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PART I

TWO DECODING METHODS FOR A (48,24) CODE

A. A MAJORITY-LOGIC APPROACH WITH 1,081 PARITY-CHECKS

In [2] we established the possibility of majority-

logic decoding of the (48,24) binary extended quadratic

residue code by a scheme which used some 4,000-odd
parity checks. In the present section we examine the

same problem with an approach using fewer parity checks.

The reader will be assumed to be familiar with [1]

and [2, Part III]; though for continuity a number of

results from these sources will be quoted in what

follows, an understanding of the techniques and approaches

used there will be helpful.

We established in [2] some basic data about the code.

Of course, it has minimum weight 12 and is self-orthogonal.

Thus all errors of weight 5 or less are correctable, at

least in principle. But since the code is not perfect,

there may be other correctable errors. In fact, some

19% of the errors of weight 6 are correctable (i.e.,

are unique leaders in their cosets), and all other errors
of weight 6 or more are not correctable, even in principle.

A basic finding on the code was the distribution of

the values of 6(E) as E ranged o- r all the 6-sets of

coordinate-places. X6 (E) is defined as the total

number of "clubs" containing E, where a club is the

support of a vector of weight 12 from the code. We

511



- -I -w -- ---- - - ' "--- . i

actually calculated X6 on the 6-sets of the form
{0,l,2,x,V,z}, finding the following distribution.

Table 1. Number of 6-sets *Containing a Given 3-set

X6 = 0 1 2 3 4 5

Not fixed 899 2170 1060 536 50 10

Fixed 3 0 0 12 0 0

"Fixed" means the 6-set is invariant under the 3-subgroup

of PSL 2 (47) which stabilizes the given 3-set; i.e., the

subgroup permuting 0,1, and 2 among themselves permutes

x,y, and z among themselves.

From Table 1 it is a simple matter to derive the

distribution of X6 over all the 6-subsets.

Table 2. Distribution of X6

X 6

0 2,334,960

1 5,629,848

2 2,750,064

3 1,400,976

4 129,720

5 25,944

Total(4 8)

Another computer finding was the fact that if E

is any 6-subset such that A 6 (E) = 0, and if p is any

point not in E, then

I X6 ({p} u E-{xl) = 8.
xcE

*Really the table gives the number of orbits of these 6-sets
under the group of order 3 fixing {0,1,2}.
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This fact is explained theoretically in Appendix 2 of

this Part I.

We now summarize our previous approach to the decod-

ing problem for this code. There are 4,324 vectors in
the code of minimum weight 12 having l's at a given

coordinate place; call it p. Let us call the set of

all such 4,324 vectors S. We decode by computing the

dot-product of an error vector with each of the vectors

of S, tallying the number of parity-check failures

obcained thereby. Using the fact that S constitutes a

4-Iesign on the 47 points other than p, and the values

of X6 calculated on the computer, we found that if a

correctable error contained the point p, then the

number of parity-check failures would be at least 2,224.

Otherwise, an uncorrectable error of weight 6 could be

detected; and a correctable error not including p would

be shifted cyclically, the dot-products would be computed

again, and thus eventually the error (unless it were a

single error at -) woulC arrive at p and be discovered.

Our first attempt to reduce the number of parity

checks stems from the fact that the minimum-weight

vectors of the code fall into 3 orbits under the action

of the automorphism group PSL2 (47) of the code. One

orbit consists of half the vectors, and each of the other

two of one-fourth of the vectors of minimum weight.

These orbits are each 3-designs and not 4-designs.

Our approach is to use either of the "short" orbits

to generate a set S1 or S2 of 1,081 parity-checks

covering the point p and to calculate the number of 4

parity-check failures that would result from errors of

weight 6 or less.

1-3



-. ..-.

Here the calculations must rely on computer work

even more than before, because S1 and S2 are merely
2-designs on the 47 remaining points. To facilitate

the computer work and to provide some analytical found-

ation, we prove a result giving the number of parity-
check failures in terms of the X-function.

LEMMA. Let M be a 0,1 matrix. Let C denote the

set of columns of M. For each subset X of C, let X(X)

be defined as the total number of rows of M having l's

at all the columns in X. For each subset E of C, and

X c E, let e(X,E) be the number of rows of M with l's

at X but with a 0 at some column in Y, for all Y

satisfying X 5 Y c E.
r

Then, for all E c C we have

X(X) = I e(Y,E)
XcYcE (1)

e(Y,E) = I (-l)IXI-IYIX(X) (2)YcXcE

X e(Y,E) = • (- 2 )Ixl-(x) (3)
IYI odd OXcE

YcE

Proof. The definitions i.-.,Viy (1) immediately. Mobius
inversion of (1) on the lattice of subsets of E under

containment yields (2), and (3) is a simple consequence of

(2). We explain (2) and (3) in more detail:

Let the relation < be defined on the subsets of E

by the rule X < Y iff X :D Y. Then the subsets of P
together with < form a lattice L in which E < X for all

points X of L.

1-4



The functions X and e, defined at each point of the lattice,

are related by equation (1). This is the standard prologue

to Mobius inversion (see [5]), the result of which is

equation (2). But independently of the general theory

one could easily verify (2), starting from (1).

To derive equation (3), we use (2) to find that

I e(Y,E) = ° (-I)IXIIYI,(x) (4)
MYodd IYodd YcXcE

YCE YcE

Since JYJ is odd throughout this sum, the sign is always

(-i) X -; it remains only to work out how many times a

given X c E appears in our double sum. The answer is that

X occurs once for every subset Y of X of odd cardinality.

