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Experimental and analytical results are presented for the elastic plastic deforma-
tion of a slender rod subjected to impulsive loading that occurs during the impact
of a rod against a rigid plate. Particular emphasis is given to the lateral or
flexure buckling mode shapes that occur during the impact. The transient response
and resulting deformation were recorded with the aid of high speed photography and
flash X-rays. A frame-by-frame record of the impact phenomena gives the displace-
ent of a particle on the rod and the pflastic wave propagation position. Also

presented are three distinct failure modes that result, dependent primarily upon
impact geometry. For a pure orthogonal impact, a helical mode shape results. For
a near orthogonal Impact of approximately 1 to 3 degrees off the normal, all later-
Al motion is confined to a single plane resulting in a sinusoidal mode shape.Impacts from 4 to 6 degrees off the orthogonal result in a spiral mode shape. A
erivation for the equations of motion is given, considering axial, lateral, and
otational inertia for the case where the lateral motion is confined to a single
lane. The coupling between the differential equations of motion introduced by the
onlinear stress-strain relation is solved by allowing the axial equation to pre-
ominate. Two analytical techniques are presented for solving the differential
quations of motion and material behavior. The Galerkin technique and the method
f finite differences are used to obtain numerical solutions to the partial
ifferential equations. A comparison between the analytical and experimental re-
ults is presented showing good agreement between the finite difference technique
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FOREWORD

The work reported herein is a summary of both experimental and analy-
tical work dealing with the elastic-plastic buckling of a slender rod
impacting rigid plates. The experimental work was initiated during
August 1970 and was completed during June 1971, with the analytical work
star~ing during January 1971 and being completed during May 1972.

This is a jointly prepared report with Dr. Gerald D. Whitehouse of
Louisiana State University serving as the advisor, and Mr. Massey B.
Valentine of the Air Force Armament Laboratory, Strike Process Studies
Branch, conducting most of the analyses. This report contains the results
of a dissertation submitted by Mr. Valentine to the Mechanical Engineering
Department at Louisiana State University.

The authors would like to express their appreciation to Mr. Leonard L.
Wilson (DLRD) of the tir Force Armament Laboratory for supporting the
experimental work described in this report. Appreciation is also acknow-
ledqed to Mr. Clyde E. Wallace (DLRD) of the Air Force Armament Laboratory
for his assistance in conducting the test firings.

This technical report has been reviewed and is approved.

4MS P. CHRISTIE, Director
Weapon Systems Analysis Division
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SECTION I

INTRODUCTION

An investigation was conducted into the elastic plastic response of

a slender rod subject to impulsive type loads, such as an impact of a

rod against a rigid plate. In this section, the work of other i vesti-

gators will first be considered, followed by a discussion of the appli-

cable work currently in progress. Then, to provide some background of

the rod impact problem, a short discussion of elastic and plastic stress

waves in a rod is presented followed by a brief statement of the problem

to be studied and solved.

1. PRIOR WORK

In the nineteenth century, Stokes, Poisson, Rayleigh, Kelvin, and others

developed the theory of elastic wave propagation in solids, primarily as an

extension of the theory of elasticity as applied to vibrating bodies.

During the first quarter of tht twentieth century, the subject of wave

propagations was neglected; later, however, interest in the subject began

to increase. During the World War II era, the problem of plastic wave

propagation in solids was considered, with the first work being independ-

ently reported by Taylor, Von Karmen, and Rakhmatulin. On(; of the first

investigations was concerned with longitudinal plastic waves propagating

alorg a rod. Von Karmen and Rakhmatulin treated this problem with the

aid of Lagrangian coordinates, while Taylor used Eulerian coordinates.

The fundamental result of this work is that the way, velocity for long-

itudinal waves propagating along a bar is given by the relationship

c0 =4B7 (4)

where B is the slope of the stress-strain relationship (elastic er plastic),

and p is the material density.
1
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More recently, elastic and plastic stress wave propagations, both

longitudinal and flexural, have been studied by Abramson, Plass, and

Ripperger (Reference 1). Also, Kolsky studied wave propagations and the

analytical atnd experimental results are presented in Reference 2.

Abramson's work was devoted to rods and beams, and the solution to an

elastic plastic flexure wave propagation problem was presented for a

beam assumed supported by a pin attached to a rigid base. A lateral

impulsive load was applied to the beam, and the results simowed that zones

of plastic flow occurred only near the impact region and in a thin zone

near the bending wave front. The remainder of the beam was found to

behave elastically.

The most iecent work dealing with flexure buckling due to impact loading

was conducted by Abrahamson and Goodier (Reference 3), who obtained experi-

mental results similar to those presented in this report. However, the

results were cnly reported for lateral deformation confined to a single

plane. Also the analytical work presented was limited to the prediction

of the flexure wave wavelength.

During 1963, Grabarek and Ricchiazzi presented experimental results

(Reference 4) For long rod impacts of mild steel rods impacting a finite

target of like material. For some of the impacts, the impact velocity was

such that penetration and perforation of the target plate occurred. At

the lower striking velocitic:,. the rod deformation of the impacted end

was obtained as a function of time. Grabarek and Ricchiazzi presented the

longitudinal plastic wiave propagation velocities and the impact duration;

however, due primarily to the length-to-diameter ratio of the rods, no

flexure deformation was obtained from the experimental results.

A great deal of work has been conducted and is in progress using

general purpose large scale elastic-plastic-hydrodyramic codes for solving
2



impact and impulsive loading problems. These large scale models employ

the governing differential equations of motion, wave mechanics, and ther-

mophysical properties of the materials, and are essentially outgrowths

of work supported by the Atomic Energy Commission (Reference 5). These

techniques have been successfully applied to predict the dynamic response

of materials as applied to problems in penetration mechanics. Sedgwick

(References 6 and 7) has also used the general purpose hydrodynamic codes

to predict the deformation for short axi-symmetric cylinders, with ogive

noses, penetrating target plates. The analytical model, CRAM, used by

Sedgwick is very similar to the code described in Reference 5. These

codes have met with little application outside of Government laboratories

oecause of the large scale computers and extensive running times required

for typical problem solutions.

Problems of symmetry dealing with the dynamic response of materials

can be modeled quite accurately using the hydrodynamic dodes; however,

the results are no better than simple knowledge of the equation of state

or stress-strain relation of the materials. This may also be generalized

to include any theoretical technique used to predict the dynamic response

of materials. In an effort to determine the dynamic stress-strain relation

for several materials, Bell (Reference 8) used diffraction grating experi-

mental techniques which permitted the optical determination of the stress-

time detail of finite amplitude wave fronts propagating into crystalline

solids whose prior history was known. These experimental diffraction

grating studies lead to the discovery that a generelited stress-strain

function results for the 27 crystalline solids considered. This stress-

strain relation for the plastic region is parabolic and of the form

3



K NFE:(2)

where K i, a constant that varies as a function of the material.

2. CURRENT WORK BEING PERFORMED

Current work is in progress to determine the dynamic response of

materials subjected to impulsive loadings. Within the Air Force Armament

Laboratory, analytical techniques are under development for predicting

fracture and spall off the back side of target plates subjected to impact

and other impulsive loads. A variation of the two-dimensional hydro-

dynamic code CRAM is being used for this purpose. Additional work is

being performed in the area of dynamic crack propagation and stress wave

propagations in ogive cylinders.

3. ELASTIC AND PLASTIC WAVES IN A ROD

Now, consider a rod of finite length that sudcenly exoeriences an

impact load. If the load is sufficient to compre!,s the material beyond

its elastic limit and the stress is maintained for a specified period, an

elastic wave of compression will travel along the rod toward the other end.

This elastic wave will be followed by a plastic wave which travels more

slowly. When the compressive stress is removed, the resulting wave of

unloading is a wave of tension and travels along the rod toward the free

end. The elastic wave travels at a higher velocity than the plastic wave

and when it overtakes the plastic wave, it reduces the amplitude of the

plastic wave. When the elastic wave that is leading the plastic wave

front reaches the free end of the rod, the elastic compression wave is

reflected off the free end of the rod as an elastic wave of tension.

When this reflected tensile wave interacts with the oncoming compressive

plastic wave, the amplitude of the plastic wave is reduced, and unloading

is accomplished. If the opposite end from the impacted end of the rod

were fixed to a rigid body, the elastic compressive wave would reflect

4



off the fixed end as a compressive plastic wave. The fixed end situation

is well represented by the driving of a spike in a hard media.

Figure 1 may be used to visualize the wave propagation. Along the

front, OA, the stress is at yield. In the region DAB, the rod is in a

plastic state. The region OBC is in the unloading region, and the

elastic unloading relations apply. When the load is released, the tensile

wave of unloading travels from the impacted end with the velocity of the

elastic wave and meets the plastic wave at some region (as illustrated

by 1 in Figure 1). The elastic wave bounces back and forth from the

impacted end to the plastic wave, initiating a complicated unloading

procedure. The time space domain in which permanent deformation occurs is

the region of OAB.

Another type of wave motion is also present when a rod is impacted

against a rigid surface. Flexure waves develrp near the impacted end

and propagate toward the free end of the roe at a velocity dependent

upon the wavelength. The elastic flexure wave velocity, or phase velocity,

is less than the logitudinal wave velocity and will never exceed the value

0.5764 E•-// regardless of a wavelength. This important property will be

discussed later and applied to the rod impact problem.

When the impact velocity of the rod is sufficiently large and the

elastic limit of the material is exceeded, plastic buckling will occur.

The plastic buckling that occurs due to the axial compressive stress will

be confined within the axial plastic compression wave. This lateral

motion that results in the plastic buckling can be induced by any one of

several factors such as:

a. A non-orthogonal impact.

b. A bent rod.

5
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c. Non-isotropic material propert.-s.

d. Stress nulses in rod induced by gun firing.

In the problem considered in this work, the lateral motion will be

induced by a moment resulting from a small obliquity at impact.

4. STATEMENT OF THE PROBLEM

The objective of the work presented in this work is to predict the

buckling mode shapes that occur when a slender rod impacts a rigid plate.

Emphasis is placed on the lateral or flexure buckling, but in order to

solve this problem, a solution of the axial deformation is necessary.

Of course, analytical work 4s confirmed and validated only when supported

by experimental work. An experimental program was conducted and is

discussed in the following chapter.

7



SECTION II

EXPERIMENTAL RESULTS

A program was conducted to obtain an experimental data base for

comparisons with analytical techniques for predicting the buckling mode

shapes as a function of time for a slender rod impacting a rigid plate.

The objectives of the experimental work were (a) to obtain the buckling

mode shapes, (b) to relate the displacement of a particle on the rod

as a function of time during the impact time, and (c) to obtain perma-

nent strain profiles from the impacted rod. Hence, the major effort of

the experimental work was directed toward capturing the rod motion during

the impact sequence for observation of the buckling mode shapes during

impact. These data were obtained with the use of high-speed photography

and flash X-ray photography, the only experimental techniques available.

