since the
budget will be used up in obtaining the maximal posaible flow. We

can 'herefore, drop (lc) from further consideration if we rewrite

(1d) as
!, 8 4%y " B (2)

The optimal solution to (la,b) and (2) is given by the

following theorem.

Theonem: The maximal §low will be sent over that chain C,
dinected from sournce Lo 84nk which s the shontest route when
the anc Length of (i,jJ) 44 set equal to TR The value of
the maximal flow and the {Low capacity in each arc of that
chain 48 given by

ax g o 2 — ..

Il 89

o

The §low capacities in all other arcs are zero.

Proof: Let us begin by adding an arc (P,1) to the network

and then write (1b) as EX = O where E 18 the node-arc incidence

matrix of our augmented network, X 1s the augmented column vector

of arc flows (with xPl in the last position), and O is null




column vector. We write (2) as aX £ B where a = ( ) 1is a row

aij
vector with ap = 0 1in the last position. Our problem is then to

find X = 0 which

maximize Xpy» (3a)
subject to EX = 0, (3b)
and aX s B. (3c)

In decomposed form we will combine (3a) and (3c) into the
m. ter program. The flow conservation equations (3b) and X 2 O

will be the constraint set of the subprogram. The master program

is therefore to fin' Ai = 0, x, 2 0 which
maximize § bx(i)xi, (4a)
i
. (1)
subject to Z aX Ai + x, = B. (4b)

i
If the network has m arcs then b 18 an 1 xm+ 1 vector con-
sisting of zeros in the first m positions and a one in the last

position. The subprogram is to find X 2> O which
maximizes [b - nalX, (5a)
subject to EX = 0.

We are using T to represent the simplex multiplier associated with

(1)

(4b). Each X us:d in the master program is a homogeneous solu-

to the subprogram and therefore we have no z Xi = 1 constraint in
i
the master.
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i
The iterative solution procedure begins by finding the basic
feasible solution x, = B to the first restricted master which has
5
only one variable; namely, Xg e The multiplier 7 18 then determined
and used to provide the first objective function for the subprcogram. {

If a solution to the subprogram can be found such that

(b - na)X > 0 (6)

69

then we use that solution, call it X'°‘, to generate a new coeffi-
cient vector for the restricted master. The second restricted master

program would then be: Find Al =20, X, 2 0 which

maximize bx(l)xl,

subject to ax(l)AI + x, = B.

A new value of 7 would be determired and used to generate a new
objective function for the subprogram. A new solution to the subproblem,
X(z), would be determined and testec using (6). If it fails the

test then the solution process terminates. If it passes the test

then it is used to create a new restricted master program involving

variables xl, Az, and X

The process terminates after the kth iteration where X(k)
is the first solution from the subprogram to fail the test. The
optimal solution X* can be obtained from (7).

k
xt = § ax- o))
i
i=1




The basic feasible solution to the first restricted master
was observed to be x, = B. Because there 1s a zero coefficient
{or Xg in (4a) we get 7 =0 as the value of the simplex multi-
plier for the restricted master and the objective function for the
subproblem is therefore bX = xPl' A homogeneous solution to the
first subprogram is easily provided by selecting any cycle directed
from the source to the sink and back to the source which includes
arc (P,1) and allows as much flow as possible to pass over it.
Since there are no flow capacity restrictions in the subproblem we
could have XPl + o, If the solution to (3a, b, ¢) is unbounded
this condition will be provided by Ai + o for some solufion in
(4a, b) so we need only send 1 unit over the cycle ia the sub-
problem to indicate the homogeneous solution route. Thus, we return

(1)

to the master with the vector X consisting of plus ones corre-
sponding to arcs on the cycle selected and zeros elsewhere. MNote
that [b - ma]JX =1 >0 so (6) is satisfied.

The next restricted master pro_ram is: Find Al 20, X, 2 V]

which

maximizes Al’

subject to aX(l)Al + X, = B.

The optimal basic feasible solution to this problem is obviously

x =0 and
8



where C1 denotes the cycle just chosen in the subprograr. The

associated value of 7 is given by (8).

T —, (8)

Xoqg = = & 9)

In other woras, the "cost" for sending flow over an arc in the sub-

program is

a
13 (10)
1 e

1

for all original arcs of the network and -1 for arc (P,1).

