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ABSTRACT 

This volume examines the relationship between aircraft readiness and the aircraft, 
maintenance labor, and spare parts available at the squadron level. A production function, 
which shows the relationship between aviation resource use and squadron readiness, was 
estimated for the A-7B, CH-53, S-2E, F-4B, and TA-4F from 3M data. The production 
functions and derived cost functions for the F-4B, TA-4F, and CH-53 were used to 
determine the mix of aircraft, maintenance labor, and spare parts that will maximize the 
level of readiness for a given budget. Finally, the relationship between the NORS rate and 
the investment in spare parts is estimated for these type/model/series of aircraft. The 
methodology employed in this study can be applied to other aircraft types. 

Volume III of this study develops a model of the Navy's aviation resupply system 
and examines various means of increasing the effectiveness of the system using two 
measures: decreasing the length of time between submitting a requisition and receiving 
the part, and maximizing the percentage of requisitions filled by a certain day. 

Volume I is a summary volume and contains a description of the project, the 
methodologies used, and the principal conclusions and recommendations. 
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SYNOPSIS 

This study is concerned with the relationship between aircraft readiness and 
the aircraft, maintenance labor, and spare parts available at the squadron level. 
Our objective was to develop and apply a practical method that could determine: 

1. How aircraft readiness is affected by changes in the usage of spare parts, 
maintenance labor and aircraft; and 

2. How to combine these resources to get the highest level of aircraft readi- 
ness for a given expenditure on them. 

METHODOLOGY 

The basic elements of the analysis were the estimation of a production function 
from data on readiness and resource usage and the derivation of a cost function 
from a non-linear optimization model for each type/model/series studied.   The 
production function shows the relationship between aviation resource use and 
squadron readiness.   The cost function analysis reveals how many hours could be 
achieved for a given budget, and the resulting optimal mix of primary resources. 
Only the estimated production function is necessary to determine the relationship 
between the NORS rate and spares used. 

The squadron was chosen as the basic subject of analysis because it is the 
primary unit charged with combining Naval aviation resources into tactically re- 
quired output.   The measure of aircraft readiness used in the study is aircraft 
ready hours, defined as follows: 

Ready hours (RH) = Total custodial hours 

- (Time in NORS condition) 

- (Time in NORM condition). 

The ready-hour measure was chosen because it reflects only the availability of 
operational aircraft.   Flight hours is sometimes suggested as another measure 
of squadron output, but flight hours represent a combination of the availability 
of aircraft and the tactical requirements for available aircraft.   Ready hours 
seem therefore, a more accurate measure of the effectiveness of the aviation 
supply and logistics system. 

In constructing the ready-hour measure, no attempt was made to differen- 
tiate among various categories of NORS and NORM conditions.  Such differentia- 
tion requires the construction of an "essentiality" index, an analytical problem 
beyond the scope of the present study.   In this study, an aircraft is considered to 
be unready if, for any reason, it is unable to fully perform its primary mission. 

The procedures used in this study to estimate the parameters of the ready- 
hour production function belong to the general class of non-linear, iterative tech- 
niques.   The problems involved in econometrically estimating parameters of a 
production function are mathematically complex.   Certain points can be noted 



here, however.   If one assumes that the squadron inputs have been purchased in 
an economically competitive market, then standard linear regression can be used 
to estimate the parameters of the production function.   There is, however, no 
strong reason to believe that this assumption is descriptive of the Navy logistic 
system.   Therefore, a non-linear, iterative technique, which does not rely upon 
this assumption, was employed. 

Five types of aircraft were chosen for empirical estimation of the type 
described above: 

1. The A-7B, an attack aircraft. 

2. The F-4B, a fighter. 

3. The S-2E, an anti-submarine aircraft. 

4. The CH-53, a helicopter. 

5. The TA-4F, an attack trainer. 

Data was collected from the Navy Maintenance Material Management System 
(3M) on the usage of these aircraft, maintenance man-hours, and spare parts 
at the squadron level and on squadron readiness.   Each type/model/series ot 
aircraft in the inventory will be expected to have a unique production function. 
This cross-section of types, however, is sufficient to demonstrate the usefulness 
of the production function approach and to draw some general conclusions regard- 
ing logistics support for these types of aircraft.   Data was stratified by location 
and deployment of each type aircraft in the following breakdown:   all squadrons, 
Atlantic squadrons, Pacific squadrons, and training squadrons.   Production 
functions were estimated in each of these different operating environments. 

The econometric estimation of a ready-hour production function is the first 
step in the determination of the economically most efficient combination of squad- 
ron inputs to produce a given level of ready hours.   The ready-hour production 
function merely reveals the technological relationships between resource usage 
and the production of ready hours.   As useful as this information is, the costs or 
prices of the resources must be introduced in order to make meaningful statements 
about how to allocate various budgets among the support resources of aircraft, 
maintenance man-hours, and spare parts.   The problem is one of determining the 
maximum number of ready-hours attainable at the squadron level, given a budget 
constraint or fixed funding level on the usage of aircraft, maintenance labor, and 
spare parts.   Given the squadron ready-hour production function, estimated by 
the procedures discussed above, and the budget constraint on the squadron's 
resources, it is then possible to formulate the optimization problem: 

Maximize ready hours, subject to a given budget constraint on resource usage. 

The solution to this problem yields a relation between the budget for resource 
usage and the level of squadron output.   In addition, the optimal combination of 
inputs may be identified for each output level. 
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MAIN RESULTS 

• The results indicate that this methodology can be valuable in exam- 
ining squadron operation.   Much of the observed variance in squadron readiness 
is explained as a function of resource usage. 

• Given current operating practices, the results suggest a need for 
increased spare parts support.   Of course, since the value of this support 
depends upon the particular items being provided to the squadrons, a more 
efficient inventory management system could lead to even greater readiness. 
Until such practices are developed and implemented, however, we find that a 
larger proportion of the budget should be allocated to the spare parts support 
category. 

For more detailed results of the analysis, please see the first section of 
the main text. 
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INTRODUCTION, CONCLUSIONS AND RECOMMENDATIONS 

BACKGROUND 

This study addresses the problem of determination of the relationship be- 
tween the usage of various primary inputs and the readiness of Naval aviation 
squadrons.   At the squadron level—the basic operating unit of Naval aviation— 
these primary inputs are readily identified.   In order to produce output (ready 
aircraft), the squadron employs a mix of aircraft, maintenance labor, spare 
parts and various other inputs.   These inputs can be substituted in various ways 
to produce a given level of ready aircraft.   For example, greater maintenance 
capabilities may reduce the total number of aircraft required by the squadron. 
Or, more rapid resupply capabilities may reduce the number of on-board spares 
required.   Further, these inputs can often be complementary, as well as 
substitutable.   The addition of more on-board spares may be nearly valueless if 
the maintenance capabilities of the squadron are already employed at capacity. 

A fundamental objective of the Navy Logistics system, therefore, is to 
furnish the required levels of these various inputs to the productive units charged 
with carrying out the various tactical missions for which they were designed. 
Furthermore, recognizing the variety of ways in which these inputs can be 
combined to produce a given level of readiness, the logistics system must have 
as an objective some criterion of efficiency in choosing among the tactically 
acceptable alternatives.    The criterion of minimum cost has traditionally been 
accepted in this respect, although other possibilities, such as flexibility, have 
been employed at times. 

An important part of the logistics system is spare parts support.   Two 
aspects of the general problem of spare parts management have received special 
attention, as a means of providing decision procedures leading to a minimum 
cost attainment of a given objective function.   The first has been inventory 
theory, dealing with the problems of determining optimal stockage and re-order 
rules under various operating environments.   The second has been the general 
class of reliability models.   Two specific problems have been addressed: the 
effects of standby spare systems on the operation of a complex system, and the 
effects of repair and maintenance on the operation of a complex system. 

Other aspects of the spare parts management problem that have received 
study include the effects of cannibalization policies on the reliability of various 
operating systems and the determination of the optimal combination of resources 
in a sequential flow system for the transportation of spare parts. 



In general, all of these studies have treated the spare parts problem as a 
self-contained system, either ignoring the interaction with other aspects of the 
total logistics system or taking it as given.   This approach, of course, cannot 
be criticized; it has lead to many valuable models and decision rules required for 
the efficient daily operation of this large system. 

However, as noted earlier, spare parts provide only one input to the 
productive units being served by the total logistics system.   Other inputs — air- 
craft and maintenance labor, for example, are required along with spare parts 
in order for these productive units to operate.   The objective of this study is to 
determine the ways in which these various inputs interact in order to produce the 
final output for which they were furnished.   Once this determination is made, the 
criterion of cost minimization may be employed to suggest efficient combinations 
of these broad categories of inputs to use in the production of readiness. 

These objectives, of course, are different from those of the typical inventory 
or reliability model, primarily in the level of aggregation being considered.   In 
considering spare parts as a single, distinct input to the productive process under 
study, no consideration can be given to part-by-part tradeoffs, as is usually done 
in inventory and reliability models.    Nevertheless, the ability to consider trade- 
offs among the broadly defined logistics categories of aircraft, maintenance labor, 
and spare parts can be of great value to the logistics system manager. 

METHODOLOGY 

The objective of determining the relation between the usage of these inputs 
and the output of readiness suggests the use of a production function, which may 
be defined as a function relating the level of output produced to the levels of the 
various inputs employed to produce that output.   The concept of a production 
function has been extensively used in a variety of economic applications.   Here 
it is used to investigate the empirical relation between the production of readiness 
and the use of aircraft, maintenance labor, and spare parts at the squadron level. 

In order to conduct the analysis, some measure of the squadron's output 
must be defined.   Two come to mind — flight hours and ready hours.   The Ready 
hours measure may be defined as: 

Ready hours   =  Total custodial hours 
- (Time in NORS condition) 
- (Time in NORM condition) 

We chose ready hours because they reflect only the availability of operational 
aircraft; flight hours represent the combination of the availability of aircraft and 

^ 



the tactical requirements for available aircraft.   It seemed, that is, that ready 
hours are a more nearly accurate measure of the effectiveness of the logistics 
system.   In constructing this measure, no differentiation was made among the 
various categories of NORS and NORM conditions, due to the difficulties in con- 
structing an essentiality index.   Therefore, an aircraft is considered to be un- 
ready if, for any reason, it is unable to fully perform its primary mission. 

Using ready hours as a measure of the squadron's production, our objective 
then is to determine how the various logistics inputs used by the squadron — air- 
craft, spare parts, and maintenance labor — interact to lead to the observed 
production of ready hours.   The maintenance labor input to the production is only 
the subject of total maintenance labor employed in remedial actions related to 
squadron aircraft readiness (i. e., the removal, repair, and installation of spare 
parts).   Labor employed in activities such as flight preparation is not included in 
this analysis. 

Five types of aircraft were chosen for study to obtain a broad cross-section 
of the types of aircraft supported by the Navy logistics system: an attack air- 
craft (the A-7B), a fighter (the F-4B), an anti-submarine aircraft (the S-2E), a 
helicopter (the CH-53), and an attack trainer (the TA-4F).    Data was collected 
from the Navy Maintenance Material Management System (3M) for squadrons 
employing these five types of aircraft.   While it is recognized that each type/ 
model/series of aircraft in the Navy inventory could be expected to exhibit a 
unique production function, this cross-section serves both to demonstrate the 
methodology of the analysis and to lead to some general conclusions regarding 
logistics support for these types of systems. 

Having estimated the parameters of the algebraic form of the production 
function from the data collected on these five aircraft types, many questions 
regarding the effect of logistics decisions on the production of ready hours can 
immediately be answered.   The effects of changes in the level of logistics support 
in any support category on the production of ready hours can be estimated from 
the production function.    Furthermore, the effects of proportionate increases or 
decreases in the level of support of all categories can be measured.    Finally, by 
separating the data for the five aircraft by location and deployment, the effective- 
ness of the various types of logistics support in different operating environments 
can be estimated.   All of these facts can be of significant importance to the logistics 
planner. 

The final output of the analysis addresses the question of determining the 
quantities of the various inputs that should be provided to achieve a certain readiness 
level at minimum cost.   Once the production function is estimated, the various 
alternative combinations of inputs that lead to the same level of readiness can be 
identified.   By determining the costs of providing these various levels of inputs, 
the minimum cost combination can be chosen. 

•3- 
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This optimization procedure can be employed for the many different levels 
of readiness of interest to the tactical planner.   The output resulting from this 
procedure is a cost function, which may be defined as a function giving the 
minimum total cost of input usage required to support any given level of readi- 
ness desired.   The cost function is found by determining the optimal allocation 
of the budget among resource categories, and will tell us the minimum budget for 
input usage required to support a desired ready-hour level.   Given this result, 
it is then possible to determine the minimum cost tradeoff between initial stockage 
and resupply, as various combinations of stockage and resupply can provide the 
desired level of spares usage.   In addition to this optimum level, we could de- 
termine the effects on ready-hour production and on cost from any decision which 
causes a change in the level of inputs used by the squadron. 

RESULTS, CONCLUSIONS, AND RECOMMENDATIONS 

It has been shown that the applied model developed in this study can be used 
to determine the following things: 

1. How aircraft readiness is affected by changes in the usage of spares and 
other primary resource inputs. 

2. How to combine maintenance man-hours, aircraft, and spare parts to 
get the highest aircraft readiness for a given budget. 

The capabilities of the model are demonstrated by its application to the F -4B, 
TA-4F, and CH-53.   The results of these applications illustrate the model's 
value as a planning tool.   The following major analytical results were derived 
from the aircraft studied: 

1. For the current estimated budget for the F-4B, there should be, from a 
logistics point of view, one less aircraft per squadron, a 7 percent decrease in 
man-hours expended, and about a 25 percent increase in spare parts used.   If 
this resource mix were used, ready hours per squadron would increase by ap- 
proximately 41 percent and ready hours per aircraft would increase by 54 percent. 

2. The optimal results for the CH-53 indicates that the logistic size of the 
squadron should be reduced by 2 helicopters, maintenance man-hours should be 
more than doubled, and spares usage increased by about 66 percent.   This would 
increase ready hours for a squadron of CH-53's by about 8 percent of the same 
total cost. 