Other techniques that could have been used to measure the displacement

of a particle along a rod during impact include a split Hopkinson's

Bar (Reference 2).

1. TEST PROCEDURES

One-quarter inch anc 7/16 inch diameter aluminum rods (Type 6061 T-6)

were purchased and tested using a tensile tester to determine if any

inomalies existed and to determine if any variation existed in the yield

of the material for each purchase lot. A sample test specimen was obtained

from each 20 foot rod section and was pulled to failure on a tensile

tester to establish a static stress-strain relation as well as the yield

conditions. Type 6061 T-6 aluminum was chosen primarily for the invariance

of the strain rate sensitivity property of the material.

The stress-strain relation obtained from the specimens pulled on

the tensile tester is shown in Figure 2. On the figure, the stress-strain

S~8
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relation is essentially bilinear, with a linear elastic portion, a linear
plastic section, and possibly some curvature near the yield point. A

yield stress of 42,500 psi was established, and a slope in the plastic

region of approximately 180,000 psi was determined.

Several of the aluminum rods (Figure 3) were scribed 80 lines per

inch with a fine machine tool on a lathe. These reference marks were

used to determine the plastic surface strain as a function of position

along the rod. In addition to the scribed rods, some of the 7/16 inch

diameter rods were anodized and then machined with circular rings at 1/4

inch intervals at a depth of O.G02 to 0.003 inch. These circular rings

provided reference marks for tracking with high-speed cameras during the

impact process.

Figure 4 shows the test setup and equipment. A powder chamber was

used to fire the rods from a smooth bore Mannbarrel of caliber 0.30 for

the 1/4 inch rods and of caliber 0.50 for the 7/16 inch rods. A plastic

pusher plug and a Celotexegas seal were used to push the rod along the

barrel. The rod velocity was controlled by adjusting the amount and type

of powder used during firing. Several types of cameras were used to

capture the impact phenomena: A quarter-frame Nova camera with a

nominal framing rate of 15,000 frames per second and a half-frame Fastex

with a nominal framing rate of 15,000 frames per second. The cameras were

placed orthogonal to each other as indicated in Figure 4. The orthogonal

geometry was necessary to resolve the impact geometry. A B&W 192 framing

camera was also used which has a variable framing rate ranging from 96,000

to 1,200,000 frames per second. Test samples utilizing the B&W camera

were limited to four shots because of the light problems. An argon candle

was utilized for the light source; however, the peak light intensity

necessary to illuminate the rod sufficiently for exposure on the film was

10



Figure 3. Rod Section Scribed with 80 Lines Per Inch
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not of sufficient duration to cover the impact duration. In addition,

the film strip -s limited to 72 frames. The limited film strip., coupled

with the lighting problems, does not allow observation of the rod before,

during, and after impact.

As shown on Figure 4, a grid was placed in the background of each

camera's field of view to provide reference lines for the film reader 'in

determining the displacement, impact angle, and velocity measurements.

For those shots in which X-ray photography was desired, the grid

(Figure 4) was covered with the X-ray film, and the X-ray tubes were

placed in thea positions occupied by the cameras.

Due to the time required for the cameras to reach the peak framing

rate, a delay system was constructed using the camera signal to fire the

gun. The gun was placed about 15 feet from the target plate to allow the

angle of impact to vary from the orthogonal position so as to observe the

effect of impact angle on rod deformation. Initially, some difficulty

was experienced in stabilizing the rod during flight, but this was over-

come by proper gun placement and using a pusher plug behind the rod.

2. FINAL MODE SHAPES

Figures 5, 6, and 7 show some typical final mode shapes obtained for

6, 12, and 18 inch rods that had impacted a rigid plate at various veloc-

ities at or near orthogonal impact geometries. The impact geometry and

velocity control the type of mode shape obtained from the tests. Three

distinct types of mode shapes were obtained: sinusoidal, helical, and

spiral.

For a pure orthogcial impact of sufficient velocity, a helical mode

shape results (Figure 8). The words "of sufficient velocity" are signif-

icant because some near orthogonal impacts at low velocity did not result

in the helical mode shape. If the impact velocity had been higher, a
13
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Figure 5. Final Mode Shapes for 6 Inch Aluminum Rods of 1/4
Inch Diameter
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Figure 6. Final Mode Shapes for 12 Inch Aluminum Rods of 1/4 Inch Diameter
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helix would probably have resulted. The neighborhood of the transition

from the single plane deformation to the helical mode shape in terms of

impact velocity is not known; however, the helical mode shape is believed

to be velocity or stress dependent as well as geometry dependent.

For a near orthogonal impact of about 1 to 3 degrees off the ortho-

gonal, a sinusoidal mode shape (Figure 9) results with the lateral

deformation confined to a single plane. The 1 to 3 degree obliquity

from the normal impact seems to be sufficient to impose a moment suffi-

ciently large to prejudice the lateral motion to a single plane. Some

of the impacts of high obliquity resulted in a hook shape with consider-

able benc~ng of the rod near the impacted end. However, as shown on

Figure 10, sinusoidal motion can be seen superimposed on the bending.

If the proper combinations of impact geometry and velocity occur, a

spiral mode shape will result (Figure 11). Two spiral mode shapes were

obtained with obliquity angles of about 4 degrees. These mode shapes were

obtained for the 12-inch long rods of 1/4 inch diameter for impact veloc-

ities of 750 fps and 567 fps.

3. TRANSIENT MODE SHAPES

Figure 12 shows a single frame approximately 45 microseconds after

impact taken from an impact sequence with the B&W 192 framing camera

using a framing rate of 292,000 frames per second. The test specimen is

a 7/16 inch diameter rod, 6 inches long, with machined rings on an anodized

surface. One feature to observe from the impact (Figure 12) is the radial

expansion of the rod near the impacted end; the longitudinal plastic wave

(shown by the arrow) has advanced approximately 1.25 inches. Immediately

behind the compression wave is the development of the plastic flexure

wave that can be seen in the initial stages. The observed fact that the

18
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plastic flexure wave is contained within the plastic compression wave

allows a coupled system of differential eoritions of motion to be solved

by letting the axial equation of motion control the material flow. Since

the plastic compression wave dominates, the axial equation of motion is

first solved to determine the state of strain at the neutral axis.

Using the computed strain, the position on the stress-strain relation

is then determined, and subsequently, the slope of the stress-strain

relation is used in the lateral equation of motion for each time interval

during the solution.

Figure 13 shows a high speed film sequence of a 12 inch long rod

(1/4 inch diameter) impacting a rigid target plate at an impact velocity

of 611 fps. The vertical lines on the film sequence are the reference

marks placed in the background grid for the test setup shown in Figure 2.

A white card was placed in the lower right portion of the grid to record

the shot number, type rod, length, and other test conditions. The large

cross or "x" on the left side of the film sequence is the desired impact

point on the rigid target plate. For this particular sequence, the time

between frames is 70.5 microseconds. The earlier frames show a sinusoidal

mode shape developing, and after about 210 microseconds, the deformation

becomes more gross due to the inertia of the rod and no longer resembles

the familiar sinusoidal type observed earlier.

Figure 14 shows a flash X-ray photograph of the sinusoidal mode

shape obtained during the impact. Superimposed shadows exhibiting

transient mode shapes and deformations can be seen for three distinct

time intervals during the impact.

Figure 15 shows a sequence of high-speed photographs exhibiting a

helical mode shape for the orthogonal or near orthogonal impacts. This

23
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Figure 13. Sequence of High Speed Photographs Showing Predominate

Sinusoidal Mode Shape During Initial Frames, Developing
Later into More Grossly Deformed Shape. Time Between
Frames is 70.5 usecond for 12 Inch Rod Impacting at
611 fps
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Figure 15. Sequence of Photographs Showing 12 Inch Rod Impacting at
632 fps and Exhibiting a Helical Mode Shape. Time Between
Frames is 64 vseconds
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particular 12 inch long rod impacted at 632 fps and near the orthogonal

position.

A spiral mode shape occurs when the rod impacts at a obliquity angle

of about 4 degrees as shown by the sequence of photographs on Figure 16.

The impact velocity for this rod was 750 fps, and the time between

frames is 65 microseconds.

4. ROD FAILURES

Rod breakup as typified by Figure 17 was experienced when the rod

impact velocity was high (on the order of 850 fps and greater) and the

angle of obliquity was greater than 2 degrees. A shear failure caused

by the excessive axial inertial load is experienced immediately behind

the first flexural wave. Table I gives the failure conditions obtained.

TABLE I

ROD FAILURE CONDITIONS FOR 1/4 INCH DIAMETER ALUMINUM RODS

Shot No. Rod Length 2mpact Velocity Obliquity Angle
71nches) (fps) (Deg)

2 12 1008 4

3 18 895 4

4 18 1051 3

5 12 845 2

6 6 1000 3

16 6 1030 10

5. AXIAL DEFORMATION

The length of the rod has been obtained as a function of time by

tracking the free end of the rod during the impact process with the aid

of a film reader, These transient axial deformation data are shown in

Figures 18, 19, and 20 for 6, 12, and 18 inch long rods (1/4 inch

diameter). The instantaneous rod length L is normalized with the original
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Figure 18. Instantaneous Rod Length for 6 Inch Rods of 1/4
Inch Diameter.
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Figure 19. Instantaneous Rod Length for 12 Inch Rods of 1/4
Inch Diameter.

32



1.0

.90

1051 FPS*

*ROD FAILED

0 50 100 150 200

TIME (psec)

Figure 20. Instantaneous Rod Length for 18 Inch Rods of 1/4
Inch Diameter.

33



rod length Lo and is plotted as a function of time. On Figure 18, the

point of zero slope represents the time at which plastic deformation is

arrested; note that the plastic deformation ceases after 75 to 100

microseconds, depending upon impact velocity. The theoretical plastic

loading time is not easily computed, but if the loading time is assumed

to be the time required for the elastic wave to reach the free end of

the rod and return to the impacted end, this time is 61.5 microseconds.

This compares to a loading time of 75 microseconds for a 388 fps impact

velocity as determined by observing the film. Figure 18 also shows a

slight increase in the rod length at the latter times, indicating the

rod is bouncing back from the plate. Figures 19 and 20 show the length

of the rod as a function of time for 12 and 18 inch rods, respectively.

The plastic loading time is more difficult to obtain from Figures 19 and

20, but for the 12 inch rods, this time ranges from 110 microseconds to

155 microseconds, depending upon impact velocity.

In most instances, the exact time at which impact occurred is diffi-

cult to obtain. Most frequently, the impact occurred between frames, and

in order to establish the impact time, the terminal velocity and framing

rates must be known. Hence, some error is introduced in ettablishing the

time at which impact occurs, as well as errors introduced by the position of

the particle from the film reader. Indications are that the accuracy of

the film reader is approximately 0.02 inch; however, due to the motion

of the particular particle under consideration, the resolution of the

particle on the film introduces another error.

