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FOREWORD

I

After several abortive efforts to promote improved methods of conduct-

ing human factors engineering experiments, it was realized that a major

I deterrent'was the latent fear that most people have of the unknown. Like the

"banker's loan syndrome" -- the only people who can borrow money are

those who don't need it -- the only persons willing to use new and advanced

experimentai techniques are those who have already had experience using

them. The acceptance of this apparent contradiction as fact lead to the

j search for the means of resolving the problem.

If we couid sirmula t e the response characteristics of a laboratory

experiment by storing its mathematical model in a computer, the computer

rather than a lot of real people operating equipment in a laboratory could

supply the performance data likely to occur under different operating condi-

tions. Instead of finding out what a man would do when certain equipment

parameters were manipulated and the data collected according to some

systematic plan, one could query the computer data base. If the model of

an experiment were properly prepared, experiment simulation would provide

a rapid and inexpensive means for Investigating, evaluating, experiencing,

and teaching data collection techniques for human factors experiments.

In trying to get across the idea to others of what an experiment simula-

tion is and what Its contribution to applied human behavorial research would

be, three misconceptions commonly occurred. These are explained here in

order to help clarify the remainder of the paper.

I
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1. Misconception: The mathematical model of an experiment is in-

f4 tended to substitute for experiments which will provide valid

performance data for equipment design.

Fact: The simulation model is of the generic experiment and is not

intended as a substitute for a particular experiment to understand

man-machine relationships. It is to provide data which will contain

sources of urror characteristically present in actual laboratory

I experiments. While the model would naturally provide for the

inclusion of equipment factors which could affect performance, it

would also include those factors associated with the subjects,

apparatus, and environment which tend to interfere with the collec-

I tion of good data. As a simulation of an experiment (and not merely

an engineering system), it could serve as a testing ground for ex-

perimental methodologies employed to reduce irrelevant effects so

I that the relevant can be specified as accurately and as economically

as possible.

Validity of results in this form of experiment simulation dependsJ only on the degree to which the results of the system-relevant data

of a simulated experiment agree with the parameters in the com-

puterized model. This is a measure of the effectiveness of the

methodologies employed.

1 2. Misconception: Experiment simulation would be used primarily to

compare one experimental design against another.

Fact: In the case of statistically correct experimental designs, the

relative merits of each can be determined analytically. Knowing the

assumptions on which the designs are based, one can specify what

information is being lost in order to use a design that is more

economical in its distribution of data collection points than a design

that includes all factorial combinations. Therefore, no empirical

comparison of two designs is necessary, because the goodness of

vi



the outcome will depend entirely on whether the information which

was sacrificed was needed. If it were, the design should never have

been used, and no empirical evaluation will tell anything more

about it.

A more important use of experiment simulation is to identify the

conditions under which certain designs are more useful than others.

As stated earlier, one of the most practical values of experiment

simulation is to enable a lot of experience to be gained quickly and

inexpensively with certain experimental plans under a wide range of

j experimental conditions. In a similar vein, the technique can be

employed as a tool for training experimentalists,

3. Misconception: To write an equation which would accurately simu-

late an experiment with human subjects would be too complex and

difficult to be of any practical value.

Fact: An approach will be described in this document which sim-

plifies the development of experiment simulation models so that

most persons experienced with the vagaries of laboratory experi-

mentation and an appreciation of the purpose of the simulation can

develop useful models in a matter of a few hours. Naming the

factors which affect experimental results, both the desired and

undesired ones, should be easy for the experienced investigator;

these are the terms of the model. The real challenge lies in the

ability to assign the proper weights to 30 or more terms for any

single experiment in a way that is meaningful and purposeful. This

paper shows that this is not only feasible but relatively simple.

t Whether or not the technique of experiment simulation could ever

be developed Into a "cookbook" procedure is uncertain. I hope it

could not.
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The paper does not attempt to document every detail or derive every

relationship used in it, for these have been derived many times in statistical

textbooks. It does demonstrate one way of getting the job done. Rather than

more documentation of how one might simulate an experiment, the next step

is to simulate one and gain experience in using this valuable tool.

I
Charles W. Simonf April 1972
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i. ±RODUCTION

I Although human factors engineering concepts have yielded significant

improvements in equipment design, the contributions of formal human factors

Sengineering experiments have been relatively modest. The quality of experi-

mentally obtained data, depending as it does on the methods employed to obtain

I the data, has failed to meet the needs of the data users. The traditional

techniques used by behavioral scientists have not provided the necessary

quantitative, generalizable information needed to design complex equipment

and systems.

I Although many useful experimental designs have been developed during the

past 30 years, the behavioral scientist has tenaciously avoided using them,

continuing instead to employ uncritically a narrow set of designs and stylized

data collection procedures which are cumbersome, inefficient, uneconomical,

and in some cases could not possibly provide the very information for which
the experiment is to be performed. * These limitations become particularly

acute in applied studies of humans operating as a part of a man-machine system.

In spite of this, the search for better methods has remained relatively stagnant

and uninspired.

Conditions Working against Improved Methodologies

The failure to improve the methodology employed in behavioral experi-

mentation can be traced to at least two conditions which prevail when

i Simon, C. W. Considerations for the Proper Design and Interpretation of

Human Factors Engineering Experiments. Equipment Engineering Division,
Hughes Aircraft Company, Culver City, Calif. Tech. Report
# ARL-71-27/AFOSR-71-11, December 1971 (In press)
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applied human factors engineering research is conducted. These are:

1. Inadequate means of evaluating the methodologies currently in use.

2. Inadequate experiences with new methodologies.

Evaluation. There is at this time no truly satisfactory way of evaluating

I the methods employed in human factors engineering research, particularly when

these do not readily lend themselves to mathematical analysis. Experimental

designs are a part of the methods in that they indicate a particular patterning of

the data collection points. But this is only a small part of the whole process of

designing an experiment which can be complicated by practical limitations

placed on the data collee•lon and by the differences between human behavior and

chemical, agricultural, or engineering processes.

The acceptability of most applied human factors engineering experiments

today is based more on whether reports meet contractual obligations of time

and certain antiquated and sometimes irrelevant academin, standards than on

the validity and potential applicability of their results. "' he time a report

has reached its final form, the trials and tribulations encountered in carrying

out a study, which might introduce bias or random error into the results, have

long been glossed over or ignored. Although we may do sloppy experiments,

we seldom report sloppy experiments. Although it is sometimes possible to

j. detect a poorly conducted study from the data supplied in a finished report,

many persons who administer research or who use research results do not

j have the necessary training to do so. Studies are seldom repeated, so even

empirical reliability of the data remains untested. The validity of the data is

an even more difficult criterion to evaluate than the methods employed in col-

lection because there are often years between the time the results are used to

design a real system and the time the system is tested operationally. By then,

the original inputs have been so modified by tradeoffs with inputs relative to

nonhuman components that also affect system performance that the validity of

the human factors data alone is indeterminable. As a result, because feedback

is seldom provided on data quality, much less on the means employed to collect

I the data, there is little motivation for an experimenter to improve his ex-

perimental results through improved methodology.

I
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Experience. Even "'hen it is recognized that a new experimental design

could markedly improve the quality of human factors engineering data, it may

not be used. For one thing, it is generally necessary to modify techniques

developed for other fields before they can be successfully applied to studies

involving the collection of human performance data. For another, the better

techniques allow for numerous variations which trade data collection economy

against information quality. In practice, time ard money constraints dis-

courage a period of exploration to determine whether such variations have a

I practical effect on results. As a result, most human factors engineering

experimenters are reluctant to depart from familiar and conventional ap-

j proaches, however limited, to try designs with which they have had no

experience.

I A Different Arproach

. The rapid acceptance of promising new experimental methodologies will

occur only when there are ways of quickly and economically evaluating their

effectiveness under conditions likely to be found in the conduct of laboratory

experiments. One such way would be to develop a computer program which

literally simulat-o the effects which operate on performance data as it is being

collected in tV course of a laboratory experiment, and use this program to

disco' -. i plans most accurately and inexpensively discover the true

characteristics of an artific!ally-created data base.

j.The construction and use of such a simulation is conceptually quite simple.