Since there are 21x1 subsets of X altogether, and half of

them are of odd size, we find that the right-hand side

of (4) is equal to

S21xl-l(-l) Ix1l- X(x),

where we must of course exclude the possibility of X being

empty (because the empty set has no subsets of odd size).

COROLL'ý.x. If M is the incidence matrix of a t-design,

for some t > 1, then (3) simplifies to

) e(YE) = w - w() t (-2)t-l w•)X
IYJ odd1 () 2 .. +2) t)J

YcE

+
IXI>t, XcE (3')

where w IEI.

I



Proof. That M is the incidence matrix of a t-design

implies that, for all i < t, A(X) is a constant Ai for all

i-subsets X of C. Thus the terms of (3) can be evaluated

up through lxi < t.

We shall apply this formula (3), or (3'), to all of

the decoding methods we treat in this Part. For example,

in [2] we worked out formula (3') by ad-hoc methods for

the 4-design of all weight-12 vectors with l's at a

given coordinate place p (in this (48,24) code). To

calculate the number of parity-check failures on error

vectors E not containing the special point p we can simply

apply (3'), noting that the Ai for the 4-design is the

X i+1 for the 5-design of all minimum weight vectors.

Thus for JEJ = w = 4,5,6, (3') yields

402 - 1213 + 16A4 - 8A5; w = 4

5X2 - 20X3 + 40X4 - 40A5 + 16X(E); w = 5

6X2 - 30X3 + 80X4 - 120A5 + 16 XX (E-{xl) - 32X(E); w = 6.
xCE

These Xi's are for the 8; 5-12-48 design. This last

formula corrects the one appearing in [2, p.III-3].

Our first approach is to investigate the 3-designs

consisting of the two "short" orbits of minimum-weight

code vectors. From each orbit we select the 1,081 vectors

having l's at a given place p, and we wish to see how well

each of these sets of parity-checks performs in majority

decoding. To apply the Corollary of (3') to this set-up,

we note that the matrix M involved is now the incidence

matrix of a 2-design of type 55; 2-11-47. That is,

12 = 55 and X1 = 253. Thus from (3'), the number of

parity-check failures when p X E is, for JEJ = w,

1-6
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253w - 255( ) + (-2) Xl-lX(X). (5)
XTE

Since we know the code corrects all errors of weight 5 or
less and some errors of weight 6, we would like to evaluate

the sum (5) for all such errors E.

To begin with, we know already the values of (5) for

w < 2. Thus our next job is to find the distribution Of
X over the 3-subsets of the columns of the array. To

save effort we observe that it suffices to find X for the
subarray consisting of all 55 vectors having l's at two

more fixed places, since the automorphism group of M
is 2-set transitive. This means that we calculate this

submatrix of 55 rows and, now, 45 columns, and calculate

the column sums to find the distributions of X on 3-subsets.
We did this for both orbits* and reproduce the results

here (having divided by 3 because a 3-group acts on the

columns of the 55 x 45 submatrix).

Table 3. Frequency-distribution of X values on 3-sets
(÷ (47-23 = 1,081))

8 7 a 9 10 11 12 13 14

D6  2 0 0 4 2 3 3 1

A4  0 2 2 2 4 1 1 3
4*

Thus when we apply the values .an Table 3 to (5) we

find that an error of weight 3 not including p yields
the following numbers of parity-check failures. The

entries in the table are the distributions from Table 3

corresponding to the indicated numbers F of parity-check
failures; when divided by 15 they gi-e the probability

that an error of weight 3 not containing p gives F.

*For a description of the orbits D6 and A4 and of how they
were derived, see Appendix 1.
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Table 4. F = Number of Parity-check Failures for

an Error of Weight 3 Not Containing p.

F 457 461 465 469 473 477 481 485

Orbit D6  2 0 0 4 2 3 3 1

Orbit A4  0 2 2 4 1 1 3

We summarize our results up to this point:

If E has weight 1 and includes p, then the number F

of parity-check failures is 1,081 for both D6 and A4 .

If E has weight 1 and p is not in E, then F = Xi

(for the 1,081 x 47 array) = 253 for both D6 and A4 (from

(3')).

If E has weight 2 and includes p, then F = 1,081 - 253 -

828 for both D6 and A4 .

If E has weight 2 and does not include p, J•hen F 396

for both D6 and A4 (from (3')).

If E has weight 3 and includes p, t1en F = 1,081 - 396 =

685 for both D6 and A4 . , 6

If E has weight 3 and does not include p, then F

varies from 457 to 48.5 acc6rding to Tabe 4.
a A

If E has weight 4 and includes p, then F = 1,081 -

(457:4:485) = 624: :596 with distributional values given

by Table 4. "

And further, if E has weight 4 and does not include

p, then F = 472:4:544 with distributional values given

by Table 5.
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Table 5. Distribution of Values of F for Errors

of Weight 4 Not Including p.

F D6 A4

472 0 1

476 0 0

480 0 0

484 1 2

488 1 0

492 8 6

496 13 9

500 11 15

504 20 17

508 1i 23

512 16 14

516 39 28

520 12 20

524 10 10

528 10 13

532 4 2

536 4 3

540 1 2

544 1 0

TOTAL 165 165 =

(Derivation of Table 5: This was done via an APL

program which evaluated (31) for each 2-subset of the
columns of the 55 x 45 matrix mentioned earlier. For

each such 2-set some auxiliary processing was required,

as we now explain. An error of weight 4 not including

p is a 5-subset {-,x,yz,wJ, where we assume p is ® for

convenience. Let PSL 2 (47) fix and map the 2-set {x,y)

1-9



to {0,1}. Then a takes {z,w} to {a,b} c {2,...,46}.

