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ABSTRACT

Although the traditional experimental techniques employed by behavioral scientists
are considered inadequate for appiied studies of humans operating within a man-machine
system, researchers have been reluctant to adopt improved methodologies. This reluctance
{s attributed to inadeguate maans of evaluating those methodologies in current use ord to
investigators' lack of experience with new methodologies. It is proposed that a computer
program which simulates data generated by laboratory experiments can resolve both these
problems quickly and economically. The primary purpose of the current paper is to establish
that such a model for experiment simulation can be developed. This report outlines the
basic characteristics of the simulation model, which assumes the form of a polynomial
regression equation. Next it identifies and discusses many of the factors that usually

operate in human factors engineering experiments.

The author emphasizes that the model should provide for both relevant and irrelevant
sources of performance variance. Procedures are presented and illustrated for assigning
weights to the various facrors in the model including those factors that are ~ualitative and
ones that are related nonlinearly to pefformance. The paper concludes with some considerations
for making the technique of experiment simulationas useful and usable as possible, for both one
who is designing the model and one who is "sxperimenﬁng" within the realms of the modeled

world. 10
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FOREWORD

After several abortive efforts to promote improved methods of conduct-
ing human factors engineering experiments, it was realized that a major
deterrent was the latent fear that most people have of the unknown., Like the

"banker's loan syndrome" -~ the only people who can borrow money are
those who don't need it -~ the only persons willing to use new and advanced

.

experimentai techmques are those who have already had experience using
] them. The acceptance of this apparent contradiction as fact lead to the
ﬁ { search for the means of resolving the problem.

( If we couid siraulate the response characteristics of a laboratory
experiment by storing its mathematical model in a compuier, the computer
rather than a lot of real people operating equipment in a laboratory could
supply the performance data likely to occur under different operating condi-
tions. Instead of finding out what 2 man would do when certain equipment

\ parameters were manipulated and the data collected according to some
systematic plan, one could query the computer data base. If the model of

an experiment were properly prepared, experiment simulation would provide
a rapid and inexpensive means for investigating, evaluating, experiencing,
and teaching data collection techniques for human factors experiments.

In {rying to get across the idea to others of what an experiment simula-

tion is and what its contribution to applied human behavorial research would
be, three misconceptions commonly occurred. These are explained here in
order to belp clarify the remainder of the paper.
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1. Misconception: The mathematical model of an experiment is in-

tended to substitute for experiments which will provide valid
nerformance data for equipment design.

Fact: The simulation mcdel is of the generic experiment and is not
intended as a substitute for a particular experiment to understand
man-machine relationships. It is to provide data which will contain
sources of ¢rror characteristically present in actual laboratory
experiments. While the model would naturally provide for the
inclusion of equipment factors which could affect performance, it
v&ould also include those factors associated with the subjects,
apparatus, and environment which tend to interfere with the collec-

tion of good data. As a simulation of an experiment (and not merely
an engineering system), it could serve as a testing ground for ex-
perimental methodologies employed to reduce irrelevant effects so

B — 8 i - ol bcimui. — . —

that the relevant can be specified as accurately and as economically
as possible.

Validity of results in this form of experiment simulation depends
only on the degree to which the results of the system-relevant data
of a simulated experiment agree with the parameters in the com-
puterized model. This is a measure of the effectiveness of the
methodologies eniployed.

2, Misconception: Experiment simulation would be used primarily to
compare one experimental design against another.

Fact: In the case of statistically correct experimental designs, the
relative merits of each can be determined analytically. Knowing the
assumptions on which the designs are based, one can specify what
information is being lost in order to use a design that is more
economical in its distribution of data collection points than a design

M
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that includes all factorial combinations. Therefore, no empirical

comparison of two designs is necessary, because the goodness of
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the outcome will depend entirely on whether the information which
was sacrificed was needed. If it were, the design should never have
been used, and no empirical evaluation will tell anything more

about it. '

A more important use of experiment simulation is to identify the
conditions under which certain designs are more useful than others.
As stated earlier, one of the most practical values of experiment
simulation is to enable a lot of experience o be gained quickly and
inexpensively with certain experimental plans under a wide range of
experimental conditions. In a similar vein, the technique can be
employed as a tool for training experimentalists.

Misconception: To write an equation which would accurately simu-

late an experiment with human subjects would be too complex and
difficult to be of any practical value.

Fact: An approach will be described in this document which sim-

plifies the development of experiment simulation models so that
most persons experienced with the vagaries of laboratory experi-
mentation and an appreciation of the purpose of the siniulation can
develop useful models in a matter of a few hours. Naming the
factors which affect experimental results, both the desired and
undesired ones, should be easy for the experienced investigator;
these are the terms of the model. The real challenge lies in the
ability to assign the proper weights to 30 or more terms for any
single experiment in a way that is meaningful and purposeful. This
paper shows that this is not only feasible but relatively simple.
Whether or not the technique of experiment simulation could ever
be developed into a "cookbook!' procedure is uncertain. I hope it
could not.




The paper does not attempt to document every detail or derive every
relationship used in it, for these have been derived many times in statistical
textbooks. It does demonstrate one way of getting the job done. Rather than
more documentation of how one might simulate an experiment, the next step
is to simulate one and gain experience in using this valuable tool.

Charles W. Simon
April 1972
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Although human factors engineering concepts have yielded significant
improvements in equipment design, the contributions of formal human factors
engineering.experiments have been relatively modest. The quality of experi-
mentally cbtained data, depending as it does on the methods employed to obtain
the data, has failed to meet the needs of the data users. The traditional
techniques used by behavioral scientists have not provided the necessary
quantitative, generalizable information needed to design complex equipment

and systems.

Although many useful experimental designs have been developed during the
past 30 years, the behavioral scientist has tenaciously avoided using them,
continuing instead to employ uncritically a narrow set of designs and stylized
data collection proceduress which are cumbersome, inefficient, uneconomical,
and in some cases could not possibly provide the very information for which
the experiment is to be performed. * These limitations become particularly
acute in applied studies of humans operating as a part of a man-machine system,
In spite of this, the search for better methods has remained relatively stagnant

and uninspired.

Conditions Working against Improved Methodologies

The failure to improve the methodology employed in behavioral experi-
mentation can be traced to at least two conditions which prevail when

*
Simon, C.W. Considerations for the Proper Design and Interpretation of
Human Factors Engineering Experiments. Equipment Engineering Division,
Hughes Aircraft Company, Culver City, Calif. Tech. Report
# ARL-71-27/AFOSR-171-11, December 1971 (In press)




applied human factors engineering research is conducted. These are:
1. Inadequate means of evaluating the methodologies currently in use.

2. Inadequate experiences with new methodologies.

Evaluation. There is at this time no truly satisfactory way of evaluating
the methods employed in human factors engineering research, particularly when
these do not readily lend themselves to mathematical analysis. Experimental
designs are a part of the methods in that they indicate a particular patterning of
the data collection points. But this is only a small part of the whole process of
designing an experiment which can be complicated by practical limitations
placed on the data colleriion and by the differences between human behavior and
chemical, agricultural, or engineering processes.

