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FOREWORD

The work reported herein is a summary of both experimental and analy-
3 tical work dealing with the elastic-plastic buckling of a slender rud

: impacting rigid plates. The experimental work was initiated during

] August 1970 and was completed during June 1971, with the analytical work
E . starting during January 1971 and being completed during May 1972.

This is a jointly prepared report with Dr. Gerald D. Whitehouse of
Louisiana State University serving as the advisor, and Mr. Massey B.
Valentine of the Air Force Armament Laboratory, Strike Process Studies
) Branch, conducting most of the analyses. This report contains the results
: of a dissertation submitted by Mr. Valentine to the Mechanical Engineering

Department at Louisiana State University.

3

2 The authors would 1ike to express their appreciation to Mr. Leonard L.
F Wilson {DLRD) of the nir Force Armament Laboratory for supporting the

4 experimental work described in this report. Appreciation is also acknow-
3 lerqed to Mr. Clyde E. Wallace (DLRD) of the Air Force Armament Laboratory
1 for his assistance in conducting the test firings.

This technical report has been reviewed and is approved.
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MAS P. CHRISTIE, Director
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% SECTION I
: INTRODUCTION

TR T

An investigation was conducted into the elastic plastic response of

a slender rod subject to impulsive type loads, such as an impact of a

rod against a rigid plate. In this section, the work of other iiesti-

B al L LR

gators will first be considered, followed by a discussion of the appli-
cable work currently in progress. Then, to provide some background of
the rod impact problem, a short disciussion of elastic and plastic stress

wavas in a rod is presented followed by a brief statement o¢f the problem
to be studied and solved.

1. PRIOR WORK

1 In the nineteenth century, Stokes, Poisson, Rayleigh, Kelvin, and others

developed the theory of elastic wave propagation in solids, primarily as an
extension -of the theory of elasticity as applied to vibrating bodies.
During the first quarter of th: twentieth century, the subject of wave
propagations was neglected; later, however, interest in the subject began
to increase. During the World War II era, the problem of plastic wave
propagation in solids was considered, with the first work being independ-
ently reported by Taylor, Von Karmen, and Rakhmatulin. Onr. of the first
investigations was concerned with longitudinal plastic waves propagating
along a rod. Von Karman and Rakhmatulin treated this problem with the
aid of Lagrangian coordinates, while Taylor used Eulerian coordinates.
The fundamental result of this work is that the wave velocity for long-

itudinal waves propagating along a bar is given by the relationship

C, =\ | (1)

where B is the slope of the stress-strain relationship (elastic or plastic),

and p is the material density.
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More recently, elastic and plastic stress wave propagations, both
longitudinal and flexural, have been studied by Abramson, Plass, and
Ripperger (Reference 1). Also, Kolsky studied wave propagations and the
analytical «nd experimental results are presented in Reference 2.
Abramson's work was devoted to rods and beams, and the solution to an
elastic plastic flexure wave propagation problem was presented for a
3 beam assumed supported by a pin attached to a rigid base. A lateral
‘ impulsive load was applied to the beam, and the results showed that zones
of plastic flow occurred only near the impact region and in a thin zone
near the bending wave front. The remainder of the beam was found to
behave elastically.

The most recent work dealing with flexure buckling due to impact loading

was conducted by Abrahamson and Goodier (Reference 3), who obtained experi-
mental results similar to those presented in this report. However, the
results were c¢nly reported for lateral deformation confined to a single
plane. Also the analytical work presented was 1imited to the prediction
of the flexure wave wavelength.

During 1963, Grabarek and Ricchiazzi presented experimental results
(Reference 4) for long rod impacts of mild steel rods impacting a finite
target of 1ike material. For some of the impacts, the impact velocity was
such that penstration and perforation of the target plate occurred. At
the lower striking velocitic:. the rod deformation of the impacted end
was obtained as a function of time. Grabarek and Ricchiazzi presented the
longitudinal plastic wave propagation velocities and the impact duration;

however, due primarily to the length-to-diameter ratio of the rods, no
flexure deformation was obtained from the experimental results.

A great deal of work has been conducted and is in progress using

general purpose large scale elastic-plastic-hydrodyramic codes for solving
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impact and impulsive loading problems. These large scale models employ
the governing differential equations of motion, wave mechanics, and ther-
i mophysical properties of the materials, and are essentially outgrowths

of work supported by the Atomic Energy Commission (Reference 5). These
techniques have been successfully applied to predict the dynamic response
% of materials as applied to problems in penetration mechanics. Sedgwick

‘ (keferences 6 and 7) has also used the general purpose hydredynamic codes
to predict the deformation for shkort axi-symmetric cylinders, with ogive
noses, penetrating target plates. The analytical model, CRAM, used by
Sedgwick is very similar to the code described in Reference 5. These
codes have met with 1ittle application outside of Government laboratories

3 pecause of the large scale computers and extensive runnirg times required

for typical problem solutions.

Problems of symmetry dealing with the dynamic response of materials
can be modeled quite accurately using the hydrodynamic codes; however,
the results are no better than simple knowledge of the equation of state
or stress-strain relation of the materials. This may also be generalized
to include any theoretical technique used to predict the dynamic response
of materials. In an effort to determine the dynamic stress-strain relation
for several materials, Bell (Reference 8) used difrraction grating experi-
mental techniques which permitted the optical detemmination of the stress-
time detail of finite amplitude wave fronts propagating into crystalline
solids whose prior history was known. These experimental diffraction
grating studies lead to the discovery that a generzlized stress-strain
function results for the 27 crystalline solids considered. This stress-

strain relation for the plastic region is parabolic and of the form

s s s I YT ST AL PO

~ AT SIS SR TSI B T UL AT S RAY



TR

ooy can bl ad

mmes e “:“":Wlwm?,w'm‘;—"'.f‘z‘ﬂm‘ T TR

o K\ﬁ; (2)
where K i5 a constant that varies as a function of the material.
2. CURRENT WORK BEING PERFORMED

Current work i1s in progress to determine the dynamic response of
materials subjected to impulsive loadings. Within the Air Force Armament
Laboratory, analytical techniques are under development for predicting
fracture and spall off the back side of target plates subjected to impact
and other impulsive loads. A variation of the two-dimensional hydro-
dynamic code CRAM is being used for this purpose. Additional work is
veing performed in the area of dynamic crack propagation and stress wave
propagations in ogive cylinders.
3. ELASTIC AND PLASTIC WAVES IN A ROD

Now, consider a rod of finite length that sudcenly exveriences an
impact load. If the load is sufficient to compre:s the material beyond
its elastic Timit and the stress is maintained for a specified period, an
elastic wave of compression will travel along the rod toward the other end.
This elastic wave will be followed by a plastic wave which travels more
slowly. When the compressive stress is removed, the resulting wave of
unloading is a wave of tension and travels along the rod toward the free
end. The ejastic wave travels at a higher velocity than the plastic wave
and when it overtakes the plastic wave, it reduces the amplitude of the
plastic wave. When the elastic wave that is leading the plastic wave
front reaches the free end of the rod, the elastic compression wave is
reflected off the free end of the rod as an elastic wave of tension.
When this reflected tensile wave interacts with the oncoming compressive
plastic wave, the amplitude of the plastic wave is reduced, and unloading

is accomplished. If the opposite end from the impacted end of the rod

were fixed to a rigid body, the elastic compressive wave would reflect
4
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off the fixed end as a compressive plastic wave. The fixed end situation
is well represented by the driving of a spike in a hard media.

Figure 1 may be used to visualize the wave propagation. Along the
front, OA, the stress is at yield. In the region UAB, the rod is in a
plastic state. The region 0BC is in the unloading region, and the
elastic unloading relations apply. When the load is released, the tensile
wave of unlcading travels from the impacted end with the velocity of the
elastic wave and meets the plastic wave at some region (as illustrated
by 1 in Figure 1). The elastic wave bounces back and forth from the
impacted end to the plastic wave, initiating a complicated unloading
procedure. The time space domain in which permanent deformation occurs is
the region of OAB.

Another type of wave motion is also present when a rod is impacted
against a rigid surface. Flexure waves develrp near the impacted end
and propagate toward the free end of the rocd it a velocity dependent
upon the wavelength. The elastic flexure wave velocity, or phase velocity,
is less than the logitudinal wave velocity and will never exceed the vaiue
0.5764 4/E/p regardless of a wavelength. This important property will be
discussed later and applied to the rod impact problem.

When the impact velocity of the rod is sufficiently large and the
elastic 1imit of the material is exceeded, plastic buckling will occur.
The plastic buckling that occurs due to the axial compressive stress will
be confined within the axial plastic compression wave. This lateral
motion that results in the plastic buckling can be induced by any one of
several factors such as:

a. A non-orthogonal impact.

b. A bent rod.
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¢. Non-isotropic material propert.-s.

d. Stress pulses 1in rod induced by gun firing.

In the problem considered in this work, the lateral motion will be
induced by a moment resulting from a small obliquity at impact.
4. STATEMENT OF THE PROBLEM

The objective of the work presented in this work is to predict the
buckling mode shapes that occur when a slender rod impacts a rigid plate.
Emphasis is placed on the lateral or flexure buckling, but in order to
solve this problem, a solution of the axial deformation is necessary.
Of course, analytical work 4s confirmed and validated only when supported
by experimental work. An experimental program was conducted and is

discussed in the following chapter.
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SECTION II
i EXPERIMENTAL RESULTS

A program vas conducted to obtain an experimental data base for
comparisons with analytical techniques for predicting the buckling mode

shapes as a function of time for a slender rod impacting a rigid plate.

The objectives of the experimental work were {a) to obtain the buckling
mode shapes, (b) to relate the displacement of a particle on the rod

as a function of time during the impact time, and (c) to obtain perma-

f nent strain profiles from the impacted rod. Hence, the major effort of
the experimental work was directed toward capturing the rod motion during
{ the impact sequence for observation of the buckling mode shapes during

impact. These data were obtained with the use of high-speed photography

and flash X-ray photography, the only experimental techniques available.
Other techniques that could have been used to measure the displacement
of a particle along a rod during impact include a split Hopkinson's
Bar (Reference 2).
1. TEST PROCEDURES

One-quarter inch anc 7/16 inch diameter aluminum rods (Type 6061 T-6)
were purchased and tested using a tensile tester to determine if any
anomalies existed and to determine if any variation existed in the yield
of the material for each purchase lot. A sample test specimen was obtained
from each 20 foot rod section and was pulled to failure on a tensile
tester to establish a static stress-strain relation as well as the yield
conditions. Type 6061 T-6 aluminum was chosen primarily for the invariance
of the strain rate sensitivity property of the material.

The stress-strain relation obtained from the specimens pulled on

the tensile tester is shown in Figure 2. On the figure, the stress-strain
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relation is essentially bilinear, with a linear elastic portion, a linear
plastic section, and possibly some curvature near the yield point. A

£ yield stress of 42,500 psi was established, and a slope in the plastic

‘ region of approximately 180,000 psi was determined.

