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| INTRODUCTION

It is known that the surface currents associated with travelling in-
ternal waves can be sufficiently intense to produce modifications of the
surface wave structure that are visible both to the eye and to radar
(Ziegenbein, 1970; Perry and Schimke, 1965; Polvani, 1972). 1In a series
of measurements off San Diego, Lafond (1963; 1966) has shown that visible
surface slicks, under certain wind conditieniz, move with the underlying
train of internal waves. A later series of measurements at the same in-
strument platform has shown that these slicks are detectable with radaf
and exhibit phase correlation with the current pattern produced by the

internal wave train (Polvani, 1972).

Two different mechanisms have been suggested as responsible for the
coupling of internal waves to surface waves, one associated with changeé
in surface composition and the other a direct modification of wave struc-
ture. Lafond (1966) suggested that :he divergence and convergence of the
surface current over the leading and trailing portion of an internal wave
maximum disperses or concentrates extant organic material on tne surface
ir a way correlated with the internal wave phase. The resuliing increase
in the damping coefficient in the convergenee zones reduces the amplitude
of short wavelength gravity-capillary waves in these areas and changes the

average wave slope and reflectivity,

A number of authors have noted the resonant effect that may be ex-
pected on a surface wave packet that travels at the same speed as the in-

ternal wave train (Hartle and Zachariason, 1969; Holliday, 1971; Rosen-



bluth, 1971; Phillips, 1971; Ko, 1972). Since, at resonance, the wave packet
1s able to travel great distances while remaining at the same phase point of
the internal wave, the continuing interaction leads to a continuous energy

transfer from the internal to the surface wave.

The theoretical models of the wave-current interaction may be divided
intc two broad categories, which we might characterize as space oriented

(wave packets) or wavenumber oriented (modal).

The wave packet modeis (WKB, eikonal, ray theory) developed by Longuet~
Higgins/Stewart (1961), Whitham (1966), Phillips (1966), Holliday (1971),
Ko (1972), consider the surface as a superposition of a number of spatially-
localized wave packets, each characterized by a characteristic wavenumber

k(x,t) and wave frequency w(x,t). These packets move along trajectories

defined by N
dt 4
dk __ 2w
dt 22 '

> >
where the notation indicates gradients in k and x-space respectively.

The mode-oriented models [Ba.l (1964), Hasselman (1967), Hartle/
Zachariason (1969), Rosenbluth (1971)] describe the surface essentially as
a superposition of various modes (sine waves for the unperturbed ocean)
and concentrate their attention on the transfer of energy between modes.
When applied to small amplitude waves, both treatments are equivalent since
the requirements for validity of the WKB approximation are usually well

satisfied for the waves of interest. However, the equivalence tends



to be obscured in development of computational models. In a modal descrip-
tion, spatial structure is bound up in the details of the phase relation-
ships between different wavenumbér modes. On the other hand, the wave-
number structure and spectrum is related to the details of the spatial
correlation function in the wave packet description. Rosenbluth (1971)
combines elements of both descriptions in a '"full-wave' treatment of &
linear wave interacting with a variable surface current and shows the
equivalence between eigenmodes and wavepackets trapped over troughs of

the internal wave.

A major difficult? arises in the application of these mechanisms to
describe ocean wave spectra. The ocean surface under typical wind condi-
tions is poorly described as a simple linear superposition of sine waves.

On the contrary, the wave amplitudes and slopes are usually driven to the
point where non-linearities are dominant in providing a saturation limiting
of the wave helghts. These effects manifest themselves in the appearance

of sharp crested waves and wave breaking (white caps). In the present
series of reports we will develop a description of the dynamical properties
of ocean wave spectra involving a transport or relaxation equation. Here

we write the rate of change of the mean or expected value of the wave height

power spectrum in the form

d > > > >
Ty F(x,k,t) = A(x,k) V;U + generation terms - loss tarms.

where F is assumed to depend on (;,ﬁ,t) and V,U 1is the local time averaged
X

surface current gradient. The detailed development and modeling of the var-



ious phenomena contributing to wave growth and decay will be discussed in
subsequent reports. In the present report we wish to lay the groundwork
for the discussion of the wave-current interaction and to review the physics
of the interaction process. To do this we wili discuss primarily a linear
description of the oceaﬁ surface. Many of the non-linear effects coupling
various waves together can be considered as interacfions £o various orders
of different wave fields and can be understood within the context of a
linear model in terms of the interaction of a linear wave with a prescribed
current field. Thus, part of the motivation of the present work is to
describe the resonant interaction of a surface wave with a moving current
pattern and part to clarify some of the concepts that underlie the non-

linear theory.

We consider the current produced near the ocean surface by a long
wavelength internal wave pPropagating along a sharp thermocline at depth D
(see Figure 1). Fecr small percentage changes in the density across the

interface (Ap/p), the currents and potential of the internal wave are

A
¢(°) = 7% cosh Ky sin K(x-—cot) . (1.1)
U(o) * A _ cosh Ky cos K(x-c t) (1.2a)
X o o ’ '
and
U;o) = A0 sinh Ky sin K(x-—cot) . (1.2b)

where LR 1s the phase velocity of the interfacial wave. The vertical
velocity of the surface has been taken to be zero (valid in the limit
8p/p + 0). In this paper we study the effect of this current [Equation
(1.1)] on the motion and pattern of the small wavelength surface gravity

waves,
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To get a feel for the basic physical versus the mathematical aspects

involved in the problem, we examine first the dispersion relation for the
surfiace waves for a uniform (deep)-ocean in the presence of a uniform cur-
rent. It is well known that the dispersion relation in a coordinate sys-

tem in which the ocean is stationary, has the form

w- = gk
or : . ) 1.3)

w = gk
where w is the angular wave frequency, k the wavenumber of the surface wave
and g the gravitational acceleration. The velocity of a point of constant

phase on the wave, i.e., phase velocity, is

(1.4)
Cc

Y 0

This dispersion relation is plotted in Figure 2a. Obviously, for each value of
|w| there are only two possible aolution; and two wave‘velocities (z g/|w|) cor-
responding to waves travelling to the right or to the left.

If we now make a Galilean transformation to an observer moving over
the ocean surface at velccity c,» events appear to have a different time
dependence. We must replace w by w + cok where <, is the observer velocity
relative to the ocean. This has the tendency to twist the dispersion curves

downward, i.e., the trajectory of the ocean surface, which was the real axis

w=0, now becomes (see Fig. 2b)

w = ~c¢c k . ' (1.5)
o

This moving observer finds himself with a rather more complicated description
of the same simple wave motion seen by the stationary observer. First he
finds that there is a maximum frequency (w*) above which waves will not propagate

freely. At any lower frequency he finds that there are now four different wave-
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numbers 2nd wave velocities that will propagate freely fcr each given value of

Iml instead of two as in the ocean fixed frame. If this observer knew that in
his coordinate system, the velocity of the ocean were locally uniform and inde-
pendent of time, then he would correctly conclude that possible solutions have

the form exp[-iwt + 1kx] where there are two permissible right travelling waves
(w/k > 0) and two left-travelling waves (w/k < 0) that are consistent with the

same value of le.

All this is of little interest if the ocean current is truly independent
of position since in that case the waves are simply manifestations of the two
simple surface waves in Equ. (1.3). These two waves (or four depending on the
coordinate system) are uncoupled and the transformation to a moving coordinate
system merely complicates a simple problem. However, when the surface current
varies with position (but not so rapidly as to invalidate the local validity
of the dispersion relations) the problem is distinctly different. In the
particular case of a travelling current disturbance there is a unique coor-

dinate system in which the surface current distribution is independent of

iwt
)

time. In this coordinate system, the solutions are harmonic in time (e

but the spatial gradients may permit or induce coupling of the four waves.

Of particular interest are the two right travelling waves. Reference to
Fig. 2b shows that, although the phase velociéies for both are in the direction
of the internal wave, the group velocities (dw/dk) have opposite signs.
These two waves lie on either side of a turning point (where the group velocity
vanishes). It will be shown in section 4 that a wave packet incident on a finite |
region of steady surface currents can be totally reflected for ecertain current
patterns and that the two right travelling waves represent the incident and

reflected wave trains. The observer in the ocean coordinate system would



Interpret this reflection as follows. A surface gravity wave packet traveling
at velocity c8 (group) overtakes a traveling surface current region [translat-
ing at velocity c( <cg)]. There Will be a range of values for cg-c, dependent
on the maximum amplitude of the surface current, for which the gravity wave
loses energy to the surface current to the extent that its propagation velo-
city ie reduced to 2c -cg [i.e., a velocity decrease of 2(cg-c) because of
reflection]. In the same manner, waves having group velocities less than

but sufficiently close to surface current propagation velocity will be ac=-
celerated by the front edge of the moving current field to a velocity

c+ (c -cg). Thus, the surface current field acts as a piston to a certain
range of wavelengths and pushes these waves along ahead of the current field.
Waves near the condition c =cg will tend to pile up in front of or behind the

reflection point and form caustics.

This type of interaction may be thought of as a resonance phenomenon
where waves in a restricted range of frequencies interact strongly with the
external forcing function. Indeed, in a-modal description where the surface
is represented as an assembly of harmonié oscillators, the reflection phenomena
described above manifests itself specifically as a classical resonance inter=-
action, between the oscillators (surface waves) and the external forcing func-

tion (internal wave).

In recent years considerable interest has been shown in this type of
interaction and a number of treatments are available [Longuet-Higgins and
Stewart (1960); Longuet-Higgins (1963);. Ball (1964); Phillips (1966);
Hasselman (1967); Hartle and Zachariason (1969); Rosenbluth (1972);
Phillips (1972)). The problem also has in interpretation in terms

of parametric cscillator theory. In spite of this extensive analysis,



the relsationships between the various methods are not readily transparent.
Methods based on the WKB approximation allow trajectories of individual
packets of energy to be followed, In available treatments, turning

pointa can appear in the solutions where the WKS approximation fails (blockage
effects, according to Phillips), Modal methods based on the Born approxi-
mation show a related singularity. The turning point here appears as an
oscillator driven at resonance.

