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FOREWORD

The work reported herein was performed under the sponsorship
of the Advanced Research Projects Agency, Department of Defense,
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Wright-Patterson Air Force Basc, Ohio. Mr. H. S. Schwartz is the
Air Force Program Manager.
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1969 and f 33615-68-C-1077 which covered the period May 17, 1969
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The contractor is Case Western Reserve University, with
Dr. H. R. Nara (phone 216-368-4414) as program supervisor.

This is the final report for the contract period May 17, 1970

to May 16, 1971.

This report was submitted by the author October 1971.

This report has been reviewed and is approved,

A. M. LOVELACE
Director
Air Force Materials Laboratory
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ABSTRACT

Experimental and analytical investigations were performed to
provide increased understanding of the fundamental behavior of fiber
reinforced plastic composites. The research was conducted in a num-
ber of discrete tasks which were grouped into three principal cate-
gories, namely: materials research, mechanics of composites, and
analysis and design of composite structures.

In the materials research category, information on the physical
.'nd chemical characteristics of graphite fiber surfaces was obtained
using gas and liquid adsorption techniques and mass spectrometry.
This irformation provides a new insight into the relationship between
graphite fiber surface characteristics and their adhesion (or lack of
adhesion) to plastic matrices. In an investigation targeted to
develop composites having improved fiber-matrix adhesion and higher
toughness, graphite fiber-nylon 6 matrix composites were prepared by
in-situ polymerization of nylon in a reaction vessel containing the
fibers. The composites had promising mechanical behavior, but
optimum engineering properties were not obtained due to difficulties
in achieving high fiber content, good fiber alignment and low void
content.

In the mechanics of composites category, four research tasks
were completed. Exact analytical solutions were obtained for longi-
tudinal shear deformation of composites. Analyses were performed to
define the stress field in composites containing circular inclusions
in various types of arrays. In an investigation using the scattered
light photoelastic technique, apparatus was completed for investi-
gating the stress distribution in composites while load is applied
to the composite. An experimental investigation was performed to
relate fracture characteristics of unidirectional fiber reinforced
plastic composites to specimen thickness, void content, and loading
rate.

In research related to analysis and design of composite
structures, a finite displacement analysis method was developed for
laminated plates subjected to membrane compression, lateral pressure,
and an arbitrary temperature distribution. The ultimate strength
of buckled laminated plates and the effects of cutouts on the post-
buckling response was investigated both analytically and experi-
mentally. The exact solution was obtained for the buckling aniso-
tropic cylindrical shells.
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SECTION I

INTRODUCTION

The program, "Integrated Research on Carbon Composite Materials,"
was initiated in May 1965 under a contract through the Air Force
Materials Laboratory. Union Carbide Corporation was the prime
contractor with Bell Aerosystems and Case Western Reserve University
as subcontractors. The work conducted under these initial contracts
can be found in the Annual Reports AFML-TR-66-310, Parts I, II, IIl,
IV and V. In May 1970, Case Western Reserve University continued
the work initiated under these contracts through a new contract
(F33-615-70-C-l016).

This is the final report prepared under this new contract. All
of the projects reported herein were initiated under the original
centracts. The reader is referred to the previously published Annual
Reports for the definition of individual projects. This report is
divided into three sections:

(a) Materials Research

(b) Mechanics of Composites

(c) Analysis and Design of Composite Structures

Projects which were completed at the end of the contract period
are reported in self contained sections incltiding an individual
Abstract, Introduction, References, etc. Projects which were in-
complete at the end of the contract period are reported with only
a summary report.

_L



SECTION II

SUMMARY

Materials Research

A. Structure Analysis of Graphite Fiber Surfaces Through
Low Temperature Inert Gas Adsorption and Mass
Spectrometry

A study was made of the surface properties of unsized vacuum
heat treated "Thornel 50" graphite fibers. The techniques used
were low temperature inert gas adsorption by microgravimetry, and
mass spectrometry. The experiments showed that graphite fiber
specific surface area was low - on the order of l m /g. This
specific surface first decreased and then increased as the fibers
were heated to higher and higher temperatures. The shape of the
adsorption isotherms, the calculated differential thermodynamics
of adsorption, comparison of adsorption data for fibers heat treated
to different temperatures, analysis of the mass spectra of gases
evolved during heating, and the known dimensions of the graphite
crystallites provided strong evidence for three kinds of adsorption
site patches on the fiber. These were identified as the tops, edges,
and oxidized edges of oriented graphite crystallites in the fiber
surface. The fractions of the fiber surface composed of these
three patch types were ca. 0.67, ca. 0.26 and ca. 0.07. Vacuum
heat treatment decreased the oxidized edge and increased the un-
oxidized edge surface. Lack of adsorption hysteresis at high
relative pressures suggested a negligible number of large pores
opening to the outside of the fiber. However, presence of a
relatively large number of micropores was indicated. Comparison
of the BET surface area obtained with nitrogen at 77°K with a cal-
culation based on scanning electron microscopy indicated a fiber
roughness factor of 3.

B. Adsorption from Solution onto "Thornel-50" Fiber Surfaces

The adsorption of stearic acid, octadecane, and benzoic acid -

from solution in cyclohexane onto "Thornel-50" fiber surfaces - was
studied by continuous flow column chromatography. Fiber surface
area, and the energetics of solute adsorption as a function of
surface coverage, were evaluated from the adsorption data. All
three solutes were shown to form adsorbed close packed monolayers
of horizontally oriented molecules when surface saturation was
achieved. The specific surface area of the filers calculated from
the saturation adsorption values was ca. 1.3 m /gram. Affinities
of the solutes for the fiber surface increased in the order

2



octadecane < benzoic acid < stearic acid. Isosteric heat calcu-
lations, made for the coverage range of 25 to 100 percent, indicated
weak (physical) adsorption of stearic acid and suggested that any
active adsorption sites present comprise only a small fraction of
the fiber surface area.

C. Nylon 6/Graphite Fiber Composites by In Situ Polymerization

The in situ polymerization of caprolactam to Nylon 6 was inves-
tigated as a method for making graphite fiber composites. It was
necessary to find a co-catalyst (using sodium caprolactam as
catalyst) which could be mixed at about 100%C and where the final
mixture had a long enough pot life to allow for mixing and applica-
tion to the fibers. The temperature could then be raised to 200 0C
to initiate rapid polymerization.

Co-catalysts tested were all esters as these had earlier been
shown to have appropriate lifetimes. .They were phenyl acetate,
benzyl acetate, benzyl benzoate, t-butyl acetate and c-caprolactone.
Benzyl derivatives gave brittle polymerizates, while the others gave
tough materials. Phenyl was excluded as potentially reacting too
rapidly. t-Butyl gave good polymers at 190 0 C but expanded into a
foam when heated to 2100 due to volatilization of the t-butanol.
c-Caprolactone initiated well and produced no residues, so it was
chosen as the major co-catalyst.

Jigs were designed on which graphitic fiber could be wound at
various tensions. These were put in tubes containing precatalyzed
monomer at 100°C. The whole was degassed several times and then
heated to 200 0 C for polymerization.

Several samples of composites were made with fiber densities of
25 to 40 volume % using "Thornel" 50S and 75S fibers. The samples
still had some voids due to lack of complete penetration of monomer.
The samples varied widely in their tensile strengths and moduli due
mainly to variations in fiber density, but also to voids. The best
samples achieved about 70% transfer of properties. This is a
respectable figure when one considers that these are the first
samples made at these fiber densities.

Mechanics of Composites

A. Longitudinal Shear Deformation of Composites

An exact analytical solution is given for the problem of anti-
plane shear loading of a unidirectional composite containing ran-
domly distributed fibers of arbitrary radii and shear moduli. An
expression for the effective shear modulus is developed. For the

3



case of a re•.ular array this expression gives results that are
virtually identical with the numericcal sol utions presented earl ier.
In the case of a random distribution of fibers, results that are
essentially in agreement with the conclusions of Adams ,.nd Bai are
obtained. Finally, the results are used to discuss the vico-
elastic behavior of a composite.

B. Hultiple Circular Inclusion Problems in Plane Elastostatics

The general representation, has been modified to give a more
straightforward solution of the elastic boundary value problem
for an unbounded matrix containing a single circular inclusion.
Using these results, the problem of an unbounded matrix containing
an arbitrary number of elastic inclusions (which can have any radii
and elastic properties) has been solved for uniform and in-plane
bending stress fields.

As the first application of the general results to cumposites,
transverse loading of a single ply for the case of fiber-: having
the same shear modulus as the matrix has been considered,

C. Scattered Light Photoelasticity

In the scattered-light photoelastic technique stresses are found
to be proportional to the slope of the fringe order (taken with
respect to distance along the light beam path). For transmitted
light work stresses are proportional to the fringe order itself.
Hence the scattered light technique is inherently less accurate
than the transmitted light method. The potential for a full three-
dimensional stress analysis without slicing or destroying the model
provides compelling reason to seek ways to overcome the difficulties
of obtaining high acruracy with scattered light. One promising
approach which has been successfully followed, is to develop
numerical techniques which will help to get the most out of the
fringe data by "preventing" the d~rivative from becoming too erratic.
A recently completed Master's degrea thesis "Smoothed Spline
Functions - Applications to Experimental Mechanics" (P. Shankar)
summarizes this work. The techniques which have been developed are
also applicable to experimental problems other than scattered light
photoelasticity.

A great deal of effort has been expended in the design and fabri-
cation of a scattered light polariscope, and recently a live loading
fixture to use with •hat polariscope.

4



D. An Experimental Study of the Fracture Properties of
Unidirectional Composite Materials

It has been shown by experimentation that (1) the load crack
opening displaceinert curves give inconclusive results for the thin
(0.1 inch) specimen but that the larger specimen (0.3, 0.5, and 1.0
inch) specimens appear to be close to satisfying the requirements
of linear elasticity, (2) the square root singularitz, will be
satisfied for the thin specimens, (3) the nominal stress in the
specimens at fracture will be below the yield stress of the material,
and (4) the value of the stress intensity factor will be a minimum
for thin specimens, giving conservative results. These last three
points indicate that thin specimens should be used to determine the
unidirectional composite fracture toughness. The actual thickness
requirement is less than the smallest thickness tested in this
study because of lateral specimen stability problems in the bend
test for very thin specimens. Therefore, an alternate specimen
should be used, possibly a center or edge cracked tensile specimen
or the recently promoted compact specimen. In fact, the work often
mentioned here by Wu and Reuter (11) used a center cracked tensile
specimen and is a valid test for composite fracture toughness.
With the alternate specimens for which fixture nonlinearities will
not exist, the load-crack opening displacement records should be
further studied.

Analysis and Design of Composite Structures

A. Finite Displacement Analysis of Laminated Plates

A method of analysis for the large displacement behavior of
laminated plates subjected to membrane compression, lateral pressure
and the arbitrary temperature distribution is developed based on an
extension of the work completed earlier by Chan. This analysis
method will be used subsequently in an optimum design procedure.

B. Buckling of Laminated Composite Plates with Cut Outs

The buckling strength and post buckling behavior of laminated
square plates with a centrally located circular hole were studied
both experimentally and analytically. The analysis was based on
the work of Chan and the experimental program used both aluminum
and fiberglass specimens.

C. Post Buckling Strength of Anisotropic Plates

An approximate analysis was performed to obtain formulae for
predicting the post-buckling strength of orthotropic and anisotropic
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material plates under unidirectional edge compression, The theore-
tical predictions were verified by tests on fiberglass-epoxy com-
posite plates. Excellent agreement is obtained between the theore-
tical predictions and test data.

An accurate fixture for the post-buckling testing of rectangular
plates was designed incorporating a number of novel ideas. The
fixture can be used for both buckling and post-buckling tests up to
failure with accurately maintained boundary conditions.

A test method has been developed for the unbuckled compression
stress-strain and strength determination of plates and sheets. The
corresponding fixture has been used to test aluminum and fiberglass
plates down to .030 inch thick. Accurate results are obtained and
failure is obtained in the gage section.

D. Buckling of Anisotropic Circular Cylindrical Shells

The numerical results in this section have shown that this method
of solution presented in this study .;an be successfully applied to
predict the buckling load of a general anisotropic cylindrical shell.
The buckling analysis takes into consideration the following
conditions:

(a) The loading condition can be any combination of the
radial pressure, the axial force, and the torsional force.

(b) Eight sets of boundary conditions include four simple

supports, SSI -- SS4, and four clamped supports Cl -- C4.

(c) L/r ratio can be any value.

The analysis uses both Flugge's and Don:,-'s theories. A total of
20 different cases of snell buckling has been investigated.

The great success in the buckling analysis involving the axial
compression resulted from the appropriate arrangement of the
characteristic roots. An improper arrangement -an cause the false
change of signs of the boundary determinant, and hence the incorrect
buckling loads are obtained.

For the cases studied, the range of differences between Donnell's
and Flugge's results is from 9.2% to 38.5% For the cases with the
circumferential wave number n = 2, and the deviation is less than
2.5% for the cases with n = 6 or higher. The cause for this devia-
tion is correlated with the inaccuracy of the characteristic roots
obtained from Donnell's equations with n = 2,3.

The boundary conditions have significant effects on the buckling
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loads for short cylinders, but it has little effect on the long
cylinders. As indicated through the numerical comparison, the
buckling loads with SSl boundary conditions are only 46.4% to 54.8%
of those with SS4 boundary conditions for short cylinders of isotro-
pic material. For long cylinders, there is only a 5% difference
beween SSI and SS4 buckling loads. For the orthotropic case the
effects of the boundary condition are insignificant, less than 5%
difference. The boundary effect for the anisotropic case is moderate.
It ranges from 75% for the very short cylinder (L/r = 0.5) to 99.8%
for the very long cylinder (L/r > 100).
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SECTION III

MATERIALS RESEARCH

During this last year of the contract, t.ree projects on materilIs
research were conducted. In the first project, the surface character-
istics of graphite fibers were studied through both low temperature
gas adsorption,and mass spectrometry. These experiments provided data
on the specific surface area, the evidence of three kinds of adsorp-
tion sites, and an indication of the presence of a large number of
micropores with relatively few large pores. In a series of related
experiments to characterize the graphite fiber surface through
adsorption from solution additional data on the specific surface
area as well as surface adsorption energetics were obtained.

The third series of experiments on materials research dealt with
the in-situ polymerifzation of nylon-6 with graphite fibers to obtain
void free composites with improved fiber-matrix bond characteristics.

A. Structure Analysis of Graphite Fiber Surfaces Through
Low Temperature Inert Gas Adsorption and Mass
Spectrometry
(Prof. T. Fort, and Preben J. Moller)

Introduction

Production of "Thornel" fibers involves taking a rayon precursor
through a series of progressively higher temperature pyrolysis,
carbonization and graphitization steps.(1) The last of these steps
is a rapic' "hot stretch" in a nitrogen atmosphere at temperatures
approaching 30000 C, which treatment causes a high degree of preferred
orientation of graphite layers parallel to the fiber axis. The
oriented graphite fibers so produced are very strong, anl may exhibit
a Young's modulus in excess of 50 million p.s.i.(2) Th , character-
istic, coupled with lightness and high temperature resistance, has
led to the use of "Thornel" fibers as a favored reinforcement for
polymer matrices in advanced, high performance composite structures.

A problem with these (and other) graphite fibers, however, has
been their poor adhesion to the polymer matrix which surrounds them.(3)
Attempts to improve this adhesion have led to various treatments of
the fiber to produce a mare bondable surface. While some gains have
been made (4-6), most work has been empirical. Real optimization
of adhesion (and interfacial shear) awaits thorough characterization
of the fiber surface. The objective of this research has been to
make such a characterization, and to predict the effects of present
(and future) surface treatments on fiber surface properties.

8



This effort consists of a study of the surface of "as received"
and vacuum heat treated "Thorne! 50" fibers. The techniques used
are low temperature inert gas adsorption by microgravimetry, and
mass spectrometry. From the first is derived information about fiber
surface area, energy and heterogeneity. The second gives informa-
tion about materials volatilized from the fiber surface during
vacuum heat treatment. A special effort is made to relate these
surface analyses to what is known about the bulk structure of
"Thornel 50", and to the bulk and surface properties of other
graphitic carbons.

EXPERIMENTAL

A. Materials

1. Adsorbent: The absorbent was, in all experiments, "Thornel-
50" graphite fiber obtained from the Union Carbide Corporation
Technical Center in Parma, Ohio. This specially prepared, unsized
fiber wan identified as Lot 10018 44E and had a tensile strength oi'
287 x 10 p.s.i. and a Young's modulus of 51.2 x 100 p.s.i. A
typical density for "Thornel-50" is 1.63 g./cm3 as measured by the
liquid immersion method.

2. Adsorbates: All adsorbates were research grade gases obtained
from Matheson Gas Products, Joliet, Illinois. Manufacturer's speci-
fications for the nitrogen, argon, and helium used are listed in
Table 1. These gases were used without further purification.

B. Apparatus

1. Balance and Pumps: The measurement system as shown in
Figures I and2 consists of a Cahn Model RG, High Vacuum, Electro-
balance (Ventron Instruments, Paramount, California) mounted in a
vacuum system largely assembled from standard Varian (Varian
Associatcs, Palo Alto, California) parts. The balance chamber is
connected to the gas manifold through vibration damping bellows,
and the entire assembly is mounted on a heavy metal table permanent-
ly bolted to the concrete floor of an air conditioned room. The
system is pumped by a Varian Model 941-6001 Vac Sorb cryogenic
sorption pump and a Varian Model 912-6000 50-lit r-per-s.,.cond ion
pump. The system attains a base pressure of 10-9 torr after the
balance chamber is baked out at 1000C and the pumps and gas manifold
are baked out at 2500C.

2. Pressure Measurement: System pressures below l0-4 torr are
measured with a Varian U.H.V. ion gage. This same pressure range
is also covered by a G.E. Minitube ion gage (General Electric
Company, Schenectady, New York) which can, in addition, function at
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pressures up to 102 torr if operated at very low (10o A) emission
currents. Pressures between 10-3 and 1 torr are determined with a
Hastings Model VT-6 thermocouple gage (Hastings-Raydist, Inc.,
h-dmptoh, Virginia) and from 0.6 torr to 760 torr with a Kern spiral
gage (Electronic Space Pr'oducts, Inc., Los Angeles, California) which
is operated as a null device. Null is detected by noting the posi-
tion of a spot of light reflected from a mirror mounted on the spiral
gage to a calibrated scale. The reference side of the spiral gage
is pumped by mechanical and mercury diffusion pumps. Pressure on
the reference side is measured with a wide bore (27 mm. i.d.)
manometer read by a precision cathotometer (Ealing Corporation,
Catalog Number 11-5279, Cambridge, Massachusetts) with an accuracy
of + 0.01 torr. Low pressure measurements are corrected for thermal
transpiration effects according to the equation of Liang (7). All
manometer pressures are corrected to O°C.

3. Gas Handling, Analysis and Control: The adsorbate gases are
admitted to the manifold through a Math'eson ultra pure transfer
regulator (Matheson Scientific Instruments, Joliet, Illinois) to a
Granville-Phillips Series 203 variable leak valve (Granville-
Phillips Corporation, Boulder, Colorado). The composition of the
gas atmosphere over the fiber sauiple is monitored by a Veeco SPI-1O
Monopole Spectrometer (Veeco Instruments, Plainview, New York).

4. Sample Container and Support: The sample is contained in a
15 mm. diameter, blown, pear-shaped thin walled quartz pan suspended
from a 56 cm. long and 0.003 cm. diameter platinum wire. The pan
and wire assembly is suspended inside a 25 mm. inner diameter quartz
hangdown tube connected through graded seals to a standard Varian
flange. The hangdown tubes are internally coated with SnO in the
bottom and Pd near the metal flanges to aid in removal of itatic
electrical charges. Coating of the sample pan with SnO was shown
to have no effect on mass measurements. The sample itsilf is
grounded through the suspension wire.

5. Temperature Control: Sample temperature during an experiment
is controlled either by direct contact of the hangdown tube with
liquid nitrogen or liquid oxygen (for experiments at 77 and 900K)
or by a cryostat constructed as shown in Figure 3. Sample tempera-
tures of 90'K to 300 0 K may be maintained with the unit as described.

The basic parts of the cryostat are heated copper block contained
in an evacuated chamber surrounded by cooling liquid. The heater
block (of high heat capacity) is a cylindrical piece of copper 6 cm.
in diameter and 16 cm. high with vertical holes drilled to accommo-
date two series connected 75 watt cylindrical heating elements and
the sample hangdown tube. This block fits an evacuatable glass
jacket sealed to the upper part of the hangdown tube. The sample
pan is immersed 14 cm. below the top of the temperature cor "olled
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block. A Dewar of cooling fluid surrounds the jacket.

Temperature of the copper block is controlled to + O.010C by
a Melabs Model CTC-IA Proportional Temperature ControTler (Melabs
Inc., Palo Alto, California). Current through the heaters may be
varied with a control rheostat. Temperatures are measured with a
Rosemount Model 108JlC platinum resistance thermometer (Rosemount
Engineering Company, Minneapolis, Minnesota) read by a L. & N. Model
K-4 Potentiometer (Leeds and Northrup Company, Philadelphia,
Pennsylvania).

Cryogenic temperatures are obtained by admitting nitrogen gas
(helium avoided because of its ability to diffuse through quartz)
into the cryostat jacket and filling the outer Dewar with liquid
nitrogen. Liquid nitrogen level is maintained constant (+ 1 mm)
with a (special) fluidic principle sensor.* After sufficTently low
temperatures are obtained, the cryostat is pumped to pressures in the
10-4 torr region as measured on a Pirani gage (Consolidated Vacuum
Corporation, Rochester, New York). The temperature of the sample
at a given cryostat condition is determined by making blank runs
with a thermocouple suspended inside the hangdown tube.

Vacuum heat treatments of the fibers are effected through use
of a high temperature Lindberg Hevi Duty Mini Mite Tube Furnace
(Lindberg Hevi Duty, Watertown, Wisconsin).

6. Data Recording: Sample mass changes, outputs from the ion
gage pressure sensors, and the mass spectrometer are all recorded
simultaneously and serve as a permanent record of the experiments.

7. Precision and Accuracy: With the very thin and annealed
platinum-hangdown wire a sensitivity of + 0.05 ug is achieved at
pressures up to 300 torr. Noise level in-creases at higher pres-
sures due to aerodynamic forces and sensitivity is + 10 .g at
760 torr.** This noise level is a function of tube-diameter and
temperature and can be reduced through use of baffles in the tube.

* Designed by E. Samuels of this department.

** The factor limiting precision at high relative pressures is
the ability to maintain constant coolant level around the hangdown
tube.
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The mass readings are taken at approximately the same hours as
the blank runs in order to compensate for small daily fluctuations
in building conditions. Small instrument drifts are compensated
for by extending the blank run time to the same interval as the
experiment time.

C. Procedure

Samples - ca. 0.57 g - of the rather "springy" graphite fiber
are pushed into the quartz sample pan without any previous surface
treatment being applied. The sample pan is then mounted on the
balance and the system sealed and pumped down to ca. 1O"! torr.
The apparatus, excluding the hangdown tube, is baked out for ca.
10 hours and then allowed to cool to room temperature. Vacuum heat
treatment (VHT) is then started, increasing temperature in incre-
ments small enough to maintain the total pressure of the system
below 10-6 tor for low vacuum heat treatment temperatures (VHTT)
and below i0- torr for the high VHTT. When Lhe desired final
temperature is reached, VHT is continued until sample weight is
constant and system pressure is below 6xlO- 8 torr. This requires
3 days for 240 0C VHTT and 15 hours for 8800 C VHTT. Mass spectra
are recorded regularly during VHT, and are obtained simultaneously
with measurements of system pressure and sample weight. The flow
of gas through the manifold is calculated for each pressure range
using specifications supplied by the valve and pump manufacturers.

At the conclusion of each VHT the sample is allowed to cool to
room temperature. System pressure drops to ca. 2xlO- 8 torr. The
sample is then cooled to the desired adsorption temperature either
by surrounding the hangdown tube with liquid nitrogen or oxygen or
through use of the cryostat. After ca. 5 hours the pump is isolated
from the rest of the system and the first dose of adsorbate gas
immediately leaked in. Sample weight is monitored continuously.
When equilibrium is achieved a second dose of gas is leaked into the
system. Equilibrium times are very long - up to 6 or 8 hours for
each experimental point - and the kinetics of adsorption and desorp-
tion on graphite fibers will be subject of a later report.

Conversion of the raw data into measurements of adsorbed gas
molecules requires correction for the buoyancy on the sample pan,
hangdown wire and sample of the gas inside the vacuum system.
Correction must also be made for thermomolecular forces caused by
the fact that the enclosed gas is not everywhere at the same tempera-
ture. Temperature gradients exist across the sample, along the wire,
and near the lamp. Corrections for these temperature gradients may
be made if the effect, on apparent sample weight, of a nonadsorbing
gas is known. Helium at liquid nitrogen temperatures has been used
for this purpose but was found unsuitable in the present experi-

12

K



ments* because it penetrated micropores in the graphite fiber sur-
face which were not available to nitrogen and argon.(8)

The corrections are therefore made in two parts. Thermomolecular'
force effects and buoyancy effects on the sample pan, hangdown wire
and balance beam are approximated from experiments (blank runs) with
a sample of quartz rod placed on the balance pan in place of the
fiber sample. The very low surface area of this rod, which is of
the same weight as the sample, minimizes adsorption effects. These
measurements are made at various pressures and temperatures with
each gas investigated. Thermomolecular effects cause significa t
(> + 0.1 og) apparent weight increases at pressures between 10-4 torr
andF2 torr with the maximal effect noted at ca. 10-2 torr. Buoyancy
effects increase with gas pressurg. The counterweight, a piece of
quartz, is held unchanged at room temperature throughout all

, experiments.

Apparent sample weight decreases due to buoyancy of the samples
are determined in two ways:

(1) A series of experiments is made with nitrogen and argon
at temperatures (25-2000C) sufficiently high that it can be assumed
no adsorption occurs. Buoyancy at a given pressure is then plotted
vs. reciprocal temperature and the effect at the adsorption tempera-
ture determined by extrapolation.

(2) The weight change dug to buoyancy (6wbuoy) is calculated
using the reported sample density of 1.63 g/cm3 to determine the
volume of the sample and estimating the densities of the non-ideal
low temperature adsorbate gases from tabulations of second virial
coefficients (Hirschfelder, Curtiss and Bird).(9) The true weight
change, Aw , is then obtained from the expression:

Aw = Lw' - Avblank - AWbuoy

where Aw' is read directly as the equilibrium weight at the
recorder and AWblank , due to adsorption on the balance pan, etc.,

is measured at each temperature with each adsorbate as previously
described. The two methods for detemining buoyancy check reason-
able well, and the second is used in most actual calculations.

*Another difficulty with helium is that it caused burnout of
a diode in the electrobalance, apparently by arcing at approximately
3 torr helium pressure. The problem was solved by relocating the
diode outside the vacuum system.
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After each adsorption -desorption cycle is completed, the sample
is degassed at a temperature slightly lower than the VHTT before
proceeding. Background for the mass spectra is determined during
blank runs.

RESULTS

A. Fiber Weight Loss During Vacuum Heat Treatment

The fibers were subjected to vacuum heat treatments at pro-
gressively higher temperatures. Equilibrium fiber weight was
determined at the conclusion of each VHT step. VHT was carried
out at temperatures in addition to those later investigated by
adsorption studies. Small weight losses were found to occur. A
total weight loss of 0.16 percent, based on initial sample weight,
was found when a given fiber s was gi.ven VnI to 9O0"C.

C. Gas Evolution During Vacuum Heat Treatment

Calculations based on the continuous total pressure recordings
and weight readings made during vacuum heat treatment showed
(Figure 4) that most gas was evolved at approximately 2700C and
680°C, and that a tendency toward increasing gas evolution occurred
as temperature was raised above 770*C.

The composition of the gases evolved over the VHTT range
200°C-8800C was obtained with the mass spectrometer. Results,
corrected for background spectra, are shown in Figure 5. A variety
of gases were evolved. These were mainly CO, C02 , H20, H2 , N2, NH3
and hydrocarbons (principally CH4 and C2 H6 ). It was found (Figure 6)

that after having passed through an initial maximum at approximately
3000C, the evolution of CO is increased steadily with VHTT while the
evolution of CO2 reached a maximum at approximately 670°C. H30, H2

and NH3 were evolved in decreasing amounts as VHTT was increased to

7000C. Evolution of CH4 and C2 H6 reached a VHTT maximum at approxi-
mately 4150C.

C. Observations with the Scanning Electron Microscope

Scanning electron microscope (SEM) photographs were obtained of
fiber samples after subjecting them to vacuum heat treatments of
400%C and 800*C as well as of samples of untreated fiber. Pictures
were taken at 5000 and at 20000 magnifications with a Materials
Analysis Co., Model 700 high resolution scanning electron microscope.
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The SEM analysis showed (Figures 7 and 8) that the fiber diameter
was approximately 7.4 R This diameter corresponds to a geometric
surface area of 0.33 m-/g. if the fibers had been smooth cylinders
with length >> diameter. No significant differences in surface
appearance were noted with SEM after various VHT.

D. Gas Adsorption Isotherms

Adsorption and desorption isotherms were obtained with nitrogen
and argon as adsorbates at temperatures of 77.3 0 K, 90.2 0 K, 92.4 0K
and 103.3 0K at pressures varying from 2xlO- 5 torr to approximately
760 torr for fibers vacuum heat treated (VHT) at 2400C, 2900C, 3250C,
490 0C, 590 0C, 6950C and 880 0C. Typical data obtained are shown in
Figures 9 through 11. Low coverage isotherms are inserted in the
graphs.

The iso".r... all had a characteristic shape. Adsorption in-
creased rapidly at low relative pressures, then more slowly and in
linear steps as pressure increased. At high relative pressures the
rate of adsorption increase with pressure increased again. For
most fiber samples the amount (moles) of nitrogen and argon adsorbed
at a given relative pressure was nearly the same.

Desorption data showed that there was little or no adsorption-
desorption hysteresis at high surface coverage. Some hysteresis was
observed at low coverage for all samples but lack of a sufficient
number of data points made it difficult to characterize this
completely,

The multilayer region was analyzed for nitrogen isotherms
according to the Frenkel-Halsey-Hill equations (10-14); the log-log
plots of Lw vs. log po/p, FHH-plots, were found to give straight

lines for relative pressures above approximately 0.017.