Several of the aluminum rods (Figure 3) were scribed 80 lines per
inch with a fine machine tool on a lathe. These reference marks were
used to determine the plastic surface strain as a function of position
along the rod. In addition to the scribed rods, some of the 7/16 inch
diametar rods were anodized and then machined with circuiar rings at 1/4
inch intervals at a depth of 0,002 to 0.003 inch., These circular rings
provided reference marks for tracking with high-speed cameras during the

impact process.

Figure 4 shows the test setup and equipment. A powder chamber was
used to fire the rods from a smooth bore Mannbarrel of caliber 0.30 for
the 1/4 inch rods and of caliber 0.50 for the 7/16 inch rods. A plastic
pusher plug and a Ce]otesgbas seal were used to push the rod along the
barrel. The rod velocity was controlled by adjusting the amount and type
of powder used during firing. Several types of cameras were used to
capture the impact phenomena: A quarter-frame Nova camera with a
nominal framing rate of 15,000 frames per second and a half-frame Fastex
with a nominal framing rate of 15,000 frames per second. The cameras were
placed orthogonai to each other as indicated in Figure 4. The orthogonal
geometry was necessary to resolve the impact geometry. A B&W 192 framing
camera was also used which has & variable framing rate ranging from 96,000
to 1,200,000 frames per second. Test samples utilizing the B&W camera
were 1imited to four shots because of the 1ight problems. An argon candle
was utilized for the light source; however, the peak light intensity

necessary to iliuminate the rod sufficiently for exposure on the film was
10
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not of sufficient duration to cover the impact duration. In addition,
the film strip s Timited to 72 frames. The limited film strip, coupled
with the lighting problems, does not allow observation of the rod before,
during, and after impact. )

As shown on Figure 4, a grid was placed in the background of each
camera's field of view to provide reference lines for the film reader ‘in
determining the displacement, impact angle, and velocity measurements.
For those shots in which X-ray photography was desired, the grid
(Figure 4) was covered with the X-ray film, and the X-ray tubes were
placed in th2 positions occupied by the cameras.

Due to the time required for the cameras to reach the peak framing
rate, a delay system was constructed using the camera signal to fire the
gun. The gun was placed about 15 feet from the target plate to allow the
anjle of impact to vary from the orthogonal position so as to observe the
effect of impact angle on rod deformation. Initially, some difficulty
was experienced in stabilizing the rod during flight, but this was over-
come by proper gun placement and using a pusher plug behind the rod.

2. FINAL MODE SHAPES

Figures 5, 6, and 7 show some typical final mode shapes obtained for
6, 12, and 18 inch rods that had impacted a rigid plate at various veloc-
ities at or near oirthogonal impact geometries. The impact geometry and
velocity control the type of mode shape obtained from the tests. Three
distinct types of mode shapes were obtained: sinusoidal, helical, and
spiral.

For a pure orthogcnal impact of sufficient velocity, a helical mode
shape results (Figure 8). The words "of sufficient velocity" are signif-

icant because some near orthogonal impacts at low velocity dic not result

in the helical mode shape. If the impact velocity had been higher, a
13
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helix would probably have resuited. The neighborhood of the transition
from the single plane deformation to the helical mode shape in terms of
impact velocity is not known; however, the helical mode shape is believed
to be velocity or stress dependent as well as geomeiry dependent.

For a near orthsogonal impact of about 1 to 3 degrees off the ortho-
gonal, a sinusoidal mode shape (Figure 9) results with the lateral
deformation confined to a single plane. The 1 to 3 degree obliquity
from the normal impact seems to be sufficient to impose a moment suffi-
ciently large to prejudice the lateral motion to a single plane. Some
of the impacts of high obliquity resulted in a hook shape with consider-
able bencing of the rod near the impacted end. However, as shown on
%igure 10, sinusoidal motion can be seen superimposed on the bending.

If the proper combinations of impact geometry and velocity occur, a
spiral mode shape will result (Figure 11). Two spfra! mode shapes were
obtained with obliquity angles of about 4 degrees. These mode shapes were
obtained for the 12-inch long rods of 1/4 inch diameter for impact veloc-
ities of 750 fps and 567 fps.

3. TRANSIENT MODE SHAPES

Figure 12 shows a single frame approximately 45 microseconds after
impact taken from an impact sequence with the B&W 192 framing camera
using a framing rate of 292,000 frames per second. The test specimen is
a 7/16 inch diameter rod, 6 inches long, with machined rings on an anodized
surface. One feature to observe from the impact (Figure 12) is the radial
expansion of the rod near the impacted end; the longitudinal plastic wave
(shown by the arrow) has advanced approximately 1.25 inches. Immediately
behind the compression wave is the development of the plastic flexure

wave that can be seer in the initial stages. The observed fact that the

18
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plastic flexure wave is contained within the plastic compression wave
allows a coupled system of differential earitions of motion to be solved
by letting the axial equation of motion contrgl the material flow. Since
the plastic compression wave dominates, the axial equation of motion is
first solved to determine the state of strain at the neutral axis.

Using the computed strain, the position on the stress~-strain relation

is then determined, and subsequently, the slope of the stress-strain
relation is used in the lateral equation of motion for each time interval
during the solution.

Figure 13 shows a high speed film sequence of a 12 inch long rod
(1/4 inch diameter) impacting a rigid target plate at an impact velocity
of 611 fps. The vertical lines on the film sequence are the reference
marks placed in the background grid for the test setup shown in Figure 2.
A white card was placed ir the lower right portion of the grid to record
the shot number, type rod, length, and other test conditions. The large
cross or "x" on the left side of the film sequence is the desired impact
point on the rigid target plate. For this particular sequence, the time
between frames is 70.5 microseconds, The earlier frames show a sinusoidal
mode shape developing, and after about 210 microseconds, the deformation
becomes more gross due to the inertia of the rod and no longer resembles
the familiar sinusoidal type observed earlier,

Figure 14 shows a flash X-ray photograph of the sinusoidal mode
shape obtained during the impact. Superimposed shadows exhibiting
transient mode shapes and deformations can be seen for three distinct
time intervals during the impact.

Figure 15 shows a sequence of high-speed photographs exhibiting a

helical mode shape for the orthogonal or near orthogonal impacts. This

23
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particular 12 inch Tong rod impacted at 632 fps and near the orthogonal
position,

A spiral mode shape occurs when the rod impacts at a obliquity angle
of about 4 degrees as shown by the sequence of photographs on Figure 16.
The impact velocity for this rod was 750 fps, and the time between
frames is 65 microseconds.
4, ROD FAILURES

Rod breakup as typified by Figure 17 was experienced when the rod
impact velocity was high (on the order of 850 fps and greater) and the
angle of obliquity was greater than 2 degrees. A shear failure caused
by the excessive axial inertial load is experienced immediately behind
the first flexural wave, Table I gives the failure conditions obtained.

TABLE I
ROD FAILURE CONDITIONS FOR 1/4 INCH DIAMETER ALUMINUM RODS
Shot No. Rod Length Impact Velocity Obliquity Angle

{Inches (fps) (Deg)
2 12 1008 4
3 18 895 4
4 18 1051 3
5 12 845 2
6 6 1009 3
16 6 1030 10

5. AXIAL DEFORMATION

The length of the rod has been obtained as a function of time by
tracking the free end of the rod during the impact process with the aid
of a film reader. These transient axial deformation data are shown in
Figures 18, 19, and 20 for 6, 12, and 18 inch long rods (1/4 inch

diameter). The instantaneous rod length L is normalized with the original

27
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Figure 16. Sequence of High Speed Photographs Showing 12 Inch Rod
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Between Frames is 65 uSeconds
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rod length Lo and is plotted as a function of time. On Figure 18, the
point of zero slope represents the time at which plastic deformation is
arrested; note that the plastic deformation ceases after 75 to 100
microseconds, depending upon impact velocity. The theoretical plastic
loading time is not easily computed, but if the lcading time is assumed
to be the time required for the elastic wave to reach the free end of
the rod and return to the impacted end, this time is 61.5 microseconds.
This compares to a loading time of 75 microseconds for a 388 fps impact
velocity as determined by observing the film. Figure 18 also shows a
slight increase in the rod length at the latter times, indicating the
rod is bouncing back from the plate. Figures 19 and 20 show the length
of the rod as a function of time for 12 and 18 inch rods, respectively.
The plastic loading time is more difficult to obtain from Figures 19 and
20, but for the 12 inch rods, this time ranges from 110 microseconds to
155 microseconds, depending upon impact velocity.

In most instances, the exact time at which impact occurred is diffi-
cult to obtain. Most frequently, the impact occurred between frames, and
in order to establish the impact time, the terminal velocity and framing
rates must be known. Hence, some error is introduced in establishing the
time at which impact occurs, as well as errors introduced by the position of
the particle from the film reader. Indications are that the accuracy of
the film reader is approximately 0.02 inch; however, due t¢ the motion
of the particular particle under consideration, the resolution of the
particle on the film introduces another error,

The permanent axial deformation for all the 1/4 inch diameter aluminum
rods fired is given in Figure 21, Note that beyend an impact velocity of
approximately 670 fps the curve should be restricted to the 6 inch rod

impacts.
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6. PLASTIC WAVE PROPAGATION

Figures 22, 23, and 24 show the longitudinal plastic wave position
as & function of time for the 1/4 inch diameter aluminum rods. From the
film, frame-by-frame measurements were made of the longitudinal wave
front as it propagates toward the free end. With the aid of a film
reader, a radial plastic deformation is evident during the initial stage
of the impact. The flexure buckling occurs later in the impact and
appears to be contained within the axial or longitudinal plastic front.
This deformation was previously seen in Figure 12 where the plastic wave
propagates up the rod. The plastic wave velocity may be obtained as the
slopes of the curves presented in Figures 22, 23 and 24, Figure 22
shows that the wave velocity is higher for the lower impact velocities,
particularly during the initial phases of the impact. This phenomenon
can be due to one of two factors; (1) the material could be strain rate
sensitive or other than bilinear (perhaps parabolic as suggested by Bell
in Reference 8), thus denoting a change in the stress-strain slope as a
function of strain rate or (2) the rod material could merely be stacking
at the impacted end for the higher impact velocities. The latter factor
seems to be more plausible since the plastic wave front was measured
from the plate. Another important observation indicates the plastic
wave front velocity appears to be independent of the rod length during the
initial impact times, but is a function of the rod impact velocity.
7. AXIAL SURFACE STRAINS

Figures 25 and 26 show the permanent plastic strain measured axially
on 6 and 12 inch aluminum rods, respectively. Prior to firing the rod,
1ines were scribed at 80 lines per inch along the rod, With the aid of

an optical comparator using a magnification of 20 power, the surface strain
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E was measured along each rod. Using 2C-- ne increments, corresponding
to 0.25 inches for the undeformed rod, the rod length per 20-line

increment was measured and the deformation was determined per each 20-

1ine increment.

