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1.   INTRODUCTION 

It is known that the surface currents associated with travelling in- 

ternal waves can be sufficiently intense to produce modifications of the 

surface wave structure that are visible both to the eye and to radar 

(Ziegenbein, 1970; Perry and Schlmke, 1965; Polvani, 1972).  In a series 

of measurements off San Diego, Lafond (1963; 1966) has shown that visible 

surface slicks, under certain wind condltior.^, move with the underlying 

train of internal waves.  A later series of measurements at the same in- 

strument platform has shown that these slicks are detectable with radar 

and exhibit phase correlation with the current pattern produced by the 

internal wave train (Polvani, 1972). 

Two different mechanisms have been suggested as responsible for the 

coupling of internal waves to surface waves, one associated with changes 

in surface composition and the other a direct modification of wave struc- 

ture.  Lafond (1966) suggested that :;he divergence and convergence of the 

surface current over the leading and trailing portion of an internal wave 

maximum disperses or concentrates extant organic material on tue surface 

in a way correlated with the internal wave phase.  The resulting Increase 

in the damping coefficient in the convergence zones reduces the amplitude 

of short wavelength gravity-capillary waves in these areas and changes the 

average wave slope and reflectivity. 

A number of authors have noted the resonant effect that may be ex- 

pected on a surface wave packet that travels at the same speed as the in- 

ternal wave train (Hartle and Zacharlason, 1969; Holllday, 1971; Rosen- 
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bluth, 1973; Phillips, 1971; Ko, 1972).   Since, at resonance, the wave packet 

is able to travel great distances while remaining at the same phase point of 

the internal wave, the continuing interaction leads to a continuous energy 

transfer from the internal to the surface wave« 

The theoretical models of the wave-current interaction may be divided 

into two broad categories, which we might characterize as space oriented 

(wave packets) or wavenumber oriented (modal). 

The wave packet modpis (WKB, elkonal, ray theory) developed by Longuet- 

Higgins/Stewart (1961), Whitham (1966), Phillips (1966), Holllday (1971), 

Ko (1972), consider the surface as a superposition of a number of spatially- 

localized wave packets, each characterized by a characteristic wavenumber 

k(x,t) and wave frequency ü)(x,t).  These packets move along trajectories 

defined by 
•4" 
dx So) 

dt = 3^ 

dk _  3ü) 

dt " 3^  ' 
"*■"*■ 

where the notation indicates gradients In k and x-space respectively. 

The mode-oriented models [Ba.l (1964), Hasselman (1967), Hartle/ 

Zachariason (1969), Risenbluth (1971)] describe the surface essentially as 

a superposition of various modes (sine waves for the unperturbed ocean) 

and concentrate their attention on the transfer of energy between modes. 

When applied to small amplitude waves, both treatments are  equivalent since 

the requirements for validity of the WKB approximation are usually well 

satisfied for the waves of Interest. However, the equivalence tends 



to be obscured in development of computational models.  In a modal descrip- 

tion, spatial structure is bound up in the details of the phase relation- 

ships between different wavenumber modes.  On the other hand, the wave- 

number structure and spectrum is related to the details of the spatial 

correlation function in the wave packet description.  Rosenbluth (1971) 

combines elements of both descriptions in a "full-wave" treatment of a 

linear wave interacting with a variable surface current and shows the 

equivalence between eigenmodes and wavepackets trapped over troughs of 

the internal wave. 

A major difficulty arises in the application of these mechanisms to 
■ 

describe ocean wave spectra.  The ocean surface under typical wind condi- 

tions is poorly described as a simple linear superposition of sine waves. 

On the contrary, the wave amplitudes and slopes are usually driven to the 

point where non-linearities are dominant in providing a saturation limiting 

of the wave heights.  These effects manifest themselves in the appearance 

of sharp crested waves and wave breaking (white caps).  In the present 

series of reports we will develop a description of the dynamical properties 

of ocean wave spectra involving a transport or relaxation equation. Here 

we write the rate of change of the mean or expected value of the wave height 

power spectrum in the form 

— F(x,k,t)  = A(x,k) 7.+U + generation terms - loss terms, 
at x 

-t -> 
where F is assumed to depend on (x,k,t) and V^ U is the local time averaged 

x 

surface current gradient.  The detailed development and modeling of the var- 



lous phenomena contributing to wave growth and decay will be discussed in 

subsequent reports.  In the present report we wish to lay the groundwork 

for the discussion of the wave-current Interaction and to review the physics 

of the interaction process.  To do this we will discuss primarily a linear 

description of the ocean surface. Many of the non-linear effects coupling 

various waves together can be considered as Interactions to various orders 

of different wave fields and can be understood within the context of a 

linear model in terms of the interaction of a linear wave with a prescribed 

current field.  Thus, part of the motivation of the present work is to 

describe the resonant interaction of a surface wave with a moving current 

pattern and part to clarify some of the concepts that underlie the non- 

linear theory. 

We consider the current produced near the ocean surface by a long 

wavelength internal wave propagating along a sharp thermocllne at depth D 

(see Figure 1).  Frr small percentage changes in the density across the 

Interface (Ap/p), the currents and potential of the Internal wave are 

and 

U 

u 

(o) 

(o) 
X 

(o) 

-£- cosh Ky sin K(x-c t)  , 

A cosh Ky cos K(x-c t)  , 
u O 

Ao slnh Ky sin K(x-c t)  , 

(1.1) 

(1.2a) 

(1.2b) 

where co is the phase velocity of the Interfacial wave. The vertical 

velocity of the surface has been taken to be zero (valid in the limit 

Ap/p -► 0).  In this paper we study the effect of this current [Equation 

(1.1)] on the motion and pattern of the small wavelength surface gravity 

waves. 
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FIGURE 1A.  CURRENTS IN THE OCEAN FIXED FRAME 

FIGURE 1B.  CURRENTS IN THE INTERNAL WAVE FRAME 
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To get a feel for the basic physical versus the mathematical aspects 

Involved In the problem, we examine first the dispersion relation for the 

surface waves for a uniform (deep)-ocean in the presence of a uniform cur- 

rent.  It is well known that the dispersion relation in a coordinate sys- 

tem in which the ocean is stationary, has the form 

14,2 " 8k (1.3) or 

a)  = tt'gk 

where w is the angular wave frequency, k the wavenumber of the surface wave 

and g the gravitational acceleration.  The velocity of a point of constant 

phase on the wave, i.e., phase velocity, is 

c u = ^ = i^iTk . 
ph   ü5 

This dispersion relation is plotted In Figure 2a. Obviously, for each value of 

|w|  there are only two possible solutions and two wave velocities (± g/|u)|) cor- 

responding to waves travelling to the right or to the left. 

If we now make a Galilean transformation to an observer moving over 

the ocean surface  at velocity co, events appear to have a different time 

dependence.   We must replace u by u + cok where co is the observer velocity 

relative to the ocean. This has the tendency to twist the dispersion curves 

downward, i.e., the trajectory of the ocean surface, which was the real axis 

u)-0, now becomes (see Fig. 2b) 

- c k o 
(1.5) 

This moving observer finds himself with a rather more complicated description 

of the same simple wave motion seen by the stationary observer.  First he 

finds that there is a maximun frequency (u*) above which waves will not propagate 

freely.  At any lower frequency he finds that there are now four different wave- 

6 
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FIGURE 2A.  DISPERSION RELATION IN THE OCEAN FRAME 

^ R waves 

L waves 

FIGURE 2B. DISPERSION RELATION IN A MOVING FRAME 

7 



numbers and wave velocities that will propagate freely for each given value of 

|w|  instead of two as in the ocean fixed frame.  If this observer knew that in 

hia coordinate system, the velocity of t^e ocean were locally uniform and inde- 

pendent of time, then he would correctly conclude that possible solutions have 

the form exp[-iiDt + ikx] where there are two permissible right travelling waves 

(co/k > 0) and two left-travelling waves (w/k < 0) that are consistent with the 

same value of |a)| . 

All this is of little interest if the ocean current is truly independent 

of position since in that case the waves are simply manifestations of the two 

simple surface waves in Equ. (1.3).  These two waves (or four depending on the 

coordinate system) are uncoupled and the transformation to a moving coordinate 

system merely explicates a simple problem. However, when the surface current 

varies with position (but not so rapidly as to invalidate the local validity 

of the dispersion relations) the problem is distinctly different.  In the 

particular case of a travelling current disturbance there is a unique coor- 

dinate system in which the su/.face current distribution is Independent of 

time.  In this coordinate system, the solutions are harmonic in time (e~  ) 

but the spatial gradients may permit or Induce coupling of the four waves. 

Of particular interest are the two right travelling waves. Reference to 

Fig. 2b shows that, although the phase velocities for both are in the direction 

of the internal wave, the group velocities (du/dk) have opposite signs. 

These two waves lie on either side of a turning point (where the group velocity 

- vanishes). It will be shown in section 4 that a wave packet incident on a finite 

region of steady surface currents can be totally reflected for certain current 

patterns and that the two right travelling waves represent the incident and 

reflected wave trains. The observer in the ocean coordinate system would 

8 



Interpret this reflection as follows.  A surface gravity wave packet traveling 

at velocity c  (group) overtakes a traveling surface current region [translat- 

Ing at velocity c( <c )]. There Vlll be a range of values for c -c, dependent 
8 • 

on the maximum amplitude of the surface current, for which the gravity wave 

loses energy to the surface current to the extent that its propagation velo- 

city is reduced to 2c - c  [i.e., a velocity decrease of 2(c -c) because of 
g 8 

reflection].  In the same manner, waves having group velocities less than 

but sufficiently close to surface current propagation velocity will be ac- 

celerated by the front edge of the moving current field to a velocity 

c+(c-c ). Thus, the surface current field acts as a piston to a certain 
g 

range of wavelengths and pushes these waves along ahead of the current field. 

Waves near the condition c"C will tend to pile up in front of or behind the 
g 

reflection point and form caustics. 

This type of interaction may be thought of as a resonance phenomenon 

where waves in a restricted range of frequencies interact strongly with the 

external forcing function.  Indeed, in Vjnodal description where the surface 

is represented as an assembly of harmonic oscillators, the reflection phenomena 

described above manifests itself specifically as a classical resonance inter- 

action, between the oscillators (surface waves) and the external forcing func- 

tion (internal wave). 

In recent years considerable interest has been shown in this type of 

interaction and a number of treatments are available [Longuet-Higgins and 

Stewart (1960); Longuet-Higgins (1963);. Ball (1964); Phillips (1966); 

Hasselman (1967); Hartle and Zachariason (1969);  Rosenbluth (1972); 

Phillips (1972)].  The problem also has in interpretation in terms 

of parametric csclllator theory.  In spite of this extensive analysis. 



the relationships between the various methods are. not readily transparent. 

Methods based on the WKB approximation allow trajectories of individual 

packets of energy to be followed".  In available treatments, turning 

points can appear in the solutions where the WKjJ approximation fails (blockage 

effects, according to Phillips). Modal methods based on the Bom approxi- 

mation show a related singularity. The turning point here appears as an 

oscillator driven at resonance. 