The permanent axial deformation for all the 1/4 inch diameter aluminum

rods fired is given in Figure 21. Note that beyond an impact velocity of

approximately 670 fps the curve should be restricted to the 6 inch rod

impacts.
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Figure 21. Permanent Axial Plastic Deformation as a Function
of Impact Velocity of 1/4 Inch Diameter Rods.
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6. PLASTIC WAVE PROPAGATION

Figures 22, 23, and 24 show the longitudinal plastic wave position

as a function of time for the 1/4 inch diameter aluminum rods. From the

film, frame-by-frame measurements were made of the longitudinal wave

front as it propagates toward the free end. With the aid of a film

reader, a radial plastic deformation is evident during the initial stage

of the impact. The flexure buckling occurs later in the impact and

appears to be contained within the axial or longitudinal plastic front.

This deformation was previously seen in Figure 12 where the plastic wave

propagates up the rod. The plastic wave velocity may be obtained as the

slopes of the curves presented in Figures 22, 23 and 24. Figure 22

shows that the wave velocity is higher for the lower impact velocities,

particularly during the initial phases of the impact. This phenomenon

can be due to one of two factors; (1) the material could be strain rate

sensitive or other than bilinear (perhaps parabolic as suggested by Bell

in Reference 8), thus denoting a change in the stress-strain slope as a

function of strain rate or (2) the rod material could merely be stacking

at the impacted end for the higher impact velocities. The latter factor

seems to be more plausible since the plastic wave front was measured

from the plate. Another important observation indicates the plastic

wave front velocity appears to be independent of the rod length during the

initial impact times, but is a function of the rod impact velocity.

7. AXIAL SURFACE STRAINS

Figures 25 and 26 show the permanent plastic strain measured axially

on 6 and 12 inch aluminum rods, respectively. Prior to firing the rod,

lines were scribed at 80 lines per inch along the rod. With the aid of

an optical comparator using a magnification of 20 power, the surface strain
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Figure 22. Plastic Wave Position for 6 Inch Rods of 1/4
Inch Diameter.
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Figure 23. Plastic Wave Position for 12 Inch Rods of 1/4
Inch Diameter.
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Inch Diameter.
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was measured along each rod. Using 2C-- ne increments, corresponding

to 0.25 inches for the undeformed rod, the rod length per 20-line

increment was measured and the deformation was determined per each 20-

line increment.

Initially, the most impressive feature is the gross variations of

strain along the rod. However, it should be realized that the surface

strain in a single axial direction has been measured. If the rod were

rotated about its neutral axis and the strains were recorded by several

axial readings and averaged, a smoother curve would result; this will be

shown later when the average strain at the neutral axis is compared to

the analytical results. Actually, the curves shown in Figures 25 and 26

show a large amount of quantitative information about the rod. The peaks,

or points of relative maximum strain, occur where the axial compressive

strain due to the axial inertia load is reinforced by the bending moment

produced by the flexural wave. The points of relative minimum strain

represent the peak of the mode shape where the compression due to the

axial inertia is relieved by the tensile bending moment produced by the

flexural wave. The intersection of the strain curves with the axis gives

the arrest position of the plastic wave.

8. SUMMARY OF EXPERIMENTAL RESULTS

The experimental work conducted provided the following conclusions:

(1) High-speed photography is the most effective method of obtaining

dynamic data concerning the transient mode shapes, plastic wave propa-

gation velocities, and displacements.

(2) The associated flash X-ray technique provides an excellent tech-

nique for observing the deformation at a maximum of three discrete time

intervals. But the technique does not provide continuous observation

over the entire impact duration.
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(3) Impact geometry plays an important role in determining the

deformation mode shapes. An orthogonal impact with impact velocities

greater than approximately 750 fps yields a helical mode shape. If

there is a slight obliquity of 1 to 3 degrees at impact, the lateral

deformation is confined to a single plane with a sinusodal type mode

shape resulting. For oblique impacts on the order of 3 to 6 degrees, a

spiral mode shape can occur for a rod having a high length-to-diameter

ratio and for impact velocities greater than approximately 500 fps.
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SECTION III

DEVELOPMENT OF THE EQUATIONS OF MOTION AND
MATERIAL BEHAVIOR

In this section, the principle of virtual work will be used to

develop the equations of motion to include axial, lateral, and rotary

inertia for a material whose stress-strain relation is nonlinear.

Acting on the rod is an axial force P and a bending moment M. Figure 27

illustrates the forces and moments acting on a differential element of

the rod along with the displacements and the rotation of the element.

1. THE PRINCIPLE OF VIRTUAL WORK

Consider a system which has been 1,ci n i finite number of degrees

of freedom. Further assume the applied forces val ryntiruously with

system displacements and that all differential eqLaions describing the

system constraints can be integrated. For such a system, the principle

of virtual work states that a necessary and sufficient condition for

equilibrium is:

6W = 0. (3)

The principle of virtual work (6W = 0) yields the conclusion that, for

a mechanical system to be in equilibrium, the components of the general-

ized force must vanish.

Referring to Figure 27, consider a displacement u in the axial

direction, a displacement y in the lateral direction, and a rotation of

the differential element through an angle p. For a differential element

dx, the differential work produced by the bending moment M and the axial

force P is:

dW = M d + P du (4)
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Figure 27. Differential Element of Rod Showing Displacements,

Forces, and Moment
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The work produced by the inertia forces is:

dW- PA(at--u + 2 Y) + il (5)

The work produced by the external forces that are assumed to act

on the impacted end of the roe is:

WF Fy y(O) - Fx U(O) (6)

Integrating over the total length of the rod, the energy expression

becomes:
L

W f (MU + PiU- + pA(•_. u t.y y)) dx +

0 ax x at 2  at 2

L

pIL-4 dx-Fy y(O) - Fx u(O) (7)

Now, denoting the derivatives with respect to x as primes and

considerIng virtual displacements, the following expression results:
L

6W f [M6t' + P~u' + A(3 Sy + au 6u) dx +
I at 2  at 2

0 L

J [pI•- *]dx - Fy 6y(O) - Fx 6u(O) (8)

0
Intergrating Equation (8) and applying the principle SW = 0, the

following expression for the virtual work results:

SW MSy'(L) - My 1(0) + ( " - pI + Sax at2aX y0 +

2M l.-) 6y(L) + (P - Fx) 6u(O) + P 6u(L) +

ax + Ft)

EfL (2 I;y+pAý!L) dx y +
aX2 at 2 ax 2  at 2

0
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L
;U ;

[ (•A•-•- •) dx] Su =0 (9)
0

For the expression in Equation (9), the components of the

generalized forces must vanish independently, resulting in the

equations of motion and the boundary conditions.

In the interior of the rod, the following equations of motion hold:

2 u ;I y + P- - 0 (10)

At the boundary x = 0, the impacted end, the boundary conditions are:

M = 0 (12)

P - Fx = 0 (13)

am M pIa;y + Fy = 0 (14)

At the boundary x = L, the free end, the boundary conditions are:

M= 0 (15)

P =0 (16)

ax " at ax (17)

Note that in Equations (10) through (17), the equations of motion

and boundary conditions for the rod, that the bending moment M and the

axial force P appear. The boundary conditions are those of a free

rod and allow deflections and rotations at both the impacted end and
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the free end. The moment vanishes at both boundaries. At 'he impacted

end, the axial force in the rod is balanced by the axial forcing function,

and the rotational forces are balanced by the lateral forcing function.

At the free end both the axial and rotational forces vanish.

2. RELATING THE AXIAL FORCE P TO A DEFLECTION u

The relating of the axial force in the rod to an axial deflection

is quite straightforward. Since a bilinear stress-strain relation was

obtained from the tensile tests, the relation shown in Figure 2 will be

utilized. However, the theory developed herein is oasily applied to

any stress-strain relation. Consider the equations for the stress-strain

relation as follows:

a = Ee for E<C. (18)

o = Eco + a(c - E.) for E_>% (19)

au
By definition s =-j and since a = P/A the following relations

result:

P = AE au for c<co (20)

P = [Ec + d (•x- c.)] A for o>e (21)

Also, the following derivatives hold:

-= AE2 for c<€o (22)

~2
ax•

7= Ao -X2 for _>co (23)

Equations (22) and (23) differ only by the relations E and a, the

slopes of the elastic and plastic portions of the stress-strain
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relation. Equation (23) can be taken as the general expression relating

the axial force to an axial deflection; in which case, a merely becomes

the slope of the stress-strain relation for both elastic or plastic

deformation and for any general stress-strain relation.

3. RELATING THE MOMENT TO A LATERAL DEFLECTION y

To relate the bending moment M to a lateral deflection y, a bilinear

stress-strain relation is empleyed. In addition to the stress-strain

relation, the assumption is made that the plastic buckling occurs within

t;ie axial plastic compression waves. Assuming the rod has failed due to

the axial plastic compression, now consider the superimposition of a

bending moment. Figure 28 shows a cross-section and a stress profile of

the rod. Also shown is the compressive stress cc at the neutral axis

which is the excess stress beyond the yield stress a.. The rod section

is considered in two sections; above and below the neutral axis X-X.

When a positive moment is applied, an additional plastic stress is expe-

rienced in the upper section of the rod and increases with slope 8. The

lower section of the rod unloads elastically with slope E. The problem

becomes one of finding the neutral axis X-X that satisfies the condition

of equilibrium as follows:

fo dA =0 (24)

Now

S02
a= •1 and o =..... (25)

From the equation of equilibrium (Equation 24),

2 11n dA~~ 2z 17 id (26)
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Ey-2 =0 1 (27)

Equation (27) is essentially a statement of static equilibrium,

which states that there is an axis X-X, in which the stresses do not

change. Also, the moment of inertia about X-X is as follows:

I 1 + 12 (28)

The bending moment becomes

M = fndn =2- +a2 + 1 (29)

The radius of curvature 32y, is introduced:
DX2

M = - (0I + El2 ) (30)
;x2  1

Equation (30) holds for the elastic as well as the plastic moment.

For the elastic motion, 8 becomes the elastic modulus E and I I + 12

equals I, where I is the moment of inertia about the gravity axis.

4. THE EQUATIONS OF MOTION1'

Substituting the expressions for the axial load P and the moment M

into Equations (10) through (17), the following equations of motion and

boundary conditions result:

(a) In the interior of the rod,

(E 2 + 1I1) 4 - p1 -@•t + pA 2-t 0 (31)2ax ax ati, at2

a2u a2U p-
32U-_P -OU (32)
aX2  at2
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(b) At the boundary x 0,

D- Fx (STRAIN) (33)

- 3X2= (MOMENT) (34)

(El2 + a x 01 3y y 0 o(35)

(c) At the boundary x =L,

Tu- 0 (36)

•Y= 0 (37)

(El 2 + 0 1) pl = 0 (38)@x• at2 ax

of () axO t i t r Wax F =034

The axial and lateral equations of motion are coupled through the

dynamic stress-strain relationship which involves the variable 0, which

is the slope of the stress-strain relationship for both the elastic and

plastic wave propagations. Equations (31) and (38) must be solved as a

system, along with the equations of material behavior. Since the strte

of stress is a uni-axial state and the plastic buckling is contained

within the plastic compression wave, the axial equation of motion w4 11 be

used to determine the axial strain, stress, and hence the slope of the

stress-strain relation 0.