Now let T e PSL2 (47) fix - and take {z,wl to {0,1). Then-i
T takes {x,y} to {c,d} c {2,...,46). Now at maps

{0,i} to {a,b}, and ,-i maps {0,1} to {c,dl. Under a,

our 4-set of errors {x,y,z,w} is identified with {0,1,a,b},

and we can calculate (3') in part in the 55 x 45 matrix

by evaluating )({0,l,a}) and X({0,l,b}) for this array.

(These are the values of X({x,y,z}) and X({x,y,w}), not

necessarily in that order.) Thus, having chosen {a,b}c

{2,...,46} we find the unique mapping which fixes - and

sends {a,b} to {0,1}; this is (Y-I )-1 =Ta -. We apply

this map to {0,1} and get {c,d}. We then can find

X({0,l,c}) and X({0,1,d}), which are in some order the

values X({x,z,wl) and X({y,z,w}). Thus the (4) choices

of {a,b} lead to all possible values of (3') on 4-sets

not including p. We meet each 4-set twice in this

manner, "once for {a,bl and once for {c,d}," and again

a 3-group acts on the array, so we have divided the

frequenc es by 6.)

We n, +-abulate the above summary, including also

the valt.es c F for errors of weight 5.

1-10



Table 6. Number F of Parity-Check Failures for

Errors of Weights 5 or less

Error
Weight p in Error p not in Error

1,081 D 253

A4  1,081 A4  253

D 6 828 D6  396

A4  828 A4  396

D 685 D 457; 469:4:485

A4  685 A4  461 :4:485
4 4

D 624; 612:-4:596 D6  484 :4: 544 j

46(*) (**)

A4  620: -4: 596 A4  472;484;492:4:540

D6 597 :4: 537
A4  609;597;589:-4:541(**) A4  477:4:565

(*)See Table 4 for frequency-distribution.

See Table 5 for frequency-distribution.

Concerning Table 6, the reader will have noted that

the entry on the left for an error of weight w is the

complement in 1,081 of the entry on the right one line

higher.
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The last entry in the table, that for errors of

weight 5 not including p for the A4 -orbit, was derived

by performing the 1,081 parity checks on a sample of

the errors of weight 5. The resulting distribution

has many entries in common with that on the left,

namely 541:4:565. This means that although either of

the D6- or A4 - orbits can correct errors up to weight

4 on a purely majority logic basis, the A4 -orbit will

fail to tell whether p is in error on some proportion,

roughly 26%,of weight-5 errors, according to our sample

distribution, reproduced here:

Number of parity check failures for A 4-orbit

on a sample of errors of weight 5

Value Number of errors Value Number of Errors

477 3 541 131

0 545 86

0 549 71

489 4 553 35

493 3 557 23

497 9 561 14

501 16 565 7

505 32 Subtotal 367

509 64 1034

513 66 I401
517 73 367/1401 = 0.26

521 118

525 138

529 196

533 165

537 147

Subtotal 1034

1-12
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The reader will notice that the D -orbit has values
6

overlapping in magnitude for errors of weight 4 on the
right-hand side of Table 6 and of weight 5 on the left,

whereas the A4 -orbit does not. For this reason the D
orbit would be less suitable than the other for a purely

majority approach to decoding even if it had less over-

lap between the two sides of Table 6 at weight 5 (a

situation that we judge so unlikely that we did not run

the D6 -orbit against our sample of 5-errors.)

One further comment: the 26% failure rate on 5-

errors might be too pessimistic an estimate. We could

set up our majority decoding with the A4 -orbit at a

threshold of 569, meaning that we change p if and only

if the outcome is 569 or more parity-check failures.

This would mean that we would never turn a 5-error into
4

a 6-error, and it is conceivable that for many 5-errors

some one or more of the 4 or 5 cyclic shifts of a 5-error

having 1 at p would have outcome 569 or more, even if

the other shifts gave an outcome of 565 or less. If

future investigation showed this to be true, then testing

of the A4 -orbit against errors of weight 6 would be ink

order. The left-hand side of Table 6, if continued to

6-errors, would read 604:-4:516 for the A4 -orbit. We are

not optimistic about this, however, because the 569

threshold would fail to change p in some 90-odd percent

of 6-errors containing p, presumably on the correctable

6-errors as well as on the noncorrectables.

1

4
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B. A MODIFIED MAJORITY-LOGIC APPROACH WITH 220 PARITY-

CHECKS

We now turn to another approach to decoding this

code. We consider the set S of 220 code-vectors of
weight 12 which cover a set C of 3 fixed coordinates

with l's. We take these 3 coordinate places to be con-

secutive under our cyclic shift, e.g., C = {0,1,21.

Our approach will require the calculation of these 220

parity-checks and the recording of the number of parity-

check failures on given words. Thus we can derive a

table of the various possible outcomes by means of

equation (3'), at least in principle. We proceed to

do this.

Our array S can be viewed outside of C as the

incidence matrix of a 2-design on the 45 coordinates.

(Recall that 220 is the value of X3 for the 5-design

of all weight-12 code-vectors.) As such, X1 is 44

and X2 is 8. Thus we can easily fill in the entries

in the upper left corner of the following table, by

use of (3'). Following the table we explain where

the other entries have come from.