It is the purpose of this paper to analyze in detail the specific
case of linear surface waves travelling on a spatially variasble but steady
current. The analysis is exact and, as a consequence, permits us to obtain
bounded solutions in the neighborhood of the resonance regiun, By taking
limiting cases of these exact solutions, we are able to demonstrate the
relationships between the various more approximate models and, in particular,
we are able to define their respective ranges of validity.

The details of these approaches are reviewed in the following section,
along with an introduction to the present approach to the problem, 1ln all
cases, detailed theoretical analysis has been limited to a linear
description of the interactions. Since the sea surface is usually in a
strongly nondinear state, such approaches may have limited quantitative
applicability., However, the linear analysic provides the insight neceasary

to the development of a non-linear theory,

The following sections segment the problem of internal and surface
wave interactions as follows: Section 2 reviews scme of the previous work

done on the problem to familiarize the reader with the difficulties encountered

and to point out where these studies left off, Section 3 provides an

10



introduction and review of scattering theory as it will be applied to the
present problem. A set of coupled differential equations is constructed
from an application of this theof& under the assumption of a weakly re-
flecting current. These equations are then solved analytically for a
linear current. Section 4 discusses solutions in both the Born and eikoenal
(WKB) approximations. These approximate solutions are then related to the
results of Section 3. Section 5 summarizes the paper stressing the inter-
connection between the differing methods of approach and gives a physical
interpretation to these methods. The connection with previous results and

the interpretation of surface slicks in terms of reflected waves is also

made.

11



2. COUPLED INTERNAL AND EXTERNAL WAVES (REVIEW)

We consider the wave motion at the surface of the ocean under the influ-
ence of a non-uniform surface current. 1In the analysis the ocean is assumed to
be homogeneous and irrotatioral. Within this general framework, we may write the
momentum equation for a fluid as

>
du 1 >
== = .2 .1
it 5 Vp + g (2.1)
where, under the assumption of irrotational flow, V x g = 0. The juantities in
Eq. (2.1) are defined as follows: o is the fluid density, E is the gravitational
acceleration, p is the Pressure, and u is the velocity of the fluid. If we write

u = Vo, where ¢ is the potential description of the velocity field, then Eq. (2.1)

may be written as

> 2 )
uydove - o0, @ }
g tu*Vu 7[3: + > ] V{p + gy (2.2)

where the operator d/dt in Eq. (2.1) has been replaced by the Eulerian derivative
->
3/3t +u°*V in Eq, (2.2) and the density has been assumed to be constant,

Equation (2.2) may be integrated immediately to yield the general equation

d:t + % (th)2 + g + gy = f(t) (2.3)

where in the following we set £(r) = 0.* At the surface of the fluid we will
assume that the pressure is zero (p=0, y= Ygr ¢ = os], 80 that Eq. (2.3)

becomes

1 2 .
—— ¢ 5 (vq»)s + gy, = o . (2.4)

* As required by the boundary condition at infinity that hydrostatic equi-
librium prevail (p=-pgy).

12



This equation may be further modified by recalling that the rate of increase

of yg following a fluid element is the vertical component of the fluid

velocity:
Je L (2 2.5)
dt 3Y)s )
and that
do 90
dt = 3t + Vo - Vo . (2.6)

Introducing Equations (2.5) and (2.6) into (2.4) yields the differential

equation

] 9 1 ¢
{(B—E + Vo V)(at + 2 vo V)@ +gg}s - 0 . (2.7)

To solve Equation (2.7) we expand the velocity potential as follows:
6 = ¢ 4 4 (2.8)

where ¢ is the potential associated with the short wavelength surface waves

and

~

® * X cosh Ky sin K(x-~ct) . (2.9)

© . %

The separation given by Equation (2.8) essentially couples the short sur-
face waves to the much longer internal waves by superimposing the field po~

tentials.

We substitute the potential from Equation (2.8) into Equation (2.7)

and, retaining only up to the linear terms in ¢, obtain

13



2
39 4 3 (we°.yye 4 .7)° w9 o o
[3:2 + ap (Vo7 -0)¢ + 5 (V$:V)0" + VoO.¢ a—tl + (VO V) (VD +V)¢

(o]
+ 90° - v(V+7)2° + Vgev g%

(o o 99
+ oV . o,
V6-7(70° )0 ]surface + (g ay) o . (2.10)
surface
This expression may be immediately reduced by using the condition A.o <<c and
noting that the wavenumber k for the surface wave is very much greater than
the wavenumber K for the internal waves, l.e., K<<k. With these two con-

ditions, Equation (2.10) becomes

2
[M + gl +2vo(°)-vi‘ﬁ] = 0 (2.11)
2 ay t
at surface
which, together wich the Laplacian
2, 3t 2
e = 2 ¢ L % _ (2.12)
2 2
ax ay

defines the surface wave potential for our problem. Note that we have

assumed the wave to be uniform in the z-direction.

Let us carry out the remaining analysis in terms of an arbitrary
traveling internal wave packet ve° = ﬁ(x-—ct). For internal waves whose
wavelength is long compared to the depth of fhe interface along which they
propagate, the waves are non-dispersive and arbitrary functions ﬁ(g),

[ =x-ct], may be condidered. This function is analogous to the potential

produced by a massive particle from which much lighter particles (surface

14



waves) are being scattered. Reference to this picture wili make the con-

cepts introduced in the following analyris more trangparent.

Ball (1964) showed that, for a two-fluid model of the ocean, resonait
interactions involving two surface waves and one internal wave can occur.
His argument was basically that non-linear quadratic terms in the wave equa-
tion can cause a combination wave (frequency Wy s wavenumber k2) to be gen-

erated by the beating of two simple harmonic waves:

and (2.13)

If this combination [Equation (2.13)] wave matches one of the natural modes

of the unperturbed ocean, then a resonance condition exists.

To follow this argument, we consider the wave equation valid for low

speed, low amplitude flow (Equation (2.11)], which we can write* as

2 2
3¢ % . _ 3¢
atz + g ay 2U (X,t) 3%0¢t . (2-16)

When the right hand side of Equation (2.14) is approximated by the unperturbed

surface wave solution (the Born Approximation)

¢o ® a cos (klx-wlt) (2.15)

* U (x,t) 1is assumed to vary slowly over distances and times in which ¢

oscillates. Thus, time and space gradients of U (x,t) are neglected.

15



and the travelling current field by

U(x,t) = A gos(Kx - 0t) (2.16)

[where we have used Equation (2.9)], comb!nation waves are generatad. We

may use Equations (2.15) and (2.16) in Equation (2.14) to obtain

2
3:% + g 2—3 = Aa klml gcos [(k1+l()x - (ml +m)t] + cos [(kl-l()x - (ml -m)t]f

(2.17)
where w = Kc.

Of particular interest is the long wavelength, slowly varying difference
frequency term. Two waves having almost the same frequency and wavenumber
and travelling in the same direction will beat and give rise to an envelope
that has a much lower frequency and wavenumber. Any rionlinear terms will
result in a generation of a wave component at the beat frequency. The
wavenumver of the beat envelope is proportional to the difference between
the wavenumbers of the two primary waves. The phase velocity of the beat
wave is proportional to the difference between the frequencies of the
primary waves and can be shown to be equal to the harmonic mean of the

group velocities of the primaries.

When this beat wave matches the interngl wave in frequency, wavenumber,
and phase velocity, a resonance occurs (see below). In general, the coupling
results frci various non-linear terms. Quadratic terms involving two sur-
face waves can create combination or beat waves which can resonate with the
internal wave. As just discussed above, quadratic terms involving one sur-

face wave and internal wave can cause coupling to a second surface wave.

16



Hartle and Zachariason (1969) gave a detailed analysis of this
problem; that is the solution of Equation (2.14) in the Born Approximation,
for waves travelling in the same &irection. The right hand side of Equa~
tion (2.14) was evaluated with oy taken as the unperturbed surface wave po-
tential and the general problem of an arbitrary travelling current wave was
treated. They also gave detailed attention to the variation of wave height

and wave slope resulting from the interactions.

The basic features of their solution can be exemplified by treating
the special case of a sinusoidal surface current, Equation (2.17). Since
we are only concerned with the near resonant case, we consider only the
difference frequency term, replace the cosine by an exzponential, and find a

solution to the equation
3%, 30 ___}
3t2 +g 5y aAklw1 exp|i (k1 K) x (wl Ke)tp | . (2.18)

We may write ¢(x,y,t) in the form

Z B(k) exp{ky - i[kx - mt]} (2.19)
k

so that ¢ +0 as y+ ~ =, and we note that for a right travelling wave,

¢>(x,y,t)

_g_i. = -ig_:: ) (2.20)

The solution of equ. (2.18) then takes the form, in general,

(w ~ w,)8(k - k,)
J J
¢ = /a dwdk , (2.21)
:;: ] wz - ok

g

17



where wj and kj'are the frequencies and wavenumbers of the comhination

waves gererated by the non-linear terms, i.e., kl-K, and wl—Kc for equ.(2.18),

and the a, are the appropriate coefficients. Resonance occurs when, for some j,

]

2 . (2.22)
In our example, resonance c¢:icurs if

(wl - Kc)2 = g(k1 -K) . (2.23)

Using the fact that mi = gk,, we may reduce Eq. (2.23) to the form

w,;C
z—;—-1=& : (2.24)

In terms of the surface wave group velocity cg (= g/2w1). we may write
1

[ K [ 2

T (——) (2.25)
or, for K/k1 << 1,

< =+ 1, (2.26)

cgy

Thus, resonance obtains when the group velocity of the surface waves is
approximately equal to the internal wave velocity. Note that this state-
ment is identical to the statement that the difference wave between two
similar surface waves (which could be generated by non-linear effects)

match the internal wave in frequency, wavenumber (and phase velocity).
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These concepts are more clearly illustrated by reference to the (k,w)
plane. A point 5 = (k,w) in this plane represents a general wave. The
curve which is the locus of freeiy-propagating waves is the dispersion re-
lation w = f(k). In general, quadratic non-linear terms will generate
sum and difference waves. In particular, a free propagating wave defined
by the vector 32[ =(k2w2)] can couple with an internal wave 3[==(K,Q)] to

produce the beat wave

51 = §2+§ .

-
This coupling will be resonant if 91 is a characteristic mode of the surface.