E. Fiber Surface Area Calculations

Fiber surface areas were calculated from the adsorption data by
applying the Brunauer, Emmett and Teller theory (15), the "point B"
method (16), the Kagamer method (17) and, for nitrogenfrom Pierce's
ri-values (18) and Lippens-Linsen-de Boer t-values (19) for statis-
tical layers. These methods provide different ways of estimating
the number of gas molecules adsorbed when the surface is covered by
one statistical monolayer of adsorbed material. Surface areas may
then be calculated if the area occupied by each adsorbed gas mole-
cule is known. Adsorbate molecule cross sectional areas are usually
estimated from bulk adsorbate densities. Areas used in this work
are listed in Table 2.
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Examples of adsorption data plotted according to each of the
above methods are shown in Figures 12 to 16, and the surface area
results are summarized in Table 3. This summary shows that:

(1) ASP for "Thornel-50" graphite fibers is low and on the

order of 1 m2/g.

(2) Vacuum heat treatment first reduced, then increased,

AS The lowest specific surface area was effected
by VHT at 6000C.

(3) Surface areas calculated from nitrogen and argon adsorption
experiments at different adsorption temperatures were in
fairly good agreement when adsorption data at Iow relative
pressures (0.01-0.10) were used to calculate AS? . A
.om.aricsn of .. .. 2 A Ar results is givern in Table 4.

(4) For VHTT below 3000C, significant differences in A
as measured at 770K and 90'K were observed. For VHTT
above 300°C, the ASP values agree fairly well.

(5) The difference pointed out in (4) was larger for Ar
than for N2.

(6) The B.E.T. specific surface area (ASP) for the lowest
investigated VHTT is 1.17 + 1.17 + 0.03 m2/g. as
measured with N2 at 77.3 0K.

(7) The specific surface areas calculated from the different
adsorption models are in reasonable agreement, although
the areas determined from the t-plot were all lower than
those from the other models.

Reproducibility of a given ASP determination on a given sample at SP
given conditions and for a given adsorbate was + 2 percent. The A
valueA obtained may be compared with a specific-surface area of
1.3 m6/g. obtained by Didchenko (20) who used a volumetric gas
adsorption method to characterize "Thornel 40" fiber surfaces.

F. Thermodynamics of Adsorption

The isosteric heat of adsorption, qST , was calculated from the
expression

2 aenP T1 T2  Pi
q RT2  a-- R - \ )n
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Here R is the gas constant, T1 and T2 a pair of absolute adsorption

temperatures, P1 and P2 tile respective adsorbate pressures and qs

is the number of moles of adsorbed gas.

The differential entropy of adsorption referred to the liquid
state was calculated as suggested by Hill (14,21,22) and Everett (23)
from the expression

S EL p

s L (SG-s) +T Rnpo

"qST EL P

T0

Here S is the differential entropy

S

Ss = S-n•s P,T,A

SL is the molar entropy of the liquid at temperature T and pressure

P0o SG is the molar entropy of unadsorbed gas and P is the absorbate

pressure calculated as the mean

p = (PIP2),

The temperature T was calculated from the expression

and EL is the heat of liquefaction. The adsorbate is assumed inert.

The isosteric heats and differential entropies of adsorption were
plotted as functions of coverage, e , and results are shown in
Figures 17 to 18. o = 1 is the B.E.T. monolayer value taken from
Table 3. For nitrogen, it was fourd (Figure 17) that qST initially

decreased to a minimum at approximately 7 percent surface coverage,
then passed through a maximum at approximately 30 percent coverage
followed by a decrease to EL at 0 = 1. qST at the lowest measurable

coverage was ca. 4.2 kcal/mole and this value decreased with
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increasing VHT. The maximum value of qST (at e z 0.30) was ca. 5.7

kcaliimole for 'V'HTT 290 0C. This maximum decreased to ca. 3.5
•kcal/mole as VHTT was increased to 660%, then rose to 5.3 kcal/mole
for VHTT = 8800C. For VHTT : 660 0C a maximum in qST was observed

at , = 0.16, but a peak at e : 0.3 was still seen. The differential
entropies mirrored the isosteric heat data. Maxima in the differen-
tial entropy plots were observed at o = 0.07 and minima at e = 0.30.

The isosteric heat data for argon exhibited maxima of 5.5 kcal/
mole at e = 0.16 and 3.7 kcal/mole at e = 0.30 for fibers VHT at
325%. A third maximum of 3.6 kcal/mole was observed at e = 1.0.
The respective differential entropies decreased from initial high
(low coverage) values to minima at e = 0.6, e = 0.27, and e = 0.90
(Figure 18).

DISCUSSION

"Thorne]" filaments differ in structure from the graphitized
carbon blacks which have be.ýn subjects of so many surface chemical
adsorption investigations (e.g. 24-28). The latter materials are
composed of polyhedral crystallites with the faces of the polyhedra
formed by the basal planes of the graphite lattice.(29) High
temperature treated blacks such as Graphon have very few oxidized
surface sites, and the distorted packing of carbon atoms along the
contact lines of the basal planes in Graphon comprises only a very
small fraction of the total surface. High temperature treated
blacks thus provide an extremely uniform low energy surface for
adsorption.

In "Thornel" fibers, on the other hand, the structure consists
of long ribbon-shaped crystallites with the basal planes of these
crystallites oriented with the fiber axis. (30-31) X-ray studies (32)
have shown the crystallites to be stacks of 8 to 10 layers. Laser
excited Raman spectroscopy has indicated the width of the crystallites,
in "Thornel-50", to be 155 A. (33) Density determinations indicate
porosity of "Thornel" filaments is ca. 30 percent. Investigations
have shown these pores to be needle-li e, with diameters in the
range of l0-20A and lengths of 200-300A. (34) The por are
preferentially oriented parallel to the fiber axis. Part of the
pores are inaccessible and comprise a true internal surface.

All these structural characteristics might be expected to in-
fluence adsorption on "Thornel-50"surfaces. Thus, these surfaces
should contain both "faces" and "edges" of graphite crystallites.
The exposed edges should be likely sites for adsorption, both
because of their inherently higher (in comparison to the faces)
energy and because they are probable loci for oxidized surface
adsorption sites. Accessible pores may also serve as "traps" for
gas molecules.
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With these facts in mind, consider the typical adsorption

isotherm shown in Figures 9 to 11. This isotherm is of the general
Type II shape in theB.E.T. (15) classification, but exhibits a
series of straight line segments below monolayer coverage. Some
indications of steps above monolayer coverage are also observed. (35)
If the low coverage straight lines correspond to adsorption on
different regions of the fiber surface then, expanding on an idea
of Graham (36), the intercepts of the various straight lines with
the P/P = 0 axes give information about the percentage of surface
of different kinds. Extrapolation of the straight line isotherm
segments in Figures 10 and 11 yields intercepts at 30 and 3 percent
coverage for fibers vacuum heat treated at 8800 C. Similar extra-
polations of isotherms obtained for fibers vacuum heat treated at
325*C and 5900 C yield intercepts at 26 and 27, and at 7 and 6,
percent coverage. Lines, with zero intercept, drawn parallel to the
straight line segments of the isotherms which intercept the P/Po = 0
axes at 26-30 percent coverage would then indicate the low 0

coverage adsorption on one type of surface site. Similarly, a line
drawn parallel to the 7-3 percent coverage isotherm segment and
passing through the origin would indicate adsorption on a second
type of surface site. Since gas molecules will adsorb preferentially
on high energy surface sites, the above reasoning suggests that the
"Thornel-50'" surface is composed of from 7-3 percent "high" energy
sites, 26--30 percent "medium" energy sites, with the remainder
being sites of "low" energy.

It is now postulated that, in the present experiments, adsorption
occurs preferentially on oxidized sites at the edges of the stacks
of basal planes (high energy sites), then on the nonoxidized edges
of the stacks of basal planes (medium energy sites), and finally
on the tops of the. stacks of basal planes (low energy sites) in
the oriented graphite crystallites in "Thornel-50". This
interpretation is aided by the isosteric heat and differential
entropy calculations. Reference to Figures 17 and 18 shows maxima
in isosteric heats of adsorption at surface coverages below 7, at
27-30, and at 100, percent. The first maximum is caused by
adsorption un the oxidized edge surfaces. By analogy to adsorption
studies made on homogeneous graphitized carbon black surfaces (24),
the second and third maxima may be interpreted as being caused by
lateral interactions of adsorbate'molecules on patches of
homogeneous nonoxidized edge, and homogeneous face, surface in the
graphite crystals. These ideas are reinforced by the differential
entropy data which indicate restricted mobility of adsorbed molecules
at surface coverages corresponding to completion of adsorption on
the edges and on the faces of the exposed graphite crystallites.

The postulated surface character is also reinforced by a simple
calculation of the relative areas of these surfaces in these fibers
based on data of Ruland (32) and Koenig (33). It is first assumed
that the crystallites, though oriented with the fiber axis, are
randomly rotated around this axis. Then, if the crystallites are
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considered as ribbons 155 A wide (33) •nd 60 A high (32) (the inter-
layer spacing in graphite is ca. 6.69 A and there are 8-10 layers in
a stack in "Thornel-50"), the fraction of the surface which is side
is

60
6 = 0.28

155+60 02

and the fraction of the surface which is Face is

155155 = 0.72

These calculations check the calculations based on the adsorption
isotherms amazingly well.

Further confirmation of the ratios of face to edge area is found
by comparing the adsorption isotherms obtained on fibers subjected
to various vacuum heat treatments (Figure 9 to 11) along with the
mass spectra of gases evolved during these treatments (Figures 5 and
6). Low temperature VHT effects release of physically adsorbed
(principally water and nitrogen) and trapped (principally hydrogen
and hydrocarbons) gases from the "Thornel-50" fibers. At inter-
mediate VHTT the diameter of small pores in the fibers increases
a little because of thermal expansion of the fiber;* physically
adsorbed and trapped gases have more thermal energy, and more are
released. At higher VHTT, oxidized surface groups are replaced by
hydrogen and this leads to evolution of CO and CO2 (Figures 4 and
5). Similar behavior is found for natural graphite (38), various
graphitized carbons (39) and polyacrylonitrile based graphite
fibers (40), though the quantities and ratios of these gases are
different. If the oxidized surface sites are, as postulated, on
the edges of the stacks of basal planes, changes in these sites
should be reflected in changes in the adsorption isotherms. Figures
9 to 11 show that the fraction of the "Thornel-50" surface thought
to be unoxidized edge increases from 0.26 to 0.30 as vacuum heat
treatment temperature is increased from 290% to 880*C. This
increase is exactly balanced by a decrease from 0.07 to 0.03 in the
fraction of the surface thought to be oxidized edge.

Evolution of trapped materials can also explain the changes in

ASP effected by vacuum heat treatment. VHT temperatures up to 6600C

* The transverse thermal expansi n coefficient of the fiber
increases from ca. 9.8x10-6 to l2xlO"9 in./in./ 0 C (37) as fiber
temperature is raised from 3000C to 600 0C.
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reduces ASP. This reduction may be caused by blocking of narrow
pores (leading in to the larger pores parallel to the fiber axis) by
material released from the interior of the fiber.* Above 660%C
this material is oxidized and released as CO and CO2 , which opens
up the narrow pores again.

Fiber surface dreas were calculated by a number of methods because
B.E.T. plots of the data sometimes yielded more than one straight
line. It was found that if the straight line found in a B.E.T.
plot in the relative pressure range O.Jl-O.lO was used to calculate
surface areas, these areas agreed reasonably well with ASP deter-
mined by most of the other methods. However, the ASP values deter-
mined from the Lippens-ae Boer t-piot are relatively low. It has
been noted previously (41) that the Lippens-de Boer method does not
apply to carbon surfaces. The deviation from linearity at low
relative pressures in the Frenkel-Halsey-Hi/l plots indicate the
presence of micropores, while the linearity at higher relative
pressures indicate the absence of capillary condensation. There
are probably very few accessible macropores (little or no adsorption
hysteresis was observed at high relative pressures) but a large
number of micro- and ultra-micropores in the "Thornel-50" surface.

Finally, a surface roughness factor (r) calculation was made
based on the geometric area calculated from the scanning electron
microscope photographs and the B.E.T. nitrogen areas measured at
77°K. This calculation shows that r decreases from a "fiber as
received" value of 4 to a minimum value of 2 after vacuum heat
treatment of 660 0C, then slowly increases again.

IMPLICATIONS FOR ADHESION

Strong evidence has been presented for the existence of three
types of adsorption site patches on "Thornel-50" fiber surfaces.
These are identified as the tops, edges, and oxidized edges of
oriented (with respect to the fiber axis) graphite crystallites.
The patches occupy approximately 67, 26 and 7 percent of the fiber
surface, respectively. The percentage of oxidized edge is reduced
by vacuum heat treatment which effectively deactivates the surface.
The fibers have a low specific surface area and a roughness factor
of 2-4.

The surfaces thus characterized are not optimum for adhesion.
Improvements should be realized if fiber surface area and energy

* The high temperature graphitization of the fibers is achieved
by passing them through a hot tube. Heating time is very short and
complete degassing of the fibers is probably not accomplished.
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could be increased. The best means of achieving surface area increases
without adversely affecting other fiber properties is probably through
a post-processing chemical etch treatment. Chemical etching might
also increase the fraction of surface which is oxidized and thus also
increase surface energy. A large opportunity exists here because only
one-third of the existing edge surface is presently composed of
active oxidized sites. Though these sites have not been identified,
they are almost certainly hydroxyl and carboxyl groups. Known techni-
ques for graphite oxidation, if applied to "Thornel 50" filaments and
limited to the surface of the fibers, should yield significant
improvements in "Thornel-50" based composite performance.

TABLE I

SIlPP! TFD'S ANlV yE OF AncnDDATEC nC

Purity (%) Impurity Analysis (ppm)*

02 H2  Ar He Ne CO2  N2  Hydrocarbons

Nitrogen 99.9990 <1 <1 <5 <1 <1 <0.5 <0.5

Argon 99.9995 <1 <1 <0.5 <5 <0.5

Helium 99.9995 <0.1 N.D. N.D. <0.2 M.D. <5 N.D.

* Dew point determinations indicated H2 0 in N2 to be below 1 ppm
and H20 in Ar to be below 0.63 ppm.

TABLE II

ADSORBATE MOLECULAR CROSS SECTIONAL AREAS* IN A2

ADSORBATE ADSORPTION TEMPERATURE (OK)

77.3 90.2 94.2 103.3

16.2 17.0 17.2 17.8

Ar 13.8 14.4 14.6 15.0

* The cross sectional areas at 94.2 0K ane 103.30K were obtained by
linear extrapolation of the data at 77.3*K and 90.2 0 K.
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TABLE III

SPECIFIC SURFACE AREAS, ASP (m2/g),
OF VACUUM HEAT TREATED "THORNEL-50" GRAPHITE FIBERS

VHTT ( 9C) Adsorbace Ads. Temp. SP SP SFPge SP AtSP
() ET APoint B Agamer ierce, t-plot***(*K) for

P/Po=0.4

77 1.17 1.21 1.18 1.22 0.79
240 N2  90 1.21 1.32 1.43*

77 0.76 0.75 0.67 0.52

290 2  90 0.78 0.78 0.76

Ar 77 0.83 0.97
90 1.41 1.49 1.69

92 0.67 0.67 0.80

325 N2  103 0.80 0.93
94 0.67 0.65Ar 103 0.78 0.75

400 N2  77 1.04 1,13 1.18 1.06 0.68

77 0.67 0.73 0.76
490 Ar 90 0.60 0.71 0.73

590 77 0.72 1.06 0.80 1.19 0.70
2 90 1.04 1.00 1.12**

77 0.58 0.65 0.67
695 Ar 90 0.64 0.72

77 0.80 0.80 0.80 0.52
880 N2  90 0.76 0.81 0.84

*p/p - 0.25

**P/P 0= 0.2

***Only for N2 at 77*K
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Figure 2 - Adsorption Apparatus and Measuring Equipment.
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Figure 7 - Scanning Electron Microscope Photograph of
Thornel-50 Fiber Surfaces.
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Figure 8 -Scanning Electron Microscope Photograph Showing
the Cross Section of Thornel-SO Fibers.
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TABLE IV

COMPARISON OF ASP - DETERMINED WITH N2 and Ar

BET - Areas (in m2/g)

VHTT ( 0C) 325

Adsorption Temperature T(OK) 92.4 103.3

N2  0.67 0.80
Absorbate

Ar 0.67 0.78

B. Adsorption from Solution onto "Thornel-50" Fiber Surfaces
(Prof. T. Fort and Satish C. Sharma)

Introduction

A considerable interest has been shown during the last decade in
the development of high-strength, high-temperature resistant carbon-
graphite fibers as reinforcing materials for polymer matrices to
produce high strength composite materials. As a result of these
developments graphite fibers with Young's modulus of up to 100 million
psi and tensile strengths of over 300,000 psi along the fiber axis
have been available. However, their use as reinforcing materials
for polymer matrices has achieved only limited success because of
poor adhesion between the fiber surface and the polymer matrix
surrounding it. Studies [1] have shown that the interfacial shear
strength achieved in most such composites is much lower (usually an
order of magnitude) then the theoretically predicted maximum work of
adhesion. While some improvements have been made [2-4] to increase
the interfacial shear strength through various treatments adminis-
tered to the fiber surface, not enough is yet known about the effect
of these treatments on the surface characteristics of graphite fibers.
Only limited correlations are available between fiber surface
characteristics and the properties of graphite fiber reinforced
composite materials. In order to systematically optimize the
properties of such composites a knowledge of the interfacial charac-
teristics of the composites and their variation with the nature of
the fiber surface and the polymer matrix is necessary.

The objective of the present work is to determine information
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about the surface properties (surface area, surface chemistry, and
surface heterogeneity) which a*fect bonding of "Thornel-50" fiber
to polymer matrices. This information is derived from studies of the
adsorption of several organic solutes, from solution in cyclohexane,
onto the "Thornel-50" graphite Fiber surface. The solutes studied
are stearic acid, octadecane, and benzoic acid. The technique used
to follow adsorption is continuous flow column chromatography.

Experimental

A. Ma:terials

1. "Thornel-50" Graphite Fib -: The graphite fibers were ob-
tained from the Union Carbide Corporation Technical Center in Parma,
Ohio. These specially prepared, unsized, fibers were used without
any pretreatment except washing with pure cyclohexane which was also
the solvent for the adsorption studies.

2. Solvent: Cyclohexane was chosen to bc the solvent for all
adsorption experiments. Because of its non-polar, non-planar nature,
it was expected not to compete significantly with the solutes for
sites on the "Thornel-50" surface.

The cyclohexane was obtained from the Matheson Scientific
Company, Cleveland, Ohio. This 99+ mole percent chromatoquality
material was shown by gas chromatographic analysis to be 99.88 per-
cent cyclohexane. The solb it was further purified by fractional
distillation.

3. Adsorbates

Stearic Acid: Stearic acid (99.5 percent) was obtained from
Lachat Chemicals, Chicago, Illinois, and used as received.

Octadecane: Octadecane (99.5 percent) was obtained from
Lachat Chemicals, Chicago, Illinois, and used as received.

Benzoic Acid: Fisher Certified ACS benzoic acid was ob-
tained from the Fisher Scientific Company, Cleveland, Ohio, and used
as received.

B. Equipment

1. Introduction

"Thornel-50" graphite fibers have a very low ( 1 m2 /gm.)
specific surface area. Classical techniques to study adsorption from
solutions on high surface area powdered solids could not, therefore,
be applied to obtain quantitative adsorption data on these fibers.
After consideration of other available experimental techniques to
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study adsorption from solutions, it was decided to use continuous
Flow column chromatography. This technique has been used in the past
[5,6] to study adsorption of gases [5] and vapors, [5,6] on activated
carbon powders [5] and other materials [6]. The present work is,
however, the first time that it has been used to study adsorption
from solutions onto fiber surfaces. A schematic of the equipment
constructed for this purpose is shown in Figure 1.

2. Column: "Thornel-50" graphite fibers are wound in a spiral
manner around an 8 mm diameter glass rod and the fiber-wound rod is
packed tightly in a column made of stainless steel. The column is
39.4 cm long and has an ioiner diameter of 1.71 cm. This method of
packing is expected to minimize channeling and give a uniform and
reproducible packing.

3. Oven: The chromatographic column along with the temperature
equilibraTiohf coils is mounted inside a 22 in. x 15 in. x 30 in.
(LxWxH) thermostat constructed from 2-in. thick "Marinite." The
system can be baked to temperatures of about 300%C and the adsorption
temperature can be controlled between 25% and 100°C. There is
provision for evacuating the system and for purging it with nitrogen
while simultaneously heating to clean the fiber surface.

4. Temperature Controller: The temperature of the column duringan adsorption run can be co ntrolleo with an accuracy of better than+ 0.5 0 C with the help of an on-off temperature controller. A Fisher
TFisher Scientific Company, Cleveland, Ohio) temperature control unit
Model 15-445-44 along with thermoregulator Model 15-445-30 is used
for this purpose. The temperature is controlled by air circulation
along with electric heaters.

5. Pumps: Two identical, Model 196-31, Milton Roy Minipumps
(Milton Roy Pump Company, Chemical Pump and Equipment Corporation,
Bedford, Ohio) are used to pump the solvent and solutions through
the chromatographic column. These pumps are capable of delivering
constant flow rates of 16 to 160 ml/hr with an accuracy of + 0.3%.
Both the pumps were calibrated and the calibrations agreed very
well with the manufacturer's specifications.

6. Detector: The eluent from the chromatographic column is
continuously monitored for concentration changes using a differential
refractive index method. A Model 1103 LDC Refractomonitor supplied
by Laboratory Data Control Co., Danbury, Connecticut is used for
this pur ose. It is capable of detecting refractive index differences
of + lO- R.I. units.

7. Recorder: The output from the detector is recorded using a
Model EllOTS Esterline Angus Speedservo Recorder supplied by Esterline
Angus Division of Esterline Corporation, Indianapolis, Indiana.
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C. Procedure:

1. Measurement of "Dead Volume": The dead volume between the
point of switch from solvent to solution (and vice-versa) and the
detector must be accurately known before the amount absorbed at
different solute concentration can be calculate-. Dead volume was
estimated by calculating the volume of tubing and fittings and adding
this volume to the void volume of the column. The dead volume was
also determined experimentally by running the solvent through the
dry column at known flow rates and noting the time required for it
to pass through the dead volume region.

2. Measurement of Adsorption Isotherms: After the temperature
has stabilized in the system, the solvent is pumped through the
column at a fixed desired flow rate. With solvent flowing through
the reference chamber of the detector the output from the column is
monitored until a steady baseline is obtained on the recorder chart.
After obtaining a steady baseline and making it coincide with the
recorder zero the column inlet is switched from solvent to a solution
of known concentration flowing at the same rate as the solvent. With
pure solvent flowing through the reference chamber the column effluent
is continuously monitored for concentration changes. The signal
changes because of the emergence of the solute front and after some
time reaches another constant value signifying the establishment of
adsorption equilibrium inside the column. After the signal has re-
mained unchanged for at least two hours, the run is considered
complete and the amount of solute adsorbed can be calculated by
material balance for the solute. By repeating this procedure with
different solute concentrations and at different temperatures,
adsorption isotherms are developed.

Results

A. Dead Volume

Table I lists the estimated and experimental dead volume found
for the "Thurnel-50" packed adsorption column. The two sets of values
agree reasonably well. The difference may result from error in the
fiber density (1.63 gm./cc.) used in the estimations, or to small
amounts of channeling in the column during the experiments. Agreement
was considered sufficiently good to proceed with the adsorption
experiments.

B. Adsorption Isotherms

In Figure 2 are shown isotherms for the adsorption of stearic
acid from cyclohexane solution onto "Thornel-50" at 22"C ane at 450 C.
Also shown in Figure 2 is data of Kipling and co-workers [7] for the
adsorption of stearic acid from cyclohexane onto Graphon. Adsorption
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increases as stearic acid solution concentration is increased to

6xlO"4 mole fraction, then remains constant as solution concentration
is further increased. Adsorotion from a given solution concentration,

below 6xlO" 4 mole fraction, is greater at 220C than at 450C.

Data for the adsorption of octadecane from cyclohexane solution
onto "Thornel-50" at 250 C i.s shown in Figure 3. The adsorption iso-
therm has the same general shape as those for stearic acid, except

that a higher solution concentration, 20xlO" 4 mole fraction, is
required to achieve surface saturation.

Figure 4 shows data for adsorption of benzoic acid from
cyclohexane solution onto the "Thornel-50" surfaces. The adsorption
isotherm has a more complex shape than those fourd for stearic acid
and octadecane in that there is some suggestion of two adsorption
plateaus. Surface saturation is finally achieved at a solution
concentration of lOxlO" 4 mole fraction benzoic acid.

C. "Thornel-50" Surface Area

The specific surface area of the "Thornel-50" filaments was
estimated from the adsorption isotherms shown in Figures 2-4, with
the assumption that the adsorption plateaus corresponded to close
packed, horizontally oriented monolayers of solute molecules on the
fiber surface. The'area occupied by each adsorbed stearic acid
molecule was taken to be 114 A2 [7]. The area o~cupied by each
adsorbed octadecane molecule was taken to be 98 A2 [8], and that
occupied by each adsorbed benzoic acid molecule was taken to be 70 A2
(calculated from molecular models). With these estimates, the
surface area of the "Thornel-50" filaments was calculated to be

1.39 m2/gm., 133 m2/gm. and 1.36 m2/gm., respectively.

D. Langmuir Adsorption Isotherms

The form of the adsorption isotherms suggested applications of
the Langmuir adsorption equation to the experimental data. The con-
venient form of this equation is

c 1 + I cT TF r
m m

where
c concentration of solute in solution (lms. solute

100m6s.soin.
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r = concentration of solute adsorbed at ( mgm. solute
solution concentration c gm. adsorbent

rm = concentration of solute adsorbed at (gm. solute
monolayer coverage adsorbent

and
b = constant

c
If the Langmuir adsorption model is obeyed, graphs of S-vs. c should

yield straight lines with slopes of from which the surface area

may be evaluated. The adsorption data for octadecane did yield a good
straight line (Figure 5) from which a fiber surface area of 1.48

m2/cm. was calculated. The stearic acid data from experiments at
moderate to high solution concentrations yielded fair straight lines
(Figure 6) from which fiber surface areas of 1.51 and 1.55 m2/gm.
were calculated. The benzoic acid data did not yield a straight
line Langmuir plot (Figure 7).

E. Isosteric Heat of Adsorption

The isosteric heat of adsorption (QsT) for stearic acid from

cyclohexane onto "Thornel-50" was calculated from the data in Figure
2 and the equation

- ( anc
QST : R ( •-TT)")

Here,
QST = isosteric heat ( calories

STgin. mole

R = gas constant ( calories
gm. mole K

C = concentration of solute in solution (moles
l ITT er

and

T = absolute temperature (OK).

The calculated values of the isosteric heat of adsorption are plotted

as a function of surface coverage in Figure 8. QST is seen to be

small (2.8-2.9 k cal/mole) and to vary only 0.1 k cal/mole as frac-
tional surface coverage is increased from 0.25 to 1.0. The values
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of isosteric heat shown in Figure 8 were calculated from the smoothed-
out adsorption isotherms plotted in Figure 2.

Discussion

A. Surface Area of "Thornel-50"

The specific surface areas of "Thornel-50" fibers calculated from
the adsorption plateau heights in Figures 2, 3, and 4 were 1.39, 1.33

and 1.36 m2/gm., respectively. The agreement between these values is
excellent, even though they have been derived from adsorption data
for three different molecules. This fact tends to confirm the
validity of each individual measurement, and also the postulated sur-
face area orientation of molecules in the adsorbed films.

No comparative surface area values for "Thornel-50" , obtained
from solution, are available. Brooks and Scola [9] obtained 0.55

m2 /gm. by krypton adsorption on "Thornel-50" at 77°K. A value of

0.8 m2/gm was obtained by Brooks and Scola [9] by nitrogen adsorption
on "Thornel-?5" at 77°K wnile Didchenko [10] obtained 1.6 m2/gm. for
the same material. Other experiments in our laboratory [61] yield

1.3-1.4 m2/gm. for "Thornel-50" from argon and nitrogen adsorption
experiments at 900K.

A specific surface area of 1.3 m2/gm. represents a roughness
factor of approximately 3.0 for "Thornel-50" surfaces if each filament
is assumed to be a smooth cylinder 6 microns in diameter.

B. Langmuir Adsorption Isotherms

Of the three solutes investigated, only octadecane gave a good
linear Langmuir plot. Deviation from linearity for stearic acid and
benzoic acid may probably be ascribed to dimerization of these solutes
in cyclohexane, which would change their effective solution concen-
tration, or possibly to heterogeneity of the "Thornel-50" surface
which would make the energy of acid adsorption a function of surface
coverage (contrary to the Langmuir model). Both these possibilities
are being investigated.

C. Energy of the "Thornel-50" Surface

Comparison of the solute concentrations required to achieve sur-
face saturation suggests that increasing order of solute affinities
for the "Thornel-50" is octadecane < benzoic acid < stearic acid.
These affinities refer to the gross surface and not specific attraction
to active sites. This gross surface is probably quite similar to that
of Graphon, as evidenced (Figure 2) by the similar adsorption of
stearic acid from cyclohexane onto "Thornel-50" and this graphitized
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carbon black.

The general homogeneity of the "Thornel-50" surface is also
evidenced by the nearly surface coverage independent isosteric heats
of stearic acid adsorption shown in Figure 8. The low values
(2.8-2.9kcal/mole) of these heats indicate weak (physical) adsorp-
tion of the acid to the low energy fiber surfaces.