A data base of operator performance as a function of all relevant sources of

I variation that occur in human factors engineering experiments would be stored

in a computer. This data base could be queried according to some .-::perimental

I plan and the resulting sample data analyzed. The accuracy with which the

sample data represent the information in the original data base provides a

measure of the effectiveness of the experimental plan. The effectiveness of

this s~mulation, therefore, depends on how well it creates the conditions an

experimenter must face in the conduct of a laboratory study; it is n.ot intended

that this simulation would predict operator performance in some engineering

system configuration for a particular mission.

I
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I Advantages and Applications

I Properly developed and employed, such a simulation could provide an

inexpensive basis for comparing experimental designs and methodologies, for

I evaluating experimenters and proposed data collection plans against absolute

standards, and for gaining experience with new designs across a broad spectrum

j of operational conditions.

J Some specific applications in which an experiment simulation could be

effectively applied are:

1 1. To provide a quick and inexpensive way of gaining experience

using new experimental designs and data collection procedures

to determine under what conditions they are or are not suitable.

2. To determine empirically the effect of deviations from the

experimental designs prescribed by the statistician.

3. To develop optimum procedures for collecting human factors

engineering data in the presence of different irrelevant sources,

types, and amounts of performance variance.

4. To standardized problems to select or quantitatively evaluate

the ability of experimental designs and experimenters to handle

complexities characteristic of applied behavioral research.

5. To use simulation as a training device to show students the

intricacies of experimental design, iucluding the decisions

i_ required to collect clean data economically.

Considerations for the development of a model for experiment simulation are

discussed in the sections which follow. The primary purpose of this paper is

to show that it can be done.

14I
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SIMULATING AN EXPERIMENT

I
Experiment simulation is actually a method by which two people, or two

grov'is of people, or one person wearing two hats, can play a game. One of

the two will be called the "creator;'" the other will be called the "experimenter."

[ The game consists of the creator building a "world" inside a computer and of

the experimenter, through empirical sampling of the stored data, attempting to

describe this world.

There would be no game, however, unless there were in this simulation -

I •.n the real world - sources of "irrelevant" variance which distort the

A'tionships described in the sampled data from those occurring in the orig-

inal data base. Both the type and magnitude of these sources of error can be

manipulated by the creator, thereby varying the difficulty of the experi-

menLer's task. The experimenter's weapon against this unwanted variance is

I.the astuteness of his experimental sampling plan. The score of the game is

determined by the accuracy of the experimenter's description of the stored

world and the economy of his effort to derive it.

L General Approach

The technique of experiment simulation enables the creator to build a

computer program and a data base which will provide an experimenter, using

a particular data-collection plan, with performance scores which are functions

I of the factors relevant to the experiment as well as unwanted conditions which

would ordinarily distort the data in the course of an actual experiment. The

presence of unwanted conditions in an experiment simulation forces an

experimenter -- if he is to do a good job -- to plan for the same contingencies

j and make the same decisions in selecting an appropriate experimental plan

1 5



I
that he would have done were he to have collected his data using real subjects.

J The steps in the preparation and use of such an experiment simulation are cited

below.

I First, a polynomial is used to represent the basic model for experiment

simulation. Standard terms and frequency distributions are stored in a corm-

puter data base. These terms represent those factors affecting performance

data in any experiment, i.e. those related to all relevant variables to be in-

I cluded in the experiment, along with other unwanted sources of variance which

might artificially develop out of the experimental situation, generally associated

with irrelevant (to the experiment) subject, laboratory environment, and ex-

perimental methodology factors, The creator assigns identities and measure-

ment scales to the terms of the equation, depending on the particular

experimental conditions he wishes to simulate.

I. Second, the creator assigns coefficients which specify the relative effect

each term has on performance. For any particular model, the creator has

I considerable leeway in how complex in degree and order the model will be and

in how much and what type of irrelevant variance will be included.I.
Third, the creator prepares a scenario for the experimenter. This

scenario would provide the experimenter with the same background information

"that he would have available in an actual study. He would know something about

the problems and variables being investigated as well as the limits on time and

- personnel available for the experiment.

L Fourth, the experimenter is given the task of planning his experiment,

solving logistic problems, and collecting and analyzing the data. If the simu-

j lation is a good one, he will be forced -- step by step -- to make the same

decisions he would ordinarily be forced to make, and where his decisions are

deficient, so are his experimental results. Instead of measuring the per-

formancn of an actual subject, the computer solves the equation introduced by

the creator for the data selection points introduced by the experimenter and

outputs "experimental" data samples accordingly.

I
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Fifth, the description of the world as determined by the experimenter is

compared quantitatively to the actual characteristics of the simulated world.

Evaluation criteria include the size and type of the discrepancy between the

experimental results and the true simulated world as well as the amount of

time, number of subjects, and the number of observations required to arrive

at the results.

Implementation

In the sections that follow, a preliminary description of how this simula-

tion can be achieved is presented. First, some basic characteristics of the

simulation model will be noted. Then many of the factors that ordinarily play

a role in human factors engineering experiments will be identified. These are

used to specify the terms of the polynomial equation. Next some practical pro-

cedures for assigning coefficients by the creator will be given. Finally, some

considerations for building an interface between the computer and both the

creator and experimenter will be covered.

I.
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THE SIMULATION MODEL

A polynomial regression equation will be the model used in experiment

simulation. To prepare such a model, the creator must recognize that factors

I needed to simulate an experiment can be classified into four general groups,

the characteristics of which determine in part how they are to be handled when

included in the total equation. These classes and characteristics are sho,:.n in

Table 1 and discussed on the following pages.

Table 1. Classes and characteristics of factorsI

CHARACTERISTICSI. ~CLASS .
Input (Term Value) Effect (Coefficient Value)

L Quantitative Specific Specific

Qualitative, Artificial Specific
Assigned

Qualitative, Artificial Statistical
. Random

Events Artificial Statistical or Specific

L
!
I
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Quantitative Factors

SQuantitaCive factors are those which can be related by a mathematical

function to performance. These factors can be measured on either an

ordinal, interval, or ratio scale. "Resolution," "display size," and "rate

of movement" are examples of quantitative factors. Certain complex,

multicomponent factors which are scaled subjectively on a single dimensionI are also quantitative; for example, the backgrounds of pictorial imagery used

in experiments on target acquisition can be ordered on a single scale called3 "complexity," although this quality is actually a composite of many conditions

of the imagery. "Trials," i.e., the discrete units of time a subject is exposed

to experimental conditions, is an example of a quasi-continuous quantitative

factor. Although each trial is a discrete entity, a continuum of equal intervals

is implied by a function relating trials to performance as in the case of a

learning curve.

SThe relationship between a quantitative, continuous factor, xi, and per-

formance, \ in this simulation can be expressed by a polynomial of the form:

~2 V . +01Y xili + n2 x i+ 3 x". n n

where n is the highest order the creator decides is needed to express the

L relationship. The Beta coefficients represent tha relative weight of the linear,
quadratic, cubic, etc., components of the relationship and may be either
positive or negative. For quantitative, continuous factors, the X terms can

take on an:. value within the boundaries of the world being simulated.

1 Two or more factors !an be included in this model by simply adding the

weighted terms together. If, however, there are interactions, thcn entirely

j new terms must be included in the model along with their coefficients which

19|



I reflect the degree and nature of the interaction. Thus, the terms required

to fully represent a two-factor interaction would beI
2~ 2 2 s t

Yij •i 1  1x.x. + X x + 12x'x + 2 xx... ... +st i j

I where s may equal t and s i t equals the highest degree term the creator

decides to use in the equation. Neither s nor t need equal the n (order) of

the terms used in the single factor function, and some Betas can take on the

value of zero.I
Thu., for every quantitative factor to be included in the model, the creator

jmust do the following:

1. Identify the factor (or interaction) by name:

I This name is identified by the subscript.

e.g. R.*

"1 2. Decide which factors will interact:

e.g.X.X. ,X.X XX1
I j1 1 m j

3. Decide on the highest order relationship which will be used for each

factor:

This establishes how many terms will be required in the model for

j a factor.

e.g. Xi X , X. (3rd order max.)