Three such combinations are shown in Figure 2c. For two of these
the combination wave (31) does not fall on the locus of freely-propagating
waves. llowever, one such combination does satisfy the resonance con-
dition. It is obvious from the geometry of Figure 2c¢ that, when the inter-
nal wave has low frequency (9 << 92, K << kz), the slope Q/K (which is the
internal wave phase velocity c) is essentially equal to the slope of the
dispersion curve for waves satisfying the resonance condition, {i.e.,

8 L do
K dk g

(¢]

To examine the resonant and near resonant case it is appropriate to
treat an initial value problem where we assume the interaction to be

"turned on" at a certain time. For the interaction starting at time t=0,

[
i.e., ¢#(x,0) = g%-(x,O) = 0, the solution has the form, [where ¢ =¢’ +

a exp(iklx-iwlt)],
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Aklml a

i(k, -K)x
* * = —{w*
o' = 1 m {sin w*t - =0 [l = 0.?.1(“u w)t]e v t} e 1

* =

wrow (2.27)
where w is the difference between the surface wave frequency and the in-
ternal wave frequency (w = W, - Kc) and w* is the frequency of a surface

wave having a wavenumber equal to the difference between that of the sur-

face wave and of the internal wave lw* = v’g(k1 - K)

When the exciting frequency w is made equal to the frequency w*, ex-
pand Equation (2.27) and we find that the wave amplitude resonates and

grows linearly in time:

k
¢/ (w=w*) = 1

11 Aa
2

2w*

'i‘"*"} ei(kl “K)x. (2.28)

%sin(w*t) - wkt e

Close to but not at resonance, the root mean square value of the wave po-

tential is

)% = by o Cl (2.29)
2wk (w* +w) lo* - w

Hartle and Zachariason suggest that the linear growth at resonance will
be terminated by either dissipative effects or decay of the internmal wave. How-
ever, analysis in the following sections indicate that wave reflections may

also determine the effective interaction time.

The mathematical reason for the linear growth at resonance in equ. (2,28)
arises basically from the introduction of the Born approximation in the calcu-
lation of the right haud side of equ. (2.14)» where the non-linear terms were

replaced by products of the unperturbed surface and internal waves, 1i.e.,
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0(0)

¢o+ As the interaction proceeds the surface wave may be altered, result-
ing in failure of the Born approximation. It is argued later in this paper
that this is indeed what does occur and that the basic process 1s one of '"col-
.lision" or scattering (elastic or Inelastic) of a surface wave from the surface
current pattern. For most of the strongly interacting "collisions" the effec-
tive interaction time is determined by the kinematics of this collision or
scattering process. In order to treat the near resonance waves it is necessary
to proceed beyond the Born approximation and follow the élteration of the

surface wave as it interacts with the current pattern. Tais is done in the

following section.
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3. WAVESCATTER AND REFLECTICN

We start, as did Rosenbluth (1971) and Longuet-Higgins/Stewart.(1960),
from kquations (2.11) and (2.12); that is, linear equations keeping first order
intersction terms involving a prespecified, non-uniform, steady surface cur-
rent. Rosenbluth obtains full wave solutions for a surface wave moving in
a region of steady sinusoidal varying current and shows that surface waves
can be trapped over the troughs of the internal waves. The solutions ex-
hibit close similarity to those of a quantum mechanical harmonic oscillator
and there is an analogy between surface waves trapped in regions of minimum
surface current and quantum mechanical particles trapped in regions of
minimum potential energy. We will treat the problem of the impingement and
reflection of a free surface wave from a region of linearly increasing sur-
face current and show that, for a certain range of wavelengths, the surface

waves will be reflected by a travelling current pattern.

3A. Dispersion Relations for a steady surface current

Consider a finite region of surface current translating with uniform
velocity and described by a function U(x-ct). We transform to a coordinate

system moving with this pattern ({=x-ct) and thus obtain

) ) ) 3 . 23
ot 3t _ S ¢ = T BE (3.1)

so that in this new coordinate system the surface waves in Equation (2.11)

obey the equations

2
[¢tt - 2c¢€t + c ¢££ + 2U (g){%t - c¢£€} + g¢y] Ccface 0 (3.2)

and
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Taking y to be positive upwards, we may write the general solution of Eq.(3.2)

as a superposition of two waves [for surface wavelengths << depth of fluid (D)]

( )
o = o® 4 M (3.4)
vhere
¢(R) - feky ai(t) oIKX gy (3.5a)
and
¢(L) = feky at(t) e-ikx dk , (3.5b)
which are similar in structure to equ. (3+19). The quantities ¢(R) represent
(L)

waves traveling to the right and ¢ waves to the left in this moving

coordinate system. According to Eq. (3.5), we may write

(R) _ (R) .
¢y = _i¢x (3 6)
and
(LY _ (L)
G R (3.7)

It is to be noted that '"traveling to the right" and "traveling to the left"
refers to the phase velocity of the surface wave. It was pointed out
in section 2 that for this surface-internal wave problem, the most interesting
phenomena occur when the group velocity of the surface wave is closely matched
to the phase velocity of the internal wave equ. (2.26). Since the surface waves
are dispersive, it is possible (and this will.be the conditinn of most interest
to us) to have a situation where the phase velocities are in the same, but the
group velocities are in oppoaite, directions for two coupled waves. It occurs
that for a given frequency there are four coupled waves that appear in this moving
coordinate system. Two of these waves will be shown to have phase velocities to

the right, in the direction of the imternal wave (R waves), and two have phase
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velocities in the opposite direction (L waves). For the two R waves, one turns

out to have a group velocity to the right (which we refer to as a (+) wave:
 (#R) _ . (-R)

(4 ], and the other has a negative group velocity [a (-) wave: ¢ ]. The

two 1. waves will similarly be noted as (+) and (-) waves although for these

the group velocities have the same sign.

To demonstrate the nature of these waves, we consider an internal wave
packet of finite size such as the one shown in Fig. 3a. A packet of surface
gravity waves propagating slightly slower (group velocity) than the internal
wave will be overtaken and, in the frame moving with the internal wave, these
wave packets appear to impinge from the right, whereas faster surface waves impinge
from the left. We shall examine the wave field for a single monochromatic
surface wave incident on the surface current region (the internal wave packet)
from the left [see Fig. 3b] i.e., one moving faster in the moving frame of refer-
ence than the internal wave. Since in the moving frame the surface current
field is steady, the time dependence of the surface wave potential is of the

form e_imt and Eq. (3.2) becomes

A 2 - - = .8
w?¢ + 12cwd, + ¢ ¢€§ + 2U(g) iw¢€ C¢€€] + g¢y 0. (3.8)

g

This oscillatory time dependence occurs in the coefficient at(t) and aﬁ(t) in
Eqs. (3.53) and (3.5b).

Before treating the case of a space variable surface current, we examine
the dispersion relaticn when the current is uniform, i.e., U(E)=(h)[constant]. To
study this case we will reduce Eq. (3.8) to dimensionless form by introducing a
characteristic wave number (k*) and frequency (w*), i.e., the values for a sur-

face wave traveling at the same velocity (phase) as the internal wave; so that

n = wlo* 3 k = k/k* 3.9

wse
™
(]
[]
S~
0
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where w* = g/c and k* = g/cz. Using the relation (3/3¢ = ik) from Equations

(3.1) and (3.6) we can write the dispersion relations for Equation (3.8) as

-n2 - 2nk - KZ + 28In + KIK + x 0 for the (R) waves (3.10a)

and
0 for the (L) waves (3.10b)

-n2 4+ 2nx - K2 + 28|-n + K]K + K

thereby giving the four waves discussed earlier. We need only follow the

formalism for the (R) waves since, according to Equation (3.10)

sy = s®m

and for these waves

,  L-22-8)7F ‘fl-4n(l-8)+4n282
- - - s N>0

K~ = 5 .

2(1 - 28)

(3.11a)

To terms linear in B this expression agrees with the one obtained more
{ntuitively by replacing the frequency w in the dispersion relation calcu-
lated in the ocean frame (w = t/EE) by the value expected if the waves are
being convected at a velocity (u-¢), 1.e., w *w + (c-u)k. In this case

the dispersion relation would become

w+ (c-wk = t\/gk

or

n+ Q-g)k = t\Vk .

Solving for k ylelds

27



1 - 2n(1-8) £ /1 - 4n(1-p)
K = 5 (3.11b)
2(1-8)

which agrees with Equation (3.11a) to terms linear in B. Since the present
analysis applies only for values of 8 small compared to unity, we will

use (3.11a) or (3.11b) interchangeably.

In Figure 4 we have plotted the dispersion relation in terms of the
reduced variables n and "k . We are patricularly interested in regions
near the turning point where the group velocity vanishes and the surface
wave nacket travels with a velocity near that of the internal wave phase.
In this region the two R waves are strongly coupled. However, as is dis-
cussed later, the coupling to the L waves is weak and we ignore it entirely
here. Thus, we delete the L,R superscripts and refer hereafter only to

(+) and (-) waves, (both of which will always be R waves).