Initially, the most impressive feature is the gross variations of
strain along the rod. However, it should be realized that the surface
strain in a single axial direction has been measured. If the rod were
rotated about its neutral axis and the strains were recorded by several
axial readings and averaged, a smoother curve would result; this will be
shown later when the average strain at the neutral axis is compared to
the analytical results. Actually, the curves shown in Figures 25 and 26

show a large amount of quantitative information about the rod. The peaks,

or points of reiative maximum strain, occur where the axial compressive
strain due to the axial inertia load is reinforced by the bending moment
produced by the flexural wave. The points of relative minimum strain
represent the peak of the mode shap2 where the compression due to the
axial inertia is retieved by the tensile bending moment produced by the
flexural wave. The intersection of the strain curves with the axis gives
the arrest position of the plastic wave.
8., SUMMARY OF EXPERIMENTAL RESULTS

The experimental work conducted provided the following conclusions:

(1) Highespeed photography is the most effective method of obtaining
dynamic data concerning the transient mode shapes, plastic wave propa-
gation velocities, and displacements.

(2) The associated flash X-ray technique provides an excellent tech-
nique for observing the deformation at a maximum of three discrete time

intervals. But the technique does not provide continuous observation

over the entire impact duration.
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(3) Impact geometry plays an important role in determining the
deformation mode shapes. An orthogonal impact with impact velocities
greater than approximately 750 fps yields a helical mode shape. If
there is a slight obliquity of 1 to 3 degrees at impact, the lateral
deformation is confined to a single plane with a sinusodal type mode
shape resulting. For oblique impacts on the order of 3 to 6 degrees, 2
spiral mode shape can occur for a rod having a high length-to-diameter

ratio and for impact velocities greater than approximately 500 fps.

———sy
ol L e

st

43

. . .. s e T g pan et S e A
AL ot gy nal gt (R ILY vy .y dadr ot YIFE o bR Jte 3 lu_,,ulw




A ARt Bt 2 i e b S A N L SR T (L Pl i AL SR S R\ ek W SR e N L el ke bR el e

SECTION III
DEVELOPMENT OF THE EQUATIONS GF MOTION AND
MATERIAL BEHAVIOR

In this section, the principle of virtual work will be used to
develop the equations of motion to include axial, lateral, and rotary
inertia for a material whose stress-strain relation is nonlinear.
Acting on the rod is an axial force P and a bending moment M. Figure 27
illustrates the forces and moments acting on a differential element of
the rod along with the displacements and the rotation of the element.
1. THE PRINCIPLE OF VIRTUAL WORK

Consider a system which has been :caiced *o 2 finite number of degrees
of freedom. Further assume the applied forces vary rontinveusly with
system displacements and that all differential equations describing the
system constraints can be integrated. For such a system, the principle
of virtual work states that a necessary and sufficient condition for

equilibrium is:
W = 0. (3)

The principle of virtual work (8W = 0) yields the conclusion that, for
a mechanical system to be in equilibrium, the components of the general-
ized force must vanish.

Referring to Figure 27, consider a displacemert u in the axial
direction, a displacement y in the lateral direction, and a rotation of
the differential element through an angle y. For a differential element
dx, the differential work produced by the bending moment M and the axial

force P is:

dW = Mdy + P du (4)
44
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The work produced by the inertia forces is:

dwy = pA(a Fu+ —-X—y) 1Y y (5)

T

The work produced by the external forces that are assumed to act

on the impacted end of the roc¢ is:

LD B

Wp = - F, y(0) - F, u(0) (6)

4 Integrating over the total length of the rod, the energy expression

becomes:

W f(M?_lIl_+P3u+pA(a”u 2 y) ax +
9 9x  3x at?

L .
( platz dx - F, y(0) - Fy u(0) (7)

Now, denoting the derivatives with respect to x as primes and

considering virtual displacements, the foliowing expression results:
L

W =/ [Msw' + Pou' + pA(RZY sy + 22U Gu)] dx +
ot? ot?

0
f [¢ sfgsw]dx - Fy oy(0) - Fy su(0) (8)
0

Intergrating Equation (8) and applying the principle W = 0, the

following expression for the virtual work results:

oW = Moy (L) - Mey'(0) + L. pIa'E;'Y—+ Fy) 6y(0) +

(- 5+ o120 sy(L) + (0 - F) ul0) + P sulL) 4

) M o'y
[./ ( atza 2 atz) dx] oy +
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5 32y P
i [ (ol - 50 exleu=0 (9)
0

For the expression in Equation (9), the components of the
generalized forces must vanish independently, resulting in the
equations of motion and the boundary conditions.

In the interior of the rod, the following equations of motion hold:

92M 3ty 32

- ol + A—lzo 10
ax? e at2ox? 0 at? (10)
3%u _ oP

U Y ()

At the boundary x = 0, the impacted end, the boundary conditions are:

? M=0 (12)
: P-Fe=0 (13)
M _ 1Y s F =0 (14)

At the boundary x = L, the free end, the boundary conditions are:
M=o (15)
P=0 (16)
M2y - 17
x - Plaetex ° (17)

Note that in Equations (10) through (17), the equations of motion
and boundary conditions for the rod, that the bending moment M and the

axial force P appear. The boundary conditions are those of a free

rod and allow deflections and rotations at both the impacted end and
47




RO DN TR TV TSI TR T YATSTEIRATT T 0T T T AR TR SRR T TR AR IR AT T T T Teee 22 M At b sl i i TOFTe L 7¥ TWFmPFWT R A T T T TR T o T STVETTm

the free end. The moment vanishes at both boundaries. At “he impacted
end, the axial force in the red is balanced by the axial forcing function,
and the rotational forces are balanced by the lateral forcing function.

At the free end both the axial and rotational! forces vanish.

] 2. RELATING THE AXIAL FORCE P TO A DEFLECTION u

; The relating of the axial force in the rod to an axial deflection

is quite straightforward. Since a bilinear stress-strain relation was
obtained from the tensile tests, the relation shown in Figure 2 will be
utilized. However, the theory developed herein is rasily applied to

any stress-strain relation. Consider the equations for the stress-strain

relation as follows:

o = Ee for e<eo (18)

o = Eeo + Ble - €o) for e>¢, (19)

By definition ¢ =-%% and since o = P/A the following relations

result:
P=AE %% for e<e, (20)
_ U
P=[Ee, +B (55 - )IA  for e, (21)

Also, the following derivatives hold:

p 2
%{ = AE -g;l;- for e<e, (22)
oP 3%u

% = AB 2 for e>¢, (23)

Equations (22) and (23) differ only by the relations E and 8, the

slopes of the elastic and plastic portions of the stress-strain
48
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relation. Equation (23) can be taken as the general expression relating
the axial force to an axial deflection; in which case, B merely becomes
the slope of the stress-strain relation for both elastic or plastic
deformation and for any general stress-strain relation.

; 3. RELATING THE MOMENT TO A LATERAL DEFLECTION y

: To relate the bending moment M to a Tateral deflection y, a bilinear
stress-strain relation is emplcyed. In addition to the stress-strain
relation, the assumption is made that the plastic buckling occurs within
tie axial plastic compression waves. Assuming the rod has failed due to
the axial plastic compression, now consider the superimposition of a
bending moment. Figure 28 shows a cross~-section and a stress profile of

the rod, Also shown is the compressive stress o, at' the neutral axis

which is the excess stress beyond the yield stress o,. The rod section
is considered in two sections; above and below the neutral axis X-X,
When a positive moment is applied, an additional plastic stress is expe-
rienced in the upper section of the rod and increases with slope 8. The
Tower section of the rod unloads elastically with slope E., The problem
becomes one of finding the neutral axis X-X that satisfies the condition

of equilibrium as follows:

fodA=o (24)
Now
o= qando= 2y (25)
n, n,

From the equation of equilibrium (Equation 24),

o " o 2
—~4 n dA = =% n dA (26)
n2 A nz A
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£, = &, (27)

Equation (27) is essentially a statement of static equilibrium,
which states that there is an axis X=X, in which the stresses do not

change. Also, the moment of inertia about X-X is as follows:

I=1,+1

17 %2 (28)

The bending moment becomes

M= fcmdn -0'111 0'212 (29)
m le

2
The radius of curvature.%ug, is introduced:
X

.3y
M= L (1, + EI) (30)

Equation (30) holds for the elastic as well as the plastic moment.
For the elastic motion, B becomes the elastic modulus & and I, + 12
equals I, where I is the moment of inertia about the gravity axis.
4, THE EQUATIONS OF MOTION

Substituting the expressions for the axial load P and the moment M
into Equations (10) through (17), the foilowing equations of motion and
boundary conditions result:

(a) In the interior of the rod,

a‘h 'du:: __l
(ET, + BI,) Sié" Pl 5xtorz * PR g7 = (31)

2 2
gdU._,38U.

(32)
ax? at?
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(b) At the boundary x = 0,

Bu_ Fy

o 1 (STRAIN) (33)

=0 (MOMENT) (34)
93 33y

El, + 8I,) 2L - oI ~F =0 35

(c) At the boundary x = L,

u
i 0 (36)
ﬂ = ( 37
ax? B37)
3%y o'y
El, + 8I - pl =0 38

The axial and lateral equations of motion are coupled through the
dynamic stress-strain relationship which involves the variable B, which
is the slope of the stress-strain relationship for both the elastic and
plastic wave propagations. Equations (31) and (38) must be solved as a
system, along with the equations of material behavior. Since the state
of stress is a uni-axial state and the plastic buckling is contained
within the plastic compression wave, the axial equation of motion wiil be
used to determine the axial strain, stress, and hence the slope of the
stress-strain relation B.

5. MATERIAL BEHAVIOR
Transverse shear was not included in the equations of motion, and

though it could have been easily introduced the inclusion would cause

the plasticity theory to be more complicated. Therefore, in the

interest of obtaining a solution within a specified time, this shear
52
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has been omitted; however, the work could be extended to include the

addition of transverse shear.

Figure 29 11lustrates the flow theory that was utilized. Consider
a uni-axial state of stress. The stress-strain relation may be expressed

as

e = g/E + € + Aep (39)

Where € is the total strain, e  is the plastic strain, and Ac. is the

plastic strain increments due io the current increment of 10a31ng for
a specified small increment of time At. The plastic strain increments
are related to the stresses through the yield criterion and the

) associated flow rule. For the uni-axial state of stress, the Prandtl-

Ruess flow rule can be avoided, and the partial differential equations of

motion with the boundary conditions along with the stress-strain relation
and the yield criterion form the necessary relations. In addition, the
constant volume theory for plastic strain holds, which implies the
material flows radially.

The problem solutions are carried out in increments of time as small
as 10'7 second, First, the differential equations of motion are solved
with the appropriate boundary condition having an 1ssumed stress-strain
slope 8. Of course, to start the problem, the elastic slope is used for
each position evaluated along the rond. From Equation (32) and the
boundary conditions, an axial displacement u is computed for each particle
along the rod. Then, a strain and a stress are computed. A test is made
to determine whether the yield stress is exceeded for each particle along
the rod, and if not, the elastic modulus E is used for the next in-rement

of time At. If the yield stress is axceeded, the slope of the stress-
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: strain relation is then determined anc used in the equations of motion
for the next increment of time.

6. SUMMARY

The elastic~plastic problem for buckling of Tong slender rods has

; been formuiated. The material characteristics will be utilized by

(o T M T

the stress-strain curve and applied by utilizing both elastic and

plastic regions subject to the plasticity flow rule and constant

T

volume cited previously. The following section will illustrate the

T

technique used for solution of this problem.