It should be emphasized that the sensitivit, ,)f the differen-
tial refractometer used to sense adsorption only permits measure-
ments, with stearic acid, down to a surface coverage of 25 percent.
Measurements of benzoic acid adsorption, now in progress, may be
carried down to a surface coverage of about I percent. These
measurements will, it is expected, confirm a small number of active
sites on the "Thornel-50" fiber surface.
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C. Nylon-Graphite Composites by In-S Polymerization

(Prof. Morton Litt and Allan W. Brinkman)T

Introduction

It was the objective of this research to make Nylon 6 graphite
fiber composites by in-situ polymerization. Composites made by this
approach were expected to be void-free and show improved matrix
bonding to the fiber surfaces. Wetting problems experienced with other
matrix systems are avoided by employing monomeric reagents instead
of low molecular weight polymeric reagents. Thus, improved wetting
would lead to void-free composites. Also, bonding was expected to
improve because fibers initiate crystallization and polymerization
might occur at the fiber surface.

To begin, it was necessary to design and integrate three aspects
leading to a composite:

A. A co-catalyst had to be selected.

B. Molds and jigs had to be designed and made.

C. The polymerization and testing procedures had to be developed.

A. Selection of co-catalyst

Benzyl acetate, benzyl benzoate, phenyl acetate, and
e-caprolactone were compared to tert-buytl acetate. The basis for
comparison was defined by reaction'velocity, polymer quality and
void content.

Caprolactone created no voids due to vaporE from residue leaving
groups since it did not form leaving groups, but did create crazed
voids in bulk matrix due to polymer adhesion to class. Benzyl acetate
and benzyl benzoate produced very slow reactions and very low grade
polymer products; however, no voids due to vaporized residue were
observed. Tert-butyl acetate produced rapid reactions and a very
tough product, but created many voids due to vaporized t-butanol.
Phenyl acetate produced a fast reaction with good polymer product,
but it can terminate the reaction if used in excess.
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TABLE I

Comparison of Co-catalysts

Rate of
Co-catalyst Polymerization Properties Voids

Tert-butyl acetate Fast Tough Many

c-caprolactone Moderate Tough Few

Benzyl benzoate Slow Brittle None

Benzyl acetate Slow Brittle None

*Phenyl acetate Fast Tough Few

* Phenoxy radical can terminate amide anion.

Caprolactone was selected as the catalyst which offered the best
compromise between void content, reaction velocity, and polymer
quality.

B. Mold and Jig Designs

Jigs

Rod jigs in combination with glass tubes can be used to obtain
composites containing approximately 25 - 20% v/v fiber. Ladder jigs
and "H" bar jigs allow greater fiber compaction because they are
stiffer than the rod jig and so allow greater fiber tension during
winding. However, at higher than 25 - 30% v/v fiber, the monomer
doesn't penetrate completely between fibers under the degassing
conditions used.

The ladder jig is the most versatile because it can be used in
aiy of the three mold designs. Also, it contains the fibers well,
limiting fiber wash. The rod jig is best used in glass tubes. It
is undesirable in any of the other molds. The "H" bar is undesirable
because only very light fiber densities can be employed as the monomer
doesn't penetrate rapidly.

Molds

Glass molds (test tubes) had the advantages of being readily
available, inexpensive, and allowed work to begin without delay.
However, in using them, entrapped air was difficult to remove since
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little or no manipulation of the wetted fibers is possible. Further-
more, caprolactone bonds strongly to the glass, mnaking voids when the
nylon shrinks.

A three-plate mold with a ladder jig and compression bar were
used to make composites. This design allowed moderately high vacuum
to be applied to loosely-wound fibers - a combination which improved
degassing- after the fibers were covered with reactive caprolactam.
The mold had to be reopened and a compression bar added. On closing,
the fibers were compressed to obtain higher fiber content composites.
The mold then had to be transferred to an oven at 240 0C for twenty
hours. It is not known why heating for twenty hours is required. The
reaction was expected to occur within one hour. In comparison to
glass, the all-aluminum cavity eliminated matrix bonding to the walls.

Finally, a match die type mold employing a ladder jig was de-
signed. This mold allowed very rapid heat-up. All six sides of the
cavity could be heated to 220 0C. within eleven minutes. This mold
cavity might also be changed to accommodate 1/16 to 1/2 inch thick
specimens. In addition, it could allow vacuum operations and
compression operations on the fibers. A bulk polymerization was per-
formed successfully in this mold; however, every time composites
were attempted, no reaction or only partial reactions occurred in
30 - 40 minutes at 2200 + 50 C. It is not known why polymerization
rates are inhibited.

C. Procedure

Outline of Procedure

The process leading to a composite involved two separate and
parallel procedures. The first procedure was the preparation of the
monomer anion solution. The other procedure was preparation of the
fibers. These two procedures combined at the last step where a
catalyzed monomer solution was combined with the fiber jig to cast
the composite. The cast composite was then cut by means of saws,
milling machine, and routers. The resulting coupon specimens were
then tested.

Procedure Details

Monomer was sublimed-distilled at 900C. at approximately .5 mm Hg
for twenty hours. Sodium methoxide (1/100 mole ratio) was added to
the monomer and sublimed-distilled again. This solution was trans-
ferred to clear dry test tubes and stored. This constituted the
preparation of the monomer anion solution.

For fiber preparation, two to five grams of graphite fibers were
wound on the selected jig. Approximately one to two ounces tension
was maintained during winding. The fibers were then extracted with
hot methy ethyl ketone in a soxhlet extractor approximately
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twenty hours. The fibers were then removed from the extraction and
dried. Drying was perFormed in two steps. The bulk of the solvent
was removed by a stream of dry air. This required approximately
twenty minutes. The second drying step was performed in a vacuum
oven (90gC house vacuum), for twenty hours. This concluded fiber
preparation.

The composite was cast by adding co-catalyst (usually capro-
lactone) to the catalyzed (1/100 mole ratio) monomer anion solution
and pouring this over the jig and fibers in a test tube. The
monomer/fiber system was degassed at 1000C and the solution was heated
to polymerization temperature, which ranged in this work between
195°C and 220'C. After polymerization was complete, the composite
was removed from the tube and machined for testing. Machining was
performed by sawing specimens to approximate dimensions and then
milling specimens to 4 1/2" x i/2" x 1/16". Tensile specimens were
further routed to a consistent shape with a template. These were
then tested.

Testing constituted a tensile test to obtain modulus of elas-
ticity, the ultimate tensile strength, and ultimate strain. Strain
measurements were obtained by means of strain gauges. Specific
gravity and calculated void volume was obtained on the same tensile
specimens. The nature of the fracture and the fracture surface were
observed with a scanning electron microscope.

Results and DiscLssion

The stress-strain test data for the samples and comparison with
the component values are given in Table II.
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TABLE I I

Test Data for Composites

Young's Modulus U.T.S. % Strain SP.G E(Calc)

S.(,E) x 10- psi x 10-._ psi at Failure X 0-6 psi

Cast Nylon 6 .40 + .05 12.5 + I > 100 1.16 + .01

Thornel ,T5OSa 57 279 .49b 1.67
Thornel ,T75Sa 77 327 .42 b .86

Nylon 64T50S 15.
54A-1 15.3 45.5 .35 1.31e 17
54B-1 12.7 36.4 .29 1.25 10
54ý-2 13.3 37.4 .32 1.28 13
67 10.8 30.8

Nylon 6/T75S

56C-lc 29.6 51.2 .19 1.36 22
56C-2 27.7 71.6 .28 1.37 23
56B-1 18.5 53.4 .30 1.35 21
56B-2 17.7 38.2 .22 1.32 18
56A-1 24.8 43.4 .22 1.32 18

a. Manufacturer's data.
b. Calculated assuming Hookean behavior.
c. Co-catalyst in series was caprolactone.
d. Co-catalyst was t-butyl acetate.
e. Material for Sp.G. determination taken from point near failure.

However, due to lack of homogeneity, modulus and Sp.G. do not
correlate too well.

Several facts are apparent. First the samples vary widely in
their elongation and strength at failure. This is true even for
samples cut from the same piece, e.g. 56B-1 and 56B-2 through their
moduli are the same. We feel that this is an artifact of the measure-
ment. [The strain gauges were first glued to the sample and the leads
then soldered to the gauge.] The best samples, though still probably
low, are therefore more representative of the composite. In these,
we have achieved about 70% translation of fiber modulus into composite
modulus based on the rule of mixtures with 28% and 36% volume percent
fibers for samples 54A-1 and 56C-2 respectively. Considering that
these are the first reasonable fiber density composites made with
Nylon 6, this is quite promising. Flexural and shear strength should
be measured, and will be if more samples are made.

The sample made using t-butyl acetate, 67, was polymerized at
190°C, where no volatiles are liberated. It too showed good tensile
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strength relative to its modulus; one can estimate about 70%
retention of fiber properties.

Using our present technique, penetration of fibers by nniunumer
becomes difficult above fiber densities of 35%, and voids remain. A
vacuum press would be needed to make samples of higher density. The
same effect could be achieved by impregnating a loose skein of fibers
and then stretching or twisting with compression while polymerizing.

Of the three successful sets of polymerizations, 67 and 54
polymerized rapidly, within ten minutes, while 56 polymerized over
a one hour period, and crystallized from solution. Thus one would
expect the following: Runs 67 and 54 would show good ductility of
the nylon during deformation while run 56 would tend to be brittle.
On the other hand, run 67 contains t-butyl alcohol liberated from
the co-catalyst. This could make the adhesion of nylon to fiber
weaker than when caprolactone is the co-catalyst. Scanning electron
microscope photographs of the fracture surfaces were taken to examine
for the above possibilities. Where available, photos from high
strength (relative to fiber density) and low strength composites
were examined. The photo are shown below.

Figs. 1, 2, 3 show the fracture surface of a strong composite
using caprolactone initiator and "Thornel" 50S. The major factor
noticeable is the tremendous working of the surface and lack of
any single strand pullout. Fig. 2 shows a region with multiple
fracture, which always increases the energy absorption. Fig. 3,
an enlargement of Fig. 2 shows the nylon adhesion to the fiber and
the tremendous distortion of the nylon. In general, there is little
evidence of separation at the nylon/fiber interface of the phases.
To sum up, for the most characteristic nylo!t/fiber composites, the
nylon adheres well to the graphite, distorts and pulls out as the
crack front propagates and thus causes multiple crack propagation.
All these processes lead to high energy absorption.

Figs. 4 and 5 show the same system for another jig of carbon
fiber, where the composite had poor properties. Fig. 4 shows ex-
tensive pull-out of the fibers. Fig. 5 shows the separation be-
tween fiber and matrix, with the high ductility of the matrix.
Obviously there is some adhesion, but much less than in sample 54A.

Figs. 6 and 7 are of a composite made with t-butyl acetate co-
catalyst. One can again see pull-out, but much better adhesion than
in Fig. 5. The cups around the fibers may be due to the ductility
of the matrix. They may also be due to adsorption of t-butanol on
the fiber surface, preventing adhesion. However, most fibers have
a ductile area with much material adhering to them, (e.g., lower
middle right of Fig. 6), thus indicating reasonable adhesion before
drawing.

Figs. 8 and 9 compare a good and poor sample of composite using
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Fig. 1. Sample 54A-1 x 500 FIracture Surface.

Fig. 2. Sample S4A-l 1000 Fracture Surface, dif Terent
location.
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Fig. 3. Sanple 54A-1 x '100 Fracture Surface - Center
of Fig. 2
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Fig. 4. Sample 54B-1 x 1000 Fracture Surface.

Fig. 5. Sample 54B-1l SOOG Fracture f'urface.
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Fig. 6. Samiple 67 x 1000, Fracture Surface.

!

Fig. 7. Samnple 67 x 5000, Fracture Surface, Center of
F:igg. 6. S8 7 I
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Fig.8. Snpi 56C2 x Frctur Surace

Fig. 8. Sample 56B-2 x1000, Fracture Surface.
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"Thornel" 75S.Hlere the polymers formed very slowly and precipitated
on the fibers, rather than polymerizing rapidly to where monomer is
insignificant. Even the good sample, 56C-2, shows no multiple frac-
ture and no ductile behavior of the matrix. It does show reasonable
adhesion as there are very few pull-outs. Fig. 9 corroborates the
poor sample behavior by showing extensive pull-out, as well as no
matrix ductility. Over-all, the sample behavior followed the pre-
dictions,except that t-butyl acetate samples were better than
expected.

Within the limits of the experimental observations, we can sum
up as follows. There are still many uncont,'olled variables in this
system - both in composite preparation and in experimental testing.
Some samples however, in spite of the lack of control, show the
promise of the system. In the best samples the nylon adhered well
to the fiber, deforming during rupture and eventually leading to
multiple fracture of the composite. The major problems seem to be
solved in that respectable composite has been made.

We can extrapolate to the properties of a properly made composite
from this. Such a material would have no voids, and little or no
monomer remaining. Monomer would have been polymerized rapidly
over highly degassed fibers using c-caprolactone as co-catalyst. We
wolild expect this composite to show complete transfer of fiber
properties and perhaps, due to multiple fracture, absorb much energy
during the fracture process. (Impact testing would be needed to
find out about this.) Shear strength should be high due to the good
adhesion, though no higher than for other matrices.

Better control of properties and better properties could be
obtained using a polymer which is not in equilibrium with its
monomer. Nylon 7 is such a one, as is poly(2,2-dimethyl a-alanine).
Here adhesion will be ketter, as no low molecular weight species
will be present. In addition, both polymers have higher melting
points than Nylon 6, giving better properties at elevated tempera-
tures.
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SECTION iV

MECHANICS OF COMPOSITES

A total of four projects on the Mechanics of Composites were
completed during the year. A study of the longitudinal shear de-
formation of composites with randomly distributed fibers lead to
an exact analytical solution based upon work completed earlier in
the program. The basic work used for this solution was continued
and results were obf,,ined for multiple circular inclusions under
an arbitrary 1nading.

The live loading fixture for studying fiber composites with the
scattered light polariscope was recently completed. A study of
stress and strain distribution in fiber composite models will be
conducted.

An experimental study of the fracture properties of unidirec-
tional composite materials provided results to indicate the effects
of specimen thickness, crack length ratio, void content and lpading
rate on the stress intensity factor.

A. A Longitudinal Shear Deformation of Composites

(Prof. G. P. Sendeckyj)

Introduction

It is well known that the filaments in unidirectional fiber
reinforced composites are randomly distributed and have randomly
varying radii and elastic properties. This occurs not by intent
but due to the difficulty enc3untered in controlling the spacing
between fibers, their radii and elastic properties. In boron
reinforced conposites (in which the fibers have relatively large
and uniform diameters) the spacing can be controlled at an increase
in fabrication cnsts. Variations in elastic properties occur in
the manufacturing of the fibers and there is no way of controlling
them. A consistent manufacturing process would give fibers having
a :-mall variation in the moduli.

In the case of glass fiber reinforced composites, the variation
in radii tends to be rather large (as can be seen from micrographs
of typical composite cross sections). This is due to the small radii
of the fibers and the resulting difficulties in controlling them.
Furthermore, the elastic moduli can also be expected to vary within
some range of values.

A model of the composite to be realistic must reflect its
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morphology; this is, it must take into account the random spacing
of the fibers, random variation of the radii and the range in elastic
moduli. With the exception of some recent work by Adams and Tsai
[1,2], no attempts have been made to treat the problem in its full
complexity. The exact analyses that have been performed assume the
fibers to have the same radii and moduli and to be distributed in
regular [3-5] and diamond [5-8] arrays. (It should be noted that
the square and hexagonal arrays are special cases of the rectangular
and diamond ones). The results vary considerably, with the square
array giving higher predicted moduli than the hexagonal one for the
same fiber volume content.

A variational formulation (one that implicitly takes into account
the random fiber spacing and random radii) has been adopted by Hill
[9] and Hashin [10]. Unfortunately, the resulting bounds on the
effective composite moduli are rather far apart for composite systems
of interest. Furthermore, the variational approach gives no informa-
tion about the stress distribution within the composite.

of In the present work, an attempt is made to remedy the deficiencies
of the analysis based on variational principles art" on the assumption
of regular spacing of fibers. The problem in its full generality is
considered and solved for the case of longitudinal shear loading
of the composite; that is, an exact analytical solution is given for
the problem of antiplane shear loading of a unidirectional composite
containing randomly distributed fibers of arbitrary radii and shear
moduli. After some preliminaries, the solution is presented in
S-ction 3. An expression for the effective shear modulus is deve-
loped in Section 4. For the case of a regular array this expression
gives results that are virtually identical with the numerical solu..
tions of [3,4,6-8]. In the case of a random distribution of fibers,
results that are essentially in agreement with the conclusions of
[1,2] are obtained. Finally, the results are used to discuss the
viscoelastic behavinr of a composite.

2. Preliminary Results

Consider a fiber reinforced composite containing aligned fibers.
If the composite is loaded by shearing stresses parallel to the fiber
axes, the resulting deformation is of antiplane type [11]. In this
case one has

u = v = 0 , w = w(x,y), (1)

where u,v,w are displacements along the coordinate axes (with w being
the displacement parallel to the fiber axis). The nonzero displace-
ment and stress components are given, in terms of an analytic func-
tion F(z) of the complex variable z = x + iy, by
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, w(x,y) = Re {F(z)) , (2)

ix dF (3)Oxz - Z iTz= Z

where Re { I is used to denote the real part of the function in the
brackets and • is the shear modulus. In terms of polar coordinates,
(3) becomes

i ie dF(40rz- i ez (4)

Now let us turn to determining the stress distribution within the
composite.

3. General Solution

Consider an unbounded matrix containing N (N could be infinite)
circular cylindrical inclusions. Let subscripts "o" and "i"
(i=l,2,...,N) on elastic field quantities refer to the matrix and
inclusions, respectively. Let Ri and ai denote the radius and posi-

.th 1 1tion of the center of the i inclusion (as shown in Figure 1).
Assuming the interface between the matrix and inclusions to be per-
fectly bonded, the boundary conditions for the ith inclusion are

W w

ro rzwi on Iz-aij = Ri , (5)

Crzo = rzi

where arz is the "radial" shearing stress expressed in terms of a
local polar coordinate system with origin at the center of the ith

inclusion. Letting the stress state at infinity be oxz = 1

ayz 0 , it is required to determine the elastic fields near the

inclusions.

By using the method of [12], it can be readily shown that the
desired complex potentials are

P m Cm,n
F (Z) = z - I Ki,n C (6)m=l n=l Z-%(,n
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F.(z) = (I + Ki) z- I I m n C (7)
m=l n=l m,n

where

Pm = N(N-l)m'l (8)

K = (pn_,O)/(Pn+wo) Kl,n = Kn, (9)

C = an (n=1,2,...,N) (10)

1,n n I'ýn n

and, in general,

Km,n = Km-l,k Ki

m,n= ai + / (•m-l,k - , (12)
[Z - ,k 2 (13)]'

Cm,n Cm- l Rk 2 m-I " (13)

if k.m-l,k - ail L-Ri ; otherwise the terms are not computed. The

calculations indicated by (11) to (13) are to be carried out for all
m; k = 1,2,...,Pml; n = 1,2,...,Pm; and i = 1,2,...,N. The

asterisk on the summation symbol in (7) denotes that terms that are
singular within the inclusion under consideration are to be omitted
from the sum.

If all the inclusions have identical shear moduli Pf , then

Kn = K (pf - Po)/(Pf + PO)

m (14)
Km,n

and the general solution, Eqs. (6) and (7), reduces to the results
given in [12].

4. Effective Shear Modulus

Consider an unbounded elastic matrix containing aligned, randomly
distributed fibers. Assume that the fibers have arbitrary radii that
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lie within a fixed range of values. That this assumption is necessary
can be seen from examining micrographs of typical composite cross
sections. Also, let the fibers have randomly varying shear moduli.
The necessity of this assumption follows from experimental data on
mechanical properties of single fibers. It is required to determine
the effective shear modulus of the composite.

The problem in its full generality is sufficiently difficult
that no universally valid results (with the possible exception of
bounds) can be expected. If certain restrictions on the variation of
the variables (spacing, radii and shear moduli) are imposed then
theoretically rigorous results can be derived. By a well known energy
theorem in elasticity it follows that the effective shear modulus
can be bounded from above by letting all the fibers have the shear
modulus of the stiffest fiber. Similarly t can be bounded from
below by letting all the fibers have the shear modulus of the most
flexible fiber. Hence one can write

- +
< L_ , (15)

where w- and w+ are derived values of the effective modulus based
on the least and greatest stiffness of the fibers. If the variation
in fiber shear moduli is small, these bound will be rather close.

In what follows, the fibers will be assumed to have the same
moduli. The effect of variation in modulus from fiber to fiber can
be recovered by using bounds (15).

In a fundamental paper, Hill [13] developed exact expressions
for the effective moduli of multiphase media. int7iecase under
consideration the pertinent expression may be written as

W = 00 + vB (•f-UO) (16)

where Uf, v and B are the assumed constant shear modulus of the

fibers, volume fraction of fibers in the composite, and the average
strain concentration in the fibers, respectively. The use of (16)
requires knowledge of the average strain concentration factor in
the fibers, which can be obtained from the general solution as follows:
Consider a typical fiber (inclusion) with the origin of coordinates
being put at its center. The stresses within the incluF--n are

- iy = (I+K) 1 + Km -C mn (17)
xz yz 1 1= n2 zlmn ~ (7n: [Z-cm,n]2

where K is given by (14). It should be noted that the fibers have
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been assumed to have identical shear moduli. Since all the singu-
larities are outside the inclusion, the stresses can be expanded in

a Taylor series about the center of the inclusion to give

+1 COm 
-z + (18)

axz - iay =: (1+K) m Km n 2 1 +--+ (18)
m1 nl •m,n m,n Cm'n

Terms with zk (k=l,2,3,...) yield stresses that depend on cosine and

sine of ko. lience, upon averaging over the inclusion, these give a

zero contribution. Thus one has

C 1*
T i T =(l+K) I + Km* I = (1+K) (Ax+iAy) (19)TXz - Z iMyz n= (lK 2 + yK

m =nl %m,n

for the averaged complex stress combination Txz " ityz ' The

quantities Ax and Ay are real. To complete the evaluationi of B in

(16', the averaged complex stress combination has to be averaged over

all the in%1usions. This can be done rather easily in the case of a

regular array of fibers; but in the general case, approximation5 have

to be introduced at this point. If the fiber distribution is statis-

tically homogeneous (a standard assumption in statistical ard varia-

tional formulatiecrs of the problem), the average over all the fibers

can be expected to be closely approximated by the averaged stress

concentration within a typical fiber. This implies that A = 0 and,

hence

Txz = (l+K) A . (20)

The validity of using txz as the averaged stress in all the inclu-

sions can be checked by computing Tyz and comparing its value with

zero. Using Txz/jif as the average strain in the fibers it follows

that (16) can be written as

I= + 2v KA . (21)

This includes the correction due to the fact that (6) an1 (7) are for

finite number of inclusions and we have an infinite number. Eq. (21)

is the desired expression for the effective shear modulus of the

composite. It should be realized that in using (21) an infinite series
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has co be summed. This is rather difficult to do due to the slow
convergence of the general solution [12]. The series can be trans-
formed into a rapidly converging one for the case of a regular array
of equal inclusions. This is done next.

Regular Arrays of Inclusions. Consider a composite reinforced
by a regular array of equal fibers arranged as shown in Figure 2.
The inclusion centers are put at the points

Z umn = 2(m t nce'a) a (m,n integers) (22)

where c, a, • are parameters giving the spacing of the fibers in the
array (as shown in the figure)*. For the sake of convenience, the
radius of the inclusion is taken equal to unity. Then the fiber
volume fraction is related to the parameters a, c and a by

V 2 'a. (23)
4 a c sin

The array becomes rectangular for n/2. If also c = 1, the array is

square. a - , c = 1 corresponds to a hexagonal array. Other

combinations of c and c give all the possible regular arrays.

For the regular array of fibers with period p'rallelogram
specified by (22), it can be shown after some rather tedius compu-
tations that

Ax iA - 1 + 3K2 S
y .-KS2  (lKS2 )2 [(4a2 )2 _S2 K2]

5K2S2

+ 62 4(l-KS 2)2[(4a2)4.S K2]

' '~K2S2

+ 8 , (24)
(I-KS 2 )2 [(4a2)6 "S• K2] (

* The array is taken to be symmetrical about the x-axis.
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where

S2K : 02k/ 4 a , (25)

'2k : • [m + nceia]"2k (26)
fl=-co

m=--

The prime on the summation symbol in (26) indicates that the summation
is to be carried out for all integer values of m and n with the
exception of n = m = 0. The series a2k occur in the theory of the
Weierstriss elliptic functions [14]. They can be transformed into
extremely rapidly converging series by classical methods (for example,
see the derivations for a rectangular period parallelogram given in
[15)). Thus

2
+2 +2r2  I I 1G2 = 3 + sin2

4 4 CO211a4 :4•5 + 244

n 1 L sin 3si

2j ÷ 26O 2 - 1 (27)06 n9- 4  4n 15 sin40 si-n 4"nin o

-O
08 = 2.008115- + 2T8 8 1 420 +

n l sin8 0 315 sin6

+ 126 4i 1
315 sin 4 315 sin J

where

= nic (cos a + i sin a) . (28)

As an example, for a rectangular array, a = 90* and sin 0 = sinh nwc;
hence, only the first few terms are needed to get six place accuracy.
For other arrays, the convergence is almost as fast.
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The ratio of effective shear modulus to matrix shear modulus
was computed for a square array of fibers in the cases of glass-epoxy
Gf/u0 = 20) and boron-epoxy (of/po = 120) composites. The results
are shown versus the fiber volume fraction in Figuret 3 and 4. In
both figures, the solid line is based bn the derived expression
(Eqs. (21) and (24)); while, the dotted line corresponds to using only
the first term in (24). For the sake of comparison points from
curves by Doner and Adams [3] and Chen [4) are shown as squares and
triangles in the figures.

From the figures it is obvious that the presently derived ex-
pressions are in excellent agreement with the various numerical
solutions for commonly encountered fiber volume fractions (v < 0.7).
For higher fiber volume fractions the agreement becomes poor. This
is attributed to the difficulties in convergence of the numerical
results in this range. No comparison with experimental data is made
since that aspect has been discussed sufficiently elsewhere. Similar
comparisons can be made for hexagonal arrays; but the lack of space
prevents us from presenting those results here.

It so happens that S2 = v and S4 ', v for the square arrays.
This suggests replacing S2 and S4 by v and neglecting the remaining
terms in (24) to give

I= + 2K 1 3K2v21+2vo ,-• + 22(29)
1o 1 T(l-Kv) 2 [(4a2 )2-K2v2]

for the ratio of effective shear modulus to the matrix shear modulus.
It should be noted that if only the first term in the brackets in (29)
is retained, the expression for the effective shear modulus reduces
to the approximate ones given by Van Fo Fy [5], Kilchinskii [16],
Hashin [17] and others. This expression is plotted as a dashed line
in Figures 3 and 4. From the figures it is seen that the simplified
expression (29) gives excellent agreement with the more exact one.
Hence it can be adopted for slide rule computation of the effective
shear modulus.

Finally, it should be noted that expressions (2i) and (24) for
the effective shear modulus are based on a rigorous analytical
derivation and are valid for all regular arrays. Hence they can be
uqed for assessing the effect of viscoleastic phases as is indicated
below.

An exact expression for the effective shear modulus of a com-
posite containing randomly spaced fibers with randomly varying radii
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was derived above. Its use is restricted by the slow convergence of
the infinite series that has to be summed. This can be seen from
the following example.

Consider a composite containing a random distribution of equal
fibers. To expedite the computations the composite was modelled by
37 inclusions in an unbounded matrix. If the inclusions are spaced
in a regular hexagonal array, a value of interfiber spacing equal
to six radii gives stresses on the center inclusion in excellent
agreement with results for an infinite array [12). Hence this model
is expected to give accurate results. Starting with the hexagonal
array, the inclusions were displaced along the coordinate axes by
a random distance ( < one radius in magnitude) while the inclusion
at the origin was constrained to remain at the origin. This gave a
random distribution of inclus )ns, an example of which is shown in
Figure 5. For this random di- -ibution of inclusions, the series
for A, was summed and the result substituted in (21) to give a

value for the effective shear modulus. A computer program was written
to perform the summation. Unfortunately, due to slow convergence
of the series, it takes approximately ten minutes on the UNIVAC 1108
to obtain one value for the effective shear modulus for a fiber
volume fraction of 0.1. Due to the long computation time and low
volume fraction only one value of Pilo was computed and it is shown
in Figures 3 and 4 by a solid circle. This value corresponds to the
array shown in Figure 5. Since the computer run time increases
rapidly with increasing v (due to the need of taking more terms
in the series and more inclusions in the model), no other results
were generated.

If the fibers are distributed in a doubly periodic array, the
series for A can be summed to give expression (24). Results based

on using (24) in (21), when compared with numerical solutions and
approximate expressions lead to the following conclusions:

(1) The agreement with the results of Chen [4] is excellent.
The results due to Doner and Adams [3] give poorer
agreement. This is to be expected since the'later
results are suspect as was pointed out by Quackenbush
and Thomas [18] and Symm [19]. Furthermore, the
approximate expression, equation (29), is in excellent
agreement with the exact expression.

(2) Eqs. (21) and (24) are valid for all regular arrays.
ihis is in marked contrast to the numerical results
which are restricted to rectangular and hexagonal
arrays. Furthermore, these equations are readily
adopted to predicting the viscoelastic shear modulus
as has been indicated in Section 4.
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(3) Upon comparing (21) and (24) with the expression
based in the self-consistent model [16,17] it is
seen that the self-consistent model gives an
effective shear modulus that is a lower bound on
the exact results for square and hexagonal arrays.
Finally, it should be noted that the present results
are obviously superior to the approximate expression
(obtained by curve fitting the results of Doner and
Adams) given by Hewitt and de Malherbe [20].