3. Although the maximum ready hours for the TA-4F squadrons are very 
close to the average value we have observed at the same total cost, the optimal 
allocation of resources indicates that maintenance man-hours should be reduced 
and that spares usage should be increased by 11 percent. 
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4.    Assuming a proportional relationship between spare parts used at the 
squadron level and dollars budgeted for spares, changes in the spares budget 
can be related to changes in ready hours and NORS rates by type/model/series 

->vj    of aircraft.   Given the present system, a 10 percent increase in spares usage 
will reduce the NORS rate for the F-4B about 16 percent; for the CH-53 by about 
2.3 percent; and for the TA-4F by about 8.4 percent. 

Two primary conclusions are drawn from the above results. 

•   First, if current total resource budgets are maintained in the 
future, a larger percentage of those budgets should be allocated to the spares 
categories and a smaller percentage to aircraft and maintenance. 

NJ 
• Second, in all cases, the results indicate the need for more spare 

parts. 

• The results just described could be determined for any specified 
budget.   This would make it possible to determine how to efficiently allocate 
total budget cuts for a type/model/series among the aviation resource cate- 
gories, i. e., to allocate budget reductions in order to achieve the smallest re- 
duction in ready hours.   Arbitrary cuts in specific budget categories could re- 
duce the level of effectiveness of the aircraft far below what could be achieved 
if the burden of the cut was efficiently allocated. 

5.     There are a large number of possible extensions of the production func- 
tion technique.   Further stratification of the input resource categories could be 
of even greater use in planning, as trade-offs among various categories of main- 
tenance labor and spare parts could then be considered.   Development of an out- 
put measure which differentiated among different levels of readiness could be 
another extension.   Finally, extension of the technique to other aircraft types 
would provide additional input to the budget planning process. 

-5- 
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THE THEORY OF PRODUCTION FUNCTIONS 

INTRODUCTION 

In this section of the report we develop the concept of a production function 
and determine the properties of the various algebraic forms of the production 
function employed in this analysis.   While our study considers more than two 
inputs, the discussion for simplicity is restricted to a process employing only 
two inputs in the production of a single output.   The results discussed here are 
readily generalized to the higher dimension case. 

PROPERTIES OF A PRODUCTION FUNCTION 

We define a production function as a function associating a level of output, 
X, with each combination of input levels,   x.,   and x„: 

X = X(xrx2) 

Intuitively, we would expect such a production function to have the following 
properties: 

(1) An increase in the level of any input should produce an increase in 
the level of output. 

(2) Subsequent increases in the level of any one input, holding all other 
inputs constant, should produce smaller and smaller absolute increases in the 
level of output. 

(3) The marginal increase in output resulting from an increase in any 
one input will be greater if other inputs are also increased. 

(4) Many different combinations of inputs can be used to produce the 
same level of output. 

-7- 
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The first two properties are shown in the figure below: 

Output:  X 

X" 

X = X(x1,x2) 

Input:  x. 

For any constant level of the second input (say, x~ = x„), the curve shows 

the level of output resulting from the use of any particular level of input  x. 

For example, using a level  x*    (along with  x„)   results in an output level 

X* .   Note also that higher levels of x,   always lead to a higher level of out- 

put being produced, although subsequent increases in x,   produce smaller 

and smaller increases in output. 

-8- 
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The third property, that the marginal increase in output resulting from 
an increase in any one input will be greater if other inputs are also increased, 
is shown in the figure below for a second level of x~,   say   x2, where 

x„  >  x~ . 

X = X (xvx2) 

X = X |xvx2) 

x1 

We see that any level of x.   results in a higher level of output when combined 

with  x„  than when combined with  x„ . 

The fourth intuitive property, that many different combinations of inputs 
can be used to produce the same level of output,  may also be displayed.   In 
this case, the axes are the levels of the two inputs being used.    The various 
curves (X = X,, X = X„, etc.) represent the level of output resulting from using 

the associated levels of the two inputs.   Each curve represents a given, constant 
level of output, and each point on such a curve represents a combination of 
inputs leading to the same level of outputs. 

-9- 
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The points  A  (representing input levels of x..   and x2A) and B  (representing 

input levels  x]R  and x2R)  both lead to the production of X.   units of output, 

the points  C  and D both lead to the production of X2  units of output, and so 

forth.   These curves are referred to as isoquants, or equal product curves. 
Every point on an isoquant represents an input combination which leads to the 
same level of output production. 

The first and third figures above are really different ways of presenting 
the same facts, as can be seen in the following figure. 

V 
A 

 .^^      X = X* 

'1      *1 l1      A1 

-10- 

V 



Consider the output level  X*, which we see from the figure on the left results 
from either the input combination (x.*, x2) or from the input combination 

(xj **,x2).   Observing the isoquant  X = X*   on the right, we note that these 

same input combinations are represented as points on the  X* isoquant. 

The first three of these intuitively desirable properties can also be 
expressed mathematically: 

d')       |X.      0 f    all . 
ax. 

(2') A_ 
2 *x. 

(3') *2X 
ax.?*. 

< 0 for all  i ; 

> 0 for all i, j  such that  i f j 

The fourth property, suggesting the concept of an isoquant, is defined as the 
set of all possible combinations of inputs which can be used to produce a 
given level of output.   A mathematical definition of an isoquant could be written: 

(4-) dX=^2L    dx.+J^    dxo  =  0. 
PiXj        1       ?ix2        2 

That is, the change in output along an isoquant,   dX, resulting from changes 
in the input levels,   dx.   and  dx„, must be zero. 

The Cobb-Douglas Production Function 

Having established the desired general properties of a production function, 
we can now turn to two commonly used algebraic forms of this general 
production function.   The first, and the oldest, commonly used form is the 
Cobb-Douglas (C-D) Production Function: 

X  =  Mx.    x2   , 

where   M  >0, 0 < or, ß <1. 

■11- 
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This function is homogeneous of degree a + ß: 

X =  X(\xIf \x2) 

- M(\x1)°'(xx2)^ 

= MX Xj   X x2 
H 

a+ßx,   a    ß 
= x        Mxx x2

H 

= X        X(xr x2) 

The concept of homogeneity is important in understanding the effects on output 
of proportionate increases or decreases in all inputs.   For example, a doubling 
of all inputs would correspond to  \ = 2  in the above equations.   If a + ß = 1, 

then output would increase by  2 (= \     *), or, in other words, it too would 
double.   If a + ß < 1, then a doubling of all inputs would lead to less than a 
doubling of output;  if a + ß > 1, output would more than double in response to 
a doubling of inputs.   This factor will be of use later in the analysis of cost 
functions. 

The Constant Elasticity of Substitution Production Function 

The second commonly used algebraic form of the production function is 
the Constant Elasticity of Substitution (C. E. S.) Production Function: 

X =  M [Axj ~P + Bx2 " P-j-<1/p) > 

where  M, A, B  > 0 ,   -l<p<OorO<p. 

As written, this function is linearly homogeneous: 

X  =  X(Xxr Xx2) 

=  M[A(xx1)"P+B(xx2)"P]"(1/P) 

=  M[AX_p
Xl "P +Bx"pX2 -Pi"*1/?) 

■12- 



=  M [\ ' P (Axj " P  +Bx2 " P) ] ' (1 / p) 

=   M (X " P) "(1/p) [Axx " P  +Bx2 " P 1 " (1 , p) 

-   \M [Axj "P  +Bx2 "P^-^/p) 

=   \X(x1,x2) 

Any proportionate change in all inputs leads to the same proportionate change 
in output. 

An alternative form of this function, homogeneous of degree  |i ,   is 

X = M [Axj " P  +Bx2 " P ] " (^/P) . 

We shall use the linearly homogeneous form in the following text, although 
a more complex form is employed in the empirical analysis. 

An alternative and often used algebraic form of the C. E. S. function is 
given by: 

X = Y [6xx "P  +(l-6)x2 -P]_(1/P> 

The equivalence between the two forms is seen below: 

X  =  M(Ax: "P+Bx2 "P) ~(1/P> 

(A^r(l/P)(^_l_))"
(1/p)(Ax1-P+Bx2-P) 

Ä+B-   Xl"P  + 
B 

=  M . 

=  M(A^)-<1/P>(1OT   ~! ■   Ä+B- 

i 

=  Y(6x1"P+ (l-6)x2'P)"(1/P) 

x2"P) 

-d/p) 

d/p) 
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and 

Y = M(A+B) _<1/P>, 

R  -        A 

1-6  =       B 

A+B      * 

We shall use the first form in our exposition here. 

Properties of the Cobb-Douglas and Constant Elasticity of Substitution 
Production Functions 

The results of analyzing the properties of these two algebraic forms of 
the generalized production function are summarized in table 1.   All the desired 

properties are present.   The only difficulty is in seeing that —*-  < 0 in the 
ax.2 

C.E.S. case.   Using Euler's theorem, 

x    1x7 xl+ —T x2 1 dx 

(which holds for any linearly homogeneous function), the result follows 
trivially. 

Thus the marginal product of any input, which may be defined as the 
change in output resulting from an increase by one unit of the input, is positive 
and diminishing for both production functions, and the marginal product of any 
input increases with an increase in the other input. 

Along any isoquant of these two forms of the production function, 

dX=4^- dx. +1^—  dx„ =  0   . dx 1     dx„ 2 
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TABLE 1 

PROPERTIES OF PRODUCTION FUNCTIONS 

Constant elasticity-of- 
C obb -Douglas substitution 

ax, x. AM 
P/2L l+p 

dX 
dx„ 

ßx 
x„ BM -P 

(*) 

i+< 

ä
2X 

ÖX, 
a(a-l)X AM'p (l+p) 

(* 

-sr xi "X ax.    1 

B2X 

^7 
ß(ß-l)X 
 3— 

BM"P(l+p) (£- 
^x  -X *x2

X2X 

~2Y O   A 

ax   ox„ 
a2x 

öx9Sx 
gßX 
X1X2 

AB(l+p)M"2pX 1+2p (Xlx2)'
(1+P) 
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If we define the marginal rate of substitution, r,   as the slope of the isoquant, 

dx, 
r = 

**2  ' 

It follows from substitution of the results summarized in table 1 that 

r = < 0 ax/axj 

for both the C-D and C. E. S. forms. 

The results of table 1 also reveal that: 

2       /axW^N+/5xw a
zx \ 

xi    \^xi/ v^ /   V^A^i^/ 
dx„ 

(axj 
> o 

for both forms of the production function.   Hence the isoquant maps must be 
of the general forms drawn earlier. 

The ability to substitute one input for another is essential to the following 
analysis.   In the two isoquant maps shown below, 
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consider the decrease in the level of the first input, represented as   Ax, . 

In order to maintain output constant at a level  X , an increase in the second 
input of A x9  is required.   Where a very large increase in x„ is required 

to compensate for the loss in x„ as in the right figure, we might consider 

the two inputs poor substitutes for one another. 

Since the rate of substitution changes as we move along the isoquant, 
we can write 

r  = ■Q). 
or, equivalently, 

x2 
= f(r) . 

The elasticity of substitution, a, is defined as 

a-' dr ® 
resulting in a number of expressions for   a.   To begin with, each differential 
may be considered as a total differential: 

3x0      '  ^2 

d(Xj/x2) ö(x1/x2) 
d(xl/x2)   = axt        **!   + 

^l   "  xldx2 
2 x2 

dr   =    "£—  dx     + ^*—    dx 01       m1     1      bx2   ^2 
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Thus: (X = 

x2dKx   -  x^ dx. 

^2 

?  dx.   +   j£    dx,   (xl\ 

dx, 
c2  dxT 

ÖXj      9x2    dXj 

rx„ 

r9r   +M 
SXj     dx2 

ax/ax2 

ax/ax, x2" xi 

xlx2 

 \  
ax/ax2   päx7äxjj 

' ax/axj 9\ ax/aX] 

axj 

-ax/ax2-v    päxTäxTT 
ax/axjjMax/axjj 

9x, ax~ 

rax/a^l [ax      +ax_   If    i   1  p/dX2 
[ax2 

x2^axj xiJ [ax/axj J  [ax/axj 

ax/ax2 

ax/ax. 
xlx2 

ax/ax2 

ax   a2x        ax a2x 
ax2  axxax2     ax2      2 

ax   a2x +ax a2x 
axi ax2

2   sx2
9xiöx: 

ax/ax2 
L              (ax;)           J *■           \*1) 

Xlx2 
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Bx2 
x2 + öxj xiJ  [axj [axjj 

/ax_\2 a2x    T^Ü 
\öxi/   ax?   W 

2—3~~ d^X + 2 
3x 

ax 
öX. 

ax 
Sx„ OX | ox« 

xlx2 

The final expression for  or is again entirely in terms of the various marginals 
of the table.   Substituting these values produces the following results: 

r 

(j = 

1    fortheC-D 

for the C. E.S. tlTp 

Hence, both forms have constant elasticities of substitution.   However, in the 
C. E. S. case, its value depends upon one of the parameters of the function, while 
in the C-D case,   a is seen to be identically equal to one.   This result can be 
used to aid in discriminating between the two forms of the production function. 

The C. E. S. case can be further examined by looking at this parameter, 
p , which figures in the equation for  a.   It was shown earlier that   p is 
restricted, such that    ■ 1 <  p < 0 or    0<p.   We can now examine the 
limiting behavior of the C. E. S. function as   p  approaches the values 
- 1,0, and °° . 

1.     p  -» 0 .   In this case, it can be shown that the C. E. S. function 
approaches the C-D form as follows: 

1 4. n.Kw -P-TU/P) 

Write the C. E. S. as 

X = Y [ 6x^H  + (l-6)x2   K; 

and rearrange, giving 

rx\-p 
(Y)    =   6xl "P+ (1"5)x2 
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Mathematical manipulations then yield: 

X 
exp L-P In Y ] =   6 exp[-p In Xj ] + (1-6) exp[-p   In x,] 

and so 

1   -   p  ln(y) + 0(p2)  = 1   -6p  lnxj   ■ (1-6)   Pin x2+0(p2). 

Dividing by  p  and taking the limit  P -»O,   we get: 

which is the C-D function with constant returns to scale.   Hence, the C-D 
can be viewed as a particular limiting form of the C. E. S. function. 