55

R ke RN U T O AN R P S
Lok S niia ASALAEMSEG 3 athRy g e AR Mo v ra A



S T T Y R T A T

s

SECTION IV
NUMERICAL TECHNIQUES

Two numerical techniques were utilized to solve the equations of
motion and material behavior., The finite difference method and
Galerkin's method were used to provide solutions to the system of
Equations (31) and (39). Galerkin's method provides a somewhat
"continuous" solution along the spatial coordinate. In contrast, the
finite difference technigue offers a discrete sclution in which the rod
is treated as a system of discrete nodal points with the solutions heing
determined for each nodal point.

1. THE FINITE DIFFERENCE TECHNIQUE

The rod continuum is represented by a discrete number of nodal points
(Figure 30) and solutions are sought for each nodal point for each time
interval. The deflections at each nodal point must be considered as well
as other parameters normallv assumed to be constant for a pure elastic
problem but which are also changing. Also the strain, stress, slope of
the stress-strain relation, rod cross sectional area, and moment of inertia
must be determined for each nodal point and at each time interval. Thus,
another degree of nonlinearity is introduced into the problem; however,
these changes in the geometric and mechanical properties of the rod can
be handled effectively by a finite difference technique. It should be
noted that the solutions for the deflections at the nodal points are
interpreted to be deflections at the neutral axis of the rod.

In preparation for replacing the differential eauations with finite
difference approximations, forward, backward, and central difference
relations were investigated for each disc.2te nodal point., Due to the

boundary conditions, the most direct approach for obtainina a solution

56

Dl A Sl e f S ot

. B —— ] Yo TR, S b i P
AT T TR T T AT T, BTET M el T e TR EA RS i Ty T ™ o A bl v WO TS 4

AT QOTIRYSV 2




1 2 3 4 i i+l -1 L
——-{ ] * ) 4 ¢ ] ¢ 13 \ { S ¢ - —
! U up
Y4 Yy Y
Ay A; A
I I I,
€ €, €
CI’I 01‘ OL
B.I B'i BL
Figure 30. A Discrete Model of the Rod Showing Nodal Point Locations.




22 it At AR EAREE TR, NI T AERTTATT T T TR R T AWK W e s RN T R e TR TR, T TN ERE 153 o Rt bl 2y B AR MO M R iy |

] results when a mixture of forward, backward, and central differences
are used, cepending upon the nodal point under consideration. At the
boundary point x = 0, forward differences were used to approximate each
derivative with the exception of the second partial of the Tateral
deflection y with respect to x. At the interior nodes, central differ-
ences are used exclusively to obtain accuracy on the order of h2. For
the remaining boundary point x = L, the partial derivatives are approx-
imated with backward differences with the only exception being the
second partial derivative of the lateral deflection y with respect to x.
Consideration was given to the possibility of using central differences
only at all nodal points in order to maintain accuracy of the order he,
but after the resulting expressions were examined, it was discovered

that the resulting underconstrained system of differential equations

gave more unknowns than equations. Solution of the underconstrained
system could be obtained by "shooting methods;" that is, make an
assumption of the value of the variables that 1ie outside the domain
and the boundary of the rod and iterate until the assumed values satisfy
the finite difference expressions. In essence, a boundary value problem
is avoided by the proper selection of an approximating expression for the
partial derivatives at the boundary points.

Now, consider approximations to the partial derivatives in Equations
(31) through (39) at each nodal point in Figure 30. Defining the distances

between the nodal points as h results in the forward difference expressions:

Yy o Yi+l - Yi
%%..__T__+om) (40)

(=)

3 02y) o Yit2 = 2 Yi+l * Vi
’ ax?i h?
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Ay, » T 2001 g(ne) (44)
3%y, . Yi-1 = 2Y¥i +Vyin
,#)1 ~ = (45)
By o CYim2t ¥ 7 BYin * Vi (46)
ox3'1 7 2h?

5 Y12 = 4 Y1t 6 3 = 4 Y441 * Va2

#)i % - (47)
The backward difference expressions are given as follows:

Yi = Yy- .

Y, 5 T - =14 o(n) (48)
Sy o Y72V T Vi .
ax2’i 7 h2 (49)
2y o Vi34t 3V 7 Yig (50)
ax3'1 h?

4 Yi~8Yj1 +6Y5.0-8yi 3% Yy

ax h
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3%y, . Yit3 = 3V¥is2 * 3 ¥in1 - ¥4

ax's)iz h? “42)
"y oo Yitg = A Y13 t 6 yiap - 4 * ¥

CANAY i+4 i+3 i+2 Yi+l T ¥i (43)

ax* i h*

Using central differences results in the following approximations:
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Similar expressions may be obtained for the derivatives involving
the deflection u. Now consider the equations dessribing the motion at

the boundary and interior, Finite difference expressions for these

equations are obtained with the aid of forward, central, and backward
difference expressions.
a. Axial Motion
Now to express finite difference relations for the axial
equation of motion, the following is repeated.

At the boundary x = 0, or nodal point 1, the equation is

F
TR 52

"

When forward differences are used, Equation (52) becomes:

up = up * - Fy
h T T KBy (53)

At interior point 2, the expression is

2%u 92U
"Bt 0 g 7 0 (58

Using central differences,.Equation (54) becomes:
2 v
- 8, (u] -2u,+ u3)/h + pu, = 0 (55)

Rearranging Equation (55) and eliminating u, with Equation (53),

gives

Lo By B
Uz phz(A]B] U2 + U3) (56)
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At all other interior points, except L-1, the value for uy is

=0 (58)
Using backward differences, the result is

U = U (59)

Now at the interior point L-1, the following holds:

-2 = uL-]) (60)

Where u has been eliminated with the aid of Equation (59).

The result is L-2 differential equations with L-2 unknowns which
can be evaluated by numerical methods. The deflections at the boundary
puints x = 0 and x = L may be determined from the algebraic expressions
at x = 0 and x = L, respectively.

b. Lateral Motion

Applying the s~me procedure for the lateral motion as for the
axial, at the boundary x = 0 or at node 1 the following partial differ-
ential equations apply:
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3% - g (61)
ax?

3 3
(Ep + 81,); 5% - o1 5p= - 1, = 0 (62)

Applying central differences to the moment equation:

Yo - 2 y] + Yy = 0 (63)

3

Now applying forward differences to the derivative g;%-and

central differences to %{'1n the force balance Eauation (62). the

following expression holds:

2h

F,=0 (64)

Eliminating A from Equation (64) with the use of Equation (63),

the following expression holds:

:y. - y =" Fyh + (EIZ + BI])]
N e S e

(¥4 - 3yg + 3y, - y]) (65)
At the node 2, the following holds:

o
‘z-'(y] -2y, +¥3) + pA2y2 =

(EIz + BL,)
T 2 (yg - Ayy * by, - dyg +y,) (66)
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Eliminating Yo with the aid of Equation (63), the following

differential equation of motion results for nede 2.
- 012
—2(yy - 2y, + ) + yn

- (EI + 8Ly)

2(- -
AR (- 29y + By, - dyz +y,) (67)

Now, at all other nodal points, except node L-1, the following

finite difference expression holds:

(¥5.1 - 25 *+ Vi) - ¥

Lol | e viibt sl ok

Aj hz

(EI2 + BI])i
pAsh* Wiz = W1 * 85 = Wi * Vi) (68)

At the nodal point L-1, the following holds:

AL 1hz Og = Hpg + ) -V -

EI
(t2* )L 1y .3 - A .2t Sy - 2.VL) (69)
pA; _1h*
L-1
At the boundary x = L, the moment eqtation Y-t

Yisq 0 is used to eliminate Yie) in the force balance equation giving:

@ A

o (EIp + 8I4)
Wehas 'EEI}FT"l Ly -+ +nag)  (70)
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Now L second-order coupled differential equations result with L
unknowns, and with the use of numerical techniques, the lateral
deflections at each nodal point may be determined. Inmatrix notation

the_system may be represented by the followirg:
[A] {3} = [B] {y} + {Fy{t)} (1)

In Equation (71) the [A] matrix is a tri-diagonal matrix, with
the [B] matrix containing four non-zero elements in each row and four
non-zero elements in each column, except the first and last column.
2. GALERKIN'S METHOD

Galerkin's method is based on the idea of minimization of errors by
orthogonalizing with respect to a selected set of trial functions. The
first step is to choose a trial solution which contains undetermined
parameters or functions. For the rod impact problem, trial solutions

of the following form are selected:

M=

u(x,t) = & fi(t) ¢ (x) (72)
N
y(x,t) = kE] 9 (t) v, (x) (73)

Where ¢k(x) and yk(x) are known functions and fk(t) and gk(t) are
functions to be determined. The trial functions must satisfy the
forced boundary conditions at x = 0 and x = L, If some of the end
conditions are natural or free, as is the case for the impact problem,
the boundary terms must be added to the minimization. Defining an

equation residual as R(x,t) and applying Galerkin's technique give

L
S Rlx o (x)ax + 8, = 0 (74)
0
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Where R(x,t) is obtained by substituting the trial solutions into

the equation of motion (Equation 32) and equating the result to
R(x,t):

R(x,t) = B 32 _p 3% u(x,t
(x,t) = ( v atz) (x,t)

e T y7

Bo represents the boundary terms. An equation residual is likewise

obtained for the lateral equation of motion and may be expressed:

2
e{x,t) = [(EI, + 81, )—-—- oI-a--a-E;+ pA--] y(xt)
Now, consider the boundary terms. For the axial equation, the
minimization leads to the following expression:

L
fR(x t)ey (x)dx + A8¢k(X) =u(x, t)i - Fyy(0) = 0 (75)

Adding the boundary terms to the lateral equation gives

L
Jetratrmoon s 1y ¢ 81 RU2Y - XY 0011
d ax oax? X’
L
ol S35k 1) |- Fyn(©) = 0 (76)

Performing the indicated integrations and other operations for
Equatiors (75) and (76), a coupled system of second order ordinary

differential equations result and can be expressed in matrix form as

[C] {f} = [D] {f} + {F,(t)} (77)

65




X A RS e % L~ % LA AT S L AN LSO L A ot Jr:x‘rj
TR TTOREHAT TP T VR ETITVTRR VT TR AT T A 8 T T P T AR TR e R T R E R Y s P i A ASIEOER TR hasragal Sl Rl L b ST S 1 LilicSatii e Y B

[F] {g} = [G] {g} + {Fy(t)} (78)

; Where the matrixes [C], [D], IF] and [G] are N by N, with N being the
number of terms in the finite series approximations for u(x,t) and
y(x,t). The two systems given by Equations (77) and (78) appear to be
independent at first notice, but they are coupled through the stress-.
strain relation, and the numerical technique used to solve for the
solution components for f,(t) and gk(t) must consider the coupling

3 effects. Once the fk(t) and g, (t) are determined, the deflections are
obtained from Equations (72) and (73). One might note that the strain

Sl KR pak e S

at a point of interest may be obtained by merely taking the partial
derivative of u with respect to x. Also the velocity components of the
particles are obtained from the solutions for g, (t) and fk(t) by using
fi(t) and g, (t).