5. Stress Distribution

For a regular array of fibers, with period parallelogram
specified by [22] the series in [17] can be summed* to give

0x B .- l z F2n K-2-

nxz - i= yz I F2n+l [ 2 + Kz2n 2 ] (30)n=O

The coefficients F2n+l are given by

F1 = Dl + K I (2n + 1)(4a 2)" S2(n+l) D n+ , (31)
n=l

C.2m 2-rmFn+l K • (2m + l(2mm- 2n)(4a2) S2(m+ll1 Dm-n+l + n
m=n

(32)

For details of the summation see Section 8.
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where E0= 0 and ( 2m) are binomial coefficients. Further-more,

En [~s(4a2fT  S(n 1  + K w~ (2m+2n+l)( 4a') -2m-n 52m (3(r:nl)

M b +1b 2n~ml1 --
n,+1 I2 ei ( ()( O42 2+b+m S2+e S2(1+n)+b-e~m

M b b+l b 2n+m1 (M42z-
+ I b )() m 2z l)(4a2)-b-mn-

2zx

b=0 e=0 M=O 1i 1

X2(1+i)+b+m S2(1+9.)+e S2(1+n)+b-e+m0) (4

and

y, + - (2nS)'n~ + 1)4?-2n (n+l)

+ K M (2m 2m+"nl ,(4a:') -
2n-2m+2 2S S 35

m 12 n 0 2n-2 2(m~n)52(n~l)]

where

Sk (4a?) 1  [' m + nce1 iir2k (361

n=-
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The prime on the summation symbol in (36) indicates that the summation

is to be carried out for all integer values of m and n with the

exception of n = m = 0. The series for S can be transformed into
rapidly converging series as has been done above but it is much

more convenient to evaluate them by using the results given in

Section 9. It should be noted that the series for E and D are

only approximate expressions as can be seen from the derivations

given in Section 8. More arrucate expressions for En and Dn can

be obtained; but the required effort is too great to be justified

since the expressions given above seem to give sufficient accuracy.

Finally, the coefficient B is given by

S3 c2)(ab 3 +K) 3
a = 1 ab F3a

4b3

+ (5- , 0c2 + c4 )alb 5 + K) F5 5
5a6 b5

+ 7 - 35c2 + 21c 4 _ c6)(a1 4 b7 + K) F7

7a8 b7 '

+29 - 84c + 126c 4  36c6 + c)(ab F9 +b9

+ ~ ~~9a10b9  )F

(37)

where b = 1 + c2 , for a rectangular array and

2 2 4 6
= F1 + [(I - b2C)a2 + K'-2 b62b bbZ4 33

1 ýýb+ 1(+b )a

2 4 Kil-b 2) F5
+ [(I -b 2 + b4 )ba 4 + - 5L-

a b

SK(l+b 6) F7

+[(I ~b2 + b4" b) a b2+ 8)6  7

+ [(1 - b2 + b4 - b6 + bS)a 8 + F" 9 + (38)
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where b = tan c ,for a diamond array.

6. Discussion of Stress Distribution

The results of the previous section were used to compute the
maximum shearing stresses at the inclusion-matrix interface. The
computations were carried out using only the leading terms (terms
with S2. , n 6 being neglected) of the solution, The magnittude
of the Iaximuim shearing stress (ar) at the interface was found

rzand the results are shown in Figs. 6 and 7 for the cases of square
and hexagonal array. For comparison purposes, the numerical results
of Foy [8] and points from curves given by Van Fo Fy and V.V. Klyavilin
[21] are shown as hollow and solid circles in the figures.

From Fig. 6, it is seen that the present results, with terms
containing S2n (n > 6) being neglected, are in excellent agreement
with the results due to Foye [8] and Van Fo Fy and V. V. Klyavlin
[21]. It should be noted that the points due to Foye seem to give
a bit of scatter with some falling belo'i and some above the presently
derived curves. The points due to Van Fo Fy are in good agreement
with the derived results. Furthermore, it should be realized that
the material properties used by those authors are slightly different
from the ones assumed in the present paper. This does not effect
the comparison since the solution is rather insensitive to small
variations in elastic moduli as can be seen by comparing the curves
for glass-epoxy and boron-epoxy composites.

The maximum shearing stress exhibits the following trend: The
stress undergoes a slight initial increase as the fiber volume
content v increases from zero; then the stress decreases and finally
increases again for large values of v. This trend is also evident
in the rules of Foye, but does not appear in the curves given by
Van Fo Fy and Klyavlin.

For the hexagonal array, the agreement between the present
results and those of [8,21] is not as good (see Figure 4) with the
curves being in better agreement with the results of [21]. The
discrepancy can be traced to the approximations introduced by
arbitrarily neglecting terms with S2n (n > 6) since for a hexagonal
array S2 = v, S4 = S8 X Slo 2 O, S6 F0. Thus, in effect, the
curves are based on the leading two terms of the solution. Hence
it is not surprising that poor agreement is obtained.

The solution given in Section 5, can be used to generate results
for other regular arrays of inclusions. Unfortunately, for a # 9o°
or 600, S4 and S6 can have relatively large negative values leading

to the necessity of taking a large number of terms. Thus the results,
based on neglecting S2n for b > 6, are not valid. Furthermore, the
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accuracy of the expressions for E,, and Dn becomes questionable. From

the structure of the solution, it is known that the leading terms
were neglected in the expressions for En and Dn are of the order

(4a2)-4S 4(4a2)o8S4 , etc. Thus, if the volume fraction of inclusions

is small, the neglected terms are small. As the volume fraction v

increases (4a2 ) goes to 4 and these terms can no longer be neglected.
Thus the results can be expected to be accurate for small values of
v (< 0.3). Under this restriction, we have that the maximum stress
in the matrix is less than two. On the basis of the above discussion,
we can conclude (albeit imperfectly) that for small fiber volume
content, the stress concentration effect of the inclusions is small
(less than two).

7. Evaluation of Series

Summation of the double series in (19) to give (24) for the case
of a regular array of equal fibers is rather involved. A brief
outline of the procedure is given below.

When the fibers form a regular array whose. period parallelogram
is given by (22), the combination Ax and i Ay can be written as

2 3Ax + i Ay = 1 + K g, + K g2 + k g3 + "" (39)

where

gl = [2a (m + ncei )]-2, (40)
n ,m--

92 = I [4a 2(m + nce1") (k + ice") + l]-2 (41)n,m,k,z=--

93 = 12 I [4a2 (k+xceiX)(m+ncei")(s+tce'i)
4a k,z,m,Ii,s,t=--

+ (k + xceia) + (s + cteia)]" 2

(42)

etc. Upon recalling the definition of S2, it follows that g, = S2
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Summation of series in (41) and (42) is considerably more difficult
but not impossible. They can be summed by the elementary trick of
exnma,-1ing the terms in the series g in a binomial series, rearranging

tK•, and resumming the series. This gives

9= (an+l) (4a2 )"2 n n 2 (43)

9 =I 2(n+l) 043
n=n

g3, = n3 2 m ( 0an+l) (4a2)2n S 2m -2(m+l) 2(n+l-m)'

n( (44)

4  + ki l(42-2K r 2k 2z k - t(2k;94 S2 + (2k~l) (4 (29) (2m) 2n) x

k 1z0 m=o n=o

(4a 2 )"2 n S2(k+l.z) S2(k+l-z+m) S2(z+l+n) S2(z+l+n-m)

(45)

etc. where (n) are binomial coefficients. The convergence rate of
these series is very rapid since S2n < 1 and a > 1 . Substituting

these series for gn into (30) and again rearranging terms, allows

one to sum the resulting series to give (24) which is the desired
result.

8. Evaluation of Series for the Stresses

Summation of series (17) to give (30) for the case of a regular
array of equal fibers is rather involved. A brief description of
the procedure is given below.

When the fibers form a regular array whose period parallelogram
is given by (22), the stresses can be written as

axz " yz I + I KnA n (46)
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where

A I :p(z) + S2  , (47)

A I wm (z- W-mm) +SL ' (48)"A2 m,n 2,n

3 L L m,n +1-2 [ p(z+-
k,z mn nm,n &k,+ n 4Sk

(49)

A4= Z tok[wk (wm~ t+1 j st- 2
k,z m,n s,t m,n s,t + 1)+

[ S2 + p(z - Wm,n ok,' + 1 (50)2k,z(wm,n Ws 't + I) + ts: t

etc., where the prime on the summation symbol indicates that the
summation is to be carried out for all integer values, positive and
negative, of m and n (or k & z or s & t), with the exception
of n = m = 0 . Furthermore, p(z) is the Weierstrass elliptic
function and S2n are series defined by (30). Some useful relations

between the Weierstrass elliptic function and the series S2n are

given in Section 9.

Series (46) follows immediately from (17) if one takes into
account the double-perodicity of the assumed distribution of fibers.
Further summation is achieved by (i) expanding the Weierstrass p
function in a Laurant series (see Section 8), (ii) expanding
terms in the resulting series, whenever necessary, in binomial
series, (iii) rearranging terms and resumming. This gives
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Series (46) follows immediately from (17) if one take into account
the double-perodicity of the assumed distribution of fibers. Further
summation is achieved by (i) expanding the Weierstrass p function
in a Laurant series (see Appendix II), (ii) expanding terms in the
resulting series, whenever necessary, in binomial series, (iii) rear-
ranging terms and resumming. This gives

A1 = S2 + z"2 + (2n + 1)(4a2)yn S2 (n+l) z2n (51)
n=l

A = S2 + S z"2 + j (2n + 1)(4a2 )-n S2 )2(n+l)
n=l

CO n-i
+n2 Cn (. (n 2)(4a 2)'m S2(m+l) 2 m1) (52)

A3  S2 n~l (2n + 1)(4a 2)" 2 n 2n+= $2n+2

+ z'2m n (2n +2m - l)(4a2)-2 n-m+l)S S

m=1 n=O 2 2(n+l) 2(n+m)
CO k-2 (2k 2) z2k-2m-2 (2m+2n n + 1

+ j ck n )
k-2 m=O n=O

x (4a2)" 2 n+m S2(m+n+l) S2(n+l) ' (53)

S4 =S+ Sn 2+l I 0I?!LLI ~ (2n)
4n=l (4a2)n S2(n+l) 1 (2m) S2(m+l) S2(n+l-m)

+ [Z2 -(2n + l)z- 2 n + crrl 2r 2 2 x
n1O r=2 n0

x b + l)(b)(2n + m - 1)(m+ -l) xb1O e=O m JO b e mi

x (4a2)-(b~+m+f) S2+b+m+z $2+e+z S2+2n+b+m-e ,54)
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etc., where c n is defined by (59) in Section 9. Eq. (46), witli

A given by (51) to (54), can be considered as a series in z with
c8efficient which in turn are complicated infinite series. The

coefficient of z2 n (for fixed n) can be looked upon as a series
in S2 . Upon summing the series in S2 whenever possible, it

follows that the coefficient of z2n is given by F 2n+l (which is

defined by (31) and (32)). Similar consideration for terms with

z 2 n 2  give the result that F2n+l is also the coefficient z-

Thus (46), when summed, becomes (30) with a = 1. This result is not
the correct solution for a composite.

A little reflection on the formulation of the problem is enough
to convince one that this is to be expected. The problem was
initially formulated for the case of a finite number of inclusions
in an unbounded matrix. That is the problem solved by (17). In
going over to the case of a doubly-periodic array of inclusions, the
finite number of inclusions was assumed to form a regular array and
the number of inclusions in the array was increased to infinity.
As such, (30) with B = 1 is the solution of the problem of an
infinite array of fibers occupying a region that is infinite in
extent and yet finite in comparison to the unbounded extent of
the matrix. Hence, (30) with 0 = 1 is not the desired solution for
a composite material.

The results have to be corrected. The infinite array of fibers
has the effect of a single inclusion in an infinite matrix and,
hence, the effective loading on the composite (array of inclusions
and the matrix in their vicinity) is higher than the imposed stress
at iifinity (due to the stress concentrating nature of inclusions).
This indicates the necessary correction; that is, the effective
stress in the compobite region has to be used as the loading func-
tion in the results for a doubly periodic array of fibers. Since
this is impossible to do from the above considerations, the
correction has to be arrived at in a different manner.

It can be made by considering a representative region of the
composite, computing the net stresses transmitted across its
boundaries and using the net stresses as the loading condition on
the composite. Thus consider the representative regions of the
composite shown in Figure 8. Two distinct cases have to be con-
sidered, namely, the rectangular array (Fig. 8a) and the diamond
array (Fig. 8b). The stresses on the surface of the representative
region are given by (30) with a = 1, upon taking the appropriate
values of z, Integrating over the boundary of the representative
volume, one gets that the net traction in the x-direction is a
and that the y-direction is zero. The expressions for 8 in the
two cases are given by (37) and (38). Dividing (30), with a = 1,
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by B gives the desired correct solution.

Since the series, (34) and (35), defining the coefficient Dn+l

are rather complicated, the leading terms are recorded below:

S + K2  3(4a2 )-2 S 2 + 5(4a 2 )"4 S6

D 1 - KS2  (1 - KS2 )2  4+

+ 7(4a 2 )" 6 S2 +...+ 30(4a 2 )" 4 KS2S6 + 210(4a 2 )- 6 KS 8 +...],

D = 2 K3 [ 3(4a 2 )" 3 S + 81(4a 2 )" 5 $452

2 4 4 6

+ (4a2 )7 [518 S4S2 + 250 S68• I +

D= K3 [ 3(4a 2)- 4SS 6 + (4a 2)-6 [5 S3 + 146 4S68

+ (4a 2)- 8 [1686 S4S8 o10 + 478 S : + ... : ,

D o= K3 [ 3(ea 2)"5 S 28 + (4a2 )"7 [5 S 28 + 240 S4S6S10 '
+ (4a 2 )"9 [775 S6S8S0 + 7 S• 3 .

vta, C 6 ~68~ +0 ~8 +**

D K 3 [ 3(4a 2 )6 S42l0 + 5(4a 2 )8 S S + 7(4a 2 Y)10 S

+ 9(4a2)"12 S 0 + ...

9. Some Useful Relations

The Weierstrass p function is defined [22] as

p(z) = Z" 2z-mn2 - ' -2 (55)
m,n m,n m,n
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wnere -m,n is the period parallelogram, which in our case is given

by (55). The prime on the summation symbol is used to denote summa-
tion over all integer (positive and negative values of m and n with
exception of m = n = 0. Upon using definition (36), Eq. (55) can
be written as

p(z) = Z"2 + [z -m,n] 2  - S2 (56)
m,n

The Weierstrass p function can be expanded in a Laurant series as

p(z) Z 2 + I Cz 2n-2 (57)
n=2 n

where

c = 3(4a 2 ' 1s4 , c4  = 5(4a 2 )_2S6  (58)

and

3 n-2

cn 3-2 (n >4) (59)n =W(2n + 1)(n -3)m=ý2 Cm nm,

In this form all the coefficients in (57) can be written in terms
of S4 and S6 '

Alternately, we have

ý(Z) = z-2 + I' -2 [1- z ]-2  
- S

m,n mn m,n

= z 2 + • (2n + 1)(4a 2 )-n S2(n+l) . (60)
n=l 9nl

Comparison of (57) and (60) gives

cn+l = (2n + ) (4a2)-n S2(n+l) (61)

which relates S2(n+l) to S4 and S6 . Thus the series S2n can be

evaluated rather simply once the values of S4 and S6 have been computed.
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Figure 3. Ratio of effective shear modulus to matrix shear
modulus versus fiber volume content for glass-epoxy

composite (of/Po = 20 or K = 905) based on square

array model.
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Figure 4. Ratio of effective shear modulus to matrix shear
modulus versus fiber volume content for boron-epoxy

(Uf/Po = 120 or K - .9835) based on square array
model.
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Figure 6. Maximum shearing stress TrZ versus fiber volume content
for glass-epoxy (pf/po = 20) and boron-epoxy (pf/pm = 120)

composite based on square array model.
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Figure 7. Maximum shearing stress Trz versus fiber volume content
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array model.
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B. Multiple Circular Inclusions Problems in Plane Elas,.jstatics
(Professor G. P. Sendeckyj and Dr. Ing-Wu Yu)

During the period covered by this report, work on the multiple
circular inclusion problem has been continued. The general repre-
sentation, given by Sendeckyj [1], has been modified to give a more
straightforward solution of the elastic boundary value problem for
an unbounded matrix containing a single circular inclusion. Using
these results, the problem of an unbounded matrix containing an
arbitrary number of elastic inclusions (which can have any radii
and elastic properties) has been solved for uniform and in-plane
bending stress fields. Since these results are given in consider-
able detail in [2,3] only a brief summary is given here (see
Sections 2 and 3).

As the first application of the general results to composites,
transverse loading of a single ply for the case of fibers having
the same shear modulus as the matrix has been considered. A paper
containing these results has been prepared and submitted for
publication [4]. The main features of this paper are summarized
in Sections 4 through 6. Directions for future work are indic:ited
in the last section.

1. Basic Formulas. Consider an isotropic solid in a stat~e of
plane deformation parallel to the x,y plane. As is well known [5],
the displacements and stresses in the plane of deformation can be
written in terms of two analytic functions, 4(z) and ý(z) , of
the complex variable z = x + iy as

2;(u + iv) :K ý z) - z -r'(ZT - (Z

Oxx - i Oxy 0 ¢'(z) + ¢--Z- - z O(z) - '(Z) , (1)

1xx +"yy 2 [L'(z) + (z) ]

where a prime on a function denotes differentiation with respect to
its argument and

(3-4v for plane strain,

K. =• (2)

1(3-v)/(l+v) for (generalized) plane stress.
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2. General Solutions of Single Circular Inclusion Problems

Now let us consider an infinite elastic matrix containing a
circular inclusion of radius Ri placed as shown in Figure 1.

Letting subscripts "o" and "i" on elastic field quantities refer to
the matrix and inclusion respectively, the boundary conditions corres-
ponding to a perfect bond at the interface are

U + i vo Z u + i v

at p = R i (3)

aoo- i 10 =api fiatp i

It is required to find a representation of the solution satisfying
boundary conditions (3). A number of such representations are
possible depending on the conditions that are imposed at infinity.
If no conditions are imposed at infinity, we have

Representation I [1]: The general form of the solution satisfying
(3) can be written as

., i-ai 2 a

(Z)if(z) - Tf (Rz /z) h /)(R'/z) (4a)

(Z 2 R if(z i icL(Rý/ R',11 2R/a

zfz1o1 :fz - ( /z 8.(ca)

1-i Rif z) + h(z) - 8 - j h (R2/z) , (4b)
Iz1 1+ 7Z1 +

= h')= a g(z) (40)

1:(iz + a~) i .]

ýi(z) = 1 h(z)+ (4d)

where

=i [ri(Ko + 1) - (Ki +l)]/[ri(Ko + 1) + Ki+ + 1

101



i : [*i(o - ) - (v.i - + 1) + Yi + 1 ]

1i il(5)

2--
are the contractions suggested by Dundurs [6), f (R /z) =fTR/)

f(z), h(z) are arbitrary functions of z.

Since no restrictions have been placed on the singularities of
f(z) and h(z), this representation admits singularities in the matrix
and/or the inclusion. Furthermore, one has no control over the
elastic fields at infinity. For example, if for f(z' and h(z) one
takes the singularity for a concentrated force applied at some
point in the matrix, then (4) gives a constant stress at infinity.
The correct solution follows upon eliminating the constant stress
by again using (4).

Even though Representation I can be used to solve all conceiv-
able problems for a single inclusion, it is convenient for our
purposes to introduce a somewhat more restricted representation
whicK. is given below:

Representation II: If the singularities of f(z) and h(z) occur
only in the matrix (Izl>Ri) and if the stresses at infinity are
to be those corresponding 'o f(z) and h(z) in a homogeneous
matrix, then the solution satisfying boundary conditions (3) is
given by

o(z) = f(z) - Di[zf'(R/z) + h(Rý/z) - f'(O)z ] , (6a)

, (z) =h(z) - E. (R24/z) - ,(Rý/z)
+ ([-z) \/i):1

+ (Rl/z 2) ?"(Rý/z) + (0/:':) ;'(R 2/2)]

+ {G.if'(0) + f'(O)] + Ji[f'(O) -'(O)]}(R/z) ,(6b)

4i(z) (l-Ei)(f(z) + [,. (f'(O) + f (0)) + Li(f'(O) - (O)flz},

(6c)

i(z) (1 - Di){h(z) - Mi[f'(z) - f'(O)](Rý/z)) , (6d)

where
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D. = " - )/(0 + )

Ei = " (oi + Qi)/(l "i)

G. = .i(j + Di + 4Ki)/(l 0i),

J = oi( + aj)/(l "B) , (7)

K. = (0i - ai)/](l - 2ai + ai)

L. = - (i. - ai)/](l .a.i)

Mi = 2il(l - si)

and f'(O) denotes f'(z) evaluated at z = 0

This representation is readily derived from (4),[2]. It has
the advantage over Representation I that if the functions f(z) and
h(z) are the s'olution for a homogeneous matrix with singularities
outside Izi = Ri , then (6) gives immediately the solution for

an infinite matrix containing a circular inclusion. In this sense,
it is a generalization of the results for a czvity or rigid
inclusion given by Green and Zerna [7].

Even though Representation II is appropriate when singularities
are specified in the matrix, it cannot be used when singularities
are specified within the inclusion. Hence it is more restricted
than Representation I, which can be used to solve problems in which
singularities are given within the inclusion.

Finally, it is convenient to write 41z) and Co(z) in both

representations as

00(z) = f(z) + F(z)

(8)

io(z) = h(z) + H(z)

The tunctions f(z) and h(z) will be called loading functions; while,
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F(z) and H(z) will be called reflexive functions in what followvs.

3. Inclusion Disturbing a Unifor.a and/or Bending Stress Field

Consider an unbounded matrix containing n distinct circular
inclusions. Let Ri and ai denote the radius and position of the
center of the i th inclusion. Let subscripts "o" and "i" (i = 1,2,...,N)

on elastic quantities refer to the matrix and the ith inclusion,
respectively. Assuming that the inclusions are perfectly bonded
to the matrix, we have that boundary conditions (3), where the
displacements and stresses are given in terms of local polar
coordinates with origins at the centers of the inclusions, have to
be satisfied at each inclusion-matrix interface. It is required
to find the solution if an arbitrary elastic field, with no singu-
larities in Iz - ail < Ri , is applied to the matrix.

This problem can be readily solved by using the Schwarz alter-
nating method [5], . For a discussion of the method and details of
the solution the reader is referred to [1,2]. The present section
contains results only.

Let the applied stress field by a combined uniform and in-plane
bending loading. Referring to Fig. 2 and using the notation of the
previous sections, the complex potentials for a homogeneous matrix
corresponding to a combined uniform and bending stress field are

¢°(z) = f(z) = A1 z + A2 z2

(9)
!°(z) = h(z) = B1 z + B2 z 2

where

A1  = (po + q0 )/4 A2 = (ql - i p,) e- U/8 ,
"i 0)

B1  = (q0 - PO)e-/2 , B2 = (q, + i pl)e-3iu/8 ,

and p0, qo0 pl, ql, u are specified constants for the assumed stress

field.

Upon using f(z) and h(z) , defined by (9), as the loading
functions and applying the Schwarz method of successive approxi-
mations for a number of cycles, it becomes evident that the soiution
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w - -- N.--4- -

can be written as

2 N Pm m+2oZ) A1 z+A 2z + A Bimkn [z - Cimkn (11)
~~z) - nisi i=1 kW n=l k1m

2 N Pm mr+3
ýo(z) = B 1 z + B2 z2 + I I Eimkn [z - fimk]ln (12)

m 1 i1I k=1 n=l ik ,(2

z2 P N Pm m+2 -
,iYz) = Fil z + Fi 2 z + I I D ijmkn 1z - jmk] n(13)

II-m =ll k= n=
m+ jil ki2 I nl Gijmkn [z- ýjmk

,i (z) = Hi1 z + Hi2 z2  ,= + = G [z-l]f, 4

i= 1 j=l k I nlimkjk
where Bi,_, E4mkn, F4i., F49i, Hil, Hig, Diimkn and Gijmkfn are unknown

coefficients depending on the radii, spacing and elastic moduli of
the inLlusions and

gill = ai, (15)

""i+m+[z =a. [jmk " for i # i (16)

where

0 - 1) Pm + k if j < i
m :(17)

-,( 2) Pm + k if j > i

Pm (N - l)m'l . (18)

The commas in the subscripts in (16) and subsequently are used to sepa-
rate the indices whenever confusion can arise. Furthermore, the
asterisk on the summation symbol denotes that terms with j = i are
omitted from the sums.

The complex potentials are singular at the points z -. k which
can be given a simple geometrical interpretation. The points
z = ,ill = ai are the positions of the centers of the inclusions; while,

the points z = ýimk (m>2, k>>l) are the result of successive inversion

of z = till with respect to the inclusion boundaries, which is the

operation indicated by (16).

Recursion formulas for the unknown coefficients in (11) to (14)
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can be found as follows: Choose any inclusion and decompose complex
potentials (11) and (12) into loading and reflexive functions.
The loadings functions are the ones with no singularities inside
the inclusion; while, the reflexive ones are those with singularities
within the inclusion. Application of Representation II to this
inclusion immediately gives the coefficients of the reflexive
functions in terms of the coefficients of the loading functions.
Repeating this for all the inclusions yields the required recursion
formulas. Since the derivation of the recursion formulas is rather
lengthy, it will not be presented here. The interested reader is
referred to [2] for details of the derivation. Only the results
will be presented here. For i = 1,2,...,N

Bill = -Di Rt (BI + 2 5i B2 + 2 ai A2 )

Mi2 Di R41 B-2 (19)
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+2R (D1  E + 2 3.) A,+. ( + Xj aD. A11li m 2 1.m,

m2j=1 k= I

+= 1_) 1n 19 R. [(G. + -i(4m -jpf+l R:-2(n+1) Bm1k

+ (G.i - J.)(4im - ai)n+l R:i2(n~l) 'ffm 1 (20.

E M2 - 2 [E. R? 2 +Di ii (IT + 1 i9 2

E - D1 0 (IT, + 4 Yj 2 + 2a.A2
M3= -2ID1RX2)

F.l 0( - E.)[(l + 2Kj)Aj + 2(K.i + L )a A 2+ 2( -L0ýi2

coN m-1 m+1
- ~* n(1-E.)[(K + ýnm1pB.

m42 j=1 k=1 n=1 1 1 1 (J1 .,m-l,kn

+ (K.i - L.)(a. - ~.)fl+8 ~-,n R:2(n+1) (2
1m 1imlk 11 (22)

F i2 =(1 - E1) A 2  1(23)

H1 i (1 -D 1 )(B 1 4 2 i A 2) -2(l -E1 )Ti A 2

H 12  0 ( - D i) B2  
(4
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For m = 2,3,... ,o; j = ,,. N (jti); k = 1,2,...,Pmrn- and 1 given by

(23) we h'ave

B. ~i f ~ r 1 f + 1 1 1 1 J cin r n=r- I - n D 1i 1  PIm i ,r+ 1, r 1 i n i m~ -1 kn

+ m+2 1Di~n~l, )n+r 2n-
+ ~ ~ 1 ) l + ~ r ~ r n ~ R E j l m -1 , k n

r =1,2,...,m+i2 ,(25)

=~ n+l n 2E iml y(-1) n(Ei- D.i)(r,.ta 'a)~Rn w -mlk ~ m-- I ,k1 (26)

m+1 [(n/
mi.jrn1,l Yi (-) 2')Ei + !Jinil

= D.r. -1 ~n=1

m 2 2

+ y (-1)"'~ D. n -a a )nl+1 R:i2n i ~-1k (27)

EnM 1(n II n 1 jr-, n -

=mp I~-2 (- )+ [ )E i + D ini- r-1 + (n+l)[(l + (n-3 )a (,imt-a1-l]

+ (r-1)-a R-2 p~i - a1 )(n+2) + (n~)j}](clrn-aj)n+r R-2IFrn-l-

mn+2
+ I (_,n~lD [(n-) (n:I)ji (Cimt-ai)R-2]( cim- ai)n+r-2xn=r-1 - -

XR-2(n1l~ r *s...m3(8i J,m-1,kn , 1 ,,.,n3(8
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Dij,m-l,kr (1 - Ei) Bj,m-l,kr , r = l,2,...,o+l , (29)

Gij,m-l,kr =(1 - Di) Ej,m-l,kr + (r-l)(Di - Ei) 5i B.j,m-l,k,r-

nmji n Mi (1 - Di)(.imt - i)n-r+2 R:2(n'r+l) Bj,m-l,kn,

n=r-I

(30)

where (m) are binomial coefficients; (m) = 0 if n > m or n < 0 and
(0) = 1. Furthermore, terms with any subscript equal to zero are

identically zero.

The computation procedure, when using recursion formulas (19)
to (30), is as follows:

10 Set m = 1 and use (19)-(21) to compute Bill. and E,

20 Set m = 2 and

(a) use (25)-(28) to compute Bi 2 1r and Ei2ir ;

(b) use (20) to recompute Eill

30 Form= M 3 , 3

(a) use (25) to recompute B iptr for p = 2,3,...,M-l and

r = 1,2,...,14-I;

(b) use (26)-(28) to recompute E.ipr for p = 2,3,...,M-1

and r = 1,2,...,M-l;

(c) use (25)-(28) to compute BiM~r and Eijzr ;

(d) use (20) to recompute E ili *

40 Increase M by one and repeat step 3.

0 Use (22)-(24), (29) and (30) to compute the coefficients for
the complex potentials for the inclusions.

The computations indicated above can be terminated when Eill converges
to a limit of desired accuracy.

If E ill - 0, then the computation procedure simplifies con-
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siderably. In this case, the coefficients are found immediately from
steps 1, 2a, 3c, 4 and 5. This situation is encountered when the
inclusions lie on the x-axis and the applied stresses are specified
by ^^ý = const. x y = = 0 at large distances from the

inclusions.

Finally, if the inclusions have the same shear modulus as the
matrix,

ai = Bi = (<o - Ki)/(2 + Ko + Ki) (31)

and the solution becomes
I2

(z) = A z+A 2 z21 2
l ~N 2si 2

(z) = B1 z + B2 z 2 + i•] . {2 Ri [A + aA 2

R 4A
Si )2ai A2] z+ il (z- l

(32)

¢i~z)= [(l + ai)/(l - i)] [A, z + A2 z2  ,

U i 5 2
=i(z) [B1 " i ai A2 I z + B2 z

+ * {2 R• [A1 + aA 2 + A2 z l RA 2
j=l 1-ai1 (z-jl1 )2

The structure of solution (32) is extremely simple. The complex
potentials for the matrix are singular inside the inclusions; while,
those for the ith inclusion are singular in all inclusions except
the ith one.