It is the purpose of this paper to analyse in detail the specific 

case of linear surface waves travelling on a spatially variable but steady 

current.  The analysis is exact and, as a consequence, permits us to obtain 

bounded solutions in the neighborhood of the resonance region. By taking 

limiting cases of these exact solutions, we are able to demonstrate the 

relationships between the various more approximate models and, in particular, 

we are able to define their respective ranges of validity. 

The details of these approaches are reviewed in the following section, 

along with an introduction to the present approach to the problem.  In all 

cases, detailed theoretical analysis haq been limited to a linear 

description of the interactions. Since the sea surface is usually in a 

strongly nonlinear state, such approaches may have limited quantitative 

applicability. However, the linear analysii, provides the insight necessary 

to the development of a non-linear theory. 

The following sections segment the problem of internal and surface 

wave interactions as follows: Section 2 reviews sea* of the previous work 

done on the problem to familiarise the reader with the difficulties encountered 

and to point out where these studies left off. Section 3 provides an 

10 



Introduction and review of scattering theory as it will be applied to the 

present problem.  A set of coupled differential equations is constructed 

from an application of this theory under the assumption of a weakly re- 

flecting current.  These equations are then solved analytically for a 

linear current.  Section 4 discusses solutions in both the Born and eikonal 

(WKB) approximations.  These approximate solutions are then related to  the 

results of Section J.  Section 5 summarizes the paper stressing the inter- 

connection between the differing methods of approach and gives a physical 

Interpretation to these methods.  The connection with previous results and 

the interpretation of surface slicks in terms of reflected waves is also 

made. 

11 



2.  COUPLED INTERNAL AND EXTERNAL WAVES (REV/EW) 

We consider the wave motion at the surface of the ocean under the Influ- 

ence of a non-unifonn surface current.  In the analysis the ocean Is assumed to 

be homogeneous and irrotational. Within this general framework, we may write the 

momentum equation for a fluid as 

du      1 

P ,J"» (2.1) 

du      1 „   -► 
dl = " T VP + 8 

where, under the assumption of irrotatlonal flow. V x ^ = Q.  The quantities in 

Eq. (2.1) are defined as follow.:  p is the fluid density, t  is the gravitational 

acceleration, p is the pressure, and 3 is the velocity of the fluid.  If we write 

" = 7*. where * is the potential description of the velocity field, then Eq. (2.1) 

may be written as 

|| + ;.v:.7[|i + ffi>!]. .Vß + gy| 
(2.2) 

whe„ the operate. Mt ,, „.  (2.x) „„ ^ „^ by ^ ^^ ^^ 

>/»t+e.» u, E,.  (2.2) and the denaity haa heen aaae^ed te he content. 

Meatlee  (2.2) „„ be ^„^ taalUtely ^ ^ ^    ^      ^^^ 

♦t +  ?   f'*)2 +  ?* «y.   -    f (t) (2.3) 

-*ere  1„ the f„lloulng we .„ f(t)  . „.. At ^ ^^ ^ ^ ^^ ^ ^^ 

ease.e that the pteaaete i. aero I, . 0. r . ,,, , . . ,. 80 th.t „_  „ 3) 

becomes 

3« 
1  ^x2 

+      otr =        A 
(2.4) aT + 2 (v#>a 

+ 8yB   -   o   . 

*   mrX^aU^.^f COnditl0n " lnfinity that ^"""^ equl- 
12 

/ 



This equation may be further modified by recalling that the rate of increase 

of ys following a fluid element is the vertical component of the fluid 

velocity: 

^s    /3*\ 

and that 

d*  _  8* 
dt  "  3t + V* • V*   . (2.6) 

Introducing Equations (2.5) and (2.6) into (2.4) yields the differential 

equation 

{(IF +'H(Iv + i'H' +*%}e ■ o ■ «•" 

To solve Equation (2.7) we expand the velocity potential as follows: 

* = *(0) + ♦   , (2.8) 

where $  is  the potential associated with the short wavelength surface waves 

and 

~ x C08h Ky 8in K(x"ct) • (2,9) 

The separation given by Equation (2.8) essentially couples the short sur- 

face waves to the much longer internal waves by superimposing the field po- 

tentials. 

We substitute ttie potential from Equation (2.8) into Equation (2.7) 

and, retaining only up to the linear terms In $, obtain 

[ 

13 



[j$   +   h  W0-V* +  ft (^-V)«0 + 7«0.V |i + (V»0.7)(Vt0.V)* 

+ 7*° • 7(74.V)»0 + 7*.7 ■^- 

+ '♦•W0-»).''],^ + (g |i)        . o . (2.l0) 
■' ' surface 

This expression may be Immediately reduced by using the condition A «c and 
o 

noting that the wavenumber k for the surface wave is very much greater than 

the wavenumber K for the Internal waves, i.e., K«k.  With these two con- 

ditions, Equation (2.10) becomes 

[ 11   +    g|i   +m(o).7|±] .    0 (2al) 
3t Jsurface 

which,   together wich  the Laplaclan 

^    -    1^1   +   Üy   -    0 (2.12) 

defines the surface wave potential for our problem.  Note that we have 

assumed the wave to be uniform In the z-directlon. 

Let us carry out the remaining analysis in terms of an arbitrary 

traveling Internal wave packet 7*° - U(x-ct).   For Internal waves whose 

wavelength Is long compared to the depth of the Interface along which they 

propagate, the waves are non-dlsperslve and arbitrary functions U(5), 

U-x-ct], may be considered.  This function is analogous to the potential 

produced by a massive particle from which much lighter particles (surface 

14 



waves) are being scattered.  Reference to this picture will make the con- 

cepts Introduced in the following analysis more transparent. 

Ball (1964) showed that, for a two-fluid model of the ocean, resonant 

interactions involving two surface waves and one internal wave can occur. 

His argument was basically that non-linear quadratic terms in the wave equa- 

tion can cause a combination wave (frequency Uj, wavenumber kj to be gen- 

erated by the beating of two simple harmonic waves: 

ü)2 = u ± u 

and 
(2.13) 

k2 " ^ ± K 

If this combination [Equation (2.13)] wave matches one of the natural modes 

of the unperturbed ocean, then a resonance condition exists. 

To follow this argument, we consider the wave equation valid for low 

speed, low amplitude flow [Equation (2.11)], „hich we can write* as 

.2. „. 2 

H    +*£      -  -2U(x.t) 4 

When the right hand side of Equation (2.14) is approximated by thm  unperturbed 

surface wave solution (the Born Approximation) 

*o B a C08 (^x-^t) (2A5) 

*    U (x.t) is assumed to vary slowly over distances and times in which ^ 

oscillates.  Thus, time and space gradients of U (x.t) are neglected. 

15 



and the travelling current field by 

U(x,t)  = A cos(Kx - tit) (2.16) 

[where we have used Equation (2.9)], comb Nation waves are generatsd.  We 

may use Equations (2.15) and (2.16) in Equition (2.14) to obtain 

at 
5* = Aa k^ jcos^+^x - (u)1+(d)tl + coafc^-^x - (ü>1-u)t]> 

where ü) = Kc. 

Of particular interest is the long wavelength, slowly varying difference 

frequency term.  Two waves having almost the same frequency and wavenumber 

and travelling in fiie same direction will beat and give rise to an envelope 

that has a much lower frequency and wavenumber.  Any nonlinear terms will 

result in a generation of a wave component at the beat frequency. The 

wavenumber of the beat envelope is proportional to the difference between 

the wavenumbers of the two primary waves.  The phase velocity of the beat 

wave is proportional to the difference between the frequencies of the 

primary waves and can be shown to be equal to the harmonic mean of the 

group velocities of the primaries. 

When this beat wave matches the internal wave in frequency, wavenumber, 

and phase velocity, a resonance occurs (see below).  In general, the coupling 

results frc.^ various non-linear terms.  Quadratic terms involving two sur- 

face waves can create combination or beat waves which can resonate with the 

internal wave. As just discussed above, quadratic terms involving one sur- 

face wave and internal wave can cause coupling to a second surface wave. 
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Hartle and Zachariason (1969) gave a detailed analysis of this 

problem; that is the solution of Equation (2.14) in the Born Approximation, 

for waves travelling in the same direction. The right hand side of Equa- 

tion (2.14) was evaluated with ^ taken as the unperturbed surface wave po- 

tential and the general problem of an arbitrary travelling current wave was 

treated. They also gave detailed attention to the variation of wave height 

and wave slope resulting from the interactions. 

The basic features of their solution can be exemplified by treating 

the special case of a sinusoidal surface current. Equation (2.17).  Since 

we are only concerned with the near resonant case, we consider only the 

difference frequency term, replace the cosine by an exponential, and find a 

solution to the equation 

^-| + g 1^- = aAk1u.1 exp^Ckj-K)« - (a)1-Kc)t|J . (2.18) 

We may write 4)(x,y, t) in the form 

(j)(x,y,t) = 23 B(k) exp|ky - i Ikx - utl I (2.19) 

k 

so that ij) -vO as y-» - <», and we note that for a right travelling wave, 

3? = -1 37 • (2.20) 

The solution of equ.   (2.18)   then takes the form,   in general, 

6(ü) - a>.)6(k - kj 

2 . ü)    - gk 

Ef      6(ü) - u )6(k - k.) 
/ a.  f J-   do dk     , (2.21) 

j      •/     J ü)    - gk 
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where u). and k are the frequencies and wavenumbers of the combination 

waves geiu»rat«sd by the non-linear terms, i.e., k,-K, and u),-Kc for equ.(2.18), 

and the a.  are the appropriate coefficients.  Resonance occurs when, for some j, 
,J 

*)    " gkJ  * 

In our example, resonance r ; !:urs if 

2 
(ü)1 - Kc)' (k1 - K) 

C2.22) 

(2.23) 

Using the fact that w^ = gkj, we may reduce Eq. (2.23) to the form 

r^.i. si ■ ■ 
g g 

(2.24) 

In terms of the surface wave group velocity c  (- g/2u.),  we may 
81      1 

write 

:gl 
1 + *ki (4) (2.25) 

or, for K/k << 1, 

-81 
= 1 (2.26) 

Thus, resonance obtains when the group velocity of the surface waves is 

approximately equal to the internal wave velocity.  Note that this state- 

ment is identical to the statament that the difference wave between two 

similar surface waves (which could be generated by non-linear effects) 

match the internal wave in frequency, wavenumber (and phase velocity). 
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These concepts are more clearly Illustrated by reference to the (k,ü)) 

plane. A point Q =   (k.w) in this plane represents a general wave. The 

curve which is the locus of freely-propagating waves is the dispersion re- 

lation u) = f(k).  In general, quadratic non-linear terms will generate 

sum and difference waves.  In particular, a free propagating wave defined 

by the vector ^ = (k^)] can couple with an internal wave fi[ = (K,n)] to 

produce the beat wave 

This coupling will be resonant if ^ is a characteristic mode of the surface 

Three such combinarlons are shown In Figure 2c. For two of these 

the combination wave (J^) does not fall on the locus of freely-propagating 

waves.  However, one such combination does satisfy the resonance con- 

dition.  It is obvious from the geometry of Figure 2c that, when the inter- 

nal wave has low frequency (Ji « J^, K « k2), the slope Q/K  (which is the 

internal wave phase velocity c) is essentially equal to the slope of the 

dispersion curve for waves satisfying the resonance condition, I.e., 

Q du 
K    dk    Cg V 

To examine the resonant and near resonant case it Is appropriate to 

treat an initial value problem where we assume the interaction to be 

"turned on" at a certain time. For the interaction starting at time t-0, 

3d)' 
i.e., ♦'(x,^ « j^ (x,0) = 0, the solution has the form, [where ((»«»(j)' + 

a expdkjX - lu.t}], 
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I- 

_ im*  r _ ei(w*-a))t]e-lw*t) e
i<ki-K>x Ak u) a  1 

*' • 1 •%., x .—r \ sin ü)*t 
(ij*((jo*+ü)) I (ü"-a) | I     | (7,21) 

where u Is the difference between the surface wave frequency and the in- 

ternal wave frequency (u • W, - Kc) and u* is the frequency of a surface 

wave having a wavenumber equal to the difference between that of the sur- 

face wave and of the internal wave u* " /g(k^ - K) I . 