1-14



Table 7. Number of Parity-Check Failures for the

220-Row Array Covering C = 3-set

Weight Weight of Error on C
of

Error 3 2 1 0

z y x

1 220 44

2 0 176 72

3 220 44 148 D3 = 84:4:104

4 176 72 220-D D4 88:4:116
136:-1:116

5 148 D3  220-D4 A D5 = 84:4:128
132:-4:104

6 220-D D4  220-D A D6 1 88:4:1203364 :9
136:-1:92 D 84:4:136

The various single-integer entries were all derived

from (3'). The D's under column 0 stand for the distribu-

tions of the numbers of parity-check failures arising

from errors of the indicated weight with 000 on C. All
other entries in the table have obviously the indicated

distributions in terms of these D's. D3 is already known

from Table 1 combined with (3'). For the other values of

D it would have been prohibitive to find the data called

for by formula (3'), so we directly sampled the distribu-

tion of the number of parity-check failures for each of

the cases of error-weight 4,5, and 6; in the latter we

did this for the distribution D6 corresponding to

correctable errors of weight 6, and for D4, the uncorrect-
ables of that weight. The symbol A means here that a

small sample has been used to determine the distribution,

so we caution the reader that conceivably 80, say, occurs

in D4 , or 132 in D5 . (The distribution D6 here has no
relation to the D6 -orbit of Section A.)

S- 15 '
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As we said, D3 is exact. For the later values, we

know from (3') that they must be multiples of 4. We

can put bounds on D4 in case the error E4 with C makes a

7-set with '7 = 0. For then we know from (3') that the

outcome must be between 80 and 112, since X6 takes only

the values 0:1:5. It appears that the true distribution

D6 extends higher than 120. As to the choice of our !

samples, we have no idea what randomness means here; we

chose our sample 4-sets by randomly introducing (via

the "deal" instruction of APL) 2 more points into each

of the 990 2-subsets of our 45 points and eliminating

duplicated 4-sets. We chose our 5-sets by randomly intro-

ducing one more point into our 4-sets. The two samples

of 6-sets were each chosen as the union of two orbits of

appropriate 6-sets under the "a2x + b" subgroup of PSL 2 (47)

with 6-sets intersecting C eliminated. The assembly-

language program calculating the entries in the table was

run on an IBM 370.

We now introduce a table giving the probability of

occurrence on the binary symmetric channel of errors of

the indicated weights in words of length 48 for channel

error probabilities of 0.01, 0.005, and 0.001.

1-17

. . _ • _ . __ • -I u - '• d | | • q • - -now



Table 9. Probability of Occurence of Errors of

Indicated Weight on BSC.

Channel Error Probability

Error

Weight 0.01 0.005 0.001

0 0.62 0.79 0.95

1 0.30 0.19 0.046

2 7.lxlO-2  2.2xi0- 2  l.lxl0- 3

3 l.1x10- 2  1.7xi0-3  l.7x10-5

4 1.3x10- 3  9.8xi0-5  1.9x10-7

5 l.lxl0- 4  4.3xi0-6  1.6x10- 9

6* 1.5x10- 6  3.0x10- 8 " 2.2x10-I2

*These entries are for errors of weight 6 which our code
can correct.

Having developed Table 7, we now use it to develop a

decoding algorithm. Our basic procedure is to perform the

220 parity-checks, record the number of l's among the

outcomes in a 3-stage memory Mem; we then shift the

received word, repeat the 220 checks, and enter the out-

come in the memory, having shifted the previous outcome

into the second of the 3 stages. We repeat this procedure,

many times if necessary, so that after the second cyclic

shift we always have the three most recent outcomes in

our 3-stage memory.

1-18



*'p

We assume that the circuitry to perform this algorithm

can be run at very high speeds compared to the transmission

rate used in the channel, so that the received word can

be cyclic-shifted as many as 5"47 or even 10.47 times

before the next word comes in. It is our understanding

that processing speeds of this relative magnitude have

been practical for several years already.

Our approach rests on the following simple observation;
Every error which this code can correct contains the 5-bit 5

pattern 0001a, where a is 0 or 1, and as this pattern is

shifted (to the left) through the three consecutive

coordinate positions in our set C, we get the outcomes

x when 000 occupies C

y when 001 occupies C

z when 011 occupies C

y when 010 occupies C

where, in the row of Table 7 corresponding to the weight

of our error, x is a value in the column headed 0, y is a

value in that headed 1, and z is a value in that headed 2.

Thus when Ola occupies C, the 3-stage memory will contain

<x,y,z> or <x,y,y>.

Conversely, if the 3-stage memory contains <x,y,z> or

<x,y,y>, then if we neglect ambiguities arising from the

(rather improbable) overlapping of values between column 0

and column 1 in Table 7, we can conclude that the pattern

0001a gave' rise to these vaLues. (We shall discuss the

ambiguities later.)

Our decoding procedure will therefore be to change the

value in the middle coordinate place of C whenever we see

<x,y,z> or <x,y,l'> in our 3-stage memory.
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We now must analyze whether this procedure can work

and if possible, to what extent it fails. That is, since

some entries appear in more than one row of Table 7,

"can we distinguish (true) x,y, and z values

on one row from (wrong) values on another

row? In otner words, how can we tell from

the values in Mem = < , , > what row we arc

on?

" what effect will the overlapping of values

between different columns ir a given row

have?

"* what do we do with an error at the infinite

place?

"* what is our stopping criterion?

We proceed to take up these questions. Until other-

wise specified, the infinite place is assumed to be error-

free.

What row are we on? In a nutshell, we can't always

tell, but at least at first, it doesn't matter! For

example, a single error will yield many times Mem = <44,44,44>

in the 3-stage memory, and the weight-3 error 01101 will

yield the same at one point in its shifting through C.

But the single error will eventually yield <44,220,220>,

telling us to correct that error; whereas an error of

weight 3 can never yield 220 at two different cyclic shifts.