2.     p -»-1.     This approaches the case of perfect substitution.   The 
function is given by 

X = M[AXj + Bx2] 

We see that 

ax 
ÖXj 

9X 
ax2 

=  MA 

=  MB 

a2x =  0 for all  i . 
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The marginal productivities are now constant and no longer diminish, as 
shown in the isoquant map below. 

*2 

3.     P -»a..    This is the case of zero elasticity of substitution, also known 
as the case of technologically fixed input proportions, shown in the isoquant 
map below: 

x=3 

x=2 

X=1 
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Clearly, any input combination not on the ray 00' is inefficient, in that inputs 
are wasted.   If we define a.  as the amount of input i required per unit of 

output, the production function can be written 

This "process" concept is the basis for the linear programming models of 
optimal input and output. 

This summarizes the basic theoretical concepts of a production function. 
While these results are presented for a simplified, two-input production 
function, the analysis of the more general form follows similar lines.   The 
types of results derived here are those employed in the study.   We will be 
primarily interested in determining the marginal products of the various 
inputs to the squadron; that is, we wish to determine the effect on squadron 
output of increases in these various inputs.   In addition, we will determine 
the elasticity of substitution of the various inputs, which will indicate the 
potential for trade-offs among them, and attempt to estimate, as far as is 
possible, the effect on output of proportional changes in all input levels. 
These types of results are reported later in this volume. 
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ECONOMETRIC ESTIMATION OF PRODUCTION FUNCTIONS 

This section discusses the problems involved in an econometric estimation 
of the parameters of the two-input production functions just described.   The 
section concludes with a description of the technique used in arriving at the 
parameter estimates presented later. 

ESTIMATION OF THE COBB-DOUGLAS PRODUCTION FUNCTION 

The Cobb- Douglas (C-D) form of the production function, due to its early 
development and to the relative ease with which its parameters can be 
estimated, has been widely employed in empirical production function analyses. 
Writing the Cobb-Douglas function as: 

a       ß 
Xt   =  Mxit    x2t    Ut   ' 

where the  t  subscript indicates a particular (time series or cross-sectional) 
observation and  u    is a random disturbance, a logarithmic transformation 

yields the equation: 

In X„  =   InM  + a In x..   + ß In x~.   + In  u.   . t It 2t t 

Treating In u    as an additive random disturbance with a zero mean, the 

function may be treated as a single equation that is linear in the unknown param- 
eters In M, a and ß . These parameters may then be estimated by the method 
of least squares or, if the further assumption is made that  In u    is normally 

2 
distributed with zero mean and constant variance   a   »   by the method of 
maximum likelihood.   If the assumption is made instead that  u    has the 

normal distribution described above, then the attention of. this estimating 
technique is shifted to the conditional median of the function, rather than to 
the conditional mean. 

There are at least two other ways in which the simplicity of this 
estimating technique can be lost.   If the random disturbance is postulated to 
be additive rather than multiplicative, or if auxiliary conditions requiring cost 
minimization in the competitive markets for the input factors are assumed, 
the estimation is no longer a simple linear problem.   In the latter case, single 
equation least-squares estimates of the parameters have been shown to be 
biased and inconsistent. 
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ESTIMATION OF THE CONSTANT ELASTICITY OF SUBSTITUTION PRODUCTION 
FUNCTION 

Despite these difficulties, estimating the Cobb-Douglas form is far 
simpler than estimation of the C. E. S. form.   Writing the C. E. S. function in 
the alternative form derived in the previous section, 

X    =  A Ltelt" + (l-6)x 2t ■] P 

it can be seen that, regardless of whether the random disturbance is postulated 
as additive or multiplicative, no logarithmic or other simple transformation can 
be used to yield an equation that can be estimated by standard linear regression 
techniques.   This has necessitated the use of either non-linear techniques or 
auxiliary conditions in the estimation.   We shall consider the latter techniques 
first. 

In a competitive input market, the maximum output that can be achieved 
within a specified budget, where the price of  x.   is  p.   and the price of x„ 

is p9 , is determined at the point of tangency between the budget line and the 

isoquant, as shown below.   This result is derived in the section entitled 
"Theory of Cost Functions." 

x^t + X2P2 = B 
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The marginal productivity relationship based upon output maximization 
is: 

pi   Üüt 
P2     axlt 

_^/M"(p+1) 
x
-6 Vx2t/ 

The first step in estimating the parameters of the C. E. S. function is to 
transform the above equation logarithmically into: 

*Ö)-*.(A)-™-g) 
/pit\ /xit\ The regression of log I I  on log  I ) will provide estimates of   6 
\p2t/ \x2t/ 

and   p . 

The second step is to transform the equation for the C. E. S. function 
logarithmically into: 

log Xt = log A  - H log  [Sxlt" P + (l-6)x2t "h 

We can now estimate A and u from the regression of log X   on 

It"*  + <l-*>*2t log    [ fix,   "P  + (l-i)X,   "P]  . 

As shown in the above procedure, the assumption of competitive factor 
markets allows the use of standard linear regression to estimate the parameters 
of the production function.   However, even if competitive market auxiliary 
conditions are assumed, the estimates depend on the specification of the 
variables that are to be treated as exogenous. 
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If we do not rely upon market condition information, we must turn to non- 
linear methods to estimate the parameters.   The following two procedures 
use iterative techniques for minimizing the sum of the squared errors be- 
tween the actual and estimated output, given by: 

S = ^ ( Xt   -  A [ 6xlt'
p + (l-6)x2t'

P 1    P j       . 

For the first procedure we select initial values of the parameters  A , 6 , 

p  , u ,   and expand the production function in the following form: 

xot = Ao IVit~Po + <1-Vxa"P° 1    M°/p° 

+ 

gx)o<A-V+©o <»-V 

The Taylor series expansion of degree one provides a linear approximation 
of the function. 

The next step is to find estimates of A,    6,    P,   and  u which minimize 
the expression: 

S    =   E   (X  - X J2 

o t      or 

The estimates  A.,    6,,    p.,   and  u.   are then used to form the linear 

equations as above.   We then proceed to minimize: 

So  =   J   <Xt " Xlf  • 

This will produce a second set of estimates  A2,    6™    P2>   and  p? •   One can 

continue this procedure until the estimates converge to a particular set of 
values. 
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The other method is to form the system of simultaneous non-linear 
equations by setting the partial derivatives of S, given above, equal to zero: 

dA ?)6 dP op 

Each of these equations can be expanded by use of a Taylor's series around 
initial values of the parameters  A,    6,    P,   and  u .   This will provide a 
system of linear equations in the unknown parameters. 

Each equation will be of the following form: 

S ■»). +(S) *-v 

\»ASMy0 

(P-P0) 
o 

(u-uo) 

The system of equations can be solved for  A,,    6.,    P.    and  p. .   We can 

then proceed iteratively until the estimates converge to a set of values. 
,i 

The derivation of maximum likelihood estimates would involve the same 
technique.   We would set up the likelihood function based upon a specified 
distribution of the residuals and set the partial derivatives equal to zero.   A 
system of nonlinear equations could again be linearized by expanding the 
functions in a Taylor series around initial values of the parameters.   A 
Bayesian procedure using maximum likelihood techniques might be of value, 
if strong prior information is available. 

A suggested iterative procedure begins by selecting initial values of the 
two parameters   6 and   p .   The regression of log X   on 

log   [6 x.t   po  +(l~60)x2r     ° 1   will provide estimates of the remaining 

parameters  A  and  u .   The regression equation is of the following form: 
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log  Xt =  logA-H   log  [60xlt"po  + d-fi^x^o ]    . 
Po 

Using the estimates    A      and    u     and the initial values selected for the 

parameters    6    and    p ,   the quantity    Y      can be computed: 

"[©      0/M°    '(1-6o)x2t      °]=tolt 
-P 

Yot 

New estimates   a     and    6,    can be obtained from the regression 

log   Yot = log    6 " P log xlt   ' 

Using the new estimates    6,    and    p.    the procedure can be repeated until 

the procedure converges to a particular set of estimates. 

The C. E. S. function can be approximated by the first and second-order 
terms in a Taylor series expansion.   The function, which includes the Cobb- 
Douglas, has the following form: 

log  Xt  =  a0+a1logxlt  +a2   log x^  +a3 (
lo& (x^)) 

where 

log A  =  aQ 

6   =  ax/ (aj + a2) 

p   =  - 2a~ (a. + a2) / a. a2 

u   = a.   + a 2    * 

This procedure is advantageous since one can estimate the parameters of the 
function by running a simple linear regression on the variables as shown in 
the equation above. 
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The estimation procedure employed in this study is of the general class 
of non-linear, iterative techniques described on the preceding page.   The 
alternative class of estimation techniques, those employing auxiliary market 
information, was felt to be inappropriate, considering the nature of the 
markets in which the Navy procures the inputs of labor, aircraft, and spare 
parts.   The procedure guarantees convergence to a local extrem urn, but we 
cannot be certain that we have found the global minimum of the squared error 
loss function.   A procedure to determine the goodness of fit from the 
estimated parameters has been incorporated into the technique to insure against 
convergence to a local maximum. 

The form of the production function used in the estimates presented in the 
following section can be written as: 

Yt  *  A   [Vlt "Pl   + V2t "P2  + V3t " P3] 
1 
P 

where    Y    represents the actual ready hour production,   x. ,   x~ ,   and x„ 

represent the usage of aircraft, maintenance labor, and spare parts, 
respectively, and the    t    subscript denotes the particular observation.    The 
construction of these variables is described in detail in appendix B.   There 
are 2 primary differences between this form of the equation and the forms 
described in the earlier sections of this paper.   The first is the addition of a 
third input variable; although this leads to greater mathematical complexity, 
the extension of the theory to the 3-variable case is straightforward.    The 
second difference is in the subscripting of the exponents attached to the input 
variables in the function.    This modification was made so that the elasticity 
of substitution between each pair of inputs could be separately identified.   Since 
there is no a priori reason to believe that the 3 combinations of planes and 
maintenance labor, planes and spare parts, and spare parts and maintenance 
labor should exhibit the same elasticity of substitution, this complexity was 
introduced. 

The procedure employed involves the minimization of the squared error 
loss function 

S   =   S JYt-A   [Vlt "Pl   + «2x2t -P2   + a^ -P3J-P-J 

with respect to the unknown parameters     A., a., a-     a,, p     p.,  p„, and  p. 
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In order to do this, a system of non-linear equations is formed in the 
unknown parameters: 

&  - a- 
• 

*-• 
i  =  1, 2, 3; 

ir° i =  1, 2, 3; 

«■•■ 

Each of these equations can be expanded about assumed initial values of the 
parameters as follows: 

+ fe)0(v,0)+fe3)o(p3-»30) 

♦«&■). M 
=   0, 

where the  0  indicates evaluation at the assumed initial values. 
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Similar expansions for ^— ,   ^— , and -^—   about the initial values 

A   , a.    ,  p.    , and   p    may then be solved for new parameter estimates, 

and these new estimates are used iteratively until a final set of parameter 
estimates is reached. 

The final question to be discussed in this section involves the problem of 
choosing between the C-D and the C.E.S. forms of the production function. 
Since we have already seen earlier that the C-D form is a special limiting 
case of the C.E.S. function, the question arises as to why the C -D function 
should ever be employed at all.   The advantage of using the C.E.S. form of 
the production function is that elasticities of substitution different from one 
can be estimated.   If, however, the estimated elasticities are statistically 
indistinguishable  from this value, there is no reason to apply the complex 
C.E.S. form rather than the simpler Cobb-Douglas function.   Recent studies 
have suggested that in many instances the Cobb-Douglas form is adequate for 
analysis, as well as simpler to apply.   In the sections to follow, we report on 
results based upon the C.E.S. form of the production function.   In future studies, 
however, the simpler form might be employed at not too great a cost.   The 
possibility of further stratifying the input categories (e.g., several categories 
of maintenance labor, spare parts, etc.) also suggests that a simpler algebraic 
form of the production function may be more computationally desirable. 
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THE THEORY OF COST FUNCTIONS 

The purpose of this section is to discuss the concept of a cost function. 
We will use, as earlier, a simple 2-input production function.   The cost 
function results from choosing the minimum cost combination of inputs leading 
to the production of a given amount of output, or, alternatively, from choosing 
the combination of inputs that leads to the greatest level of output while 
satisfying a budget constraint. 

THE COBB-DOUGLAS PRODUCTION FUNCTION 

In order to derive a cost function, we must use a budget constraint.   We 
assume that a firm has a fixed budget, C, which it wishes to allocate among 
the inputs in such a way that the greatest potential output for that budget level 
is achieved: 

Plxl + P2
X2   * C ' 

where p.    and p2   represent the unit costs of the two inputs.   Initially, we 

will also assume that the firm has a production function of the Cobb-Douglas 
form. 

Since we know that the marginal product of any input is always positive, 
output cannot be maximized unless the budget constraint is satisfied with 
equality.   Hence, we can rewrite our production function as 

X = M x1Q'x2ß 

/C-p x ß 
> 

C - pxXj 
using the fact that  x9  =     

£ p2 
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Then, for an output maximum, we have the necessary and sufficient conditions 

dxj        i    v p2  ;    v    p2        p2  iy 

ß-i 2 
cTX 

dx. -«- « g * •* P?)      <° 
Using the various restrictions on the signs and magnitudes of the variables 
and parameters, we see that the latter condition is always satisfied.   Further- 

more, we see that 

We may then solve for x, , giving 

dX / C-PiX, p \ 
^- =  0   if and only if fa LJ_ - ß  _J_ x      =  o . 
dxj \       P2 p2      V 

xl       ö+jT 
a C_ 

Pi 

and for    x„ , using the budget constraint, giving 

x2  "   ü+ß 
ß_        C_ 

P2 

These two equations may be viewed as input demand functions.   Inserted 
into the production function gives 

(*)"(*) 

x-   —M.^    /±Y/±\ß   c^ 

This equation describes the level of output,   X , as a function of the fixed 
cost budget, C , when inputs are applied in the most efficient proportion, 
namely 

fl 
x„ *    5T  ' 
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Alternatively, the minimum cost of attaining a given output level may be 
written as 

1 1 
ct+P Ö+P 

C   =  <<Hft  1^(^-1     f^l X mm 
Unit or average cost is easily obtained, giving 

1 
ß 

f  =    (040) Mpr)  (Pf) x 

1 . 