When the exciting frequency w Is made equal to the frequency u*, ex- 

pand Equation (2.27) and we find that the wave amplitude resonates and 

grows linearly in time: 

4i'(tD=ü)*)  =  i 

k (D. Aa 

2ü)*
2 

!,,,    ,   -iU*tl   i(krK)x 
'sin^t) - ü)*t e    > e (2.28) 

Close to but not at resonance, the root mean square value of the wave po- 

tential is 

V 1*1 
k.u, Aa 

2 „       11 UJ» 

2u)*(ü)* +0») 
(d* - ü) 

(2.29) 

Hartle and Zachariason suggest that the linear growth at resonance will 

be terminated by either disslpative effects or decay of the internal wave.  How- 

ever, analysis in the following sections indicate that wave reflections may 

also determine the effective interaction time. 

The mathematical reason for the linear growth at resonance in equ. (2.28) 

arises basically from the introduction of the Born approximation in the calcu- 

lation of the right haiid side of equ. (2.14)* where the non-linear terms were 

replaced by products of the unperturbed surface and internal waves, i.e., 
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(o) 
*   t0 •  As tho Interaction proceeds the aurface wave may be altered, result- 

ing In failure of the Born approximation.  It Is argued later In this paper 

that this is indeed what does occur and that the basic process Is one of "col- 

lision" or scattering (elastic or inelastic) of a surface wave from the surface 

current pattern.  For most of the strongly Interacting "collisions" the effec- 

tive Interaction time is determined by the kinematics of this collision or 

scattering process.  In order to treat the near resonance waves it is necessary 

to proceed beyond the Bom approximation and follow the alteration of the 

surface wave as it Interacts with the current pattern. This is done in the 

following section. 
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3.  WAVESCATTER AND REFLECTION 

We start, as did Rosenbluth (1971) and Longuet-Hlggins/Stewart (1960), 

from Equations (2.11) and (2.12); that is, linear equations keeping first order 

inter'ction terms Involving a prespecified, non-uniform, steady surface cur- 

rent.  Rosenbluth obtains full vave solutions for a surface wave moving in 

a region of .steady sinusoidal varying current and shows that surface waves 

can be trapped over the troughs of the internal waves. The solutions ex- 

hibit close similarity to those of a quantum mechanical harmonic oscillator 

and there is an analogy between surface waves trapped in regions of minimum 

surface current and quantum mechanical particles trapped in regions of 

minimum potential energy.  We will treat the problem of the impingement and 

reflection of a free surface wave from a region of linearly incredsing sur- 

face current and show that, for a certain range of wavelengths, the surface 

waves will be reflected by a travelling current pattern. 

3A.  Dispersion Relations for a steady surface current 

Consider a finite region of surface current translating with uniform 

velocity and described by a function U(x-ct). We transform to a coordinate 

system moving with this pattern (5 = x-ct) and thus obtain 

33      3      3  '^ 3 ri  i^ 
IF " 37 - C 3? ;   37 " 9? (3-1) 

so that in this new coordinate system the surface waves in Equation (2.11) 

obey the equations 

[*tt - 2c^t+c\c+ 2u (5){v - c*J+gvLface ■o   (3-2) 

and 

♦ „..+♦ =    0  . (3.3) r5C       yyy 

23 

r 



Taking y to be positive upwards, we may write the general solution of Eq.(3.2) 

as a superposition of two waves [for surface wavelengths « depth of fluid (D) 

* - *("R) + *(L) (3.4) 
where 

/R) . yeky aR(t) e^ dk (3.5a) 

and 

/L) = /eky a^(t) e-ikx dk  , (3.5b) 

(R) which are similar in structure to equ. (2.19). The quantities (Ji   represent 

waves traveling to the tight and $        waves to the left in this moving 

coordinate system. According to Eq. (3.5),  rfe may write 

00 - ^(R) 
f 

and 

AW  . ^.W (3.6) ry x 

♦ ^  =  i*(L)  . (3.7) Ty       Tx 

It is to be noted that "traveling to the right" and "traveling to the left" 

refers to the phase velocity of the surface wave. It was pointed out 

in section 2 that for this surface-internal wave problem, the most interesting 

phenomena occur when the group velocity of the surface wave is closely matched 

to the phase velocity of the Internal wave equ. (2.26) . Since the surface waves 

are dispersive, it is possible (and this will-be the condition of most Interest 

to us) to have a situation where the phase velocities are in the same, but the 

group velocities are in opposite, directions for two coupled waves.  It occurs 

that for a given frequency there are four coupled waves that appear in this moving 

coordinate system.  Two of these waves will be shown to have phase velocities to 

the right, in the direction of the internal wave (R waves), and two have phase 
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h 
velocities in the opposite direction (L waves). For the two R waves, one turns 

out to have a sroup velocity to the right (which we refer to as a (+) wave: 

(-R) 
U(+R)l, and the other has a negative group velocity [a (-) wave: *   ].  The 

two L waves will similarly be noted as (+) and (-) waves although for these 

the group velocities have the same sign. 

To demonstrate the nature of these waves, we consider an internal wave 

packet of finite size such as the one shown in Fig. 3a. A packet of surface 

gravity waves propagating slightly slower (group velocity) than the irternrl 

wave will be overtaken and, in the frame moving with the internal wave, these 

wave packets appear to impinge from the right, whereas faster surface waves impinge 

from the left. We shall examine the wave field for a single monochromatic 

surface wave incident on the surface current region (the internal wave packet) 

from the left [see Fig. 3b] i.e., one moving faster in the moving frame of refer- 

ence than the internal wave.  Since in the moving frame the surface current 

field is steady, the time dependence of the surface wave potential  is of the 

form e"iu>t: and Eq. (3.2) becomes 

•u>H  + i2cu)^ + c2*^ + 2U(0|-i^5 - c^J + g^y - 0 .        (3-8) 

L        R 
This oscillatory time dependence occurs in the coefficient a^t) and a^t) in 

Eqs. (3.5a)  and (3.5b). 

Before treating the case of a space variable surface current, we examine 

the dispersion relation when the current is uniform, i.e., ü(?) -Uo [constant]. To 

study this case we will reduce Eq. (3.8) to dimensionless form by introducing a 

characteristic wave number (k*) and frequency C«*). i-e-, the values for a sur- 

face wave traveling at the same velocity (phase) as the internal wave; so that 

n - CO/OJ*  ; K - k/k*  ;  0 = Uo/c (3-9) 
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FIGURE 3B.     WAVE KINEMATICS AFTER INTERACTION 
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where u* = g/c and k* = g/e2.  Using the relation (3/3? ■* ik) from Equations 

(3.1) and Ci.h)  we can write the dispersion relations for Equation (3.8) as 

-n2 - 2n<  - <2 +  2ß|n +<]<+<  =0 for the (R) waves    (3.10a) 

_ri
2 + 2nK - K2 + 2ß|-n + <]< + < = 0 for the (L) waves    (3.10b) 

and 

thereby giving the four waves discussed earlier.  We need only follow the 

formalism for the (R) waves since, according to Equation (3.10) 

^(L), N    .(R), v 
*  (n) ■ *  (-n) 

and   for   these waves 

1 - 2n(l - ß) +  ¥ 1 " 4TI(1
 " ß) + 4ri2ß2 ,.  , ,   ^ ±    m I ;     n >  0     . (3.11a) 

2(1 - 26) 

To terms linear in ß this expression agrees with the one obtained more 

Intuitively by replacing the frequency u in the dispersion relation calcu- 

lated in the ocean frame (a) = t/gT) by the value expected if the waves are 

being convected at a velocity (u-c), i.e., u) ^ a) + (c-u)k.  In this case 

the dispersion relation would become 

or 

w + (c-u)k ■ ±>/gk 

n + (i -ß)K ■   ±V^ 

Solving for K yields 
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<     = 
1 - 2f|(l -ß) ± yfT-  4n(l -ß) 

2(1-8)' 
(3.11b) 

which agrees with Equation (3.11a) to terms linear in ß.  Since the present 

analysis applies only for values of  ß small compared to unity, we will 

use (3.11a) or (3.11b) interchangeably. 

In Figure 4 we have plotted the dispersion relation in terms of the 

reduced variables n and < .  We are patricularly Interested in regions 

near the turning point where the group velocity vanishes and the surface 

wave „acket travels with a velocity near that of the internal wave phase. 

In this region the two R waves are strongly coupled.  However, as is dis- 

cussed later, the coupling to the L waves is weak and we ignore it entirely 

here.  Thus, we delete the L.R superscripts and refer hereafter only to 

(+) and (-) waves, (both of which will always be R waves). 

We now return to the problem of a finite region of surface current. 