In effect we have verified the procedure for errors

of weight 1. We shall answer the question (of what row

we are on) indirectly by showing that if we are on any

given row the procedure will decode correctly, ex' apt for

the problem of ambiguity which we shall discuss later.
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Thus an error of weight 2 has as its "change-value"

Mem = <72,176,0> or Mem = <72,176,176>. There is no

problem of ambiguity at weight 2; we must check, however,

whether an error of weight 4 would be incorrectly decoded

by the choice of the above two "change-values" for Mem.

Since 0 is not in our Table 7 for weight 4, only the value

Mem = <72,176,176> might arise from an erzor of weight 4.

But if it does arise, it could (and would) come only

from the error 1111; the decoding procedure would change
the third 1 from the left to a 0 -- a correct action.

An error of weight. 3 would have as "change-values"

Mem = <x,148,44> or Mem = <x,148,148>, where x is from

distribution D3 = [84:4:104} with the frequency specified

exactly in Table 8. Again there is no problem of

ambiguity, so that we need only check whether an error of

weight 5 might be incorrectly decoded by this choice of

"change-values." The only possible change value is

<x,148,148>, since 44 does not arise with weight 5. Such

a value of Mem arises from exactly those errors of weight

5 having four consecutive l's, and the decoding procedure

corrects the third of these l's.

We have shown that for all errors of weight at most ,

3, our procedure gives correct decoding.

Consider now an error of weight 4. The "change-

values" are Mem = <x,y,72> or <x,y,y'>, where x is from

distribution D {88:4:116) and y and y' are from
distribution 220-D 3 = {136:-4:116). Some ambiguity is

slightly possible in that 116 is a value for both x and y.

For example, the "change-value" <116,y,y'> might arise

from the error 00100 as it passed through C, yielding the

116 for C = 001. Notice that we would have to begin
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reading the contents of Mem for this error right here,

or else with high probability we would have reduced this

error to weight 3 before we reached this ambiguity.

This observation suggests that we might improve the per-

formance of our decoder by ruling that any "change-value"

including 116 should not be acted on. Other similar

ambiguities can arise to which the same comments apply.

Now consider the effect of these "change-values"

on errors of veight 6, which could give rise to

Mem = <x,y,y'> in the following cases:

Case 1. If it had four consecutive l's; again, as

in previous cases, our procedure would decode such an

error properly.

Case 2. If the weight-6 error is not correctable,

then the above change value can arise when 000 is in C;

this event would lead to an increase in the error weight.

If the error is correctable, the same possibility

has a slight chance of occurring, because D6  1 (88:4:1201

contains both 116 and 120 ii, common with 220-D 3 .

Case 3. The distribution 220-D 5 • {136:-4:921, which
occurs with a weight-6 error having weight 1 on C, contains

all of 220-D 3 and almost all of D4 , so it might laad to

incorrect decoding. For example, as 00100 goes through

C, the first value, when C = 001, in Mem might be an x in

D4, and the second and third values might be y and y' in

220-D 3 . At that point the content of C would be 100 and

an incorrect action would be taken.

It should also be observed that our change-values

chosen for weight 4 will yield correct decoding of some

weight-6 errors because D6 contains D4 , 220-D5 contains
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220-D 3 , and D4 , the z-values for weight 6, overlap 220-D 3

in 116. That is, some errors of weight 6 will yield

values of Mem, as 001a passes through C, equal to the

change-values chosen for weight 4.

We summarize the situation at weight 4: Since 116

is an outcome of such low probability, there is high

probability that any error of weight 4 will be correctly

decoded by our procedure. To estimate the probability

numerically would require further study, because we do

not know whether the distributions D4 and 220-D 3 are

sensitive to single cyclic shifts. The option of not

taking action in ambiguous cases may lead to an improve-

ment in performance. Some incorrect decoding of errors

of weight 6 will result from the method outlined here,

but a good estimate of the probability of this event,

given an error of weight 6, cannot be given at this time.

Now consider errors of weight 5. We have the

following values to consider:

x D ~{84:4:12815
y 220-D4 A {132:-4:1041

z D = {84:4:104}.
3

Here D and 220-D overlap in at least the 7 values 104,

108,...,128, leading to considerable ambiguity between

x- and y- values. Since D3 is contained in D., moreover,

there is complete "one-way" ambiguity between z- and x-

values, in that no z- value can be distinguished from an

x- value. Some correct decoding will take place, but

the extent to which this happens would be difficult if

not impossible to estimate closely from our present

information about the code.
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For correctable errors of weight 6, the distributions

involved are

x D6 a {88:4:1201

y 220-D • {136:-4:921z D4 5 {88:4:1161.

Here the ambiguity is worse, because every x-value except

88 is also a y-value. Still, a judicious choice of change-

values might yield correct decoding for some sizable

fraction of these errors, but the comments above under
the weight-5 case apply here as well.

Reference to Table 9 shows that errors of weights 5
and 6 occur with only a very small probability by compar-

ison to tnose of higher weights. For this reason the

poorer performance of this decoding scheme for errors of

those weights might not be a serious drawback to its use
on a binary symmetric channel.

What is the stopping criterion? We should stop the

procedur-e after some specified number of cyclic shifts,

say 470 (the exact number should be determined by further
study.) We examine the value of Mem at this point. If

it is <0,0,0>, we say that we have either received a
correct word to begin with or have corrected a word received

in error. If it is <44,44,44>, we change the contents of

the infinite place (if desired) and say that we have

corrected a word received in error. If it is anything else
we say that we have detected an uncorrectable error.