Now let us consider the application of solution (32) to a com-
posite containing a square array of identical fibers of unit radius.
Let v i denote the Poisson's ratio of the fibers. Let the centers

of the fibers be put at the points
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z = 'm,n = 2a(m + in) , (m,n = 0,+l,+2,...) , (33)

where a gives the spacing between the fibers. The fiber volume
fraction is given in terms of a by

.40A-2

-= a .i • (34)

Since the smallest center to center distance between fibers occurs
for a = 1, the maximum fiber volume fraction is n/4 = 0.7854

4. Square Array of Fibers Disturbing a Uniaxial Stress Field

As the first example, consider the case in which the macroscopic
stress field, applied to the composite, is given by

xx l xY = ;yy =0. (35)

In this case,

A2 = B2 = 0 , A = P/4 , B = -P/2 (36)

and the solution becomes

P z =oZ P z P
O(Z) = T z W - z+ PYi A(z),

(37)
Poi(z) = (I + yi)Pz/4 , pi(z) = - Pz/2 + 7 yi [A(z)-lI/z

where
P = 1/(0 + V yi) yi =(K - Ki)1(l + ai) (38)

A(z) = I [z W m,n1 (39)
m,n=--

The stresses, in terms of polar coordinates with origin at the
center of any inclusion, can be found by using well known formulas.
In the matrix,

0 + a = P
eeo (40)

apO PO-O [ e yi A'(z)]}

%~o 1 p00 ( + eIll



-W-

where

A'(z) = l[Z -w m,n2 • (41)
m,n=-m

Series A'(z) can be written as

A'(z) = -v - p(z) , (42)

where p(z) is the Weierstrass p function [8,9]. Expanding p(z)
in a Laurant series [9] and substituting this result into (40), we
get at the interface:

P {I +cos 2e + Y W cn a"2n cos 2ne}Ppp0 •{ +Y P iý n2

a sin2 
(43)

poo 2 P + Yi L Cn a sin 2ne }
n=r2

where c2 = 0.590852, c3 = 0 and

n-2
3 cc (n > 4) (44)Cn (2n + l)(n 3) m=2 m -n-r (

Series (43) for the stresses are extremely rapidly convergent with
twelve terms being sufficient to give six place accuracy.

The stresses at the interface are shown in Figures 3 through 5
for discrete values of v and yi = 1 , which is the largest

admissable positive value of yi . This value of y, corresponds
to vo = 0.0 and vi = 0.5 which implies that the Young's modulus

at the fibers is 1.5 times the Young's modulus of the matrix. The
general trend of the results is that the stresses get smaller as
the fiber volume fraction increases. This is in qiialitative agree-
ment with the results of Van Fo Fy (first nine Chapters of [10] and
Foye [11)). It should be noted that, while this trend has been
observed by Van Fo Fy and Foye for certain combinations of elastic
constants, it does not hold in general. Other results by these
investigators indicate steadily increasing stresses as v increases.
Thus the present results cannot be applied directly to real
composites.

Now let us derive an alternate expression for the stresses by
introducing a different representation for the series A'(z) . By
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using the result [12).

1 [z 2-irA]" (45)
sin2 z A'=_=

the series for A'(z) can be summed once to give

A'(z) T- csc 2  ( in)
2 = a

- - 2 { 2= + csc2 nin- ) + csc 2 i(in+ -)]}

4a n=l

(46)

Upon using trigonometric identities, it follows that

csc 2 1(in +-)= [i sinh wn cos z + cosh nn sin wz 1-2 (47)

and it is seen that (46) is a rapidly converging series. Further-
more, each term in the series corresponds to a single row of fibers
parallel to the x-axis. Thus this indicates that it is sufficient
to take a small number of rows of fibers to develop the same stress
distribution as occurs in the case of doubly periodic array. This
is in agreement with the recent results due to Hulbert and Rybicki[12].

Upon substituting (39), with A'(z) given by (46), into (1) and
evaluating the resulting expressions on z = a , we get

2
a x=a = P l + 8 a c a

(48)
+ (sech2  (n )+sech2  (n+ -XJj '

n=] 2

° l = - ° Oxol~ = 0
aYY lx=a " °xx°l x=a xox=a=0.

The x-component of stress on z = a is shown in Figure 6 for yi= 1
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and discrete values of v . It should be noted that the area under
each curve is equal to 2a which is the force transmitted across
x = a , jyj < a . Finally, it is readily shown that the x-component
of the displacement is constant on z = a for all values of y .

5. Square Array of Fibers Disturbing an In-plane Bending Stress Field

As the second example, consider the case in which the macroscopic
stress field, applied to the composite, is given by

a y Oxy = yy 0 . (49)

In this case, which corresponds to pure transverse bending of the
ply,

A1 = B1  = 0 , A2 =-i/8, B2 = i/8 (50)

and the solution becomes

0i z2=(z : 2

So(Z) = iz2 + yi[,,(z) + C(Z)] ,

Ol(Z) 0 + yi) z2 , (51)

- 2 -21 = i Wmn .z+ + y i [B(z) + C(z) -z "

where wm,n is defined by (11) and

B(z) = I an[z - wm,n-
m,n (52)

C(z) = i -mWnF-2S[z-w
8 m,n mn

The stresses, in terms of polar coordinates with origin at the
center of any inclusion on the x axis, can be found by usin well
known formulas. In the matrix,
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app0  + C0y 00 sin 8 (53)

appO - i apo = p sin e + e2'6 [p sin 8 - 2yi(B'(z) + C'(z))]}

where

B'(z) = - n wm,n2
m,n

(54)

C'(z) = - [ Z[ mnJ- 3

m,n

Even though C'(z) can be expressed as a derivative of the Weierstrass
p function, B'(z) cannot be written in terms of elliptic functions.
Series (54) for B'(z) and C'(z) can be summed once in terms of
complex trigonometric functions by using (45) and

Cos z C z- m•] , (55)

sin z =C

which follows from (45) by differentiation with respect to z .Thus
upon using (45) and (55) in (54), we get

2 - 2 2B'(z) = - L n [csc2 - ) - csc 2 (in +Z , (56)
"4a n=l 2 a

n z cos i n cos r(in + z

C'(z) = - L V3 + oFa

sin n=l sin3Z(in+.• )

z

cos 1r(in - z) (57)

sin 7t(in - z )

These series converge very rapidly. Furthermore, each term in the
series gives the contribution of a row of fibers. This indicates that
it is suf:ficient to take a small number of rows of fibers to develop
the same stress distribution as occurs in the case of a doubly
periodic array. This is in agreement with the recent results due to
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Hulbert and Rybicki [13].

The stresses at the interface were computed from (53), with A'(z)
and B'(z) given by (56) and (57), for discrete values of -he fiber
volume fraction and 1 . They are plotted in Figures 7 through

9. As can be seen from these figures, the dependence of the stresses
on v is more complicated than in the case of uniaxial loading.
The point of maximum radial stress moves from o = 450 for v = 0 to
e = 300 for v = 0.7. Furthermore, the maximum value of a decreases

initially and then increases as the fiber volume increases from zero
to 0.7. The tangential stress exhibits a similar dependence on v.
For low values of v ,the maximum aoe occurs at e = 900 ; while

for high values of v , (admax occurs at e = 70*. The shearing

stress increases with v .

Finally, it is convenient to have expressions for the stresses
in cartesian coordinatos. a.. .. ' • ( •50 1) l ies

0xxo - i axyo = y - yi [B'(z) + C'(z)] , (58)

where B'(z) and C'(z) are given by (34) and (35). On z = a,

sin Ti(in + = cosh ) ,

(59)

cos ,(in + z) + i sinh n(n + 2a)

and 2

[axox=a = y + -j.T ý n[sech 2 r(n - " sech 2 (n +

3

+ { sinh !X sech3 Za
_23  2a 2a32a3

+ I [sinh n(n + A) sech3 r(n +

n=l 1

- sinh v(n - •) sech3 (n - •) ] } , (60)
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[ o]0 = 0 . (61)xyo x=a

The variation of ax~o on x=a is shown in Figure 10 for yi = 1

and discrete values of v .

6. Random Array of Fibers Let us consider the stress distribution
around typical fibers in a composite containing a random array of
identi:al fibers for the case of uniaxial tension. Assuming that the
fibers have unit radius the complex potentials are given by (37)
and (38) with

A(z) : W (z-a )l , (62)
ii

where a is a complex number giving the locetion of the center of÷hn

the nt" inclusion. The stresses in Lhe matrix near a typical fiber
which is placed at the origin of coordinates, are given by (40)with

A'(z) =- I (z-a )'2 (63)
n n

Values of an , corresponding to a random distribution of fibers,

can be generated by taking a regular array of fibers and randomly
perturbing the position of the inclusions in this array. They can
also be determined from direct measured on micrographs of typical
composite cross sections.

Figure 11 shows a typical fiber distribution that is observed in
glass reinforced composites. This figure was constructed from an
actual composite cross section. The fiber volume content is approxi-
mately 0.46 for this case. Figures 12 through 14 show the stresses
in the matrix at the interface of selected fibers. The fibers for
which results are presented are indicated in Figure 11. As can be
seen from these figures, randomness of the fiber distribution has
some effect on the stress distribution; but, the effect is small.
It should be remembered that these results are for a composite in
which the fibers and matrix have the same shear modulus.

7. Future Work The results presented above indicate future work
that can be pursued. The general solution can be used to generate
results for a real composite (one in which the fibers have different
shear moduli than the matrix.)

The method of solution can be also used for regions bounded by
other curves. Thus for example, knowledge of the general representa-
tion for a straight boundary will allow one to solve problems for
regions bounded by straight and circular boundaries.
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Inclusion: AiL, ViI

Figure 1. Inclusion of radius Ri at origin of Coordinates.
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Figure 2. N inclusions with radii Ri placed at the points at

in an unbounded matrix.
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Figure 3. appo at the interface versus o for y= 1 ?.nd

discrete values of V in case of uniaxial tension.
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Figure 4. aee0  at the interface versus o for yi= 1 and

discrete values of V in rase of uniaxial tension.
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Figure 5. ape° at the interface versus e for Yi= I and

discrete values of V in case of unaxial tension.
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0.0 0.5 1.0

Figure 6. oxxo on X =a versus y for y= Iand discrete

values of V in case of uniaxial tension.
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Figure 8. a660 at the interface versus 0 for yi= 1 and

discrete values of V for tie bending case.
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Figure 9. apeo at the interface versus o for y=1 and

discrete values of V for the bending case.
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Figure 10. 0xx° at X : a versus y for Yi= 1 and discrete

values of V for the bending case.
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C. Scattered Light Photoelasticity
(Prof. J. Cannon, Mr. Choi, Mr. Shankar, Mr. Obaid)

Introduction

In the scattered-light photoelastic technique stresses are found
to be proportional to the s of the fringe order (taken with res-
pect to distance along the Ifght beam path). For transmitted light,
work stresses are proportional to the fringe order itself. Hence the
scattered light technique is inherently less accurate than the trans-
mitted light method. The potential for a full three dimensional
stress analysis without slicing or destroying the model provides
compelling reason to seek ways to overcome the difficulties of ob-
taining high accuracy with scattered light. One promising approach
which has been successfully followed is to develop numerical techni-
ques which will help to get the most out of the fringe data by"preventing" the derivative from becoming too erratic. A recently
completed Master's degree thesis "Smoothed Spline Functions -
Applications to Experimental Mechanics" (P. Shankar) summaries this
work. The techniques which have been developed are also applicable
to experimental problems other than scattered light photoelasticity.

A great deal of effort has been expended in the design and
fabrication of a scattered light polariscope, and recently a live
loading fixture to use with that polariscope. A statement of the
main features of that work comprise the remainder of this report.

Scattered Light Polariscope

The recent developmentand availability of the Laser light source
(concentrated, intense, monochromatic and coherent light beam) has
enhanced the practical application of scattered-light photoelasticity
which had been developed some twenty years earlier.

The polarized laser beam is passed through the photoelastic model
after passing through the optical elements (polarizer and quarter
wave plates) and stress fringes are viewed at the direction perpendi-
cular to the light beam. In the scattered light polariscope, the model
acts as the analyzer.

The potential advantages of scattered-light photoelasticity over
conventional transmitted light photoelasticity are most pronounced
in three dimensional problems.

In the conventional approach the stress frozen model must be
made into slices for viewing in the transmission polariscope; whereas,
in the scattered-light photoelasticity, the laser beam (1/32 inch dia.
approximately) can be passed through the point of interest and the
associated strL-ss fringes can be obtained, thus eliminating the
slicing (destruction) of the model.
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Virtually all strcss analysis studies carried out by the
scattered-light photoelasticity to date have been made with frozen
stress models, which have several inherent shortcomings.

1. Poisson's ratio of the photoelastic model material at the
critical temperature (or stress freezing temperature) is
nearly 1/2. This fact renders similitude between the
model and prototype almost impossible. Another serious
difficulty caused by this fact is that the deformation in
the model at the critical temperature is nearly a
constant volume deformation. EUastic deformation of
common engineering materials is not a constant volume
defrmation.

2. It takes roughly two weeks of valuable time to complete
the stress freezing cycle for a reasonable size of
model and once the stress is frozen into a model the
magnitude of stress and the type of loading cannot be
changed without going through the stress freezing cycle
again.

3. For a composite model of different materials or fiber
reinforced composite model, the mismatcn of material
properties (mainly thermal expansion coefficients) of
the materials induce large thermal stresscs during the
stress freezing cycle in addition to the stress due to
the applied load.

There have been various ingenious schemes to circumvent these
difficulties of the, stress freezing method such as the use of two
identical models; one loaded, the other not in order to separate the
thermal stresses due to the stress freezing cycle and the stressed
due to the applied load. However, the only way to eliminate the
above mentioned shortcomings of stress frozen models is to develop
a polariscope with live load capaility. The advantages of the
live-load approach with the scattered-light polariscope can easily
be surmised from the above disri,,sion.

The live-load loading fixture combined with scattered light
photoelasticity has potential application in the analysis of three
dimensional fiber reinforced composite models. In the fiber rein-
forced composite model with the fiber running in two perpendicular
directions the model provides very restricted direction of view in
that portion of stress fringes can be hidden behind the fibers. In
addition to eliminating the inherent shortcomings associated with
stress freezing, the live-load approach will enable one to deduce
the fringes hidden behind the fibers and enable one to obtain complete
stress fringes. The live-load loading frame may help to change
scattered-light photoelasticity from a novelty to a practical everyda,
tool for the phltoelastic stress analysis of three dimensional bodies.
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II Design Criteria

The following design criteria were established for the loading
fixture for the live loading of models for photoelastic stress
analysis.

1. Overall dimensions of the loading frame should correspond
approximately to a two-foot cube (i.e. extermal dimension
of the immersion tank).

2. The load application portion of the loading frame (adjust-
able c-frame) must be located inside the two foot cube
(approximate size) immersion tank.

3. Three sides of the immersion tank must be transparent
(glass plates) for the viewing of model and stress
fringes.

4. The loading frame must have x-y traverse with + 5 inches
from the midpoint in both x and y directions. (The
milling machine table on which the immersion tank is to
be mounted will provide this).

5. The loading frame must have the capability t0 rotate
the model about the z-axis for ninety degrees one way
and back under no applied load (see Fig. 1).

6. The loadin frame must also have the capacility of tiltingthe model rotation about x-axis) for a maximum of ninety
degrees one way and returned to the original position.

7. The loading fran%. must be able to accommodate a model
with maximum height (or length) of twelve inches and
diameter (or diagonal of a square cross-section) of
ten inches maximum.

8. Hydraulic means of applying load must be used.

9. The maximum axial load must be two thousand pounds and
maximum torque must be three thousand inch-pounds. The
stroke of the axial force actuator need not be more than
one inch.

10. The hydraulic load actuator must have the capacility to
actuate the axial load and torque independently of each
other or simultaneously.

11. The hydraulic load actuator must not be larger than a
six inch cube.
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12. Means of measuring axial load and torque acting on the
model must be provided. The measurements of the loads
must be at the points external to the hydraulic actuator.

Some of the reasons for the above design criteria are as follows:

Overall size of the loading frame (2 feet cube) was arrived at
because the milling machine table on which the loading frame will be
mounted has a ten inch width. Also from the midpoint of the milling
machine table cross motion to the edge of the milling machine frame
is limited to 12 inches. The immersion tank is necessary to contain
the immersion oil whose index of refraction matches that of the model,
so that the oblique incidence of the laser (light) beam will not be
refracted as the beam enters the model.

The rotation of the model (rotation about z-axis) provides the
ease of stress fringe observation and enables one to pass the laser
beam through any point of interest in the model (see Fig. 2).

The tilting of the model enables one to pass the laser beam
along the direction perpendicular to the axis of the model All
photoelastic materials creep under applied load. In order to main-
tain a constant load on the model for the duration of data acquisi-
tion, a hydraulic means of applying load was selected.

Photoelastic materials (polyester and epoxy of special formu-
lation) have sensitivities (or stress fringe value) in range of 40
to 80 psi-inch/fringe and modulus of elasticity of approximately onehalf million pounds per square inch.

The magnitude of maximum axial load of 2,000 pounds was selected
based on approximately four average stress fringes for ten square
inch cross-section area. The axial force greater than 2,000 pounds
will increase either the lateral dimension of the hydraulic load
actuator or the required hydraulic pressure beyond reasonable limits

Maximum hydraulic actuator torque of 3,000 inch-round was
chosen based on two average stress fringes on the outer surface of
a hollow cylindrical model of five inch outside diameter and one
inch wall thickness.

In practice it is unusual to use a large diameter (diameter
greater than six inches) model. If one uses a model with outside
diameter greater than six inches, the wall thickness must be reduced
to obtain reasonable number of stress fringes.

The axial deformation of the model will not be more than one
percent of the model height (or length; 12 inches maximum height).
The one inch stroke of the axial load actuatcr is more than adequate
to accommodate this deformation. The increase of the stroke will
increase the required total height of the hydraulic actuator by
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by twice the stroke.

The rotation of the rotary actuator should be slightly more than
900 so that the model can be rotated 900 maximum and the torque can
be continuously applied without repositioning the model.

The increase in the overall size of the hydraulic actuator will
increase the overall height and lateral dimension of the loading
frame correspondingly. It was thought that the 6 inch cube overall
size of the hydraulic actuator will keep the overall size of the
loading frame to approximately a two foot cube.

III Description of Components

1. Hydraulic Actuator and Hydraulic Circuit

As stated in the design criteria (10 and '11), the axial load
actuator and the rotary (or torque) actuator must work either in-
dependently or simultaneously. The hydraulic actuator must be
contained in a six inch cube.

Initially it was hoped that a unit of hydraulic actuator could
be purchased from a commercial source. However, it was soon realized
that no such unit was commercially available. Several commercial
sources suggested that a linear (or axial force) actuator should be
mounted on a rotary actuator or vice versa. Careful study quickly
revealed that it was not possible to meet the previously stated
design criteria by this arrangement. Thus, it was necessary to
design and fabricate the hydraulic actuator.

The basic design of the hydraulic actuator was essentially
mounting a linear (or axial force) actuator inside the rotary
actuator (but not on the rotary actuator) and coupling the two by
an integral piece of spline and a piston rod.

The torque tube with double rotating vane is constrained by a
needle bearing at lower ends and by a ball bearing at the top and
it is further constrained along the axial direction by a needle
thrust bearing to r)tate on the cylinder.

One serious problem was that there appeared to be no way of
reaching the lower and upper compartment of the axial load actuator.
Various schemes of connecting the cylinder to the hydraulic lines
were consider(A. However, it was decided that the best way to reach
the upper compartment of the cylinder is through a horizontal tunnel
(3/16 inch dia.) in the base plate of the actuator and two vertical
openings (diametrically opposite) from the tunnel and match the
openings with the two vertical tunnels along the wall of the cylinder.
The two tunnels in the wall of the cylinder were met by two holes
drilled at an angle from inside the cylinder.
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The lower compartment of the axial force actuator was reached
again by another horizontal tunnel ip the base plate of the actuator
starting at the 300 from the first tunnel and ending slightly off the
center of the base plate (Figure 3 shows the ports of the axial load
actuator and two of the four ports of the torque actuator). The
tunnel is met by a vertical opening 1/4 inch diameter. Figure 4
shows the exterior view of the piston rod, spline and cylinder
assembled on the base plate. Figure 5 shows the housing of the
torque tube ready for assembly. Figure 6 shows the assembled
hydraulic actuator with cover plate off. A set of four Viton vane
seals are also in view.

The hydraulic actuator is the heart of the live-load loading
frame. The axial load actuator portion has been tested up to 1300
psi pressure without any difficulty. The testing and debugging of
the torque actuator is presently in progress.

2. Specimen Length Adjustment, Tilting and Rotatiu Machines

Since the tilting of the model is required, ;;.!tural choice here
was to mount the adjustable C-frame (see Fig. 7) on a i-e"iow :ylin-
drical spindle, which will then rotate inside the spindle hous R.
on two radial-thrust ball bearings. A worm gear (6 inch p4tc:h
diameter, single thread) is mounted at the back end of the spindle.
The matching worm, which is mounted on the stiffener of the back
plate of the immersion tank, will turn the worm gear causing the
tilting (see Fig. 8).

In addition to tilting the model the worm and worm gear arrange-
ment acts as a brake enabling one to hold the model at any tilted
position without further holding arrangement. However, a locking
arrangement has been built in for safety reasons.

The rotating of the model (rotation about z-axis) is accomplished
by a ring worm gear (12 inch pitch diameter, single thread and
machined into a ring) mounted on the outside of the load ring (see
Fig. 9) which is turned by a matching worm mounted on the support
ring anchor block. Again this worm and worm gear arrangement works
as a rotary indexing device as well as brake resisting the torque
applied by the torque actuator through the model. Since the worm
is not easily accessible from the outside when the model is tilted
to the horizontal position, a reversible gear motor (Bodine Type K,
Model #733) is connected to the worm. This arrangement will allow
one to rotate the model after tilting.

The height adjusting mechanism consists of a brass block riding
on a one-inch diameter threaded rod which is rotated by a bevel gear
and matching pinion. The drive shaft for the bevel pinion, and gear
are placed inside the spindle and the threaded rod is hidden in the
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rectangular-tube column.

The side plates of the support ring anchor block is bolted on to
the brass block, which rides on the threaded rod. The brass block
is guided by four cam rollers (McGill - CYR-l). The two wedges with
the press down screws located in the support ring anchor block will
clamp the support ring anchor block against the vertical column after
the height adjustment is completed.

3. Load Measuring System

It was required that the axial load and torque applied to the
model must be monitored excluding the influence of the friction in
the hydraulic actuator. Strain gage transducers located at the
exterior points of the hydraulic actuator can fulfill the require-
ments. It was then decided that the axial force strain gage trans-
ducer would be located in the load ring and the torque transducer
would be positioned on spline-piston rod unit outside the hydraulic
actuator but just below the loading platten connector.

The required outside diameter of the load ring of 11 inches and
the required maximum axial load of 2,000 pounds made it impossible
to adopt a commonly used form of axial load transducer - a hollow
cylinder with appropriate wall thickness. With the above physical
requirements, it was necessary to have the wall thickness of 1/16
inch or less in order to obtain a minimum acceptable sensitivity.
k ss than 1/16 inch wall thickness with 11 inch diameter ring would
be very difficult to machine.

It was felt that the best approach would be to make the sensing
elements of the transducer in the form of a beam subjecting the
sensing equipment to bending stress due to the applied axial force.

In order to accommodate the sensing elements the load ring was
cut into two rings, and the two rings were joined together by bolts
with the curved beam (with 11" o.d. and 10" i.d. curvature) sensing
elements between the rings. The load sensing elements will act as
fixed end beams. It was necessary to undercut the edges of the rings
across two perpendicular diameters to provide room for bolt heads
and wrench. The loading sensing beam is shown in Fig. 9. Eight
strain gages will be mounted, one on the top side and one on the
bottom side of the sensing element and the strain gages will be
connected to a full bridge circuit.

The torque transducer is the top straight shank portion of the
spiine-pistoj. rod and four strain gages mounted at 45' with respect
to the axis of the member will provide adequate sensitivity.
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4. Model (or Specimen) Holder

It is not possible to provide one model holder that will work
for all types of loading and all sizes and shapes of model to be
used in the live-load loading frame. However, in the design of the
unit it was intended to provide a basic and general attachment on
which each user can mount a suitable llding device for a specific
size and shape of chosen model. With this in mind, the lower end
of the load ring was provided with six prongs equally spaced having
a 8/16 UNC thread tapped hole through approximately the center of
the prong.

A concentrated compressive load applicator is mounted on the load
ring and is shown in Fig. 9. For example, a ten inch diameter I"
thick alun;inum plate with either hexagonal or square opening of
appropriate size having six 3/8 inch UNC tapped hole at midplane of
the diameter will probably serve as a torque applicator. The hydraulic
actuator end is provided with the loading tten which can transmit
torque and axial force simultaneously.

5. Immersion Tank

The immersion tank consists of two one inch thick steel plates
at the base and back plate and three 3/8 inch thick glass plates.
The glass plates will be fitted into the grooves at the bottom and
the angle frames will support the top edges and the two vertical
lines of joints.

The 7/16 inch wide grooves will provide the space for packing
with Silastic adhesive (Dow Corning) which will seal against leaks
and protect against glass breakage. rhe line of joints will also
be sealed by the Silastic adhesive. The immersion tank will contain
approximately twenty-five gallons of index matching immersion oil.

IV Concludinq Remarks

This project is the first known attempt by anyone to design and
fabricate a live-load loading frame for use in scattered light
photoelasticity. Since the main emphasis was to design a compact and
stiff system with small or negligible elastic deformation, many of
the design problems faced by the designer were todevise a scheme
or arrangement which would fulfill the function and meet the design
criterion set forth for a particular part and then fit it in the
available space. The partially assembled fixture is shown in Figures
10 and 11.

No efforts were made to minimize the total weight of the loading
frame. On the contrary, heavier and thicker pieces of steel were
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Figure 7 Adjustable C-frame
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chosen in order to obtain maximum stiffness whenever space permitted.
For this reason only a few design calculations were made throughout
the design. Design calculations made were for such items as the
size of the sensing elements for the axial load and torque transducer,
and pressures required for the hydraulic actuator, etc.

D. An Experimental Study of the Fracture Properties of Unidirectional
Composite Materials
(Prof. T. P. Kicher and T. C. Esselman)

Introduction

The increased use of composite materials in structural applica-
tions has heinhtened the need for new design criteria and data,
especially with regard to fracture mechanics. Composite materials,
as with all other structural materials, have unavoidable inherent
flaws which can cause catastrophic failure below the dcsign stresses
of the structure. Elimination of these catastrophic failures
requires study and testing 4hich will lead to a basic understanding
of the failure mechanisms in composite materials. This understanding
should complement design practice prevelant today based only on
strength criteria. Although much work has been done on hig# strength
metallic materials, the American Society for Testing and Materials
sponsoring much of it, the applicability of the proposed testingS~recommendations has not yet been studied with respect to composite

materials.

This study used the ASTM recommendations as a guideline and
applied them to unidirectional glass fiber reinforced composites
with an epoxy matrix. The stress intensity factors K were used
for this work. Since the stress intensity factors in a unidirec-
tional composite depend on the crack orientation, the orientations
most interesting to designers are 1) the orientation in which flaws
will most naturally occur, and 2) the orientation which will give
the minimum crack resistance, or, in other words, the minimal value
of the stress intensity factor. It is known that voids, through
fabrication, tend to align themselves with the fibers, and that
the mninimum crack resistance occurs when the crack is aligned with
the fibers. Therefore, the tests on the unidirectional composite
were conducted with the crack in this preferred orientation.

The test used was the three point bend test. Isotropic analysis
derived for this test was used to determine the stress intensity
factors for the composite materials. A chevron notch with a fatigued
crack was introduced into the specimen. During the test, a continuous
plot of the applied load versus the brack opening displacement was
recorded. This information was valuable in determining if linear
elasticity applied to the specimens. The stress intensity factors
for the unidirectional specimens were studied with respect to their
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dependence on crack length, specimen thickness, rate of loading, and
void content of the material.

2. Review of Theoretical Anisotropic Fracture Mechanics

Much of the work in analytical fracture mechanics has been
directed to the stress and displacement distributions around finite
cracks in continuous isotropic homogeneous materials. These analyses
can be found in many references (for example, Reference 1). The
elastic crack tip stresses in an anisotropic body has also been
determined by several authors (2-8). Comparison of the stress states
determined by the isotropic analyses and these determined by the
anisotropic analyses leads to several conclusions.

The first is that the anisotropic stresses depend on the material
constants while the relations for the isotropic media do not. The
second similarity is that both solutions display a square root
singularity of the order r4 . The third, and most important for this
study, is that the parameter characterizing the crack size and the
magnitude of the applied stress, the stress intensity factor, is
defined in a similar manner for both the isotropic and the anisotropic
case. Therefore, using stress considerations only, the strength of
anisotropic bodies might be predicted in exactly the same way as
isotropic bodies. The numerous solutions that have been generated
for stress intensity factors for isotropic materials could be applied
to anisotropic materials. However, Wu (9) points out that the
displacement states in the anisotropic materials cannot be so easily
compared to those from the isotropic materials. In general aniso-
tropic materials, crack sliding accompanies crack opening, even in
the case of a center crack plate with tension perpendicular to the
crack at infinity. However, if a special crack orientation is used,
namely, if the crack is oriented in one of the material principal
directions, this inconsistency is eliminated. Wu (9) also points
out that when the crack is oriented in one of the directions of
elastic symmetry, the critical stress intensity factor should be
either a maximum or a minimum. These cases are of the most practical
interest. Therefore, the conclusion can be made that only when a
crack is oriented in one of the material principal directions, can
the isotropic analysis available be applied to an anisotropic plate.