We are treating the case of an overtaking packet incident on this region 

from the left.  This wave [a (+) wave], in general, will be partially trans- 

mitted [as a (+) wave] by the current region and partially reflected [as a 

(-) wave].*  If we define r as the coefficient of the reflected wave and t 

as the coefficient of the transmitted wave, then we may write the potential 

far to the left of this interaction region as 

i>    | e ro 
^-.tj     «[..<->*-«I 

+ r e l        • (3.12a) 

* The meaning of reflected and transmitted will become clear later as we 
develop the concept of the surface wave packet later in this section. 
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where $    is  the amplitude of the Incident wave.  Further, there will be 

only a transmitted wave far to the right of the region: 

i 1^-1 
(fi = *  t e l        ' (3.12b) 

for ?"*■ +ao-  The wavenumbers k   and k   are defined in the undisturbed 
00 oo 

region of the surface, i.e., where 8=0.  One may therefore use the dis- 

persion relations from Equation (3.10) to obtain for the R waves 

:* -  i (l - 2n ? Vl - An ) 

2üC + J^T 

(3.13a) 00      /  \ r — 

"i   

(3.13b) 
2c 

t .ÄX T VI -^ 
g     ▼     g 

If u) >g/4c, therefore, there are no right propagating waves in the frame of the 

moving internal wave.  The distortion or reflection of the surface wave as it 

travels through the current region depends critically on the variation of the 

(+) 
wave number K        with changes in U . 0 

It is useful to attempt to interpret the concepts of Ball and of 

Longuet-Higglnc/Stewart In terms of the scattering or reflection mechanism.  In 

the reference fvame moving with the Internal wave the strongly interacting 

(reflecting) free waves form a standing wave pattern on one side of the reflection 

point (see Fig. 5). This standing wave consists of two wave trains having (In 

this frame) equal but opposite group velocities but phase velocities in the 

same direction. Although the mean group velocity is zero (so that the standing 

wave pattern does not move) the mean phase velocity is non-zero.  Individual 

wavelets (or points of constant phase) appear to move through the standing wave 

pattern. For example, for a left Incident wave, a wavelet will appear to be 
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FIGURE 5A.  CURRENTS ABOVE THE INTERNAL WAVE 

\Ar^v^\f\r^\r^Aj\/^^^ -A/\/\/V/^W 

FIGURE 5B.  UNTRAPPED WAVE REFLECTING FROM THE CREST REGION 

OF THE INTERNAL WAVE 

-^/vv/^xA 

FIGURE 5C.  WAVES TRAPPED IN THE TROUGH OF AN INTERNAL WAVE 
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born on the left side of the standing wave region, to travel to the right 

thruugh tlie patu-rn, its amplitude undergoing a quasi-periodic modulation 

by the standing wave and finally "dying or disappearing at the front edge of 

the standing wave region, i.e., the reflection point.  According to the Born 

approximation of Ball and Hartle/Zachariason, the stationary current pat- 

tern induces a secondary wave that, together with the incident wave, cre- 

ates a stationary standing wave pattern.  This Induced wave must therefore 

have a group velocity equal and opposite to the incident wave (since the 

mean group velocity is equal to the phase velocity of the standing wave, 

i.e., to zero).  Thus, it should be possible to interpret- the Born approx- 

imation results near resonance in terms of the creation of a scattered 

wave whose wavenumber and frequency are dependent on the difference between 

those of the incident wave and that of a perfectly respnant wave (i.e., 

one for which c = c).* 
g 

3B.  Scattering at a Boundary 

The preceeding section was concerned with the long range effects of the 

internal current on the surface waves. This section will study the surface 

waves in the interaction region. To this end, we note that when the inter- 

nal current increases over a limited region of space two effects contribute 

to the observables of Interest: 1) the variation of the wave slope as it 

passes through the surface current region, and 2) the generation of reflec- 

ted waves at regions where the wavenumber changes rapidly. 

* Although a mechanism allowing for depletion of the incident wave would 
probably be required to get reasonable results at later times. 
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In order to solve this latter problem for somewhat arbitrary U(0. we 

modify the formulation of the problem slightly.  We divide the surface 

current region into a nu.ber of sections, each having a width small com- 

pared to the wavelength of the internal wave [Fig. 6]. We index the posi- 

tions along the internal wave by £j and let the interval between any two 

steps i  and (j+l) be  A5j.  An incldent wave vm generate ^ ^^^ 

and reflected waves as it impinges on each of these steps. Within e.ch section 

the surface current is taken to be unlfor- .0 that the wave pot.uci.1 in the re- 

gion between ^ and CJ+1 has the general form 

♦ 'J AJ eXp '(i^C-o.t)] +Bjexp[i(kj(-)5-ut)J 
C3.14) 

where kj  and k." are determined from the dispersion relation for the jth 

slab.  The values of Aj and Bj are found by matching boundary conditions at 

all the interfaces between the individual sections (see Figure 7).  The num- 

ber of independent component waves that need to be allowed for in Equation 

(3.14) is two in our present case (gravity waves).  In general this number 

is  equal to the number of allowable propagating wavenumbers that have the 

same frequency.  In the capillary-gravity regime where surface tension ef- 

fects are important, it is possible to have these Intersections of the dis- 

persion curve for a given frequency M (see Figure 4). thus requiring three 

independent waves in Equation (3.14).  We carry out the present formalism 

for gravity waves only.  The generalization to the capillary-gravity regime 

will be made subsequently. 
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The two cases to be considered are ahown in Figure 7: an incident wave 

traveling from JefL to right (+) of unit amplitude is shown in Figure (7a) 

while a wave of unit amplitude incident from right (-) is shown in Figure 

(7b).  Note that we are discussing the R-solutions of Equation (3.10a), 

which has been decomposed into these (+) and (-) waves in the moving coor- 

dinate system of the internal wave.  Figure 7 is actually a blow-up of the 

step regions shown in Figure 6.  Since we are treating quantities discretely 

in this section, both the reflection (r ) and transmission (t ) coefficients 
J J 

for the waves carry an index to distinguish the boundary to which they refer. 

I.e., point In space.  An additional index of (+) and (-) is carried by 

these coefficients as well as the wavenumbers to distinguish the direction 

(group velocity) of the incident wave with which they are associated. 

The continuity of the amplitude and slope of the waves at the j 

boundary, between regions A and B in Figure 7 requires that 

^U-C,) + ^(5-^) - ^(C-Sj) (3.15) 

and 

1  d*, 
♦j dC 

.  d* 

♦t d? (3.16) 

5-CJ 

where the subscripts refer to the incident (i), reflected (r) and transmitted 

(t) waves.  For an incident wave traveling from left to right (Figure 7a), 

we have from Equations (3.15) and (3.16) the continuity conditions that 
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1 + r (+)     _     .. (+) ■    t (3.17) 

and 

A j A 
tW  k(+) 

'j       kB 
(3.18) 

Similarly,   for an incident wave traveling from right to left  [Fig.   7b], we obtain 

I + r(") = r(") (3-19) 
j       j 

and 

^ +'? <+) ■ ¥ ^  ■ (3.20) 

The reflection and transmission amplitudes across the boundary may 

be evaluated in terms of the wave numbers in the two regions by using Equations 

(3.17) - (3.20), 

.(+) 
'j 

t. 
3 
(-) 

and 
.(-) r. 
1 

k(-) - k^ kB     A ^ - ^ 

(3.21a) 

(3.21b) 

(3.22a) 

(3.22b) 

The value of obtaining these expressions will become evident when we allow the 

interval between steps to become very small.  It will then be possible to represent 

these differences in wavenumbers in terms of derivatives.  This construction is 

carried out later in this section and is also used in Section 4. 

■ 
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To broaden our problem tillohtlv ^*^  ... 
,  4J 

8 ^^ let U8 COnßlder a w«ve of unll amplitude 
incident from the left  „r. - l.f. o. . current pattern of Clalte  „„^ ^ 

*  - .up.rp..ulM. o£ th. lnctde„t rad refl.cted „_ ^ ^ ^^ ^  ^^ ^^ 

gion and a transmitted wave far ^« ^,  .. ..  r 
far to the right [see Equations (3.12a) and (3.12b)] 

To formalize these statementa we de^n» ,  * 
we define a two vector * whose components are the 

local values of the (+) and (-) wave8 

(+) 
/ < 

* 

* .Uo da£ln. . 8catterln8 Mtrl, s ^^ ^^^    ^^       ^ 

wv. vector <-., f„ t0 the le£t ^ ^ ^^ ^^^ ^ ^^ ^ ^ 

right hand side 

*(+•) - S *(—) 

In order to evaluate the elements of C 
elements of S . we consider two hypothetical scat- 

tering experiments.  Suppose first w+w 
ppose first a (+) wave of unit amplitude Is Incident on 

- region from the left (Pigure S).  The amplitude of the transmitted wave is 

I •  - that of the reflected wave twhlch is a (-) wave] l8 defined „ R(+)< 

Then we muat have 

l"    J    "       I'a       Z\     U(+)l (3.23) 
22 
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or 

R(+)  =  -s Is R        s21/822 
(3.24a) 

and 

' Sll " S12 821/S22 
(3.24b) 

In a similar manner, for a wave of unit amplitude incident from the right 

(Figure 8) with reflected and transmitted amplitudes R   and T   , respec- 

tively,  we may write. 

[«<-'] "Sll S12' 
0 

1 .S21 S22. 
T(-) 

(3.25) 

or 

and 

,(-) 

,(-) 

S12/S22 

l/s 
22  * 

(3.26a) 

(3.26b) 

The matrix S is the scattering matrix for the entire current region. 

The reflection amplitudes R(+) and R^, as well as the transmitted wav-^ 

amplitudes T00 and T(-) also refer the entire surface current region.  We 

may use Equations (3.24) and (3.26) to express the elements of the scattering 

matrix In terms of these ,,roeasured,, reflection and transmission coefficients: 

'22 
1/T(')  , 

s]2 - R(")/T(")  ' 

821 - -R  /T   . 

and 

'11 
T(+) . R(-) R(+)/T(-) 

(3.27a) 

(3.27b) 

(3.27c) 

(3.27d) 

These elements aay now be applied to the analysis of the characteristic of 

,th the j  boundary which initiated this subsection. 
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Wc de) Ine .1 two-con component vector <i made up of the amplitudes of the 

right [fj  1 and left [fj"'] travelling waves at a point just to the right 

of the Jth interface: 

.(+) 

(-) 
(3.28) 

Using a propagation matrix p and a reflection or scattering matrix S , we 

may write the vector at the (j+l)th step in terms of its value at the jth 

step, by 

v W *J (3.29) 

where the waves incident on the Jth boundary are scattered by the matrix 

Sj and propagated across the uniform interval from C. to C   by the propa- 

gation matrix p^.  If the entire current region has been divided into N 

steps, then the wave amplitude ^ to the right of this region is related 

to the amplitude ^ to the left of the region, according to 

or 

KN+1 

rN+l 

( N        i 
n sj -pj^ 
j-i     ' 

S *!  , 

(o.30) 

(3.31) 

where S is now the scattering matrix for the entire region: 

N 
s = n Pi Sj (3.32) 
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Thus the uuurlx s introduced in Equation (3.11) for a wave crossing an arbi- 

trary region can b* thought of as being constructed from a sequence of weak 

scatterings. 

A Uttle thought „HI „„vi,,« „ne thjlt the reflecrl<)11 (llc.tterlng) ^^ 

S, at each of tha atapa Sj haa the aa«. structure aa the acatterlng matrix S for 

the entire region. We „ay therefore, „rite the matrix Sj In terma of the 

reflection and transmission coefficients r snd t as folio«! 

SJ- 
rv+) - rw 
-^)/t<-) 

W] 
i/t (-) 

(3.33) 

The propagation matrix Rj carries the translation information for the 

and may be written as 
process 

Hik fw> 

H^'S+rV}. 
(3.34) 

If we assume that the reflections described by Equation (3.31) are weak, 

then it Is possible to write the reflection matrix above [Equation (3.33)] 

In an approximate form.  For weakly reflected waves we can neglect all terms 

In Sj which m wcond order in the reflection coefficients, r]^ and r(->. 