Finally, marginal cost is given by 

dC 
dX *\V \V } 

ß   a+p 
1 

1  . 

The elasticity of cost with respect to output,   ^ ,   is given by the ratio of 
marginal to unit cost, or 

_        dC      X _      1 
5 "     dX     C ä+ß'   ' 

The figures below demonstrate the distinction among increasing, constant, 
and decreasing returns to scale. 

These results indicate the importance of the estimated degree of 
homogeneity of the production function, discussed earlier.   If the estimated 
degree of homogeneity is in the range of decreasing returns to scale (i. e., 
a+ß < 1) , then the marginal cost of increasing output is greater than the 
average cost per unit of output. 

The relationship between the cost function and the auxiliary market 
conditions, discussed in regard to estimation of the C. E. S. function, can 
be seen more clearly by an alternative method of derivation.   The cost 
function results from the solution to the constrained optimization problem 

•    •        v       »* aß maximize    X  =  M  x.     x„ 

subject to    p.x.   + PoXo = C 
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C dC 
X'dX 

CASE I:  a + ß > 1 (increasing returns to scale) 

Note that £>$£ 

C  dC 
& 

C   dC 
X'-ax" 

CASE II:  a + /3= 1 (constant returns to scale) 

Note that £ = ^ 
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CASE III: a+jj <1 (decreasing returns to scale) 

Note that -§-<^y 
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and the parameterization of the budget level C.   This optimization can be 
solved by using the method of LaGrangian multipliers, forming the function 

a     ß 
L   = Mx-     x,      + A [PjX.   + p2x2   - C ]  . 

We may find the maximum by solving the set of equations 

!_ = _ + XPi = o. 

9L _ ßX. 
ax2  x2 

+ \p9 = o , 

5L 
9A 

p,x. + p2x2 - C = 0 

For the cases of constant or decreasing returns to scale, second-order 
conditions are seen to be satisfied by noting that the principle minors of 
the bordered Hessian determinant 

a(a-l)X 
2 

aßX 
xlx2 

aßX 
X1X2 

Ä0-DX 
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alternate in sign.   The efficient proportion in which to apply the inputs is 
then derived from the solution of the first two equations: 

xl a    P2 
Xo V     Pl      * 

and the cost function can be derived by using either of the first 2 equations 
and the third.   Rewriting the above equation as 

aX 
Pi vl 

x0 
P2 

öX/öx 
1 

we see that the term on the left is just    ^v/^x    » or tne negative of the 

slope of the isoquant, and that the term on the right is the negative of the slope 
of the budget constraint, which can be rewritten as 

x2   = 
'1 

Multiplying each of these terms by minus one gives the familiar condition that 
at the optimal point the slope of the isoquant must be the same as the slope of 
the budget constraint. This may be illustrated as the tangency of the isoquant 
and the budget constraint, as shown below. 

x2 

x=x. 

x=x. 

x=x. 
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Clearly, the point   Q    represents the optimal choice of inputs; any other 
combination of inputs satisfying the budget constraint, such as    P    and    R , 
are on a lower isoquant and hence lead to a lower level of output.   The use of 
LaGrangian multipliers is the technique used in arriving at the cost functions 
in this study. 

THE CONSTANT ELASTICITY OF SUBSTITUTION PRODUCTION FUNCTION 

For the case of the C. E. S. production function, the analysis follows the 
same path as in the C-D case.   Similar results are obtained.   A total cost 
function, representing the minimum cost of producing a given level of output, 
is given by 

C  = QX  , 

where 

Q = M 

1+P 
(APl 

P) + (Bp2 P) 

1 
1+P 

1+P 

P 

and the most efficient proportion in which to apply the inputs is given by 

1 

5 I     /A      M 
2~[B       Vl) 

1+p 

Since we have a linearly homogeneous production function, we expect total 
cost to be in direct proportion to output. 

Finally, it is easily seen that 

C 
X 

and 

dX       ^ 

dC   X 
dX C 

That is, marginal and unit cost are identical, and the elasticity of cost 
with respect to output is identically equal to one.   The analysis leading to 
the cost function employed in this study is found in the next to last section: 
Results of Cost Function Analysis.   Again, the concepts are similar to those 
presented above. 
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RESULTS FROM THE PRODUCTION FUNCTION ANALYSES 

This section presents the empirical results from the production function analysis of 
each of the 5 aircraft considered in this study.   The estimated function is presented for 
each aircraft under several separate breakdowns:  Atlantic-based squadrons, Pacific-based 
squadrons, and, when appropriate, training squadrons, along with estimates based upon the 
full cross-section of observations.   The first 3 breakdowns of the data were analyzed to re- 
flect differences in the operating environments facing Atlantic, Pacific, and training squad- 
rons.   To the extent that these operating environments can be expected to continue as they 
have in the past, these separate estimates may be of value in analyzing potential changes 
in these areas. 

While a principle purpose of deriving these production function estimates is to provide 
an input to the cost function analysis described in the following sections, a number of 
useful results can be derived from the production function analysis alone.   The production 
function enables us to estimate the level of ready hours that will be produced with various 
combinations of inputs.   For each type/model/series of aircraft and for each location/ 
deployment combination considered, this type of result is demonstrated in a set of tables 
and graphs.   These tables and graphs represent only one set of possible input combinations 
that may be of interest to the planner; the construction of alternative tables and graphs for 
different combinations can be easily accomplished with the use of computer routines de- 
veloped in this study, as discussed in appendix B.   A second result of this stage of the 
analysis is the estimated returns to scale for such type/model/series studied.   These 
latter results are derived basically from the Cobb-Douglas form of the production function, 
although they have been verified by use of the C. E. S. form and the approximation 
P,= P2 - Po = P •   Finally, estimated elasticities of substitution, derived from the C.E.S. 

form of the production function, are presented. 

These results are presented separately for each of the 5 aircraft studied; a detailed 
description of how the various tables and charts may be used is contained in the dis- 
cussion of the A-7B.   It is important to note in examining these tables and graphs that the 
maintenance man-hour figures relate only to the portion of total maintenance time ad- 
dressed to the removal, repair, and installation of spare parts, and not to the other 
portions of total maintenance time employed in other activities (flight preparation, etc.). 
For example, the planning factors for the various aircraft types imply that a total of 
12, 768 organizational and intermediate level maintenance man-hours should be provided 
to a TA-4F squadron of 10 planes, to be used for all types of maintenance activities. 
Similar figures for squadrons of 12 F-4B aircraft and of 17 CH-53 helicopters are 
24,264 and 19,543 maintenance man-hours, respectively.   For squadrons of 14 A-7B 
aircraft and of 10 S-2E aircraft, corresponding total maintenance man-hour figures are 
35,098 and 16,322, respectively.   Thus the maintenance man-hours totals reported 
in the following tables do not reflect total maintenance support levels for the squadrons, 
but only the portion directly applied to removal, repair, and installation of parts. 

RESULTS FOR THE A-7B 

The results of the production function analysis for the A-7B attack aircraft are pre- 
sented in the following tables and graphs.   For each of the 4 breakdowns studied (all 
squadrons, Atlantic squadrons, Pacific squadrons, and training squadrons), the following 
data is displayed: 
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- The number of observations used in the estimation, 

- Average values of the variables used in the estimation, 

- The form of the estimated production function, 
2 

- The  R    statistic, giving the fraction of the total variance 
in observed ready hours explained by the production function 
model, 

- The pairwise elasticities of substitution between the inputs, 
calculated at the average level of inputs, 

- The estimated returns to scale parameter, 

- Tables of the ready-hour production resulting from various 
levels of each of 3 inputs, holding the others constant at 
representative values, 

- Graphs of the level of ready hours resulting from various 
levels of the 3 inputs. 

These tables and graphs may be used in the following manner.   Suppose one 
is interested in the level of readiness that can be achieved with various levels 
of spare parts support in an Atlantic squadron of 14 A-7B aircraft when 5000 
man-hours of maintenance are available.   The ready-hour production for 
various levels of spare parts usage for Atlantic A-7B squadrons is displayed 
in figure 1.   For example, the use of $300,000 worth of spares can be 
expected to lead to the production of approximately 6414 ready hours.   In- 
creasing this usage by 1/6 (or by $50,000 is seen to lead to an additional 
97 ready hours.   These results are also displayed graphically.   Note that 
the estimated production functions display all of the intuitively desired 
properties discussed in the first section. 

The results here make no mention of the optimal combination of resources: 
this aspect of the problem is addressed in later sections.   The results of this 
section are basically descriptive in nature; they display the expected output 
that will result from various combinations of inputs.   This can be of significant 
value, especially in the light of current fiscal guidance and budgeting proce- 
dures, which restrict the number of categories among which tradeoffs can 
be made. 

-42- 



A number of interesting facts, taken from the general tables and graphs 
presenting the results for the A-7B, are summarized below. 

1. The production function model explains a significant amount 
of the variance in observed ready-hour production. 

2. All 3 input variables appear to have influenced the level of 
ready-hour production.   The number of aircraft is, of course, the most 
important of the 3 inputs.   Spare parts support appears to have been of 
greatest importance to Atlantic-based squadrons. 

3. Statistically, the 3 inputs all have co-efficients significantly 
different from zero in almost all cases.   This result was taken from the 
estimation of the Cobb-Douglas form of the production function,  using a 
standard one-tailed t-test.   The significance level of the various co-efficients 
is shown below: 

Planes Man-hours Spares 
(percent) (percent) (percent) 

All squadrons 99 - 95 
Atlantic squadron 99 - 99 
Pacific squadrons 99 75 75 
Training squadrons 99 99 

4. Average ready-hour production was only about half of the possible 
720 hours per aircraft per month and much lower for training squadrons: 

All Atlantic      Pacific        Training 

Average ready hours 
per aircraft 349 419 411 272 

5. All pairs of inputs exhibited high degrees of substitutability. 

6. The returns to scale parameter was always estimated as 
being below one, indicating that the marginal cost of an additional ready 
hour is higher than the average cost.   For example, increasing all inputs 
to Pacific squadrons by 10 percent leads to only a 5. 8 percent increase in 
ready hours.   For training squadrons, this effect is even more noticeable. 
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TABLE 2 

A-7B SQUADRONS 

ALL ATLANTIC 

Number of observations:   109 Number of observations:  29 

Average value of data: 

Ready-hours = 6452.6 
Planes - 18.5 
Maintenance man-hours = 5964.2 
Spare parts - $200,232 

Average value of data: 

Ready-hours = 5662.3 
Planes = 13.5 
Maintenance man-hours = 4121.6 
Spare parts = $191,999 

Estimated production function 
RH - 512.99[0.80 p-0-07 + 0 05 M-O-1? + 

0.13S-°02]-10.16 

R2 = 0.566 

Estimated production function 

RH = 172.87 [ 0.89 P-°16 +0.005 M-0005 + 
0.24S-0 06J-10.16 

R2 = 0.368 

Pairwise elasticities of substitution Pairwise elasticities of substitution 

OpM = 0.895 
Ops = 0.978 
OMS - 0.936 

OpM = 0.995 
(Jpg = 0.938 
0MS = 0.995 

Estimated returns to scale parameter ■ 0.61 Estimated returns to scale parameter - 0.61 

PACIFIC TRAINING 

Number of observations:  49 Number of observations:  31 

Average value of data: 

Ready-hours = 5712.8 
Planes = 13.9 
Maintenance man-hours ■ 4199.5 
Spare parts = $176,370 

Average value of data: 

Ready-hours = 8475.9 
Planes = 31.2 
Maintenance man-hours = 10,747.9 
Spare parts = $248,236 

Estimated production function 

RH = 188.20[0.88 p-0.17 + 0.13 M-0-04 + 

0.07 s-0°3]-9.66 
R2 = 0.321 

Estimated production function 

RH = 108.5(0.60 P-008 +0.54 M-°14 + 
0.05 S-0°1)-10.00 

R2 = 0.719 

Pairwise elasticities of substitution Pairwise elasticities of substitution 

aPM = 0.957 
Ops ■ 0.969 
aMS = 0.968 

fjpM - 0.894 
Ops - 0.989 
"MS = 0.987 

Estimated returns to scale parameter = 0.58 Estimated returns to scale parameter = 0.50 
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ALL 

ATLANTIC 

PACIFIC 

TRAINING 

TABLE 3 

A7BSQUADRONS 

A B C 

RH UP. M.S) RH = f(P. M.S) RH n?. M.S) 
Planes Ready-hours Spares ($) Ready-hours Man-hours Ready-hours 

8 4366.9 200.000 6019.1 2.000 5965.6 
9 4690.7 250,000 6054.6 2.500 6006.7 
10 5000.3 300.000 6083.6 3,000 6039.8 
11 5297.5 350.000 6108.2 3.500 6067.3 
1? 5584.1 400.000 6129.5 4.000 6090.8 
13 5861.0 450.000 6148.3 4,500 6111.3 
14 6129.5 500.000 6165.2 5,000 6129.5 
lb 6390.3 550.000 6180.4 5.500 6145.8 
11, 6640.0 600,000 6194.4 6,000 61606 
17 6891.4 650,000 6207.2 6,500 6174.0 
18 7133.0 700,000 6219.1 7,000 6186.4 

8 3068.0 ' 200.000 6161.6 2,000 6593.9 
9 3607.6 250,000 6299.9 2,500 6594.5 
10 4168.5 300,000 6413.9 3,000 6594.9 
11 4749.1 350,000 6511.2 3,500 6595.2 
1? 5348.0 400,000 6596.1 4,000 6595.5 
13 5964.0 450,000 6671.3 4,500 6595.8 
14 6596.0 500,000 6739.0 5,000 6596.1 
1b 7243.2 550,000 6800.4 5,500 6596.3 
16 7904.8 600,000 6856.8 6.000 6596.5 
17 8580.0 650,000 6908.8 6,500 6596.7 
18 9268.2 700,000 6957.2 7,000 6596.8 

8 2741.8 200,000 5685.5 2,000 5497.2 
9 3209.5 250,000 5710.9 2,500 5561.8 

10 3693.3 300,000 5731.6 3,000 5614.8 
11 4191.7 350,000 5749.1 3,500 5659.8 
12 4703.7 400,000 5764.2 4,000 5698.8 
13 5228.1 450,000 5777.5 4,500 5733.3 
14 5764.2 500,000 5789.4 5,000 5764.2 
1b 6311.2 550,000 5800.2 5,500 5792.2 
16 6868.4 600,000 5810.0 6,000 5817.8 
17 7435.3 650,000 5819.0 6,500 5841.4 
18 8011.4 700,000 5827.4 7.000 5863.3 

16 5667.2 400,000 7750.1 4,000 5725.3 
18 6061.1 500,000 7761.8 5,000 6187.7 
20 6435.7 600,000 7771.3 6.000 6584.1 
22 6793.6 700,000 7779.3 7,000 6932.6 
24 7136.9 800,000 7786.3 8,000 7244.4 
26 7467.3 900,000 7792.4 9,000 7527.2 
28 7786.3 1.000,000 7797.9 10,000 7786.3 
30 8095.0 1.100,000 7802.9 11.000 8025.7 
32 8394.3 1.200,000 7807.4 12,000 8248.4 
34 8685.1 1,300,000 7811.6 13,000 8456.8 
36 8968.1 1,400,000 7815.4 14,000 8652.8 
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RESULTS FOR TUE CH-53 

The results of the production function analysis for the CH-53 helicopter 
are summarized in the following tables and graphs. 