The acceptability of most applied human factors engineering experiments

! today is based more on whether reports meet contractual obligations of time
and certain antiquated and sometimes irrelevant academicr standards than on

l the validity and potential applicability of their results, ™ - he time a report
has reached its final form, the trials and tribulations encountered in carrying
out a study, which might introduce bias or random error into the results, have

l long been glossed over or ignored. Although we may do sloppy experiments,
we seldom report sloppy experiments. Although it is sometimes possible to

l detect a poorly conducted study from the data supplied in a finished report,
many persons who administer research or who use research results do not

i have the necessary training to do so. Studies are seldom repeated, so even
empirical reliability of the data remains untested. The validity of the data is

i an even more difficult criterion to evaluate than the methods employed in col-

2- lection because there are often years between the time the results are used to
design a real system and the time the system is tested operationally. By then,

i the original inputs have been so modified by tradeoffs with inputs relative to
nonhuman components that also affect system performance that the validity of

l the human factors data alone is indeterminable. As a result, because feedback
is seldom provided on data quality, much less on the means employed to collect

l the data, there is little motivation for an experimenter to improve his ex-
perimental results through improved methodology.

|

Ve

PR

PN i




Experience. Even when it is recognized that a new experimental desigp
could markedly improve the quality of human factors engineering data, it may
not be used. For one thing, it is generally necessary to modify techniques
developed for other fields before they can be successfully applied to studies
iavolving the collection of human performance data. Fer another, the better
techniques allow for numerous variations which trade data collection economy
against information quality. In practice, time ard money constraints dis-
courage a period of exploration to determine whether such variations have a
practical effect on results. As a result, most human factors engineering
experimenters are reluctant to depari from familiar and conventional ap-
proaches, however limited, to try designs with which they have had no
experience,

A Different Approach

The rapid acceptance of promising new experimental methodologies will
occur only when there are ways of quickly and ¢conomically evaluating their
effectiveness under conditions likely to be found in the conduct of laboratory
experiments, One such way would be to develop a computer program which
literally simulat~< the effects which operate on performance data as it is being
collected in tt course of a laboratory experiment, and use this program to
disco’ -1 plans most accurately and inexpensively discover the true
characteristics of an artificially-creaied data base,

The construction and use of such a simulation is conceptually quite simple.
A data nase of operator performance as a function of all relevant sources of
variation that occur in human factors engineering experiments would be stored
in a computer. This data base could be queried according to some :::perimental
plan and the resulting sample data analyzed. The accuracy with which the
sample data represent the information in the original data base provides a
measure of the effectiveness of the experimental plan. The effectiveness of
this s.mulation, therefore, depends on how well it creates the conditions an
experimenter must face in the conduct of a laboratory study; it is rot intended
that this simulation would predict operator performance in some engineering
system configuration for a particular mission,

o i — e e — ettn 2ecsmlhessamiene kst et




Advantages and Applications

Properly developed and empioyed, such a simulation could provide an
inexpensive basis for comparing experimental designs and methodologies, for
evaluating experimenters and proposed data collection plans against absolute
standards, and for gaining experience with new designs across a broad spectrum
of operational conditions.

Some specific applications in which an experiment simulation could be
effectively applied are:

1. To provide a quick and inexpensive way of gaining experience
using new experimental designs and data collection procedures
to determine under what conditions they are or are not suitable.

o

To determine empirically the effect of deviations from the
experimental designs prescribed by the statistician.

3. To develop optimum procedures for collecting human factors
engineering data in the presence of different irrelevant sources,
types, and amounts of performance variance.

4. To standardized problems to select or quantitatively evaluate
the ability of experimental designs and experimenters to handle

complexities characteristic of applied behavioral research.

5. To use simulation as a training device to show students the
intricacies of experimental design, ii:cluding the decisions

required to collect clean data economically.

Considerations for the development of a model for experiment simulation are
discussed in the sections which follow. The primary purpose of this paper is
to show that it can be done,




SIMULATING AN EXPERIMENT

Experiment simulation is actually a method by which two people, or two
grovas of people, or one person wearing two hats, can play a game. One of
the two will be called the "creator;" the other will be called the ""experimenter."
The game consists of the creator building a "world'" inside a computer and of

the experimenter, through empirical sampling of the stored data, attempting to
describe this world.

There would be no game, however, unless there were in this simulation —

in the real world — sources of "irrelevani" variance which distort the
>lationships described in the sampled data from those occurring in the orig-
inal data base. Both the type and magnitude of these sources of error can be

sl  — Fakiol  panss b bomiiid  Sumamed o RN A

manipulaied by the creator, thereby varying the difficulty of the experi-
menter's task. The experimenter's weapon against this unwanted variance is
the astuteness of his experimental sampling plan. The score of the game is
determined by the accuracy of the experimenter's description of the stored
world and the economy of his effort to derive it.

General Approach

The technique of experiment simulation enables the creator to build a
computer program and a data base which will provide an experimenter, using
a particular data-collection plan, with performance scores which are functions
of the factors relevant to the experiment as well as unwanted conditions which
would ordinarily distort the data in the course of an actual experiment. The
presence of unwanted conditions in an experiment simulation forces an

experimenter -- if he is to do a good job -~ to plan for the same contingencies

and make the same decisions in selecting an appropriate experimental plan
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that he would have done were he to have collected his data using real subjects.

The steps in the preparation and use of such an experiment simulation are cited
below.

First, a polynomial is used to represent the basic model for experiment
simulation. Standard terms and frequency distributions are stored in a com-
puter data base. These terms represent those factors affecting performance
data in any experiment, i.e. those related to all relevant variables to be in-
cluded in the experiment, along with other unwanted sources of variance which
might artificially develop out of the experimental situation, generally associated
with irrelevant (to the experiment) subject, laboratory environment, and ex-
perimental methodology factors. The creator assigns identities and measure-
ment scales to the terms of the equation, depending on the particular
experimental conditions he wishes to simulate,

Second, the creator assigns coefficients which specify the relative effect
each ferm has on performance. For any particular model, the creator has
considerable leeway in how complex in degree and order the model will be and
in how much and what type of irrelevant variance will be included.

Third, the creator prepares a scenario for the experimenter. This
scenario would provide the experimenter with the same background information
that he would have available in an actual study. He would know something about
the problems and variables being investigated as well as the limits on time and
personnel available for the experiment.

Fourth, the experimenter is given the task of planning his experiment,
solving logistic problems, and collecting and analyzing the data. If the simu-
lation is a good one, he will be forced ~- step by step ~~ to make the same
decisions he would ordinarily be forced to make, and where his decisions are
deficient, so are his experimental results. Instead of measuring the per-
formance of an actual subject, the computer solves the equation introduced by
the creator for the data selection points introduced by the experimenter and
outputs ''experimental' data samples accordingly.

bl i B o Prap v




Fifth, the description of the world as determined by the experimenter is
compared quantitatively to the actual characteristics of the simulated world.
Evaluation criteria include the size and type of the discrepancy between the
experimental results and the true simulated world as well as the amount of
time, number of subjects, and the number of observations required to arrive
at the results,

Implementation

In the sections that follow, a preliminary description of how this simula-
tion can be achieved is presented. First, some basic characteristics of the
simulation model will be noted. Then many of the factors that ordinarily play
a role in human factors engineering experiments will be identified. These are

used to specify the terms of the polynomial equation. Next some practical pro-

cedures for assigning coefficients by the creator will be given. Finally, some
considerations for building an interface between the computer and both the
creator and experimenter will be covered.




THE SIMULATION MODEL

A polynomial regression equation will be the model used in experiment
simulation. To prepare such a model, the creator must recognize that factors
needed to simulate an experiment can be classified into four general groups,

the characteristics of which determine in part how they are to be handled when
included in the total equation. These classes and characteristics are shown in
' Table 1 and discussed on the following pages.

Table 1. Classes and characteristics of factors

i oty

CHARACTERISTICS
CLASS
Input (Term Value) Effect (Coefficient Value)
3 Quantitative Specific Specific
Qualitative, Artificial Specific
Assigned
Qualitative, Artificial Statistical
i Random
Events Artificial Statistical or Specific
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Quantitative Factors

Quantitaiive factors are those which can be related by a mathematical
function to performance. These factors can be measured on either an
ordinal, interval, or ratio scale. ''Resolution," "display size,' and '"rate
of movement" are examples of quantitative factors. Certain complex,
multicomponent factors which are scaled subjectively on a single dimension
are also quantitative; for example, the backgrounds of pictorial imagery used
in experiments on target acquisition can be ordered on a single scale called
"complexity, "' although this quality is actually a composite of many conditions
of the imagery. "Trials," i.e., the discrete units of time a subject is exposed
to experimental conditions, is an example of a quasi-continuous quantitative
factor. Although each trial is a discrete entity, a continuum of equal intervals
is implied by a function relating trials to performance as in the case of a
learning curve,

The relationship between a quantitative, continuous factor, xj, and per-
formance, Vio in this simulation can be expressed by a polynomial of the form:

v = By Xy + By Xy *+ By Xy e + BX]
i 17 27 37 ni

where n is the highest order the creator decides is needed to express the
relationship. The Beta coefficients represent the relative weight of the linear,
quadratic, cubic, etc., components of the relationship and may be either
positive or negative. For quantitative, continuous factors, the X terms can
take on an; value within the boundaries of the world being simulated.