4. Decide on the highest degree term for each interaction:

jThis establishes how many terms will be required in the model for

an interaction.

24Se.xg. XiX'j . X2"X j , XiX , XjXkxm (3rddegreemax.)

*In this paper, the following symbology is used:
Factor = letter with bar
Term = letter without bar

1 10
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In practice, the effect on performance of any fourth degree (or larger)

regression component of an equipment parameter would be expected to be

trivial. In fact, by selecting the appropriate measurement scale, the effects

of many second degree components of the equipment factors can often be

reduced to an insignificant size. In Table 2, the forms of the regression terms

required to construct equations of up to and including fourth degree are listed.
For example, to write a third degree equation for three factors, all of the

forms of the terms shown inside the dotted line in Table 2 would be required

plus the comparable terms for Factors B and C and interactions AC and BC,
which parallel those shown for Factor A and interaction AB. Thus the terms for a

!
TABLE 2. Forms of regression terms needed in multi-factor

i equations of specified degrees.

REPRESENTATIVE DEGREE OF THE EQUATION
FACTORS

AND INTERACTION 1st 2nd 3rd 4th
2 4t

(1)A A A2 A

2 22(2) AB AB AB

(3) ABC ABC ABC2

t 'IAB2C

(4) ABCD ABCD

(5) ABCDE (Cannot be represented by a fourth-
oa Tree equation.)

I4



three factor, third degree equation would be:

2 23 2 3 2 3 2 2 2A,A, A, BI B2, BB, C, C2, C IAB, AB2, AC, AC2, BC, BC, ABC

each with one degree of freedom. Whether or not all of these terms

would actually affect performance would depend on the coefficients

assigned to each by the creator. In the real world of equipment design,

I.it would be realistic to expect many of these terms to have a

coefficient of zero.I
Qualitative Factors, Assigned

Qualitative factors are those made up of two or more discrete

levels, categories, or conditions which cannot be ordered on a numerical

sc•le and are identified only by name. "Manual control devices" is an

example of a qualitative factor that might be composed of the following

types of devices: joy stick, ro.ling ball, pencil stick, rotary knob,
-,id so on. Although one can determine the effect each type individually

has on performance, no meaningful function can be drawn relating
"Manual control devices" to performance.

I This qualitative factor is classified "Assigned" because inI
constructing the simulation equation, the creator will decide exactly

how much of an effect each category (or control type) is to have on

performance. He does this by assigning the mean change in performance

which would occur when each control is being tested by the experimenter in

the experiment simulation; the computer would combine this value with those

of the other effects which are operating at the time to calculate the performance

score for that trial.

I Qualitative Factors, Random

Certain qualitative factors are more appropriately simulated by

having the creator specify only the mean and standard deviation of the

effects of all of the factor, rather than by assigning specific amounts

1
12 '



representing the effects of each condition as was done for the previous

qualitative factor. Given the distribution data, the computer would

select from it a value at random to represent the effect of each condition

of the factor. Once a value were selected in this 1.qnner and associated

with a particular experimental condition, it would r imain so for the

remainder of the experiment simulation.

"Subject skill" can represent a variable of this type, as in the case

when an experimenter selects his subjects directly from a larger popula-

tion without a priori knowledge of their skill on the experimental task.

To simulate this, rather than have the creator assign a specific skill-

level value to each subject of the total population, he would instead specify

only the mean and standard deviation of a distribution of skill-levels from

which the computer would randomly select and assign values for each subject

the experimenter decides to u.-e in his experiment simulation. Each time a

particular subject is tested under a set of experimental conditions, the

computer would adjust the mean performance level for that condition to reflect

the skill-level of the subject as determined by the randomly selected value.

In this case, the experimenter would have no direct indication of subject's

skill-level, except as it is reflected in the performance data.

A second situation can exist in practice which in the simulation would

determine the effect of each condition of a qualitative factor by a random

selection process. This would be the case when the experimenter selects his

subjects on the basis of a task-related pretest. In the simulation, the

experimenter would indicate to the computer the number of subjects he intends

to use and that he intends to give them a pretest selected from those provided

by the creator's scenario. The computer would then provide the experimenter

with a printout relating a subject identification number with each pretest score

that had been selected at random from a distribution of scores supplied by

the creator. The experimenter could then select rom the population those

subjects which he intends to use in the experiment simulation, on the basis

of the pretest scores. The computer in turn would calculate the task performance

I
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effect for each subject from the amount of correlation (r) between pretest

j scores (t) and performance (p), i. e., rtp, a value which had been supplied by

the creator. The actual calculations for determining the mean performance
adjustment for each subject would be: 1) take the randomly selected pretest

score and multiply it by the correlation between the pretest and task per-

formance; 2) include some uncertainty by adding a value selected randomly

by the computer from a distribution of the task performance scores multiplied
by the coefficient of alienation (1 - r 2). The lack of a perfect correl.tion

j between pretest scores and performance on the task represents another source of

irrelevant variance in the results of the experiment simulation, a problem that

j an experimenter is forced to contend with when he uses a pretest for selecting

his subject sample or assigning them to experimental conditions in an actual

j experiment. The approximate size of this correlation may or may not be

revealed to the experimenter through the scenario supplied by the creator.

I Events

Events might be treated as another form of qualitative factor.

An event is classified separately, however, because unlike the other

j factors, the experimenter has no control over its introduction into

the simulation results. By including such a factor in the experiment

j simulation, it provides the creator with an option of playing havoc

with the experiment and simulating what might happen if some unusual

occurrence produced a sudden change in performance without warning,

precedence, or repetition. For example, to simulate the effect of

a momentary distraction of a subject from the task, a correction

might be made to a single trial which yields an abnormally low

1
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score. The extent of this effect and its location in time could be specifically

f assigned if it were to happen only a very few times during an experiment, or

the assignment of magnitude and location could be left to the computer which

selects a value to random from a distribution supplied by the creator.

Summary

The following summarizes through examples the treatments of the four

classes of factors:

Quantitative Factors:

I Stored in computer: y = .45 x -. 12 x2

Equation specified by creator who assigns the coefficients to
indicate a certain change in y for a unit change in x and x2

within finite boundaries.

j Experimenter can select any value of x within these
boundaries and computer will indicate value of y.

j Qualitative Factors, Assigned:

Stored in computer:

x £-

Pencil stick 1 +. 23
Joy stick 2 +. 11
Rolling ball 3 -. 08
Rotary knob 4 -. 26

I Creator indicates change in mean performance (y) when
experimenter uses each type of manual control in his

I srudy.

Experimenter addresses computer and identifies type of
control to be used by the arbitrarily assigned
numbers, 1 to 4.

I
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Qualitative Factors, Random:

j Stored in computer:

Subjects: N = 100
Skill level: Mean = .72, Sigma = .14, Transform = 0.
Task-related test: Mean = 50, Sigma = 10, Transform= 0.
Task-related test: (correlates with performance) .78

I Creator specifies above values. Experimenter may or may
not decide to use task-related tests which r're available.

SExperimenter indicates he will use m subjects from population.
Subject identification is its order number from 1 to m.
Computer assigns the effect each has on mean performance
based on values selected at random from the distribution
provided by creator. Experimenter may reach these values
by first "giving" subjects a task-related test which he uses
as a selection device. This test's correlation with per-
formance is involved in estimating the effect each subject
will have on performance.

1 Event, Random and Systematic:

Information stored in computer is same as for two types ofI qualitative factors.

Creator si:.cifies that data, plus the point in time during an
experiment when these will be included in the performance

I estimate.