The standard boundary coliocation solution for an edge crack in
a three point bend specimen was used to determine the stress intensity
factor for the finite specimen. This is

K 3 PL /a- Y (7)
B W2

where

152



Y = 1.93 - 3.07 (a/W) + 14.53 (a/W) 2 - 25.11 (a/W) 2

+ 25.80 (a/W) 4 . (8)

K is the stress intensity factor, P is the applied load, L is the
half length of the specimen, a is the crack length, B is the thick-
ness and W is the depth of the specimen, and Y is the K calibration
figure. However, the stress function used in the boundary collocation
corresponding to the stresses existing at the tip of a crack in an
isotropic homogeneous material. Therefore, the results from that
boundary collocation procedure do not apply to the specimens in this
study. However, since the stresses that exist at the tip of a crack
in an orthotropic or anisotropic material are much more complicated,
the collocation procedures have not yet been applied to these materials.
Therefore, the results from the isotropic boundary collocation pro-
cedure will be used in this study. The analytical stress analyses
also assume a homogeneous anisotropic solid to exist. However, since
this study is considering only macrofracture properties, the composite,
although microscopically heterogeneous, may be assumed homogeneous
on the macro scale. Of course, a fairly uniform fiber packing
density is necessary to make this assumption.

3. Experimental Determination of Fracture Properties

The experimental program was designed to characterize the frac-
ture properties of glass fiber reinforced epoxies with respect to
material and specimen variables. In order to achieve this goal,
several things had to be accomplished.

(1) Specimens with suitable properties had to be
fabricated and methods for characterizing
material properties devised.

(2) Methods had to be found to prepare the specimens
so that apparently "natural" cracks could be formed.

(3) Test procedures had to be adapted and analys-is
previously discussed applied.

Specimens for these tests were cut from either eight inch by
eight inch or twelve inch by twelve inch fiberglass plates with thick-
nesses ranging from 0.100 to 1.00 inches. The plates were fabricated
from 3M Scotchply* preimpregnated glass Type 1002 of either eight
inch or twelve inch width.

3M Company, St. Paul, Minnesota.
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The plates were fabricated by three different methods: 1) in a
heated platen press, 2) in a heated platen press with the material
and mold vacuum bagged, and 3) in an autoclave. Higher quality
plates were sought using the second two methods of fabrication, but as
the thickness of the plate became larq,• (0.5 inch) the effect of the
vacuum decreased. The vacuum was effective in removing voids for
only thin plates. All methods were designed to achieve a constant
fiber volume, which is controlled by the cured thickness per ply.

The material was characterized by determining the resin content,
fiber content, and void content. The fiber and resin content by
weight are found by using a resin burn-off technique in a muffle
furnace at 800*F. The void content can then be related to these
fiber and resin contents and the laminate specific gravity, which
was determined by weighing the laminate suspended in water. The
specific gravities of the pure resin and fiber must also be known.
After the determination of the void content, the fiber and resin
contents were converted Lo contents by volume.

The specimens needed for the three point bend test were rectangu-
lar beams with a chevron notch machined in one edge. The fiber
configuration was unidirectional with the fibers aligned with the
crack direction. The chevron notch facilitates introduction of a
fatigue crack into the specimen. A cantilever beam type of fatigue
machine was used to form the crack. The peak-to-peak displacement
was varied to allow the cyclic stress to be varied. The crack was
observed as it grew by placing a solution of ethylene glycol and
black India ink at the tip of the chevron notch. This mixture
follows the crack as the crack grows in the notch. To elminate
any effect of the machined notch, the crack was allowed to grown
past the end of the notch. Figure 1 shows a view of the chevron
notch with a crack completely fatigued into it.

The initial crack length is necessary for the determination of
the stress intensity factors. These are measured visually after
fracture. The solution of ethylene glycol and black India ink that
was injected into the crack to facilitate observing the fatigue
crack also marks internally the distance the crack propagates during
fatigue. The ink solution is allowed to dry before testing so that
a permanent record remains. Figure 2 is an end view of a fracture
surface showing the initial crack length markings.

The notched bend test was chosen for this study for several
reasons: (1) the test requires a small amount of material in com-
parison to a center or edge crack tensile specimen, (2) the load
requirement is very low, in a bend test high stresses can be attained
with low applied loads, (3) the ASTM (14) has recommended the bend
test as a standard for high strength meta, ic materials, adaptation
of these recommended practices to composiLe materials would be
important. An overall view of the test fixture with a specimen and
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Figure 1. Specimen Showing Fatigue Crack (7x)
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Figure 2 .End View of Fracture Surface Showing Initial

Crack Length
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Figure 3. Fixture for Three Point Bend Test
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load cell in place is shown in Figure 3. Also note in this figure
the displacement gage attached at either side of the notch. It is
made up of two cantilever beams and a spacing block. Strain gages
are positioned on either side of each beam close to the spacing
block. The transducer is attached to the specimen by means of
knife edges which are tightly secured to both sides of the notch.

To conduct a satisfactory test, a record of the applied load
versus the crack opening displacement is necessary. The amount of
displacement per unit load should remain constant as long as the
effective crack length remains constant. ThereFore, the load-dis-
placement record should be linear as long as there is no change
in the effective crack length. The linearity of the load-displace-
ment plot will help determine the validity of the test for deter-
mining the plane strain fracture toughness.

Two stresses will be mentioned in the results and their defin-
itions must be made clear. The field stress is the stress that
would exist at the crack location if the crack were not there, i.e.
if the beam were solid. The nominal stress is the stress that
exists at the tip of the crack excluding stress concentrations.
Both ztresses are found using simple beam theory.

Further details of the experimental procedure can be found in
Reference 13.

Results

The most important results of these tests are displayed in
Figures 4 to 12. The depth of all specimens was nominally 1.0
inches, and the displacement loading rate was 0.100 inches/minute,
except when noted otherwise. Specimens were tested in groups,
each group having similar material properties and similar specimen
thicknesses. The crack length to specimen depth ratio, a/W, was
varied from extremes of 0.167 to 0.765. Except in cases when the
crack to depth ratio variation was of primary interest, a/W generally
was around 0.5. When the stress intensity factor was plotted
against a parameter other than a/W, the stress intensity factors
were normalized to a constant a/W equal to 0.5. Figure 4 shows
the critical value of the stress intensity factor, KC versus the

specimen thickness for all tests with a/W = 0.5. Each data point
represents a group of four to nine specimens. The numbers represent
the test series number and the corresponding material information
is given in Table 1. Figure 4 looks similar when a/W = 0.3 or
a/W = 0.7. The field stress was plotted as a function of the crack
length ratio for varying thicknesses in Fig!res 5 to 8. A log-log
plot was used and the line slope is noted in each case. Figure 9
shows the dependence of the nominal stress on the specimen thickness
for all tests normalized to a/W = 0.5. The yield stress of the
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material found by Koeneman (12) is marked by a dotted line. The
effect of the void content is shown in Figure 10 for different
thicknesses. Figure 11 demonstrates the dependence of KC on the

cross head speed. Figure 12 gives representative load-crack opening
displacement curves for thicknesses of 0.1, 0.3, 0.5, and 1.0 inches.

TABLE I MATERIAL PROPERTIES AND SUMMARY OF RESULTS

Percent Content by Volume Normalized

Specimen B(in) Fiber Resin Void KC(ksi - V1ii )
Set % % %

6219,6229 0.097 44.1 46.4 9.5 1.10

9100 0.102 43.2 55.7 1.0 1.52

9170 0.105 43.2 56.7 0.1 1.64

6239,6249 0.200 46.6 47.8 5.6 1.50

7149 0.292 45.3 48.0 6.7 1.85

9208 0.294 47.0 49.6 4.4 1.99

9110 0.294 41.9 51.7 6.4 1.96

9168 0.391 45.0 49.0 6.0 2.00

1210 0.411 43.1 54.3 2.6 2.06

1120 0.387 43.4 45.6 5.0 i.97

8169 0.485 43.0 47.9 9.1 1.95

8238 0.494 45.7 52.1 2.2 2.02

9120 0.493 41.4 50.9 7.7 2.09

3170 0.989 44.1 52.2 3.7 2.50

9130 0.988 41.6 52.4 6.0 2.25

Discussion

In the experimental study of the unidirectional specimens, several
interesting phenomena emerged. Recall that in metals, a state of
plane strain is necessary in the specimen to assure a valid fracture
toughness test. A measure of this is the absence of appreciable
plastic deformation at the crack tip. There are several ways of
assuring this. The load-crack opening displacement curve must be
linear. A square root singularity must exist. The nominal stress
at the crack tip must be less than the yield stress of the material.
The stress intensity factor must be a minimum and independent of
specimen dimensions. Generally speaking, for metallic materials,
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these phencmena are true as the thickness of the specimen increases.
This does not appear to be true for composite materials.

The load-crack opening displacement records plotted during the
test provide a method for evaluating the state of stress at the
crack tip. Figure 12 gives representative records for specimen
thicknesses of 0.1, 0.3, 0.5, ard 1.0 inches. Note that for the
0.3, 0.5, and 1.0 inch specimen a rather large change of slope
occurs at approximately 20% of the maximum load. Following this
"knee" the record returns to a linear response. It is believed that
this change of slope is not due to a change in the material but to
a phenomena occuring in the fixture; possibly it could be attributed
to the specimen seating itself on the rollers. A similar change
of slope is often noted early in the load-displacement record for
metallic specimens. It is generally very small, though.

This change of slope is accentuated for the composite specimens
since the loads are very low. If the linear region past the "knee"
of the curve is assumed to be the actual material linear elastic
region, the change of slope between the original tangent line and
the slope of the line passing through the maximum load can be
calculated. For the specimen thickness of 0.1 inch, the slope
decreases 18%; for the 0.3 inch specimen, the decrease is 9.5%;
for the 0.5 inch, it is 8%; and for the 1.0 inch, it is 8.5%. The
load level for the 0.1 inch specimen is low enough that the fixture
nonlinearity could possibly correspond to the material nonlinearity
so that for those specimens, the slope change of 18% cannot be solely
attributed to material nonlinearities. The specimens with width
of 0.3, 0.5, and 1.0 inches come close to satisfying the linear
elasticity requirements; the results for the 0.1 inch specimen is
inconclusive. Because of this question the maximum loads were always
used for calculation of the stress intensity factors.

Another phenomena which indicates the presence of linear elastic
deformation is the square root singularity. A plot of the log of the
field stress versus the log of the crack depth should have a slope
of -0.5 as determined from the relations in Chapter 2. Figures 5
to 8 shows these graphical relations for various widths. A plot
of the slope of these lines as they depend on the specimen thickness
is given in Figure 13. Note that as the specimen thickness decreases
from 1.0 to 0.1 inches the slope decreases from -1.62 to -1.16.
This is not yet close enough to -0.5 to allow 'inear elasticity, but
the trend indicates that the 0.1 inch specimen is closer to satisfying
the requirement of the square root singularity than the larger thick-
ness specimens. In fact, Wu and Reuter (11) found that for 0.05
inch crnter crack tensile specimens, the square root singularity was
satisfied. This might indicate that the thinner specimen comes
closer to satisfying the requirements of linear elasticity.

There are two thickness requirements which must be satisfied for

a valid fracture toughness test. One is that Kc be a minimum and
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unvarying under specimen thickness change, and the other is that the
thickness be such that the nominal stress is less than the yield
stress of the material. In metals, both of these requirements are
satisfied for thick specimens. The reverse appears to be true for
unidirectional composites.

Figure 4 is a plot of the stress intensity factor as a function of
the specimen thickness. The point for 0.05 inch thickness was
determined by Wu and Reuter (11) for a center cracked tensile plate
in tension. The data was normalized to a crack to depth ratio of
0.5 but the void content varies. Note that as the thickness increases,
the crack resistance increases, while in metals, the opposite is
true. This indicates that the thin composite specimens give a value
of stress intensity factor which, if used for design, will give con-
servative results. Thick metallic specimens in the plane strain
state give similar conservative design results.

The nominal stress and its dependence on thickness is plotted in
Figure 9. Note that the nominal stress decreases as the specimen
thickness decreases. While for the thinnest specimen (0.1 inch)
tested in this study, the nominal stress is still above the yield
stress, it is approaching the yield value and the point attributed
to Wu (l1) is in fact below the yield point. Therefore, the
conclusion can again be made that thin specimens better the
criterion for linear elasticity.

Voids in the composite material decrease the energy necessary
to propagate a crack, and therefore, decrease the value of the
stress intensity factor. A plot of this relation is shown in
Figure 10 for varying specimen thicknesses.

There are two possible reasons for the decrease in stress in-
tensity factor for an increase in void content. It is unlikely that
these are independent. One is that the voids act as stress con-
centrations. It is known that the voids are long and circular in
shape. This gives a small radius at the ends which tend to raise
the stress level several times. This would, in effect, increase
the stress level at the tips of the crack and cause failure at a
significantly reduced load.

The second possible reason that the stress intensity factor drops
is, simply, that there is less material in the high void content
specimen than there is in the low void content specimen. This would
give the low void content material increased strength, and in this
instance, increased resistance to crack propagation. As was mentioned,
this probably does not work independently of the stress concentration
argument, but a combination of both lead to the decrease in stress
intensity factor.

The loading rate hjd an expected effect on the stress intensity
factnr. In most engineering materials, a higher strength accompanies
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an increased loading rate. This was the case in this study where an
increase from .001 inches/minute to 10 inches/minute gave an increase
of 35%. The distribution is shown in Figure 11.
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SECTION V

ANALYSIS AND DESIGN OF COMPOSITE STRUCTURES

Four studies were conduct--i to advance the analysis and design
capabilities for composite material structures. A displacement
method of analysis for laminated composite plates subjected to mem-
brane compression, lateral pressure and temperature variation, was
developed for subsequent use in a minimum weight design study. The
analysis includes the effects of large displacements and represent
an extension of work completed earlier in the program.

An approximate method for predicting the ultimate load carrying
capacity of laminated plates loaded beyond the point of buckling is
developed based on an extension of the Von Karman effective width
con(apt. The method is verified by an extensive experimental
program. In a related program, the effects of circular cut-outs with
and without reinforcements are studied. Both analytical and experi-
mental results are obtained.

The closed form exact solution was obtained for the buckling
of laminated anisotropic cylindrical shells subjected to any
coobination of axial compression, lateral pressure and gross torsion.

A Finite Displacement Analysis of Laminated Composite Plate
(Professor T. P. Kicher and Mr. Patnaik)

The partial differential equations of the plate in the finite
displacement domain are highly non-linear and the displacement vari-
ables u, v, w are coupled. The chances for an exact solution (except
for special cases where the partial differential equations degenerate
to ordinary differential equations) is beyond the scope of present
day mathematics. This necessitates the examination of some numerical
technique to solve the problem. The solution to determine the
buckling load of an isotropic plate is known. From the non-linear
column t0eory it was observed that once the out of plane displacement
pattern is known from the linear buckling theory, the in-plane dis-
placement u(z) is obtained in the close form, in terms of the out of
plane displacement pattern. The constant associated with the out of
plane displacement is obtained from the boundary conditions, Alter-
natively the out of plane displacement mode constant can be deter-
mined by minimizing the potential energy with respect to the unknown
displacement constant. This is the technique adopted by Chan \.)
to solve the problem under Px alone.

From the boundary conditions and the load distribution, it is

easy to observe that the displacement pattern for an isotropic plate
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would be:

w= An cos nni cos nm .

The coordinate system is shown in Figure 1. The analysis procedure
is as follows:

Step I

Assume the out of plane displacement w = 0, and solve for u and v
from the membrane equilibrium equations. This is the homogeneous
solution.

uH = E7  + E8  +E 9  (1)

VH = C7  + C8  + C9  (2)

Step II

Assume i = A cosrmR cosiny

The ý displacement satisfies the bending boundary conditions of a
simply supported isotropic plate with the coordinate origin at the
center of the plate. A , is the displacement at x = y = 0; m , n
are positive integers.

Step III

Substitute i in the right hand side of membrane equilibrium
equations. The right hand side of membrane equilibrium equations
has the following form:

(i) RHS of U-Equilibrium equation

Sl sin 2mnR + S2 sin 2nw. + S3 sin miR cos niry

+ S4 cos mni sin niT. + S5 sin 2jnw cos 2nury

+ S6 cos 2mnR sin 2nit (3)

(ii) RHS of v-Equilibrium equation

t sin 2miR + t 2 sin 2nny + t3 sin mvR cos n.•

+ t 4 cos muR sin nwy + t 5 sin 2m7R cos 2niy.,

+ t 6 cos 2mvý sin 2nny (4)
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Si and ti in Equations 3 and 4 are all known functions of elastic

constants, geometric parameters and amplitude A.

Step IV

From Equations 3 and 4 the particular solution for u and v may be
assumed as:

up = El sin2mvR + E2 sin 2nvr + E3 sin mnir cos n7r

+ E4 cos miR sin niry + E5 sin 2mwR cos 2nwy

+ E6 cos 2nImRR sin 2niry (5)

vp = Cl sin 2mui + C2 sin 2nnr + C3 sin mnR cos nnr

+ C4 cos miR sin nwý + C5 sin 2mnR cos 2ni i

+ C6 cos 2mvR sin 2nvr (6)

Step V

Substitute up and v in the left hand side of the membrane equili-
brium equations and equate the coefficients of like terms. This
yields the following algebraic equations:

Ml El I v0 0ci

E!

E2  0, M~2 C v2I00

E3

M3 4 :A2 0 + +A, /V
3C 3  V3 A 3 +i'Vt

C4

E6

4 V4  00

- C6
(7)
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The known matrices M1 - M4 , and the vectors V1 - V4 and vT are

functions of material properties.

Step VI

The solution to Equation set 7 may be represented as:

E I ElA 2  C1  C1A2

E2  E2A2  C2  C2A2

L = E3A + tE 3  C3 = C3A + tC 3

E4  = E4 A2 + tE 4  C4 = C4A + tC4

E5= E5A2  C5 = C5 A2

E6  = EA2  ... (8) C6 = C6 A2  ... (9)

In the above equations Ei...E6 and Ci...C6  are known constants

obtained from Equation 7.

Step VII

Thus assuming an out of plane displacement mode, the two membrane
equilibrium equations are solved, except for the unknown amplitude A.

Step VIII

The complete u and v displacement functions are

u = E1 sin m•r + E2 sin 2nirý + E3 sin mnR cos nny

+ E4 cos mwR sin nný + E, sin 2mnR cos 2nvr

+ E6 cos 2mvR sin 2nvy + E7 R + E8 y + E9  (10)

v= C1 sin 2mrR + C2 sin 2nný + C3 sin mvR cos nwý

+ C4 cos mnRx sin nny + C5 sin 2mri cos 2nfy

+ C6 cos 2mni sin 2nnr + C7 • + C8 y + C9  (11)
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Step IX

The u and v displacements as defined in 10 and 11 contain the
rigid body motions. These modes are eliminated by fixing the trans-
lation and rigid body rotation of one point in space, like

u = 0 at 0 : 0 , y : 0 (12)

v = 0 at i = 0 , y = 0 (13)

au v= 0 at =0 ,0= 0 (14)
ay ax

The above equations yield the following conditions:

S9= C9 = 0 (15)

C7  =E (16)

Thus the complete in-plane displacement field is obtained except for

the unknown amplitude A, and the constants E7 , E8 and C8

Step X

To determine the amplitude A, the Raleigh-Ritz procedure is
adopted. The total potential energy is expressed in terms of the
unknown constants A, E7, E8 and C8 . The variation of the total

potential with respect to the unknown constants yields a set of
equations. The solution of these non-linear algebraic equations yields
the unknowns, thus the complete u, v, w displacement field is
obtained. Briefly the above procedure may be summarized as: Assuming
a suitable out of plane displacement mode, the analysis is completed
in closed form for in-plane displacements, and the out of plane dis-
placement constant, and the constants associated with the homogeneous
solution for the membrane displacements are obtained by Raleigh-Ritz
procedure.

Determination of the Unknown Displacement Constants

The expression for the total potential energy is

ITp U - W

Sp Total potential function (17)

U : Strain energy stored in the deformed plate

W : Potential of work done due to external loads

175



Substituting ii, v, w in the energy expression and integrating in the

plane of the plate vp reduces to:

Tp = C4A4  + C3A3  + C2A2 + C1A + C0

+ Q(E7, E8 , C8 ) + L(E7 ,E8 ,C8 )

+ A2 L'(E7, E8 , C8 ) + AL"(E 7, E8 , C8 )

+ (FI E7 + f2 E8  + f3 C8 ) (18)

C4 ' C3 , C2 , C1, C0  are constants and dependent upon the material and
geometric properties of the plate an,' upon the load distributions.

Q is a quadratic function of E7 , E8  8 . L, L', L" are linear

functions of E7, E8 , C8 and f,' f2 ' f 3 are constants associated with
the external traction and the plate properties.

'S + -- A = 0 (19)p DE7 +7 E8 E8 6C8 DA

yields the following independent equations:

= = = 0 (20)
aE7 DE8  aC8

p 0 (21)

The Equation set 20 reduces to:

E7  fI+LU

K E f 2+L A2 - A L2
C8 2 22

C8  f 3+L3 L L3  J
(22)

The matrices and vectors in Equation set 22 are all known. Solution
to Equation 22 may be expressed as:
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8 = + E8+A E8 + A2 E8

c 8 8 8  C8 / (23)

0 ; yields

4 C4A3 + 3C3A A 2C2A + CI + 2AL'(E 7 ,E8 ,C8 )

+ L"(E 7 ,E8 ,C8 ) (24)

S Substituting for E7 , E8 and C8  from Equation 23 into Equation 24,

and regrouping terms, Equation 24 reduces to:

3 2
(4C4 + 3)A + (3C3 + B2 + 6 )A + (2C2 + 1 + 05 )A + G = 0 (25)

,l3 €2A

or, + + A A + 44 = 0 (26)

($1, $2, 83) and (84, 85, 86) are terms associated with L' and L"

and come from the non-linear coupling of membrane and bending dis-
placements as expressed in 23.

Examination of the Deflection Curve

A critical examination of Equation 26 furnishes the follow-ing
information.

Case 1.

4.i # 0 ; 1< i < 4

There is no bifurcation type of buckling. The load deflection curve
is a continuous curve.

Case I1. 04 = 0

Equation 26 reduces to:

A2 + 2A + 3 )A = 0 (27)
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(i) One of the roots is always zero.

(ii) The other two roots could be imaginary. This represents the
prebuckled state.

(iii) The two no zero roots are real. In this case the actual load
deflection path is one corresponding to the leabt potential
energy.

Case III

D4 = 0; 2 = 0 (28)

This is the case for an isotropic pate for in-plane loads alone.

(i) Prebuckled State

S4 > 0 (29)

D 2 > 0 (30)

One root at zero level and two roots are complex conjugate but pure
imaginary with zero real part.

(ii) Buckling Condition.

P 4> 0 (31)

S2 =0 (32)

This is the point on the load deflection curve at which bifurcation
starts. One root at zero level, the other two roots start to become
real numbers. This characterizes the appearance of out of plane dis-
placement in an isotropic plate.

(iii) Post Buckling Condition.

l4 > 0 (33)

4 2 < 0 (34)

One root at zero level, the othe- roots are real and equal in
magnitude. This states that the plate can buckle out in a positive
or negative z direction without any preference.

Imposition of Membrane BoundaryConditions

(1) The boundary is free to expand or contract in its own
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plane. E7 , E8 and C8 are not restrained and are obtained

by solving Equation set 22.

(2) The boundary in the R direction is i = + 1/2 has a prescribed
preassigned displacement Xpres. Xpres c'ould be zero, positive

or negative. The above boundary condition is readily realized
by suitably manipulating the rows, columns and right hand side
vectors of Equation 22, as shown below.

1 0 0 E L L ' x

0 K K ES=-A2 L2; L2-f 2+L.22 2 2 2 -

K32  K33 j ý C8  L3 3

(35)

(3) The boundary in the y direction is y = + 1/2 has a prescribed
preassigned displacement ypres. Ypres could be zero,

positive or negative. The boundary condition in the y direction is
readily realized by suitable manipulation of Equation 20 as shown
below.

2 I

K2 1  K2 2  E8  = f2L2 -A L2  -A L2

0 0 1 C8 Ypres L L3  (3

(4) The boundary in both i and j directions at i = + 1/2; y = + 1/2,
have prescribed preassigned displacements Xpres, Ypres . This

boundary condition is realized by the superposition of boundary condi-
tions 2 and 3. Equation 20 reduces to:

1 0 0 presL
0 0 1~ ~d~pres i~ 3{30 K 0 -A 2 L' -A L

0 K2 2  8 f 2+L2  2
0 0 1 C8 Yre L; L31

(37)
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The out of plane displacement pattern of the laminated composite
was taken to be the exact buckling mode of an isotropic plate. It
may be logical to assume that for an isotropic plate the initial
buckling mode is preserved in the post buckled domain in the proximity
of the buckling load. Thus, the post-buckled behavior by this method
should be a good approximation to the exact solution of an isotropic
plate. The out of plane displacement mode of an isotropic plate,
when used for the analysis of a laminated composite anisotropic plate
will only yield an approximate sol-tion. Because of the approximate
nature of the out of plane displacement mode, additional constraints
are imposed on the plate and the resistance of the plate to deforma-
tion is increased as a result. in this section a refined analysis
is done by expanding the out of plane displacement pattern in a
fourier series, retaining only 9 terms. The membrane displacement
pattern of Equations 5 and 6 is used in this section, with the E's
and C's as"independent variables.

The out of plane displacement mode is assumed as:

X cosVR coswy + X cosiR cos 3vy

+ X3 cosnR cos 5ny + X4 cos 3ni cosny

+ X5 cos 3ni cos 3ny + X6 cosw3 R cos 5iy l

+ X7 cos 5nR cosirý + X8 cos5vR cos 3wr (38)

S= E 1sin 2wR + E2 sin 27rj + E3 sinnR cosnj

+ E4 cosnR sinnr + E5 sin 2fir cos 2wy

+ E6 cos 2nR sin 21-j + E7 R + E8 y (39)

v C1 sinwR + C2 sin 2wý + C3 sinwR coswý

+ C4 cosiR sinnr + C5 sin 2wR cos 2nj

+ C6 cos 2vi sin 2rý + C7 R + C8 (40)

The unknowns are {<Xl ... X9 >, <El ... E8 >, <C1 ... C8 >}

The 25 unknowns will be obtained by the minimization of the potential
energy. Davidon-Fletcher-Powell method, a gradient method will be
used as the minimization algorithm. In the following section the
potential function and the gradient to the potential function will be
formulated.
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The Discretized Potential Function

The discretized potential function, when displacement modes as

given in Equations 38, 39 and 40 are substituted as fp; pws

S= {El 7 [Kuu] (E) + {E}T [Kuv] {C) + {C}T [Kvv] {C}

+ {E}T [Kuw] Wx} + {C}T [Kvw] {x}

+ {E}T [Kuww] (yl + {C}T [Kvww] (y}

+ fx1T [KW2j {x} + {x}T [Kw3 ] {y}

+ {y}T [KW4 ] y} _ E}T c 2 xT {p3 {y}{P4

(41)
where

T (2{E} = <El, E2 ... 8> (42)

{C}T <Ci, C2 ... C8 > (43)

x)T <Xl, X2 ... x8 > (44)

{y}T <XlXlX 1 X2 *** x9X9> (45)

[KUu], [Kuv], [Kvv] are 8 x 8 square matrices and represent the
membrane energy of the structure.

[Kuw], [KVW), [KUww], [Kvww] are matrices as dimensioned in Equation
41 and represent the coupling energy.

[KW2], [Kw3], [Kw9] are matrices as dimensioned in Equation 41 and
represent the energy associated with the out of plane displacements.

{P1}, {P2}, {P31, {P41 are vectors as dimensioned in Equation 41 4
and represent the work equivalent loads for both mechanical and
thermal loads. All the matrices are automatically generated in the
computer and the potential function np is obtained by proper matrix

vector multiplications. In generating the matrices for linear
structural analysis problems, the stiffness matrices are often made
synmetric. Such a procedure is essential only when displacements
are southt by direct solutions of matrix equations. In obtaining
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the solution by minimization scheme, the matrices need not be made
symmetric, 21though, that the matrices are not symmetric, should be
remembered whovle calculating the gradient vector to the potential
function

Gradient of the Potential Function

It may be observed that {Y) as defined in quation 46 is not an
independent vector, but depends upon the x-variables. Thus the total
number of variables is -25- ; -8P V 8Cs _ 9XS .

Gradient of Y vector with respect to the independent variables.

a{Y a {Y0 = - (46)
D{E} 310I

To determine the gradient of {Y} with respect to MXI , the following
procedure is adopted.

Y(I) X{IA(I)} X{IBCI} ; V I < I < 45 (47)

S IA(I)} X {IB(I)}
VXk Xk

+ - {iA(i)} • X{IB(I)} ; V I < I < 45 (48)
k

aX(IA(I)) J0 if IA(J) k V <I<45 (49)
DXk I if IA(I) = k - -

aX(IB(,)) 0o if IB(I) 0 k 1<1<45 (50)
aXk 1 if IB(I) = k - -

Let {O(1)1T = {Y(1) D } (51)

and 
N~lIs] = 2)

o(45) (52)
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With +Ie above definition the gradient of the Y vector becomes

D{Y} FS] {x} (53)
~T T T -(4

Let <X> = < ET C XT > (54)
1x25 lx8 1x8 Nx9

With the above definition of [S] and (X} the gradient of the poten-
tial energy function with respect to X may be obtained as follows
while calculating the gradient. The square matrices are not assumed
io be symmetric.

aE

a= T

p a

an (55)
or, ax

, [KUU]+[KUU]T {E}+EKuv](C}+[Kuw](X}+[Kww][Y}

[Kuv]T {E}+ [[KVV]+[KVV]T] C}+[KvW]{X}+[KWW]{Y}

{V-fp} = [KU]T {EJ+[K]T {C}+[S][KUWWT {E) +
[S][K T el. ]C+[K]+[KWl]T]{x} +

[S [[Kw3]T{X}+[KW3]{Y}+[[S][[Kw4 j+[K4]T]){Y} (56)

PROBLEM 1.

Isotropic Plate:

Material Constant Table
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9y 99000.0 33000.0 0. 0 Cy

T T o0.0 0.0 11500.00.x

Ux =y = 6x10"6 in/in°F ; a = b = 100"; t = 1.0" ; Nx alone

Problem 1.1 Sides Y = +b-Y free.

Probem .2 SdesY +f retraneb

Problem 1.3 Sides Y = + Pre-strained in Tension • = + 1.0.

Problem 1.4 Sides Y = + 7 Prestrained in Compression v - 1.0.

The results are shown in Figure 2.