The maximum value of (9) for a flow of one unit would be
obtained by selecting that cycle which had the cheapest "cost' from
source to sink and which returns to the source via arc (P,l).

Suppose we denote this cycle by C The associated solution will

2.
be x(z) if (6) 1is satisfied. And (8) will be satiunfied if (9) is

pésitive. The value of (9) for this solution 1is

o T S e

e

1
é
1




and therefore (9) will be positive only if
1) a, < 11 a. (11)
i Bl

Thus we introduce a new coefficient vector into the restricted
master only if the route we found on the second visit to the sub-
program was shorter in the sense of the aij's than on the first

visit.
Suppose we assume that (11) is true. The new restricted
mister then has the form: Find Al =0, Az 20, X, 2 0 which
maximizes Al + 12,
2)

subject to ax(l)kl + ax( Az + xg = B.

The optimal solution to this master is Al =x = 0 and

becavrse of (11). The assoclated value of 1w 1is



9
The new "cost'" of sending a flow over an arc is therefore
444
z z (12)
a
1j
CZ

for arcs of the original network.

When we compare (12) with (10) we see that only the denomina-
tors differ. Recalling that ai.1 2 0 for all arcs we then realize
that the next solution to the subprogram will be identical to x(Z)

because we will get the same cheapest route cycle. The inequality

(6) will be violated and the solution process will terminate. The

cycle C2 therefore consists of the chain Cm defined in the
theorem and arc (P,1}. The value of A2 is therefore
a
c 1
m

because ap; = 0.

The optimal solution to (3a, b, c) is X* = AZX(Z) vhere A2
is given by (13). Thus the arcs on the chain having the shortest
length in the sense of aij's between the source and sink should

have a flow of AZ and their increased arc capacities should be 12.
The maximal flow under these conditions will be Az through the

network.

The following corollary is an immediate consequence of the

theorem 1f a,, = k for all arcs.

1j
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Conollany: 14 a,, = k forn all arcs of the netwonk then the

1j
optimal solution is to spend all of the budget on the chain
having the Leatt number of ancs between the sounce and the

sdink. 1§ this chain has r anrcs then

B
max Q x - Yij’

where Yij 48 the capacity o4 an arc on C and all othen

arcs have zero capacity.
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3. FINDING AN OPTIMAL SOLUTION WHEN M1j ¥0

While the decomposition approach could be used to solve the

problem when M, # 0, 1t would be very inefficient. Fulkerson's

3
modified primal-dual algorithm is probably the most efficient. How-
ever, an interesting aiternative scheme is suggested by the approaches
of McMasters and Mustin (1970) and Doulliez and Rac (1971) for looking
at problems involving capacity reduction and expansion. These
approaches require the use of a topological dual and, as a conse-
quence, are not particularly efficient. They do, however, have a
conceptual appeal.

Both papers present solution algorithms which involve dual
shortest route problems for identifying the cut sets of the primal
flow problem. They are, unfortunately, restricted to planar net-
works. This restriction has recently been overcome by McMasters
(1971) who defines a pseudo topological dual associated with a two-
dimensional representation of the primal network. In that paper the
special form of the dual shortest route problem is also stated and
an algorithm for solving the problem is presented. This information
for both undirected and directed primal networks is contained in
Appendix A of this paper for the convenience of the reader.

The solution algorithm presented below begins with the con-
struction of the topological dual or psuedo dual fgr the primal
network. The length of the shortest and second shortest routes
through the dual are then determined for dual arc lengths equal to

the free capacity M of the intersected primal arcs. The length

1)
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of the shortest route is then increased by spending some of the
resource budget on that arc of the shortest route. If the entire
budget can be spent without increasing the route's length to that
of the second shortest route then the procedure terminates. If,

on the other hand, there is still a portion of the budget left when
the shortest route reaches the length of the second shortest route
then the length of the third shortest route is determined and both
the minimum aij arcs of the first and second shortest routes are
increased until the budget is used up or the two routes attain the

length of the third shortest route. The process continuas in this

manner until the budget is used up.

Algorithm:

1. Assign the M values as the arc flow capacities in the flow

1)

network (primal network). Construct its topological dual using

the procedures described in Appendix A. Find the shortest route

through the dual and its length L(l). Set n = 2,

2. Find the nth shortest loopless route through the dual network

of step 1 and its length L(n). Appendix B contains an nth

shortest loopless route algorithm due to Pollack (1969) and
describes the modifications needed if the primal network is
nonplanar.