A number of general conclusions and results for the CH-53 are summarized 
below: 

1. A large part of the observed variation in actual ready-hour 
production is explained by the model.   With the exception of training squadrons, 
approximately 2/3 of the total variation is accounted for by the model. 

2. In terms of the magnitudes of the effects of changes in the levels 
of the various inputs, the level of maintenance appears to have a smaller effect 
than do the levels of planes and spare parts. 

3. Based upon the one-tailed t-test described earlier, the co-efficients 
of the input variables of planes and spare parts in the Cobb-Douglas estimation 
were, in general, statistically different from zero:  the co-efficient of the man- 
hour variable was not. 

The levels of significance are shown below: 

All squadrons 
Atlantic squadrons 
Pacific squadrons 
Training squadrons 

4. The average number of ready-hours per plane was only about 1/3 
of the possible 720 hours per aircraft per month and again lowest for training 
squadrons: 

All Atlantic Pacific Training 

Average ready-hours 
per plane 240.4 233.4 247.6 210.4 

5. All pairs of inputs had high degrees of substitutability. 

6. The returns to scale parameter was always estimated as being 
below one, for both forms of the production function.   This indicates that a 
proportional increase in all inputs will lead to a smaller proportional increase 
in the level of ready-hour production. 
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TABLE 4 

CH 53 SQUADRONS 

ALL ATLANTIC 

Number of observations:  55 Number of observations:  20 

Average value of data: Average value of data: 

Ready-hours = 4182.2 Ready-hours = 5251.6 
Planes = 17.4 Planes = 22.5 
Maintenance man-hours = 3453.8 Maintenance man-hours = 3247.4 
Spare parts - $136,797.4 Spare parts = $75,598 

Estimated production function Estimated production function 

RH = 80.74[.62 P-°8+ .09 M" 02 + RH = 802.8210.80 P-°°8 +0.22 M-0.04 + 

26S-07J-10.50 

R2 = 0.685 

0.065-0.02]-11.33 

R2 = 0.574 

Pain/vise elasticities of substitution Pairwise elasticities of substitution 

0PM - 0.978 
Ops = 0.933 
0MS = 0.972 

0PM - 0.958 
Ops = 0.979 
aMS = 0.978 

Estimated returns to scale parameter = 0.63 Estimated returns to scale parameter = 0.34 

PACIFIC TRAINING 

Number of observations:   34 Number of observations:  22 

Average value of data: Average value of data: 

Ready-hours = 3540.7 
Planes = 14.3 

Ready-hours = 5259.8 
Planes = 25.0 

Maintenance man-hours = 3577.3 Maintenance man-hours = 4900.8 
Spare parts = $173,808 Spare parts = $136,036 

Estimated production function Estimated production function 
RH = 7.11 [0.33 P-O.03 + 0.19 M -0.05 + RH = 177.02[0.80P-0H+0.01 M-0001 t 

0.505-0.14] -10.43 0.285-006]-10.20 
R2 = 0.824 R2 = .411 

Pairwise elasticities of substitution Pairwise elasticities of substitution 
OpM = 0.960 
Ops = 0.927 
0MS = 0.925 

0PM = 0.999 
Ops = 0.939 
OMS = 0.999 

Estimated returns to scale parameter = 0.73 Estimated returns to scale parameter = 0.51 
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ALL 

ATLANTIC 

PACIFIC 

TRAINING 

TABLE 5 

CH 53 SQUADRONS 

A B C 
RH f(P. M .SI RH f(P. M.SI RH f(P. M. S) 

Planes Ready hours Spares (S) Ready-hours Man hours Ke.niy IKMKS 

8 3110 4 200.000 4063.0 2.000 43084 
9 3347.4 250.000 4170.7 2.500 4331.3 
10 3574.2 300.000 4259.8 3.000 4349.9 
11 3792.1 350.000 4335.9 3.500 4365 7 
12 4002.2 400.000 44023 4.000 4379.4 
13 4205.4 450.000 4461.3 4.500 4391.5 
14 4402.3 500.000 4514.3 5,000 4402.3 
15 4593.6 550.000 4562.6 5.500 4412.1 
16 47799 600.000 4606.9 6.000 4421.0 
17 4961.5 650.000 4647.8 6.500 4429.3 
18 5138.7 700.000 4685.8 7.000 4436.9 

8 3408.1 . 200.000 4982.6 2.000 4650.7 
9 3699.7 250.000 4996.6 2.500 4740.4 
10 3981.0 300.000 5007.9 3.000 4814.4 
11 4253.3 350.000 5017.5 3.500 4877.6 
1? 4517.6 400.000 5025.8 4.000 4932.8 
13 4774.9 450.000 5033.1 4.500 4981.7 
14 5025.8 500.000 5039.6 5.000 50258 
1b 5270.8 550.000 5045.5 5.500 5065.8 
16 5510.5 600.000 5050.9 6,000 5102.6 
17 5745.3 650.000 5055.9 6.500 5136.5 
18 5975.6 700.000 5060.5 7.000 5168.0 

8 7010.5 200,000 6571.6 2,000 6918.2 
9 7167.3 250,000 6950.4 2,500 7122.6 

10 7310.2 300,000 7268.3 3,000 7292.8 
11 7441.9 350,000 7542.9 3,500 7438.9 
12 7564.0 400,000 7784.9 4,000 7567.2 
13 7678.0 450,000 8001.6 4,500 7681.6 
14 7784.9 500,000 8197.9 5,000 7784.9 
15 7885.8 550,000 8377.4 5,500 7879.3 
16 7981.2 600,000 8543.0 6,000 7966.1 
17 8071.8 650,000 8696.6 6,500 8046.5 
18 8158.1 700,000 8840.0 7,000 8121.5 

16 4806.4 400,000 7397.4 4,000 7993.7 
18 5352.4 500,000 7586.9 5,000 7994.0 
20 5891.8 600,000 7743.7 6,000 7994.2 
22 6425.3 700,000 7877.7 7,000 7994.4 
24 6953.4 800,000 7994.8 8,000 7994.5 
26 7476.4 900,000 8098.9 9,000 7994.7 
28 7994.8 1,000,000 8192.6 10,000 7994.8 
30 8508.9 1.100.000 8277.9 11,000 7994.9 
32 9018.9 1.200,000 8356.2 12,000 7995.0 
:f4 9525.1 1,300.000 8428.6 13,000 7995.1 
36 10027.7 1,400,000 8495.9 14,000 79952 
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RESULTS FOR THE S-2E 

The results of the production function analysis for the S-2E antisubmarine 
aircraft are presented in the following tables and graphs, similar to those 
discussed in the preceding sections.   Results are presented for the full cross- 
section of data and for Atlantic and Pacific squadrons, but an insufficient 
number of observations prohibited a separate estimation for training squadrons. 

A summary of results for the S-2E, taken from the various tables and 
graphs, follows: 

1.    A large amount of the variance in actual ready-hour production 

tited 
range of 0. 7. 

2 
is accounted for by the production function model.   The R   statistic is in the 

2. The level of all 3 inputs to the production process appears to 
significantly affect the level of output produced.   The number of planes is, of 
course, the most important of the 3 determinants. 

3. The coefficients of the input parameters in the estimation of the 
Cobb-Douglas function are, in general, statistically different from zero in 
most cases, based upon the one-tailed t-test described earlier.   The various 
levels of significance are shown below: 

Planes Man-hours      Spare parts 
(percent) (percent) (percent) 

All squadrons 99 90 75 
Atlantic squadrons 99 75 
Pacific squadrons 99 - 85 

4. The average number of ready hours per aircraft is approximately 
3/5 of the potential 720 hours per aircraft per month.   This is seen below: 

All Atlantic Pacific 

Average ready hours 
per plane 456.4 459.2 451.0 

5. All pairs of inputs exhibit a high degree of substitutability. 

6. The returns to scale parameter, estimated for both algebraic 
forms of the production function, is always less than one, again indicating 
a smaller proportionate output response to a proportionate change in the levels 
of all inputs. 
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TABLE 6 

S-2E SQUADRONS 

ALL ATLANTIC 

Number of observations:   54 Number of observations:   25 

Average value of data: Average value of data: 

Ready hours = 5430.964 
Planes = 11.9 

Ready-hours = 5602.4 
Planes = 12.2 

Maintenance man-hours = 1705.6 Maintenance man-hours = 2454.2 
Spare parts = $138,601 Spare parts - $141,072 

Estimated production function 

RH = 856.77|0.73 p-0.10 + o.27 M-° 01 + 
0.06S-0-12] -£Z4 

Estimated production function 

RH = 750.51 [ 0.79 P   ° °8 + 0.24 M -0.06 + 

0.04S-003]"-9-44 

R2 = 0.661 R2 = 0.741 

Pairwise elasticities of substitution Pairwise elasticities of substitution 
- 

aPM = 0.978 
OpS = 0.960 
aMS = 0.972 

OpM = 0.941 
OpS = 0.970 
GMS - 0.968 

Estimated returns to scale parameter = 0.52 Estimated returns to scale parameter = 0.85 

PACIFIC 

Number of observations:  28 

Average value of data: 

Ready-hours = 5277.2 
Planes = 11.7 
Maintenance man-hours = 1034.5 
Spare parts = $136,385 

Estimated production function 
RH = 574.27[0.81 p-0.07 + 0.08 M~002 + 

0.11S-007J-9.57 

R2 = 0.573 

Pairwise elasticities of substitution 

OpM = 0.979 
Ops = 0.935 

°MS = 0.966 

Estimated returns to scale parameter = 0.67 
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ALL 

ATLANTIC 

PACIFIC 

TABLE 7 

S 2ESQUADRONS 

A B C 

RH HP. M. S) RH f(P. M.S) RH f(P. M.S) 

Planes Ready hours Spares (S) Ready-hours Man-hours Ready-hours 

8 5512.1 200.000 8256.5 2.000 8252.5 

9 6031.0 250.000 8315.2 2,500 8297.7 

10 6535.4 300,000 8363.2 3.000 8334.7 

11 7027.2 350.000 8403.6 3.500 8366.1 

1? 7507.6 400.000 8438.7 4.000 8393.2 

13 7977.7 450.000 8469.5 4.500 8417.2 

14 8438.7 500.000 8497.1 5.000 8438.7 

15 8891.1 550.000 8522.1 5.500 8458.1 

16 9335.7 600.COO 8544.8 6.000 8475.8 

17 9773.1 650.000 8565.8 6.500 8492.2 

18 10203.8 700.000 8585.1 7,000 8507.3 

8 3892.1 200.000 5405.7 2,000 4952.0 

9 4177.7 250.000 5417.3 2.500 5069.0 

10 4450.3 300.000 5426.8 3.000 5165.7 

11 4711.7 350,000 5434.8 3,500 5248.2 

1? 4963.4 400,000 5441.7 4.000 5320.2 

13 5206.4 450.000 5447.8 4,500 5384.2 

14 5441.7 500.000 5453.2 5.000 5441.7 
1b 5670.0 550.000 5458.1 5,500 5494.0 
16 5892.0 600,000 5462.6 6.000 5542.0 

1/ 6108.2 650,000 5466.7 6.500 5586.3 

18 6319.1 700,000 5470.5 7,000 5627.5 

8 4198.3 200,000 5640.9 2.000 5707.7 

9 4493.7 250,000 5690.8 2.500 5729.0 

10 4775.1 300.000 5731.5 3,000 5746.4 

11 5044.6 350,000 5765.6 3.500 5761.1 
12 5303.7 400,000 5795.1 4,000 5773.9 
13 5553.5 450,000 5821.0 4,500 5785.1 
14 5795.1 500,000 5844.2 5,000 5795.1 
15 6029.3 550.000 5865.0 5.500 5804.2 
16 6258.8 600.000 5884.0 6.000 5812.5 
17 6478.1 650,000 5901.4 6,500 5820.1 
18 6693.9 700,000 5917.5 7,000 5827.2 
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RESULTS FOR THE F-4B 

The results of the production function analysis for the F-4B fighter aircraft 
are presented below in tables and graphs similar to those of the preceding 
sections.   Along with the estimation based upon the full cross-section of data, 
estimates of the production function for Atlantic and Pacific squadrons are 
included; again, due to a lack of sufficient observations, no separate analysis 
of training squadrons was conducted. 

A brief summary of the results for the F-4B appears below: 

1. Approximately 3/5 of the total variation in actual ready-hour 
production is explained by the use of the model. 

2. All 3 input variables contribute significantly to the prediction of 
ready-hour production.   Of the 5 aircraft studied, the level of spare parts 
support appears to have the greatest effect, in terms of magnitude, on ready- 
hour production for the F-4B. 

3. The co-efficients of the input variables in the Cobb-Douglas form 
of the production function are, in general, statistically different from zero, 
based upon the one-tailed t-test.   The various levels of significance are shown 
below: 

Planes Man-hours      Spare parts 
(percent) (percent) (percent) 

All squadrons 90 95 99 
Atlantic squadrons 75 - 99 
Pacific squadrons - 75 99 

4. The average number of actual ready hours per aircraft is slightly 
less than half of the possible 720 hours per month: 

All Atlantic        Pacific 

Average ready hours 
per plane 338.3 336.8 339.2 

5. All pairs of inputs exhibit a fairly high degree of substitutability, 
although the estimated elasticities are lower than those estimated for the other 
4 aircraft. 