What do we do about an error at infinity? This

question is answered in the preceding paragraph.
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C. CONCLUSIONS

The older majority decoding scheme of [2] involved a

large number, 4,324, of parity-checks, but it would

correctly decode every error this code can correct. In

trying to diminish the number of parity checks we have

found that, at least by our two methods, we must give up
some of the error-correcting ability of the older scheme

on the errors of higher weight.

For the future, either of our two methods discussed

here may deserve further study in order to determine more
precisely their performance on errors of weights 4,5, 3

and 6.

Another future area of study might be the analogue

of our "220-checks" method for other extended binary

quadratic-residue codes. For these codes are known [1]

to yield 3-designs from tneir minimum-weight vectors;

therefore an array of parity-checks covering 3 consecutive

places with l's exists. In general the array is not a

2-design or even a 1-design on the remaining points, so

that every entry in the analogue of Table 7 would be a

distribution of several values.

1I
I
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DECODING

Appendix 1

The Orbits of PSL 2 (47) on the Weight-12

Vectors of the (48,24) Code

In [1, p. 150J we said that there were 3 orbits of

the group PSL 2 (47) on the weight-12 vectors under con-

sideration, one of length IPSL 2 (47)1 ÷ 6 and two of
half that length. That statement is correct. But we

went on to claim that 3 vectors we specified belonged

to these respective orbits and to say that both of

the short orbits had stabilizer isomorphic to 13 2

which is isomorphic to the dihedral group D6 of

order 12. As we have found in the course of our current

work, these latter claims were partially incorrect.

We now set things straight.

Consider the 8 6-sets a,b,...,h, mutually disjoint,

of coordinate places of our code defined just as in

[1, p. 150] as follows:

a = {0,1,3,16,33,40} b = {-,2,13,34,41,431

c = {4,5,6,18,23,261 d = {7,12,15,17,29,301

e = {8,27,32,37,42,45} f = {9,24,31,36,38,44}
g = {10,11,14,22,39,46} h = {19,20,21,25,28,35}.

By the notation "ab" we mean the vector of 48 coordinates

having l's at the coordinate places aub and O's elsewhere.

Now let us call the three orbits a, !1, and G2. Let a

stand for the long orbit, with stabilizer isomorphic to

23. Then, as before [1, p. 150] ab and df are in a.
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Now, also, ch and eg .re code-vectors, but they
are in the same orbit as each other; call it Sli The
stabilizer of each of these vectors is the same group,
isomorphic to D6 .'

This corrects our earlier misstatement [1, p. 1501
that these last two vectors were in different short

orbits. We know that the remaining orbit has a stabil-

izer of order 12 (see [1, pp. 148-150]), but now we
must find it.

Fortunately the groups PSL2 (q) are among the very
few for which the set of all subgroups is known. They
are described in [3] and more readably in [4]. We
must find some subgroup of order 12 of PSL2 (47)
stabilizing a code-vector of weight 12 not in the already
known orbit E1 . Thus we begin by listing all the con-
jugacy classes of groups of order 12 in PSL 2 (47), from

[4]:

The Subgroups of Order 12 in PSL2 (47)

Number of
Type Conjugacy Classes

Cyclic (Z12) 1

Dihedral (D6 ) 2

Alternating (A4 ) 2

Any subgroup of order 12 in PSL2 (47) acts regularly
(i.e., without fixed points) on the 48 coordinates,

because the only elements of PSL2 (47) fixing any points
are of order 23 or 47. Thus any subgroup of order 12
has 4 orbits of length 12 on the 48 coordinates, and
each of these orbits can be viewed as a vector of weight
12, which can be tested to see whether it is in our code.
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Furthermore, if two subgroups, say H and oHa-I H'I

are conjugate in PSL 2 (47), then any vector v stabilized

by H is in the same orbit as av stabilized by H'. Thus

we need to examine only one group, and the vectors it

stabilizes, from each conjugacy class.

We first examined the vectors stabilized by a cyclic

group of order 12, finding no codevectors. The element

(27 24")
43 4o.

has order 24; its square has order 12.

At this point we can interject a "theological"

argument: we know that there are two (48,24) codes of

our type, with no vectors in common except the all 0

and all 1, that any element in PGL 2 (47) not in PSL 2 (47)

interchanges these two codes, and that PSL 2 (47) is the

automorphism group of both codes at the same time, i.e.,

with the same action.

Now any weight-12 vector in one of the codes with

stabilizer H of order 12 is mapped by any element a of

PGL2 (47) not in PSL2 (47) to a vector in the other code

with stabilizer OH- conjugate in PGL 2 (47) to H. This

stabilizer is a group of the same type as H, of course,

and it is in PSL2 (47). It cannot be conjugate to H in

PSL2 (47), however, because if it were, the two codes

would have common vectors of weight 12, a contradiction.

From this argument we can deduce that cyclic sub-

groups of order 12 cannot fix code-vectors (of weights

12 through 36) and that the two short orbits a 1 and

02 in one code are stabilized as follows:
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Sby a D6 and E by an A4, with the short

orbits in the other code stabilized by
the other conjugacy classes of D6 Is and

A4 Is. 4i
The only other a priori possibility, that one group

stabilizes both orbits, is ruled out by our computation

that the code-vectors ch and eg stabilized by a D6 are

both in the same orbit, and that the otier two vectors

ad and bf stabilized by this D6 are not code-vectors.

Thus our job is to find two non-conjugate A4's.

From [4] we learn that inside each D2 4 (a dihedral group

of order 48) in PSL2 (47), there are two non-conjugate

4-groups. The normalizers of these 4-groups contain A4 's.

We thus produced two such 4-groups and for each one
found an element of order 3 in its normalizer, arriving

at two non-conjugate A4 's in this way.