Also, m «ay expand the Inverse of the (-) transmission coefficient a«. 

1 

l + r (-) 
1-r^ + (3.35) 
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Using Equation (3.35) and neglecting terms quadratic in the reflection coef- 

ficients, we write the scattering matrix as, 

Sj «  l + Rj (3.36) 

where 

r   (+) (-) 
r J   rJ 

-r (+) 
j 

-r (-) J 

(3.37) 

where R i3 considered negligible in this approximation. This Implies that 

there is only a single scattering from each of the steps and that the reflected 

surface wave is a linear superposition of each of these small reflections. 

Let us consider the generation of thase reflected waves by Equation 

(3.32).  If we Impose our weak reflection condition, Equation (3.36), then all 

terms of order R and higher in thin product may be neglected. A general term 

which would contribute to the scattering matrix would, therefore, be linear 

in R., i.e., be of the form 

PN PN-1 * * * Pj Rj PJ-1  * * * P2 Pl  * 
(3.38) 

Physically, Equation (3.38) means that the incident wave will propagate freely 

through the first J-l steps of the steady currant region; at the Jth step it 

will interact weakly with the internal wave, as specified by the matrix Rj, 

and then continue to propagate without further interaction. 

One can easily show that the product of propagation matrices preceding 

the interacting in Equation (3.38) can be written in the continuous limit as. 
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p     p 
J-l  .1-2 

p  p 
2  1 

expji/^k^V^'j 

expW   k^a'w ] 

(3.39) 

by using the definition of the P's [Equation (3.34)]. It is also clear that 

in general, the amplitude of the incident wave is being modulated by the in- 

ternal wave packet. 

3C.  Differential Formulation of the Propagation Equations 

In this section we will construct a set of differential equations to 

govern the variations of the forward and backward propagating waves [<t» 

and iji  ] by taking the limit of very small C intervals in the propagation 

equations (Equations (3.21) to (3.22)].  In the limit of small 5 ^ " ij " A^ 

the transmission and reflection amplitudes become. 

.(+) 

.(-)  _ 

.(-) _ 

A4 dK (-) 

:(+) - <<-)]      d5 

A?    die 

,(+) . K(-)l  dC 

(-) 

1 + r? 
J 
(-) 

and 

^r 1 + r (+) 
j 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

Equations (3.40) and (3.41) will be derived in Section 4, where a complete 

discussion of their characteristics will be given. 
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The dispersion relation [Equation (3.11)] (neglecting quadratic terms In 

Ö) may be written in the form 

K± " <    + *„ 
A   2 

where 

and 

l-2n(l-Pj 
2(1-28) 

Vl-4n(l"3) 
2(1-20) 

(3.44) 

(3.45a) 

(3.45b) 

For very small values of the difference 5j+1 - 5j = A5j the scattering matrix 

for weak reflections [Equation (3.36)], using Equations (3.40) to (3.45), can 

be rewritten »a 

lo ij  ^z«. 
1 1 

+   «2^ 
-1 1 

-1 -1. dC    2K2 1 -1 
(3.46) 

Similarly, the propagation matrix given by Equation (3.34) may be expanded 

to obtain 

n oi 
0 1 

lk*(ic1-ic2)A5j   0 

0       1^0^+ ie2)A5j 
(3.47) 

From the recursion relation [Equation (3.29)] we have 

A5J ^ « *j+i - ♦j * (PjSj -1)^ (3.48) 

where ^ is defined as the two component wave given by Equation (3.28).  In- 

troducing Equations (3.46) and (3.4V) into Equation (3.48) and keeping only 
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terms which are linear In A£ , We obtain the following coupled equations for 

the wave components ♦A ' and ^"'-t 

(+> -        -  dK 

and 

^_ - ^.^v* i|i(^+,(-)|.^^|,(+).t<-)j   (3. 49) 

50) 

in the continuous limit. These equations may be simplified if we introduce 

the sum and difference amplitudes S and D: 

and 

S    -     ^(+)+^(-)j   expj-iyic* Kl d^j 

D   -    |*(+)- ^-)]   exp|-iyk* ic1 d^j 

(3.51) 

(3.52) 

By adding and subtracting Equations (3.49) and (3.50) and using Equations 

(3.51) and (3.52) we obtain, 

dS -ik* tc2 D 

and 

dD  . .JLf!2D + L ^1_ 
dK K2 de  D + IK2 de ik* K. 

(3.53) 

(3.54) 

We may eliminate D from these latter equations with a little algebraic manip- 

ulation and obtain 

i-f +  | (k*K2)2 + ik* ^i 

as the equation for the wave envelope. 

(3.55) 
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3D.  Solutions In the Neighborhood of a Turning Point 

Near K2 - 0 , Equation (3.49) and (3.50) are singular.  Near these 

singular regions (turning points), we may approximate the current pattern 

by a linear form.  Equation (3.55), familiar to those concerned with electro- 

magnetic propagation in a medium having a variable refractive index, has an 

explicit solution when the current (- cß - -ce) varies linearly with 

position. To see this, let us define a critical value for the adverse 

current e» , i.e., e0 - -i 1 , and define 

t - toa+K/t)        for  -A < 5 < 0 . (3.56) 

Using the definitions of < and <    from Equation (3.45) in conjunction with 

Equation (3.56), we find that the imaginary term in Equation (3.55) is 

2 
negligible in comparison to the  (k*"^)    term when 

U|     »    i-   -    il      . (3.3,') 
k* " 

With  this  condition Equation  (3.55)   reduces to 

J-(^)2^S.O. (3.5,, 

which is valid when the wave envelope is much more than a characteristic wave- 

length away from the reflection point. 

Equation (3.58) is the equation for the Airy integral in termr of the 

variable C: . 

? (3.59) ■m 
that is. 

A2s 
- Ci - 0  . (3.60) 
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The form of the solution is that of a varying amplitude standing wave. 

The wave amplitudes which are solutions of Equations (3.49) and (3.50) 

are expressed in terms of the Airy integral [Ai(0] according to 

(+) D + S 
2 

(-) S  -  D 

exp < i 

exp 

i /k* K1 d? 

uyk* <1 dc 

where 

S = Ai(c) C. 

from Equation (3.60), and 

ic| 

dS 

1/2 d? 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

from Equation (3.53).  Here, ? is expressed in terms of 5 In Equation (3.59) 

and C. is a constant.  The constant C can be determined by examining the 

asymptotic form of Ai(C), which for C << 0 is, 

1 .12 AKO  ~ 
^k|1/4 

sin 0 kl 3/2   +    , (3.65) 

Thus,  using Equation  (3.63),  we  obtain  for  the asymptotic  form of  th?  total 

wave envelope. 

S     = 1 .    ll 1,3/2    .     TT\ (3.66) 

Using Equation (3.66) in conjunction with Equation (3.64) we find 

3/2 
iC 

] 

/F 

(2   .   .3/2  .  Tr\ coS(3    ICTJ^J 
(3.67) 

as the asymptotic expression for the wave difference.  Normalized to a unit 

incident amplitude [$   =1] at 5 «-A, the asymptotic form of the incident 

and reflected wavss are 
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h 
^.(jL)"'.xP|lk.[A«-iV¥ma/2] (+) 

and 

♦ (-) 
(-) 

(-M^4k.[A«^Vfm3/2]-f| 

(3.68) 

(3.69) 

♦o'    ^«1 

The velocity potential of the total wave has the modulated envelope: 

,. 2,o^y/A
cosj^V^"ui3/2-!|-p|ik*A^-^\   (3-70) 

as does the wave height y,.  The wave height may be obtained from the equation 

^s = /^r dt = Adt 

(3.71) 

which using Equations (3.5) and (3.6) yields 

1 (W\ 

For an incident wave whose peak amplitude at C - - A i« AY. the wave height 

as a function of position 1" the real part of 

where 

k* JJ7 
1  * A 

3/2 

3 ' A 

or in other words 

.(c) ■ ^(itr)1Mfico,(,",,>,in)k*^Cidc"ft 

+ 4we0||| •ln(«-ir)co»jk*yK1 d« - »tjl (3.72) 
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4.     APPROXIMATE SOLUTIONS 

, 

we „ow u« the ecetterlng fo«ll» of the precede section to exe^ne 

th. appro,i.ete cha»ge 1» the .«..« »e.e ee It Inter.et, with the Intemel 

current. U.in. egeln the notlnn thet If the surfece current verlee repldly 

„1th poeltlon, reflected vevee cen be genereted.  If » «•«- thet these 

reflection, ere weak, then It le possible to write tb. reflection «trlx In 

the approximate for« given by equatlon (3.37). These assumptions will be Mde 

U the following section, where the reflected weve Is cslculsted In the Born 

approxlmetlon. Section 4B will take Into account the ..rlablllty of the re- 

flected wave amplitude end discuss the elkonel (WKB) eolutlon to the problem. 

„ will be determined thet the WKB solutions egree with the solution, obtained 

for the coupled differential equations [(3.A9) and (3.50)1 In Section 30. 

4A.  The Born Approximation 

we will now continue the analysis begun In Section 3B. where the scatter- 

ing of a wave at a boundary I. discussed.  In this section we assume that the 

„plltude of the incident wave Is constsnt throughout the interaction. We 

.HI further assume that the end point. >f our propagation interval (^ and «„) 

in Equation (3.30) are very far from the interaetion region,  mcorporating the 

.ingle reflection hypothesis in Mu.tio„ (3.30). taUng tb. continuous limit of 

the product of the propagation matrices [Equation (3.39)1 and using the scat- 

tering »tria fro. Equation (3.36). -a mey write for the «fleeted weve. 

♦refl 
(4.1) 

50 



Equation (4.1) Is the continuous analogue of Equation (3.38), i.e., because 

there Is only a single scattering from each of the steps (C.)i the reflected 

surface wave la a linear superposition of each of these small reflections. 

■ 

We may write Eq. (4,1) In a more manageable form by taking the limit of the 

series as an integral In the same spirit as we constructed the propagators [Eq. 

(3.39)]. To do this, consider the reflection coefficient in Eq. (3.21b), where the 

wavenumbers k,  and k„  may be more instructively writ-ten in terms of the 
A       B 

positum variable £ .  We delete the index labeling the region and write 

t h 
the difference in wavenumber at the j   step as 

,(+) 
tf'- M+l  sj| d? 

dk (+) (4.2) 

5 = 5, 

when the step length U.+1 ~ ^J  
ls sufficiently small. Using Eq.  (4.2) 

and (3.21b), we may write the reflection coefficient as a function of posi- 

tion 

rj   cv ~ .» k ^(CJ-k^Oj) 

dk 

dC 

(+) 
(4.3) 

c-s 
j 

Further, since the variation in wavenumber with position is dependent on the 

variation in the surface current (- ßc) with position; it is more natural to 

write equ. (4.3) as 

-rv- dk(+)dß 
dt, 

r T 
(4.4) 

t-c J 

By substituting Equation (4.4) into Equation (4.1) we may express the reflected 

wave In terms of t'.ie integral, 
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Iren    ^xp Ik^Ac^^ - K<-V) d^] d^+)    ^ 

*o   "        <i+) (O  - S-ÜK) di— df d« '   ^-5) 

where the continuous limit of Equation (4.1) has been taken. A further simpli- 

fication can be made near the resonance condition ß+O, n^l/4, i.e., the point 

where tc  becomes zero in Equation (3.44): 

*refl       i   f
eM^/2±^j     dU 

♦o       J   8<c /rr^      d5 dc   ' 

where ic = [< + - K(~)]/2, and we have used n2 - 1/16 in an expansion of 

/l -4n . 