The selection of the appropriate trial functions for ¢k(x) and

yk(x) present problems for the rod impact problem because of the boundary
conditions. Observing the experimental results obtained, the first choice
for a trial function would obviously involve a sine or cosine function.
Several trial functions were investigated with varying degrees of success.
The most successful trial function for the axial motion was determined

to be
8 () =1+ (1) sin [(2k - 1) mx/2L] (79)

Equation (79) satisfies all of the free boundary conditions. The properties
of ¢k(x) are such that.%% vanishes at x = L, implying the strain vanishes
at the free end, and %% does not vanish at x = 0 where the strain is a

maximum. Also, ¢k(x) does not vanish at x = 0 and x = L, thus implying
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the rod is free to move axially at the impacted end as well as the free
end, hence satisfying the free boundary conditions.

The proper choice of a trial function for the lateral deflections
proved to be troublesome, with the free boundary conditions being the
most difficult to satisfy. Finally, the trial function as given by the

following equation offers a limited degree of acceptability:
Yi(x) =1 - YoX/L + Y1 sin (kwx/L) (80)

Where yo and y, are amplitude constants. Note that yk(x) vanishes at
the boundary x = L for Yo = 1, implying the lateral deflection is

zero, therefore, a violation of the free boundary condition occurs at
this point. However, this viclation is minor, considering the fact that
the only deflection at the free end is elastic. Another trial function

used with some success, but again a violation of the free condition at

X = 0, the impacted end, is
v (x) =y, S'in[(—-—z-——2k r 1)) nx] (81)

Where Yo is sti1l an amplitude constant. The function given in kquation
(81) performed nicely about two diameters from the impacted end. For
the orthogonal impact,the function given by Equation (81) would be
preferred since no lateral deflections are possible at the impacted end.
In addition to the conditions on ¢k(x) and yk(x), there are conditions
on fk(t) and gk(t) that must be satisfied. So far, no restrictions have
been placed on fk(t)‘and gk(t); that is, u(x,t) and y(x,t) satisfy the
boundary conditions through ¢k(x) and yk(x) for all t. S4nce the

following initial conditions hold:
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ulx,0)

u(x,0) = 0 (82)
y(x,0) = y(x,0) = 0 (83)
The implications are,

£(0) = £(0) = ¢ (84)

g(0* = 3(0) = 0 (85)

Equations (84) and (85) state that the deflectiors and the velccities

of a particle along the rod are zevo initially when the forcing function
is applied. When the problem is considered as a pure impact probler.,
the forcing function is not appli2d, but each particle ir the rod is
given an initial velocity equal to the impact velocity. Thus, the

initial conditions become,

{
<

u(x,0) = 0 (86)

y(x,0) = v_sin e (&

o]

Where 6 is the obliquity angle at impact.
3. FORCING FUKCIIONs

By application of Newton's Law for a force ucting on a particle,
the forcing furctions can be determined for any desired shape. Newton's
Law simply reduces to the statement that the time rate of change of
1inear mementum is equal to the impulse, thus

T v

0
dv
J/}(t)dt = J/}1gf dt = ™ (88)
D 0
W:ere T is the impact duration, and Vs is the impact velncity. The
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ascumption is made that the velocity compor ant resulting from the
elastic bounce-back from the plate may be ignored.

Four types of forcing functions were considered as illustrated in
Figure 31. The trapezoid, rectangular, and parabolic forcing functicss
were used with tho finite dif”erence technique, and the sinuscidal
forcing function was used with Galerkin's technique along with the
other three forcing functions. Since the area v i+~ each of the curves
in Figure 31 is the cnunge in momentum, or simply tie product m Voo the
forcing functions may e determined by application of Equation (88).

The best overall results for predicting the displacement of a
particle as a function of time was obtained by using the trapezoidal
forcing function. However, during the “nitial tii = after impact, the
rectancular forcing function gave the better results. A comparison
between the fcrcing functions is presented later in this report, when

the comparisi. s between the analytical and experimental results are

discussed.
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Figure 31. Forcing Function used in Analysis. ”
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SECTION V
THE COMPUTER PROGRAMS

Two computer programs were written, one for the Galerkin's technique
and one for the finite difference method. An algorithm was first written
for Galerkin's method, but the results usina the method did not meet with
the desired expectations, so the finite difference technique was employed
with better results. Basically, the two algorithms are similar with each
having an integration, a derivative, and a linear system subprogram in
common.

1. ALGORITHM FOR FINITE DIFFERENCE TECHNIQUE

Figure 32 shows the program flow for the finite difference technique.
The computer program contains a main program; a Runge-Kutta, or predictor
corrector, integration algorithm; a derivative subroutine; a linear
simultaneous equation subprogram to solve for u and y using gaussian
elimination; and an output subroutine.

The main program is divided into two parts (Figure 32). The first
part of the program reads the input data, such as rod length, diameter,
impact velocity, angle, etc., and initializes all variables. Then the
Runge-Kutta integration subprogram (RUNKUT) is called to integrate the
equations of mction. RUNKUT in turn, calls a program (DERIVY) to obtain
derivatives for the algorithm, but since a coupled system of differential
equations is invelved, the values of y for each nodal point must be

determined. So DERIVY develops a linear system of the for.
[A] {x} = {C} (89)

+here the {x} values are the {y} values, and then DERIVY calls a program

n
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(SIMEQ) which solves a linear system of equations for the {y} vector and
passes the solution comporients back to DERIVY. DERIVY then determines the
remaining derivatives and passes the derivative vector to RUNKUT. RUNKUT,
in turn, passes the displacement and velocity vectors for each nodal point
back to the main program.

The second part of the main program receives the displacement and
velocity vectors for the discrete time interval t + At and computes strains,
stresses, slopes of the stress~strain curve, areas, and moments of inertia
for each nodal point. If desired, an output subroutine is called and the
required information is printed for the time interval. A typical output is
shown in Table II for a G-inch rod for two discrete time intervals of 5
and 15 microseconds. If output is not desired. another increment of time
is added, and the program cycles through the process until the impact
duration time is reached.

2. ALGORITHM FOR GALERKIN'S METHOD

The algorithm for the Galerkin method is similar to the finite
difference algorithm as previously described. Here, RUNKUT is called upon
to provide the values of the undetermined funciions fk(t), gk(t), fk(t),
and ék(t) at discrete times. Once these values are determined, the dis-
placements, strains, and strain rates may be determined. A typica! output
for the Galerkin method is given in Table III for one discrete time during
the impact. Note the propagation of the wave motion for the Galerkin
method is not as well defined as for the finite difference method. The
propagation of tke elastic waves are masked by the "noise” of the technique

and hence would not be suitable for elastic wave propagation problems.
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SECTION VI
ANALYTICAL RESULTS

Analytical results have been obtained for the approximate solutions

1 to the equations of motion and material behavior using the two numerical
techniques discussed previously. In this section, the analytical results
are presented for both the elastic and plastic response of the rod, along
with the comparisons with the experimental work where appropriate. In
addition, the analytical work of this evfort is compared with the work

of others when possible.

1. ELASTIC FLEXURAL HWAVES

3 The problem of the elastic flexural wave propagation along a rod has

, been solved by a number of investigators. The best surveys on the subject
are given by Kolsky in Reference 2 and by Abramson, Plass, and Ripperger
in Reference 1, which gives the phase velocity for flexural elastic waves
in a solid circular cylinder of radius r as a function of the wavelength A.
These results are given for three theories and are repeated in Figure 33
with the results of this analysis (Valentine) being presented as a compar-
ison. The elementary theory presented shows that the phase velocity in-

creases without bound as the flexure wave length A approaches zero.

Basically, the phase velocity .s given by the following relation:

C=¢C,2n (\f%'x) (90)

Where Co is the bar velocity and I and A are the moments of inertia and
areas of the cross section, respectively. A somewhat disconcerting fact
is that the phase veldcity tends to infinity for the very short wave

lengths; however, if a term is added for rotary inertia, as was done in

this work, the condition of infinite flexure wave spged is avoided.
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Phase Velocity Comparisons for Flexu.al Elastic
in a Solid Circular Cylinder of Radius r.
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Timoshenko (Reference 9) further added a term for transverse shear
which agrees with the exact three-dimensionai solution of Po.hhammer and
Love for the first mode, but a wide discrepancy occurs in the second mode.
Referring to Figure 33, the comparison of this work for the flexure wave
velocity C is given for the several thecries with the exact theory being
shown for a Poisson's ratio of 0.29 and for the first mode only. The
effects of rotary inertia and shear are unimportant if the wavelength of
the vibration mode is large compared with the cross sectional dimensions
of the rod. But the effects of rotary inertia and shear become more impor=-
tant with a decrease in wavelength. The results obtained from Timoshenko's
theory show the i dvantage of including the transverse shear in the eyua-
tions of motion oar elastic flexural waves for the short wavelengths. The
results of this ana .sis include rotary inertia but not transverse shear
and are shown in F' sre 33 for an impulsively applied load for the aluminum
rods.

2. PLASTIC FLEXURE WAVES--COMPARISON WITH WORK OF ABRAHAMSON AND GOODIER

Although Abrahamson and Goodier made no attempt to predict the buckling
mode shapes, considerable work is reported in Reference 3 for the predic-
tion of the plastic wavelength of the flexure wave arising primarily from
initial transverse perturbational velocity, such as an oblique impact.

A Fourier integral transform was used to solve the lateral equation of

motion:

a*w + 32w + 2w = - 32“’0
ax*  ax2  atl ar2

(91)

Where T is the dimensionless variable containing time and w is the dimen-
sionless variable y/k, with y being the lateral deflection and k the radius

of gyration of the rod. Abrahamson and Goodier reported their results in

79

Y M ) RTINS
R A s PRI i s S RTEIEA %  o o wet keI e T S e s

[-5%



CTTIRTLIE L TUYT T IR S TR ST

terms of half wavelength but these terms have beer converted to wavelengths
to simplify the comparison with the results of this work. The results of

Abrahamson and Goodier yield the following relation for the wavelength:
l’
A= om %- (8/0)1/“ (92)

Where )\ is the wavelength, B is the plastic modulus, and o is the stress
in the rod. Abrahamson and Goodier assumed the stress in the rod was

constant, thus yielding:

A= 17.7}};— (93)

Now, it is possible to compare the results of Abrahamson and Goodier with
the results of this work (Valentine). In addition, both analytical
results may be compared to the experimental results of this work. Since
Equation (93) was derived for 18 inch rods, the results of the firings for
the 1/4 inch diameter rods of 18 inches in length (Table IV) ar~ used as
a basis for comparison.
TABLE IV
WAVELENGTHS FOR 18 INCH 6061-T6 ALUMINUM RODS (174 INCH DIAMETER)

Shot No. Impact Velocity Average Wavelength, Inches
] Observed from  Predicted Predicted
Experiments Valentine Abrahamson
9 649 1.4 0.88 1.1
602 1.15 0.94 1.1
n 540 1.06 0.95 1.1
412 1.15 1.22 1.1
252 1.50 1.64 1.1
Zi 228 1.675 1.80 1.1
1 222 1.875 1.80 1.1
80
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While the analytical work of Abrahamson and Goodier predicts a
constant wavelength, it may be observed from Table IV that the
analytical work reported herein predicts a wavelength as a function of
the impact velocity. The constant wavelength theory of Abrahamson is
attributed to the assumption of a constant compressive force P in the
rod, whereas the wavelengths determined by this analysis use the actual
state of stress and strain experienced at each nodal point. Hence, the
slope of the stress-strain curve is easily determined. In addition, the
axial displacements contribute toward decreasing the wavelengths. When
the flexure wave initially forms, the wavelength is longer than the
final wavelength. The axial displacements, due to the axial force, tend
to compress the wavelengths, thus accounting for the shorter wavelengths
at the higher impact velocities.