6. The returns to scale parameter, estimated for both forms of the 
production function, is consistently estimated to be below one. 
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TABLE 8 

F 4B SQUADRONS 

ALL ATLANTIC 

Number of observations:   103 Number of observations:  33 

Average value of data: Average value of data: 

Ready-hours = 4228.9 Ready-hours = 4345.1 
Planes = 12.5 Planes = 12.9 
Maintenance man-hours = 6216.5 Maintenance man-hours    6389.8 
Spare parts = $305,828 Spare parts = $320,729 

Estimated production function Estimated production function 

RH - 122.63|0.67 P -0.06 + 0.07 M    0.22 + RH = 115.49|0.59P-0-10+ 0.22M006* 

0.46S-0.12J-10.33 0 32s-0.09j-10.66 
R2 = 0.559 R2 = 0.545 

Pairwise elasticities of substitution Pairwise elasticities of substitution 

oPM - 0.826 oPM = 0.938 
aps = 0.905 oPS = 0.916 
uMS = 0.831 0MS = 0.931 

Estimated returns to scale parameter = 0.62 Estimated returns to scale parameter = 0.64 

PACIFIC 

Number of observations:   69 

Average value of data: 

Ready-hours = 4172.5 
Planes = 12.3 
Maintenance man-hours = 6132.4 
Spare parts = $298,591 

Estimated production function 

RH = 115.99l0.52P-003 + 0.18M-004 + 
0.58S-0-16]-10.75 

R2 = 0.592 

Pairwise elasticities of substitution 

OpM = 0.964 
Ops = 0.908 
»MS = 0.929 

Estimated returns to scale parameter = 0.43 
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ALL 

ATLANTIC 

PACIFIC 

TABLE 9 

F-4B SQUADRONS 

A B C 
RH = f(P. M, S) RH = f(P. M, S) RH = f(P, M, S) 

Planes Ready-hours Spares (S) Ready-hours Man-hours Ready-hours 

8 4889.5 200.000 5762.6 2,000 6315.9 
9 5200.5 250.000 6011.1 2,500 6376.4 
10 5495.1 300,000 6217.8 3,000 6424.1 
11 5775.7 350.000 6394.8 3,500 6463.4 
12 6044.1 400.000 6550.0 4,000 6496.4 
13 6301.8 450.000 6688.1 4,500 6525.0 
14 6550.0 500,000 6812.7 5,000 6550.0 
15 6789.7 550.000 6926.3 5.500 6572.2 
16 7021.6 600.000 7030.5 6.000 6592.2 
17 7246.6 650.000 7127.0 6,500 6610.2 
18 7465.2 700.000 7216.8 7,000 6626.8 

8 4363.5 200,000 5881.1 2,000 5790.6 
9 4748.1 250,000 6076.9 2.500 5958.5 

10 5119.4 300.000 6239.2 3,000 6097.9 
11 5478.9 350.000 6377.9 3,500 6217.4 
12 5828.1 400.000 6499.3 4,000 6322.0 
13 6167.9 450,000 6607.1 4.500 6415.2 
14 6499.3 500,000 6704.3 5.000 6499.3 
lb 6822.9 550,000 6792.7 5,500 6575.9 
16 7139.6 600.000 6873.9 6,000 6646.3 
17 7449.7 650.000 6948.9 6,500 6711.5 
18 7753.8 700.000 7018.7 7,000 6772.2 

8 6241.7 200,000 6193.0 2,000 6577.3 
9 6411.7 250,000 6478.1 2,500 6700.0 
10 6567.8 300,000 6713.8 3,000 6801.3 
11 6711.7 350,000 6914.8 3,500 6887.7 
12 6845.9 400,000 7090.0 4,000 6963.0 
13 6971.6 450,000 7245.5 4,500 7029.9 
14 7090.0 500,000 7385.2 5,000 7090.0 
15 7202.0 550,000 7512.0 5,500 7144.7 
16 7308.2 600,000 7628.1 6,000 7194.8 
17 7409.4 650,000 7735.2 6,500 7241.1 
18 7506.1 700,000 7834.6 7,000 7284.1 
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RESULTS FOR THE TA-4F 

The results of the production function analysis for the TA-4F attack trainer 
are summarized in the tables and graphs below.   Separate results for Atlantic 
and Pacific squadrons are presented along with the estimates based upon the 
full cross-section of data. 

A summary of the results and conclusions taken from these tables is given 
below: 

1. A large percentage of the variation in observed ready-hour 
production is explained by the production function model.   The R2 statistic is 
in the range of 0. 8, the highest level obtained for any of the 5 aircraft studied. 

2. The level of maintenance employed by the squadrons appears to 
have little effect on ready-hour production; the parameters associated with 
this variable are all estimated to be very close to zero.   The levels of spare 
parts and planes, however, both appear to be quite important. 

3. In the estimation of the Cobb-Douglas form of the production func - 
tion, the coefficients of planes and spare parts are all statistically significant, 
as measured by the standard one-tailed t-test described earlier.   The coefficients 
of man-hours in some cases were, actually estimated to be negative, although 
not significantly so.   These results are summarized in the table of significance 
levels below: 

Planes Spare parts 
(percent) Man-hours       (percent) 

All squadrons 99 - 95 
Atlantic squadrons 99 - 85 
Pacific squadrons 99 - 75 

4. The average number of ready hours per plane is slightly less 
than half of the possible 720 hours per plane per month: 

All Atlantic Pacific 

Average ready hours 
per plane 336.1 343.1 334. 3 

5. The degree of substitutability of the various input pairs is estimated 
to be quite high, as in the previous cases. 

6. The return to scale parameter is again estimated to be below 
one, taking on values in the very low range of 0. 3.   This suggests that, for 
example, a 10 percent increase in the levels of all inputs would lead to only a 
3 percent increase in ready-hour production. 
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TABLE 10 

TA-4F SQUADRONS 

ALL ATLANTIC 

Number of observations:  73 Number of observations:  28 

Average value of data: Average value of data: 

Ready-hours ■ 3462.3 
Planes ■ 10.3 
Maintenance man-hours =1583.5 
Spare parts " $63,793 

Ready-hours = 3602.7 
Planes - 10.5 
Maintenance man-hours = 1851.9 
Spare parts    $71,628 

Estimated production function 
RH - 232.58[.650-06 + 07 M~ 02 + 

.52 S--12] -10.00 
R2 = .814 

Estimated production function 

RH = 112.83l.67P- O8+ 0.02 M-°01 + 

.23S-0-05,-1066 

R2 = .843 

Pairwise elasticities of substitution Pairwise elasticities of substitution 

0PM = 0.979 
Ops = 0.907 
OMS = 0.973 

OpM - 0.990 
Ops - 0.949 
0MS ■ 0.989 

Estimated returns to scale parameter - 0.40 Estimated returns to scale parameter ■ 0.64 

PACIFIC 

Number of observations:  45 

Average value of data: 

Ready-hours = 3376.8 
Planes = 10.1 
Maintenance man-hours = 1420.2 
Spare parts ■ $59,024 

Estimated production function 

RH = 608.15lo.71 p-0.06 + Q..13 M"0 °3 + 
0.57S-0 '5J-10.50 

R2 " 0.793 

Pairwise elasticities of substitution 

0PM - 0.969 
Ops = 0.887 

°MS = ° 949 

Estimated returns to scale parameter = 0.21 
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ALL 

ATLANTIC 

PACIFIC 

TABLE 11 

TA-4F SQUADRONS 

A B c 
RH = f(P, M.S) RH = = f(P. M.S) RH = f(P, M,S) 

Planes Ready-hours Spares ($) Ready-hours Man-hours Ready-hours 

8 4512.2 200,000 5121.2 2,000 5753.8 
9 4764.9 250,000 5348.1 2,500 5775.1 

10 5002.6 300,000 5537.0 3,000 5792.5 
11 5227.5 350,000 5699.0 3,500 5807.2 
12 5441.3 400,000 5841.2 4,000 5819.9 
13 5645.5 450,000 5967.8 4,500 5831.1 
14 5841.2 500,000 6082.1 5,000 5841.2 
15 6029.2 550,000 6186.3 5,500 5850.2 
16 6210.4 600,000 6282.0 6,000 5858.5 
17 6385.4 650,000 6370.7 6,500 5866.1 
18 6554.8 700,000 6453.2 7,000 5873.2 

8 4600.3 200,000 6306.4 2,000 6721.5 
9 4986.7 250.000 6444.0 2,500 6725.9 

10 5359.1 300,000 6557.7 3,000 6729.4 
11 5719.2 350,000 6654.7 3,500 6732.4 
12 6068.6 400,000 6739.3 4,000 6735.0 
13 6408.3 450,000 6814.5 4,500 6737.3 
14 6739.3 500,000 6882.2 5.000 6739.3 
15 7062.5 550,000 6943.7 5,500 6741.2 
16 7378.4 600,000 7000.2 6,000 6742.9 
17 7687.8 650,000 7052.3 6.500 6744.4 
18 7991.0 700,000 7100.8 7,000 6745.9 

8 5576.9 200,000 6495.5 2,000 7051.2 
9 5906.3 250,000 6758.1 2.500 7116.0 
10 6216.9 300,000 6974.5 3.000 7169.2 
11 6511.6 350,000 7158.7 3,500 7214.3 
12 6792.4 400.000 7319.0 4,000 7253.4 
13 7061.0 450.000 7460.9 4,500 7288.0 
14 7319.0 500.000 7588.2 5,000 7319.0 
15 7567.3 550.000 7703.7 5,500 7347.0 
16 7807.0 600.000 7809.3 6,000 7372.7 
17 8038.9 650.000 7906.6 6,500 7396.3 
18 8263.6 700.000 7996.9 7,000 7418.2 
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RELATIONSHIP BETWEEN SPARES USAGE AND NORS RATES 

In the following section we will show how the NORS rate can be simply 
calculated for a type/model/series from the production function. 

The relationships between spares usage and ready hours can be determined 
with the production function by varying the spares usage while holding planes 
and man-hours constant at some specified level.   The constant values that are 
usually used are either the averages over the sample range or current planning 
factors.   It should be noted that the derived relationship between spares usage 
and ready -hours is not the optimal relationship determined in the cost function 
analysis.   Given the above conditions, the increase in ready hours from in- 
creasing spares usage will come from the reduction in NORS hours.   This, of 
course, will result in a reduction of the NORS rate. 

Squadron ready hours in a month is equal to total available hours (number of 
planes x 720 hours) minus hours in scheduled maintenance minus NORS hours plus 
NORM hours.   Since we are holding planes constant, total available hours will be 
constant.   Also, we would expect NORM hours to remain stable when spares 
usage is increased.   This is due to the fact that NORM hours is mainly dependent 
on man-hours, which is not being varied.   Hence, the increase in ready hours 
due to an increase in spares usage will come almost entirely from a reduction 
in NORS hours.   The results for the F-4B, CH-53, and TA-4F are shown in 
tables 12, 13, and 14.   The graphs of the relationship between the NORS rate 
and spares usage for the three type/model/series are shown in the figures 
beneath the tables. 

The NORS hours, NORS rate, and spares usage in the first row of each 
table are the averages obtained from the sample data.   The ready hours in the 
first row were derived by using the average values of the 3 resources.   The 
following rows show the increase in ready hours and the reduction in the NORS 
rates resulting from an increase in spares usage. 

For example, an F-4B squadron composed of 12 aircraft and utilizing 6216 
man-hours in a month, will increase its ready hours from 5928.1 to 6221. 3 if 
spares usage is increased from $305, 828 to $400, 000.   This will reduce NORS 
hours from 984. 2 to 690. 9 and the NORS rate from 11. 4 percent to 10. 8 percent. 
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TABLE 12 

AIRCRAFT:   F-4B 
Average value of the data 

Planes = 12; man-hours = 6216.5 

NORS rate Spares usage 
Ready-hours NORS hours (percent) (dollars) 

5928.1 984.2 11.4 305, 828 
5977.1 935.2 10.8 320,000 
6042.9 869.3 10.1 340,000 
6105. 4 806.8 9.3 360,000 
6221.3 690.9 7.9 400,000 
6326.8 585.4 6.7 440,000 
6469.6 442.7 5.1 500,000 

11 

10 

8     7 

t 
3.2 

-L -L 
3.6 4.0 4.4 4.8 

Spares usage ($100,000) 

5.2 
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TABLE 13 

AIRCRAFT:   CH-53 
Average value of the data: 

Planes = 17; man-hours = 3453.8 

NORS rate Spares usage 
Ready-hours NORS hours 

3084.4 

(percent) 

25.2 

(dollars) 

4332. 8 136,979 
4535. 2 2882. 0 23.5 200,000 
4656.8 2760. 4 22.6 250, 000 
4757.4 2659. 8 21.7 300,000 
4918. 2 2499. 0 20.4 400,000 
5044. 7 2372. 5 19.4 500,000 
5149.2 2268. 0 18.5 600, 000 
5238. 4 2178. 8 17.8 700,000 
5385. 2 2032. 0 16.6 900,000 
5447. 3 1969.9 16.1 1,000,000 

24 

22 

20 

g  18 
O 

16 

14 
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10 
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200  400 600 800  1000 
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TABLE 14 

AIRCRAFT: TA-4F 
Average value of the data: 

Planes = 10; man-hours = 1583. 5 

NORS rate Spares usage 
Ready-hours NORS hours (percent) (dollars) 

3415.1 1873. 3 26.0 63,792 
3756.0 1532. 4 21.3 100,000 
4314. 6 973.8 13.5 200, 000 
4658. 7 629.7 8.7 300,000 
4910. 2 378.2 5.3 400,000 

C/5 

o 
2 

2b 

20 

16 

10 — 

X -L -L 
100       200       300        400        500 

Spares usage ($100,000) 

600 
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RESULTS OF THE COST FUNCTION ANALYSIS 

In this section, the results of the cost function analysis for the F-4B 
fighter, CH-53 helicopter, and TA-4F attack trainer are presented and discussed. 
The general methodology discussed earlier was extended to determine the optimal 
mixture of resources to be supplied to a squadron given various funding levels 
for resource usage.   The following non-linear optimization model was used in 
this analysis: 

P 

where 

T      "pl "p2 "p3l max       RH = A(»P        +aM       +aS    ö\ 
P,M,S L1 l ä       J 

subject to p. P + p„M + p«S = C , 

RH =  ready hours 

P = number of planes 

M =  number of man-hours 

S =  dollar value of spares usage 

C = budget for resource usage 

P. = per unit prices of the various resources (see 
appendix A for price derivation methodology), l 

and the other parameters are those resulting from the production function 
analysis.   The derivation of optimal resource combinations required 2 separate 
stages of analysis — the empirical estimation of the production functions, and 
the solution of the maximization problem given above.   Thus the results that 
follow may be considered to reflect all current operating doctrines, in that the 
production function estimation was based upon actual data collected from the 
3M system.   Therefore, the resulting optimization is based upon the ways in 
which the usage of the various resources is currently seen to affect ready-hour 
production. 