We now return to the problem of a finite region of surface current.
We are treating the case of an overtaking packet incident on this region
from the left. This wave [a (+) wave], in general, will be partially trans-
mitted [as a (+) wave] by the current region and partially reflected [as a
(-) wave].* If we define r as the coefficient of the reflected wave and t
as the coefficient of the transmitted wave, then we may write the potential

far to the left of this interaction region as

b = ¢ ’ei[k"(’”s-wthrei[ki-)g'“’t] (3.12a)
(o]

* The meaning of reflected and transmitted will become clear later as we
develop the concept of the surface wave packet later in this section.
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where ¢o is the amplitude of the incident wave. Further, there will be

only a transmitted wave far to the right of the region:

1[k£+)g-mt]
¢ = ¢ te (3.12b)

[o]

for £ + +»., The wavenumbers k£+) and ki—) are defined in the undisturbed

region of the surface, i.e., where 8 = 0. One may therefore use the dis-

persivn relations from Equation (3.10) to obtain for the R waves

(l -~ 27 V1 - lon) (3.13a)

t —5—1—2—“’5¥\/1-“£ ) (3.13b)
® 2c2 g g

If w >g/4c, therefore, there are no right propagating waves in the frame of the

=
]
ST

or

=
L}

moving internal wave. The distortion or reflection of the surface wave as it
travels through the current region depends critically on the variation of the

()
with changes in U . o

wave number «
It is useful to attempt to interpret the concepts of Ball and of
Longuet-Higginc/Stewart in terms of the scattering or reflection mechanism. In
the reference frame moving with the internal wave the strongly interacting
(reflecting) free waves form a standing wave ‘pattern on one side of the reflection
point (see Fig. 5). This standing wave consists of two wave trains having (in
this frame) equal but opposite group velocities but phase velocities in the
gsame direction, Although the mean group velocity is zero {so that the standing
wave pattern does not move ) the mean phase velocity is non-zero., Individual

wavelets (or points of constant phase) appear to move through the standing wave

pattern. For example, for a left incident wave, a wavelet will appear to be -
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born on the left side of the standing wave region, to travel to the right
throughthe pattern, its amplitude undergoing a quasi-periodic modulation

by the standing wave and finally dying or disappearing at the front edge of
the standing wave region, i.e., the reflection point. According to the Born
approximation of Ball and Hartle/Zachariason, the stationary current pat-
tern induces a secondary wave that, together with the incident wave, cre-
ates a stationary standing wave pattern. This induced wave must therefore
have a group velocity equal and opposite to the incident wave (since the
mean group velocity is equal to the phase velocity of the standing wave,
i.e., to zero). Thus, it should be possible to interpret the Born approx-
imation results near resonance in terms of the creation of a scattered

wave whose wavenumber and frequency are dependent on the difference between
those of the incident wave and that of a perfectly resonant wave (i.e.,

one for which cg = c).*

3B. Scattering at a Boundary

The preceeding section was.concerned with the long range effects of the
internal current on the surface waves. This section will study the surface
waves in the interaction region. To this end, we note that when the inter-
nal current increases over a limited region of space two effects contribute
to the observables of interest: 1) the variation of the wave slope as it
passes through the surface current region, and 2) the generation of reflec-

ted waves at regions where the wavenumber changes rapidly.

* Although a mechanism allowing for depletion of the incident wave would
probably be required to get reasonable results at later times.
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In order to solve this latter problem for somewhat arbitrary ucg), we
modify the formulation of the problem slightly. We divide the surface
current region into a number of sections, each having a width small com-
pared to the wavelength of the internal wave [Fig. 6]. We index the posi-
tions along the internal wave by CJ and let the interval between any two
steps J and (j+1) be AEJ. An incident wave will generate both transmitted
and reflected waves as it impinges on each of these steps. Within each section
the surface current is taken to be uniform so that the wave potenctial in the re-

glon between EJ and €J+1 has the general form
¢J = AJ exp[i(kj"')c-ut), + BJ exp’i(kj(')g-wt” (3.14)

where k;+) and k;-) are determined from the dispersion relation for the jth
slab. The values of Aj and Bj are found by matching boundary conditions at
all the interfaces between the individual sections (see Figure 7). The num-
ber of independent Component waves that need to be allowed for in Equation
(3.14) is two in our pPresent case (gravity waves). In general this number
is equal to the number of allowable pPropagating wavenumbers that have the
same frequency. 1In the capillary-gravity regime where surface tensicn ef-
fects are important, it is possible to have Fhese intersections of the dis-
persion curve for a given frequency u (see Figure 4), thus requiring three
independent waves in Equation (3.14). wWe carry out the present formalism

for gravity waves only. The generalization to the capillary-gravity regime

will be made subsequently,
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The two cases to be considered are ahown in Figure 7: an incident wave
traveling from left to right (+) of unit amplitude is shown in Figure (7a)
while a wave of unit amplitude incident from right (-) is shown in Figure
(7b). Note that we are discussing the R-solutions of Equation (3.10a),
which has been decomposed into these (+) and (-) waves in the moving coor-
dinate system of the internal wave. Figure 7 is actually a blow-up of the
step regions shown in Figure 6. Since we are treating quantities discretely
in this section, both the reflection (rj) and transmission (tj) coefficients
for the waves carry an index to distinguish the boundary to which they refer,
i.e., point in space. An additional index of (+) and (~) is carried by

these coefficients as well as the wavenumbers to distinguish the direction

(group velocity) of theincident wave with which they are associated.

The continuity of the amplitude and slope of the waves at the jth

boundary, between regions A and B in Figure 7 requires that

¢i(£=£j) + ¢r(£=5j) = ¢t(£=5j) (3.15)
and
dé d¢ d¢
1 4 1 _r - L _t (3.16)
¢, d& ¢, dE ¢, d&
C-Cj E-Ej £=EJ.

where the subscripts refer to the incident (i), reflected (r) and transmitted
(t) waves. For an incident wave traveling from left to right (Figure 7a),

we have from Equations (3.15) and (3.16) the continuity conditions that
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+) t(+) (3.17)

Jomb

+

a1
[

j ]
and
+) ) (=) _ ) )
kA + rj kA = tj kB . (3.18)

Similarly, for an incident wave traveling from right to left [Fig. 7b], we obtain

-y _ ) 3.19)
1+ rj tj (
and
(<) =), & _ =) ) .20
kg~ + s kp = tj ky . (3.20)

The reflection and transmission amplitudes across the boundary may

be evaluated in terms of the wave numbers in the two regions by using Equations

(3.17) - (3.20),

cj(+) = kr.) - k‘i-)]/lkéﬂ : kli') , (3.21a)
rj(+) - k[£+) - ké+)l/lkl§+) - k‘i-) : (3.21b)
e - ké_) - ké+)]'/[k1§-) = kéﬂ : (3.22a)
& r;_) = kl(;) - ki-)]/lki-) - ké” . (3.22b)

The value of obtaining these expressions will become evident when we allow the

interval between steps to become very small. It will then be possible to represent

these differences in wavenumbers in terms of derivatives. This construction is

carried out later in this section and is also used in Section 4.
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To broaden our problem slightly, let us consider a wave of unii amplitude
incident from the left on a current Pattern of finite extent [see Figure 8],

We know that the general long distance solution to this Problem can be given

We also define a Gcattering matrix § with elements siJ which relates the

wave vector (~w) far to the left of the current region to theo vector on the

right hand side

V=) = § y(-w)

In order to evaluate the elements of § » We consider two hypothetical scat-
tering experiments. Suppose first a (+) wave of unit amplitude is incident on
the region from the left (Figure 8), The amplitude of the transmitted wave is
%) an¢ that of the reflected vave [which is a (-) wave] is defined as R(*),

Then we must have

[T“)] [511 812 ] [1( )] (3.23)
= +|
0 R

821 822 |
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or

SO -821/822 (3.24a)

o
|

and

+ /

811~ s12 521 (3.24b)

T

S50 °
In a similar manner, for a wave of unit amplitude incident from the right
(Figure 8) with reflected and transmitted amplitudes R(-) and T(-), respec-

tively, we may write.

R S11 %12 0
. (3.25)
(-
1 L8521 %22 T
or
R - 51,/55, (3.26a)
and
T(') = Us,, - (3.26b)

The matrix S is the scattering matrix for the entire current region.
The reflection amplitudes R(+) and R(_), as well as the transmitted wave
ampl itudes T(+) and T(-) also refer the entire surface current region. We
may use Equations (3.24) and (3.26) to express the elements of the scattering

matrix in terms of these "measured' reflection and transmission coefficients:

5, ), ' (3.27a)
S] = R(-)/T(-) ’ (3-27b)
.2
85 = -R(+)/T(-) , (3.27¢)
and
s, - ) g g ) (3.27d)

4

These elements may now be applied to the analysis of the characteristic of

the j'® boundary which initiated this subsection.
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We del ine o two-component vector wj made up of the amplitudes of the

right [¢;+)] and left [¢;-)] travelling waves at a point just to the right
of the jth interface:
(+)

v, = . (3.28)

Using a propagation matrix pj and a reflection or scattering matrix Sj’ we
may write the vector at the (j+1)th step in terms of its value at the jth

step, by
*S, ¥ (3.29)

where the waves incident on the jth boundary are scattered by the matrix

Sj and propagated across the uniform interval from Ej to £j+1 by the propa-

gation matrix P,. If the entire current region has been divided into N

]
steps, then the wave amplitude wN+l to the right of this region is related

to the amplitude y, to the left of the re ion, according to
1 g

N
j=1
or
Vet = SV (3.31)

where S is now the scattering matrix for the entire region:

N
S = n Pi ¢ Sj . (3.32)
j=1
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Thus the matrix § introduced in Equation (3.11) for a wave crossing an arbi-
trary region can b= thought of as being constructed from a sequence of weak
scatterings.

A little thought will convince one that the reflection (scattering) matrix
Sj at each of the steps Ej has the same structure as the scattering matrix S for
the entire region. We may therefore, write the matrix Sj in terms of the

reflection and transmission coefficients rj and tj as follows:

+) _#H) (=), =) (<), (=)
tj rj rJ /tJ rj /tj
SJ = . (3.33)
), (=) (=)
T /tJ l/tJ

The propagation matrix PJ carries the translation information for the process

and may be written as

exp{tc® e, 1 -c1} 0

p, = . (3.34)
0 exp{ik(‘)lejﬂ-zj]}

If we assume that the reflections described by Equation (3.31) are weak,
then it 1s possible to write the reflection matrix above [Equation (3.33)]

in an approximate form., For weakly reflected waves we can neglect all terms

in sJ which are gsecond order in the reflection coefficients, r§+) and rj-).

Also, we may expand the inverse of the (=) transmisaion coefficient as,

» 1 ~ 1-rj(-) + .. (3‘35)

1
cj(') 1+ rj(-)
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Using Equation (3.35) and neglecting terms quadratic in the reflection coef-

ficients, we write the scattering matrix as,

Sj ~ 1+Rj (3.36)
where
(+) =)
Rj , (3.37)
+) )
B IS

where Rj is considered negligibie in this approximation. This implies that
there 18 orly a single scattering from each of the steps and that the reflected

surface wave is a linear superposition of each of these small reflections.

Let us consider the generation of th2se reflected waves by Equation
(3.32). If we impose our weak reflection condition, Equation (3.,36), then all
terms of order Rj and higher in this product may be neglected. A general term
which would contribute to the scattering matrix would, therefore, be linear

in Rj’ i.e., be of the form

PN PN-l e o o Pj Rj Pj-l o o o PZ Pl . (3'38)

Physically, Equation (3,38) means that the incident wave will propagate freely
through the first j-1 steps of the steady current region; at the jth step it
will interact weakly with the internal wave, as specified by the matrix Rj.

and then continue to propagate without further interaction.