3. Compute
nil
B - a [L
Jal) | km ®
n-1

(n—l)_ L(k)]

ak

k=1
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where ak = min aij assoclated with the arcs on the kth

shortest route of the dual. In the case where the (k-l)th and

t
k B shortest routes have a '"min a,," arc in common then set

1)
a = 0. If modifications were required in Pollack's algorithm
because the priral network is nonplanar then any chortened arcs
appearing on the kth route should not be included in the a,
determination (see Appendix C).
Increase the lengths of the arcs associated w%;h al,az,...,an_1

(n)

by the amount AY where

st ® o g - (D g(e-b)y

a) 1f ay™ - gD

then terminate. The budget has been
consumed and the optimal capacity increase of the primal

arc associated with a (r =1,2,...,n-1) 1is

() _ §F . ®
Yy ] ey,

k=r

For the special case where a_  was set equal to zero in

step 3 do not compute Y(r). All other primal arcs will

1]
have no increase in arc capacity. The value of max Q 1is
equal to L (071 4y (®)

b) 1f AY(n) = L(n) - L(n-l) < B(n-l) then increase n by

one and return to step 2.

W|ww“



4. AN EXAMPLE

Consider the flow network of Figwwe 1 with directed arcs and
nodes numbered from 1 to 5. The source is node 1 and the sink
13" aij' The value
of B 1is assumed to be 8. The preliminary steps of the dual con-

is node 5. The numbers on each arc represent M

struction are shown on Figure 1 by the dashed lines and nodes with

letter labels.

SOURCE (1)

Figure 1.

The topological dual is shown in Figure 2. The numbers on
each arc represent the arc's length and its associated aij value
in that order. The dual origin is node a and the destination is
node e.

The shortest route through the dual is a -b - e with a

total length L(l) = 3 which is the maximal feasible flow that the

primal network can handle without paying for capacity. The second



15

shortest route without loops 18 a - d - c - b - e with a length

L@

= 5, The value of al is 1 and is associated with arc

(a,b).

Figure 2.

(1) (1)

(1) = 2<B 5

(1) (2)

Note that B = B/a1 = 8, Because AY = L - L

t:'o units of budget resource can be consumed before the length of the
shortest route equals L(z).

The third shortest route is a -d - c - e with a length

L(3) = 6, The value of a
(2)

99 assoclated with arc (d,c), 1is 2
= 2. We lengthen the arcs associated with a, and a,

@ _ . _ @

and B
by the amount AY
The fourth shortest route is8 a -d - e with L(a) =8, We
get a3 = az because arc (d,c) has the minimum '1j value on both
routes and 3(3) = 1. This results in tY(3) = 1 and the algorithm

terminates.

e
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The lengthened dual arcs are (a,b) and (d,c). Arc (a,b)

(1) + AY(Z) + AY(3) = 4, Arc

has been lengthened by the amount AY
(d,c) has been lengthened by the amount AY(Z) + AY(3) = 2, The
primal arcs intersected by (a,b) and (d,c) are arcs (1,3) and
(3,4) respectively. The capacities of these arcs have therefore
been increased by 4 and 2 respectively. The maximal flow that
the network can handle has been increased from 3 to 7 units.

The optimal flow through each arc which would give this maxi-
mal flow can be easily obtained by setting the arc lengths of (a,b)
and (d,c) at their final values and determining the shortest dis-
tances from the origin to all nodes in the dual. It has been shown
(Sakarovitch (1970)), McMasters (1971)) that the optimal flow through
a primal arc in a maximal flow problem will be equal to the difference
between the shortest route distances to the dual nodes incident with
the intersecting dual arc. To illustrate this property we consider
Figure 3 where arcs (a,b) and (d,c) have been increased in length
according to the optimal solution above. The value Vi assoclated
with each node of Figure 3 is its shortest route distance from node
a. Therefore, the optimal flow through primal arc (1,3) 1is 5

units since V. - Va = 5, The other optimal arc flows are shown in

b
Figure 4. The numbers on each arc correspond to Xij/(Hij+Yij).
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Figure 3.