5. MATERIAL BEHAVIOR

Transverse shear was not included in the equations of motion, and

though it could have been easily introduced the inclusion would cause

the plasticity theory to be more complicated. Therefore, in the

interest of obtaining a solution within a specified time, this shear
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has been omitted; however, the work could be extended to include the

addition of transverse shear.

Figure 29 illustrates the flow theory that was utilized. Consider

a uni-axial state of stress. The stress-strain relation may be expressed

as

c = C/E + cp + Aep (39)

Where e is the total strain, ep is the plastic strain, and Asp is the

plastic strain increments due to the current increment of loading for

a specified small increment of time At. The plastic strain increments

are related to the stresses through the yield criterion and the

associated flow rule. For the uni-axial state of stress, the Prandtl-

Ruess flow rule can be avoided, and the partial differential equations of

motion with the boundary conditions along with the stress-strain relation

and the yield criterion form the necessary relations. In addition, the

constant volume theory for plastic strain holds, which implies the

material flows radially.

The problem solutions are carried out in increments of time as small

as 10"7 second. First, the differential equations of motion are solved

with the appropriate boundary condition having an assumed stress-strain

slope 0. Of course, to start the problem, the elastic slope is used for

each position evaluated along the rnd. From Equation (32) and the

boundary conditions, an axial displacement u is computed for each particle

along the rod. Then, a strain and a stress are computed. A test is made

to determine whether the yield stress is exceeded for each particle along

the rod, and if not, the elastic modulus E is used for the next in:rement

of time At. If the yield stress is axceeded, the slope of the stress-
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strain relation is then determined ane used in the equations of motion

for the next increment of time.

6. SUMMARY

The elastic-plastic problem for buckling of long slender rods has
been formu'iated. The naterial characteristics will be utilized by

the stress-strain curve and applied by utilizing both elastic and
Plastic regions subject to the plasticity flow rule and constant
volume cited previously. The following s-ection will illustrate the
technique used for solution of this problem.
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SECTION IV

NUMERICAL. TECHNIQUES

Two numerical techniques were utilized to solve the equations of

motion and material behavior. The finite difference method and

Galerkin's method were used to provide solutions to the system of

Equations (31) and (39). Galerkin's method provides a somewhat

"continuous" solution along the spatial coordinate. In contrast, the

finite difference technique offers a discrete solution in which the rod

is treated as a system of discrete nodal points with the solutions being

determined for each nodal point.

1. THE FINITE DIFFERENCE TECHNIQUE

The rod continuum is represented by a discrete number of nodal points

(Figure 30) and solutions are sought for each nodal point for each time

interval. The deflections at each nodal point must be considered as well

as other parameters normallw assumed to be constant for a pure elastic

problem but which are also changing. Also the strain, stress, slope of

the stress-strain relation, rod cross sectional area, arid moment of inertia

must be determined for each nodal point and at each time interval. Thus,

another degree of nonlinearity is introduced into the problem; however,

these changes in the geometric and mechanical properties of the rod can

be handled effectively by a finite difference technique. It should be

noted that the solutions for the deflections at the nodal points are

interpreted to be deflections at the neutral axis of the rod.

In preparation for replacing the differential eauations with finite

difference approximations, forward, backward, and central difference

relations were investigated for each disc, ate nodal point. Due to the

boundary conditions, the most direct approach for obtaining a solution
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results when a mixture of forward, backward, and central differences

are used, depending upon the nodal point under consideration. At the

boundary point x = 0, forward differences were used to approximate each

derivative with the exception of the second partial of the lateral

deflection y with respect to x. At the interior nodes, central differ-

ences are used exclusively to obtain accuracy on the order of h2 . For

the remaining boundary point x = L, the partial derivatives are approx-

imated with backward differences with the only exception being the

second partial derivative of the lateral deflection y with respect to x.

Consideration was given to the possibility of using central differences

only at all nodal points in order to maintain accuracy of the order hl,

but after the resulting expressions were examined, it was discovered

that the resulting underconstrained system of differential equations

gave more unknowns than equations. Solution of the underconstrained

system could be obtained by "shooting methods;" that is, make an

assumption of the value of the variables that lie outside the domain

and the boundary of the rod and iterate until the assumed values satisfy

the finite difference expressions. In essence, a boundary value problem

is avoided by the proper selection of an approximating expression for the

partial derivatives at the boundary points.

Now, consider approximations to the partial derivatives in Equations

(31) through (39) at each nodal point in Figure 30. Defining the distances

between the nodal points as h results in the forward difference expressions:

Yi+l - Yi + O(h) (40)

xi h

ay 2 Yi+2 2 yi+l + Yi

;x2 i h2
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3_Y-) Yi+3 - 3 Yi+2 + 3 Yi+l -Yi (42)
ax, h3

f 4Y) Yi+4 - 4 Yi+3 + 6 yi+2 - 4 Yi+l + yi(43)

Using central differences results in the following approximations:

Yi+l - Yi-l + O(h2 ) (44)axi 2h

2 Y i-l - 2 Yi + Yi+l (45)

Yi22 + 2 Yi-l 2 Yi+l Yi+2
a•). , -, (465+ i+

qx3  2h'

S Yi-2- 4 Yi-l + 6yi -
4 Yi+l +yi+2rx• 4 • - (47)

The backward difference expressions are given as follows:

i' Yi i-h + O(h) (48)

SYi " 2 Yi-I + Yi-2 (9

ax i h 2

3 Yi -3 Yl- + 3 Yi-2 Yi-3Zx) i• . .. ;t (50)

4- 4 Yi-l + 6 Yi-2 4 Yi-3 + Yi-4
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Similar expressions may be obtained for the derivatives involving

the deflection u. Now consider the equations des-ribing the motion at

the boundary and interior. Finite difference expressions for these

equations are obtained with the aid of forward, central, and backward

difference expressions.

a. Axial Motion

Now to express finite difference relations for the axial

equation of motion, the following is repeated.

At the boundary x = 0, or nodal point 1, the equation is

au.._ Fx
au F(52)

When forward differences are used, Equation (52) becomes:

u2 - u . Fx
h - xAIB (53)

At interior point 2, the expression is

alu alu
- 3 aX2 + p = 0 (54)

Using central differences,.Equation (54) becomes:

-2 (u1 - 2 u2 + u3)/h 2 + PU2 = 0 (55)

Rearranging Equation (55) and eliminating u1, with EQuation (53),

gives

u = 2 Fxh u2 + u3) (56)2 ph 2 "Al•l 60



At all other interior points, except L-l, the value for ui is

.ui - h"B (ui-l - 2ui + ui+l) (57)

At the boundary point x = L, the strain vanishes, so

au
a-•= 0 (58)

Using backward differences, the result is

UL =uL.l (59)

Now at the interior point L-l, the following holds:

I L- i(U u (60)
L-1 ph'2  L-2 - L-l

Where u L has been eliminated with the aid of Equation (59).

The result is L-2 differential equations with L-2 unknowns which

can be evaluated by numerical methods. The deflections at the boundary

puints x = 0 and x = L may be determined from the algebraic expressions

at x = 0 and x = L, respectively.

b. Lateral Motion

Applying the same procedure for the lateral motion as for the

axial, at the boundary x = 0 or at node 1 the following partial differ-

ential equations apply:

5 61

"-, ' U - . . . . . .



=0 (61)
Dx

2

(El 2 + $I- PI a y = 0 (62)

Applying central differences to the moment equation:

YO - 2yI +y2 = 0 (63)

Now applying forward differences to the derivativw LL and

9x
3

central differences to ax in the force balance Eouation (62). the

following expression holds:

(E12 + 1l)l(y4 - 3y3 + 3y2 - yl) - _L (Y2  Y_- "

F y = 0 (64)

Eliminating y0 from Equation (64) with the use of Equation (63),

the following expression holds:

"___ (El 2 + Bll)l(y4 -3Y3 + 3y 2  yl) (65)

Y2 -Y" pI h pll

At the node 2, the following holds:

- 1 2ý2 + 3 ) + pAy 2

(E12 + K l)h( 4 2 (yo - 4Yl + 6Y2 - 4Y3 + Y4 ) (66)
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Eliminating yo with the aid of Equation (63), the following

differential equation of motion results for node 2.

[- -P(y 2Y2 + Y3) + Y2

S(EI 2  4I)2(- 2y, + 5y 2 - 4y3 + y4 ) (67)PA2h• Y y

Now, at all other nodal points, except node L-l, the following

finite difference expression holds:

I' (Y'i- 2y/i + Yi+l) YiAih'

(E12 + Il)i

pAih 4  (yi- 2 - 4yi- 1 + 6y' " 4Yi+l + Yi+ 2 ) (68)

At the nodal point L-l, the follow-Ing holds:

'IL- 2(L-2 - 2YL- + YL-:
AL-lh 2  -

(El2 + BLI)L.I(YL.3 - 4YL-2 + 5YL-l - 2YL) (69)
PAL- l h

At the boundary x = L, the moment eqoation YL-1 - 2YL +

YL+ - 0 is used to eliminate YL+I in the force balance equation giving:

"" (El 2 + 8II)L (YL - 3YL-1 + 3YL-2 + YL-3) (70)

PILh2
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Now L second-order coupled differential equations result with L

unknowns, and with the use of numerical techniques, the lateral

deflections at each nodal point may be determined. In matrix notation

the.system may be represented by the followiLt:

[A] {Y} = [B] {y} + {Fy(t)}

In Equation (71) the [A] matrix is a tri-diagonal matrix, with

the [B] matrix containing four non-zero elements in each row and four

non-zero elements in each column, except the first and last column.