One can easily show that the product of propagation matrices preceding

the interacting in Equaticn (3.38) can be written in the continuous limit as,
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g
j-1
exp’i/ kH)(g')dg's 0
3
Pj-l P.l'z T PZ Pl = . Ej-l (3.39)
0 exp;if k(-)(E')dE's
&

by using the definition of the P's [Equation (3.34)]. It is also clear that

in general, the amplitude of the incident wave is being modulated by the in-

ternal wave packet.

3C. Differential Formulation of the Propagation Equations

In this section we will construct a set of differential equatioms to
govern the variations of tbe forward and backward propagating waves [¢(+)
and ¢(-)] by taking the limit of very small £ intervals in the propagation

equations [Equations (3.21) to (3.22)]. In the limit of small Ej+l - Ej = AE,

the transmission and reflection amplitudes become,

AE -
M2 A ae () (3.40)
3 [.<<+> - .<<->] dg
AE -)
- - . dx 3.41
3 [P -] .40
e A (3.42)
h| b
and
+  _ +)
tj 1+ rj . (3.43)

Equations (3.40) and (3.41) will be derived in Section 4, where a complete

discussion of their characteristics will be given.
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The dispersion relation [Equation (3.11)] (neglecting quadratic terms in

8) may be written in the form

+ - —
K = nL ¥ Kz (3.44)
where
K, = l=2n(1-8) (3.45a)
2(1-28)
and
k. = Ml-4n(1-8) (3.45b)
2 2(1 -28)

For very small values of the difference - Ej = AEj the scattering matrix

j+l
for weak refleerions [Equation (3.36)], using Equations (3.40) to (3.45), can

be rewritten ag

1 0 dc_ A -1 1
S . O ] + v Nl ] (3.46)
3 0 1 TZ" -1 -1y %€ 2 |3 4

Similarly, the propagation matrix given by Equation (3.34) may be expanded

to obtain
[1 ] 1k* (x -nz)Aej 0 Az
1k* (k1 + k) A
From the recursion relation [Equation (3.29)] we have
AEJ -ad-;i ~ wjﬂ - wj - (Pjsj - l)le (3.48)

where wj is defined as the two component wave given by Equation (3.28)., In-

troducing Equations (3.46) and (3.47) into Equation (3.48) and keeping only
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terms which are linear in AEJ, we obtain the following coupled equations for

the wave components ¢(+) and ¢(')-:

™) de ; dr
a9 . + 1 1[0, )] _ 1 2 [, _ ()
— 1k*(gl-g2)¢( ) + i"_z'ie— l’ +¢ l —-—2'..2 It [¢ ¢ ] (3.49)
and

) 5 L LY [ g 4 L2 [,
B L e - k) ok [#42449] + =322 [+ -4 6.0

in the continuous limit., These equations may be simplified if we introduce

the sum and difference amplitudes § and D:

S = ¢(+) + ¢(-) exp :— fk* Kl de} (3.51)

D = ¢(+)_ 4,(‘) exp{- fk* Ky dg} . (3.52)

By adding and subtracting Equations (3.49) and (3.50) and using Equations
(3.51) and (3.52) we obtain,

and

ds

— 2 ={k% .
T ik kK, D (3.53)
and
dx dx
_d;Il - - .2'_ ..._.2_ l— —L - *
dE = I D +[.<2 T3 1k* K, I8 . (3.54)

We may eliminate D from these latter equations with a little algebraic manip-
ulation and obtain
dx '
d?s 2 1
5 + [(knz) + ik T3 ]S 0

(3.55)
dg

as the equation for the wave envelope,
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3D. Solutions in the Neighborhood of a Tvrning Point

Near «x, =0, Equation (3.49) and (3.50) are singular. Near these

singular regions (turning points), we may approximate the current pattern

by a linear form. Equation (3.55), familiar to those concerned with electro-

magnetic propagationin a medium having a variable refractive index, has an

explicit solution when the current (= cB = -ce) varies linearly with

To see this, let us define & critical value for the adverse

position,
curreat e, , 1l.e., €, = %;-- 1, and define
e = ¢ (1+E/A) for -A<E<0 ., (3.56)

Using the definitions of Kl and KZ from Equation (3.45) in conjunction with
Equation (3.56), we find that the imaginary term in Equation (3.55) is

negligible in comparison to the (k*'<2)2 term when
*
le] > 2 - A2 (3.57)

With this condition Equation (3,55) reduces to

2 2 €
d“s k* o
- = = TE § = 0 (3.58)

which is valid when the wave envelope is much more than a characteristic wave-

length away from the reflection point.

Equation (3,58) is the equation for the Airy integral in terms of the

2 \1/3
¢ = <E7.';2) £ (3.59)

variable

(3.60)
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The form of the solution is that of a varying amplitude standing wave.

The wave amplitudes which are solutions of Equations (3.49) and (3.50)

are expressed in terms of the Airy integral [Ai(Z)] according to

g o D s S exp 31’/1(* < dgz (3.61)
¢(-) - §L€%JQ exp 31J,L* K, dE z (3.62)

where
S = Ai(r) C1 (3.63)

from Equation (3.60), and

1
1/2
gt/

(3.64)

D =

[=¥ [ %
™jwn

from Equation (3.53). Here, { is expressed in terms of £ in Equation (3.59)
and Cl is a constant. The constant C1 can be determined by examining the

asymptotic form of Ai(g), which for ¢ << 0 is,

1 2 3/2 n
Al(g) ~ — sin{ % |¢| + —> . (3.65)
/T |C|1/4 <3 4

Thus, using Equation (3.63), we obtain for the asymptotic form of the total

wave envelope,

1 2 ,.13/2 m
S = ————~ sin —]CI. + —) . (3.66)
Jr |C|1/4 <3 4

Using Equation (3.66) in conjunction with Equation (3.64) we find
2 3/2 . W
iC1 cos(3 |C| + 4)

(3.67)
/TT Icll/‘o

as the asymptotic expression for the wave difference. Normalized to a unit
incident amplitude [¢(+0 =1] at £=-A, the asymptotic form of the incident

and reflected waves are
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+) 1/4 r € 3/2
PR f } l‘/_g _n
. (IEI) expzik* k, d& - 3 Y7 lel |-t 4( (3.68)

and

(3.69)

1 € 3/2- .
fnldg+5V—Ag|5| J+1

k|
N

v

) 1/4
0(_) = <—-A—) exp%ik*
¢ 14

The velocity potential of the total wave has the modulated envelope:

: 1/4 N
A k* of € 3/2
¢ = 2¢0(|—J) COSg—j" _Zo_ |£| - %&expgik*fxl aE - iwtz (3.70)

as does the wave height Yo The wave height may be obtained from the equation

dys
y, = J g 4t = ¢ dt
which using Equations (3.5) and (3.6) yields
_ 12
¥ w(ax)s . (3.71)

For an incident wave whose peak amplitude at £ = -4 is AY, the wave height

as a function of position is the real part of

1/4 . €
A AY Vi fo 1/2 f _
k* (|5|) o gz k* kK, cos z - A || sin z$ exp;ik* Ky dg iwt$

SR .1
2 = V¥ el -3

or in other words

1/4
ys(E) = 'z—zl(-l—é-l-) [KI cos(z -m) sinsk*fxl dg - wtz

+ %Veo% sin(z-ﬂ)cos,k*/xl d&-wt” . (3.72)
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4., APPROXIMATE SOLUTIONS

We now use the scattering formalism of the preceding section to examine
the approximate change {n the surface wave as it interacts with the internal
current. Using again the notion that if the surface current varies rapidly
with position, reflected waves can be generated. 1f we assume that these
reflections are weak, then it is possible to write the reflection matrix in
the approximate form glven by equation (3.37). These assumptions will be made
in the following section, where the reflected wave ig calculated in the Born
approximation. Section 4B will take into account the variability of the re-
flected wave amplitude and discuss the eikonal (WKB) solution to the problem,
It will be determined that the WKB solutions agree with the solutions obtained

for the coupled differential equations [(3.49) and (3.50)] in Section 3C.

4A. The Born Approximation

We will now continue the analysis begun in Section 3B, where the scatter=
ing of a wave at a boundary is discussed. In this section we assume that the
amplitude of the incident wave is constant throughout the interaction. We
will further assume that the end points >f our propagation interval (El and EN)
in Equation (3.30) are very far from the inte?action region, Incorporating the
single reflection hypothesis in Equetion (3;30), taking the continuous limit of
the product of the propagation matrices [Equation (3.39)] and using the scat~-

tering matrix from Equation (3.36), we may write for the reflected wave,

€.
¢ J -
r:.fl ~ _2 rj('.')(gj) exi’lif [k(+)(5') - k( )(El)ldgl‘ . (4.1)
[0}

]
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Equation (4.1) is the continuous analogue of Equation (3.38), 1.e., because
there 18 only a single scattering from each of the steps (Ej), the reflected

surface wave is a linear superposition of each of these small reflections,

We may write Eq. (4.1) in a more manageable form by taking the limit of the
series as an integral in the same spirit as we constructed the propagators [Eq.

(3.39)]. To do this, consider the reflection coefficient in Eq. (3.21b), where tie

+
wavenumbers k§+) and ké ) may be more instructively written in terms of the

position variable £ We delete the index labeling the region and write

It

the difference in wavenumber at the jth step as

+)
(+) +) _ dk
ky - kB ~ —Igj+l gj FT (4.2)

£'=£j

when the step length lg gj] is sufficiently small. Using Eq. (4.2)

i+l

and (3.21b), we may write the reflection coefficient as a function of posi-

tion
() (p ) e _ . BES a®
j j E-E

]

Further, since the variation in wavenumber with position is dependent on the
variation in the surface current (= Bc) with posgftion; it is more natural to

write equ. (4,3) as

AE +)
+) 1 ™ as
ro ‘(E,) = - = . (4e4)
A kP )Ty ®*
h| ] 3 Ej

By substituting Equation (4.4) into Equation (4.1) we may express the reflected

wave in terms of the integral,
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where the continuous limit of Equation (4.1) has been taken. A further simpli-
fication can be made near the resonance condition B+0, n+1/4, i.e., the point
where Ky becomes zero in Equation (3.44):

£
¢refl i t‘/'exp{ik*‘/.mc df;l} au

£ gcc /T-an %

¢,
o}

where k = [K(+) - K(-)]/2, and we have used n2'~ 1/16 in an expansion of

Yl ~4n .