Experimenter is unaware that additional inputs have been made,
Sexcept as he may or may not detect them from the response.

I Implications for Computer Programming

The classes of factors described above are all found in actual laboratory

experiments Therefore, the basic simulation model must be prepared to

include them in case the creator decides they are necessary for the particular

world he plans to create. Because factors do break down into these few

classes, the requirement for diversity of computer programming is not very

great. No matter how many factors are included in a particular model, the

problems of programming are fairly limited and, in fact, a generalizable pro-

gram could be written in modular fashion so that the creator could decide the

class of factor, its order, its coefficients, and its sign in some preplanned

i order, and the computer could construct the complete model.

16
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FACTORS TO BE INCLUDED IN AN EXPERIMENT SIMULATION

I

In an actual experiment, the performance level on each trial is the result

of factors other than those directly related to the equipment and system

parameLers which the experimenter is studying. For example, performance

varies due to differences among the subjects. Further perturbations are

added depending on the procedures used to collect the data. Because irrelevant

performance variance can distort the relevant measures of performance, the

experimenter, in planning his experiment, ordinarily tries to control, com-

l pensate, or correct for them.

In a simulated experiment, the experimenter obtains his data from a

computer rather than from the actual testing of real subjects ruider laboratory

I conditions. The simulation, to be complete, must not only provide an estimate

of the performance of an imaginary group of subjects operating equipment but

also provide the experimenter with the opportunity and the requirement to

make the same kinds of decisions he would need to make were he dealing with

the intransigencies of an actual laboratory experiment.

Identities of Typical FactorsI
In this section, the most common sources of variance that affect the

results of a typical human factors engineering experiment will be discussed.

These factors can be conveniently divided into the following groups:

1. System (S) Factors. These are factors associated v.ith the

equipment, the environment, the task, and other aspects of the

system that the cxperimenter is (or should be) interested in

"I '
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I
relating to operator performance. In the design of an experiment,

these factors are often referred to as the "independent variables."

It is to understand these factors that the experiment is being

I conducted.

2. Subject (O) Factors. These are the characteristics of a subject --

operator or observer -- which affect or relate to his basic

proficiency on the experimental task at the beginning of a study.

3. Temporal (T) Factors. These refer to conditions associated

with the subjects, the equipment, or the environment which result

in an average change in performance as a function of time. These

changes may take place during work or rest periods over the

course of the total experimental time.

System (S) FactorsI
In the simulation it is necessgry to characterize the engineering system,

I which the experimenter, through the collection of data, hopes to describe.

System factors are needed to identify equipment, environment, task, and other

variables related to the performance of the system being investigated. The

experimenter would be expected to include some of these factors in his

experimental design.

By way of illustration, some system factors that might be included in the

_ simulation of an experiment on the design of a reconnaissanc' display are:

Equipment Environment Task Other

Resolution Ambient Target Target size
Dynamic range illumination recognition Bpkground
Display size Vibration Response-time complexity
Image motion limit Type of imagery

rate

The creator has the option of adding others. Interactions among these factors

are commonly found in the real world and should be included in the simulation

I.model as well.

18
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I

In modelling the experiment simulation, the creator would presumably

j include more system factors than the experimenter would ever be expected

to study in a single experiment. This is characteristic of an actual experi-

ment in which the selection of variables is limited by practical considerations

of the size and cost of an effort and the experimenter's astuteness or ambition

in ferreting out all of the relevant variables. For all practical purposes, it is

believed that fewer than 15 factors and selected interactions should account for

nearly all of the total variance attributable to system considerations in a

J particular task. The creator can use the scenario to keep the experimenter's

choice of system factors within simulation boundaries.

Subject (0) Factors

I A part of experiment simulation must include the characteristics of the

population(s) from which the subjects are to be drawn. These factors should

correspond as much as possible to those that would be considered were the

subjects real and the experimenter required to select them according to

j chance or 3pecific task-related criteria. As in the real world, the creator

can supply the experimenter with unlimited numbers and types of subjects or

j can place severe restrictions on their characteristics and availability.

Among the types of information derivable from the simulation that should
be available on each subject are:

11. Task Aptitude. This is the basic performance capability for each

subject that can be represented by a symmetrical S-shaped (ogive)

growth curve and described by two quantities: mean and sigma.

The mean is proportional to the maximum growth potential, and the

sigma is proportional to the time required to achieve that maximum.

2. Experience Level. This is the level of performance at which each

subject begins the experiment. Performance at the beginning of the
axperiment need not begin at zero.

19



3. Related Performa.nce. Scores on performance-related tasks may be

provided whic 1.. ight be used in the selection of subjects. Per-

formance on these tasks can correlate between b1 with the actual

task.

4. Nonperformance Characteristics. These permit the classification

I and selection of subjects according to such conditions as sex or age

or type of training, etc. They too can be correlate6 with performance.

I Temporal (T) Factors

I Time elapses during the conduct of an experiment. During this time

changes are taking place in the subjects, the environment, and the equipment.

SSome of these changes can be controlled, some can be compensated for, while

others may only be monitored. In many cases, these changes are irrelevant

j to the basic purposes of the experiment and can onJy be expected to introduce

disturbances into the pertinent experimental data. Because of their prominence

in most human factors engineering experiments for equipment design, how-

ever, provisions must be made in the simulation model so that these sources

of variance will emerge if the experimenter creates situations which encourage

I them or fails to employ methodologies which will minimize them.

In this simulation, subject-related temporal factors will be treated some-

what differently from equipment/environment-related temporal factors. In

the discussions that follow, these temporal factors are treated as "main"

effects; that is, they refer to changes in average performance over time,

ones representative of the performance for each subject or system condition.

There are also in actual experiments temporal changes that affect individual

subjects or system conditions differently; these will be discussed in the sec-

I tion on interactions among S, 0, and T factors.

Subject-related temporal factors. Whether or not tI"ase factors are

operative in a simulation depends upon the experimental design selected by

the experimenter. If he has a sufficient number of subjects available for his

experiment, he may test each subject only once and avoid the special problems

20



imposed by subject-related performance changes as a function of time. How-

ever, in many applied human factors engineering studes, subject availability

is limited, the number of experimental conditions is large, and subjects must

be used more than once. In some studies, where learning is of primary

interest, certain subject-related changes over time would not be considered

i irrelevant.

For subjects who are repeatedly tested in an experiment, the time

continuum can be divided into two major periods: work and rest. These in

turn can be further subdivided into intervals that have different but typical

effects on subject performance over time (Figure 1). The more common

subject-related effects over time that should be included in a simulation model

are described below.

i Trial Pause/
xoxoxooo o xo~oXooooxoxoxoooxoxox
S _J I .1 ,1
Period Relax Period Period Relax Period

Rest
Block II BlockII

Figure 1. Stylized work-rest patterns

Trials. These are the intervals in which performance data on the

I task are collected from each subject. For this model, one

trial yields one performance score.

I There are two distinct types of trial factors: intracondition

and intercondition trials. Intracondition trials represent

repeated measures of the same experimental condition.

Intercondition trials represent the discrete number of

I measurements made across the same or different exper-

imental conditions.

I
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I
Performance would vary randomly on the intracondition trials.

5 Performance would be expected to show a rising function over

intercondition trials, indicative of learning. The slope of the

function depends on the portion of the learning curve that is

operative at the time.

i Pauses. These are the intervals between two trials, usually just long

enough to change or reset the equipment for the next trial or

Sto record the data of the previous trial. During these inter-

vals, performance will remain essentially constant. Any

I effects of pauses will show up in the period factor.

Periods. These are the total intervals covered by a series of trials

and pauses. They are separated from one another by relax

intervals. A series of trials and pauses might represent

replications of a single experimental condition run se-

quentially or a series of different equipment settings with

only the setup pauses interpolated. During one period,

fatigue factors can operate on performance as a function of

I the length of the period.

Relax. These intervals occur between two periods and are signif-

icantly longer than pauses. In an actual experiment, these

are generally introduced after a run of trials to allow the

subject time to "take a break" and may be used when more

complex or time-consuming equipment changes are required.