An indication of the accuracy of this analysis may be obtained by
referring to the predicted and observed wavelengths of Table IV. Note
that the theory of Abrahamson and Goodier is in good agreement with
experimental results at the higher impact velocities, but does not predict
the wavelengths as accurately as the theory developed in this work for
the lower inipact velocities.

3. STRESS AND STRAIN PROFILES

Stress and strain profiles have been determined for several impact
conditions for the 6, 12, and 18 inch rods for the forcing functions
considered in this work. Typically, the stress profiles are represented
by those of Figures 34 and 35 where a bilinear stress-strain relationship
is used. Note that the elastic wave front builds to the yield stress
as it propagates towdard the free end. The stress remains at yield for

some distance along the rod until the plastic wave front builds near the
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Figure 34. The Distribution of Stress Along the Rod at Three Distinct
Time Intervals of 20, 30, and 40 nsec. for 6 Inch Rod
Impacts.
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Figure 35. The Distribution of Stress Along the Rod at Time Intervals ;

of 50, 60 and 70 usec. for 6 Inch Rod Impacts. 3
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impacted end. The region between the elastic wave front and the plasticc

wave front is extremely steep as would be expected from a bilinear stress-

strain relation. As may be seen from Figure 34, the plastic wave front
moves much slower than the elastic wave front., During the first time
interval of 20 usec after impact, the elastic wave front is 4 inches

down the rod, and at 33 usec, the elastic wave front reaches the free end
and reflects back as a tensile wave. The later time sequences show that
the compressive stress vanishes near the free end as the tensile wave
travels toward the impacted end. Also, the effect of impact velocity on
the stress profile essentially changes the magnitude of the stresses.

Strain profiles are similar to the stress profiles and are presented
to show the magnitude of the strains that may be expected for various
impact velocities. Since the stresses and strains are determined at a
point, they are presented at the neutral axis. Figures 36 and 37 show
the distribution of strain along the rod at distinct time intervals of
20, 30, 40, 50, 60, and 70 microseconds. The plastic strains are shown;
however, there is also an elastic strain similar to the previously
illustrated elastic stress, but the magnitude is such that it cannot be
illustrated on the same scale of Figures 36 and 37.

Figure 38 shows the final axial plastic strain distribution along
the rod obtained from the analytical results computed using a rect-
angular forcing function and compared to the experimental results. As
shown, the results for the strain profiles are not in good agreement
with the experimental results. Other forcing functions were investigated
to provide better agreement between the analytical and experimental

strain profiles. Figure 39 illustrates the dependence of the strain
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Figure 36. The Distribution of Strain Along the Rod at
for 6 Inch Rod Impacts.
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Figure 37. The Distribution of Strain Along the Rod at

Three Time Intervals of 50, 60, and 70 .sec.

for 6 Inch Rod Impacts.
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Forcing Functions.
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distributions on the type of forcing function used, thus a pure impact
: sclution is desirable with a two-body problem being formulated.
4, AXIAL DEFORMATTON

o RGNS Pl s

T

In determining the amount of axial deformation, the length of the

o anohiaiie

rod was obtained as a function of time by tracking the free end of the ]

§ rod during the impact process. Comparisons with the experimental

~—

1 results for several impact velocities are presented in Figures 40

¥ draat:

through 42 for 6, 12, and 18 inch long rods of 1/4 inch diameter. Good

i agreement is obtained when comparing the analytical and experimental

e L L AR

results for the instantaneous rod lengths. These results were obtained
using a trapazoid forcing function and using the finite difrerence

technique. Figures 40 through 42 show that the analytical model tends

ke

to overpredict the axial deformation. This fact was observed in all of
the analytical results obtained except for the one impact velocity that
occurred at 1217 fps, where the method underpredicts the axial defor-
mation. For the high impact velocity of 1217 fps, considerable material {
loss occurred near the impacted end due to fracture at high stresses ‘
and high loading rates. The theory developed herein does not consider
fracture, internal friction. or the energy absorbed by the rod in

elevating its temperature during the impact.
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Figure 40. A Compariscn of the Instantaneous Rod Lengths
for 6 Inch Rods of 1/4 Inch.
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Figure 41. A Ccmparison of the Instantaneous Rod Lengths for 12 Inch
Rods of 1/4 Inch Diameter.
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Figure 42. A Comparison of the Instantaneous Rod Lengths for 18 Inch
Rods of 1/4 Inch Diameter.
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5. LATERAL DEFORMATION PROFILES

A Lagrangian formulation of the problem has been developed, and a
particle on the rod cun now be followed through the time response. Thus,
the axial and lateral displacements, u and y, of any nodal point can be
followed at any time. Since it is assumed that the material flow occurs
radially, the displacement of the neutral axis is also the displacement
of the gravity axis. Also the radial material flow allows the determi-
nation of the area profile at any nodal point by the application of a
tfundamental law of plasticity stating there is no change in plastic
volume. }

Figures 43 through 50 ghow the essential analytical results of this
work, using the method of finite differences for several times during the
impact process. The last view on each figure is the final mode shape
obtained and is compared directly with the experimental rod under the same
conditions of impact geometry and velocity.

In general, the agreement bhetween the experimental and analytical
results is good. Most of the deviatior between the experimental and
analytical results occurs for the near orthogonal impacts. Note from
Figure 43 that the analytical and experimental results are not in good
agreement near the impacted end . The experimental results on Figure 43
are for an orthogonal impact with no lateral deformation at the impactad
end. The analytical profiles shown in Figure 43 were determined with a
forcing function being applied at the impacted end. In order to initiate
lateral motion, a component of the forcing function was applied in the
lateral direction as follows:

Fy(t) = F,(t) sin o (95)
Where 6 is the obliquity angle and Fx(t) is the forcing function in the
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Figure 43. A Sequence of Analytical Profiles for Various Time-Increments
with the Last Analytical Profile being Compared to the Experi-
mental Results for Same Conditions. Impact Velocity is 1006
fps for a 6 Inch Rod.
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Figure 44. A Sequence of Analytical Profiles for Various Time Increments
with the Last Analytical Profile being Compared to the Experi-
mental Results for Impact of 850 fps.
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Figure 45. A Sequence of Analytical Profiles for Various Time Increments
with the Last Analytical Profile Being Compared to the Exper-
imental Results for Impact velocity of 497 fps for a 6 Inch
Rod.
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Figure 46. A Sequence of Analytical Profiles for Various Time Increments %
with the Last Analytical Profile Being Compared to the Exper- 3
imental Results for an Impact Velocity of 500 fps and Obli- ;
quity of 2 Degrees for 12 Inch Rod. ]
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Figure 47. A Sequence of Analytical Profiles for Various Time Incre-
ments with the Last Analytical Profile being Compared
with the Experimental Results for Impact Velocity of 374
fps and Obliquity of 2 Degrees for 12 Inch Rod.
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P SRR

A Sequence of Analytical Profiles for Various Time Incre-
ments with the Last Analytical Profile being Compared with
the Experimenta! Results for Impact Velocity of 387 fps
and Obliquity of 0.5 Degrees for 12 Inch Rod.
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Figure 49. A Sequence of Analytical Profiles for Various Time Incre-
ments with the Last Analytical Profile being Compared with
the Experimental Results for Impact Velocity of 602 and
Obliquity Near 2 Degrees for 18 Inch Rod.
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axial direction. A small obliquity angle of 1 degree was used to initiate
the lateral motion for analytical profiles (Figure 43). Except for the
variance near the impacted end, agreement with the experimental results

is good.

During impact, the mode shape assumed by the rod is attributed to the
transverse perturbating conditions. Once a force is applied in the lateral
direction, the rod is committed to failure with the magnitude of the lateral
deflection being propor;iona1 to the lateral forcing function.

Figures 44 through 50 show analytical profiles for various impact condi-
tions. These figures show that agreement with the experimental results is
better near the impacted end than as shown previously in Figure 43. The
agreement is attributed to the sligntly oblique impact angles experienced
by the rods. Some of the profiles shown do not match the experimental
plastic wavelengths exactly. For the 6 inch rod impacts, the experimental
wavelengths tend to be shorter than those predicted by the analysis. For
example, from Figure 44 the average predicted wavelengths are about 20
percent longer than those shown by the experimental result. An attempt
was made to present as many types of mode shapes as possible giving some
of the profiles in good agreement as well as profiles not in good agreement.
For instance, Figure 49 shows a profile where the analytical solution
deviates from the experimental results near the impacted end.

Figure 51 illustrates an excellent example of the analytical and
experimental results compared frame-by-frame at increments of 25 micro-
seconds for a 7/16 inch rod impacting at 500 fps and at an obliquity
angle of approximately 1 degree. The upper frame on Figure 51 shows the
rod approximately 3 microseconds after impact. Directly below this first

frame is the analytical result corresponding to the next increment of time
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some 25 microseconds later. The corresponding experimental ‘rofiles are
shown directly below each appropriate analytical profile to provide a
frame-by-frame comparison. Notice that the agreement between the experi-
mental and analytical results is excetlent. In the analytical profiles,
cells are shown corresponding to the finite difference cells at increments
of 1/4 inch. The plastic deformgtion of the cell is also shown in the
analytical solutions, but the finite difference cells that are ahead of
the plastic deformation are not shown. It is interesting to observe the
plastic wave propagations for both the analytical and experimental results.

Figure 51 also shows the longitudinal plastic wave leading the flexural
wave. Note the radial expansion of the rod prior to any bending. Since
the camera was positioned normal to one of the axial marks scribed on
the rod, the lateral displacement may be easily seen from the motion
picture frames.

The aralytical results are drawn to the same scale °5 ithe frames, and
the following procedure was utilized in presenting the results shown on
Figure 51. First the i.pact frames from a 16mm movie film were enlarged
to the maximum extent but not to exceed an 8 by 10 inch print. Since the
rod had rings machined at srecified intervals, a scale could be established
from the print. Thus it was determined that the print was 62% of the
actual size. The analytical results were then drawn to actual size and
reduced by a photo reduction process to 62% of actual size and compared

to the analytical results.
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6. COMPARISON OF GALERKIN AND .FINITE DIFFERENCE TECHNIQUES

Comparisons will be made between the finite difference technique and
the Galerkin method for final yrofiles with both of the techniques also
being compared to the experimental resuits. Figures 52 through 54 show
the final profiles obtained for the Galerkin and finite difference tech-
niques along with a final profile obtained from the experimental results.
One of the obvious features to observe from the Galerkin technique is
the single wavelength obtained from the solution, with the single wave-
length also being small in amplitude. Solutions from the finite difference
technique are in better agreement with the experimental results as illus-
trated in Figures 52 through 54,

The single wavelength for the Galerkin technique is attributed to

the assumed solution of the displacement function given as follows:
(x) = 1= 338 +yg sin (%) (95)

Other displacement functions vere used with varying degrees of success
but were found to predict some unacceptable displacements at the free end.