Two or more factors ~an be included in this model by simply adding the
weighted terms together. If, however, there are interactions, then entirely
new terms must be included in the model along with their coeificients which

L meama . ol e & _—



reflect the degree and nature of the interaction. Thus, the terms required
to fully represent a two-factor interaction would be

. + 2.y 2, 8 2.2 +B st
Yig = B %t Bor Xt Bra Xy 22 X% T TPt 4%

where s may equal t and s ¢ t equals the highest degree term the creator
decides to use in the equation, Neither s nor t need equal the n (order) of

the terins used in the single factor function, and some Betas can take on the
value of zero,

Thus for every quantitative factor to be included in the model, the creator
must do the following:

1. Tldentify the factor (or interaction) by name:

This name is identified by the subscript.

e.g. Xi*

2. Decide which factors will interact:

* e ‘.-x—. '.— —o
ee. XX, XX XXX

3. Decide on the highest order relationship which will be used for each
factor:

This establishes how many terms will be required in the model for
a factor,

e.g. Xi . X? , X:: (3rd order max.)
4. Decide on the highest degree term for each interaction:

This estahlishes how many terms will be required in the model for
an interaction,

2 2
e.g. X X, XTX., X. X7 -
g i % Xl XJ Xl XJ , XJ Xk Xm (3rd degree max.)

*In this paper, the following symbology is used:

Factor = letter with bar
= letter without bar

10
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In practice, the effect on performance of any fourth degree (or larger)
regression component of an equipment parameter would be expected to be
trivial. Infact, by selecting the appropriate measurement scale, the effects
of many second degree components of the equipment factors can often be
reduced to an insignificant size. In Table 2, the forms of the regression terms
required to construct equations of up to and including fourth degree are listed.
For example, to write a third degree equation for three factors, all of the
forms of the terms shown inside the dotted line in Table 2 would be required
plus the comparable terms for Factors B and C and interactions AC and BC,
which parallel those shown for Factor A and interaction AB. Thus the terms for a

TABLE 2, Forms of regression terms needed in multi-factor
equations of specified degrees.

REPRESENTATIVE DEGREE OF THE EQUATION
FACTORS :
AND INTERACTION 1st 2nd 3rd | 4th
]
o K A A? A% At
]
- 2 3
(2) AB AB AB® !| AB
]
A% | a%?
1
]
| A%B
S : 2
(3) ABC ABC | ARC
1
Il AB“C
t
1 | A%BC
(4) ABCD ABCD
!- (5) ABCDE {Cannot be represented by a fourth-
a. gree equation,)

P e
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three factor, third degree equation would be:

3 3 3

A, A% A%, B, 82, B3, c, 2, 3, aB, AB?, Ac, ac?, Bc, BC?, ABC

each with one degree of freedom. Whether or not all of these terms
would actually affect performance would depend on the coefficients
assigned to each by the creator. In the real world of equipment design,
it would be realistic to expect many of these terms to have a

coefficient of zero.

Qualitative Factors, Assigned

Qualitative factors are those made up of two or more discrete
levels, categories, or conditions which cannot be ordered on a numerical
scale and sre identified only by name. ‘'"Manual control devices' is an
example of a qualitative factor that might be composed of the following

types of devices: joy stick, rolling ball, pencil stick, rotary knob,
rad so on, Although one can determine the effect each type individually

PA——y DG, F e Sohenidln

has on performance, no meaningful function can be drawn relating
'"Manual control devices" to performance.
This qualitative factor is classified ""Assigned' because in
constructing the simulation equation, the creator will decide exactly
how much of an effect each category (or control type) is to have on
performance. He does this by assigning the mean change in performance
which would occur when each control is being tested by the experimenter in
3 the experiment simulation; the computer would combine this value with those
of the other effects which are operating at the time to calculate the performance
score for that trial,

Qualitative Factors, Random

Certain qualitative factors are more approvriately simulated by

- having the creator specify only the mean and standard deviation of the %

effects of all of the factor, rather than by assigning specific amounts

Lo




representing the effects of each condition as was done for the previous
qualitative factor. Given the distribution data, the computer would
select from it a value at random to represent the effect of each condition
of the factor. Once a value were selected in this .;:anner and associated
with a particular experimental condition, it would r smain so for the

remainder of the experiment simulation.

"Subject skill" can represent a variable of this type, as in the case
when an experimenter selects his subjects directly from a larger popula-
tion without a priori knowledge of their skill on the experimental task.
To simulate this, rather than have the creator assign a specific skill-
level value to each subject of the total population, he would instead specify
only the mean and standard deviation of a distribution of skill-levels from
which the computer would randomly select and assign vaiues for each subject
the experimenter decides to use in his experiment simulation, Each time a
particular subject is tested under a set of experimental conditions, the
computer would adjust the mean performance level for that condition to reflect
the skill-level of the subject as determined by the randomly selected value.
In this case, the experimenter would have no direct indication of subject's

skill-level, except as it is reflected in the performance data.

A second situation can exist in practice which in the simulation would
determine the effect of each condition of a qualitative factor by a random
selection process. This would be the case when the experimenter selects his
subjects on the hasis of a task-related pretest. In the simulation, the
experimenter would indicate to the computer the number of subjects he intends
to use and that he intends to give them a preiest selected from those provided
by the creator's scenario. The computer would then provide the experimenter
with a printout relating a subject identification number with each pretest score
that had been selected at random from a distribution of scores supplied by
the creator. The experimenter could then select rom the populaticn those
subjects which he intends to use in the experiment simulation, on the basis

of the pretest scores.

The computer in turn would calculate the task performance
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effect for each subject from the amount of correlation (r) between pretest
scores (t) and performance (p), i.e., rtp’ a value which had been supplied by
the creator. The actual calculatiens for determining the mean performance
adjustment for each subject would be: 1) take the randomly selected pretest
score and multiply it by the correlation between the pretest and task per-
formance; 2) include some uncertainty by adding a value selected randomly

by the computer from a distribution of the task performance scores multiplied
by the coefficient of alienation (1 - r?p). The lack of a perfect correlstion
hetween pretest scores and performance on the task represents another source of
irrelevart variance in the results of the experiment simulation, a problem that
an experin{enter is forced to contend with when he uses a pretest for selecting
his subject sample or assigning them to experimental conditions in an actual
experiment. The approximate size of this correlation may or may not be

revealed to the experimenter through the scenario supplied by the creator,
Events

Events might be trealed as another form of qualitative factor.
An event is classified separately, however, because unlike the other
factors, the experimenter has no control over its introduction into
the simulation results. By including such a factor in the experiment
simulation, it provides the creator with an option of playing havoc
with the experiment and simulating what might happen if some unusual
occurrence produced a sudden change in performance without warning,
precedence, or repetition. For example, to simulate the effect of
a momentary distraction of a subject from the task, a correction

might be made to a single trial which yields an abnormally low
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score. The extent of this effect and its location in time could be specifically
assigned if it were to happen only a very few times during an experiment, or
the assignment of magnitude and location could be left to the computer which
selects a value to random from a distribution supplied by the creator.

Summary

The following summarizes through examples the treatments of the four
classes of factors:

Quantitative Factors:

Stored in computer: y = .45 x -,12 x2

Equation specified by creator who assigns the coefficients to
indicate a certain change in y for a unit change in x and x2
within finite boundaries.

Experimenter can select any value of x within these
boundaries and computer will indicate value of y.

Qualitative Factors, Assigned:

Stored in computer:

X Y
Pencil stick 1 +.23
Joy stick 2 +.11
Rolling ball 3 -.08
Rotary knob 4 -.26

Creator indicates change in mean performance (y) when
experimenter uses each type of manual control in his
study.,

Experimenter addresses computer and identifies type of
control to be used by the arbitrarily assigned
numbers, 1 to 4.
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Qualitative Factors, Random:

Stored in computer:

Subjects: N = 100

Skill level: Mean= ,72, Sigma = .14, Transform = 0.
Task-~related test: Mean = 50, Sigma = 10, Transform= 0.
Task-related test: (correlates with performance) .78

Creator specifies above values. Experimenter may or may
not decide to use task-related tests which rre available.