During these intervals, negative effects that may have

built up during a period might dissipate or begin to

dissipate.

Blocks. This title is used to designate a clump of periods separated

by rather extensive rest intervals from other clumps of

I periods. Commonly, in actual experiments, when the number

22
!

-.. . - - • . ... . a , -r' • I l



of experimental conditions is so great that subjects ca'mot be

I studied on them all during a relatively contiguous time period,

the experimental runs dre broken into major blocks of times,

j such as from day to day or morning to afternoon. Average

performance changes from block to block, if any, will be

stepwise in nature and seldom systematic.

Rests. This is the interval between blocks which tends to eliminate

fatigue effects that may have built up within a block. In

addition, some performance decremtnt as a function of

j forgetting is possible if the period is too lcng.

j Enquipment/Environment-Relateci Temporal Factors. These factors

usually fall into three classes:

I * Continuous, random

* Continuous, systematic

* Discrete, random

I Continuous, random effects are exemplified by a slow drift in equipment

voltage over extended periods of time without an obvious pattern being ex-

hibited. Continuous, systematic effects are typAfied by a voltage drift that

occurs during an equipment warmup period or changes in ambient illumina-

j tion throughout the day. Both of theso show definable and repeatable patterns

of change. Discrete, random effects can occur when equipment is set at an

1 incorrect value during a particular trial or period. They can also occur from

day to day (i.e., block to block) if whatever continuity might actually exist

is not readily apparent. These temporal effects may or may not correspond

to the beginnings and ends of the intervals considered in the discussion of

subject-related temporal effects.

23
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I
InteractionsI

In addition to interactions that might exist among factors within a group
(e. g., the systems group), terms must be provided in the model for those

interactions between groups (S, 0, T) that are commonly found in actual

experiments. Typical situations that create interactions are:

1. Subjects seldom begin an experiment at the same point on a learning

curve or have the same skill levels. This could result in 0 x T

interactions.

12. A piece of equipment may be adjusted incorrectly for several trials,

a condition that may not be discovered until later. If the effect on
I performance were sizeable, this could result in an S x T interaction.

3. As in the case of any unusual event, if the error in Item 2 did not

affect the performance of all subjects (perhaps some were tested

on a different day when the equipment was set up properly), this

could result in an S x O x T interaction.

4. If subjects are not homogeneous and have distinctly' different
i experiences with the equipment conditions being tested, an

S x 0 interaction could occur.

5. The use of counterbalancing as an experimental method could result

in S x 0 x T interactions, or any two-factor interaction.

6. Relative performance levels obtained when operating two equipment

conditions can differ and even invert, depending on which condition
is tested first. This could result in an S x T interaction.

In an actual experiment, many interaction effects may remain hidden
and impossible to isolate because of the experimental design employed.

However, because they do occur in the real world, the creator must make

provisions for them in his s!mulation model. Whether they will appear in

the results of a simulated experiment depends on the experimental plan

employed by the experimenter. If he fails to use a design in which the same
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I
subjects run all or some of the experimental conditions, then subject-related

i temporal factors and the interactions associated with them will not be revealed.

The simulation, however, must be capable of creating a realistic effect no

f matter what route the experimenter ultimately decides to take. When these

intergroup interactions do exist, they more often than not represent the
"i"noise" in the experiment and are a major component of the measure of

experiment quality.

I
I
I
I
I
I
I
I
I
I
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i SPECIFYING THE COEFFICIENTS

I

I Once factors have been selected for an experiment simulation, the creator

must then specify the coefficients of the terms represerting these factors in

the simulation model. These coefficients indicate how much each factor

affects performance. Because the game requires the experimenter to use

his investigatory skills to ferret out a valid description of the simulated world,

whatever it may be, in theory the creator could assign any coefficients he

pleased to the model, and the competent experimenter would ultimately be

able to discover the characteristics of the simulated world. In practice,

however, assigning coefficients in this manner would not be satisfactory.

Instead, two limiting principles should be followed if experiment simulation

is to be used effectively. These principles are:[
1. Experiment simulation should be rational. Assigning coefficients

j without attempting to produce a realistic simulation creates artificial

problems that an experimenter would never expect to find in an actual

I human factors engineering experiment. The creator, to make his

simulation effective, must provide an element of realism in his

simulated world. Experimenters seldom approach experimental

problems without some knowledge of the world to be investigated,
and that world is not a helter-skelter one. This fact is used by

I. the skilled experimenter to design his experiment properly. He
makes use of his knowledge of the regularities and relationships

that normally exist in the psychophysical world, of certain irrelevant

effects that tend to be present from study to study, and of conditions

j characteristic of his particular problem.

I
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2. Experiment simulation should test the experimenter. Coefficients

j should be assigned so as to create a simulated world that tests the

experimenter's ability to handle situations that might affect the

validity of his data. Coefficients can be increased or decreased in

value, distorting certain irrelevant effects in order to provide a

simulation against which methods for reducing or eliminating these

effects can be explored. Coefficients can be assigned which, when

combined with restrictions placed upon the experimenter, make data

J collection a more difficult task; this enables exploration of ways to

ease the problems.1
For any experiment simulation, the creator will need to assign coefficients

to 30 or more terms. To do this knowledgeably so as to satisfy both principles

and at the same time be assured that experiment simulation remains a practical

tool that will be used frequently, the task of coefficient assignment must be

made reasonably uncomplicated. A set of principles, or relationships, makes

this possible.I
Weighing the Factors

Principle I. The sum of the proportion

of total variance accounted for by each

statistically indendent factor equals

1.00. and the sum of all subsets

combined will equal 1.00.

I Pt = Pi+P 2 +P 3 +P 4 = 1.00

P2 = P5 + P6

Pt = Pi +P5 +P6 +P3 +P 4 = 1.00

Pt = (P1 +P5) +(P6 +P3 +P4)= 1.00
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Rather than think in terms of the coefficients of the model, the creator

can begin by thinking of the strength of the relationship he wishes each factor

to have on performance. Because "strength of relationship" is expressed by

the proportion of total variance accounted for by the factor, the creator's

decisions are simplified by the above principle which permits him to consider

the problem in parts. Thus, if all items in the list of factors cited in the

previous section affect performance, the creator can break these into

meaningful subsets related to the type of world he is trying to build. Then

he can consider the smaller number of factors in each subset separately and

make simple comparative judgments of their relative effect on performance.

Each decision the creator makes in these cases reflects his particular goals

in constructing the simulation. In the text that follows, the reader will be

lead through some considerations and imaginary judgments that a creator

might make to illustrate the steps that will end eventually in coefficients de-

scribing the world intended by the creator.

To begin, the creator must first decide whether he wants to make the

overall difficulty of the exper'menter's task great or small. By classifying

the many factors into one of two groups -- relevant or irrelevant -- he can

influence the task difficulty by the proportion of performance variability he

attributes to each group. Relevant factors would be the ones the experimenter

is interested in relating to performance. Irrelevant factors would be those

that introduce chance errors and bias into these estimations. If the creator

starts with a world in which the irrelevant variables contribute relatively

little, then no matter how poorly the experimenter may sample that world in

order to discover the properties of the relevant variable, his information will

be of relatively high quality. If, on the other hand, the creator makes the
contribution of the irrelevant factors large, then the experimenter -- in older

to obtain untainted data about the relevant factors -- must carefully plan his

data collection techniques and use any available means of reducing the 4

unwanted sources of variance.

To reiterate, relevance as used in this paper is defined from the point

I- of view of the experimenter. A factor is relevant when it is the reason the
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experimenter performs his experiment. Anything that interferes with his

obtaining good, clean, and valid information about the relevant factors is

called irrelevant. It is not irrelevant in the sense that it creates error in

the data, only that it was irrelevant to the experimenter's interest and

represents an unwanted soure of variance.