Figure 4.
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5. EXTENSIONS OF THE PROBLEM

Nonzero Lower Bounds -- Consideration of nonzero lower bounds

on arc flow were not explicit in Fulkerson's problem statement.
Problems having negative lower bounds can, of course, be handled by
replacing the primal arc by two oppositely directed arcs having zero
lower bounds and poaitive upper bounds.

The general expression for a lower bound constraint for the

parametvic budget problem could be written as

L1j < xij + wij (17a)
where wij represents the amount of reduction in Lij' 1f each
unit of reduction costs bjj then (1d) would take on the following
form:
y ZA [ainij + bijwij] < B. (17b)
The lower bound addition to the problem, regardless of the
sign of L is easily handled by the algorithm since there is always

iy’

a dual arc corresponding to the lower bound on flow (see Appendix A).

In the example these arcs had zero length since L,, = 0 for all arcs.

1)

The bi values are assigned to the lower bound arcs in the

3

same way as the a values are to the upper bound arcs in the

1)
Appendix A procedure. The algorithm thern considers the bij's as
merely aij values associated with certain dual arcs.

To prevent an arc assoclated with some Lij or Mij from

beiny selected as an a, arc, merely assign it a bij or aij
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value very large. If it is not selected it will not be changed.

This 1is, in fact, the reason for specifying infinite values of

zai.1 for the zero lower bound arcs in the procedures of Appendix A.
Nonlinear Convex a(Yij) —- When the cost to increase capacity
a(Yij) is nonlinear but convex and is zero for Yij = 0 then a

piecewise linear fit to the cost function for each arc can be made
such that the algorithm can be used with minor modifications. Hu
(1966), for example, suggests a linear segment for each unit of
capacity change. Let a(Yij) represent the general form of the

cost function and suppose it looks iike Figure 5.

alyy) }

L T

() T ——

L
—

g
L]

3
Figure 5.

The linear segment spanning 0 < Yij < Yy would have a slope

a(y,)
aij(yl) - yl »

the segment spanning 2 3 Yij < Y, would have a slope




20

a(yz) = a(yl)
Y2 =%

aij(yz) =

and so on.

The algorithm should begin by associating a,, (y,) values
1

i3
with each dual arc. It would proceed without change until a

“min

a,,'" arc reaches its v, value. If enough budget resource was

13

available to further increase network capacity then the '"min a, "

i3

arc should have its a value changed to a and a reappraisal

of the a values for arcs of the dual route currently under con-

i)
sideration should be made to see if some other arc now has a lower

' arc should

(n-1)

a value. If so, the length of the new '"min a,,'

i3 14
be increased and the first one ignored. The equation for B
in step 3 of the algorithm should be modified to incorporate these
changes in a, and an additional term should be added to the Y(n)
equation in step 4 to accommodate the break points Yi» Yoo etc.,

in the piecewise linear fits to the a(Y,,) curves of the dual arcs

i3
being lengthened.
These modifications would be directly applicable to problems

having linear a(Y,,) culves but upper bounds on Y values.

i3 13

An Interdiction Problem -- The interdiction problem studied

by McMasters and Mustin (1970) seeks to spend money to reduce the
maximum possible flow of an enemy's supply network. ‘ais is done
by reducing the capacities of certain arcs of the network. If zij
is the amount of capacity reduction of arc (i,j) and aij is the

unit reduction cost then (1d) would have the form
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2 EA aijzij < B.

1f Mij. is the arc capacity before interdiction and mij 20 1is

the least possible capacity after interdiction then (18) and (19)

describe the bounds on Zij and xij'
Oszij sMij -mij. (19)
0< Xij < Mij - zij' (20)

The algorithm of section 3 is easily modified to solve this

problem. The a, arc of the dual shortest route would be shortened

in length until it reached its m value or the budget is spent.

13
If the mij value is reached first then shorten the arc having the
next smallest aij value until it attained its mij value or the

budget is spent. Repeat this process for each successive arc of the
dual shortest route. The final length of the 7-ute should then be
recorded.

The dual second shortest route should be analyzed in the same
fashion and its finel length compared with that of the -hortest route.
That route having the shortest final length is retained foc¢ further
comparisons. This prccess must be repeated for each route through
the dual., The shortest final route crosses the primal arcs to be
interdicted. The amount of effort allocated to each primal arc depends

on the length of the intersecting dual arc.
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The algorithm presented in the McMasters and Mustin paper has

this same flavor but is more efficient if mij > 0 for some arcs.