In the Born approximation the wavenumber K is assumed to be a constant 

throughout the interaction interval and may, therefore, be removed from the 

integral sign as follows 

♦. 
1  f    l2k*KC dU  ., refl 

8K C /I -4n 

We may integrate Equation (4.6) by parts to obtain, 

-I£ll    =      k*   /* U(S1 oi2k*7c Jr A       " ,  /  —f^ e dC  . (4.7) 
*o       4/1 -4n ■/    c 

— 00 

This is the Bragg condition for scattering, where the reflection from the 

train of surface currents is proportional to the Fourier component of the 

surface current distribution at the "mean" wavenumber 2k*7 .  Since at the 

resonant condition the surface gravity waves are typically of much shorter 

wavelength than the internal waves, this contribution to the reflection is 

usually very small. 
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4B.  The biikonal (WKB) Approximation 

Of much greater Importance than the weak Bragg reflections considered 

In Section 4A is the possibility of total reflection of the impinging waves, 

and associated with this, the possibility of trapped waves. To analyze 

this problem we will use the WKB approximation in the slowly varying regions 

far from the turning points and match thene asymptotic forms to the Airy 

integral expressions (Section 3Ü) which are valid in the vicinity of the 

turning point. 

The normal WKB approximation (as used by moat workers) permits only one 

wavenumber to characterize a wave packet and thus must be carefully interpreted 

when applied to the problem of a wave packet incident on a region having reflecting 

properties.  In the coordinate system moving with the pattern of surface current 

produced by the internal wave, there are four different propagating waves which 

may coexist at the same frequency (see Fig. 2 ).  Two of these can be strongly 

coupled if the wave frequency is close to the resonant value (g/4c). Thus, when 

applying the WKB approximation to this problem it is important to allow for at 

least two coexistent waves.  The effects are most easily deduced from the full 

wave equation. 

We consider first the distortion of the wave as it passes through a 

region of slowly varying surface currents, described by U(O•  Thus, at point 4, 

we have in general for a right traveling wave, using Eqs. (3.1), (3.6) and (3.8), 

2 
—10 4. + 2cl^^ + c2*^ + 2ua)[-iü)^ - c(^j - ig^ - 0.      (4,3) 

We wish to use the WKB approximation to describe the distortion in the 

Interaction region, to this end we introduce the normalized variables from 

Section 2, and rewrite Equation (4.8) as. 
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2  . Jl 
.   + lk* Safeilii ♦, - n-i^- ♦ - o . (A.9) 
♦te i- 2ß       ^    f-le ¥ 

To gain insight into liquation (4.9) let us put the equation in the fol- 

lowing form. 

iL_ (P4) + GP* - 0  . 

«U2 

(4.10) 

Taking the prescribed derivatives and equating terms to those ir Equation (4.9) 

yields for the functions P and G 

exp -i /k* <l 

and 

(k*ie2) + ik* 

d< 

die, 

'V    •  - d? 

Therefore, with the substitution S- P*, we obtain 

(4.11) 

(4.12) 

4 + [( 
d5     L 

(k*ic2)^ + ik* de J 
S - 0 (4.13) 

for Equation (4.9), which is Just tha: obtained from the coupled differential 

equations in Section 3C [3.55], when P* is the total wave envelope. 

In the eikonal or WKB approximation we write G in Equation (4.13) as, 

S - Ae^ <4-14> 

when we require that both the amplitude (A) and phase (F) be real.  Substituting 

Equation (4.14) into (4.13) and equating real and imaginary parts yields the 

coupled equations. 

LH ♦ [(k^)2 - r*] A    -    0 

and 
dK 

r« ♦ 2rc \/k + k* dT 
i  -   o   . 

(4.15) 

(4.16) 
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It Is convenient  to define ^rmK in the above equations, which may then be 

written as 

K2 -   (k*K2)2 +-■& 

and 

d     ,A2 
dK 

1 A2 _- (A <)  - - k*  L A 
dT dt 

(4.17) 

(4.18) 

When K is  slowly varying over many wavelengths, then we may neglect the 

second term on the right hand side of Equation (A.17).  In this Halt (the 

elkonal approximation) 

and 

K - ± k* K2(5) 

r - tfv.** a') de' (4.19) 

A second approximation, which Is coislbtent with the analytic treatment In 

Section 3C Is to neglect the contribution of dK./'lC to Equttlon (4,18).  In 

this case the amplitude varies according to 

MiL. - t/_L_ 
A(C )       ? «„a 

) 
o_ 

(0 
(4.20) 

which results from the approximation 

d_ 

d5 
4- (A2K) * 0  . 

Using these results In conjunction with Equations (4.14) and (4.11) we may 

write the envelope of the wave potential In the form, 

(4.21) f- ' Vrrir expK/k*[^'> *'c2<e'>]de'- lut 

where 4 Is the Initial amplitude. The wave height at a point € with reference 

I 
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to the height at the point 5 where the current [U(C)] vanishes, is given by 

aM 
JL - 

.V Ü«J- 
exp iy k*^«') ± K2(t')Jd5' - 

5o 

iut (4.22) 

where K^  and 1C2 ,nay be obtained from Equation (3.45). Equation (4.21) is in 

essential agreement with the asymptotic expression in Equation (3.69) when 

a linear current profile is assumed and when we Identify the + sign with ^ ' 

and the minus sign with 4^ . Thus we may take the general solution to be 

given by 

where i**'  and ^^  are given by Equation (4.21), except in the vicinity of 

the turning point.  In this latter region, we must use the full wave expression 

(Eqs. 3.63 and 3.63). 
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5.  DISCUSSION AND CONCLUSIONS 

This section is divided into three parts. The first part summarizes 

the mathematical structure of the paper stressing the various assumptions 

employed. A descriptive summary of the physical mechanisms Involved in 

the scattering process based on analogy with balls rolling on slowly-varying 

potential surfaces is provided in the second subsection. The third sub- 

section discusses the phenomenon of surface modifications produced by weak 

currents and presents exemplary calculations of the modifications expected 

for a 'linear' sea. 

5A.  Summary of the Formal Structure 

In Figure 9 we indicate diagramatically the major content and structure 

of the mathematical analysis developed in Sections 3 and A.  The general 

hydrodynamic equation for the ocean surface 

(•tt + (7««70^ + i V».V(V«.V*) + g» 1  ,    - 0 (5.1a) ,-t        t  2 ylsurface 

is used to model the interaction between surface gravity waves and low speed, 

low amplitude surface currents. This is done by assuming the velocity potential 

to be of the form ♦-♦ + «<0), where '«'(x.t)- V*(o) is the weak surface current and 

t is the velocity potential for the surface gravity waves.  Equation (J.l) is 

linearized by taking the ratio of the gravity wavelength to the current wave- 

leneth (X   l\ ) << 1 , «o that in one horizontal dimension we obtain B    wave current 

♦tt+ 8*y + ^(x.t)^ M 0  . (5.1b) 
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BASIC EQUATIONS 
WITH U = f(x,t) 

I 
LINEARIZED SMALL AMPLITUDE EQUATIONS 

AWAVE'XCURRENT * * 
- LIMITED TO R WAVES. 

- STEADY CURRENTS (IN MOVING FRAME) 

I 
CONSTANT CURRENT DISPERSION RELATIONS 

(i) = b)(k,u) 

i 
STEPWISE CONSTANT CURRENT; 

SCATTERING AT INTERFACES 

i 
CONTINUOUS STEPS^ ARBITRARY MEDIUM, 

'FULL WAVE" SOLUTIONS, TURNING POINTS 

E ■^ BORN APPROXIMATION 

EIKONAL (WKB) 

WAVE HEIGHT & SLOPE MODULATION, 

DIRECT WAVES, REFLECTED WAVES 

FIGURE 9.  STRUCTURE OF THE MATHEMATICAL DEVELOPMENT 
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Equation  (5.1b)  has a first order Interaction term Involving a prespeclfled, 

non-uniform surface current. 

There are a number of possible causes of the surface current, e.g., 

general ocean circulation,  swells,  river Inlets,  Internal waves, etc.    If 

we assume that the current Is  the result of an Internal wave propagating 

along a thermocllne,  the situation Is unique In that, In the coordinate 

system travelling with the internal wave, the surface current pattern Is 

stationary  (so long as  the Internal wave is non-dispersive).     In this 

coordinate sytem U - x- ct)  there exist four possible co-existing waves, 

two of which have a positive and two of which have a negative phase velocity 

[see Figure  (4)].    The two waves with positive phase velocities  (right 

moving or R-waves),  have a dispersion relation  (for constant current U ) 

Sofn+tclK + K -n   ~ iw - K2 + 2&nV}TKiK + K   ~   it (5>2) 

in terms of the normalized frequency (n - cw/g), wavenumber (tc = kc2/g) 

and current (S0 - Mjc),    These two waves have opposing group velocities 

(dw/dtc - dn/dK - cg), however, and our discussion centers on the inter- 

dependence of these two waves (*(+) and ^  waves).  In the case of a 

oteady current [U(0], this description leads in a natural way to the notion 

of incident and reflected waves from the weak current region. 

From the above dispersion relation [Equation (5.2)] it is possible to deter- 

mine the wave frequency in terms of the wavenumber and current amplitude. At the 

point where the group velocity of the R-wave vanishes (c « dn/dK - 0) the surface 

wave travels In synchronism with the Internal wave and the *(+) and /") waves are 

strongly coupled. This condition for strong coupling can be expressed in terms of 
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critical values for the current, via the dispersion relation.  These concepts 

are formulated mathematically in Section 3B by considering a stepwise constant 

current. Each step is treated as a boundary and the incident wave is partially 

reflected and partially transmitted at each boundary.  By requiring continuity 

of amplitude and slope of the transmitted and reflected waves at each of these 

steps, a scattering matrix for the current region may be developed. The con- 

tinuous limit of these equations using the assumption of a weakly reflecting 

current is taken in Section 3C.  This leads to a set of coupled partial dif- 

ferential equations for ^^  and $(~K    The coupling is dependent on both 

the current and the spatial gradient of the current. 

The above set of coupled differential equations [Equations (3.49) and 

(3.50)] may be reduced to a single equation for the wave envelope, i.e., 

S ~ (fW + 4i(-), [Equation (3.55)].  This equation becomes an Airy integral 

for a linear current profile when the distance from the reflection point is 

much greater than the characteristic wavelength of the gravity waves. 