Experimenter indicates he will use m subjects from popuiation.
Subject identificaticn is its order number from 1 to m.
Computer assigns the effect each has on mean performance
based on values selected at random from the distribution
provided by creator. Experimenter may reach these values
by firsi "giving'" subjects a task-related test which he uses
as a selection device. This test's correlation with per-
formance is involved in estimating the effect each subject
will have on performance.

Event, Random and Systematic:

Information stored in computer is same as for two types of
qualitative factors,

Creator sgacifies that data, plus the point in time during an
experiment when these will be included in the performance
estimate,

Experimenter is unaware that additional inputs have been made,
except as he may or may not detect them from the response.

Implications for Computer Programming

The classes of factors described above are all found in actual laboratory
experiments Therefore, the basic simulation model must be prepared to
include them in case the creator decides they are necessary for the particular
world he plans to create. Because factors do break down into these few
classes, the requirement for diversity of computer programming is not very
great. No matter how many factors are included in a particular model, the
problems of programming are fairly limited and, in fact, a geaeralizable pro-
gram could be written in modular fashion so that the creator could decide the
class of factor, its order, its coefficients, and its sign in some preplanned
order, and the computer could construct the complete model.
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FACTORS TO BE INCLUDED IN AN EXPERIMENT SIMULATION

In an actual experiment, the performance level on each trial is the result
of factors other than those directly related to the equipment and system
parameters which the experimenter is studying. For example, performance
varies due to differences among the subjects. Further perturbations are
added depending on the procedures used to collect the data. Because irrelevant
performance variance can distort the relevant measures of performance, the
experimenter, in planning his experiment, ordinarily tries to control, com-
pensate, or correct for them.

In a2 simulated experiment, the experimenter obtains his data from a
computer rather than from the actual testing of real subjects under laboratory
conditions. The simulation, to be complete, must not only provide an estimate
of the performance of an imaginary group of subjects operating equipment but
also provide the experimenter with the opportunity and the requirement to
make the same kinds of decisions he would need to make were he dealing with
the intransigencies of an actual laboratory experiment.

Identities of Typical Factors

In this section, the most common sources of variance that affect the
results of a typical human factors engineering experiment will be discussed.
These factors can be conveniently divided into the following groups:

1. System (S) Factors. These are factors associated v-ith the
equipment, the environment, the task, and other aspects of the
system that the cxperimenter is (or should be) interested in

17
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relating to operator performance. In the design of an experiment,
these factors are often referred to as the "independent variables,"
It is to understand these factors that the experiment is being
conducted.

2. Subject (O) Factors. These are the characteristics of a subject -~

operator or observer -- which affect or relate to his basic
proficiency on the experimental task at the beginning of a study.

Temporal (T) Factors. These refer to conditions associated

with the subjects, the equipment, or the environment which result
in-an average change in performance as a function of time. These
changes may take place during work or rest periods over the
course of the total experimental time.

System (S) Factors

In the simulation it is necessary to characterize the engineering system,
which the experimenter, through the collection of data, hopes to describe.
System factors are needed to identify equipment, environment, task, and other
variables related to the performance of the system being investigated. The

fanssncy inaicd [ e ] . L] s - -
e

experimenter would be expected to include some of these factors in his
experimental design.

By way of illustration, some system factors that might be included in the
simulation of an experiment on the design of a reconnaissance display are:

- Equipment Environment Task Other
Resolution Ambient Target Target size
Dynamic range illumination recognition Bazkground
Display size Vibration Response-time complexity
Image motion limit Type of imagery
rate

The creator has the option of adding others. Interactions among these factors

[T ™1

are commonly found in the real world and should be included in the simulation
l model as well.
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In modelling the experiment simulation, the creator would presumably
include more system factors than the experimenter would ever be expected
to study in a single experiment. This is characteristic of an actual experi-
ment in which the selection of variables is limited by practical considerations
of the size and cost of an effort and the experimenter's astuteness or ambition
in ferreting out all of the relevant variables. For all practical purposes, it is
believed that fewer than 15 factors and selected interactions should account for
nearly all of the total variance sttributable to system considerations in a
particular task. The creator can use the scenario to keep the experimenter's
choice of system factors within simulation boundaries.

Subject (O) Factors

A part of experiment simulation must include the characteristics of the
population(s) from which the subjects are to be drawn. These factors should
correspond as much as possible to those that would be considered were the
subjects real and the experimenter required to select them according to
chance or specific task-related criteria. As in the real world, the creator
can supply the experimenter with unlimited numbers and types of subjects or
can place severe restrictions on their characteristics and availability.

Among the types of information derivable from the simulation that should
be available on 2ach subject are:

1. Task Aptitude. This is the basic performance capability for each
subject that can be represented by a symmetrical S-shaped (ogive)
growth curve and described by two quantities: mean and sigma.

The mean is proportional to the maximum growth potential, and the
sigma is proportional to the time required to achieve that maximum,

2. Experience Level. This is the level of performance at which each
subject begins the experiment. Performance at the beginning of the
2xperiment need not begin at zero.

19
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3.

Related Performance. Scores on performance-related tasks may be
provided whic ...ight be used in the selection of subjects. Per-

formance on these tasks can correlate between +1 with the actual
task.

4. Nonperformance Characteristics. These permit the classification

and selection of subjects according to such conditions as sex or age

or type of training, etc. They too can be correlatea with performance.

Temporal (T) Factors

Time elapses during the conduct of an experiment, During this time
changes are taking place in the subjects, the environment, and the equipment.
Some of these changes can be controlled, some can be compensated for, while
others may only be monitored. In many cases, these changes are irrelevant
to the basic purposes of the experiment and can only be expected to introduce
disturbances into the pertinent experimental data, Because of their prominence
in most human factors engineering experiments for equipment design, how-
ever, provisions must be made in the simulation model so that these sources
of variance will emerge if the experimenter creates situations which encourage
them or fails to employ methodologies which will minimize them.

In this simulation, subject-related temporal factors will be treated some-
what differently from equipment/environment-related temporal factors. In
the discussions that follow, these temporal factors are treated as '"main"
effects; that is, they refer to changes in average performance over time,
ones representative of the performance for each subject or system condition.
There are also in actual experiments temporal changes that affect individual

subjects or system conditions differently; these will be discussed in the sec-
tion on interactions among S, O, and T factors.

Subject-related temporal factors. Whether or not thase factors are

operative in a simulation depends upon the experimental design selected by
the experimenter. If he has a sufficient number of subjects available for his
experiment, he may test each subject only once and avoid the special problems

BT RN
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imposed by subject-related performance changes as a function of time., How-
ever, in many applied human factors engineering studes, subject availability
is limited, the number of experimental conditions is large, and subjects must
be used more than once. In some studies, where learning is of primary
interest, certain subject-related changes over time would not be considered
irrelevant.

For subjects who are repeatedly tested in an experiment, the time
continuum can be divided into two major periods: work and rest. These in
turn can be further subdivided into intervals that have different but typical
effects on éubject performance over time (Figure 1), The more common
subject-related effects over time that should be included in a simulation model
are described below,

Trisl Pause
X0X0X000 0X0X000000X0X0X000X0X0X
L_______J__‘___F i R L i L |
Period Relax Period Period Relax Period
Rest
| Block | [ Block N

Figure 1. Stylized work-rest patterns

Trials. These are the intervals in which performance data on the
task are collected from each subject, For this model, one
trial yields one performance score.

There are two distinct types of trial factors: intracondition
and intercondition trials, Intracondition trials represent

repeated measures of the same experimental condition.
Intercondition trials represent the discrete number of
measurements made across the same or different exper-

fmental conditions.




Performance would vary randomly on the intracondition trials.
Performance would be expected to show a rising function over
intercondition trials, indicative of learning. The slope of the
function depends on the portion of the learning curve that is
operative at the time.