2. GALERKINIS METHOD

Galerkin's method is based on the idea of minimization of errors by

orthogonalizing with respect to a selected set of trial functions. The

first step is to choose a trial solution which contains undetermined

parameters or functions. For the rod impact problem, trial solutions

of the following form are selected:

N
u(x,t) = F= fk(t) *k(x) (72)

k= 1
N

y(x,t) = L gk(t) Yk(x) (73)
k=l

Where hk(x) and Yk(X) are known functions and fk(t) and gk(t) are

functions to be determined. The trial functions must satisfy the

forced boundary conditions at x = 0 and x = L. If some of the end

conditions are natural or free, as is the case for the impact problem,

the boundary terms must be added to the minimization. Defining an

equation residual as R(x,t) and applying Galerkin's technique give
L

J Rk(x,t)hk(x)dx + Bo = 0 (74)
0
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Where R(x,t) is obtained by substituting the trial solutions into

the equation of motion (Equation 32) and equating the result to

R(x,t):

R(xt) = (8 .- P• u(x,t)
ax2  at

Bo represents the boundary terms. An equation residual is likewise

obtained for the lateral equation of motion and may be expressed:

e(xt) = [(El 2 + 011) .x-- - pl + pAt-.L- y(x,t)

Now, consider the boundary terms. For the axial equation, the

minimization leads to the following expression:

L L
fR(xt)hk(x)dx + A00k(x)a-Jx ,t)I - Fx~k(O) = 0 (75)
00

Adding the boundary terms to the lateral equation gives

e(x,)Yk(x)dx + (El 2 + ) Y Y Yk(X) I +

ax k~x)) ;X D = 0 (76)
0

atl a•'x Ykx) 0o - Fyyk(O) = 0 (6

Performinq the indicated integrations and other operations for

Equations (75) and (76), a coupled system of second order ordinary

differential equations result and can be expressed in matrix form as

[C] {f} = [D] {f) + {Fx(t)} (77)
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[F] = [G] {g} + {Fy(t)} (78)

Where the matrixes [C], [D], rF] and [G] are N by N, with N being the

number of terms in the finite series approximations for u(x,t) and

yAx,t). The two systems given by Equations (77) and (78) appear to be

independent at first notice, but they are coupled through the stress..

strain relation, and the numerical technique used to solve for the

solution components for fk(t) and gk(t) must consider the coupling

effects. Once the fk(t) and gk(t) are determined, the deflections are

obtained from Equations (72) and (73). One might note that the strain

at a point of interest may be obtained by merely taking the partial

derivative of u with respect to x. Also the velocity components of the

particles are obtained from the solutions for gk(t) and fk(t) by using

fk(t) and gk().

The selection of the appropriate trial functions for 4k(x) and

Yk(x) present problems for the rod impact problem because of the boundary

conditions. Observing the experimental results obtained, the first choice

for a trial function would obviously involve a sine or cosine function.

Several trial functions were investigated with varying degrees of success.

The most successful trial function for the axial motion was determined

to be

@k(X) = 1 + (-l)k sin [(2k - 1) Trx/2L] (79)

Equation (79) satisfies all of the free boundary conditions. The properties

of *k(x) are such that 30 vanishes at x = L, implying the strain vanishes
Ox-

at the free end, and 80 does not vanish at x = 0 where the strain is a
ax

maximum. Also, Pk(x) does not vanish at x = 0 and x = L, thus implying
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the rod is free to move axially at the impacted end as well as the free

end, hence satisfying the free boundary conditions.

The proper choice of a trial function for the lateral deflections

proved to be troublesome, with the free boundary conditions being the

most difficult to satisfy. Finally, the trial function as given by the

following equation offers a limited degree of acceptability:

Yk(x) = 1 - Yox/L + y1 sin (k7rx/L) (80)

Where yo0 and y are amplitude constants. Note that Yk(X) vanishes at

the boundary x = L for y0 = 1, implying the lateral deflection is

zero, therefore, a violation of the free boundary condition occurs at

this point. However, this violation is minor, considering the fact that

the only deflection at the free end is elastic. Another trial function

used with some success, but again a violation of the free condition at

x = 0, the impacted end, is

Yk(x) = Yo sin[(2k -i) rx] (81)

Where y0 is still an amplitude constant. The function given in Equation

(81) performed nicely about two diameters from the impacted end. For

the orthogonal impact,the function given by Equation (81) would be

preferred since no lateral deflections are possible at the impacted end.

In addition to the conditions on hk(X) and Yk(X), there are conditions

on fk(t) and gk(t) that must be satisfied. So far, no restrictions have

been placed on fk(t) and gk(t); that is, u(x,t) and y(x,t) satisfy the

boundary conditions through 0k(x) and Yk(x) for all t. Since the

following initial conditions hold:
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ru(x,O) : u(x,O) : 0 (82)

y(x,O) = y(x,O) = 0 (83)

The implications are,

f(O) = f(O) = C (84)

g(O' = g(0) = 0 (85)

Equations (84) and (85) state that the deflectiors and the velocities

of a particle along the rod are zero initially when the forcing function

is applied. When the problem is considered as a pure impact problem,

the forcing function is not appli'id, but each partic!p in the rod is

gi',en an initial velocity equal to the impact velocity. Thus, the

initial conditions become,

u(x,O) = vo (86)

&(x,O) = v0 sin e

Where 6 is the obliquity angle at impact.

3. FORCING FUhCFIONS

By application :f Newton's Low for a force ucting on a particle,

the forcing furctions can be determined for any desired shape. Newton's

Law simply reduces to the statement that the time rat- of change of

1inear momentum is equal to the impulse, thus

T

fF(t)dt = "-Ft dt = rrv (88)

0 0
WIere T is the impact durdtion, and v0 is the impact velocity. The
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assumption is m'ade that the velocity compor.nt resulting from the

elastic bounce-back from the plate may be ignored.

Four types of forcing functions were considered as illustrated in

Figure 31. The trapezoid, rectangular, and parabolic forcing functios

were used with the finite difference technique, and the sinuscidal

forcing function was used with Galerkin's technique along with the

other three forcing functions. Since the area L",Y$•-" each of the curves

in Figure 31 is the ci'inge ,n momentum, or sinmply •ie product m vo, the

forcing functions may be determined by application of Equation (88).

The best overall results for predicting the displacement of a

particle as a function of time was obtained by usinq the trapezoidal

forcing function. However, during the 4nitial ti.: after impact, the

rectangular forcing function gave the better results. A comparison

between the fcrcing functions is presented later in this report, when

the comparisi.-.s between the analytical and experimental results are

discussed.
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Figure 31. Forcing Function used in Analysis.
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SECTION V

THE COMPUTER PROGRAMS

Two computer programs were written, one for the Galerkin's technique

and one for the finite difference method. An algorithm was first written

for Galerkin's method, but the results usina the method did not meet with

the desired expectations, so the finite difference technique was employed

with better results. Basically, the two algorithms are similar with each

having an integration, a derivative, and a linear system subprogram in

common.

1. ALGORITHM FOR FINITE DIFFERENCE TECHNIQUE

Figure 32 shows the program flow for the finite difference technique.

The computer program contains a main program; a Runge-Kutta, or predictor

corrector, integration algorithm; a derivative subroutine; a linear

simultaneous equation subprogram to solve for u and y using gaussian

elimination; and an output subroutine.

The main program is divided into two parts (Figure 32). The first

part of the program reads the input data, such as rod length, diameter,

impact velocity, angle, etc., and initializes all variables. Then the

Runge-Kutta integration subprogram (RUNKUT) is called to integrate the

equations of mction. RUNKUT in turn, calls a program (DERIVY) to obtain

derivatives for the algorithm, but since a coupled system of differential

equations is involved, the values of y for each nodal point must be

determined. So DERIVY develops a linear system of the for.

[A] {x} = {C0 (89)

.4here the (x} values are the {y} values, and then DERIVY calls a program
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(SIMEQ) which solves a linear system of equations for the {•} vector and

passes the solution components back to DERIVY. DERIVY then determines the

remaining derivatives and passes the derivative vector to RUNKUT. RUNKUT,

in turn, passes the displacement and velocity vectors for each nodal point

back to the main program.

The second part of the main program receives the displacement and

velocity vectors for the discrete time interval t + At and computes strains,

stresses, slopes of the stress-strain curve, areas, and moments of inertia

for each nodal point. If desired, an output subroutine is called and the

required information is printed for the time interval. A typical output is

shown in Table II for a G-inch rod for two discrete time intervals of 5

and 15 microseconds. If output is not desired, another increment of time

is added, and the program cycles through the process until the impact

duration time is reached.

2. ALGORITHM FOR GALERKIN'S METHOD

The algorithm for the Galerkin method is similar to the finite

difference algorithm as previously described. Here, RUNKUT is called upon

to provide the values of the undetermined functions fk(t), gk(t), fk(t),

and gk(t) at discrete times. Once these values are determined, the dis-

placements, strains, and strain rates may be determined. A typical output

for the Galerkin method is given in Table II for one discrete time during

the impact, Note the propagation of the wave motion for the Ga!erkin

method is not as well defined as for the finite differenue method. The

propagation of tKe elastic waves are masked by the "noise- of the technique

and hence would not be suitable for elastic wave propagation problems.
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SECTION Vr

ANALYTICAL RESULTS

Analytical results have been obtained for the approximate solutions

to the equations of motion and material behavior using the-two numerical

techniques discussed previously. In this section, the analytical results

are presented for both the elastic and plastic response of the rod, along

with the comparisons with the experimental work where appropriate. In

addition, the analytical work of this effort is compared with the work

of others when possible.

1. ELASTIC FLEXURAL WAVES

The problem of the elastic flexural wave propagation along a rod has

been solved by a number of investigators. The best surveys on the subject

are given by Kolsky in Reference 2 and by Abramson, Plass, and Ripperger

in Reference 1, which gives the phase velocity for flexural elastic waves

in a solid circular cylinder of radius r as a function of the wavelength X.

These results are given for three theories and are repeated in Figure 33

with the results of this analysis (Valentine) being presented as a compar-

ison. The elementary theory presented shows that the phase velocity in-

creases without bound as the flexure wave length A approaches zero.

Basically, the phase velocity ,s given by the following relation:

C = C 27r (4 ) (90)

0Where C 0is the bar velocity and I and A are the moments of inertia and

areas of the cross section, respectively. A somewhat disconcerting fact

is that the phase velocity tends to infinity for the very short wave

lengths; however, if a term is added for rotary inertia, as was done in

this work, the condition of infinite flexure wave spBed is avoided.
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Figure 33. Phase Velocity Comparisons for Flexu..al Elastic Wave!
in a Solid Circular Cylinder of Radius r.
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Timoshenko (Reference 9) further added a term for transverse shear

which agrees with the exact three-dimensional solution of Po.hhammer and

Love for the first mode, but a wide discrepancy occurs in the second mode.

Referring to Figure 33, the comparison of this work for the flexure wave

velocity C is given for the several thecries with the exact theory being

shown for a Poisson's ratio of 0.29 and for the first mode only. The

effects of rotary inertia and shear are unimportant if the wavelength of

the vibration mode is large compared with the cross sectional dimensions

of the rod. But the effects of rotary inertia and shear become more impor-

tant with a decrease in wavelength. The results obtained from Timoshenko's

theory show the advantage of including the transverse shear in the equa-

tions of motion or elastic flexural waves for the short wavelengths. The

results of this ana )sis include rotary inertia but not transverse shear

and are shown in F' ire 33 for an impulsively applied load for the aluminum

rods.

2. PLASTIC FLEXURE WAVES--COMPARISON WITH WORK OF ABRAHAMSON AND GOODIER

Although Abrahamson and Goodier made no attempt to predict the buckling

mode shapes, considerable work is reported in Reference 3 for the predic-

tion of the plastic waveiength of the flexure wave arising primarily from

initial transverse perturbational velocity, such as an oblique impact.