In Section 4 the connection between the scattering approach to the in- 

teraction problem is compared with a straightforward treatment of the linearized 

dynamic equations [Equation (5.1b)]. A little algebra establishes that in the 

moving coordinate system 

il + (« +lo2)S 
dr 

(5.3) 
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where S Is the wave envelope as defined In Section 3. The scattering theory, 

therefore, yields the same dynamic equation for the interaction problem as 

linearizing Equation (3.1). 

Equation (5.3) is solved in the WKB solution under the condition that 

a1 » a», which is the same condition used in Section 3. The WKB solutions are 

identical to the asymptotic form« obtained in Section 3 when a linear profile 

for the current is assumed. The turning points in the WKB solutions, i.e., 

the points where the wave amplitude becomes infinite, are the spectral or 

total reflection points for the incident wave. This is discussed more fully 

in Section 5C. 

5B.  Interpretation in terms of the scattering of wave packets. 

The above summary of the formalism has shown that the two models - 

(i) the linearized hydrodynamic equation for the ocean surface, and (11) the 

notion of weak reflections of the surface gravity waves by the surface current - 

imply the same dynamic description of the interactive process. The importance 

of the present description of the process lies in the physical insight that 

it provides. We see that, just as in the scattering of electromagnetic 

waves from a region of varying refractive index or scattering of a quantum 

mechanical wave (i.e., a particle) from a potential well, it is possible 

to Interpret this linearized ocean wave-current interaction model in terms 

of scattering theory. 
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Under certain circumstances the scattering can be very strong 

(resonant). The Interaction has a close formal analogy with scattering 

of particles by a shallow potential well.  In order to give a physical 

description of the type of resonance involved, we describe the analogous 

resonance which occurs in scattering of particles by a shallow potential 

well and make reference to the text where appropriate. 

Think of a tightly stretched rubber sheet, and of a very slight hill 

travelling at constant speed (v^j^) across this sheet (as would be created by 

a moving finger pushing the sheet up just slightly from below).  The hill is 

the surface current distribution (v_,, - c .   ) created by the internal wave. 
hill   phase 

We now shoot marbles at the moving hill.  The marbles are the short wavelength 

surface gravity waves (v  .,  - c ).  A marble moving very fast will not be 

much affected by the hill except for feeling it as a brief faint bump.  A marble 

moving very slowly will also not be affected very much since the hill will 

overtake it and pass it too quickly to cause much motion.  However, a marble 

that moves almost at the same velocity as the hill feels its presence for a 

long time and can interact strongly.  This is the resonance.  For low hills a 

perturbation theory could be used to describe the interaction, but the results 

would blow up when v. .,, ■ v  , ,  [Equation (2.26)], giving a perturbation 

growing linearly in time [Equation (2.28)] (this is essentially the Hartle- 

Zachariason calculatirn for the wave-wave interaction).  In tills model 

(at least in a one-dimensional model), it can be shown that there if. a specific, 

sharply bounded range of marble velocities centered around v. ... for which the 

interaction is strong and that outside this range the interaction is weak.  In 

this velocity range Ch« marbles lose or gain energy as they hit or are hit by 
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the hill.  The effect Is moat easily understood by viewing It in a coordinate 

system moving with the hill (remember this is one dimension so that the hill is 

more like a long ridge).  In this coordinate system the hill (Internal wave cur- 

rent) does not move. Marbles (short gravities) overtaking the hill appear now 

to come from the left whereas marbles being overtaken by the moving hill appear 

to impinge from the right. The impact velocity is ± (v  bl - Vm) " ±lAvl 

(see Section 1).  For large |AV| the marble slows down slightly as it climbs the 

hill, but regains its original velocity as it rolls down the other side.  How- 

ever, there is a critical value of Av(= Av*) , dependent on the hill height (A ), 

below which marbles cannot get over the hill - they are reflected.  In the ocean- 

fixed coordinate frame, these marbles gain or lose a velocity *2Av. The interaction 

is very strong for marbles having velocities in this range (vhill ± Av*(A )), 

i.e., every such collision results in a (group) velocity change of ±2Av. 

In particular, it is to be noted that no marbles which have a velocity 

in the range vhlll ± Av*(A0) are ever found on or near the top of the hill - 

they are always reflected away. 

For a given internal wave having speed c and amplitude A0, there is a specific 

range (X^  to X2) of wavelengths of surface gravity waves which are strongly re- 

flected by the current pattern of the internal wave. That is, for X^ < \ < X2» 

waves obeying 

c - 7^gX/2ir < Av*(A0) 

cannot exist at the top of the internal wave.  Such wavelengths should be absent 

or at least strongly altered in the wave amplitude power spectrum and therefore 

also in the radar return in certain regions over the internal wave. 
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5C.  Application to the Mechanical Generation of 'Slicks' 

In this section we provide estimates of th^ range of frequencies and 

wavenumbers which are predicted to be strongly altered by a given Internal 

wave.  Also, examples of the spatial modulation of a wave spectrum are 

evaluated for a 'linear' sea. 

For a finite packet of roughly sinusoidal currents having a peak 

amplitude A0, the frequencies which can be reflected, i.e., for which there 

are turning points, should be in a range 

that is, 

i  A (5.5a) 

X * 1 ** . (5-5b) 

Ac  4 c2 

(5.6) 

These are v.ve frequencies a. seen in the .o.ing coordinate system. The cor- 

responding wavenumber range (outside the current region) can be obtained from 

the dispersion relation for the unperturbed ocean! 

Thus, waves in the free ocean that have wavenumbers in the range 

/—— (5.7) 
Ik - kRl < 2kRVA0/c 

(where kR is the wavenumber of the resonance [cg(kR) = c])wlll be reflected 

(I.e.. reverse their group velocity as seen In the moving coordinate system) 

by the surface currents.  In the ocean-fixed coordinate system waves having thes. 

wavenumbers do not in general reverse direction but appear to Interact strongly 

with the current region. 
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Tht- variation of the wavenumber with position in the current pattern 

can be followed with the aid of Figure 10,  Here we have plotted the value 

of the reduced wavenumber K as a function of the local value of the reduced 

current (ß) for various fixed frequencies (n ■ constant).  In this plot the 

unperturbed ocean is the vertical axis |S " 0 and the point representing a 

given wave packet moves along one of the curves n ■ constant as the wave 

packet traverses the current region.  Reflected waves are those which return 

to the B = 0 axis at a value of re different from the Initial value. 

For example, according to Figure 10, waves having an unperturbed (reduced) 

frequency n - 0.24 can be reflected if ß dips below - 0.04. Viewed from 

the ocean-fixed coordinate system, these waves change their wavenumbers 

a« a result of a "colllalon" with a turning point: 

k 

and lose or gain velocity 

Ac 

c g 

Klyfkjl 

<y/T7c 

The mean square amplitude Is unchanged (In this one-dimensional problem), but 

the mean square slope .can,change within the limits: 

I- 

Aikai: 

(ka)2 
< 4 VVc   • 
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These changes are the "residual" changes that remain after the 

wave has ceased Interacting with the current pattern. The changes that 

take place during the course of the Interaction can differ considerably 

from these values. However, even these residual values can be significant. 

Consider a Ion, wavelength Internal wave propagagatlng at 0.5 meters/second 

along a thermocllne at  50 me,ers depth.  An amplitude of the Internal 

wave of one meter would create a surface current that oscillates between 

+ 1.0 centimeters/second.  This current would (In the absence of non-linear 

effects) be capable of strongly Interacting with surface waves having wave- 

lengths between 50 and 75 cm.  The most strongly-altered waves would have 

their wavelengths changed by up to 40Z, their group velocity by up to 202. 

and their mean square slopes by up to 80%. 

As Indicated above, the moving current pattern associated with a 

travelling Internal wave modifies the spectral distribution of surface 

waves in two ways.  Within the region of finite current gradient, the wave 

amplitudes and slopes are altered according to Equations (3.49) and (3.50). 

In addition to this local effect, some of the waves Intercepted by the 

current pattern are modified by the scattering process described in Section 3 

and leave the region of interaction with altered wave speeds.  As these 

reflected waves propagate away from the current pattern, they alter the 

spectral distributions at distances remote from the scattering region. To 

demonstrate these effects, we consider the effect of the passage of a simple 

gausslan-shapen internal wave packet of peak amplitude a travelling along 
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. »hTply-defl-ed then.ocUn. .t depth D (Figure 11). a. 8ur£ace 

current has the form 

Co    S - -- exp (- (X - C0t)
2/A2)  . (5>8) 

and we evaluate the steady state spectral distribution at differing 

spatial locations relative to the current packet. 

in the frame of the internal wave. R-waves impinge from both directions 

"(+)" waves, corresponding to wave packets moving in the positive direction 

and having group velocities greater than that of the internal wave, and *(-).. 

waves, corresponding to those moving slower than the internal wave, 

in Figure 12 we show x - t plot. of wave packet trajectorles>  ^ ^ 

that are reflected by the current  ».4. 
y    current regions appear as discrete bundles In 

these plots. 

To de,no„8trate  the modlflcatlon „, . ^^ ^ ^    ^ ^ 

a er.,.ai., curr(!nt ,.„.„. we a8sune that ^ lnc.dent ^^ ^^ a 
k  epec.ru».  Ihls spectral ,,„ ^ ^ ^ ^^ ^ ^  _ 

«.. elthoueh lt is recog„Ued ,„„ thli ^^^ ^^ ^^ is ^^ COM1JMM 

»Ith the concept „| . ... Unlted by ^^ ^^      ^ ^ ^ 

we .how the o.UuUt.d pouet spectre« („ultipUed hy .3, „ three 

different points,  on. .h.od of. one h.hlnd, and one directly over the 

interne! „eve.  These „.„u. „ere ohteined using the »B epprox^tion 

forties (Hqu.tlons 4.21 a„d «.22) ulth the „^ ^ pattern  ^^ 

hy the refUoted „eve sheered  out.  The dete or, presented In ter„s 

of dlnensionuss veriables end con he scaled to various conditions.  For 

example, for an Internal „ave velocity of 50 c/aec, eh. „sonant 

»avenu.ber. frequency, and „avalength are:  k . 0.097 CM"!. B . 9.8 .„1 _ 
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A - 64 cm (corresponding to the dlmenslonless values K  » o.25 and 

1-0.25.).  For the example chosen (0 - - 0.04), the surface current 

varies from zero to - 2.0 cm/sec over the crest of the wave. 

The calculation shows a number of interesting effects.  First. 

over the Internal wave crest (Figure 13b), the spectrum is distorted over a rather 

broad range of wavenumbers. The broadening is less ahead or bahind the 

Internal wave (where it is consistent with approximate estimates given earlier). 

Another effect noticeable is the lack of intense caustic formation. 