Their procedure begins by finding the shortest route through the

dual when all arcs of the dual are set at their m values. The

1]
amount of money needed to attain the ~hortest route length is then
computed. If it exceeds the budget then some "unspending" is required.
If it does not exceed the budget the problem is solved.
The "unspending' looks for the most expensive arc (that corre-

sponding to max ay ) on the dual shortest route. The length of

]
that arc is then increased until it reaches its Mij value or the
budget constraint is satisfied. If it reaches its Mij valve first

then the next most expensive arc is also lengthened. The process
repeats until the budget constraint is satisfied. The firal length
of the shortest route is recorded.

The second shortest dual route based on mij values 1s next
determined and its length checked against the final length of the
shortest route., If it is longer than that final length the problem
is solved; otherwise one or more arcs of the second shortest route
are lengthened to meet the budget. The final length of the second
shortest route is compared with that of the shortest and the route
with minimum length is retained for further comparisons. The process
continues until all dual routes have been examined or some dual route

having all arcs at their m values exceeds in length the shortest

1)

preceding route meeting the budget constraint.
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6. APPENDIX A

Construction of the Topological Dual —— The original flow network

will be called the primal network. A mesh of a planar primal net-
work is any region surrounded by nodes and arcs but containing
neithe: ip the plane on which the network is constructed. The region
of the plane completely :-.vrounuing the primal network will be called
the external mech. The construction of the dual of a source-sink
planar directed network consists of the following steps (McMasters

(1971)).

1. Denote the original maximal flow network as the primal network.
Connect an artificial arc between the sink and source of the
primal and position it pelow the network. The resulting network
will be referred to as the modified primal network.

2. Place a node in each mesh of the modified primal including the
external mesh. Let the origin of the dual be the node in the
mesh involving the artificial arc and the destination be the node
in the external mesh.

3. For each arc in the primal (except the artificial arc) construct
two oppositely directed arcs that intersects it and joir with
nodes in the meshes adjacent to it.

4. Assign the value of the upper bound capacity of the primal arc
as the length of the intersecting dual arc having the same
direction that the primal arc would have if it were rotated 90°
counterclockwise. Assign to the oppositely directed dual arc a
length equal to the negative ot the lower bound capacity of the

primal arc (these lengths will all be zero for problem (1)).

= —
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If the primal network is not source-sink planar then modify
step 1 above to read:

1. Construct a two-dimensional representation of the flow network
such that all arcs are straight lines. Assign a psuedo node to
every intersection of arcs not at a node in this representation.
Connect an artificial arc between the sink and source of this
representation and position it below the network. The resulting
network will be referred to as the modified primal network.

The remainder of the steps for dual construction are the same as

above.

Assignment of a Value -- Assign the a values of the original

1) 13

primal network to those dual arcs having lengths equal to the M

13

values. Assign a = o to all dual arcs corresponding to the lower

1}
bound capacity of the primal arc.
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7. APPENDIX B

An nth Shortest Loopless Route Algorithm -- We are interested in

loopless routes (contain no cycles) through the dual because we want

those routes corresponding to primal cut aets1 which disconnect the

primal into two subgraphs, one containing the source 2nd the other
the sink. We know that any route containing a cycle would not corre-
spond to such a cut set (Ford and Fulkerson (1956)). We &re also
interested in having an algorithm which allows us to get the next
shortest route at any time. Pollack (1969) developed the following
algorithm which has both of these features..

1. Determine the shortest rcute turough the network using an algo-
rithm such as Dijkstra's if all arc leng-hs are non-negative or
Yen's if some arc lengths are negative (see Dreyfus (1969)).2

2. To determine the second shortest route remove the first arc from
the shortest route and solve for the shortest route through the
remaining network. This route is a candidate for the second
shortest route. Record the route and its length and replace the
arc. Remove the second arc of the shortest route, solve for the
shortest route through the remaining network, record its length

and replace the sacond arc. Continue this process until all arcs

. A cut set of a connected graph is defined to be a disconnecting set
of arcs which contains no proper subset which also disconnects the
graph.

4 Negative arc lengths will occur in the dual networks of problems
having positive lower bounds on arc flows. An infeasible flow is
detected by a cycle of negative length in the dual (McMasters (1971)).