Pauses.  These are the intervals between two trials, usually just long
enough to change or reset the equipment for the next trial or
to record the data of the previous trial. During these inter-
vals, performance will remain essentially constant. Any
effects of pauses will show up in the period factor.

Periods. These are the total lnter'vals covered by a series of trials
and pauses. They are separated from one another by relax
intervals. A series of trials and pauses might represent

replications of a single experimental condition run se-
quentially or a series of different equipment settings with
only the setup pauses interpolated. During one period,
fatigue factors can operate on performance as a function of
the length of the period.

Relax. These intervals occur between two periods and are signif-
icantly longer than pauses. In an actual experiment, these

are generally introduced after a run of trials to allow the
subject time to "take a break' and may be used when more
complex or time-consuming equipment changes are required.

During these intervals, negative effects that may have
built up during a period might dissipate or begin to

dissipate.

Blocks. This title is used to designate a clump of periods separated

by rather extensive rest intervals from other clumps of
b periods. Commonly, in actual experiments, when the number
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of experimental conditions is 80 great that subjects cannot be
studied on them all during a relatively contiguous time period,
the experimental runs are broken into major blocks of times,
such as from day to day or morning to afternoon. Average
performance changes from block to block, if any, will be
stepwise in nature and seldom systematic.

Rests. This is the interval between blocks which tends to eliminate
fatigue effects that may have built up within a block. In
addition, some performance decrement as a function of
forgetting is possible if the period is too leng.

Equipment/Environment-Related Temporal Factors. These factors

usually fall into three classes:

e Continuous, random
e Continuous, systematic

e Discrete, random

Continuous, random effects are exemplified by a slow drift in equipment
voltage over extended periods of time without an obvious pattern being ex-
hibited. Continuous, systematic effects are typified by a voltage drift that
occurs during an equipment warmup period or changes in ambient illumina-
tion throughout the day. Both of thesc show definable and repeatable patterns
of change. Discrete, random effects can occur when equipment is set at an
incorrect value during a particular trial or period. They can also occur from
day to day (i.e., block to block) if whatever continuity might actually exist

is not readily apparent. These temporal effects may or may not correspond
to the beginnings and ends of the intervals considered in the discussion of
subject-related temporal effects.
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Interactions

In addition to interactions that might exist among factors within a group
(e.g., the systems group), terms must be provided in the model for those
interactions between groups (S, O, T) that are commonly found in actual
experiments. Typical situations that create interactions are:

1. Subjects seldom begin an experiment at the same point on a learning
curve or have the same skill levels. This could result in O x T
interactions.

2. A piece of equipment may be adjusted incorrectly for several trials,
a condition that may not be discovered until later. If the effect on
performance were sizeable, this could result in an S x T interaction.

3. As in the case of any unusual event, if the error in Item 2 did not
affect the performance of all subjects (perhaps some were tested
on a different day when the equipment was set up properly), this
could result in an S x O x T interaction.

4, If subjects are not homogeneous and have distinctly' different
experiences with the equipment conditions being tested, an
S x O interaction could occur.

5. The use of counterbalancing as an experimental method could result
in 8 x O x T interactions, or any two-factor interaction.

6. Relative performance levels obtained when operating two equipment
conditions can differ and even invert, depending on which condition
is tested first. This could result in an S x T interaction.

In an actual experiment, many interaction effects may remain hidden
and impossible to isolate because of the experimental design employed.
However, because they do occur in the real world, the creator must make
provisions for them in his simulation model. Whether they will appear in
the results of a simulated experiment depends on the experimental plan
employed by the experimenter. If he fails to use a design in which the same
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subjects run all or some of the experimental conditions, then subject-related
temporal factors and the interactions associated with them will not be revealed.
The simulation, however, must be capable of creating a realistic effect no
matter what route the experimenter ultimately decides to take. When these
intergroup interactions do exist, they more often than not represent the

"noise' in the experiment and are a major component of the measure of
experiment quality.
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SPECIFYING THE COEFFICIENTS

Once factors have been selected for an experiment simulation, the creator
must then specify the coefficients of the terms represenrting these factors in
the simulation model. These coefficients indicate how much each factor

affects performance. Because the game requires the experimenter to use
his investigatory skills to ferret out a valld description of the simulated world,
whatever it may be, in theory the creator could assign any coefficients he

pleased to the model, and the competent experimenter would ultimately be

able to ciscover the characteristics of the simulated world. In practice,

however, assigning coefficients in this manner would not be satisfactory.

Instead, {wo limiting principles should be followed if experiment simulation
is to be used effectively. These principles are:

1. Experiment simulation should be rational. Assigning coefficients

without attempting to produce a realistic simulation creates artificial

problems that an experimenter would never expect to find in an actual

human factors engineering experiment. The creator, to make his

simulation effective, must provide an element of realism in his

simulated world. Experimenters seldom approach experimental

problems without some knowledge of the world to be investigated,

and that world is not a helter-skelter one. This fact is used by .

the skilled experimenter to design his experiment properly. He

P

makes use of his knowledge of the regularities and relationships

that normally exist in the psychophysical world, of certain irrelevant
effects that tend to be present from study to study, and of conditions
characteristic of his particular problem.
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2, Experiment simulation should test the experimenter. Coefficients
should be assigned so as to create a simulated world that tests the
experimenter's ability to handle situations that might affect the

validity of his data. Coefficients can be increased or decreased in

value, distorting certain irrelevant effects in order to provide a

simulation against which methods for reducing or eliminating these

effects can be explored., Coefficients can be assigned which, when

combined with restrictions placed upon the experimenter, make data

collection a more difficult task; this enables exploration of ways to .
ease the problems.

For any experiment simulation, the creator will need to assign coefficients
to 30 or more terms. To do this knowledgeably so as to satisfy both principles

and at the same time be assured that experiment simulation remains a practical
tool that will be used frequently, the task of coefficient assignment must be
made reasonably uncomplicated. A set of principles, or relationships, makes
this possible,

Weighing the Factors

Principle I. The sum of the proportion

of total variance accounted for by each

statistically indendent factor equals
1.00, and the sum of all subsets
combined will equat 1.00.

P, = Py*Py+ Py +P, = 1.00
Py = P5*Pg
Py = Pyt P tpgtpytp, = 1.00
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Py = (P *Pg) +(pg +Pg+py) = 1.00

. -t o
JURTY 2 1

27




Rather than think in terms of the coefficients of the model, the creator
can begin by thinking of the strength of the relationship he wishes each factor
to have on performance. Because "strength of relationship" is expressed by

the proportion of total variance accounted for by the factor, the creator's
decisions are simplified by the above principle which permits him to consider
the problem in parts. Thus, if all items in the list of factors cited in the
previous section affect performance, the creator can break these into
meaningful subsets related to the type of world he is trying to build. Then

he can consider the smaller number of factors in each subset separately and

make simple comparative judgments of their relative effect on performance.
Each decisfon the creator makes in these cases reflects his particular goals
in constructing the simulation, In the text that follows, the reader will be
lead through some considerations and imaginary judgments that a creator
might make to illustrate the steps that will end eventually in coefficients de-
scribing the world intended by the creator.