A Fourier integral transform was used to solve the lateral equation of

motion:

4W+ + a 2+ - 0  (91)

Where T is the dimensionless variable containing time and w is the dimen-

sionless variable y/k, with y being the lateral deflection and k the radius

of gyration of the rod. Abrahamson and Goodier reported their results in
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terms of half wavelength but these terms have been converted to wavelengths

to simplify the comparison with the results of this work. The results of

Abrahamson and Goodier yield the following relation for the wavelength:

A = 27(r/,)I12 (92)

Where X is the wavelength, a is the plastic modulus, and a is the stress

in the rod. Abrahamson and Goodier assumed the stress in the rod was

constant, thus yielding:

X = 17.7Jj (93)

Now, it is possible to compare the results of Abrahamson and Goodier with

the results of this wor!r (Valentine). In addition, both analytical

results may be compared to the experimental results of this work. Since

Equation (93) was derived for 18 inch rods, the results of the firings for

the 1/4 inch diameter rods of 18 inches in length (Table IV) ar- used as

a basis for comparison.

TABLE IV

WAVELENGTHS FOR 18 INCH 6061-T6 ALUMINUM RODS (1/4 INCH DIAMETER)

Shot No. Impact Velocity Average Wavelength, Inches
(fps)

Observed from Predicted Predicted
Experiments Valentine Abrahamson

9 649 1.4 0.88 1.1

602 1.15 0.94 1.1

11 540 1.06 0.95 1.1

412 1.15 1.22 1.1

252 1.50 1.64 1.1

2, 228 1.675 1.80 1.1

11 222 1.875 1.80 1.1
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While the analytical work of Abrahamson and Goodier predicts a

constant wavelength, it may be observed from Table IV that the

analytical work reported herein predicts a wavelength as a function of

the impact velocity. The constant wavwlength theory of Abrahamson is

attributed to the assumption of a constant compressive force P in the

rod, whereas the wavelengths determined by this analysis use the actual

state of stress and strain experienced at each nodal point. Hence, the

slope of the stress-strain curve is easily determined. In addition, the

axial displacements contribute toward decreasing the wavelengths. When

the flexure wave initially forms, the wavelength is longer than the

final wavelength. The axial displacements, due to the axial force, tend

to compress the wavelengths, thus accounting for the shorter wavelengths

at the higher impact velocities.

An indication of the accuracy of this analysis may be obtained by

referring to the predicted and observed wavelengths of Table IV. Note

that the theory of Abrahamson and Goodier is in good agreement with

experimental results at the higher impact velocities, but does not predict

the wavelengths as accurately as the theory developed in this work for

the lower inipact velocities.

3. STRESS AND STRAIN PROFILES

Stress and strain profiles have been determined for several impact

conditions for the 6, 12, and 18 inch rods for the forcing functions

considered in this work. Typically, the stress profiles are represented

by those of Figures 34 and j5 where a bilinear stress-strain relationship

is used. Note that the elastic wave front builds to the yield stress

as it propagates towdrd the free end. The stress remains at yield for

some distance along the rod until the plastic wave front builds near the
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Figure 34. The Distribution of Stress Along the Rod at Three Distinct
Time Intervals of 20, 30, and 40 lisec. for 6 Inch Rod
Impacts.
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Figure 35. The Distribution of Stress Along the Rod at Time Intervals
of 50, 60 and 70 psec. for 6 Inch Rod Impacts.
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impacted end. The region between the elastic wave front and the plasttcc

wave front is extremely steep as would be expected from a bilinear stress-

strain relation. As may be seen from Figure 34, the plastic wave front

moves much slower than the elastic wave front. During the first time

interval of 20 Psec after impact, the elastic wave front is 4 inches

down the rod, and at 33 psec, the elastic wave front reaches the free end

and reflects back as a tensile wave. The later time sequences show that

the compressive stress vanishes near the free end as the tensile wave

travels toward the impacted end. Also, the effect of impact velocity on

the stress profile essentially changes the magnitude of the stresses.

Strain profiles are similar to the stress profiles and are presented

to show the magnitude of the strains that may be expected for various

impact velocities. Since the stresses and strains are determined at a

point, they are presented at the neutral axis. Figures 36 and 37 show

the distribution of strain along the rod at distinct time intervals of

20, 30, 40, 50, 60, and 70 microseconds. The plastic strains are shown;

however, there is also an elastic strain similar to the previously

illustrated elastic stress, but the magnitude is such that it cannot be

illustrated on the same scale of Figures 36 and 37.

Figure 38 shows the final axial plastic strain distribution along

the rod obtained from the analytical results computed using a rect-

angular forcing function and compared to the experimental results. As

shown, the results for the strain profiles are not in good agreement

with the experimental results. Other forcing functions were investigated

to provide better agreement between the analytical and experimental

strain profiles. Figure 39 illustrates the dependence of the strain
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distributions on the type of forcing function used, thus a pure impact

solution is desirable with a two-body problem being formulated.

4. AXIAL DEFORMATION

In determining the amount of axial deformation, the length of the

rod was obtained as a function of time by tracking the free end of the

rod during the impact process. Comparisons with the experimental

results for several impact velocities are presented in Figures 40

through 42 for 6, 12, and 18 inch long rods of 1/4 inch diameter. Good

agreement is obtained when comparing the analytical and experimental

results for the instantaneous rod lengths. These results were obtained

using a trapazoid forcing function and using the finite difference

technique. Figures 40 through 42 show that the analytical model tends

to overpredict the axial deformation. This fact was observed in all of

the analytical results obtained except for the one impact velocity that

occurred at 1217 fps, where the method underpredicts the axial defor-

mation. For the high impact velocity of 1217 fps, considerable material

loss occurred near the impacted end due to fracture at high stresses

and high loading rates. The theory developed herein does not consider

fracture, internal friction, or the energy absorbed by the rod in

elevating its temperature during the impact.
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5. LATERAL DEFORMATION PROFILES

A Lagrangian formulation of the problem has been developed, and a

particle on the rod can now be followed through the time response. Thus,

the axial and lateral displacements, u and y, of any nodal point can be

followed at any time. Since it is assumed that the material flow occurs

radially, the displacement of the neutral axis is also the displacement

of the gravity axis. Also the radial material flow allows the determi-

nation of the area profile at any nodal point by the application of a

fundamental law of plasticity stating there is no change in plastic

volume.

Figures 43 through 50 show the essential analytical results of this

work, using the method of finite differences for several times during the

impact process. The last view on each figure is the final mode shape

obtained and is compared directly with the experimental rod under the same

conditions of impact geometry and velocity.

In general, the agreement between the experimental and analytical

results is good. Most of the deviation between the experimental and

analytical results occurs for the near orthogonal impacts. Note from

Figure 43 that the analytical and experimental results are not in good

agreement near the impacted end . The experimental results on Figure 43

are for an orthogonal impact with no lateral deformation at the impacted

end. The analytical profiles shown in Figure 43 were determined with a

forcing function being applied at the impacted end. In order to initiate

lateral motion, a component of the forcing function was applied in the

lateral direction as follows:

F y(t) = Fx(t) sin e (95)

Where e is the obliquity angle and Fx(t) is the forcing function in the
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Figure 43. A Sequence of Analytical Profiles for Various Time-Increments
with the Last Analytical Profile being Compared to the Experi-

mental Results for Same Conditions. Impact Velocity is 1006
fps for a 6 Inch Rod.
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TIME : 20 ý.sec

40 ;,sec

60 .sec

FINAL PROFILE 75 ...sec

EXPERIMENTAL RESULTS 850 fps

Figure 44. A Sequence of Analytical Profiles for Various Time Increments
with the Last Analytical Profile being Compared to the Experi-
mental Results for Impact of 850 fps.
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TIME 20 .sec

40 ..sec

60 ..sec

S. FINAL PROFILE 75 ..sec

EXPERIMENTAL RLSULTS 497 fps

Figure 45. A Sequence of Analytical Profiles for Various Time Increments

with the Last Analytical Profile Being Compared to the Exper-

imental Results for Impact Velocity of 497 fps for a 6 Inch

Rod.
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TIME = 25 Psec

50 Lsec

75 ,.sec

100 ý.sec

FINAL PROFILE 125 ,sec

EXPERIMENTAL RESULTS 500 fps

Figure 46. A Sequence of Analytical Profiles for Various Time Increments
with the Last Analytical Profile Being Compared to the Exper-
imental Results for an Impact Velocity of 500 fps and Obli-
quity of 2 Degrees for 12 Inch Rod.
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S~75 •sec

I~00 .sec

<•~FINAL PROFILE 125 ,.sec

EXPERIMENTAL RESULTS 374 fps

Figure 47. A Sequence of Analytical Profiles for Various Time Incre-
ments with the Last Analytical Profile being Compared
with the Experimental Results for Impact Velocity of 374
fps and Obliquity of 2 Degrees for 12 Inch Rod.
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TIME = 25 ,.sec

50 sec

75 .sec

100 ...sec

FINAL PROFILE 125 ..sec

EXPERIMENTAL RESULTS 387 fps

Figure 48. A Sequence of Analytical Profiles for Various Time Incre-
ments with the Last Analytical Profile being Compared with
the Experimenta! Results for Impact Velocity of 387 fps
and Obliquity of 0.5 Degrees for 12 Inch Rod.
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Figure 49. A Sequence of Analytical Profiles for Various Time Incre-
ments with the Last Analytical Profile being Compared with
the Experimental Results for Impact Velocity of 602 and
Obliquity Near 2 Degrees for 18 Inch Rod.
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TIME = 25 isec

S75 ý,sec
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II
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Figure 50. A Sequence of Analytical Profiles for Various Time Incre-
ments with the Last Analytical Profile being Compared
with the Experimental Results for Impact Velocity of 252
fps for 18 Inch Rod at 2 Degree Obliquity.
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axial direction. A small obliquity angle of 1 degree was used to initiate

the lateral motion for analytical profiles (Figure 43). Except for the

variance near the impacted end, agreement with the experimental results

is good.

During impact, the mode shape assumed by the rod is attributed to the

transverse perturbating conditions. Once a force is applied in the lateral

direction, the rod i: committed to failure with the magnitude of the lateral

deflection being proportional to the lateral forcing function.

Figures 44 through 50 show analytical profiles for various impact condi-

tions. These figures show that agreement with the experimental results is

better near the impacted end than as shown previously in Figure 43. The

agreement is attributed to the slightly oblique impact angles experienced

by the rods. Some of the profiles shown do not match the experimental

plastic wavelengths exactly. For the 6 inch rod impacts, the experimental

wavelengths tend to be shorter than those predicted by the analysis. For

example, from Figure 44 the average predicted wavelengths are about 20

percent longer than those shown by the experimental result. An attempt

was made to present as many types of mode shapes as possible giving some

of the profiles in good agreement as well as profiles not in good agreement.