.
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on the shortest route have been removed and replaced. Examine

the list of second shortest route candidates. That candidate
having the shortest length is the second shortest route. In the
case of a tie between two candidates arbitrarily select one as

the second shortest and specify the other as the third shortest.
1f there were no ties for the second shortest route, the third
shortest route candidates are determined by removing an arc from
the shortest and an arc from the suvcond shortest routes and solving
for the shoicest rcute through the remaining network. This musc
be done for all combinations of two arcs from the shortest and
second _hortest routes. The list of candidates is then exemined
and the third shortest route !s that candidate having the shortest
length.

The nth

shortest route is obtained by first finding the shortest
route through the remaining network after each combination of
arcs, one from each of the preceding n-1 shortest routes, has
been removed. That candidate having the shortest length is the

nth shortest coute.

Modifications for a Nonplanar Primal -- If the primal netwcrk is not

source-sink planar then loopless routes through the dual may not

correspond to cut sets of the original primal. Modifications to

Pollack's algorithm may therefore be required to insure selection

of the correct dual routes.
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Let the dual nodes be numbered 1,2,...,N where 1
corresponds to the dual origin and N corresponds to the dual
destination or terminal node. Let the group of four dual nodes
surrounding a primal pseudo node ¢ be represented by (1,j,k.n)‘.

Let ¢ be the set of all such groups in a dual network. Let V1

e T —

represent the permanent label on dual node 1 after the shortest

route from the dual origin (V1 = 0) to every dual node has been

13
during each step of Pollack's algorithm, i

determined. Let £ be the length of the dual src (i,j). If, |

vV, -V, =V =¥
m

e (18) !

k

for all node sets of ¢ then no modifications are necessary. If
(18) 1is not satisfied for some set then use the following subroutine
to change the V1 values. McMasters (1971) explains the reasoning
behind condition (18) and proves that this subroutine does accomplish

the desired result.

Adjustment Subroutine:
1. Compute a set of numbers Y1 (1 =1,2,...,N), where YN = Vk
and

Yk = mix(Yi-lij)

for i = 1.2..--’N-l.
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For each set (i,j,k,m)0 for which (18) is not satisfied compute

the following numbers:
11(¢) - min(ziJ,VJ-Yi,Vm-Yk}

¥y VYY)

12(0) = min{-¢
If 11(0) < 22(¢) for one or more sets then go to step 3;
otherwise, go to step 4.

Determine that set (1,j,k,m); corresponding to
£,(6) - £(¢) = max(t; () = 4,00 | £,(0) < 2,(0))

and chanre £ and lmk of ti.. arcs associlated

Y130 Y10 Y

with that set to

zij =y =2 (4)

Lji - 2;k = -21(0).

Go to step 5. '
Select any set (1,j,k,m)¢ for which (18) is not satisfied and

£

change the values of £ and lm on the arcs

i3’ ji’ zkm’ k
associated with that set to
' = 0! =

e et ).
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5. Recompute the shortest routes from the dual origin to each node.
(a) If (18) is not satisfied, return to step 1 of this subroutine.
(b) 1If (18) 1s satisfied, record the shortest route through the

dual and its length. Identify any shortened arcs on this

h shortest

route. If this route is later found to be the kt
route then theee arcs should not be "removed"” on subsequent
iterations of Pollack's alforithm. Return all shortened

arcs to their original lengths and continue with Pcllack's

algorithm,

The adjustment subroutine artificirlly reduces the lengths
of certain arcs of the dual. At the end of the subroutine ome or
more of these arcs may appear on the shortest route. In searching
for the next shortest route using Pollack's algorithm, these
shortened arcs should not be removed since "removal" is normally
accomplished in shortest route algorithms by assigning an infinite
length to the arc. Increasing the original length of a shortened
arc would result in the route just determined by the adjustment sub-

routine being also determined as a candidate for the next shortest

route.

T e de .

R,
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8. APPENDIX C

Selection of a, Arcs for a Nonplanar Primal -- The adjustment

subroutine of Appendix B may cause arcs on a dual kth shortest

route to be shortened. Because increasing the original length of
a shortened arc would not increase the length of the kth shortest

route we would gain no increased primal flow capacity. Therefore,

we should select that arc corresponding to 'min a,,'

13

those arcs on the route which were not shortened by the subroutine.

' from only
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