To begin, the creator must first decide whether he wants to make the
overall difficulty of the experimenter's task great or small, By classifying
the many factors into one of two groups -- relevant or irrelevant -~ he can
influence the task difficulty by the propcrtion of performance variability he
attributes to each group. Relevant factors would be the ones the experimenter
is interested in relating to performance. Irrelevant factors would be those
that introduce chance errors and bias into these estimations. If the creator
starts with a world in which the irrelevant variables contribute relatively
little, then no matter how poorly the experimenter may sample that world in
order to discover the properties of the relevant variable, his information will
be of relatively high quality. If, on the other hand, the creator makes the
contribution of the irrelevant factors large, then the experimenter -- in order
to obtain untainted data about the relevant factors -~ must carefully plan his
data collection techniques and use any available means of reducing the
unwanted sources of variance,

To reiterate, relevance as used in this paper is defined from the point

of view of the experimenter., A factor is relevant when it is the reason the
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experimenter performs his experiment. Anything that interferes with his
obtaining good, clean, and valid information about the relevant factors is
called irrelevant. 1t is not irrelevant in the sense that it creates error in

the data, only that it was irrelevant to the experimenter's interest and
represents an unwanted sourre of variance,

Let us conclude, for this example, that the creator decides to distribute the
proportional contribution of relevant and irrelevant factors as:

P L 2 T

Source of Variance

) Relevant Irrelevant
4

0.35 0.15 = 1.00

' What is considered relevant can change from simulation to simulation and
depends on the problem posed to the experimenter by the creator in the scenario.
Ordinarily all equipment and system (S) factors would be considered relevant,
even though information about them all is not requested in the scenario. .
Thus, an experimenter may be asked in the scenario to find the relationship «

between display resolution and target detection, However, in the experiment

-

simulation, as in the real world, other factors such as contrast, noise, and

7 gL

so forth, also affect performance. A good exnerimenter will either add these

as extra factors in his study of resolution or specify the values at which these

' are held constant,

l Subject (O) factors may or may not be considered relevant, If the 3
experimenter is expected to determine whether subjects of low, medium, and ‘
high skill perform differently with different dcvices, then the degree of %

i variability among skill levels would be relevant. If, however, different
subjects were to be used individually in each cell of the experimental matrix, i

i any variance contributed by them to the measure of performance on the %:

' equipment might be considered irrelevant depending on whether or not the :»g

!
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subject sample were truly representative of the population. Let us assume
for this example that the creator decides to make the skill level {Sk) a
relevant factor., At the same time, he would place a "within-skill-ievel
subject variability" factor among the irrelevant ones.

To continue the illustration, we shall let the creator decide to have five
equipment or system (S) factors, A, B, C, D and E, along with two sets of
two-factor interactions, C x E and D x E. Let us also assume that he decides
to include a ninth source of relevant variance, the interaction between subject's
skill (Sk) and equipment factor, D. His next step then is to assign relative
importance levels to these nine sources of relevant variance. This decision
may be based on conditions in the real world, on tne distribution typical of
the relative effects of factors in an experiment (i.e., they often distribute
themselves exponentially), and on how he wishes to test the experimenter.

In this example, the following distribution might represent the results when
the creator ranked his relevant sources of variance and then assigned the
proportion he wished each to contribute to this quality:

Relevant Sources

Greatest Effect 1
on Performance

213141} 5 6 7'81 9 Least Effect
on Performance
Sk

D | B | E |DxE |SkxD AlC ExC

.30[.24|.12'.09| .08 | .06 l.05|.04|.02 = 1.00

The above numbers could be changed in numerous ways, depending on the
creator's goal. As written, these numbers show that in this simulation the
creator has decided to deemphasize the effect of interactions of performance.
Also if, in the scenario, he only mentioned the first four factors, then he

has made the experimenter's task easier by not making the remaining relevant
factors have too large an eifect in case they are overlooked. The experimenter
can be ""squeezed" by the creator in this kind of simulation in the same manner
that he may be squeezed when he has many relevant factors to study but is
limited in data collection time and money.
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As another example of how the creator can structure the simulation, let
us examine some of the decisions the creator might make concerning the
irrelevant sources of variance. Considering that these are "irrelevant"
sources of performance variability, the creator would first decide whether
he would want subject (O) factors or temporal (T) factors to be the major
impedance to the experimenter's ability to obtain clean results. If it is the
former (that is, if he makes the within-skill-level subject variability larger)
it may be because the creator wants to test the experimenter's subject selec-
tion techniques. If instead the creator makes the temporal factors larger,
he may do so in order to examine methods of controlling certain transfer
effects so typical in experiments with humans or to discover ways of mini-
mizing the effects of uncontrollable equipment fluctuations on the relevent
information. Let us imagine that for this example the creator decides that,
of the irrelevant sources of variance, he wants to place approximately four
times as much emphasis on temporal as on subject factors, and he wants to
emphasize subject-related temporal factors the most. He might translate
this into the following proportions:

Irrelevant Sources

Subject Factors Temporal Factors

Within-skill-level Subject-related Equipment-~related

+20 .50 .30 =1.00

What these numbers will mean to the experimenter (if he knew them, and of
course he cannot know them except through his sampling of the data base
during the simulated experiment) is that he probably would be able to collect
cleaner data if he were to use different subjects under each experimental
condition than if he were to use the same subject across many experimental
conditions. This leads the creator to a number of other decieions that can
make the experimenter's task easier or more difficult. If in the scenario he
limits the size of the subject population, it may force the experimenter to try
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to use the same subject over a number of conditions. If he provides some
secondary task, which the experimenter could use to select or match his
subjects, he may make uiis secondary task correlate highly with the primary
task and thereby serve its purpose well or correlate slightly or not at all,
thereby introducing unwanted sources of variance into the study.

In deciding how to weight the subject-related temporal factors, the
creator must consider which one should affect performance the most, just
in case the experimenter decides to use the same subject more than once
during the experiment, By assigning a large prcportion of the variance to
the intracondition trial factor, the creator will cause the experimenter's
data to be less reliable if the same subject is tested repeatedly under the
same condition. A large positive coefficient for the intercondition trial
factor could simulate subjects who show considerable improvement from
" on-the-job practice," whereas a small one would simulate subjects at
some learning plateau. The size of the proportion assigned to the periods
factor determines whether subjects behave as if they were fatigued, and the
size of the proportion for the relax factor determines how long an experi-
menter must make his simulated subjects wait between sessions to overcome
the fatigue effects.

In certain :ases, to maintain the proper degree of reality, the assign-
ment of proportions is slightly more complicated; for example, the positive
effect of rest should not exceed the negative effect of fatigue. However, as
is the case with the entire equation, values can be assigned relatively quickly,
and finer adjustments can be made later to bring out qualities that were
missed in the original assignment. For this illustration, let us assume that
the creator proportions subject-related temporal effects among the following
factors as shown here:

Subject-Related Temporal Effects

Intracondition Trials | Intercondition Trials | Periods iRelax
.40 I

.20 I .20 l 20 =1.00
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All temporal factors represent a relation between performance and a unit
of time, Because the creator cannot know how much time the experimenter
plans to schedule for the various work and rest periods, he must create
relationships that cover sufficient units of time to handle all reasonable situa-
tions. The creator can control the experimenter through the scenario by
limiting the total time available to do the experiment -~ a common and
realistic situation,

Looking next at the equipment-related temporal factors, the creator
might decide to simulate an effect representing a slow, low-amplitude drift
in the equi;;ment. The amplitude of the drift would be related directly to the
performance loss. In this illustration, he will make this sole factor account
for all (1.00) of the variance associated with the equipment-related temporal

factors.

Summarizing the Apportioning-of-Variances Examples. These decision
processes by the creator would continue until he had succeeded in formulating
a world that both resembled reality and stressed those aspects of experimental
data collection technology in which he was most interested. In Table 3, the
valucs of the proportions that the creator decided upon in the previous para-

graphs have been summarized. In Column 1, the factors to be included in the
model are listed. In Column 6, the products of all probabilities in Columns 2
through 5 affecting a particular factor are recorded, and the relative strengths
of association for each factor with performance (i.e., the proportion of total
performance variance accounted for by each factor) are shown. For example,
the proportion of variance accounted for by intracon ition trials is the product
of 0.15 x 0.50 x 0.20 equals 0.015.