PROBLEM 2. Orthotropic Plate

2. Material Constant Table

X 2350 374.0 0.0

oy 374.0 1207.0 0.0 Cy

Txy L 0.0 0.0 650-0 Yxy

10 ply plate Thornel

Laminate axis along coordinate axis

a = b = 50.0"

t = 1.0"1

Case 2.1 Nx and Ny both ,ncreasing: NX = Ny

The results are shown in Figure 3.
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PROBLEM 3

3. Orthotropic Plate

Material - same as Problem 2

a = b =20" ; t = 1.0

3.1 QO alone

3.2 QO increasing Pretension Nx = NY = -55.0

3.3 QO increasing Precompression Nx = NY = 55.

The results are shown in Figure 4.

B. Post Buckling Strength of Anisotropic Plates
(Professor Kicher and Dr. Islam)

1. Introduction

The present report is a condensation of Ref. (1) which was pre-
pared on the basis of the investigation performed in this section.
The investigation encompasses three areas of work each of which is
of importance by itself.

1. Theoretical prediction of post-buckled strength
of orthotropic and anisotropic composite material
plates.

2. Unbuckled compression testing of plate materials
for stress-strain and strength determination.

3. Buckling and post-buckling testing of rectangular
plates under uniaxial edge compressive loading.

The work grew out of a desire to obtain post-buckled strength
prediction capability for composite materials. The study of aniso-
tropic plate stability and post-buckling behavior has recently come
into focus in response to the development of fiber reinforced com-
posite materials, it has been known for a long time that a flat
plate supported along its edges and subjected to loading in its
plane can support loads much higher than their bifurcation load.
In many applications, especially in aircraft construction, higher
than critical loads are actually allowed. Investigations on com-
posite material plates have shown similar existance of load capacities
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Fpigure 1.Planform view of Laminated Plate
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beyond the point of buckling. (2) The high stiffness of composites
leads to thin laminates forlightly loaded structures, consequently
the high strength potential is not utilized. If methods of pre-
dicting the post-buckling strength were available then designers
could utilize the full potential of the post-buckling region.

Historical Note:

Although the post-buckled behavior of isotropic material plates
has been tL.e subject of invectigation by many people, little work
has been done on the post-bu.Kled behavior of orthotropic and aniso-
tropic material plates. Analytical work on post-buckled anisotropic
plates has been done by Mnnforton (3) and Chan (4). Monforton used
a finite element formulation to obtain the post-buckling response
for composite materials plates. Chan's theoretical predictions
were obtained by assuming modes for the out-of-plane deformation
and solving for the u and v displacements from the membrane dis-
placement equation. Neither has attempted to predict the post-
buckled ultimate load capacity.

2. Formulation

The loads acting on a structure can usually be represented in
terms of a unit load system and load parameter n . A state of
equilibrium is obtained from the unstrained state by monotonically
increasing n from zero. For sufficiently small values of n a
stable equilibrium exists which is called the fundamental state.

In many applications the fundamental state becomes unstable upon
exceeding a certain value nI. The load corresponding to n, is

called the buckling or critical load for which the equiliibtrium is
at the stability limit. At this buckling load, neighboring infini-
tesimally deviating equilibrium states are present in addition to
the fundamental state. Similarly, at loads slightly different from
the buckling load neighboring states of equilibrium also exist. The
response of the structures at these loads depend on the nature of
stability of equilibrium at the buckling load, (5), i.e., on
whether the limiting case of equilibrium at the critical load is
among the stable or already among the unstable states of equilibrium.
When the equilibrium at the critical load is stable, as is the case
with flat plates with supported edges, neighboring states of equili-
brium exist for loads above the buckling load only and these states
are stable, therefore loads larger than buckling can be sustain(c.

2.1 General Edge Loading

The strain displacement relations for plates under large deflec-
tion can be given by
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0£X = EX + ZKX

£y £y Z)y (1)
y Cy ICy

0

yxy = y + ZK xy

where Kirchoff-Love Conditions are assumed and z is measured from
the reference surface. The reference surface strains are given by

E0 1 W2£x = UX + -W
x x +2fx°1 2

£y =Vy + 1W2 (2)

YX U + V + w Wxy y x x y
and the curvature terms are

K = -Wxx

Ky= -W (3)

yyy
K =y -2w XKxy = 2xy

The subscripts nf u, v and w terms indicate partial derivatives.
The force deformatt a relationship for the general anisotropic plate
is then

N = A B (4)M B D K

where (Nx< {M} =
N,• Ny {M.= .y

N = NJ " xy= "yx
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0

I K{X}

A = [aij]

B = [bij] {i,j = 1,2,6}

D = [d.i]

Now define
u 2 + 2 Vx2

T [all usy 2 2 V+a 6 6 (uy + +2a 12 ux uy

+ 2a16 (uy + Vx, ux - ý,a2 6 (uy + Vx) Vy]

-2 [b 11 uxwxx + b2 2 vy wyy + 2b6 6 (uy + vx) wV

+ b12 (vy wxx + ux wyy) + b16 (uy + Vx) Wxx (5)

+ 2b16 ux wxy + b26 (uy + vx) wyy + 2b26 vy WxyJ

+[ 2 + d 2 +4 w2 +2[d1 1 Wxx d 2 2 Wy +4d 66 Wy + 2d 12 'xx Wyy

+ 4d16 Wxx Wxy + 4d26 Wyy Wxy] } ds

u 1 {[all Ux 2+ 2
U2- J {Ea1  x w + a22 v w + 2a66 (uy + vx) wx wyy +ax Wxy

+ a1  2 2u )~ + w)a (u + v) w2 + a w12• (ux wý+ v x wx 16 y x x 6 wx x wy

+ a2 2u + a w a2 vwx wYJ - [b11 wxx w~2
26 (ux + vx) W a26 "y wx
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2 + 4b w b26(2WWy 222WY y 66 X W y , 12 (wxx w ) y

+ b16 (2wxy wx +w WYxx) +b26(2w 2 +w w w )]}ds (6)
x y W x y yy

3[a 1 T a2 2 Wy ] + [a6 6 + T a2 wx WyU3 = , s

+W2[a w3 + a w W3 ds (7)
S216 Wu 26 x y

where s indkcates the surface of the plate. Then the strain energy

of the plate is

U = Ul + U2 + U3  (8)

The potential of the applied load is

W :•y [Nx . + Rxy v + &xz w x Wx " Mxy Wy ] dy

- x x[Nyx u +Ny V +yz W -yx wx -y wy, Idx (9)

where_ N r, , N N ,Q Q are forces and M M Mx y xy yx xz I yz x y xy
Myx are moments applied on the edges of the plate.

The total potential energy n of the plate is: 7p = U - W (10)

For the prescribed kinematical boundary conditions, states of
equilibrium of the plate will correspond to stationary values of the
elastic energy. Under hinged or built in edge conditions the elastic
energy consists of the energy of the plate only. For elastically
restrained plate edge conditions the elastic energy of the stringers
must be added to obtain the total elastic energy. In any case the
stationary value of the elastic energy may be calculated as a func-
tion of the applied deformation . . The approximate solution may be
obtained by Rayleigh's or Rayleigh-Ritz's principle. Let the
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solution obtained by u(i), v(i), w(ý) for applied deformation -e
Call the elastic energy which is a function of E, U(i)

Then

-- = 0 - (U - w) (11)a a

or d = F (12)d -

where F is the edge load (vector). The ultimate load capacity is

Fu- max d U
Fu m d• (13)

Equation (13) assumes unlimited validity of the Hooke's Law. For
real plates it may be necessary to include plasticity and failure
of the material. A failure criteria must be used for this purpose.

Thus

Fu = max dU { I(x,y) 1 f} (14)
e dc

where f = indicates failure of the material. The failure criterion

may be chosen in terms of stress or strain.

In actual computation it will be necessary to check ý at a few
discrete number of points. Test results obtained indicate these
points should be chosen at the corners of the plate.

2.2 End Compressive Loading

Consider an orthotropic or anisotropic plate of length a and
width b under a compressive load P . The load is applied through
a rigid bar at the end, and the plate is supported on all sides.

During the fundamental or unbuckled state, the plate suffers
uniform compressive strain c across the width, and the load is
distributed uniformly along the edge. After buckling, the center
of the plate bows out while the sides are prevented from doing so.
Because of the membrane stretching caused by the deflection at the
middle, the compressive stress there is reduced. To support the
same load, the sides of the plate then carry proportionately greater
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parts of the total load P. In the far post-buckled state the load
distribution is as shown in Figure 1 where the entire load is
carried by two strips of width d , one on each side. The loading
is considered to be uniformly distributed across these two strips
each carrying half the total load P. Let the membrane compressive
load on these strips be Nx . Then

P = 2dN x . (15)

The plate is assumed to be simply supported on all sides. The
lateral deflection w along the edges is thus zero. For the pur-
pose of analysis, the middle strip without edge loading is ignored.
(Figure 2 ).

Orthotropic Case

Classical orthotropic buckling theory can now be applied to the
orthotropic plate with material axes aligned with structural axes
of the plate, and with the plies oriented symmetrically about the
mid-plane of the plate. This theory gives the lateral deflection
w due to compressive load along the x axis by

D11 W'xxxx + 2D3W,xxyy + D22W ,yyyy + Nx W,xx = 0 (16)

where D i are flexural stiffnesses and D3 = D12 + 2D6 6

wxsin vt sin ny (17)w wsi •-X i 2d

where X is the length of a half wave along the x ,'irection
Equation (17) satisfies the boundary conditions of the plate, i.e.,
w 0 and w,Xx = 0 at x = 0 or a and w = 0 and w'y = 0
at y = 0 or 2d. Substitutiong (17) in (18) and dividing through by

w sin six n.fY we getw - sin 2d

Nr 1 2 Dll + 2D3 X2 D2 2 1

4d16

195



We assume the two strips carrying the load are at the stability
limit corresponding to the most dangerous wave length x . (6)
Differentiating the terms inside the square brackets with respect
to x and equating it to zero

2D2x D22

X3 11667=0

x 26d

= - 11•

022 2d.

Substituting in (18)

2

Nx d V [ 1 D22  + D3 ] (19)

1/2

d = T [ .D11 0 22 + C3  1 (20)
v2N

and
1/2

P = 2dNx = / [ 'Dll D2 2 + D ) NX] (21)

Replacing Nx by axt

d = IT v'oj D22  + D3 1 (22)V - 11 D22 3

1/?
P = Vr2 [( 1Dl 022 + D3) cXt] (23)

Equations (22 and 23) give the relation between the effective
width and the load. These equations hold up to the elastic limit
or yield point for the material. However, they may be used beyond
the elastic limit if Dll, D22 and D3 are computed on the basis of

the tangent moduli for the material of the plate. For composites
where the material is elastic up tc. 'he stress corresponding to
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failure tne ultimate load capacity is

1/2

ult [('D.I D2 2 + D3) txct] (24)

where axc is the failure stress in longitudinal compression for the

composite,

Anisotropic Case

In the general anisotropic case, classical orthotropic buckling
theory is not applicable. The governing equation for deflection for
such a plate is

Mx,xx + 2Mxy,xy + My,yy + Nx wxx = 0 (25)

along with the force deformation relationship

{N} • -CA] [B]- (26)}
S: (26)

{M [[B] [D] j {KI

The solution for {M} from Equation (26) is

{M} = ED - BAPIB] {K} - [BAf 11 {00 (27)

For simplicity neglecting the term ýBA 1 ] {N) in Equation (25)
leads to the governing equation

D1 * + 2DD w +D+N w =0 (28)
D Wxxxx + 3 W,xxyy 22 W,yyyy x ,xx = I

where the D* terms are elements of the matrix [D-BA- 1 B].

Equation (28) is of the same form as (16), and analogous treat-
ment as in the orthotropic case gives

d [ -VD-- ,-Df + D* ]i/2 (29)
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P = 2 [( VD D* + D) t ]1 1 2  (30)
22

Equations (29 and 30) give the relation between the effective
width and the load. As in the orthotropic case these equations hold
up to the elastic limitbut may be used beyond the elastic limit if

the D , D2 2  and D are computed on the basis of tangent moduli.

For composite materials which remain elastic up to failure, we
obtain the ultimate load capacity

Pxult = r 7 (%DI D* ) axt]I12 (31)

where ý xc is the failure stress for the anisotropic composite in

longitudinal compression.

Equations (24 and 31) have been used to compute the ultimate
load capacities of various composite plates with different ply lay-
ups an• thicknesses. Results indicated considerable reserve strength
beyonr the buckling load. Experiirents were conducted to obtain post-
buckling strength data and verify the theoretical results. These
works are presented in the subsequent sections.

Separation of Stiffness and Strength Influences

Examiniation of Equations (24 & 31). reveals that the post-buckled
load capacity depends on the composite stiffness properties as well
as on the compressive strength. The effect of the elastic constants
of the plate may be considered separately from the influence of
strength. Thus

Pult = XI (32)

where I = F2 U + D3 )t) 1 / 2 or vn [('D1I D*2 + D*)tl /2

which may be called the Index for post-buckled strength. The para-
meter X is a factor depending upon the stress strain curve.

For materials which are elastic up to failure x =Vax . For

material which yields at the ultimate load X y may be used.
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3. Un-Buckled Compression Testing of Composite Sheets and Plates

In order to compute the ultimate load capacities of plates using
formulas (24 and 31) it is necessary to know the compression stress-
strain and strength properties of the plate material. Although
compression testing of composite materials has been the subject of
investigation by many people (7,8,9,10) a satisfactory method has
not yet been developed. Methods ASTM and Federal LP 406 are currently
in use for compression testing. However, in these methods there is
friction and failure usually occurs at the ends. In order to overcome
these problems a method was developed for the accurate determination
of the unbuckled compression stress-strain and strength of plate
materials in which failure is obtained in the gage section. Des-
cription of the test fixture and details of the tests are given in
Reference (10). Table (I) gives the list of specimens tested and
the test results are summarized in Table II.

4. Buckling and Post Buckling Strength Tests

In order to verify the theoretical predictions and obtain test
data for the post-buckling strength, the work of this chapter was
undertaken. In this program, a method has been developed for the
accurate buckling and post-buckling testing of rectangular plates.
In particular a fixture has been designed for testing 10 x *"I inch
plates.

The post-buckling strength tests for simply supported edge con-
dition have been the subject of investigation by many people. A
bibliography of such works is given in Reference (14). Such
investigations have concentrated on isotropic metallic plates.

The crippling strengths are conventionally performed using square
tubes and V-groove fixtures. However, in both these methods at large
deflections, the plate edges do not remain simply supported. The
V-groove method of loading will also have friction and a line loading
resulting in local yielding of the material. The method of testing
developed as part of this study eliminates the above problems.
Description of the fixture and details of the tests are given in
Reference (10). Table III gives the list of plates tested and a
summary of results is given in Table IV.

Comparision of Predicted Strength with Observed Failure Loads

Table V lists the predicted strengths together with the experi-
mentally observed failure load data. The agreement between the test
results and the theoretical predictions is seen to be very good.
Deviation of observed strength values from the theoretically predicted
strengths is from -3.5 to 6.5%.
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TABLE I. LIST OF SPECDUNS ThSTED

Specimen Material Thickness Ply
No. Inches Orientation

1 Aluminum .03125
6061-T4

2 Fiberglass .050 5(0,90,0,90)0)
Epoxy

3 " .050 5(0,90,0,90,0)

4 " .050 5(0,90,0,90,0)

S " .050 5(0,90,0,90,0)

6 I .050 5(90,0,90,0,90)

7 " .050 5(90,0,90,0,90)

8 " .030 3(0,90,0)

9 " .030 3(0,90,0)

10 i .030 3(0,90,0)

11 " .030 3(90,0,90)

12 " .030 3(90,0,90)

13 "t .130 13(0,90,0,90,0,...,0)

14 it .130 13(0,90,0,90,0,...,0)

15 " .100 l0(S(450),S(-45 0 ))

16 .062 7(0,4S,-45,90,-45,45,0)
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TABLE II SUL.ARY OF REiSULTS: UNBUCKLE) CQUPRESSION TESTS

Specimen Modulus of Computed Failure Failure Yield
No. Elasticity Modulus of Stress Location Stress

Measured 6  Elasticiy 3 .2% off
psi x i0 psi x l0 psix.0 set

* . .. nsi x103

1 9.98 20.3

2 3.7 3.67 70.1 Gage Sect.

3 3.65(Fig.3-21) 3.67 53 End
3.91(Fig.3-22)

4 3.86 3.67 58.3 End

5 3.53 3.67 65.8 End

6 2.95 3.0 44.4 Gage Sec.

7 3.1 3.0 Not failed

8 3.82 3.89 26.3 Gage

9 Not 3.89 26 Gage
Measured

10 Not 3.89 25.5 Gage
Measured

11 2.73 2.78 15.4 Gage

12 2.76 2.78 14.7 Gage

13 3.S6 3.46 a5 Not failed

14 3.47 3.46 63.S End

is 2.0 1.995 20 10.9

16 2.86 2.9 50.2 Gage
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TABLE III LIST OF PLATES SZ-TED

Thicfiess -y Size'
Plate Material ... .Inches ....... Orientation In x In.

1 Aluiv.num .03125 10 x 10
6061-T4

2 Aluminum .0625
2024-T3

3 Aluminum .0625
2024-T3

4 Fiberglass .0s0 5(0,09,0,90,0)Epoxy

5 .050 5(90,0,90,0,90) "

6 .030 3(0,90,0)

7 .030 3(90,0,90) "

8 .100 10(5(45) 5(-45)) "

9 " .060 7(0,45,-45,90, "

-45,45,0)

10 .060 6(45,-45,45,-4S, "
45,-45)
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TABLE IV CRITICAL LOAD, PREDICTED AND OBSERVED POST BUCKLED
ULTIMATE STRENGIhS

Critical(a) Predicted Post Observed Post
Plate Load Buckled Load Buckled Load

No. lbs. , Capacity lbs. Capacity lbs.

1 130 845 860

2 1100 5180 5300

3 1100 5180 5200

4 108.2 1840 1775

5 112.7 1465 1475

6 23.07 394 409

7 24.63 302 325

8 991 3120 3270

9 214 2250 2285

10 258 1235 1315

(a) Computed values by classical or reduced flexural stiffness

method.
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C. Buckling of Laminated Composite Plates with Cutouts
(Professor T. P. Kicher and Mr. J. Martin)

This outline will summarize the work completed on the problem of
The Buckling of Laminated Composite Plates with Cutouts. The buck-
ling response and the postbuckling response are investigated for
laminated composite square plates with centeral circular holes. The
plates are simply-supported on all four edges and uniformly compressed
in one direction. The completed work can be separated into two parts:
the experimental work (including a literature search of material on
the subject), which was done between September 1969 and Flay 1970,
and the theoretical work, which was done between September 1970 and
May 1971.

Although there is a large volume of literature on the stability
of isotropic and anisotropic plates under various loading conditions
(most of the research on the stability of anisotropic plates; an
extensive amount of work on the stability of orthotropic plates was
done in the U.S. by the Forest Products Laboratory, Madison, Wisconsin,
during World War II), the corresponding literature on the stability
of plates with cutouts has been meager. There is a small amount of
published literature on the buckling ef isotropic plates with cutouts,
however this author has found no published material concerning the
buckling of laminated composite plates with cutouts.

A preliminary experimental investigation was made on an 8-ply
laminated square plate, 10 in. by 10 in., by .080 in., with 2-in.
and 4-in. diameter circular cutouts in the center. The plate was
made from "Scotchply" Reinforced Plastic Type 1002, a moldable epoxy-
glass laminate, and the ply orientations were 0, 45, -45, 90, 90, -45,
45, 0. The buckling loads were found experimentally and the plate
was loaded axially and simply-supported on all four edges.

A fabrication process to produce 'laminated composite plates was
developed using a Patterson-Kelly autoclave. Laminated square plates,
12 in. by 12 in. by .100 in. were fabricated by a vacuum bag techni-
que. Woven glass and teflon were used between the uncured laminate
and a piece of rubber was placed on top of the final layer of woven
glass. Gage pressure inside the autoclave was maintained at 18-20
psi, and temperature was maintained at 330-340'F during the 36 minute
cure cycle. After the cure cycle had been completed the plate was
allowed to cool very slowly inside the autoclave while the gage
pressure and vacuum were still maintained. This procedure produced
a plate which was very flat; fiber wash was found to be negligible,
and void content was low.

Now, in regard to the theoretical work completed, analytic ex-
pressions were chosen for the displacements u, v, and w of a simply-
supported square plate uniformly compressed in one direction, with a
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central circular hole. These expressions contain the effect of the
hole in both the prebuckling and post-buckling deflections and
satisfy the condition of zero deflection at the edges of the plate.

"Additional relations" between the coefficients of the assumed dis-
placements were determined by satisfying the following boundary
conditions "in the large":

(a) zero total force on the unloaded edges
of the plate,

(b) the total force on the loaded edges of
the plate is equal to the applied
external load, and

(c) zero total normal force on the boundary
of the hole.

Two additional parameters in the assumed displacements were deter-
mined by satisfying approximately on the boundary of the hole the
conditions o_ zero z t ,l momrent and zero total resultant shear force
(for the isotropic perforated plate this is also equivalent to
satisfying approximately at each point on the boundary of the hole
the conditions of zero moment and resultant shear force).

The resultant forces and moments are related to the reference-
surface strains and curvatures by the familiar equations containing
the matrices [A], [B], and [D]. At this point three different cases
were investigated:

Case I: the perforated plate is isotropic.

Case II: the perforated plate is midplane symmetric
and specially orthotropic, i.e., [B] = 0
and A16 = A26 = 0. Also for this case a

circular reinforcement was added around
the hole; therefore, we can determine the
effect of the reinforcement on the post-
buckling response and the buckling load of
the perforated plate.

Case III: the general case for which [B] ý 0 and the
[A), [B], and [D] matrices are fully
populated. Also, the circular reinforcement
was added around the hole.

Next, the total potential energy was determined for each case.
While the total potential energy was varied the additional relations
were enforced between the coefficients of the assumed displacements.

For Case I and Case II the solution of the resulting simultaneous
linear equations led to the classical solution for the postbuckling
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response (parabolic response) and the buckling load. Solving the
resulting simultaneous linear equations for Case III leads to the
response curve, but now, due to the coupling matrix [B], we no
longer have a classical buckling problem but a deflection problem;
i.e., the perforated plate deflects under any value of the applied
external load, no matter how small. An interesting feature of the
derivation of the response curve for Case III is that the total solu-
tion can be represented as the sum of two portions: an uncoupled
portion and a coupled portion. If the coupling matrix is set equal
to zero then the total solution reduces to the uncoupled portion
only.

Inherent in the solution for all three cases is the numerical
integration of single and double integrals of certain functions which
reflect the assumed displacements. For Case I a computer program was
written to carry out these integrations; also, all remaining calcu-
lations were programmed. A set of numerical solutions were obtained
for the postbuckling response and the buckling load for the values
of y between .1 and .5, where y is the ratio of the diameter
of the hole to the length of the edge of the plate. After plotting
the buckling load vs. y and comparing the results with existing
experimental data (Tom Esselman, Elastic Stability of the Square Plate
with Central Circular Hole under Edge Compression, 1969) the agree-
ment was found to be good. For no hole the solution for the buckling
load, based on the assumed displacements, reduces to the classical
buckling solution for a simply-supported square plate uniformly
compressed in one direction, namely (Ny) 4u2D. The postbuckling

Ry cr*42.Tepsbcln
curves clearly show that the postbuckling deflection of the perforated
plate is greater than that for the corresponding plate with no hole,
for any given value of the applied external load.

The detailed numerical calculations resulting in the postbuckling
response and the buckling load have only been completed for Case I,
i.e., for the isotropic perforated plate without the reinforcement.
At the present time work is in progress to extend the numerical cal-
culations to Case III; therefore, Case II will be included as a
special subclass of problems. Once this is done the effect of the
reinforcement on the postbuckling resporse and the buckling load,
for Case I and Case II, can be determined. Since, in general, the
reinforcement will increase the buckling load, we can then determine
the size of the reinforcement; which is necessary in order to incre3se
the buckling load a specified amount; these results can afterwards
be illustrated in terms of design curves.

For the general coupled plate, Case III, the effect of the
coupling matrix leads to a deflection problem right from the be-
ginning; however, there is the possibility of reducing the coupling
effect in the plate. Since the uncoupled problem leads to the
classical bifurcation solution, corresponding to the uncoupled
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portion of the total solution for Case III, there Is the possibility
of defining a measure of coupling as the distance w0 in the load-

def'oction curve, R y vs. w0 , corresponding to a given difference 6

between the total solution and the c~rresponding uncoupled portion
of the total solution. Let us call w0 the coupling parameter. Then,

as the coupling matrix tends to zero, the coupling parameter also
tends to zero; i.e., the total solution approaches the uncoupled
portion of the total solution (bifurcation solution). The coupling
parameter then serves as a measure of the amount of coupling present
in the plate. Now, by adding the reinforcement in the proper manner,
i.e., either on one side of the plate or the other, etc., it might
be possible tn decrease the coupling parameter, and thereby decrease
the coupling effect. If the application of the reinforcement (in
the proper manner) causes a decrease in the coupling parameter then
we can say that the reinforcement cuases a decrease in the coupling
effect. This investigation is presently being pursued. A preliminary
investigation of coupled plates with no holes tends to substantiate
the possibility of reducing the coupling effect in coupled perforated
plates.

The individual programs which have been written to numerically
calculate the different portions of the solution have been extended
to include the general case (i.e., Case III) and have been combined
into one program. Work is commencing to fabricate a number of
laminated composite plates, coupled and uncoupled, with rein-
forcements and without reinforcements, test them, and then compare
the experimental data with the corresponding values from the
theoretical analysis.

D. Buckling of Anisotropic Circular Cylindrical Shells
(Professor T. P. Kicher and Dr. Chi-Hwa Wu)

A theoretical analysis of the buckling of a general anisotropic
cylindrical shell under the combined radial pressure, axial com-
pression, and torsion is presented. A modification of Cheng and Ho's
method is used; a set of displacement modes, which satisfies the
equilibrium equations, is assumed; four boundary conditions at each
end of a shell are satisfied by imposing the vanishing of the
boundary determinant. Eight sets of boundary conditions of different
combinations are considered.

Twenty numerical examples are presented to demonstrate the effec-
tiveness of the method. The numerical results show that the
difference between Donnell's and Flugge's buckling loads is as high
as 30% for the cases with the circumferential wave number n = 2,
and the deviation is less than 2.5% for the cases with n = 6 or
higher. The effects of classical boundary condition SS4 and free
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boundary condition SS1 are investigated. It is shown that the
difference in buckling loads between SS1 and SS4 is significant for
short cylinders, and that there is little difference for long
cylinders. It is also shown that, in general anisotropic shells are
less sensitive to different boundary conditions than isotropic shells.

Introduction

Because of their light weight and high stre:.gth, composite
materials, such as carbon fibers, glass fibers, are increasingly used
in aerospace structures. Many researchers, including Cheng and
Kuenzi,(l) Hess,(2), Thielemann, Schnell and Fischer, (3) Schnell
and Bruhl, (4) and Tsai (5) have worked on the buckling of ortho-
tropic cylindrical shells under axial compression or radial pressure.
Tsai, for example, used Donnell-type equations (in terms of a stress
function and a radial displacement) to study the buckling of a three
layer orthotropic cylindrical shell under axial compression. A
set of displacement and stress function modes are assumed to satisfy
the Donnell-type equations and the simply supported boundary con-
ditions. The results show that the heterogeneity generally has a
deleterious effect on the stability of unpressurized, composite
cylinders.

A general, linear buckling solution for arbitrary boundary
conditions anA combined loads has been presented by Cheng and Ho.(6,7)
The method of solution is capable of tr .ating the buckling problem
of shells under radial pressure, axial compression, and torsion.
Eight sets of boundary conditions are considered. However, the
numerical results do not include the axial compression case, which
is one of the most important parts of the buckling problem.

The same method has been applied by Tasi, Feldman and Stang (8)
to the analysis of orthotropic cylinders with clamped support (C2)
when axial compression is applied on the shell. The analytical
results have been compared with the experimental results obtained
from a series of tests on the three layer orthotropic cylinders.
The comparison reveals that the eyperimental buckling loads are
65% - 85% of the analytical buckling loads. Recently, Lei and Cheng
(9) have also applied the same method to orthotropic cylinders.
The method, however, is restricted to orthotropic cylinders and to a
cylinder loaded with radial pressure and axial compression while
torsion is excluded. The characteristic equation is a fourth degree
polynomial, and the boundary determinatnt is only 4 x 4. The buckling
loads for 8 sets of boundary conditions have been compared. The
results show that the boundary conditions have strong influence on
the buckling loads.

The present work deals with the buckling of general anisotropic
cylindrical shells of finite length subjected to radia pressure,
axial comprssion, and torsional force. Cheng and Ho's method is
used to formulate the boundary determinant. Eight sets of boundary
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conditions are considered, i.e., four simple supports, SSl---SS4 and
four clamped supports, Cl---C4. The four sets of boundary conditions
for simple supports and clamped supports are distinguished by the
four different combinations of the vanishing of membrane displacements
and membrane forces. The numerical examples include:

(a) Isotropic, orthotropic, and general anisotropic cases.

(b) Single loadings: radial pressure, axial compression, and
torsional force.

(c) Combined loadings: (1) radial pressure and axial force,
(a) axial force and torsional force, and (3) torsional
force and radial pressure.

The mathematical formulation of buckling problem is presented in
the Ph.D. Thesis by C. H. Wu. Both Flugge's and Donnell's theories
are used in this work.

Mathematical Formulation of the problem of Shell Buckling

Basic Assumptions

For buckling analysis, two different theories are used in this
study: Flugge's theory and Donnell's theory. Except for minor
modification, Love's first approximation to the theory of thin
elastic shell is used as the basis for buckling analyses. Love's
postulates are:

(a) The shell is thin (h/r<cl).

(b) The deflections of the shell are small.

(c) The transverse normal stress is negligible.

(d) Normals to the reference surface of the shell remain
normal to it and undergo no change in the length
during deformation.