Let us conclude, for this example, that the creator decides to distribute the

proportional contribution of relevant and irrelevant factors as:

Source of Variance

Relevant Irrelevant

0.85 0.15 = 1.00

What is considered relevant can change from simulation to simulation and

depends on the problem posed to the experimenter by the creator in the scenario.f Ordinarily all equipment and system (S) factors would be considered relevant,

even though information about them all is not requested in the scenario.

Thus, an experimenter may be asked in the scenario to find the relationship

between display resolution and target detection. However, in the experiment

simulation, as in the real world, other factors such as contrast, noise, and

so forth, also affect performance. A good experimenter will either add these

as extra factors in his study of resolution or specify the values at which these

are held constant.

Subject (0) factors may or may not be considered relevant. If the

experimenter is expected to determine whether subjects of low, medium, and

high skill perform differently with different devices, then the degree of

variability among skill levels would be relevant. If, however, different
subjects were to be used individually in each cell of the experimental matrix,

any variance contributed by them to the measure of performance on the

equipment might be considered irrelevant depending on whether or not the
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subject sample were truly representative of the population. Let us assume

for this example that the creator decides to make the skill level (Sk) a

relevant factor. At the same time, he would place a "within-skill-level

subject variability" factor among the irrelevant ones.

To continue the illustration, we shall let the creator decide to have five

equipment or system (S) factors, A, B, C, D and E, along with two sets of

two-factor interactions, C x E and D x E. Let us also assume that he decides

to include a ninth source of relevant variance, the interaction between subject's

skill (Sk) and equipment factor, D. His next step then is to assign relative

importance levels to these nine sources of relevant variance. This decision

may be based on conditions in the real world, on tne distribution typical of

the relative effects of factors in an experiment (i.e., they often distribute

themselves exponentially), and on how he wishes to test the experimenter.

In this example, the following distribution might represent the results when

the creator ranked his relevant sources of variance and then assigned the

proportion he wished each to contribute to this quality:

Relevant Sources

Greatest Effect 1 2 1 3 4 I5 6 7 8 9 Least Effect
on Performance Sk D B EDxE kxDA IjExo on Performance

.30 .241.12 .091 .08 .06 .05 1.04 .02 = 1.00

The above numbers could be changed in numerous ways, depending on the

creator's goal. As written, these numbers show that in this simulation the

creator has decided to deemphasize the effect of Interactions of performance.

Also if, in the scenario, he only mentioned the first four factors, then he

has made the experimenter's task easier by not making the remaining relevant

factors have too large an effect in case they are overlooked. The experimenter

can be "squeezed" by the creator in this kind of simulation in the same manner

that he may be squeezed when he has many relevant factors to study but is

limited in data collection time and money.
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As another example of how the creator can structure the simulation, let

us examine some of the decisions the creator might make concerning the

irrelevant sources of variance. Considering that these are "irrelevant"

sources of performance variability, the creator would first decide whether

he would want subject (0) factors or temporal (T) factors to be the major

impedance to the experimenter's ability to obtain clean results. If it is the

former (that is, if he makes the within-skill-level subject variability larger)

it may be because the creator wants to test the experimenter's subject selec-

j tion techniques. If instead the creator makes the temporal factors larger,

he may do so in order to examine methods of controlling certain transfer

effects so typical in experiments with humans or to discover ways of mini-

mizing the effects of uncontrollable equipment fluctuations on the relevent

information. Let us imagine that for this example the creator decides that,

of the irrelevant sources of variance, he wants to place approximately four

times as much emphasis on temporal as on subject factors, and he wants to

j. emphasize subject-related temporal factors the most. He might translate

this into the following proportions:L
Irrelevant Sources

Subject Factors Temporal Factors

Within-skill-level Subject-related Equipment-related

.20 .50 .30 = 1.00

I

What these numbers will mean to the experimenter (if he knew them, and of

course he cannot know them except through his sampling of the data base

during the simulated experiment) is that he probably would be able to collect

cleaner data if he were to use different subjects under each experimental

condition than if he were to use the same subject across many experimental

I conditions. This leads the creator to a number of other decisions chat can

make the experimenter's task easier or more difficult. If in the scenario he

I limits the size of the subject population, it may force the experimenter to try
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I to use the same subject over a number of conditions. If he provides some

secondary task, which the experimenter could use to select or match his

subjects, he may make hias secondary task correlate highly with the primary

task and thereby serve its purpose well or correlate slightly or not at all,

j thereby introducing unwanted sources of variance into the study.

j In deciding how to weight the subject-related temporal factors, the

creator must consider which one should affect performance the most, just

in case the experimenter decides to use the same subject more than once

during the experiment. By assigning a large prcoortion of the variance to

the intracondition trial factor, the creator will cause the experimenter's

data to be less reliable if the same subject is tested repeatedly under the

same condition. A large positive coefficient for the intercondition trial

factor could simulate subjects who show considerable improvement from
" on-the-job practice," whereas a small one would simulate subjects at

j some learning plateau. The size of the proportion assigned to the periods

factor determines whether subjects behave as if they were fatigued, and the

size of the proportion for the relax factor determines how long an experi-

menter must make his simulated subjects wait between sessions to overcome
the fatigue effects.

In certain ,ases, to maintain the proper degree of reality, the assign-

ment of proportions is slightly more complicated; for example, the positive

effect of rest should not exceed the negative effect of fatigue. However, as

j is the case with the entire equation, values can be assigned relatively quickly,

and finer adjustments can be made later to bring out qualities that were

missed in the original assignment. For this illustration, let us assume that

the creator proportions subject-related temporal effects among the following

L factors as shown here:

j Subject-Related Temporal Effects

Intracondition Trials Intercondition Trials Periods Relax

.40 .20 .20 .20 = 1.00
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All temporal factors represent a relation between performance and a unit

j of time. Because the creator cannot know how much time the experimenter

plans to schedule for the various work and rest periods, he must create

relationships that cover sufficient units of time to handle all reasonable situa-

tions. The creator can control the experimenter through the scenario by

limiting the total time available to do the experiment -- a common and

realistic situation.

Looking next at the equipment-related temporal factors, the creator

might decide to simulate an effect representing a slow, low-amplitude drift

I in the equipment. The amplitude of the drift would be related directly to the

performance loss. In this illustration, he will make this sole factor account

for all (1.00) of the variance associated with the equipment-related temporal

factors.

I Summarizing the Apportioning-of-Variances Examples. These decision

processes by the creator would continue until he had succeeded in formulating

a world that both resembled reality and stressed those aspects of experimental

data collection technology in which he was most interested. In Table 3, the

valucs of the proportions that the creator decided upon in the previous para-

graphs have been summarized. In Column 1, the factors to be included in the

model are listed. In Column 6, the products of all probabilities in Columns 2

through 5 affecting a particular factor are ro'ecorded, and the relative strengths

of association for each factor with performance (i.e., the proportion of total

performance variance accounted for by each factor) are shown. For example,

the proportion of variance accounted for by intracon ition trials is the product

of 0.15 x 0.50 x 0.20 equals 0.015.

[ At this point in the development of the simulation, the creator could

examine the combined probability values (Column 6, Table 3) to see whether

the values represent the type of world he is trying to simulate. If not, he

can make the necessary adjustments with the only restriction that the sum

I-I of the proportion must total one.

I.
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Table 3. Summarizing the apportioning of variarces
and

the coefficients of the standard regression equation

(2) (3) (4) (5) (6) (7)

Subject-
I System & Subject & Related Proportion of Coefficients of

Relevant/ Temporal Temporal Temporal Variance Standard Regression
FACTORS Irrelevant Factors Factors Factors Accounted For Equation

Skill .30 .255 + .505

D .24 .204 +.452

B .12 f (.102) + .316 B - .254 B2

I E .09 .076 - .276
Z

D DxE S.5 .08 .068 - .261

Sk x D .06 .051 + .226

A.05 q (.042) + .154 Aa + .032 Ab
0 ( .093 Ac - .093 Ad

C .04 .034 +.184

E xC .02 .017 - .130

Subjects
wli
Skill .20 .030 +.173

Intercondition

Trials .40 .030 + .173

W Iantracondition .15
STrials ( .50 .20 .015 + .122

Periods .20 .015 - .122

Relax .20 .015 + .122

[ Drift .30 .045 - .212

Total
Proportions 1.00 1.00 1.00 1.00 1.00

I f= functional factor

1 q r qualitative, assigned factor
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I Finding the Coefficients

Principle II. The magnitude of a

coefficient ($) of a standard regres-

I sion equation equals the square root

of the proportion (P) of total per-

formance variance (ly2) accounted for

by each independent factor (Fx 2 ).