At this point in the development of the simulation, the creator could
examine the combined probability values (Column 6, Table 3) to see whether
the values represent the type of world he is trying to simulate. If not, he
can make the necessary adjustments with the only restriction that the sum
of the proportion must total one.
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, Table 3, Summarizing the apportioning of variancea
nd

8
the coefficients of the standard regression equation

i n @ (3) 4) (5) (6) "
Subject-
System & | Subject & Related Proportion of Coeffictents of
l Relevant/ | Temporal | Temporal | Temporal Var{ance Standard Regression
FACTORS Irrelevant Factors Factors Factors Accounted For Equation
Skill 3 .30 . 255 +,505 *
| D .24 . 204 +,452
B .12 f (,102) +,316 B - ,254 B2
l & E .09 . .076 -.276
X DxE g .85 .08 . 063 -.261
1%
o skxD .06 .051 +.226
=
+.154 Aa + .032 Ab
l A 05 q(.042) - .093 Ac - 093 Ad
C .04 .034 +,184
; ExC / .02 ,017 - .130
Subjects } 1‘
w/i |
Skill .20 .030 +,173
Intercondition - ]
£ Trials .40 .030 +.173
1 Z
>
- l:lJ Intracondition g .15
o Trials > $511] .20 .015 +,122
=
1 £ Pperiods .20 .015 -.122 \
Relax J .20 .015 +.122
i Drift ) .30 .045 - .22 -
Total
Proportions 1.00 1.00 1,00 1.00 1.00
1 f = functional facior :
1 q = qualftative, assigned factor {
i
1 £
l %
)
=
|
34
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Finding the Coefficients '

Principle 1I. The magnitude of a

coefficient () of a standard regres-

sion equation equals the square root

of the proportion (P) of total per-

formance variance ( Zy2) accounted for

by each independent factor (sz).

A standard regression equation is one in which the valuesof X and Y

are given in terms of standard measures, or Z-scores, where Z equals the
raw score minus the mean of that set of scores divided by the standard de-
viation of that set of scores. The square roots of the proportions provide

the Beta coefficients of the equation which relate z_, to the zx; values of the

y
i factors. As long as the different factors are independent of one another,

Beta is equal to the linear correlation between that "actor and performance.

While the square root of each proportion provides the magnitude of
Beta, the creator must specify the sign of these coefficients. This is simple
enough tc do. For each factor, he must decide whether performance will
increase or decrease as the value of a factor increases. If the change is in
the same direction, the sign for that coefficient will be plus; if the change
is in opposite directions, the sign for that coefficient will be minus.

Thus, starting with the proportions of Table 3, Column 6, the creator,
by following the steps cited above, would arrive at the following standard
regression equation:

’J&;{"“&i\’)«*;

zy (performance) = 0.505 Skil! + 0,442 D + 0.316 B »«+ «.. -0,212 Drift

P



where every independent factor (e.g., skill, D, B, etc.) is actually a Z~score.
The coefficients for all of the terms are shown in Column 7,

Principle ITI. The coefficient of the
raw-score regression equation (b)
equals the coefficient of the standard

regression equation (8) multiplied by
the ratio of the standard deviation of

the performance measure ( gy) over

the standard deviation of the independent
variable (0x;).

= oy,
bi B i oxi

Up to this time the creator has worked primarily with bodiless numbers.
Next he must relate the standard regression equation to the real world. To
do this, he must specify for each term the unit and scale of measurement,
the shape of the frequency distribution, and its mean and standard deviation.
The standard deviations of all factors or terms are needed to transform Beta
coefficients into raw-score coefficients.

The units by which a factor is measured are determined in part by
reality. Slant range, for example, would be measured in feet, yards, miles,
or meters. Luminance would be measured in foot lamberts. Skill would be
measured by the score on some test of skill, The creator has the option of
selecting the particular scale along which to express these types of measure-
ments, for example, in meters directly or in logarithms, reciprocals,
square roots or some other transformation of the meter values. Transforma-
tions would be exercised primarily to simplify the simulation mode, where a
linear relationship between a factor and performance is ordinarily preferred.
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In order to convert from a standard equation to a regression equation,
the creator must be able to specify the means and standard deviations of the
different factors, This can be simplified by assuming that all factors are
distributed normally, that the standard deviation is one-sixth of the total
range, and that the mean is at the center of the range. The creator can
fairly easily select the range of values for each factor, for it is he who
determines the limits of his simulated world. Although these limits should
conform to some extent to reality, the creator can control to a great extent
the range of values that the experimenter might decide to investigate by the
information supplied in the scenario. If there are reasons to include non-
normal diétributions, and there can be, these could be handled in the same
way that scale transformation are handled.

Once the raw score regression equation has been obtained, the
coefficients should be examined directly, for they shaw the linear relation-
ship between the predictor factor and performance. Thus, a coefficient of
+ 0,452 for factor D, which, let 1.8 imagine, represents the range to a
target in meters, would mean that for every meter the observer is awey
from the target, there would be 0.452 increase in performance units, for
example, the number of targets likely to be detected. The ultimate test of
the acceptability of the equation can best be made by trving it out before
using it with an experimenter, If it fails to reflect the type of world the
creator intended to simulate, modifications at this stage should be rela-
tively simple tc make.

Multiterm Factors

Were all factors related to performance by a simple linear relationship,
the basic approach to assigning coefficients to a large complex model would
have been adequately described. Unfortunately, the task is not this simple.
The process is complicated when the factors involved are related nonlinearly
to performance (and whea rescaling the measurements cannot linearize the
relationship) and when a factor is qualitative, Some methods for handling
these cases are discussed below.
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Qualitative factors. A qualitative factor is one in which the levels, or

categories within the factor, cannot be ordered or have any quantitative
relationship. A qualitative factor might by "types of aircraft" in which the
levels or categories are: helicopters, fixed-wing jet, and fixed-wing
propeller, To handle these in the simulation model, the creator must decide
how much each category affects performance, above or below the mean
performance level for that factor.

These judgments are simplified by requiring the creator tc decide how
much difference in performance each category will make relative to another,
For examble, if Factor A were a qualitative variable containing four cate-
gories, a, b, ¢, and d, the creator might assign the following relative
weights to each:

a, 5;b, 3;¢, 1;d, 1.

Presumably, these would characterize the relative effects each condition
had on performance in the real world. To fit these into the equation, the
numbers must first be converted into values above and below the mean for
that factor. In this case, the mean is 2.5 which when subtracted from each
weight would leave the following values for each category:

a, 2.5; b, 0.5; C, -1.5; d, -1.50

The next step is to scale these weights to fit the magnitude of the overall
effect of factor A, which was shown in Table 3, Column 6 to be 0,042 parts
of the total variance, Mathematically, this means that the sum of squares
for factor A was 0.042 part of the total sum of squares. The sum of squares
for the four weights (2.5, 0.5, -1.5, and ~1.5) assigned to the four condi-
tions equals 11. Therefore, to yield the lower sum of squares, the individual
weights must be scaled down.
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Principle IV. The square root of the
adjustment value (I) which changes one
sum of squares (2'.32) to another sum
of squares equals the value raquired
to change all individual scores (X)

to values that would yield the second
sum of squares.

2 2
[Zx, ¢ Zx; & \ﬁ-XI.X2

To make this correction {n our example, the weights 2.5, 0.5, ~1.5, and
-1.5 must be multiplied by (0.042/11,)"2, or 0.0618. The results,

(06.154 ZAa + 0,032 2,, -0.09832, -0.0932

Ab Ac Ad

represents the coefficients of a set of dummy terms for factor A in the
standard regression equation. Note that the four coefficients have a mean of
zero and a sum of squares of 0.042, Insert this multitermed equation in
lieu of the square root of the proportion for factor A in the standard regres-
sion equation (Table 3, Coiumn 7).

Because the categories a, b, ¢, and d represent levels of a nominal
factor having no quantitative values of their own, the value for each Z Al
term will be either 0 or 1, and only one of the four terms can be designated
1 at any one time. Thus, when the condition is Category As, only Zp ., takes
on the value of 1, which subtracts 0.093 from the mean performance of the

entire equation. The other Z4; terms, being zero, contribute nothing to
the performance estimate.
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Nonlinear functions. For quantitative variables which relate non-

linearly to performance, the creator will wish to specify the function and
then translate it into coefficients that fit into the relationship defined for
the total equation. In decidingon the function, he must consider:

e What would be realistic.

e The degree of complexity he wishes to introduce into the simulation.

As higher-order terms are introduced into the equation, the experimenter would
have to take more data to describe the simulated world accurately, When the
data collection effort is limited, the experimenter's data collection plans will

have to become more sophisticated,

The following steps will enable the creator to specify the coefficients of
a particular function that will satisfy the requirements. These steps are
illustrated in Figure 2.