For instance, Figure 49 shows a profile where the analytical solution

deviates from the experimental results near the impacted end.

Figure 51 illustrates an excellent example of the analytical and

experimental results compared frame-by-frame at increments of 25 micro-

seconds for a 7/16 inch rod impacting at 500 fps and at an obliquity

angle of approximately 1 degree. The upper frame on Figure 51 shows the

rod approximately 3 microseconds after impact. Directly below this first

frame is the analytical result corresponding to the next increment of time
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Figure 51. A Comparivi of the Analytical and Experimental Results on a
Frame-by-Fr6ci- Basis. Impact Velocity is Near 500 fps for 7/16
Inch Rod of 12 Inches in Length

103



some 25 microseconds latLr. The corresponding experimental "rofiles are

shown directly below each appropriate analytical profile to provide a

frame-by-frame comparison. Notice that the agreement between the experi-
mental and analytical results is excellent. In the analytical profiles,

cells are shown corresponding to the finite difference cells at increments

of 1/4 inch. The plastic deformation of the cell is also shown in the

analytical solutions, but the finite difference cells that are ahead of

the plastic deformation are not shown. It is interesting to observe the

plastic wave propagations for both the analytical and experimental results.

Figure 51 also shows the longitudinal plastic wave leading the flexural

wave. Note the radial expansion of the rod prior to any bending. Since

the camera was positioned normal to one of the axial marks scribed on

the rod, the lateral displacement may be easily seen from the motion

picture frames.

The analytical results are drawn to the same scale s che frames, and

the following procedure was utilized in presenting the results shown on

Figure 51. First the i.,ipact frames from a 16mm movie film were enlarged

to the maximum extent but not to exceed an 8 by 10 inch print. Since the

rod had rings machined at speciified intervals, a scale could be established

from the print. Thus it was determined that the print was 62% of the

actual size. The analytical results were then drawn to actual size and

reduced by a photo reduction process to 62% of actual size and compared

to the analytical results.
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6. COMPARISON OF GALERKIN AND-FINITE DIFFERENCE TECHNIQUES

Comparisons will be made between the finite difference technique and

the Galerkin method for final rrofiles with both of the techniques also

being compared to the experimental results. Figures 52 through 54 show

the final profiles obtained for the Galerkin and finite difference tech-

niques along with a final profile obtained from the experimental results.

One of the obvious features to observe from the Galerkin technique is

the single wavelength obtained from the solution, with the single wave-

length also being smpll in amplitude. Solutions from the finite difference

technique are in better agreement with the experimental results as illus-

trated in Figures 52 through 54.

The single wavelength for the Galerkin technique is attributed to

the assumed solution of the displacement function given as follows:

Yk(X) = 1 - yl(•) + yo sin (kwx (95)

Other'displacement functions viere used with varying degrees of success

but were found to predict some unacceptable displacements at the free end.

As mentioned previously, the displacement function

Yk(x) y= sin (2k-1) sin xnx (96)

gave results that were acceptable about two dia-eters from the free end,

but the function is a violation of the free boundary condition at the free

end. The function as given by Equation (96) gives a number of wavelengths

per rod and perhaps would be an acceptable displacement function for an

orthogonal impact where the impacted end does not move laterally.

The Galerkin technique, as used in this work, also overpredicts the

axial displacement. This fact was also observed with the finite difference
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GALERKIN SOLUTION

FINITE DIFFERENCE SOLUTION

EXPERIMENTAL RESULTS 697 fps

Figure 52. A Comparison of the Final Profiles for the Galerkin
and Finite Difference Techniques for P 6 Inch Rod
Having Impacted at 697 fps.
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GALERKIN SOLUTION

FINITE DIFFERENCE SOLUTION

EXPERIMENTAL RESULTS 388 fps

Figure 53. A Comparison of the Final Profiles Near the Impacted
End for the Galerkin and Finite Difference Techniques
for a 6 Inch Rod Having Impacted at 388 fps.
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GALURKIN SOLUTION

I.I-

FINITE DIFFERENCE SOLUTION

EXPERIMENTAL RESULTS 500 fps 12 INCH ROD

Figures 54. A Comparison of the Final Profiles Near the Impacted

End for the Galerkin and Finite Difference Techniques

for a 12 Inch Rod Having Impacted at 500 fps.
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technique, but to a lesser extent. The excessive displacement for the

Galerkin technique can be attributed to the fact that the nonlinearity

in geometry was not considered, i.e., the change in area along the rod

due to material flow was not introduced between each discrete time

interval during the solutions. While the displacements for the neutral

axis was determined for small intervals of time, the rod profile was

not determined until after the final displacements were computed. The

"continuous" nature of the Galerkin solution in the displacement domain

posed a difficult situation with regard to determining a continuous

area function along the rod during the impact process. However, the

discrete nodal point method of the finite difference technique allows

the nonlinearity of the material properties and geometry to be determined

easily. In addition, the Galerkin technique, as used in this work,

applies only tn a linear strain hardened material and not for an elastic-

plasti, material as used in the finite difference technique.

Mentioned was the fact that the finite difference technique overpredicts

the axial deformation. This is true for impact velocities less than about

850 fps. But for impact velocities around 1000 fps, the method is in

better agreement with the experimental results. As the impact velocity

'increases to greater than 1000 fps, the method tends to underpredict the

axial deformation slightly. However, it should be restated that displace-

ment and strain profiles may be predicted quite accurately by choosing

the proper combinations of impact duration, forcing function, and material

properties. As an example, a change in the plastic modulus a for the

material gives a final length of 5.30 inches for 8 = 120,000 psi and a

final length of 5.51 inches for a = 200,000 for a 6 inch rod of 1/4 inch

diameter impacting at 388 fps.
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This sensitivity to the changes in the properties of the stress-strain

relation leads to interesting speculations as to the influence of a rate

sensitive material. While type 6061 T-6 aluminum is insensitive, for

rates up to l03, some of the strain rates achieved were higher. The

other two variables of the problem, the impact duration and forcing

function type, could be eliminated by solving the problem as a pure impact

problem. Hence, a recommendation is made to this effect, thus establishing

the material properties as the only controls for the sensitivity of solution.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

The results of the experimental work have yielded the following observations:

a. The deformation mode shapes are sensitive to the impact geometry. An

orthogonal impact with impact velocity greater than approximately 600 fps

yields a helical moae shape. If there is a slight obliquity of I to 3 degrees

at impact, the lateral deformation is confined to a single plane resulting in

a sinusoidal mode shape. For oblique impacts on the order of 3 to 6 degrees,

a spiral mode shape can occur for high length-to-diameter ratio rods and

velocities greater than approximately 500 fps.

b. Ultra high speed photography is a valuable aid in studying the transient

mode shapes of the impacting rods.

The analytical results achieved by using the finite difference technique

have been shown to be in good agreement with the experimental results obtained

in this work. The finite difference technique yielded better results than did

the Galerkin technique. The Galerkin technique provided acceptable results

only for the large plastic axial deformations.

It has been determined that the deflections, stresses, and strains within

the impacting rod are sensitive to the forcing functions types used. In

general, the trapezoid forcing function was found to give the best results

for determining the deflection profiles. The parabolic forcing function

yielded good results when determining the strains for high impact velocities

on the order of 1000 fps.
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As well as being sensitive to the forcing functions, the analytical

solutions are sensitive to the material properties and impact durations.

By a proper combination of forcing functions, impact durations, and

slope of the stress-strain curve in the plastic region, results may be

obtained that agree quite well with the experimental results. However,

it has been found that these three combinations of parameters do not re-

main consistent over the entire impact velocity spectrum. This condition

poses a problem in the combination.

In summary, this study has made a significant contribution for pre-

dicting the dynamic response of slender rods subjected to impulsive type

loading as may occur during impact. The ar-alytical technique developed

is simple and easy to apply. A complicated coupling problem between

two differential equations of motion and the material behavior has been

solved by merely observing experimentally the wave propagations and then

allowing the dominate equation of motion to determine the slope of the

stress-strain relation. In addition, the solution presented herein greatly

greatly simplifies the nonlinearity of the problem and reduces a com-

plicated plasticity problem to an easily determined state of stress and

strain.

A contribution has also been made in the experimental work presented

herein. The fact that a helical mode shape was obtained for the orthogonal

impact leads to interesting speculations as to why this mode shape is

obtained. No previous mention of this phenomenon has beci, IFound in the

literature investigated.

2. Recommendations

Two recommendations involving additional work are worthy of mention-

ing. The first involves determining the effect of adding transverse
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shear in the lateral equation of motion. While the addition of shear presents

no particular problem in the equations of motion, the plasticity problem will

be complicated. Since the total accumulated plastic strain involves a

uni-axial strain e and a shear strain EP an equivalent plastic strainx xy'

must be determined from the plastic strain increments through use of the

Prandtl-Reuss relations.

The second recommendation, the one most easily solved, involves considering

the problem as pure impact without using forcing functions. The plate would

be included in the problem, thus giving a two-body problem with the contact

boundary of the plate and rod deserving special attention. The plate could

be modeled as a thin plate by using the plate equations or as a thick plate

by using the equilibrium equations. To start the problem, the initial velocity

of the plate would remain at zero, but at each nodal point of the rod, the

initial velocity would equal the impact velocity.
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APPENDIX

The listing of the finite difference computer program utilized

In solving the problem of the elastic-plastic response of a slender

rod impacting a rigid plate is given in this appendix. The computer

listing as given is compatible with the CDC 6600 computer at Eglin.