I2
y

II
A standard regression equation is one in which the values of X and Y

are given in terms of standard measures, or Z-scores, where Z equals the
raw score minus the mean of that set of scores divided by the standard de-

j viation of that set of scores. The square roots of the proportions provide

the Beta coefficients of the equation which relate zy to the Zxi values of the

i factors. As long as the different factors are independent of one another,

Beta is equal to the linear correlation between that '"ictor and performance.

t_ While the square root of each proportion provides the magnitude of
Beta, the creator must specify the sign of these coefficients. This is simple[enough tc do. For each factor, he must decide whether performance will

increase or decrease as the value of a factor increases. If the change is inf the same direction, the sign for that coefficient will be plus; if the change

is in opposite directions, the sign for that coefficient will be minus.

L b Thus, starting with the proportions of Table 3, Column 6, the creator,

by following the steps cited above, would arrive at the following standard

regression equation: 4

Zy (performance) 0.505 Skil + 0.442 D + 0.316 B ....... 0.212 Drift

35
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where every independent factor (e.g., skill, D, B, etc.) is actually a Z-score.

The coefficients for all of the terms are shown in Column 7.

Principle MI. The coefficient of the

raw-score regression equation (b)

equals the coefficient of the standard

regression equation (B) multiplied by

the ratio of the standard deviation of

the performance measure (ay) over

the standard deviation of the independent

I variable (Orx).

I bi= •

b. a -VI xi

1 Up to this time the creator has worked primarily with bodiless numbers.

Next he must relate the standard regression equation to the real world. To

do this, he must specify for each term the unit and scale of measurement,

the shape of the frequency distribution, and its mean and standard deviation.

The standard deviations of all factors or terms are needed to transform Beta

coefficients into raw-score coefficients.

I The units by which a factor is measured are determined in part by

reality. Slant range, for example, would be measured in feet, yards, miles,

I or meters. Luminance would be measured in foot lamberts. Skill would be
measured by the score on some test of skill. The creator has the option ofI selecting the particular scale along which to express these types of measure-

ments, for example, in meters directly or in logarithms, reciprocals,

square roots or some other transformation of the meter values. Transforma-

tions would be exercised primarily to simplify the simulation mode, where a
linear relationship between a factor and performance is ordinarily preferred.
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In order to convert from a standard equation to a regression equation,

Sthe creator must be able to specify the means and standard deviations of the

different factors. This can be simplified by assuming that all factors are

f distributed normally, that the standard deviation is one-sixth of the total

range, and that the mean is at the center of the range. The creator can

fairly easily select the range of values for each factor, for it is he who

determines the limits of his simulated world. Although these limits should

conform to some extent to reality, the creator can control to a great extent

the range of values that the experimenter might decide to investigate by the

information supplied in the scenario. If there are reasons to include non-

normal distributions, and there can be, these could be handled in the same

way that scale transformation are handled.

Once the raw score regression equation has been obtained, the

coefficients should be examined directly, for they sh-w the linear relation-

ship between the predictor factor and performance. Thus, a coefficient of

+ 0.452 for factor D, which, let 1;s imagine, represents the range to a

target in meters, would mean that for every meter the observer is away

from the target, there would be 0.452 increase in performance units, for

example, the number of targets likely to be detected. The ultimate test of

the acceptability of the equation can best be made by trying it out before

j using it with an experimenter. If it fails to reflect the type of world the

creator intended to simulate, modifications at this stage should be rela-

tively simple to make.

Multiterm Factors

Were all factors related to performance by a simple linear relationship,

the basic approach to assigning coefficients to a large complex model would

have been adequately described. Unfortunately, the task is not this simple.

The process is complicated when the factors involved are related nonlinearly

to performance (and wheai rescaling the measurements cannot linearize the

relationship) and when a factor is qualitative. Some methods for handling

these cases are discussed below.
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I
Qualitative factors. A qualitative factor is one in which the levels, or

J categories within the factor, cannot be ordered or have any quantitative

relationship. A qualitative factor might by "types of aircraft" in which the

levels or categories are: helicopters, fixed-wing jet, and fixed-wing

propeller. To handle these in the simulation model, the creator must decide

how much each category affects performance, above or below the mean

performance level for that factor.

These judgments are simplified by requiring the creator tr decide how

much difference in performance each category will make relative to another.

For example, if Factor A were a qualitative variable containing four cate-

gories, a, b, c, and d, the creator might assign the following relative

weights to each:

a, 5; b, 3; c, 1; d, 1.

Presumably, these would characterize the relative effects each condition

had on performance in the real world. To fit these into the equation, the

numbers must first be converted into values above and below the mean for

that factor. In this case, the mean is 2.5 which when subtracted from each

weight would leave the following values for each category:

[
a, 2.5; b, 0.5; c, -1.5; d, -1.5.

The next step is to scale these weights to fit the magnitude of the overall

effect of factor A, which was shown in Table 3, Column 6 to be 0.042 parts

of the total variance. Mathematically, this means that the sum of squares

for factor A was 0.042 part of the total sum of squares. The sum of squares

for the four weights (2.5, 0.5, -1.5, and -1.5) assigned to the four condi-

tions equals 11. Therefore, to yield the lower sum of squares, the individual

weights must be scaled down.
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II

SPrinciple IV. The square root of the

adjustment value (I) which changes one

j sum of squares (Ex 2) to another sum

of squares equals the value required

to change all individual scores (X)

to values that would yield the second

sum of squares.

I Ex 2: Ex2:: jfX1 :1

To make this correction in our example, the weights 2.5, 0.5, -1.5, and

-1a5 must be multiplied by (0. 042/11.)' 2 , or 0.0618. The results,

(G.154 ZAa + 0.032 ZAb - 0.093 ZAc - 0.093 ZAd)

I represents the coefficients of a set of dummy terms for factor A in the

standard regression equation. Note that the four coefficients have a mean of

zero and a sum of squares of 0. 042. Insert this multitermed equation in

lieu of the square root of the proportion for factor A in the standard regres-

sion equation (Table 3, Column 7).

Because the categories a, b, c, and d represent levels of a nominal

factor having no quantitative values of their own, the value for each ZAi

term will be either 0 or 1, and only one of the four terms can be designated

1 at any one time. Thus, when the condition is Category Ac, only ZAC takes

on the value of 1, which subtracts 0.093 from the mean performance of the

entire equation. The other ZA1 terms, being zero, contribute nothing to

the performance estimate.
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Nonlinear functions. For quantitative variables which relate non-

linearly to performance, the creator will wish to specify the function and

then translate it into coefficients that fit into the relationship defined for

the total equation. In decidingon the function, he must consider:

"* What would be realistic.

SI " The degree of complexity he wishes to introduce into the simulation.

As higher-order terms are introduced into the equation, the experimenter would

j have to take more data to describe the simulated world accurately. When the

data collection effort is limited, the experimenter's data collection plans will

have to become more sophisticated.

The following steps will enable the creator to specify the coefficients of

a particular function that will satisfy the requirements. These steps are

illustrated in Figure 2.

1. Draw on a piece of graph paper the function believed to exist

between performance (Y) and the boundaries of the real world for
the particular independent factor (X). Emphasis here is on shape

rather than numerical accuracy insofar as the values of the two

axes are concerned.