In the Born approximation the wavenumber x is assumed to be a constant
throughout the interaction interval and may, therefore, be removed from the

integral sign as follows

¢ -—
el o, /eiZk*xg :_ij_g_ 5 (4.6)
o 8k c V1 - 4n

We may integrate Equation (4.6) by parts to obtain,

Prefl _ L, kx / UE)  i2k*eg %.7)
% Wi<en s

This is the Bragg condition for scattering, where the reflection from the
train of surface currents is proportional to the Fourier component of the
surface current distribution at the "mean" wavenumber 2k*c . Since at the
resonant condition the surface gravity waves are typically of much shorter
wavelength than the internal waves, this contribution to the reflection is

usually very small.
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4B, The Eikonal (WKB) Approximation

Of much greater importance than the weak Bragg reflections considered
in Section 4A is the poesibility'of total reflection of the impinging waves,
and associated with this, the possibility of trapped waves, To analyze
this problem we will use the WKB approximation in thie slowly varying regions
far from the turning points and match these asymptotic forms to the Airy
integral expressions (Section 3D) which are valid in the vicinity of the
turning point,

The normal WKB approximation (as used by most workers) permits only one
wavenumber to characterize a wave packet and thus must be carefully interpreted
when applied to the problem of a wave packet incident on a region having reflecting
properties. In the coordinate system moving with the pattern of surface current
produced by the internal wave, there are four different propagating waves which
may coexist at the same frequency (see Fig. 2 ). Two of these can be strongly
coupled if the wave frequency is close to the resonant value (g/4c). Thus, when
applying the WKB approximation to this problem it is important to allow for at
least two coexistent waves. The effects are most easily deduced from the full
wave equation.

We consider first the distortion of the wave as it passes through a
region of slowly varying surface currents, described by U(g). Thus, at point ¢,

we have in general for a right traveling wave, using Eqs. (3.1), (3.6) and (3.8),
2
26 + 2ciwg, + + - & ]- = 0.
w0 + 2clwg, + cT0, + 20 (E)[-lwe, - co [ - 1gs, = O (4.8)

We wish to use the WKB approximation to describe the distortion in the

interaction region, to this end we introduce the normalized variables from

Section 2, and rewrite Equation (4.8) s&s,

53



2 .2

. 2n(1 -8y -1 - n__k* a
beg 1 T be o ¢ o . (4.9)

To gain insight into Equation (4.9) let us put the equation in the fol-

lowing form,

a2
> (P¢) + GP¢ = 0 . (4.10)
dg

Taking the prescribed derivatives and equating terms to those ir Equation (4.9)

yields for the functions P and G

P = expl-i/k* <y dEl (4.11)

32 (4.12)
G = ( 2) + 1 -d—E— .

and

Therefore, with the substitution S= P¢, we obtain

2 dk
a?s 2 #—t|s = 0 4.13
:5—2 + [(k*l:z) + ik 13 ] ( )

for Equation (4.9), which is just chat obtained from the coupled differential

equations in 3ection 3C [3.55], when P¢ is the total wave envelope.

In the eikonal or WKB approximation we write 5 in Equation (4.13) as,

s = aelfl (4.14)

when we require that both the amplitude (A) and phase () be real. Substituting
Equation (4.,14) into (4.13) and equating real and imaginary parts yialds the

coupled equations,

7 2
Age + [(k*ucz) - I‘;]A 0 (4.15)
and
r *1 .. 0 (4.16)
x —p— = . [
Teg + 2 g Ag/A + k o
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It 18 convenient to define PC- ¥ in the above equations, which may then be

written as

A
Kz - (k*Kz)z +-—§£ (4.17)
and
dx
d_ (a%c) = - kx 1 4%

When « is slowly varying over many wavelengths, then we may neglect the
second term on the right hand side of Equation (4.17). 1In this linit (the

eikonal approximation)

K = + k¥ KZ(E)

and £
I = tfk*xz(g’) e’ . (4.19)

A second approximation, which is cousistent with the analytic treatment in
Section 3C is to neglect the contribution of dkl/dE to Equstion (4,18), In

this case the amplitude varies according to

k (§)
ACE) & 2 o (4.20)
A(€o) KZ(E)

which results from the approximation

d 2 . .
d—E-(AK)f\uOo

Using these results in conjunction with Equations (4.14) and (4.11) we may

write the envelope of the wave potential in the form,

3
;Q_ - ‘/ %%’l exp,ifk*[xl(e') t xz(;')]d;’ - mcl (4.21)
o 2

where 00 is the initial amplitude. The wave height at a point § with reference
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p———

to the height at the point £, where the current [U(E)] vanishes, is given by

1/4 £
L _....____.Uo * ! ! !
yo Uo- U(E) exp 1fk [‘1(5 ) ¢ KZ(E )]dE - iwt (4.22)
o
where x; and x, may be obtained from Equation (3.45). Equation (4,21) is in
essential agreement with the asymptotic expression in Equation (3.69) when
a linear current profile is assumed and when we identify the + sign with ¢(+)

and the minus sign with ¢('). Thus we may take the general solution to be

given by

where ¢(+) and ¢(-) are given by Equation (4.21), except in the vicinity of

the turning point., In this latter region, we must use the full wave expression

(Eqs. 3.63 and 3.65).
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5. DISCUSSION AND CONCLUSIONS

This section is divided into three parts., The first part summarizes
the mathematical structure of the paper stressing the various assumptions
employed. A descriptive summary of the physical mechanisms involved in
the scattering process based on analogy with balls rolling on slowly-varying
potential surfaces is provided in the second subsection., The third sub-
section discusses the phenomenon of surface modifications produced by weak
currents and presents exemplary calculations of the modifications expected

for a 'linear' sea.

5A. Summary of the Formal Structure

In Figure 9 we indicate diagramatically the major content and structure
of the mathematical analysis developed in Sections 3 and 4. The general

hydrodynamic equation for the ocean surface

1
J + = VeV (V:VE) + g = 0 (5.1a)
€ t+ (VO VO)t 2 ¢V (VeeVe) + g ylsurface

is used to model the interaction between surface gravity waves and low speed,

low amplitude surface currents, This is done by assuming the velocity potential

to be of the form ¢= ¢+-o(°). where U(;,t)- ve(®) ig the weak surface current and
¢ 18 the velocity potential for the surface gravity waves. Equation (5.1) is

linearized by taking the ratio of the gravity wavelength to the current wave-

e horizontal dimension we obtain
length (Awavelxcurrent)<< 1 , so that in on

bpet 8‘y + zu(x't)‘xt = 0 . (5.1b)
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BASIC EQUATIONS
wiTH U = £(x,t)

LINEARIZED SMALL AMPLITUDE EQUATIONS

" Moave/*current < 1
- LIMITED TO R WAVES,
- STEADY CURRENTS (IN MOVING FRAME)

CONSTANT CURRENT DISPERSION RELATIONS

w = wlk,u)

Y

STEPWISE CONSTANT CURRENT;
SCATTERING AT INTERFACES

Y

CONTINUOUS STEPS, ARBITRARY MEDIUM,
“FULL WAVE"” SOLUTIONS, TURNING POINTS

BORN APPROXIMATION

EIKONAL (WKB)

WAVE HEIGHT & SLOPE MODULATION,
DIRECT WAVES, REFLECTED WAVES

FIGURE 9, STRUCTURE OF THE MATHEMATICAL DEVELOPMENT

58



Equation (5.1b> has a first order interaction term involving a pPrespecified,
non-uniform surface current.

There are a number of possible causes of the surface current, e.g.,
general ocean circulation, swells, river inlets, internal waves, etc. If
We assume that the current is the result of an internal wave propagating
along a thermocline, the situation is unique in that, in the coordinate
System travelling with the internal wave, the surface current pattern is
stationary (8o long as the internal wave 1is non-dispersive). In this
coordinate sytem (£ = x - ct) there exist four possible co-existing waves,
two of which have a positive and two of which have a negative phase velocity
[see Figure (4)]. The two waves with positive phase velocities (right

moving or R-waves), have a dispersion relation (for constant current Uo)
2 2 -
-n" = 2nk - k% + 28oIn+x|k +x = 0 . (5.2)

in terms of the normalized frequency (n = c¢/g), wavenumber (k = kczlg)

and current (8, = U,/c). These two waves have opposing group velocities
(dw/dk = dn/dx = cg), however, and our discussion centers on the inter—
dependence of these two waves (¢(+) and ¢(-) waves). In the case of a
gteady current [U(£)], this description leads in a natural way to the notion
of incident and reflected waves from the weak current region,

From the above dispersion relation [Eqﬁation (5.2)] 1t 1is possible to deter-
mine the wave frequency in terms of the wavenumber and current amplitude. At the
point where the group velocity of the R-wave vanishes (c8 = dn/dc = 0) the surface
wave travels in synchronism with the internal wave and the ¢(+) and ¢(-) waves are

strongly coupled. This condition for strong coupling can be expressed in terms of
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critical values for the current, via the dispersion relation. These concepts
are formulated mathematically in Section 3B by considering a stepwise constant
current. Each step is treated as a boundary and the incident wave is partially
reflected and partially transmitted at each boundary. By requiring continuity
of amplitude and slope of the transmitted and reflected waves at each of these
steps, a scattering matrix for the current region may be developed. The con-
tinuous limit of these equations using the assumption of a weakly reflecting
current is taken in Section 3C. This leads to a set of coupled partial dif-
ferential equations for ¢(+) and ¢('). The coupling is dependent on both

the current and the spatial gradient of the current.

The above set of coupled differential equations [Equations (3.49) and
(3.50)] may be reduced to a single equation for the wave.envelope, i.e.,
5§ ~ ¢(+) + ¢('), [Equation (3.55)]. This equation becomes an Airy integral
for a linear current profile when the distance from the reflection point is

much greater than the characteristic wavelength of the gravity waves.