Listed first is the main program followed by the subprograms.
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PROGRAM INTG (INPUTOUTPUTTAPES=INPUTTAPE63OUTPUT)

C FNITE DIFFERENCE METHOD FOR COMPUTING

c LATERAL ANO AXIAL DEFLECTIONS

COMMON/ACON/B (4,4), THETA(C4)
COMMON/NAME/L
COM"ON/OUT/PI, AL, TMAX, OMEGADXRHOFXFY
DIMENSION Y(240)tF(240)
DIMENSION IJX(60) ,S(60)
COMMON AREA(60ObAMI(60),BETAC60),R(60)

C DEFINE CONSTANTS
C

P1=3.14i5926536
G=32. 172512.
RHO= 0 975/G
EPSI=0 .0045

c
C INITIALIZE VARIABL.ES
C

D0 9 1=i,4
9 ¶READ(5,iO) (8(IJ),J~i,4)

READ(5,10) (Tt4ETA(j 4,J=i,4)
2 RE-AD (5 ,03) VI TMAX, OMEGAALDXDHIFORCE

DMV =Pl#(D**2)*AL*VI*RHO*3*0
H=H~i *E-06
IF(TMAX.LT.1.0)GO TO 8

C
L=IFIX CAL/OX) +1

DO 1. J1.,L
R(J)=0/2*

BETA(J)=l*E07
UX(J)=O*0

i S(J)=O00

LL=4*L
00 3 JipLL
F(J) =0.0

3 Y(J)=.oo
WRITE(6,100) VITMAXOtIEGAALDX
bfRITE(6,i0i)DHIFORCE
OMEGA=OMEGA*Pl/i80.
TMAX=TMAX~1 .0E-0 6
T=0.0
XMAX =H

ICOUNT=0
IPRINT =5

C
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16 IFIFORCE .NE. 0) GO TO 12

L = MM.L
00 17 Ji
R(J) = 20#

17 SETA(J) 249E0?

00 is J= ?MML
Y(J) =-VI'12o0

Y(L.4L.J) =Y(J)4 SIN(OMEGA)
Y(L+L+L.4J) a 0.0
Y(L+J) 20.0
AMI(J) =PI'(D**4)/64o
AREA(J) PI#(D*#2)/4o
BETA(J) 2 £E07
UX(J) =0.0
R(J) = 0/2

18 S(Jfl = coo
FX =0.0
FY = 0.0
LL =4'L
00 21 J = ILL

21 F(J) 2 0.
GO TO 19

12 IF (IFORCE *EQ* 3) GO TO 13
IF (IFORCE oEQ. 1) FX=OMV/TMAX
IF (IFORCE *EQ. 2) FX = 3*0*OMV*(T**2)/(TMAX**3)
GO TO 14

13 T2=TMAX/jfl.
IF(T .LTs T2) GO TO 15
FX = DMV/(0995*TMIAX)
GO TO 14

15 FX = OMV*T/(0*095*TMAX**2)
14 FY = FX*SIN(OMEGA)

C
19 CALL RUNKUT(LLHTq,YFXMAXIPRINT)

C
Lti=L-1

C
Y(i) = Y(2)
YCL+i) = Y(L42) + OX*FX/CAREA(i)*BETAMl)
Y(LeL) =Y(L+LMI)
Y(L) =Y(L-i)
ICOUNT=ICOUNT+i
XMAX=XMAX+H
IF(XMAXoGT.TMAX)GO TO 20
IJX(I)=(Y(L42)-Y(Le1) ) lX
UX(L): (Y(L+L)-Y(L+LMi) )/DX
00 4 ,J2,Ltli

4 UX(J) =(Y(L+J1I) -Y(LMt4J))l(2.o*X)
BO 6 J=19L

6 SlJ)B8ETA(J)*UX(J)
00 5 J=1,LI IF (ABS(UX(J)) *LT. EPST + 0.0005) GO TO 5
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[ BETA(J) 2.0 E 05

IF EAB(J): ) 9GT. EPSI *AND, ABS(UX(J)) oLTo 0.01) BETA(J)=6.E05

IF(IFORCE .EQ. 0 *AND* J 9LE. MM) AREA(J)=PI*(R(J)**2)/(Io4UX(J))
AREA CJ)=ABS(AREA(J))
RCJ) =SORT(AREA (J) /PI)
AMI(J)=PI'CR(J)**4)/4*+ AREA(J) *CR(J)*'2)
S(J) = BETA(J)*UX(J) - 42500a

5 CONTINUE
IF(ICOUNT.EQ*IPRINT)CALL OUTPUT(TqYUXSICOUNT)
GO TO 12

±0 FORMAT (4F20.0)
100 FORMAT(1A41,X,'IMPACT VELOCITY',FiO*0,

i5X,'IMPACT OURATION',FiO.0,5X,'IMPACT ANGLE',
2F10,2,SX,*ROD LENGTH',F±O0,05Xtox',FlO.6)

10± FOR"iAT(t5Xq*ROO OIAMETER',FI006,
liOX,'INTEGRATION STEP SIZE',Fi0.7,10X,'FORCING FUNCTION*,13//)

103 FORMAT (7Fi0o0,I5)
20 CALL OUTPUT (TYUXSICOUNT)

GO TO 2
8 CONTINUE

STOP
END
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SUBROUTINE RLUNKUT(NvHgTpYtr,XMAX,IPRINT)
COMMON/ACON/B(4,4) ,THETA (4)
DIMENSION YKEEP(240)PY(240),F(240)
DIMENSION AK(24C,4)

1000±16 J:1,N

00 1 =1
CALL DERIVY (TYAK(lK))
0O 25 :niN
SUM 0.0o
00 25 J=iK
SUM =SUM+H*B(KgJ)*AK(IpJ)

25 Y(I YKEEPIl + SUM
15 T = Xi + THETA(K)*H

IF (T *LT* XMAX) GO TO £0
RETURN
END
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[ SUBROUTINE OERIVY(TYF)
COMMN/NNAME/L
COMMON/OUT/PIALTMAXOMEGADXRHOFXFY
OIMENSION A(60,60),C(60),KP(60),Y(240),F(240),ZC60)
COMMON AREA(60),AMI(60),BETA(60),R(60)

*C
C

00 10 1=1,1
00±10 J1,pL

*1.0 A(IJ) =0.0
00 It I11,L

LM2=L-2
M=L+LtL
IPi =L+i
Ci=(f0X*FX)/(AREA(I)*BETA(1))
C2=RH0'(0X**2)
F(1) =000
Ff141) = Y(l)
F(2)=(C1-Y(2+L)4Y(34L))'(BETA(2)/C2)
F(2+L)=Y(2)
00 £ 1=3,Lt1

I F(I+L)=Y(I)
F(LM1)=(BETA(LMi)/C2)*(YCL+LM2)-Y(L4LMI))
F(LMi.L)=Y(LMi)
F(L) =0.0
Ff141) =Y(L)

*C
A(191) = -C2
A(i2,2) =C2
C(l) = -FY'(0X**3)/AMI(I)+.5*BETA(i)*(Y(i4M)-2o*Y(24M) 4Y(34M))
C3=-AMI(2)/(AREA(2)*(0X*2))
A(291)=C3

* A(292)=-2.'C3+io

C(2) = C4*(-2.*Y(14M)45.#Y(2+M)-4.#Y(34M) hY(44.t))
00 2 I=3,LM2
C5=ANI(I)/(AREA(I)*OX*2)

I Mi=I-I
A(IIMI)=C5

* A(IgIPi)=C5

2 c(I)=C6*(YCI-2+M)-4.*Y(IMI+M)+6.*Y(I+M)-4.*Y(IPI+M)+Y(I+2+M))
C7=AMI(LMi)/fAREA(LMi)*(OX**2))
A(LM1,LM2)hC7

* ~A(LMILMI)=-C7*29-1.
A(LM1,L) =07
C8=BETA(LMI)*AMI(LM±)/(RHO*AREA(LMI)'(0X**4))
C(L?1±)=C8*(Y(L-34M)-4.'Y(LM2+M)+5.*YCLMI+M))
A(1,1MI) =-C2
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ACLL) C2
C(L) =(-3**Y(LMI+M) + 3**Y(LM2+M)-Y(L-3+M))*BETAfL)
CALL REOSOL ('AvZCNERKPLOT)
00 4 I1=1L

4 F(I+t4)=Y(I+LIL)
RETURN
END
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SUBROUTINE OUTPUT(TYUXSICOUNT)
COMMON/NAME/I
COMMON AREA(60),AMI(60),BETA(60),R(60)
DIMENSION Y(240),UX(6D),S(60)

C

C ICOUNT=O

M=2L+ L +
WRITE (6,102)
00 4 1=1,1

4 WRITE(6,101)TIY(I+L),Y(I+M),UX(I),S(I),YCI),Y(I.L+L),R(I)
10i FORMAT (FIS.6,8X,12,SX,3F15.6,3F12.0,4XFi.O.6)
102 FORMAT(IHO,8X9*T-ME~,9X,#NOOE NO.*96X,

itAXIAL OISPt5X,#LATERAL DISP*96X,*STRAIN~,
26X,#STRESS4,4X,*AXtAL VEL *03X,
3LATERAL VEL*92X,#RADIUS*//)
RETURN
END
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SUBROUTINE REOSOL. ft&,X1 %NER9KPqNtOT)
DIMENSIC:A A(6Oý6u) ,X(60) ,CC60),KP(6,0)
LOGICAL REDSOLOET

REO .-TRUE.r SOL .TRUE*
DET=&FALSE,
IF ( N .E~o aI GO TO 90F GO TO 5
ENTRY REOUCF
REO*T RUE.I * SOL=,FALSE@
OET F AL SE
GO TO 5
ENTRY SOLVE
REO. FALSE.
SOL=*TRUE.
BET= *F AL SE
GO TO 5
ENTRY DETERN
REO * FALSE.
SOL .FALSEe
OET .TRUE*

5 IF (RE~oORo BET) GO TO 6
GO TO 60

6 NMtI=N-1
IF(.NOT9 DET) GO TO £0
NEP 0
0T=I.
GO TO £5

C
C SET KEEPER VECTOR
C

10 00 12 =I*N
12 KP(I)=I

C
C START 00 LOOP ON Lt THE REDUCTION PR03ESS
C

15 00 50 L=19NMI
LPI=L+i
ItMX=L

C
C FIND ABSOLUTE VALUE OF LARGEST COEFFICIENT
C
20 00 21 I=LP1,N

21 CONTINUE

25 IF (IMXoEQ* L) GO TO 35
J14A
IM(ET) Ji=L

C
C NOW TO INTERCHANGE ROWS
C

00 30 J:J1,N
DUM=A(IMXgJ)
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A(IMXJV=A(LJ)

C30 A(LJ) = UM

IF (eNOTs DET) GO TO 31
DT=-DT
GO TO 35

31 IOUM=KP(IMX)
KP(IMX)=KP(L)
KP(L) = IDUM

C TEST TO SEE IF A(I1I) =0
C

35 IF(ABS(A(LL)) *LT. 1..E-25) GO TO 32
GO TO 40

C

IF(.NOT. DET) GO TO 6P0
00 55 11,~iN
OT 01vJ A(I,1)- IALJ

IF (ABSOT)(E *LT. 10 E-2) GO TO 501.
I*NT E)GO TO 55

55 5 CNINUE

IF (NERDT *LT, 1.3 RETURN T 5

GO TO 901
C
C SORT AND STORE C
C

60 00 65 W1.,N
K=KP(I)

65 X(I)= CMK
66 CONTINUE

C
C REDUCE THE VECTOR~ X
C

70 00 75 L1,tNMI
LPI=L+i
DO 75 J=LP1,N

75 X(J)=X(J)-A(JgL)*X(L)
C

7i 6 CONT IN'JE
C
C THE BACK SUBSTTTUTION PROCESSS
C

IF (A(NN) .EQ. 0.) A(NN)= 1.OE-08
80 X(N)= XCN)/A(NN)
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81 00 85 K=:INMI
L=N-K
LPI=L+÷
00 84 J=LPIPN

84 X(L) =X (L)-AfLpJ]*X(J)

85 X(LM=X(L)M/ALL)
GO TO 901

901 NER=O
RETURN

9•0 X(M = C(M/A(191)
RETURN

END

127
(The reverse of this page is blank)