As mentioned previously, the displacement function

yk(x) =Y sin (Q%El) SIN XWX (96)

gave results that were acceptable about two di--eters from the free end,
but the function is 2 violation of the free boundary condition at the free
end. The function as given by Equation (96) gives a number of wavelengths
per rod and perhaps would be an acceptable displacement function for an
orthogonal impact where the impacted end does not move laterally.

The Galerkin technique, as used in this work, also overpredicts the

axial displacement. This fact was also observed with the finite difference
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GALERKIN SOLUTION

% FINITE DIFFERENCE SOLUTION

EXPERIMENTAL RESULTS 697 fps

Figure 52. A Comparison of the Final Profiles for the Galerkin
and Finite Difference Techniques for 2 6 Inch Rod
Having Impacted at 697 fps.
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1 GALERKIN SOLUTION
, —
- 4
1 1
FINITE DIFFERENCE SOLUTION
EXPERIMENTAL RESULTS 388 fps

Figure 53. A Comparison of the Final Profiles Near the Impacted :
End for the Galerkin and Finite Difference Techniques
for a 6 Inch Rod Having Impacted at 388 fps.
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GALEPKIN SOLUTION

—

FINITE DIFFERENCE SOLUTION

EXPERIMENTAL RESULTS 500 fps 12 INCH ROD

A Comparison of the Final Profiles Near the Impacted
End for the Galerkin and Finite Difference Techniques

for a 12 Inch Rod Having Impacted at 500 fps.

Figures 54.
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technique, but to a lesser extent. The excessive displacement for the
Galerkin technique can be attributed to the fact that the nonlinearity

in geometry was not considered, i.e., the change in area along the rod
due to material flow was not introduced between each discrete time
interval during the solutions. While the displacements for the neutral
axis was determined for small intervals of time, the rod profile was

not determined until after the final displacements were computed. The
"continuous" nature of the Galerkin solution in the displacement domain
posed a difficult situation with regard to determining a continuous

area function along the rod during the impact process. However, the
discrete nodal point method of the finite difference technique allows

the nonlinearity of the material properties and geometry to be determined
easily. In addition, the Galerkin technique, as used in this work,
applies only tn a linear strain hardened material and not for an elastic-
plasti. material as used in the finite difference technique,

Mentioned was the fact that the finite difference technique overpredicts
the axial deformation. This is true for impact velocities less than about
850 fps. But for impact velocities around 1000 fps, the method is in
better agreement with the experimental results. As the impact velocity
increases to greater than 1000 fps, the method tends to underpredict the
axial deformation slightly. However, it should be restated that displace-
ment and strain profiles may be predictad quite accurately by choosing
the proper combinations of impact duration, forcing function, and material
properties. As an example, a change in the plastic modulus B for the
material gives a final length of 5.30 inches for B = 120,000 psi and a
final length of 5.51 inches for 8 = 200,000 for a 6 inch rod of 1/4 inch
diameter impacting at 388 fps.
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This sensitivity to the changes in the properties of the stress-strain
relation leads to inceresting speculations as to the influence of a rate
sensitive material. While type 6061 T-6 aluminum is insensitive, for
rates up to 103, some of the strain rates achieved were higher. The
other two variables of the problem, the impact duration and forcing

function type, could be eliminated by solving the problem as a pure impact

problem. Hence, a recommendation is made to this effect, thus establishing

the material properties as the only controls for the sensitivity of solution.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS
1. CONCLUSIONS

The results of the experimental work have yielded the following observations:

(3 Cgm ek

a. The deformation mode shapes are sensitive to the impact geometry. An

orthogonal impact with impact velocity greater than approximately 600 fps

Lt it

yields a helical mode shape. If there is a slight obliquity of 1 to 3 degrees
at impact, the lateral deformation is confined to a single plane resulting in
a sinusoidal mode shape. For oblique impacts on the order of 3 to 6 degrees,

a spiral mode shape can occur for high length-to-diameter ratio rods and

velocities greater than approximately 500 fps.
b. Ultra high speed photography is a valuable aid in studying the transient

mode shapes of the impacting rods.

The analytical results achieved By using the finite difference technique
have basen shown to be in good agreement with the experimental results obtained w
in this work. The finite difference technique yielded better results than did
the Galerkin technique. The Galerkin technique provided acceptzble results
only for the large plastic axial deformations.

It has been determined that the deflections, stresses, and strains within
the impacting rod are sensitive to the forcing functions types used. In
general, the trapezoid forcing function was found to give the best results
for determining the deflection prcfiles. The parabolic forcing function
yielded good results when determining the strains for high impact velocities

on the order of 1000 fps.

m

. R AT AT F
oo e Gt ey e g A v R g A s e AMRRRGES e: (s 5 v i soms il R i b A\ e 5 D




- SRR T T R TR Y RTINS AR AT T P v g T Y PE T 8L T
e N AT £ 1T TR TR By AR T T T PRI

QR FTT T M T WA TS R ST NG 4 Ve R WRASATRNT R TR T T T o .

2

As well as being sensitive to the forcing functions, the analytical
solutions are sensitive to the material properties and impact durations.
By a proner combination of forcing functions, impact durations, and
slope of the stress-strain curve in the plastic region, results may be
obtained that agree quite well with the experimental results. However,
it has been found that these three combinations of parameters do not re-
main consistent over the entire impact velocity spectrum. This condition

poses a problem in the combination.

In summary, this study has made a significant contribution for pre-
dicting the dynamic response of slender rods subjected to impulsive type
loading as may occur during impact. The aralytical technique developed
is simple and easy to apply. A complicated coupling problem between
two differential equations of motion and the material behavior has been
solved by merely observing experimentally the wave propagations and then
allowing the dominate equation of motion to determine the slope of the
stress-strain relation. In addition, the solution presented herein greatly
greatly simplifies the nonlinearity of the problem and reduces a com-
plicated plasticity problem to an easily determined state of stress and
strain.

A contribution has also been made in the experimental work presented
herein. The fact that a helical mode shape was obtained fer the orthogonal
impact leads to interesting speculations as to why this mode shape is
obtained. No previous mention of this phenomenon has been Found in the
literature investigated.

2. Recommendations
Two recommiendations involving additional work are worthy of mention-

ing. The first involves determining the effect of adding transverse

A



shear in the lateral equation of motion. While the addition of shear presents
no particular problem in the equations of motion, the plasticity problem will
] be complicated. Since the total accumulated plastic strain involves a

; uni-axial strain eg and a shear strain e? , an equivalent plastic strain

Xy
must be determined from the plastic strain increments through use of the

TR

Prandtl-Reuss relations.

The second recommendation, the one most easily solved, involves considering
the problem as pure impact without using forcing functions. The plate would
be included in the problem, thus giving a two-body problem with the contact
boundary of the plate and rod deserving special attention. The plate could
be modeled as a thin plate by using the plate equations or as a thick plate

by using the equilibrium equations. To start the problem, the initial velocity

of the plate would remain at zero, but at each nodal point of the rod, the

initial velocity would equal the impact velocity.
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APPENDIX

The listing of the finite difference computer program utilized

in solving the problem of the elastic-plastic response of a slender
‘ . rod impacting a rigid plate is given in this appendix. The computer
t . listing as given is compatible with the CDC 6600 computer at Eglin.

i Listed first is the main program followed by the subprograms.
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PROGRAM INTG (INPUT,0UTPUT,TAPES=INPUT,TAPE6ZOUTPUT)

FINITE OIFFERENCE METHOD FOR COMPUTING
LATERAL AND AXIAL DEFLECTIONS

COMMON/ACON/B (L,y4)y THETA (L)
COMMON/NAME/L
COMMON/QUT/PI, AL, TMAXy)OMEGA3DXyRHO9FXFY
DIMENSION Y{(240),F(240)

DIMENSION UX(60),S(60)

COMMON AREA(60),AMI(60),BETA(60),R(60)

DEFINE CONSTANTS

PI=3.1415926536
6=32.1725%12,
RH0=,0975/6
EPSI=0,0045

INITYIALIZE VARIABLES

0C 9 I=1i,4

READ(S,10) (B(I,J)yJ=1,4)

READ(S,10) (THETA(U, yJd=1,4)
READ(59103)VI,TMAX OMEGA9AL DXy DyHyIFORCE
DMV = PI*(0**2)*AL*VI*RHO*3,0

H=H*1 ,E~-06

IF(TMAX.LT,1.,0)G0 TO &

L=IFIXC(AL/DX) +1

00 1 J=1,L

R(J)=0D/2.
AMICJI=PI*(R(JI*24) /0,
AREA(J)=PI*(RLJ)**2)
BETA(J)=1.E07
UX(J)=0.0

S(J)=0.0

LL=4*L

00 3 J=1,LL

F(J) = 0.0

Y{N=0.0
WRITE(6,100) VI, TMAX,0OMEGA,AL,0X
WRITE(64101) DyH,IFORCE
OMEGA=0OMEGA*PI/180.
TMAX=TMAX*1,0E-06

T=0.0

XMAX = H

C1 = PI*(D**2) /4,
ICOUNT=(

IPRINT = S
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IF(IFORCE .NE. 0) GO YO 12
MM=10

L = MMeL

DO 17 J=1i,MM

rR{J) = 20,

AMI(J) = PI*4Q000,

AREA(J) = PI*(R(J)*¥*2)
BETA(J) = 4L,EQ7

D0 18 J= MM,tL

Y(J} = -VI*12,.0

YL+L+J) = YULJII*SINC(OMEGA)
YL+L+L4J) = 0.0

Y(L+JSY =0.0

AMI(J) = PI*(D**4) /64,
AREA(J) = PI*(D**2) /4,
BETAtJ) = 1.E07

Uxd¢J) =0.0
R(J) = D/2.
S(J} = 0.0

FX =0,0

FY = 0.0

LL = 4%

D0 21 J = 4,LL
F(J) = 0.0

GO T0 19

IF (IFCRCE .EQ. 3) GO TO 13
IF (IFORCE +EQ. 1) FX=DMV/TMAX
IF (IFORCE +EQe 2) FX = 3,0%DMV*(T*%2)/(TMAX®*])
G0 70 14
3 T2=TMAX/10.
IF(T LT, T2} GO TO 15
FX = DMV/(0.,95%TMAX] i
G0 TO 14
FX = DMV*T/(0.035*TMAX**2)
FY = FX*SIN(OMEGA)