Although a single wave incident on the pattern would show a large amplitude 

enhancement (infinite in this approximation) in the neighborhood of its 

turning point, this is not true when the incident waves are spectrally 

distributed.  Here, because different wave packets have turning points 

at different locations, the net effect on the spectrum is a finite dis- 

tortion (see Figure 13b). 

Outside the current region we see the effect of reflected waves. 

In front of the internal wave the net effect is an apparent depletion of 

the high wavenumbers (a "smoothing").  This results from the fact that, 

as the surface waves are overtaken by the internal wave, those that are 

"blocked" by the current are accelerated and move ahead of the current 

pattern with decreased wavenumber (increased wavelength). 

Because the spectrum falls off rapidly with increasing wavenumber. the 

resulting depletion at high wavenumbers is much more noticeable than the 

corresponding increase at low wavenumbers. 

The opposite effect occurs astern of the internal wave. Here the 

reflection process increases the wavenumber resulting in a strong increase 

in the high wavenumber part of the spectrum as compared to a fractionally- 
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weaker decrease In the low wavenumber part.  Thus this linear model would 

predict an apparent high wavenumber smoothing ahead of the internal wave 

crest and a roughening astern.  Directly over the crest both effects 

occur:  low wavenumbers are enhanced, high wavenumbers are suppressed. 

The morphology discussed above applies to a linear sea. Non-linear 

effects in the real ocean can be expected to severely limit the magnitude 

of the effects induced; however, the morphology should be similar.  That 

is, a region of advancing positive current gradient (such as that over 

the bow of an internal wave crest) tends to accelerate the near resonant 

waves and results in a depletion of the high wavenumber portion of the 

spectrum (a "smoothing"). An advancing region of negativ? current gradient 

(such as in the convergence zone trailing an internal wave crest) leads to 

enhancement of high wavenumbers (a "roughening"). 

One can infer some of the real ocean effects by following the motion 

of an individual wave packet as it traverses the variable current region. 

In Figure 14 we show histories of a wave packet as it enters the current 

pattern and is reflected.  The mean square amplitude enhancement and mean 

squara slope enhancement are plotted as a function of time.  In a truly 

linear sea, the amplitude and slope enhancement depend solely nn the local 

value of the current and is maximum when the group velocity relative to 

the internal wave vanishes. 

The enhancements shown in Figure 14 are much larger than can be 

expected to occur in a fully-developed sea, however.  A rough estimate of 
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the reaJ ocean effects to be expected can be obtained by introducing the 

concept of a coherence time.  This is the time required for wind, wave-wave, 

or dissipative interactions to alter the wave under consideration.  Rough 

estimates of this time (measured In wave periods) are shown in Figure 15 

and indicate that coherence times in the range of 10 to 100 wave periods 

are typical for a saturated sea.   The wind interaction time was estimated 

from Phillips (1966).  Two estimates are given for the non-linear wave in- 

teraction time; the upper one according to Benjamin (1967) [T/T • kZa2/iT 

2 2 
and k a ~ 0.006 for a saturated sea] and the lower one according to Has- 

2 2 
selman (1967) [T/T ^ V? with the mean square slope 7^  fitted to the data 

of Cox and Munk]. 

For example, consider the gaussian-shaped internal wave discussed 

previously.  This wave had a half width A » 50 meters, a peak amplitude 

a = 2 meters, and was assumed to be travelling at 50 cm/sec along a sharp 

thermocline at 50 meter« depth.  We follow a surface wave which, in the 

unperturbed ocean has a wave length equal to 95 centimeters (wave period 

of 0.78 dec.) and which travels at a group velocity equal to 60.8 cm/sec 

(i.e., it is overtaking the internal wave at an initial relative velocity 

of 10.8 cm/sec). 

According to Figure 14 this wave will be decelerated to the internal 

wave speed by the time it has penetrated to a point 24 meters behind the 

internal wave crest.  For such a wave the width of the "full wave" region 

(as defined by the point where the Airy integral argument c,  is equal to 

unity - see Eq. 3.59) is given by the expression 
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........... 

Ax * f4c/(k2du/dx)j1/3 

where du/dx is the local current gradient. At the reflection point in 

our example, the current gradient is about - 4 x lO-4 sec" and Ax is 

about 75 cm. 

If the sea were truly described by linear theory, the mean/square 

amplitude and slope would have been enhanced by the factors 6 and 10, 

respectively, at the edge of the "full wave" region. However, the time 

for the wave packet to travel from a point at the edge of the current 

region (say x * - 50 meters) to the point of maximum enhancement (the 

edge of the "full wave" region) is very long: At SB 6 A/c = 600 seconds 

or about 770 wave periods. According to Figure 15, it is unlikely that 

such a wave will have such a long coherence time except when the wind 

speed is quite low. Thus it is more appropriate to ask what happens to 

a wave which is born within the current pattern and which travels a 

relatively short distance from its birth place. 

Consider a wave generated at the point A in Figure 14 (26 meters 

beind the crest of the internal wave).  Such a wave has a wrvel ngth of 

74.2 cm and a group velocity of 52.2 cm/sec (2.25 cm/se^ relative to the 

internal wave).  In 50 seconds (64 wave periods), it will move .o a point 

1.12 meters closer to the internal wave crest. During this time its mean 

square amplitude and slope will be enhanced by the factors 1.23 and 1.30 

respectively. These values are probably more realistic for the normal 

state of the ocean than the values quoted in the previous paragraph. 
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It Is to be noted that the enhancement etfects discussed above are 

only one of two effecta that result In modification of ocean wave spectra. 

Even in the absence of enhanced amplitudes, a spectrum will be altered 

because of ehe simultaneous wavenumber changes induced by the current gra- 

dient (refraction).  In order to assess the simultaneous effects of these 

two phenomena, as well as to account for the finite coherence time effects 

and the effects of non-linear saturation, it is necessary to develop a 

formalism for treating the spectral deformation in terms of a spectral re- 

laxation or transport equation.  The development of such a model will be 

the subject of subsequent reports. 

The spectral modifications predicted by the present model are summarized 

Figure 16.  The phasing of the "smoothed" region (i.e., the mechanical 

"slicks") in this linear wave model is just opposite to that one would ex- 

pect as a result of enhanced viscous dampl.ig in the convergence regions due 

to an accumulation of organic material or other debris. 

Although one is tempted to draw conclusions concerning the phase re- 

lationship of regions of roughening and smoothing in the ocean based on 

this linear model, it must be remembered that the actual predicted effect 

is one of spectral distortion with simultaneous enhancement of some wave- 

lengths and suppression of others.  The non-linear effects present in real 

saturated ocean spactra are not likely to affect all wavenumbers equally. 

Thus the model needs to be extended to Include the effects of wind genera- 

tion of waves and of non-linear wave-wave interactions, including wave 

breaking, before one can make confident predictions of real ocean wave 

spectra modifications. 
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APPENDIX: MICRO-STRUCTURE OF THE TURNING POINT AND APPLICABILITY OF THE 

WKB APPROXIMATION 

As pointed out In the WKB approximation of Section 4, there exists 

the possibility of reflected waves at the WKB turning points. I.e., the 

points where the wave amplitude becomes Infinite. According to the dispersion 

relation [Equations (3.44) and (3.45)], the reduced wavenumber K has an 

Imaginary part (corresponding to evanescent wave*) when 

1 - 4n(l-ß) + 4n2ß2 < 0  , (A.l) 

In other words, when the reduced frequency rj lies between the critical values: 

and 

l-g 

202 

l-g 

2ß2 

i - yi-ß2/(i-ß)2 

r 
1 + fl-ß'/(l- 3) - «n2 

(A. 2) 

(A. 3) 

that Is, when 

r^ S n ^ n2 (A.4) 

the wave cannot propagate. Thus, for small values of 3, evanescent waves are ex- 

pected when 

1 ^ ^ 1-6 
T 2:1 > ~"7— 
fJ2     4 (A.5) 

which Is obtained by expanding Equation (A,2).  Of primary Interest to us Is 
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the low frequency limit, since we learned earlier that at this limit the 

reflected wave amplitude becomes infinite in the WKB approximation. 

To expand on this result, let us consider the group velocity of 

the surface wave in this (moving) coordinate system. Using the dispersion 

relation (Equation (5.2)] for the reduced fluency, and neglecting terms 

gradratlc in 6t 

n * - K(1 -ß) ± \/ir (A. 6) 

we obtain for the group velocity (relative to the Internal wave velocity c) 

c 
(1     ß)   S/^ (A.7a) 

where the upper sign correspond« to the low frequency mode of Interest;  thus 

-JL  =   -   !  +  _L_ +  ß (A>7b) 

/4K 

and, at the point n - n1~ l/[4(l -ß)] where-^  1/[4(l-2ß) ], the group veloclt 

is 
c 
-f     =      -(1-3)   +    Vl-  2ß     «      0      . (A.8) 

The point n = n^^ Is thus a turning point and corresponds to specular or total re- 

flection of the gravity wave by the surface current at points where ß = i _ 1/4 

[see Equation (4.23)]. 

In the evanescent region the wavenumber Is complex and may be tnrltten In the 

form 

K     "     K*  +  iKl (A.9) 
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"^^P" 

which when substituted Into the dispersion relation Equation (3.11) yields 

values for tc and K   : 
K     I 

and 

K      - 1-2(1-8) 
R    2(1- 23) 

2    (1- e)n - I 
1      (l-2ß)2 

(A.10) 

(A.11) 

For small ß these expressions are [ In terms of the critical frequency 

and 

.2 «i/n ^(t-1) 

(A.12) 

(A.13) 

A measure of the applicability of the WKB approximation Is the relative magni- 

tude of the "skin depth" or penetration depth at the turning point compared to 

the dimension of the current pattern. The penetration length is of order 

d ~ K k* 
(A.14) 

It  Is convenient to evaluate this length near the resonant condition, I.e.. 

near the value of KR for which i ^TR - c.  For an Internal wave propagating 

along an Interface at depth D between two uniform layers that differ In density 

by an amount Ap, we may write (since c2 - g(Ap/p)D) 

k* - p/DAp 
(A.15) 

1 
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Thus, 

d a 2(Ap/p)D/V^n- 1-6 (A. 16) 

As ß increases, higher and higher frequencies can propagate. Thus, 

the negative parts of the current will reflect the lowest frequencies and 

the more negative is the value of the ß in the wave trough, the stronger will 

the extinction of the surface waves be.  The value that (-8) must exceed the 

critical value (l-^n) in order that the penetration depth be, say, 5% or less 

of the thermocllne depth D is given by: 

-ß5% =• 1 - 4n + 0.0016 (A.17) 

where we have taken an air-water interface (Ap/p - 10"3).  Thus, small changes 

in ß will cause a wave that could just penetrate the entire current region to 

be reflected in quite short distances.  This ;hange is small compared to typical 

variations of 8 expected.  Thus, for most of the waves we can assume that if 

they are reflected at all, they will be reflected from highly localized regions. 

* The internal wave height Yj is given by 

YI^)   sinh Kg 

For the typical case KD £ 1, significant wave heights (YI> .01D) are always 

associated with ß variations large compared to that In Eq, (A.17). 
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