In more detail, any 4-group in a dihedral group must

contain the rotation x through 1800 as one of its elements;

for the two reflections in it commute with each other,

which implies they are reflections about perpendicular

lines and that their product is X.

For X we took

x = 0
\-1 0o

We chose

/ 113 26\ 13 -26\I =• ' =1
26 -13! (-26 -13)
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to get two non-conjugate 4-groups <X,&> and <X,g'>
in PSL2 (47). Then simply by solving linear equations we

found elements a and a' of order 3 satisfying

0ý = -xa

ax = Cxa

and
o''= -Xa'

a x = 'xa'.

Our two A4 's are thus <X,ý,a> and <X,•',a'>. We found

that the latter of these two groups did indeed stabilize

a code vector, namely, the one with support
{6,9,12,15,21,25,26,27,38,39,40,43}. This vector is a

member of the other short orbit E. (Recall that ch
and eg are in a.)
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DECODING

Appendix 2

We give here a theoretical explanation for
Proposition 2 of [2], a special result we obtained

in 1970 with a computer. The computer result is for

the (48,24) extended binary quadratic-residue code,
denoted by A here. Although the theoretical explan-

ation is a general theorem we state it only for this

code. The statement and proof will make it obvious

how to use the result for other codes.

Recall that the computer result showed that given

a 6-subset E of coordinate places of this (48,24) code
then, provided that E was not a subset of the support of

a minimum-weight code-vector, given any coordinate

place p not in E, the number of min mum weight vectors
whose support contained p and intersected E in a 5-

subset was always 8. I.e., we had a certain uniformity

on 'correctable" weight-6 errors that could not be
explained by the action of PSL2 (47). As we shall see

below, the uniformity is explained by the existence of
a combinatorial design. Precisely, we have the

following.

PROPOSITION. Suppose E is a 6-subset of coordinate

places of the extended quadratic-residue (48,24) code

A over GF(2) and suppose also that E is not contained

in the support of a minimum-weight code-vector. Then,

the (42,24) code B obtained by neglecting the 6

coordinate-places of E has a holding pattern which is a
1-design. In particular, the minimum-weight vectors
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of B have weight 7 and yield a 1-design of type 8;

1-7-42.

Before proving the Droposition we remark that the

minimum -eight of the "contracted" code, the (42,24),
is in fact 7 since there are weight-12 vectors whose

support meets E in a 5-subset. The fact that the holding

pattern of the (42,24) is a 1-design is precisely the

fact that each coordinate place p not in E is contained

in the support of the same number, namely 8, of minimum

weight vectors of the (48,24) meeting E precisely in a

5-subset.

Proof. The coordinate places of E correspond to

6 linearly independent functionals since the minimum

weight (12) in A• = A is greater than 6. Thus, contract-

ing, we have a (42,24) code B whose orthogonal, B , con-

sists of the contraction of the subcode of A consisting

of those vectors which are 0 over E. The non-zero

weights occuring in B are, therefore, 12,16,20,24,28,32

since no vector in B can have weight 36 due to our choice

of E. (A weight-36 vector of B would imply that A con-

tained a weight-12 vector whose support contained E.)
J.8

Thus B has 6 non-zero weights and B has minimum weight 7.

Applying Theorem 4.2 of [1] we have the Proposition.

This result has been found independently and in

apparently more generality by Delsarte and Goethals [6,71
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PII

PART II

FROM STEINER SYSTEMS TO CODES

We continue in this section a discussion we began

in 1967 and reported on in [1, IV, Section 1], where the

problem we restate below was first formulated. We

treated a particular example of the general problem in

1970, see [2, V, Section 6], and we return to it again

here with applications to "t-design decoding" in mind.

The general question is the following% Given a 4

combinatorial design, when can it be realized as the

holding pattern of a linear code? Recall that the "hold-

ing pattern" of a linear code is the collection of supports
of its minimal weight vectors, the "support" of a vector

being the set of coordinate places where it is non-zero.

For decoding purposes we might want to demand that the

linear code be self-orthogonal; we will return to that
question later but first we prove the following easy

PROPOSITION 1. Every trivial combinatorial design

is the holding pattern of a linear code.

Proof. A trivial design consists of all d-subsets

of a given n-set. Thus [3, §4, p. 137] the linear code

we seek must be optimal. Let, therefore, F be a finite

field with at least n elements and consider the vector

space A of polynomials over r of degree less than or

equal to n-d. The dimension of A over F is n-d+l = k.

Let al,...,sn be n distinct elements of F and to each

polynomial P(x) in A associate the n-tuple

(P(aI), P(a 2 ),..., P(.n)) = ap

ILI
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The set of all such n-tuples (as P(x) varies in A) is

clearly a linear subspace of Fn , the space of all n-

tuples over F. In fact, the map P(x) - ap is a linear

transformation of A into Fn and since the a. 's are distinct1

ap = (0,0,...,0) implies P(x) is the zero polynomial.

Thus, we've constructed an (n,k) code over F (called a

shortened Reed-Solomon code), and since each P(x) in A

has at most n-d zeroes, the minimum weight is at least

n-(n-d) = d = n-k+l. Hence equality must hold and the

code is optimal with a holding pattern consisting of all

d-subsets, as one easily sees directly or via [3, §4,

p. 137].

Thus, trivial combinatorial designs correspond to

optimal codes. The auestion of which non-trivial designs

are holding patterns of linear codes has no such easy

answer as far as we know. As motivation for the following

discussion we restate in a slightly more general form a

proposition we proved in 1971. (See [4, Part I, §3].)