In Section 4 the connection between the scattering approach to the in-
teraction problem is compared with a straightforward treatment of the linearized
dynamic equations [Equation (5.1b)]. A little algebra establishes that in the

moving coordinate system

d?s
Lo & (a14-ia2)S = 0 (5.3)
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where S is the wave envelope as defined in Section 3. The scattering theory,
therefore, yields the same dynamic équation for the interaction problem as

linearizing Equation (5.1).

Equation (5.3) is solved in the WKB solution under the condition that
@ >> a,, which is the same condition used in Section 3. The WKB solutions are
identical to the asymptotic forms obtained in Section 3 when a linear profile
for the current is assumed. The turning points in the WKB solutions, i.e.,
the points where the wave amplitude becomes infinite, are the spectral or

total reflection points for the incident wave. This is discussed more fully

in Section 5C.

5B. Interpretation in terms of the scattering of wave packets.

The above summary of the formalism has shown that the two models -
(1) the linearized hydrodynamic equation for the ocean surface, and (ii) the
notion of weak reflections of the surface gravity waves by the surface current -
imply the same dynamic description of the interactive process. The importance
of the present description of the process lies in the physical insight that
it provides. We see that, just as in the scattering of electromagnetic
waves from a region of varying refractive 1ndek or scattering of a quantum
mechanical wave (i.e., a particle) from a potential well, it is possible
to Interpret this linearized ocean wave-current interaction model in terms

of scattering theory.
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Under certain circumstances the scattering can be véry strong
(resonant). The interaction has a close formal analogy with scattering
of particles by a shallow potential well, In order to give a physical
deacription of the type of resonance involved, we describe the analogous
resonance which occurs in scattering of particles by a shallow potential

well and make reference to the text where appropriate,

Think of a tightly stretched rubber sheet, and of a very slight hill
travelling at constant speed (Vhill) across this sheet (as would be created by
a moving finger pushing the sheet up just slightly from below)., The hill is

) created by the internal wave.
e

the surface current distribution (v c

hill = Sphas

We now shoot marbles at the moving hill, The marbles are the short wavelength
surface gravity waves (vmarble = cg). A marble moving very fast will not be

much affected by the hill except for feeling it as a brief faint bump. A marble

moving very slowly will also not be affected very much since the hill will
overtake it and pass it too quickly to cause much motion. However, a marble
that moves almost at the same velocity as the hill feels its presence for a
long time and can interact strongly. This is the resonance. For low hills a
perturbation theory could be used to describe the interaction, but the results
would blow up when Vil ~ emsbie [Equation (2.26)], giving a perturbation
growing linearly ia time [Equation (2,28)] (this is essentially the Hartle-
Zachariason calculaticsn for the wave-wave interaction). In this model

(at least in a one-dimensional model), it can be shown that there is a specific,
sharply bounded range of marble velocities centezred around Vhill for which the
interaction i8 strong and that outside this range the interaction is weak. In

this velocity range th: marbles lose or gain energy as they hit or are hit by
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the hill, The effect is most easily understood by viewing 1t in a coordinate
system moving with the hill (rcmembe; this is one dimension so that the hill is
more like a long ridge). In this coordinate system the hill (internal wave cur-
rent) does not move, Marbles (short gravities) overtaking the hill appear now

to come from the left whereas marbles being overtaken by the moving hill appear
to impinge from the right, The impact velocity is t (vmarble - vhill) = t[AvI
(see Section 1), For large |Av| the marble slows down slightly as it climbs the
hill, but regains its original velocity as it rolls down the other side. How-
ever, there is a critical value of Av(= Av*) , dependent on the hill height (Ao),
below which marbles cannot get over the hill - they are reflected, In the ocean-
fixed coordinate frame, these marbles gain or lose a velocity x2Av., The interaction

is very strong for marbles having velocities in this range (vhill 4 Av*(AO)),

i.e., every such collisicn results in a (group) velocity change of #2Av.

In particular, it is to be noted that no marbles which have a velocity
in the range Vhi1l * Av*(A,) are ever found on or near the top of the hill -
they are always reflected away.

For a given internal wave having speed c and amplitude Ao' there 18 a specific
range (Al to A;) of wavelengths of surface gravity waves which are strongly re-
flected by the current pattern of the internal wave, That is, for Ap <A <Ay,

waves obeying
1
c - i'\lgA/ZW

cannot exist at the top of the internal wave., Such wavelengths should be absent

< AVH(A,)

or at least strongly altered in the wave amplitude power spectrum and therefore

also in the radar return in certain regions over the internal wave.
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5C. Application to the Mechanical Generation of 'Slicks'

In this sectlon we provide estimates of the range of frequencies and
wavenumbers which are predicted to be strongly altered by a given internal

wave. Also, examples of the spatial modulation of a wave spectrum are

evaluated for a 'linear' sea,

For a finite packet of roughly sinusoidal currents having a peak
amplitude A,, the frequencies which can be reflected, i.e., for which there

are turning points, should be in a range

A
ne Ls_0 (5.5a)
4 c
that is,
BA
- £ +1 "0 5.5b
w . t A . ( )

c
These are wave frequencies as seen in the moving coordinate system. The cor-
responding wavenumber range (outside the current region) can be obtained from

the dispersinn relation for the unperturbed ocean?

)
ke® o alz2n .1 1700 1,1 \[—" 5.6

Thus, waves in the free ocean that have wavenumbers in the range

|k - kgl < 2kR\/Ao/c (5.7)

(where kR is the wavenumber of the resonance [cg(kR) = ¢])will be reflected

(i.e., reverse their group velocity as seen in the moving coordinate system)

by the surface currents. In the ocean-fixed coordinate gystem waves having thes:

wavenumbers do not in general reverse direction but appear to interact strongly

with the current region.
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The variation of tie wavenumber with position in the current pattern
can be followed with the aid of Figure 10, Here we have plotted the value
of the reduced wavenumber x as a function of the local value of the reduced
current (B) for various fixed frequencies (n = constant). In this plot the
unperturbed ocean is the vertical axis 8 = 0 and the point representing a
given wave packet moves along one of the curves n = constant as the wave
packet traverses the current region. Reflected waves are those which return
to the B8 = 0 axis at a value of x different from the initial value.

For example, according to Figure 10, waves having an unperturbed (reduced)
frequency n = 0.24 can be reflected if B dips below - 0.04. Viewed from

the ocean-fixed coordinate system, these waves change their wavenumbers

a3 a result of a "collision" with a turning point:

’Ak

- ‘ <2 Ao/c

and lose or gain velocity
Acg
08 0/ ’

The mean square amplitude is unchanged (in this one-dimensional problem), but

the mean square slope .can.change within the limits:

2
a
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FIGURE 10. REDUCED WAVENUMBER K(=c®k/G) AS A FUNCTION
OF THE CURRENT PARAMETER [3 (=aAu/c) FOR FIXED
VALUES OF THE FREQUENCY»’l(=cw/G)
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These changes are the "residual" changes that remain after the
wave has ceased interacting with the current pattern, The changes that
take place during the course of the interaction can differ considerably
from these values. However, even these residual values can be significant.,
Consider a long wavelength internal wave Propagagating at 0,5 meters/second
along a thermocline at 50 meters depth.  An amplitude of the internal
wave of one meter would create a surface current that oscillates between
t 1.0 centimeters/second. This current would (in the absence of non-linear
effects) be capable of strongly interacting with surface waves having wave-
lengths between 50 and 75 cm. The most strongly-altered waves would have
their wavelengths changed by up to 40%, their group velocity by up to 20%,
and their mean square slopes by up to 80%.

As indicated above, the moving current pattern associated with a
travelling internal wave modifies the spectral distribution of surface
waves in two ways. Within the region of finite current gradient, the wave
amplitudes and slopes are altered according to Equations (3.49) and (3.50).
In addition to this local effect, some of the waves intercepted by the
current pattern are modified by the Scattering process described in Section 3
and leave the region of interaction with altered wave speeds. As these
reflected waves Propagate away from the current péttern, they alter the
spectral distributions at distances remote from the gcattering region., To
demonstrate these effects, we consider the effect of the passage of a simple

gaussian-shaped internal wave packet of peak amplitude a travelling along
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a sharply-defined thermocline at depth D (Figure 11). The surface

current has the form

AU 2,.2
-é-o- - f = -% exp (- (x-Cot) /8¢) (5.8)

and we evaluate the steady state spectral distribution at differing
spatial locations relative to the current packet,

In the frame of the internal wave, R-waves impinge from both directions:
"(+)" waves, corresponding to wave packets moving in the positive direction
and having group velocities greater than that of the internal wave, and "(-)"

waves, corresponding to those moving slower than the internal wave,

In Figure 12 we show x - t plots of wave Packet trajectories, The waves
that are reflected by tge current regions appear as discrete bundles in
these plots,

To demonstrate the modification of a spectrum of linear waves by
a travelling current Pattern, we assume that the incident waves have a
k=3 Spectrum. This spectral form is chosen to simulate that of a Saturated
sea, although it ig recognized that this linear wave model is not consistent
with the concept of a sea limited by non-linear effects, In Figure 13
we show the calculated power spectrum (multiplied by k3) at three
different points: ope ahead of, one behind, and one directly over the
internal wave, These results were obtained using the WKB approximation
formulas (Equations 4,21 and 4,22) with the Standing wave pattern created
by the reflected wave smeared out. The data are presented in terms
of dimensionless variables and can be scaled to various conditions. For
example, for an internal wave velocity of 50 cm/sec, the resonant

wavenumber, frequency, and wavelength are: k = 0,097 cm-l, w=29.8 sec_l ,
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A= 64 cm (corresponding to the dimensionless values k = Q,25 and
N =0.25.), For the example chosen (B = - 0.04), the surface current
varies from zero to - 2,0 cm/sec over the crest of the wave,
The calculation shows a number of interesting effects, First,
over the internal wave crest (Figure 13b), the spectrum is distorted over a rather
broad range of wavenumbers, The broadening is less ahead or behind the
internal wave (where it is consistent with approximate estimates given earlier)
Another effect noticeable ig the lack of intense caustic formation.
Although a single wave incident on the pattern would show a large amplitude
enhancement (infinite in this approximation) in the neighborhood of its
turning point, this is not true when the incident waves are spectrally
distributed. Here, because different wave packets have turning points
at different locations, the net effect on the 8pectrum 1s a finite dis-
tortion (see Figure 13b),
Outside the current region we see the effect of reflected waves,
In front of the internal wave the net effect is an apparent depletion of
the high wavenumbers (a "smoothing"), This results from the fact that,
as the surface waves are overtaken by the internal wave, those that are
"blocked" by the current are accelerated and move ahead of the current
pattern with decreased wavenumber (increased.wavelength).
Because the spectrum falls off rapidly with increasing wavenumber, the
resulting depletion at high wavenumbers is much more noticeable than the

corresponding increase at low wavenumbers,

The opposite effect occurs astern of the internal wave. Here the
reflection process increases the wavenumber resulting in a strong increase

in the high wavenumber part of the spectrum as compared to a fractfonally—
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weaker decrease in the low wavenumber part. Thus this linear model would
predict an apparent high wavenumber smoothing ahead of the internal wave
crest and a roughening astern., Directly over the crest both effects
occur: low wavenumbers are enhanced, high wavenumbers are suppressed.