1. Draw on a piece of graph paper the function believed to exist
between performance (Y) and the boundaries of the real world for
the particular independent factor (X). Emphasis here is on shape
rather than numerical accuracy insofar as the values of the two
axes are concerned.

2, Divide the X axis into four equal parts. This will allow a relation-
ship up to and including a fourth-order one to be defined. It is
assumed that for the purpose of experiment simulation, no function
higher than fourth-order would be needed.

3. Label from 0 to 4 the five points at the ends and partitions between
spaces on the abscissa (X axis). Label the ordinate (Y axis) with
any set of values.

4, TFor each of the designated X points, find the equivalent Y value.

5. Use the "difference’" method to obtain a least square fit for the data.
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Step Numbers 6
a, 2, 3) 5 \
4
Y 3
2
1
0
o 1 2 3 &
) x_x2 1y
o oo
11 {35
2 4 5.
39 |55
4 16 | 4.0

(5) Difference method (least squares):

y av  a%r &Ny

0

+3.535
3.535 -1.690

Y= (1+ d)kYo

+1.845 when

5.380 _1.690 —Q « Yo k= 1,2,...
+0.155 0

5.535 -1.690
-1.535

4.000

€ =0+ 3.535 X -1.690 (X2 - X)/2 = 4.380 X -0.845 X°

) x x>y
Mean 2 6 3.69 oy
Sigma 1.414 5.9 2.0 g 1 = b|-X
oxf0y  0.707_ 2.95 x Oy

Zy = 4,380 (0.707) zx -0.845 (2.95) sz = 3.10 Zx -2.49 Z.2
(7) Desired proportion for Factor £ = 0.102

Zys = 0.316 2,y -0.256 2,91

Figure 2. Example of steps to develop a nonlinear
function for the simulation.
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Convert che coefficients of this raw score regression equation (b) to

those of a standard equation ( 8) by using a variation of Principle III,
i. e. £}

Take the proportion of each coefficient equal to the proportion of
variance desired for that factor. This last step is valid because
of the following principle:

Principle V:

2 —_ .
R™ = Byp.3T12 " By3.2 713

where Rz, the coefficient of determination,
is 1.00 because there was no error,
and

2, _
PRY) = p (Byg g T99 * Bya, o T13)

where p is the proportion of the total
variance to be contributed by this factor
in the overall equatic.ii.

[llustration: 0.102 = 0,316 (0.707) ~ 0.254 (0,479)]
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8. Insert the multitermed equation representing the function of the
single factor in lieu of the square root of the proportion for
Factor B in the complete standard regression equation (Table 3,
Column 7).

“ .
Nt e

The one difficulty with this meihod is that it is possible to get fourth~
order effects (since five data points of the function are being specified) when
the creator may rot wish to have more than a quadratic equation. This can
be overcome by selecting only (n + 1) data points spaced equally across the
extremes of the X axis to limit the order of the equation to n. This means

that a second order polynomial would perfectly describe three values of

X and Y, or a third~order would be perfectly described by feur values of

X and Y. The problem with using this method is that if the experimenter
believed that his original higher-o.der drawing approximated the real world,
representing it by a lower-order equation would destroy reality. The creator
would have to decide on the merits of the tradeoff.

Eventually, if many equations were developed for experiment simulation,
a supply of standard functions could be prepared from which the creator could
draw to fit particular situations. Until these have been constructed, how-
ever, it is a simple matter to have the computer do the few computations
required for applying these techniques.
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MAN-COMPUTER INTERFACE CONSIDERATIONS

To make the technique of experiment simulation usable, useful, and
used, it must be made easy to apply by both creator and experimenter.
"Easy" in this case means letting the computer do most of the calculations
and letting the man supply the guidance and basic inputs. Optimizing this
relationship, which involves problems of computer programming, will not

be considered in detail at this time, except to indicate some considerations
that should be emphasized.

Creator

Ideally, the program would enable the creator and computer to engege
in a dialogue in which the computer asks questions and the creator answers.
The questions would follow the patiern illustrated earlier, taking bits of the
problem small enough to permit purposeful answers to be given. Further-
more, while the creator would supply numbers, the computations, even
simple ones, would be done within the computer.

Ao e

An effective program from the standpoint of the creator would be one -
that would permit corrections or changes to;bgma.do-etﬁlr b‘c:th in terms of
individual numbers and blocks of numbers. This would allow a variety of
"worlds" to be built and modified without having to go through the entire

procedure each time, There should be provisions for storing worlds that
they could be reused.

Once the basic techniques for simulating experiments have been
adequately developed, the process could be made more sophisticated.
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Instead of simulating a single world, the creator should be allowed to input
multiple worlds by specifying those dimensions he wishes to change system-
atically, For example, he may describe a series of worlds in which the
propertion of relevant to irrelevant variance is shifted systematically, or

he may shift the proportion of variance originally accounted for by a subject-~
related time factor to an equipment-related time factor. If the multiple
worlds are constructed by changing certain parameters not evident to the
experimenter after the experimenter has collected his data, it would be
possible to see how effective one particular experimental plan would have
been across the whole range of conditions.

Experimenter

For the creator, the coraputer helps to construct a world; for the
experimenter, the computer stores the world as a data base from which the
experimenter must sample. The interface between computer and experimenter
must make the experimenter's task of withdrawing data as easy as possible.
As in an actual experiment, he should be able to indicate the coordinates of
the space he wishes to sample and the computer should provide him with an
estimate of performance at each coordinate by solving the equation for the
values specified. Furthermore, as a matter of convenience, the ex-
perimenter should have the option of requesting data from one or a series
of data points at one time, and the results should be fed back to him
immediately.

The experimenter should be provided with a scenario by the creator
that gives him the problem he is expected to solve, some background
material, and the limits to be placed on his data collection strategy. The
scenario should provide the experimenter with all of the supporting informa-
tion about the problem that he would probably have were he to do the
experiment in an actual laboratory. The limiting conditions ~- the avail-
ability and type of subjects, the amount of time allowed for the study (which
translates into data collection units), and the characteristics of the apparatus
and the environment -- may be manipulated by the scenario along a
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continuum of greater to smaller restrictions which, when combined with the
characteristics of the simulated world, produce a range of difficulties that
the experimenter must be prepared to master to obtain the information at a
desired quality level.

In addition, in order for the experimenater to be able to communicate
with the computer, he must be told which measuring units are being used in
the simulation and scme information about the boundaries of the simulated
world. Provisions must be made in the computer program so that when an

improper instruction is given, it will be rejected and the experimenter
notified.

From the point of view of the exgerimenter, the time continuum is con-
siderably less complex than for the cveater. The experimenter need think
only in units of time, the length of his runs, his resi pericds, and the time
between sessions. He literally must schedule hig simiuiaied experiment
as he would a real one, only he must convey inig information to tin corputer
in a more stylized manner, i.e., in units of time associated with every
operating and nonoperating period carefully designated.

The same question-answer, dialogue style would be used between the
computer and experimenter as with the creator. The computer would ask
for information and provide the experimenter with the format he must use.
Whatever program is prepared, it should -- if possible -- be sufficiently
modular that it may be corrected or upgraded with as little rewriting as
possible.
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CONCLUSIONS .

A method of simulating the characteristics of experiments in which
human subjects are used has been proposed. Admittedly brief, presumably
sufficient detail has been provided to show the reader that a model for this
purpose is feasible,

After such an effort has been completed once, subsequent efforts will
be easier. As part of a total program, the process could be simplified
considerably by developing and using standardized aids. These aids would
be appiicable to those parts of the experiment model that are similar from
experiment to experiment. These aids would consist of prespecified curves

and relationships of varying magnitudes from which the creator could select
the ones that best meet his needs.

The most immediate application for experiment simulation is to allow
for experiences with new advanced methcdologies. If the math model for
experiment simulation is rough in regard to realism in the beginning, this
stiil should not reduce its value for examining methodologies. As the model
is improved and methods {or establishing standards developed, the technique
can be used to evaluate experimenters.

Experiment simulation as a tool can be expected to improve the quality
of applied behaviorial research materially.
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