2. Divide the X axis into four equal parts. This will allow a relation-

ship up to and including a fourth-order one to be defined. It is

assumed that for the purpose of experiment simulation, no function

higher than fourth-order would be needed.

3. Label from 0 to 4 the five points at the ends and partitions between
spaces on the abscissa (X axis). Label the ordinate (Y axis) with

any set of values.

4. For each of the designated X points, find the equivalent Y value.

5. Use the "difference" method to obtain a least square fit for the data.
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jStep Numbers 6

(1, 2, 3) 5

4

Y 3

2

10 1 2 3 4

(4) X X2 Y

10 0 0

1 1 3.5

I2 4 5.4

3 9 5.5

j 4 16 4.0

(5) Difference method (least squares):

I Y dY d
2
1 d

3
y

S+3.535
3.535 -1.690 Y (1 + 4)Yo

5 +1.845 - Yo when

5.380 -1.6 - Yo k f 1,2,...

+0.155 0
5.535 -1.690

4.000 -1.535

I
Y - 0 + 3.535 X -1.690 (X

2 
- X)/2 = 4.380 X -0.845 x2

I(6) -- X X 2 y

Mean 2 6 3.69 [ox1

Sigma 1.414 5.9 2.0 6 i - b
Ox/Oy 0.707 2.95 - ['yI

I
Z y 4.380 (0.707) Zx -0.845 (2.95) Zx2 3.10 Zx -2.49 Zx2

1 (7) Desired proportion for Factor 8 - 0.102

.Zy, - 0.316 Zx, -0.254 Zx2

Figure 2. Example of steps to develop a nonlinear
function for the simulation.
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6. Convert che coefficients of this raw score regress.on equation (b) to

those of a standard equation (0) by using a variation of Principle 111, ?

i.e.,

a'b
tx

O'y

7. Take the proportion of each coefficient equal to the proportion of

variance desired for that factor. This last step is valid because

of the following principle:

"f Principle V:

i = p12.3 r 1 2  013.2 r 13

where R2, the coefficient of determination,

is 1.00 because there was no error,

and

p(R 2) = ( 0312.3 r 12 + 913.2 r 13 )

where p is the proportion of the total

variance to be contributed by this factor

in the overall equati n.

[Illustration: 0. 102 0. 316 (0.707) - 0. 254 (0. 479)1 A
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I
8. Insert the multitermed equation representing the function of the

single factor in lieu of the square root of the proportion for

Factor B in the complete standard regression equation (Table 3,

Column 7).

The one difficulty with this method is that it is possible to get fourth-

order effects (since five data points of the function are being specified) when

the creator may not wish to have more than a quadratic equation. This can

Sbe overcome by selecting only (n + 1) data points spaced equally across the

extremes of the X axis to limit the o.-der of the equation to n. This means

j that a second order polynomial would perfectly describe three values of

X and Y, or a third-order would be perfectly described by four values of

X and Y. The problem with using this method is that if the experimenter

believed that his original higher-o.der drawing approximated the real world,

representing it by a lower-order equation would destroy reality. The creator

I would have to decide on the merits of the tradeoff.

Eventually, if many equations were developed for experiment simulation,

a supply of standard functions could be prepared from which the creator could

j draw to fit particular situations. Until these have been constructed, how-

ever, it is a simple matter to have the computer do the few computations

required for applying these techniques.

I
I
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MAN-COMPUTER INTERFACE CONSIDERATIONS

j To make the technique of experiment simulation usable, useful, and

used, it must be made easy to apply by both creator and experimenter.

"Easy" in this case means letting the computer do most of the calculations

and letting the man supply the guidance and basic inputs. Optimizing this

relationship, which involves problems of computer programming, will not

be considered in detail at this time, except to indicate some considerations

that should be emphasized.

CreatorL
Ideally, the program would enable the creator and computer to engage

f in a dialogue in which the computer asks questions and the creator answers.

The questions would follow the pattern illustrated earlier, taking bits of the

problem small enough to permit purposeful answers to be given. Further-

more, while the creator would supply numbers, the computations, even

simple ones, would be done within the computer.

An effective program from the standpoint of the creator would be one -

"that would permit corrections or changes to. dif,.e•y•' both in terms of

individual numbers and blocks of numbers. This would allow a variety of

j I"worlds" to be built and modified without having to go through the entire

procedure each time. There should be provisions for storing worlds that

they could be reused.

Once the basic techniques for simulating experiments have been

adequately developed, the process could be made more sophisticated.
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Instead of simulating a single world, the creator should be allowed to input

I multiple worlds by specifying those dimensions he wishes to change system-

atically. For example, he may describe a series of worlds in which the

proportion of relevant to irrelevant variance is shifted systematically, or

he may shift the proportion of variance originally accounted for by a subject-

related time factor to an equipment-related time factor. If the multiple

worlds are ccnstructed by changing certain parameters not evident to the

experimenter after the experimenter has collected his data, it would be

possible to see how effective one particular experimental plan would have

been across the whole range of conditions.

Experimenter

For the creator, the coroiputer helps to construct a world; for the

experimenter, the computer stores the world as a data base from which the

experimenter must sample. The interface between computer and experimenter

must make the experimenter's task of withdrawing data as easy as possible.
As in an actual experiment, he should be able to indicate the coordinates of

the space he wishes to sample and the computer should provide him with an

estimate of performance at each coordinate by solving the equation for the

values specified. Furthermore, as a matter of convenience, the ex-

perimenter should have the option of requesting data from one or a series

of data points at one time, and the results should be fed back to him

immediately.

The experimenter should be provided with a scenario by the creator

that gives him the problem he is expected to solve, some background

material, and the limits to be placed on his data collection strategy. The

scenario should provide the experimenter with all of the supporting informa-

tion about the problem that he would probably have were he to do the

experiment in an actual laboratory. The limiting conditions -- the avail-

ability and type of subjects, the amount of time allowed for the study (which

translates into data collection units), and the characteristics of the apparatus

and the environment -- may be manipulated by the scenario along a
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continuum of greater to smaller restrictions which, when combined with the

characteristics of the simulated world, produce a range of difficulties that
the experimenter must be prepared to master to obtain the information at a

desired quality level.

In addition, in order for the experimeliter to be able to communicate
with the computer, he must be told which measuring units are being used in

the simulation and some information about the boundaries of the simulated

world. Provisions must be made in the computer program so that when an

improper instruction is given, it will be rejected and the experimenter

j notified.

From the point of view of the experimenter, the time continuum is con-

siderably less complex than for the ..reatc. The experimenter need think

only in units of time, the length of his runs, his rest periods, and the time

between sessions. He literally must schedul hie itnul.ed experiment

as he would a real one, only he must convey this information to hL,. ..... uter

in a more stylized manner, i.e., in units of time associated with every

operating and nonoperating period carefully designated.

The same question-answer, dialogue style would be used between the

computer and experimenter as with the creator. The computer would ask

for information and provide the experimenter with the format he must use.

Whatever program is prepared, it should -- if possible -- be sufficiently

modular that it may be corrected or upgraded with as little rewriting as

I possible.

I
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CONCLUSIONS

I

I A method of simulating the characteristics of experiments in which

human subjects are used has been proposed. Admittedly brief, presumably

j sufficient detail has been provided to show the reader that a model for this

purpose is feasible.

After such an effort has been completed once, subsequent efforts will

be easier. As part of a total program, the process could be simplified

considerably by developing and using standardized aids. These aids would

be applicable to those parts of the experiment model that are similar from

experiment to experiment. These aids would consist of prespecified curves

and relationships of varying magnitudes from which the creator could select

,the ones that best meet his needs.

The most immediate application for experiment simulation is to allow

for experiences with new advanced methcdologies. If the math model for

experiment simulation is rough in regard to realism in the beginning, this

still should not reduce its value for examining methodologies. As the model

is improved and methods for establishing standards developed, the technique

can be used to evaluate experimenters.

Experiment simulation as a tool can be expected to improve the quality

of applied behaviorisl research materially.
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