The morphology discussed above applies to a linear sea. Non=1linear
effects in the real ocean can be expected to severely limit the magnitude
of the effects induced; however, the morphology should be similar. That
is, a region of advancing positive current gradient (such as that over
the bow of an internal wave crest) tends to accelerate the near resonant
waves and results in a depletion of the high wavenumber portion of the
spectrum (a "smoothing"). #-. advancing region of negative current gradient
(such as in the convergence zone trailing an internal wave crest) leads to
enhancement of high wavenumbers (a "roughening").

One can infer some of the real ocean effects by following the motion
of an individual wave packet as it traverses the variable current region.
In Figure 14 we show histories of a wave packet as it enters the current
pattern and is reflected. The mean square amplitude enhancement and mean
square slope enhancement are plotted as a function of time., In a truly
linear sea, the amplitude and slope enhancement depend solely »on the local
value of the current and is maximum when the.group velocity relative to
the internal wave vanishes,

The enhancements shown in Figure 14 are much larger than can be

expected to occur in a fully-developed sea, however. A rough estimate of
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the real ocean effects to be expected can be obtained by introducing the
concept of a coherence time. This is the time required for wind, wave-wave,
or dissipative interactions to alter the wave under consideration. Rough
estimates of this time (measured in wave periods) are shown in Figure 15
and indicate that coherence times in the range of 10 to 100 wave periods

are typical for a saturated sea. The wind interaction time was estimated
from Phillips (1966). Two estimates are given for the non-linear wave in-
teraction time; the upper one according to Benjamin (1967) [t/T = kzaz/w

2
~ 0.006 for a saturated sea] and the lower one according to Has-

— ——

2
selman (1967) [t/T ~V¢” with the mean square slope ch fitted to the data

and k2a

of Cox and Munk].

For example, consider the gaussian-shaped internal wave discussed
previously. This wave had a half width A = 50 meters, a peak amplitude
a = 2 meters, and was assumed to be travelling at 50 cm/sec along a sharp
thermocline at 50 meters depth. We follow a surface wave which, in the
unperturbed ocean, has a wave length equal to 95 centimeters (wave period
of 0.78 sec.) and which travels at a group velocity equal to 60.8 cm/sec
(i.e., it is overtaking the internal wave at an initial relative velocity
of 10.8 cm/sec).

According to Figure 14 this wave will be decelerated to the internal
wave speed by the time it has penetrated to a point 24 meters behind the
internal wave crest, For such a wave the width of the "full wave" region
(as defined by the point where the Alry integral argument Z is equal to

unity -~ see Eq. 3,59) 1is given by the expression
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Ax = [4c/(k2du/dx) 1/3

At the reflection point in
b g

where du/dx is the local current gradient.

- -1
our example, the current gradient is about - 4 x 10 ec ~ and Ax is

about 75 cm.

If the sea were truly described by linear theory, the mean /square
amplitude and slope would have been enhanced by the factors 6 and 10,
respectively, at the edge of the "full wave" region. However, the time
for the wave packet to travel from a point at the edge of the current
region (say x = - 50 meters) to the point of maximum enhancement (the
edge of the "full wave" region) is very long: At= 6 A/c = 600 seconds
or about 770 wave periods. According to Figure 15, it is unlikely that
such a wave will have such a long coherence time except when the wind
speed is quite low. Thus it is more appropriate to ask what happens to
a wave which is born within the current pattern and which travels a
relatively short distance from its birth place.

Consider a wave generated at the point A in Figure 14 (26 meters
beind the crest of the internal wave). Such a wave has a wavel:ngth of
74.2 cm and a group velocity of 52.2 cm/sec (2.25 cm/s2. relative to the
internal wave). In 50 seconds (64 wave periods), it will move :o a point
1.12 meters closer to the internal wave crest, During this time its mean
square amplitude and slope will be enhanced by the factors 1,23 and 1.30
respectively., These values are probably more realistic for the normal

state of the ocean than the values quoted in the previous paragraph.
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It 18 to be noted that the enhancement effects discussed above are
only one of two effects that result in modification of ocean wave spectra.
Even in the absence of enhanced amplitudes, a spectrum will be altered
because of che simultaneous wavenumber changes induced by the current gra-
dient (refraction). In order to assess the simultaneous effects of these
two phenomena, as well as to account for the finite coherence time effects
and the effects of non-linear saturation, it is necessary to develop a
formalisn for treating the spectral deformation in terms of a spectral re-
laxation or transport equation. The development of such a model will be

the subject of subsequent reports.

The spectral modifications predicted by the present model are summarized
Figure 16. The phasing of the "smoothed" region (i.e., the mechanical
"slicks") in this linear wave model is just opposite to that one would ex-
pect as a result of enhanced viscous dampiug in the convergence regions due

to an accumulation of organic material or other debris.

Although one is tempted to draw conclusions concerning the phase re-
lationship of regions of roughening and smoothing in the ocean based on
this linear model, it must be remembered that the actual predicted effect
1s one of spectral distortion with simultaneous enhancement of some wave-
lengths and suppression of others. The non-linear effects present in real
saturated ocean spactra are not likely to affect all wavenumbers equally.
Thus the model needs to be extended to include the effects of wind genera-
tion of waves and of non-linear wave-wave interactions, including wave
breaking, before one can make confident predictions of real ocean wave

spectra modifications.
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APPENDIX: MICRO-STRUCTURE OF THE TURNING POINT AND APPLICABILITY OF THE

WKB APPROXIMATION

As pointed out in the WKB approximation of Section 4, there exists
the possibility of reflected waves at the WKB turning points, i.e., the
points where the wave amplitude becomes infinite, According to the dispersion
relation [Equations (3.44) and (3,45)], the reduced wav;number x has an

imaginary part (corresponding to evanescent waves) when
1-4n(1-8) +4n282 <0 , (A.1)

in other words, when the reduced frequency n lies between the critical values:

. 1-8 2
B ol Vi-e2/a- p)2 ] (A.2)
and
. W
n, = -21-5?8- 1+ yi-8%/@1- 8)2 ' (A.3)

that is, when

Mg (A.4)

the wave cannot propagate. Thus, for small values of g, evanescent waves are ex-

pected when

1 l-8
';2‘2“ 2 (A.5)

which is obtained by expanding Equation (A.2), Of primary interest to us is
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the low frequency 1imit, since we learned earlier that at this limit the
reflected wave amplitude becomes infinite in the WKB approximation,

To expand on this regult, let us consider the group velocity of
the surface wave in this (moving) coordinate system., Usirg the dispersion
relation [Equation (5.2)] for the reduced frequency, and neglecting terms

gradratic in B1

n «® - g(1-8) ¢t \/:_ (A.6)

we obtain for the group velocity (relative to the internal wave velocity c)

[
1
_cﬂ " %‘. = -(1-8) % ‘ (A.7a)

2V

where the upper sign corresponds to the low frequency mode of interest; thus

Vax

o b

and, at the point n = n,~ 1/[4(1-8)) vhere ‘x~ 1/[4(1-28)], the group velocit

is
[
£+ _~(1-8)+ VIZIF &~ o . (A.8)
[

The point n = N is thus a turning point and corresponds to specular or total re-
flection of the gravity wave by the surface current at points where g~ 1 - 1/4

[see Equation (4.23)].

In the evanescent region the wavenumber is complex and may be written in the

form

K = K. + 1k (A.9)
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which when substituted into the dispersion relation Equation (3.11) yields

values for x_ and k :
R I

. 1-2(1-8)
Kr (1= 28) (A.10)
and 1
2 (1' B)n "4'
K w em— (A.11)
I (1-28)2

For emall 8 these expressions are ,1n terms of the critical frequency

1
"1'?(1_-T)'l‘

«1f; _ 2n
kp = 4( ;I) (A.12)
and
2 = 1 n
1 7% ("—1- 1) (A.13)

A measure of the applicability of the WKB approximation 1s the relative magni-
tude of the "skin depth" or penetration depth at the turning point compared to

the dimension of the current pattern, The penetration length is of order

d ~ v xr . (A.14)

It 18 convenient to evaluate thig length near the resonant condition, i.e.,

near the value of Kp for which %-/g?k* = ¢+ For an internal wave propagating

along an interface at depth D between two uniform layers that differ in density

by an amount Ap, we may write (since c2 = g(Ap/p)D)

k¥ = p/DAp (A.15)
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Thus,
d >~ 2(Ap/p)D/ 4n=-1-8 . (A.16)

As B increases, higher and higher frequencies can propagate. Thus,
the negative parts of the current will reflect the lowest frequencies and
the more negative is the value of the 8 in the wave trough, the stronger will
the extinction of the surface waves be, The value that (-8) must exceed the
critical value (1 -4n) in order that the penetration depth be, say, 5% or less

of the thermocline depth D is given by:

=B85y = 1 - 4n + 0,0016 (A.17)

where we have taken an air-water interface (Ap/p = 10-3). Thus, small changes
in B8 will cause a wave that could just penetrate the entire current region to
be reflected in quite short distances., This :hange 1s small compared to typical
variations of 8 expected.* Thus, for most of the waves we can assume that if

they are reflected at all, they will be reflected from highly localized regions.

* The internal wave height Y; is given by

Y. (§)
1 sinh KD
D KD B(E)

For the typical case KD £ 1, significant wave heights (YI> .,01D) are always
associated with g8 variations large compared to that in Eq. (A.17).
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