Donnell's theory is based on all four assumptions, while
Flugge's theory utilizes all but the first assumption. In Flugge's
theory the first assumption is modified as follows:

(h/r)3 is negligible as compared with unity.
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The 'orce-displacement relations can be obtained from Hooke's

Law for anisotropic material, the kinematics of deformation neglecting

transverse shear deformnations, and the resultant force definitions in

terms of stresses. Thus, the force-displacement relation, in matrix

form, becomes:

r ,l1 B21' B 16 D- B16 DI 1

x11 r 2r 16 011 r12 142 x
N AA' A 26 r D221 B D26

N 1 A1 22  6 tr I 812 I1 22 "-r I 26 "22-" 'eB I B A 2  rD I D

+:_8161 A 6 B1 '66,0661B ++2 61 B 66
Nxe A16 r 26 r IA666 - 6r2l-16 B26 '66+"2ý- ye

N'AA IA D66 B D261 D066Nex A16  26 666 2r 66"f" 2x
MI 2rl'1 rB Io 

iB1+-Dr D D1+•• 1 1 1l 16
Mx 1 1i -- ~ 2+FIl - 011 1201

I II
Me B12 B22 I B2 6  D 12 D022 D 26 K xe

D66 11 D26 
06

B- +-e- B - -:- B -- =-- DlMe r 1,26+ r 664b r 16 '26 D 66I I I

I D1whee ijBi h Ci z dz, i,j=I,2,6.
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Flugge's linear buckling equations in terms of forces can be
written as follows (Reference 10 p. 422):

aNx I ex 1 a2u aw a2u l 2 2u

-- r + Be r( -a" x ) " 7 27 r axaeBeaxas

I aNe +Nxo a NIa I0 MX P (av )2V W

r ae ax + r--e• r ax r ---T+Ber Be

a2v 2T ( a2 V +w
- 2P - 5r56+a ax;x

2M a2Mxe 2M2 NB

I am0 1 +x m x N-_+ -I( + __- I

r 'Be2  r 5xe Mxae axr

au 1 av + I '
ax r Be + r a

-p D2 a a2w -0

ax2  r ax WXae

where the positive values of p , P and T are, respectively,
the external radial pressure, the axial compression per unit
length, and the torsional force per unit length. The positive
sense of these quantities are shown in Figure la.

Substituting for the resultant forces and moments the following
equilibrium equations in terms of displacements ( or the Navier
equations) have been developed:
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B 2 2u 2 A6 6  B6 6  D66 a2u
(AI + (A T) T r - + -r r) - 2

B ax- r rA A4- re2

+(A+ 2B16 D+16 a2v + (A12  A66  B12  B66 a2v A26 av
r +- r + r +2T)a + r-6 a2

- DB • 3w 3B1 DI6ý) a3 w tB12 2B 66 D 66 a 3wr ax r rao2

11r aS r r' ax2ge rg r r3 axaO2

,126 D26  w3 A12  ,i . A26  826 026 ) jw 0
r r2r r3 r4 ae

2816 D1 6 a2u A12 + A6 6 + B12  B6 6  2 26 a2

(16 Z----~) + 7) 6(I+ +"r r ax-y (T r r- T" ýa-'"'r-eo• T

+A 6+ 3D6 6  a2v 2A26  4B26  2D26  2T -2v

r266 r- -ax r r3 r axae

A22  B22 22D + ) 33w

rT + r-ý aeD 16 + a7x

B 12 + 2B6_ +1 + 3D66 a3w 3826 2D2 6 a3w B22 a3w
"r- r 2 ax-a r" + r axae- r ae

" B26 2T 8w A 22 p w =

r r2  r ax ry ra

DLl) + 3u+ ("38 D616a 3u a 812 D6 6  -66 L(,B , + 3. rx - ' -- + '( +"-1•xo
11 rax rf axa~e rT r r 3axae2

(26 a26 3 u A12  u+ A2 6  826 D26 au+a r- 3)3 .-- + p) lu+ 3- aT
r r4 ae ax r r r

2D1 6  
3  B12  2B66 D23D6+(B6 +-"N) "3V+ 12 +!66+ '2+ 66) ý3v

1ax 3r r •ax2o
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3B26  2D2 6  a3v B2 2  a3  A B

A2 2 + P) av a4w 4D16  
4  2D112  4D6 6  a4w

a 6 11_x r ax ao =r r, a x~ao

4D2 6  a4 w D22  a4w 2B12  D2w

r3 axaey r7 a

2D26  2T a2w 2B2 2  2D2 2  p d
6 Me -+

r r axor r ae

A22  B2 2  D 22
+ -T ) =

r2 + r r

where (Aij, i Di) (Ai r B 'r ) / ( r22

13 13 13 1J r r rr

and (q' q2  , q3  )(pr, P, T) /( 2 )

are nondimensionalized quantities. The bars do not imply complex
conjugates. These equations are valid for cylindrical shells
made of anisotropic materials loaded with any combination of radial
pressure, axial compression, and torsion.

Boundary Conditions

In addition to the above mentioned equations, the boundary con-
ditions are required to complete the formulation of the buckling
problem. Four boundary conditions are needed to satisfy at each
end of the shell. A total of eight possible combinations of
boundary conditions are considered in the analysis. They are
classified and designated as follows:

For simply supported boundary conditions:

215



SS1: w = 0 , Mx =0 ,Nx m+ T u 0 T + P 'V 0

x ra36 x ax

SS2: w = 0 , Mx = 0 , u = 0 v 0

SS3: w=0.,M = 0 ,u =0 T~ + P LV=0
xM ax

SS4: w= 0 , = 0 , + u = 0 , v = 0
Sr ra

For clamped boundary conditions:

Cl: w=0 w = 0 , Nx+T u - 0 Tx+P 0ax x r aT ax

C2: w 0, 0 - , ,u 0 v 0

aw v
C3: w O, _W= 0 u= 0, T +P 2- 0ax ax

CC w= w L= 0 Nx÷ + = 0 v = 0

C4; w=0, aw 0, N r 1 a

Mx

where Tx = N + x is the Kirchhoff boundary force. SS4 isxe r
usually known as the classical boundary condition, and SSI is called
the free boundary condition.

Method of Solution and Numerical Computations

The problem of shell buckling can be viewed as an eigenvalue
proglrm. It is to find a set of displacement modes for u, v, and
w which satisfy the equilibrium equations and a given set of boundary
conditions. By inspection, it is not likely to find a solution which
will satisfy both the equilibrium equations and the boundary condi-
tions simultaneously. However, it is possible to find a set of dis-
placement modes satisfying the equilibrium equations only. The
homogeneous boundary conditions are then forced to be satisfied by
setting the determinant of tC,4 boundary equations to zero.

Displacement Modes and Characteristic Determinant

The following displacement modes are used in the analysis of
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shell buckling:

u = U sin rx + nor

v = V sin ( x + no )r

w = W cos " x + no )
r

where n is the number of waves in the circumferential direction,
and U, V, and W are the undetermined coefficients. The displace-
ment modes satisfy the equilibrium equations but do ivt satisfy the
boundary conditions in general.

Substituting the assumed modes into the equilibrium equations,
one obtains:
- Fll-q 2 x2 -2q3nx-qln 2  F1 2  F13+qlX U

F12  F2 2 -q2zX2 -_q3nX-q 1 n2  F2 3-2q3 x-qln jVI 0

F13+qlI •'F 2 3 -2q3x"-qn F2 3 -q2 x2-2q3 nx-q 1 n2_

where Fll = (A2++B11) +2 A16 nx + (A66-B66 + D6 6 )n2

F12 = (AI6+2B16+D16 )x2 + n(A1 2+A66+B1 2+B66 )' + A26 n

F13  3(BII+DI)3 + n(3B16+D16 )x2 + n2(BI 2+2B6 6-D66 ) + AI2'

+ n3 (B2 6 -D2 6 ) + n(A 26-B2 6+D2 6 )

F2 2 = (A6 6+3A6 6+3D6 6 )x2 + n(2A26+4B2 6+262 6 )x, + (A22+B22)n

F2 3 = (B16+2516 )x3 + n(B 1 2+2B66+61 2+356 6 )x2 + n2 (3926+2626)'

+ (A n3+A n
(A2 6+626 )' + B2 2  + A2 2 n
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F3 3 = 4 + 46)6 nX3 + (2512+4D66 )n2 X2 + 2B12x + 4D26 n3A

+ (4B26 -2D2 6 )nx + (2' 2 2 -262 2 )n2 + (A22-§22+522) + D22 n4

For the existence of the nontrivial solution to U, V, and W,
the determinant of the coefficient matrix must be zero, i.e.:

Flq A2 "2q3nk-qln 2  F12  Fl3+ql

F12  F2 2-q2x2-2q3 nx-qln 2 F2 3-2q 3 '-qln = 0

FI3+q I F2 3 -2q3x-l an F3 3-q2' 2"2q 3nx-qln 2

The determinant is called the characteristic determinant.

By expanding the determinant it can be written as an eighth degree
polynomial in terms of the characteristic A :

a8xg+a 7x7+a 6 6+a5x5+a4 x4 + a 33 + a2A2 + alx + a0  = 0

where a's are the coefficients in terms of Aij Bi Di.j * n and

qi' The characteristic roots are, in general, complex numbers. Since

the coefficients ai of the characteristic equations are real con-
stants, the complex roots must form conjugete pairs. All eight roots,
of course, satisfy the equilibrium equations. By the principle of
superposi ti on:

8 Akx
U = 8 sin (Xkx+ no )k~l Ukr

8 XkxV = "Vk sin ( + no)
0k1 k r

8 Xkx
w= Wkcos(- +ne)
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Special Cases for n = 0 and 1
For the cases of n = 0 and I a special treatment is required.

Some of the previous investigators on shcll stability either were not
aware of or simply ignored this problem. The reason for the special
treatment for n = 0 and I will be clear when the characteristic
equation is further investigated.

By setting n = 0, the characteristic determinant is drastically
simplified, and the characteristic equation is reduced. This
equation has four repeated zero roots; therefore, the displacement
modes should be modified as follows:

U 2 3 8 Xkx
u = U1 U 2x+U 3x + U+ + Uk sin rk=5r

2 3 8 AkX
v = Vt + V2 x + V 3x + V4 x + I Vk sin r

k= 5

2 3 8 Xkx
w = W1 + W2x+W 3x + W0 + I Wk coS r

k=5

Because n vanishes the variable e is droppe-' out of the equations.
This implies that the displacements, and consequently the stresses
of the shell, are independent of the circumferential variable e
Following similar procedure presented in the preceding section, a
boundary determinant for n = 0 can be obtained.

For the case of n = I the characteristic equation reduces and
produces two repeated zero roots, the displacement modes would
become:

8 kXk
u (U1 + U2x) sin e + 8 Uk sin ( -+ e )k3 r

8 A kx
v= (V +V 2x) sin e + I Vk sin (r +

k=3

8 Akx
w= (W1 +W2x) cos e + I Wk cos ( + e

However, the second term,, U2x sin e , etc., do not satisfy the
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equilibrium equations. Thus, these equations are not suitable for
n = 1 case. Further efforts to search for a set of appropriate
displacement modes ended with no results. To the author's belief,
it is unlikely to be able to find a set of displacement modes which
will satisfy the equilibrium equations and the condition of the
multiple zero roots. As a result, the effort to analyze the buckling
of general anisotropic shells with n = 1 had to be discontinued.
However, the analysis for n = 1 can be done with the restrictions
that the shell is orthotropic, and that no torsional force is
applied. The displacement modes are modified slightly to:

8 XkX

u = (U1 +1U2 x+ 8 U e ) sin e
k=3

8 Akx
v= (V1 + V2 x+ I Vk cos e

k=3

8
w = (Wl x W2x+ I Wk e sin e

k=3

The boundary determinant for this restricted case can be obtained by

using the same procedure as mentioned before.

Numerical Computations

In the preceding section the buckling problem has been formulated
as the problem of solving the Navier eauations (the equilibrium
equations in terms of displacements) subject to the boundary condi-
tions. With the displacement modes the problem has been reduced to
the determination of the buckling load which satisfies both the
characteristic determinant and the boundary determinant. By
observation it is found that these determinants are functions of
the circumferential wave number n , the length to radius ratio L/r,
the buckling load parameter P, and the characteristic roots A .
They are all unknown quantities. Considering the complexity of the
equilibrium equations and the variety of the boundary conditions, it
is very unlikely that 3 closed form solution is obtainable for the
buckling problem.

An iteration scheme has been developed to find the critical
buckling load. The procedure is described as follows:

(a) Calculate the stiffness coefficients A, B, and D for
the given material properties, layer configuration, and
the length to radius ratio.
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(b) Start with the circumferential wave number n = 2.

(c) Select the initial load P and the load increment AP.

(d) Calculate the eight characteristic roots A from the
characteristic equation. This is done by using the
Bairstow method (11) to solve the eighth degree
polynomial. The Bairstow method is particularly
powerful to find the complex roots, because it is
based on the s,'ccessive extraction of quadratic
factors from t.,e polynomial.

(e) Evaluate the boundary determinant.

(f) Increase the load by AP and repeat the steps (d) and (e)
until the determinant sign is changed. Interpolate for
the load corresponding to the zero determinant. This
load is the critical load for the given L/r and n = 2.

(g) Increase n and repeat the steps (c), (d), (e), and (f),
the critical load for this n is determined.

(h) The minimum value of the critical loads for all n's is
the buckling load for the given L/r. The n corresponding
to the minimum critical load is the critical circumferential
wave number.

Remarks on Numerical Computations

The buckling load for any specified shell length and material
properties is the one which satisfies both the characteristic
determinant and the boundary determinant. The characteristic deter-
minant is automatically satisfied, because the V's are obtained by
solving the characteristic equation. The only condition to be
satisfied in the numerical computations is the vanishing of the
boundary determinant. The exact zero determinant cannot be easily
obtained from the numerical computation. Therefore, in the numerical
iteration, it is assumed that there exists at least one zero deter-
minant between two determinants of different signs. The load corres-
ponding to the zero determinant is the buckling load. However, the
problem of the false sign change of the determinant occurs frequently
in the actual numerical computation. The false sign change results
in obtaining an incorrect buckling load. It is well known that if
matrix B is obtained from matrix A by interchaning any two of its
rows (or columns), then JBI = - WAl. In the numerical computation of
the characteristic roots, V's, should be arranged in a certain order.
Sometimes, they come out in a different order. The order of the
columns of the boundary determinant is arranged in the same order
as A's. Therefore, it A's accidentally change their order of
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arrje;:-nt in the process of numerical computation, then the columns
of the boundary determinant also change their order accordingly. As
a ressult, the determinant changes its sign accidentally. This is
the principal cause of the problem of the false sign change.

To eliminate the problem of the false sign change it is important
to make sure that the arrangement of V's are in the same order for
all iterations.

Numerical Results

Some numerical examples are presented in this section to demon-
strate the capability for analyzing the buckling problem of aniso-
tropic cylindrical shells using the method described in the preceding
chapters. The isotropic case is compared with Flugge's well-known
results (10) in order to show the effectiveness and accuracy of the
method. Some examples of orthotropic and anisotropic cases are
then presented. The elastic constants of the materials are given
as follows:

For orthotropic 3(0, 90,0):

EL = 40xlO6 psi

ET = 1.8 x 106 psi

GLT = 2.24 x 106 psi

"ULT = 0.434

For "Thornel 50" 4(0, T 22.5, 90),

EL = 30.2 x 106 psi

ET = 1.26 x 106 psi

GLT = 0.778 x 106 psi

"LT = 0.302

For isotropic case:

E = 23.33 x 106 psi

G = lO x 106 psi
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ii=1/6

The layer designation 4(0, T 22.5, 90), for example, means that the
shell is made of 4 layers of fiber composite with the fiber orien-
tations 0°, -22.5*, +22.50, and 90'. The 00 layer is the inner
layer, and the 90° layer is the outer layer (see Figure lb). The
orientation angle is the angle between the fiber and the generatrix
of the cylinder. The positive angle is the angle generated by the
rotation around the outward adial direction z (or w) according
to the left hand screw rule (see Figure la). It is noted that the
elastic constants E and G for the isotropic case are fictitious
and are made up to match the poisson's ratio v = 1/6 which has
been used by Flugge.

A total of twenty cases are investigated. The layer configura-
tion, the applied loads, the boundary conditions, the analysis
theory, the shell material, the radius to thickness ratio, the
k-parameter, and the length to radius ratio are tabulated for each
case in Table 1. The orthotropic 3(0, 90, 0) layer configuration
is chosen as the representative of the orthotropic case. The
"Thornel 50" with the 4(0, T22.5, 90) layer configuration represents
the general anisotropic case.

The boundary conditions used in the example cases are SSl, SS4
and Cl. In most cases, the classical boundary condition SS4 is
used. This is the one most commonly used sets of boundary conditions
by previous investigators. The formulation and solution method
presented in the preceding chapters are still valid for other
boundary conditions.

The analysis for the circumferential wave numbers n = 0 and 1
is not included in the numerical examples. It is recognized that
the cases of n = 0 and 1 require special treatment. The procedure
was described in the previous section.

In the following sections the buckling characteristics for
isotropic, orthotropic and anisotropic cases will be studied. The
effect of Flugge's and Donnell's theories, the boundary conditions,
the loading conditions, and the layer configurations on the buckling
behavior of shells will be investigated.

Isotropic Case

As a test case, the isotropic cylindrical shell is chosen. The
shell is under axial compression with the classical boundary condi-

tion SS4, i.e.,: w = Mx = v = N + r 2u = 0 . For this specialX r ae
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case, the term involved with the torsional force T is dropped out.
In order to be comparable with Flugge's results (see Reference 6,
page 428) k ( is chosen to be 2 x 10-h5 orr is 64.5. The

range of L/r ratio is from 0.015 to 100. The result is plotted with

P(1-I 2 )/Eh versus L/r and is shown in Figure 3. Only the complete
curves for n = 2, 10, 14 and portions of the curves n = 3, 4, 5, 6,
7 are shown in the figure. The curves go rapidly upward for very
short shells. On the other hand they remain horizontal for very
long shells. As mentioned above, the curves for n = 0, 1 are not
included in the figure. This curve coincides completely with the
curve of k = 2 x l0-5 given by Flugge in Reference 10.

Orthotropic Case

As the example for orthotropic case, a 3(0,90,0) layer configura-

tion is used. The r/h and k are chosen the same as the isotropic
ca~e. The elastic properties of the plywood are given in the first I
part of this section. The buckling loads for the shell under the
loading of radial pressure, axial compression, or torsional force
are shown in Figures 4, 5, 6 respectively. The boundary condition
is Cl, i.e.,

•w = Nx + T1 2u =Tx + p 2-v = 0i-N T a- = av

For the radial pressure and torsion cases, the buckling curves
in Figures 4 and 6 rise monotonically as L/r ratios decrease. The
shape of the buckling curves for orthotropic is similar to that of
the isotropic case (Reference 10, p. 433). This implies that the
buckling characteristic of an orthotropic shell under radial pressure
or torsional force shall be the-same as the isotropic case. The
circumferential wave number n is 2 for long cylinder and gradually
increases to over 25 as the cylinder becomes shorter. For the very
long cylinder n is always 2 and the buckling load remains constant.
It should be noted that the buckling curves have an unusual behavior
for the very short cylinder. As shown in Figure 4, the curves drop
back drastically for L/r < 1 . For the torsion case the buckling
load reaches the value of 0.239 at L/r - 0.08, and it remains
constant thereafter. (The points are beyond the upper limit of Figure
6, therefore they are not shown in the figure). The cause of this
strange behavior is not yet known.

For the axial compression case, the buckling curves are different
from those for radial pressure and torsional force cases. The
buckling loads remain fairly constant for 1 < L/r < 15. They drop
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about 80% of the previous value for L/r : 20 and remain constant for
L/r - 100. For the very short cylinder (L/r < 1) the buckling loads
increase rapidly. The critical circumferential wave number is 2 for
very long and very short cylinders. However, it becomes 6 or 7 for
the medium cylinder length.

General Anisotropic Case

Single Loading

The layer configuration of 4(0, T22.5,90) is chosen as examples
for the anisotropic case, because the membrane-bending coupling
stiffness matrix B has six non-zero elements, i.e.,

x 0 x

B= 0 x

x x 0
Cases 5 through 11 are considered in this section. The shell material
is "Thornel 50" fibers in an epoxy matrix (ERL 2256 with MPDA). The
radius to thigkness ratio r/h is 150. This is equivalent to
k = 3.7 x 10- . Three different loadings are considered: the
external radial pressure, the axial compression, and the torsion
force. Both Flugge's and Donnell's theories are used in the buckling
analysis. The boundary condition imposed at the ends of the shell
is the classical boundary condition SS4. For the purpose of compari-
son the free boundary condition SS1 is also used for the axial
compression with Flugge's theory (Case 7).

The shapes of the buckling curves, Figures 7 are, in general, the
same as those of the isotropic and orthotropic case. For the radial
pressure and torsional force cases, the buckling load is the lowest
for long cylinders, and it increases as the cylinder becomes shorter.
The increasing rate of the buckling load for the radial pressure is
higher than that for the torsional force case. The critical circum-
ferential wave number is also lower (n = 2) for long cylinders and
higher for short cylinders.

The differences between Flugge's theory and Donnell's theory are
insignificant for most cases. However, the differences are quite
significant whenever the critical circumferential wave numbers are
small ( n = 2,3). The reason for this deviation is obvious from the
well known fact found by Hoff (12) that the characteristic roots
obtained by Donnell's theory are inaccurate for n < 4 . In the
numerical examples the buckling loads are significantly different:
(a) in L/r > 10 for radial pressure case (Figures 7 and 11); (b) in
L/r > 30 for torsional force case (Figures 10 and 13); and (c) in
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L/r > 10 for axial compression case (Figures 8 and 12). Particularly
in the axial compression case, the discrepancies are not only in the
buckling loads but also in the critical circumferential wave numbers
mostly n = 2,3 for Flugge's theory in contrast to n = 12, 13 14 for
Donnell's theory.

Combined Loading

The same layer configuration of 4(0, T22.5,90) and shell material
"Thornel 50" in epoxy are used for combined loading cases, Cases 12
through 17. The classical boundary condition SS4 is imposed on the
ends of the shells. The following combinations of loading conditions
are applied to the cylinders: (a) radial pressure and torsion, (b)
axial and torsional forces, (c) radial pressure and axial force,
(d) hydrostatic pressure. The last case occurs if a cylinder with
both ends closed is submerged into deep water. The cylindrical tank
is subjected to hydrostatic pressure on all surfaces; this is equi-
valent to a cylindrical shell (without end surfaces) loaded with one
unit of external radial pressure on the cylinder surface and 1/2 unit
of axial compressicn at both ends of the cylinder.

For cases 12 through 15 the load ratio is varied while the L/r
ratio is fixed at 2. For the hydrostatic cases (Cases 16 and 17)
the load ratio is fixed at 1: 1/2 while the L/r ratio is varied.

Figures 14 through 20 show the numerical results of the combined
loading cases. Figure 15 shows the detail of Case 12 in the external
pressure region. It is seen clearly how the critical circumferential
wave number n changes from 8 for purely external pressure to 10 for
pure torsion.

The shape of the buckling curves for the hydrostatic case (Figures
19 and 20) is similar to that of radial pressure case. Although the
ratio of radial pressure to axial compression is 1 to 1/2, the
buckling behavior for this case is strongly dominated by the radial
pressure.

The effects of the layer configuration can be seen from Figures
14,16 and 17. The buckling loads are slightly higher in the negative
torsion region than in the positive torsion region. This is due to
the unbalanced lamination of the shell with 4(0,T22.5,90).

Special Topics

In the preceding sections the buckling analysis is discussed
separately for the isotropic, the orthotropic, and anisotropic cases.
The following is a discussion on the specific topics concerning all
cases.
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Effects of Flugge's and Donnell's theories

To illustrate the effects of different shell theories on the
buckling loads the following numerical results are given in tabu-
lated form:

Table 2. Buckling Loads and Circumferential Wave Numbers

(0- Fl ugge )%

Case L/r Flugge (n) Donnell (n) Dll

5 and 9 2 0.35887x10"4(8) 0.36057x10" 4 (8) 0.4
(ql)

100 0.14250xi0"5 (2) 0.18560xi0- 5 (2) 23.2

6 and 10 2 0.70538xi0"3 (13) 0.72380xi0- 3 (13) 2.5(q2 ) 100 0.5050xlo03(2) 0.82085x10 3(2) 38.5

8 and 11 2 0.15729x10"3 (l0) 0.15735x10" 3 (10) 0.0
(q3 ) 100 0.23810xi0"4 (2) 0. 26 2 15xi0-4( 2 ) 9.2

12 and 13 2 0.30884x10- 4 (8) 0.30987xl0- 4 (8) 0.3

(ql q3 ) *

16 and 17 2 0.12719x10-3(6) 0.13000xl0 3 (6) 2.2
(ql+½q2** 30 0.8xi0"5 (2) O.1x10- 4 (2) 20.0

*q : q3 = 1 : 1

** Hydrostatic pressure

These are only a small number of samples taken out of the figures of
the numerical examples presented in the previous sections. The
number in the parenthesis listed after the buckling load is the
corresponding circumferential wave number. The table shows that the
differences range from 9.2% to 38.5% for the cases with n = 2, and
that the differences are less than 2.5% for the cases with n > 2 . 4
As mentioned in previous discussion, the cause for this deviation is
obviously due to the inaccuracy of Donnell's theory with n = 2,3.
It has been shown by Hoff that the characteristic roots of Donnell's
equations with n < 4 are inaccurate in isotropic cases. (12)
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Effects of Loundary Conditions

The effects of boundary conditions on the buckling loads have
been studied by many investigators. Hoff (13) has found that the
buckling load of isotropic cylinders under axial compression with
boundary condition SS1 is 1/2 of the classical buckling load (SS4).
Later, Lei and Cheng (9) have investigated the orthotropic cylinders
and have found th.'t the minimum ýritical axial compression of a
shell with SS1 bound'ary condition is as low as 79% of the minimum
critical axial compression of a shell with SS4 boundary condition.

Three different cases are investigated in this study, i.e.:
isotropic, orthotropic, and anisotropic. The buckling loads are
calculated for cylinders under axial compression with boundary condi-
tions SSl and SS4. Flugge's equations are used. Some of the results
are tabulated as follows:

Table 3. Buckling Loads of Axial Compression (Kp)
p

SSl

L/r For SSI (n) For SS4 (n) S- M

Isotropic 0.3 0.4091x10"2 (2) 0.8820xi0- 2 (7) 46.4

(E = 64.5) 0.5 0.4493xl02(2) 0.8825xi0- 2 (7) 50.9
h

(k=2xlO"5) 1 0.4582xi0"2 (2) 0.8370xi0"2 (6) :."'.8

100 0.5584xi0- 2 (2) 0.5250x10"2 (2) 105.4

Orthotropic 2 0.1502x0 -2(7) 0.1586xi0" 2 (7) 94.7
3(0,90,0)

(L = 64.5) 100 0.1428x10-2(2) 0.1446,I0" 2 (2) 98.7h

Anisotropic 0.5 0.5425x10"3 (9) 0.7249xi0-3(12) 75A0
4(06,22.5,90)

( - 150) 2 0.5634xI0"'(6) 0.7054xi0"3 (13) 79.8

20 0.5828xi0" 3 (2) 0.7140xi0"3 (2) 81.7

100 0.5044xi0"3 (2) 0.5050xi0"3 (2) 99.8
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For the isotropic case, the buckling loads with the SSI
boundary condition are only 46.4% to 54.8% of those with the SS4
boundary condition for short cylinders (L/r < 1). However, for long
cylinders (L/r > 100), the buckling load of SSl is 5% higher than
that of SS4,

For the orthotropic case the effects of the boundary conditions
are insignificant - - less than 5% difference. The boundary effect
for the anisotropic case is moderate. It ranges from 75% for the
very short cylinder (L/r = 0.5) to 99.8% for the very long cylinder
(L/r > 100).

In general, the boundary condition has significant influence
on the buckling loads for short cylinders, but has little effect
for long cylinders.

In addition to the above mentioned effects the boundary condi-
tion also influences the shapes of the buckling curves. For the SSI
case the critical bucklirig load for the medium length cylinders
increases steadily as thie length increases (see Figure 9). This is
in contrast to the SS4 case for which the buckling loa,' decreases
slightly as the length increases (see Figure 8). The critical
circumferential wave numbers range from 3 to 9 for SSI as compared
with n = 12, 13, 14 for SS4.

Combined Loading and Buckling Surface

The study on the buckling of anisotropic cylindrical shell
under combired loading is done for a specific shell with 4(0,T22.5,90)
layer configuration, SS4 boundary condition, r/h = 161.6 and L/r = 2.
The results have been given in Figures 16 through 18.

Figure 16 shows that the interaction curve of the radial pres-
sure and torsional force is slightly aeviated from symmetry about
the axis of the radial pressure, and that the buckling load due to
the negative torsional force is a little higher than that of the
positive torsional force. It is observed that the internal radial
pressure tends to strengthen the cylinder while the external radial
pressure tends to weaken the cylinder. The interaction curve
resembles the shape of a parabola, and its open end is on the side
of the internal pressure. Therefore, the cylinder will never buckle
under internal radial pressure alone.

The interaction curve of the axial and torsional force given
in Figure 17 is similar to that of the radial pressure and torsional
force. The cylinder is slightly stronger against the combined axial
and negative torsional forces than against the combined axial and
positive torsional forces. The reason is clearly due to the
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unbalanced layer configuration of the cylinder. The unbalanced layer
configuration also contributed to the fact that the highest strength
against the axial compression is not under the pure axial compression
but under the axial compression combined with a small negative tor-
sional force. Also in a similar manner, the axial compression tends
weaken the cylinder while the axial tension tends to strengthen the
cylinder. The cylinder will never buckle under axial tension alone.

The combined radial pressure and axial force as shewn in
Figure 18 is completely different from the other two cases mentioned
above. If the figure is divided into four quadrants as shown, the
cylinder will buckle in quadrant I, i.e., the combination of the
external radial pressure and the axial compression; the cylinder
will be stronger with increasing internal radial pressure in quad-
rant II and also with increasing axial tension in quadrant IV; it
will never buckle in quadrant III, i.e., under internal radial
pressure or axial tension or any combination of both.

I
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(a) Shell Coordinate System and Applied Loads
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h~ reference

h Surface"•" •2nd ,tayer
rIs layer

(b) Layer Configuration

Figure 1. Shell Geometry and Layer Configuration
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