CALL RUNKUT(LL,HyT,Y,FyXMAX,IPRINT)
LMi=L-~1

Y{1) = Y(2)
Y(L+1) = Y(L+2) + DX*FX/(AREA(L1)*BETA(1))
Y(L+L) =Y{L+LM1)
Y(L) = Y(L-1)
ICOUNT=ICOUNT+1
XMAX=Y.MAX+H
IF(XMAX,GT,TMAX)GO TO 20
UX(L) =Y (L+#2)=-Y(L+1)) 70X
UXL)={Y(L+L)=YIL+LM1)) /DX
N0 4 J=24LML
UX(J) = (Y(L+J+1) -Y(LML+) )/ (2.%DX)
02 6 J=1,L
6 S{J)=BETAC(J) *UX())
D0 S J=i,L
IF (ABS(UX(J)) LT. EPST + 0,0005) GO TG 5
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BETA(J) = 2.0 E 05

IF (ABS(UX(J)) «GT., EPSI ,AND. ABS(UX(J)) .LT. 0.01) BETA(JU)=6.E0S
AREA(J) = CL/(L1.4UX(H))

IF(IFORCE +EQes 0 +ANDs J oLE. MM) AREA(JI=PI*(R(J) **2)/(1.+UX(J))
AREA(J)=ABS(AREA(J))

R(J)=SQRT(AREA(J)/PI)

AMICJ)I=PI*(R(JI**4) /4.4 AREA(J} ¥(R(J)*¥2)

S(JY = BETA(J) *UX(J) - 42500,

CONTINUE

IF(ICOUNT.EQ. IPRINT) CALL OUTPUT(T,Y,UXySyICOUNT)

60 Y0 12

FORMAT (4F20.0)

FORMAT (1H1,5X, *IMPACT VELOCITY*,F10.0,

15X, *IMPACT DURATION®*,F10.0,5X*IMPACT ANGLE?®,
2F10,295X,*ROD LENGTH*,F10.095Xy*0X*yF10.6)

101

FORMAT (15X, *R0OD DIAMETER*,F10.6,

110Xy *INTEGRATION STEP SIZE*,F10.7,10X,*FORCING FUNCTION*,13//)

103
20

8

FORMAT (7F10.0,1I5)

CALL OUTPUT (T,Y,UX,S,ICOUNT)
60 T0 2

CONTINUE

stTopP

END
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SUBROUTINE RUNKUT(NyH,T,Y,F,XMAX,IPRINT)
COMMON/ACON/B(4y4) 4 THETA (4)
DIMENSION YKEEP(240),Y(240),F(240)

DIMENSION AK(2403,4)

D0 15 J=1,N

YXKEEPR(.'} = Y(J)

X1 =7

00 15 K=1,4

CALL DERIVY (T,Y,AK(1,K))
DO 25 I=1,N

SuM = (0,0

DO 25 J=1,K

SUM = SUM+H*B(K,J) *AK(I, )
Y(I) = YKEEP(I) + SUM

T = X1 ¢+ THETA(K)*H

IF (T LT, XMAX) GO TO 10
RETURN

END
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3 SUBROUTINE DERIVY(T,Y,F)

' COMMON/NAME/L

; COMMON/OUT/PT ALy TMAX, OMEGA4DXyRHO,FX,FY

DIMENSION A(60,60),C(60),KP(60),Y(240),F(240),2(60)
COMMON AREA(60),AMI(60),BETA(6D) yR(60)

3 c
c
3 00 10 I=1,L
. DO 10 J=1,L
2 10 A(I,J) = 0.0
00 11 I=3%,L
11 C(I) = 0.0
5 LMi=t -1
LM2=L-2
M=L+L+L
LPL =L+1

C1=(DX*FX) /(AREA(1)*BETA(1))

C2=RHO*(DX**2) ;

FC(1) =0.0 2

Fl1+L) = Y(1) ;

FC2)=(C1=-Y(2+4L)+Y(3+L)) *(BETA(2) /C2) g

FL2+¢L)=Y(2)

00 1 I=3,LM2

FUD = (Y(I-14+L)=2,*Y(I+L) +Y(T+14L)) *(BETA(I}/C2)
1 FLI+L)=Y(I)

FOLML)=(BETA(LML) /C2) # (Y (L4+LM2) =Y (L+LM1))

FLLMLi+L) =Y (LML)

F{L) = 0.0

FIL+L) = Y(L)

o

AN M e AFEAL N s s,

Af1,1) = =C2
At1,2) =C2
C(1) = =FY®(OX**3)/AMI(1) +.5*BETA(L) # (Y (1+M) =2, *Y(24M) +Y (3+M))
C3=-AMI(2) /7 (AREA(2) * (DX**2))
A(2,1)=C3
AC2,2)==2,%C34+1,
A(2,3)=C3
Cu=-(BETA(2) * A7 (2) )/ (RHO®AREA(2) * (DX **4) )
C(2) = CL*(=2,%Y(14MI+5, %Y (24M) =4 o #Y (34M) +Y (44M))
DO 2 I=3,LM2
CS=ANI(I) 7 (AREA(I) *DX**2)
IP1=1+1
IMi=1I-4
ACT,TM13=CS
AT, 1) ==2,%C5=1,
A(I,IP1)=C5
CO=BETACI)*AMI(I) /7 (RHO®AREA(I) *(DX*¥4))
2 CCIN=CH® (Y(T=24M) =, #Y (IML+M) 46, %Y (T4M) =t #Y CIPL4M) 4 Y (T424M) )
C7=AMI(LML)/{AREA(LML)*(DX**2))
A{LM1,LM2)=C7
A(LML,LM1)==C7%2,.~1.
A(LML,L) = C7
C8=BETA(LML) *AMI(LM1)/(RHO®AREA(LML) *(DX¥**4))
CLML)=CB*{Y(L=3+M) =L, *Y(LM2+M)+5, %Y (LML+M))
AlL,LM1) = =C2
122

B TN S b e IATNY s i R

PO PR S AUV SIS OV U S P W RN

b Sedbees fifod e

TS{TIRLE N I




e R AR INLVUTARST S N OTRET TR, T ST L T TR R T L TATAY ST U T e T W R T R R R R R O T A T A A I T T ST Y, o mﬂ
4 ? E e G T F TP A IS T
)

. AlL,L) = C2

3 ClL) = («3.*Y(LMI¢M) + J,3Y(LM2+M)=Y(L=3+M))I*BETA(L)

3 CALL REDSOL (A,ZyCyNERyKP,L,0T) :
3 . De & I=1,L

, FI+L3L) = Z(D)

E b FLI+M)zY(I+L +L)

; RETURN

: END

%
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SUBROUTINE OUTPUT(T,Y,UX,S,ICOUNT) p
COMMON/NAME/ZL :
COMMON AREA(60),AMI(60),BETA(60) 4R(60)
DIMENSION Y(240),UX(60),S{60)
c
c
TCOUNT=0
M=L+L4L
HRITE (6,102}
DO & I=1,L
O  NRITE(H,101)ToI,Y{I+L) ¥ (I4+M yUXC(I) STV (I)yY(I4L4L),R(I)
: 101 FORMAT (F15.698Xy12;5X93F15.693F12.094XyF10.6) ;
1 102 FORMAT(1HO,8X,*TYME*,9X, *NODE NO.*,6X, :
: 1*AXTAL DISP*,5X,*LATERAL DISP*,6X,*STRAIN*, )
Y 26X, ¥*STRESS*,4X,*AXTAL VEL *,3X, :
i 3*LATERAL VEL*,2X,*RADIUS*//) 3
4 RETURN ;
3 END ;
i
(4
v
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SUBROUTINE REDSOL {A,;X;CyNERsKPyN,DT)
3 DIMENSICN AC(60,5U),X(60),C(60),KPL{E0}
3 LOGICAL RED,SOL,DET
E RED= . TRUE.
. SOL=,TRUE.
DEY=,FALSE.,
IF ¢ N ,EQ., 1 ) GO YO 90
: GO TO 5
ENTRY REDUCF
RED=.TRUE.
{ ’ SoL=.fALSE,
A DET=,FALSE.
GO 70 5
ENTRY SOLVE
RED=,FALSE.
SOL=.TRUE,
DET=,FALSE,
60 T0 &
ENTRY DETERM
REDG=.FALSE,
SOoL=,FALSE,
DET=,.TRUE,
5 IF (RED,OR. DET) GO TO 6
G0 T0 60
A 6 NMI=N=-1
1 IF(,NOT, DEY) GO TO 10
: NER = 0
DT=1,
G0 Y0 15

Lk S e sl A AL

SET KEEPER VECTOR

Q200

10 00 12 I=1,N
12 KP(IN=I

START DO LOOP ON L, THE REDUCTION PRO3JESS

SO0

15 00 50 L=1,NMI
LPi=L+1
IMX=L

FIND ABSOLUTE VALUE OF LARGEST COEFFICIENT

(¢ X X3)

20 DU 21 IsLPi,N
IF(ABS(A{IMXyL))oLTe ABS(A(ILL))) IMX=I
21 CONTINUE

¢
25 IF (IMX.EQ., L) GO TO 35
Ji<t
IF(DET) Ji=L
c
c NOW TO INTERCHANGE ROWS
c

D0 30 J=Ji,N
DUM=A(IMX,J)
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ACIMXy D) =ACLyJ)
30 A(L,J) = DUM

IF (.NOT. DET) GO TO 31
0T=-0T7
GO 10 35

31 IDUM=KP{IMX)
KP(IMX)=KP(L)
KP{L) = IDUM
TEST 7O SEE IF A(I,I) =0

35 IF(ABS(A(L,L)) LT, 1.E-25) GG TO 32
GO TO 40

32 DO 33 I=LyN

33 A(I,L) = 1,0E-7

40 0O 50 I=LPi,yN
PI = ALI,L)/Z7A(L,L)
IF(.NOT. DET) A(I,L) = PI
DO 50 J=LP1,yN

50 A(IyJ) = A(I,Jy- PI®A(L,J)

CONTINUE
IF (.NOT.(DET ,0R,SOL)) GO YO 901
IF{.NOT. DET) GO TO 60
00 55 I=1,N
oY = 07T * A(I,D)
IF (ABS(DT) .LY. 1.0 E-20) GO TO S%
GO 0 56
51 OT= SIGN(1.0E-20,0T)
NER=1

55 COHTINUE
IFENER LEQ. 1) RETURN
GO T0 90t

SORT AND STORE C

60 DO 65 I=1,N
K=KP(I)

65 X(I)= C(K)

66 CONTINUE

REDUCE THE VECTOR X
70 D0 75 L=1,NMI
LPi=L+1
DO 75 J=LP1i,N
75 XtH)sxX(J)=A{J,L)*X (L)
76 CONTINUFE
YHE BACK SUBSTITUTION PROCESSS

IF (A(NyN) LEGs Do} A(NyN)= 1,0E=-08
B0 X(N)= X(N)/ZA(NyN)
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3 81 DO 85 K=1,NMI
3 L=N=K
z LPL=L+1
; 00 84 J=LP1,N
w 84  X(L)=X(L)=A(LyJ) *X(J)
% 85 X(L)=X(L)ZA(L,L)
GO TO 901

‘ 901 NER=0
q RETURN
SO X(1) = C(1)/A(1,1)

RE TURN
3 END
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