The use of LaGrangian multiplier techniques similar to those developed in 
the preceding section yields the following equations, which can be solved for 
the optimal levels of planes (P*), man-hours (M*), and spare parts usage (S*): 
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Pjp* + p2 

+ 
P3 

/!2 viwp.\ -(1+pin 
\ pi V2 )\  I J 

r/!3 VI\M "(1+Pi> 1 
_\Pl   a3p3/\   / J 

1 
1+P, 

1+P 3    =C 

(1) 

M*   = 

S*   = 

RfflW""] 
£3 ViWp^ ■(1+pi) 1 
Pi     a3p3/ \    / J 

1+P, 

1 
1+p. 

(2) 

(3) 

Equation (1) , which may be solved for P* , is highly non-linear.   However, 
since the derivative of the left hand side of (1) with respect to  P*   is seen to be 

Pi+P2 1+P, WM^T'''\jM^]ri'1"'''} 
1   r/p3 aipiVp.\ ■<i+pi)i i+i,3 rp3<"ipi"ir„J. iii?p.\~<1+pi>"li „ 

the value of  P*   solving the equation is found to be unique and easily determined 
through iterative procedures.   These procedures were programmed and used to 
produce the results summarized in this section.   Given the value of P* , the 
values of  M*   and S*   can be determined through the use of equations (2) and (3). 

-78- 



Finally, the expected level of ready hours resulting from the optimal input 
combinations can be determined by use of the equation 

T "pi "po "p-fl  -*■ 
RH*=A U,(P*)     l+   ff2(M*)     Z+ a3(S*)     ö        p    , (4) 

where the parameter values are those determined by the empirical estimation 
described earlier. 

The results of the analysis are displayed below in a number of tables and 
graphs.   One major result of the analysis, however, requires separate mention. 

• First, for all of the aircraft analyzed, current levels of spare 
parts usage are found to be below the optimal level for the same total resource 
budget.   Two primary conclusions are drawn from the fact.   First, if current 
total resource budgets are retained, a larger percentage of those budgets 
should be allocated to the spares categories.   For the 3 aircraft studied, the 
recommended increases in the spare parts usage budgets are 25 percent for 
the F-4B, 66 percent for the CH-53, and 11 percent for the TA-4F.   Substantially 
higher levels of readiness could be expected in each of these cases.   These 
results are summarized in table 15. 

• Second, even if squadron size, in terms of the number of planes, 
is to be maintained in the future, the results indicate the need for more spare 
parts support.    These results are summarized in the remaining tables in this 
section. 

These are significant results.   Considering either present or optimal 
squadron configurations, the need for higher levels of spare parts usage is 
noted.   In this sense, a "balancing" of the various resource category budgets 
requires a greater proportional allocation to the spare parts categories. 
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TABLE 15 

COMPARISON OF PRESENT AND OPTIMAL ALLOCATIONS 
OF RESOURCES UNDER THE SAME TOTAL BUDGET 

F-4B 

Planes Man-hours 
Spares 

(dollars) Ready-hours 

Present* 
Optimum* * 

12 
11 

6216. 5 
5837. 7 

CH-53 

305,828 
382,884 

4229 
5963 

Present* 
Optimum** 

17 
15 

3453. 8 
8723. 5 

TA-4F 

136,979 
227,451 

4182 
4504 

Present* 
Optimum** 

JO 
10 

1583.5 
956.7 

63, 792 
70,932 

3462 
3473 

*Determined from empirical analysis of actual data. 
**Determined with the use of the cost function model. 
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TABLE 16 

OPTIMAL F-4B SQUADRONS FOR VARIOUS 
TOTAL USAGE BUDGET LEVELS 

Optimization Results 

Cost Spares 
(dollars) Planes Man-hours (dollars) Ready hours 

500.000 3.63 .2103.00 125.915.03 2548.57 
550.000 4 00 "2288.52 138,060.63 2735.32 
600.000 4.37 2472.11 150.167.48 2917.55 
650.000 4.74 2653.96 162.238.98 309573 
700.000 5 11 2834.22 174.277.55 3270.25 
750.000 549 3013.00 186.285.58 3441 43 
800.000 5.86 3190.42 198.265.30 3609 54 
850.000 6.23 3366.57 210.218.20 3774.82 
900.000 6.61 3541.54 222.146 41 3937 48 
950.000 698 3715 39 234.05057 4097.70 

1.000.000 736 3888.19 245.932.54 4255.64 
1.050.000 7.73 4060.00 257.793.41 4411.44 
1,100.000 8.11 4230.88 269.633.85 4565.22 
1,150,000 8.49 4400.86 281.454.97 4717.10 
1.200,000 886 4569.99 293.257.53 4867.18 
1.250,000 924 4738.32 305.042.54 5015.56 
1.300,000 9.62 4905.87 316.810.55 5162.32 
1,350.000 9.99 5072.68 328.56228 5307 54 
1.400.000 10.37 5238.78 340.298.01 5451 29 
1.450.000 1075 5404.20 352.018.94 5593.63 
1,500,000 11.13 5568.95 363,724.93 5734.63 
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5000 

1000 

TABLE 17 

OPTIMAL CH 53 SQUADRONS FOR VARIOUS 
TOTAL USAGE BUDGET LEVELS 

Optimization Results 

Cost Spares 
(dollars) Planes Man hours (dollars) Ready hours 

500.000 5.47 283475 77,898.04 201427 
550.000 6.02 3134.75 85.738.21 2165.03 
600,000 656 3436.28 93.582.74 231243 
650,000 7.11 3739.20 101,431.05 2456 82 
700,000 7.65 4043.42 109,283.27 259847 
750.000 8.20 4348.84 117,138.71 2737.63 
800.000 8.74 4655.38 124,997.30 287451 
850 000 9.29 4963.00 132,858.87 3009.27 
900.000 9.83 5271.62 140,723.32 3142.07 
950.000 10.38 5581.18 148.590.25 3273.04 

I 000 000 10.92 5891.65 156.459.74 3402.31 
l 050,000 11.47 6202.98 164.331.60 3529.97 
I 100,000 12.01 6515.13 1 72.205.65 3656.13 
I 150.000 12.56 6828.07 180.081.88 3780.85 
I 200.000 13.10 7141.76 187.960.14 3904.23 
I 250.000 13.64 7456.18 195,840.44 4026.33 
I 300.000 14.19 7771.29 203.722.53 4147 21 
1 350.000 14 73 8087 07 211.606 42 4266 93 
1 400,000 15.28 8403.50 219,492.17 4385 55 
1 450,000 15.82 8720.55 227,379.38 4503 10 
1 500,000 16.36 9038.21 235.26840 4619.64 

2000  ~ 

900 1100 

Budget (hundred thousands) 

1300 1500 
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TABLE 18 

OPTIMAL TA-4F SQUADRONS FOR VARIOUS 
TOTAL USAGE BUDGETS 

Optimization Results 

Cost S|>;ires 
(dollars) Planes Man hours (<l< liars) Rn.tflv hours 

150.000 6.69 627.21 48,290.75 2650 99 
200.000 8.97 849.95 63,688 53 3220.76 
250.000 11.25 1075.84 78.93627 3744 35 
300.000 1354 1304.26 94.064.98 4233 71 
350.000 15 84 1534.81 109.095 17 4696.22 
400.000 18 14 1767.19 124,041.47 5136.89 
450.000 2045 2001 17 138,914.10 5559 22 
500.000 22.76 2236.59 153.721.95 5965.91 
550,000 2507 2473.31 168,471.57 6358.97 
600.000 27.38 2711 21 183,168.42 6740 04 
650.000 29 70 2950.20 197,81664 7110.41 
700.000 32.03 3190 20 212,420 49 7471.16 
750.000 34 35 3431 14 226,983 19 7823.20 

MXX) —. 

"W 400 TJL 500 

Budget IS value hundred thousands) 

600 
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SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

This study was concerned with the relationship between aircraft readiness 
and the aircraft, maintenance man-hours, and spare parts available at the squad- 
ron level.   The objective was to develop and to apply a practical method that 
could help determine the following things: 

1. How aircraft readiness is affected by changes in resource usage, and 

2. How to combine these resources to get the highest aircraft readiness 
for a given budget. 

The result desired was a technique that could assist budget planners in 
estimating the effects on aircraft readiness of changes in the usage for spare 
parts.    The technique was to be illustrated by application to the A-7B, CH-53, 
S-2E, F-4B, and the TA-4F using data from the aviation 3M data system.   This 
was accomplished by estimating a ready-hour production function and deriving a 
cost function for the 5 type/model/series of aircraft using the 3M data. 

CONCLUSIONS 

The important conclusions from this analysis are: 

1. The results indicate that the production function methodology can be 
valuable in examining squadron operations.   Much of the observed variance in 
squadron readiness is explained as a function of resource usage. 

2. If current resource budgets are maintained, a larger percentage of 
these budgets should be allocated to the usage of spare parts at the squadron 
level.   For each type/model/series of aircraft studied, the results snowed 
that higher levels of aircraft ready hours could be obtained. 

3. Even if the number of aircraft in a squadron is maintained at current 
planning levels, the results also indicate a need for more spare parts. 

4. For any type/model/series of aircraft the ready-hour production func- 
tion technique can be used to allocate total resource budgets among the three 
resources of aircraft, maintenance man-hours, and spare parts for any type/ 
model/series of aircraft in order to achieve maximum ready hour production. 

5. Assuming a proportional relationship between spare parts used at the 
squadron level and dollars budgeted for spares, changes in the spares budget 
can be related to changes in ready hours and NORS rates by type/model/series 
of aircraft.   The study has not attempted to determine this proportional rela- 
tionship, however.   As noted in Part III of Volume I, to forecast the level of 
readiness that will be achieved on the average for a given spares support budget 
requires an estimate of the percentage of the funds allocated that will in fact 
become available to the user in the form of parts actually required and used. 
Assuming that management decision processes are unchanged, this percentage 
may be estimated by determining the dollar value of material actually used in 
spare part support of the system from the preceding year 3M or ASO demand 
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data as a percentage of the funds allocated for spare part support of that system 
in that year.   Unfortunately, this estimate was not available for fiscal year 1969, 
the period for which the production functions were estimated.   Fiscal year 1970 
is the first year in which funds were allocated to specific weapons systems. 

6.     There are a large number of possible extensions of the production func- 
tion technique.   Further stratification of the input resource categories could be 
of even greater use in planning, as trade-offs among various categories of main- 
tenance labor and spare parts could then be considered.   Development of an out- 
put measure which differentiated among different levels of readiness could be 
another extension.   Finally, extension of the technique to other aircraft types 
would provide additional input to the budget planning process. 
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APPENDIX A 

COSTING METHODOLOGY 

This appendix presents the costing methodology and the elements in the 
costs used in estimating the production function parameters.   Specific costs, 
which are classified, are given in reference (a). 

The production function used in this study relates ready hours to the sum of 
squadron-level and intermediate-level maintenance labor (plus the tools used in 
maintenance), the number of aircraft in the squadron, and the quantity of spares 
consumed.   The budget equation for the usage of those resources is 

B = Px • M + p2 . P + p3 . S , 

where  M, P, and S  are maintenance, planes, and spares, and p., p„, and p„ 

are the respective unit costs.   These costs would theoretically be the marginal 
cost (or opportunity cost) of employing one additional unit of that input.   The 
opportunity cost of employing these particular inputs was sufficiently ambiguous 
to suggest that the costing required additional information.   It was decided that 
the cost estimates would be used to discover whether in future squadrons it 
would be optimal to have one more (or one less) airplane than there is in existing 
Navy squadrons.   Thus, any conclusions about existing squadrons which are 
based on these cost estimates should be made cautiously.   In particular, the cost 
of an aircraft in the above equation would probably be a "sunk" cost in existing 
squadrons. 

The variables in the production function are defined only after a period of 
production is specified.   The data on spares consumed had been recorded on a 
monthly basis.   The analysis used spares data as a numeraire, and therefore 
costs of other inputs were reduced to a monthly number. 

The conceptual problems involved with this procedure are revealed by 
noting that the Navy recently increased the estimates of the operating life of 
some of the aircraft that were costed.   Suppose, for example, that it costs $1000 
to purchase an item and after a period of time it is scrapped.   If the estimated 
operating life is 10 months, then the prorated "monthly" cost would be $100; 
if the operating life is 5 months, the monthly cost would be $200. 

Cost estimates were derived using information from standard Service 
documents.   The estimates are average rather than marginal, since the Navy 
purchases blocs of a particular aircraft rather than just one plane.   Neither 
discount nor inflation "factors" were incorporated, and all costs were in 1970 
dollars. 
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The basis for investment estimates was the unit equivalent (U.E.) aircraft — 
that is, on-line aircraft.   Costs for the followingtypes were estimated:  A-7B, 
F-4B, CH-53, TA-4F, and S-2E.   As typically presented, the investment cost 
of aircraft contains the following elements: 

• Flyaway, 
• Investment spares, 
• Peculiar ground support equipment. 

Estimates of flyaway were obtained from Naval Air Systems Command; invest- 
ment spares were estimated as a percentage of flyaway cost.   Support equipment 
is included with other maintenance costs.   Thus the sum of the first two elements 
constitutes the cost of one U.E. aircraft.   This sum was divided by the aircraft's 
operating life (which excludes time spent in progressive airframe and other 
special rework) to obtain a monthly cost.   (For 5 of the 6 aircraft, the Navy 
has recently lengthened the planned operating life:   the effect is to reduce the 
per-month aircraft costs.) 