PROPOSITION 2. Let A be a linear formally self-

orthogonal (n,k) code with minimum weight d where n=2d,
k=d. Then no two d-subsets which are supports of minimum

weight vectors can overlap in d-1 coordinate places.

The proof of this slight generalization is the same

as that in the reference cited just above.

Proposition 2 suggests that a (2d,d) formally self-

orthogonal code with minimum Weight d might have an
interesting holding pattern; it suggests the possibility

of a holding pattern which is a Steiner System of type

(d.-l)--d-2d. For d=4 we have the unique extension of the

projective plane of order 2 which is indeed the holding

pattern of the self-orthogonal (8,4) extended Hamming

code over GF(2) and for d=6 we have the Steiner System
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associated with M12 (the Mathieu aroup) which is indeed

the holding pattern of the self-orthogonal (12,6)
extended ternary Golay code.

These two Steiner Systems may well be the only two
of type (d-l)---d-2d. These systems were discussed bi,

N.S. Mendelsohn [5] from a purely set-theoretic and

combinatorial point of view. Before investigating the
possibility of such systems being holding patterns we

record the following two elementary propositions.

PROPOSITION 3. Suppose the holding pattern of an j
(n,k) code A is a Steiner System of type t--d--n with

1 < t < d < n, and n-d > t. Then the minimum weight do A

of A', the orthogonal to A, is greater than t; and also,

k is greater than t.

Proof. Por a t-design (Steiner System or not) the

number of blocks containing an i-subset and avoiding a

1-subset is independent of the given subsets provided
i+j is not greater than t, a fact easily established by

contracting on a (t-j)-subset containing the i-subset and
using the complementary design. Thus, given any s-subset

of coordinate places, where s < t, there is a block of the

Steiner System intersecting the s-subset in a singleton.
Thus the s-subset cannot support a vector cf A . This

proves the first assertion. To prove the second, note

that the well known bound d' < n-k+l for general (n,k)
4... < o<

codes of minimum distance d' yields, for A , t+l = d =

n - (n-k) + 1, where do is the minimum distance of A

Thus t I k and equality holds if and only if A is an

optimal code with do = t + 1. But if A" were such an

optimal code, we could find a vector of weight t + 1 in

A the support of which had only one point in common with

that of a weight-d vector in A (by our hypothesis n-d > t).

This contradiction proves t < k.
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PROPOSITION 4. There are unique Steiner Systems of

tvDe (d-l)--d-2d for d=1,2,4 and 6. ror such a system

with d greater than 2 we must have d = 0,4 (mod 6). The

first instance of a failure of the obvious necessary

number-theoretic conditions is d = 24.

Proof. For d = 1 and 2 the trivial designs meet the

requirements and are obviously unique. For d = 4 and

6 we have the classical systems described above which are

known to be unique. For d > 2 contracting on d - 3

points gives a Steiner Triple System and hence 2d - (d-3)

1 or 3 (mod 6); hence d S 0 or 4 (mod 6). One checks

easily that for d = 10, 12, 16, 18, and 22 the necessary

conditions are met but that for d = 24 they fail. This

proves the Proposition.

We now come to the main point of this section. We

consider a Steiner System of type (d-l)--d-2d and assume

that it is the holding pattern of a linear (2d,k) code

and ask for properties of that code. The following

theorem shows that such a code must necessarilv be highly

interesting and, thus, we have theoretical evidence for

non-existence -- except, of course, for d = 4 and 6.

THEOREM. Let A be a (2d,k) code whose holding

pattern is a Steiner System of type (d-l)--d-2d.

Then k = d. Moreover A is formally self-orthogonal and

the holding pattern of A jis precisely that of A. The

weight distribution of A is uniquely determined.

Proof. By Proposition 3 we have k 2 d. But

k < 2d - d + 1 = d + 1 by [3, p. 137], since A cannot

be optimal. Thus k = d and the first assertion is proved.

Now A is therefore a (2d,d) code also and by Proposition 3

again its minimum weight is at least d but less than or

equal to 2d - d + 1 = d + 1. The value d + 1 would imply

that A were optimal, which would lead to the same con-

tradiction as at the end of the proof of Proposition 3.
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Before showing that the holding pattern of Aj is that

of A we prove that A is formally self-orthogonal (meaning

that A and A have the same weight-distribution). From

the Macwilliams' Equations we have that
I

dd A-l d+l a - l
I

where Ai denotes the number of vectors of weight i in A.

Since dA d= \dl (d=d)(q-l)( _ ((1l) (2dl)
- d \d-l Ad- d-l

Ad+1 = 0. Applying [3, Theorem 4.2, p. 138) we find that

the holding pattern of A is a t-design with parameters

(d-l)--d-2d. But again from the MacWilliams equations we

conclude that X = 1 and, moreover, that the weight dis-

tributions of A and A are the same: i.e., A is formally

self-orthogonal.

To finish the proof of the Theorem we need to show

that the holding pattern of A is precisely the given

Steiner System. But this follows immediately from the

fact that in a system with parameters (d-l)--d-2d the

complement of a block is a block and no vector v of A

and w of A can have their supports intersecting in only

a singleton.

REMARK: The unique weight distribution of A (cal-

culable from the MacWilliams equations) begins

12d
Fd-l)

Ad = 0

1 2d d
Ad+ 2  (q-l) d+2 (q-)
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>d
This immediately implies that q r Note that the

two known systems can be achieved as holding patterns over

fields with q = !. The next case, d = 10, has been

handled combinatorially bv Mendelsohn and Hung with a
computer. Their result shows that there does not exist

a Steiner System of type (4,5,15), a fortiori none of

type (9,10,20).
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