When purchasing U.E. aircraft, we must purchase "support" aircraft, 
which involve the following investment costs: 

• Readiness carrier air wing (RCVW), 
• Pipeline, 
• Attrition. 

If we increase a squadron's U.E. aircraft, we must provide aircraft to 
train crews for that squadron's mission.   For each group of four operating 
squadrons, there is one readiness (or training) squadron (the RCVW).   The 
ratio of RCVW to U.E. is not always a constant 25 percent, so we used his- 
torical averages to obtain our estimates. 

Planners in the U.S. Navy appear to assume that the demand for pipeline 
aircraft is a positive function of the change in the sum of U.E. and RCVW air- 
craft.   This assumption leads to ambiguous implications for this analysis.   For 
example, suppose that in future squadrons the number of aircraft is reduced. 
Since we are holding output constant, this new policy would imply a higher 
utilization rate for each remaining aircraft.   And as this rate increases, the 
demand on pipeline facilities (for any given time horizon) should increase. 
Because of this ambiguity, pipeline aircraft costs (which only include flyaway) 
are presented separately. 

The inclusion of an estimate for attrition aircraft may be the most con- 
troversial aspect of this costing exercise.   When we examine Navy budget 
submissions, we can clearly see the allowance for the first two types of support 
aircraft but no allowance for aircraft that may crash and have to be replaced. 
However, historical evidence suggests that as the number of operational air- 
craft (U.E. plus RCVW) increases, the absolute number of aircraft lost will 
also increase.   The Navy publishes estimates of attrition that reflect such factors 
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as reliability of equipment, type of landing (land or carrier), and type of mis - 
sion.  We used this information to derive the cost of attrition aircraft.   (Thus, 
for this costing exercise, we have assumed that if squadrons reduce their 
aircraft inventories, the increased utilization rate of the remaining aircraft will 
not lead to an increase in aircraft fatigue and consequently exhibit a higher 
attrition rate.) 

All the costs discussed thus far were included in the  p„ . P element of the 

budget equation.   A sample illustration may be helpful.   The relevant inputs are 
presented in table A-l. 

The first element in the budget equation,   p, • P , is the monthly expendi- 

ture on aircraft maintenance and is equal to the sum of the cost of maintenance 
personnel plus the prorated cost of their equipment (tools, test boxes, etc.). 
We used data on ground support equipment as a surrogate for data on total 
maintenance equipment. 

Peculiar ground support equipment is probably a function of the number of 
squadron types and the location of these squadrons.   However, support equip- 
ment is most often estimated as a percentage of flyaway cost.   Several par- 
ticulars made it difficult to obtain accurate estimates.   First, the bulk of 
support equipment is charged to early "buys."  Second, some support equip- 
ment may be contained in spare-parts data, since support equipment as well 
as aircraft may wear out, require repairs, etc. 

We used Navy-published data that lists the number of enlisted men by 
rating required to maintain (at the intermediate and organizational levels) and 
operate one specific model aircraft for a given time period.   From this data 
we derived the percentage of maintenance time accounted for by men in specific 
ratings.   These percentages were then multiplied by weighted averages that 
summarize the pay-grade distributions of the ratings. 

Our estimates for personnel costs are higher than those contained in the 
"Navy Program Factors."   This is due to the fact that the "Billet Cost Method" 
that we employed incorporates training costs and rating "survival" rates in 
order to determine personnel costs. 

The cost of maintenance on the CH-53 was estimated in a similar manner. 
The Marine Corps does not use the Billet Cost Method, so we used standard 
pay rates published by the Department of Defense.   The DoD estimates do not 
include such elements as training costs and inputted retirement accrual.   Even 
though we attempted to correct these omissions, the final estimates of the costs 
of Marine Corps personnel are biased downward relative to those of the Navy. 
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TABLE A-l 

INPUTS FOR ESTIMATING AIRCRAFT INVESTMENT COSTS 
(Hypothetical) 

Row 
1 

Element 
Type aircraft 

Input 
F-1A 

2 Flyaway cost $2.2 M 

3 Investment spares (5% of row 2) $110,000 

4 Operating life 100 months 

5 Prorated flyaway cost (row 2 divided by row 4) $22,000 

6 U.E. monthly cost (sum of rows 2 + 3 divided 
by row 4) $23,100 

7 RCVW factor 25 percent 

8 Pipeline factor 20 percent 

9 Attrition factor 0.3 percent/month 

Step 1 

The monthly cost of RCVW aircraft is (0.25) x ($23,100) = $5,775 . 

Step 2 

The monthly cost of operating aircraft (U.E. + RCVW) is ($23,000) + 
($5,775)= $28,775 . 

Step 3 

The cost of pipeline aircraft is obtained by first multiplying the pipeline 
factor by the operating aircraft, then multiplying this result by flyaway 
cost.   The monthly cost is (0.20) x (1.25) = 0.25 , 

(0.25) x ($22,000) = $5,500 . 

Step 4 

The cost of attrition aircraft is obtained by first multiplying the attrition 
factor by the operating aircraft, then multiplying this result by flyaway 
cost.   The monthly cost is (0.003) x (1.25) = 0.004 , 

(0.004) x ($22,000) = $88 . 

Step 5 

The total monthly cost of p„ • P  in the budget equation is thus 

U.E. + RCVW $28,775 
Pipeline 5,500 
Attrition 88 
Total $ 34,363/month 

Note that this last total consists of prorated investment costs and excludes 
operating costs. 
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Maintenance costs   arc a subcategory of general operating costs.   The 
approach of the study group was to hold output constant while varying the input 
mix.   This procedure implies that some inputs, e. g., petroleum and number 
of pilots in a squadron, could also be considered constants.    Hence, costs of 
these latter resources were not estimated. 

Finally, it is noted that various specifications of these costs can be considered 
reasonable, and thus, in future use of the methodology, more attention should be 
directed to the costing problem.   Empirical results of the type presented in this 
volume can easily be obtained for any set of cost data. 

REFERENCE 

(a)    "Costing in Support of INS Study 32:  A Study of Aviation Spares and 
Readiness Relationships," Unpublished manuscript. 
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APPENDIX B 

SUMMARY OF COMPUTER OPERATIONS 

INTRODUCTION 

This appendix describes the data processing used in this study. A general 
description of the computer techniques used to evaluate the production and cost 
functions is also presented. A macro-flow chart of the data processing system 
developed is included in section III. 

SECTION I.  DATA PROCESSING 

A data bank of aviation, maintenance, and material information on the 
examined aircraft in this study was procured from the Navy Maintenance Material 
Management System (3-M files).   This system records man-hour, maintenance, 
and aircraft statistical data related to an operating unit on a day-to-day basis. 
Three files from this system were utilized:   (1) 3-M Maintenance Action - TID 
No. 8, PAR 12/581; (2) 3-M Material - 60 series - TID No. 8, PAR 12/634; and 
(3) ASD data - 3-M Readiness, Flight NOR - TID No. 8, PAR 12/655. 

Data Extraction 

It was necessary to extract the data for each aircraft onto a separate file, 
since the 5 aircraft types were aggregated on the 3-M files. The aircraft type 
was identified by its unique "type equipment codes, " shown in the following table : 

Aircraft Type equipment codes 

A-7B AAFB 
F-4B AFPB, AFPC 
S-2E ASAJ 
CH-53 AHXA 
TA-4F AACF 

Programs EXTMAF, EXTMAT, and EXTNOR were written to separate air- 
craft types from the maintenance, material, and ASD files, respectively.   These 
extraction programs examined the type equipment code, the organizational code 
(squadron), and action date.   Any record where the organization code was missing 
or invalid or where the action date was not in the 18-month time period studied 
was deleted.   Type equipment codes for the aircraft to be extracted were input. 
The formats of the resultant MAF, MAT and NOR files were identical to their 
corresponding input files. 
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Data Summarization 

Data on the individual aircraft were summarized by squadron, employed 
within each of the 18 months studied.   The squadron was identified by the 3-digit 
alpha-numeric organization code found on each file.   Since the data was reported 
on a day-to-day basis, all summary points were aggregated by month.   The following 
data was summarized for each separate squadron appearing in a month: 

A. Maintenance Action File (MAF) 

1. Date - Julian action date 

2. Squadron - organizational code 

3. Number of items and maintenance man-hours required by the 
squadron.   Each entry on the MAF file represented one 
maintenance action.    The level of the action could be squadron 
(organization) or intermediate.   Organizational maintenance 
refers to those maintenance functions normally performed by 
an operating unit in support of its own operations.   Intermediate 
maintenance refers to those maintenance functions normally 
performed in centrally located facilities for the support of operating 
units either aboard ship, or at a particular station, or within a 
designated area.   Record code LVL identified this level, where 
a "1" indicated organization and a "2" intermediate.   The record 
represented a cannibalization activity when record code AT was 
a "T" or "U".   The man-hours expended and number of items 
required for maintenance were summarized: 

a. At the organization level 
b. At the intermediate maintenance level 
c. On cannibalization activities 

B. Material File (MAT) 

1. Date - Action date, month, and year 

2. Squadron - organization code 

3. Parts usage by the squadron.   A record on the MAT file could 
be distinguished as a repairable parts entry when record code 
MAT CTL contained the alpha character "G, "  "H, "  or "Q". 
Otherwise the record was a consumable parts entry.   This 
quantity and price of parts was summarized by: 

a. Repairable parts 
b. Consumable parts 

4. Total price (spares).   This cost was calculated as 20 percent 
of the price of repairable parts plus the price of consumables. 
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C.    ASD Data (NORS) 

1. Date - month and year 

2. Squadron - action organization 

3. Number of aircraft available to the squadron.   This was 
defined as the number of Bureau Numbers on which actions 
were performed by the appropriate squadron. 

4. Hours in the NORM (maintenance) condition 

a. Scheduled maintenance 
b. Unscheduled maintenance 

5. NORS hours.   This is the number of hours during which the 
aircraft was not operationally ready. 

6. Flights 

a. Number 
b. Hours 

7. Custodial hours.   This is the number of hours the aircraft was 
in ready reporting status. 

8. Ready hours.   This was computed as Custodial Hours minus 
NORS, scheduled, and unscheduled NORM hours. 

In addition to summary reports, the programs SUMMAF, SUMMAT, and 
SUMNOR produced a new aircraft data tape for each of the 3 files examined. 
Each individual squadron within a month and its corresponding summary data 
points constituted a record.   Since the analysis proceeded on the aviation data 
in these summary tapes, the record formats are presented in section III. 

Data Stratification.    The three summary tapes MAT, MAF and NOR were 
merged by matching records on squadron within month.   When a particular 
squadron-month entry was not found on all 3 files, the appropriate records were 
deleted.   The program produced a listing of all matched records and an aircraft 
summary tape.   The record format of this tape is found in Section III. 

At this point it was desired to stratify the aircraft summary date base by 
location and deployment.   Atlantic and Pacific squadrons were separated.   For 
the A-7B, F-4B, S-2E, and TA-4F aircraft, an "A" as the first character of the 
squadron code distinguished an Atlantic squadron and a "P"   a Pacific squadron. 
For the CH-53 aircraft, an "F" distinguished an Atlantic Squadron and a "G" a 
Pacific squadron.   Furthermore, training squadrons were separated when appropriate 
for the aircraft type.   It was also necessary in some cases to delete a squadron 
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whose associated data points were obviously erroneous.   Various short programs 
■were written to accomplish these tasks.   In all cases a binary output tape of 
22 words per record was produced.   These 22 variables corresponded to the air- 
craft summary data points found in Section HI with the month and squadron 
identification deleted.   Stratifications of each aircraft data base were stacked as 
separate files on one tape. 

SECTION II.   PRODUCTION AND COST FUNCTION ANALYSES 

This section presents a brief description of the computer techniques employed 
to evaluate the 2-input production functions and the cost function discussed in this 
volume. 

Cobb-Douglas Production Function 

The Cobb-Douglas form of the production function could be treated as a single 
equation that is linear in the unknown parameters.   Thus the parameters could 
be estimated by the method of least squares.   A multiple-regression program 
developed at the University of Chicago was employed to evaluate this function. 
This program, BIMED34, calculates multiple linear regression in a step-wise 
manner.   That is, the program re-examines at every stage of the regression 
the variables incorporated into the model in previous stages.   Because the program 
performs transformations (e.g., LOGF(Xi)) and selection of variables, the 
existing binary data bases for each aircraft were input to this program. 

Constant Elasticity of Substitution (C. E. S.) Production Function 

A program to estimate the parameters of the non-linear C. E. S. production 
function was developed.   A system of 8 simultaneous non-linear equations in the 
8 unknown parameters was formed by setting the partial derivatives of theC. E. S. 
function to zero.   A system of linear equations was provided by expanding each of 
the non-linear equations about assumed initial values of the parameters.   The 
program iteratively solved this set of equations for a new set of parameter 
estimates.   Observed ready hours, maintenance man-hours, number of planes 
and spares from the aircraft summary data base, and the initial estimates of 
the unknown parameters were input. 

The solution technique used the Newton-Raphson iteration procedure, which 
computes successive approximations to the desired roots of the equations until 
the system converges. 

The general solution form of the Newton-Raphson method is 

AB   =  (AR)~ *R , 

where  r ., an element of the matrix AR, is the second partial derivative of the 
ij 

function with respect to B.   and B..   The components of the vector  R  are the 

first derivatives of the function with respect to each parameter. 
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Each component of AR  and  R  is evaluated at the point B„, a set of initial 

parameter estimates. AB, the parameter-change vector, is then calculated, and 

a new set of parameter estimates is obtained by adding AB  to B~.   Each iteration 

reevaluates the partial derivatives at the new point, and a new parameter-change 
vector is calculated.   This process continues until the parameter changes are 
sufficiently small. 

The complexity of this particular set of equations generated problems in the 
numerical stability of the solution.   Round-off errors occurred in the inversion 
of   R  and provoked oscillation in AB in successive iterations.   Thus it was 
necessary to incorporate an alternate convergence criteria.   Ready hours were 
predicted by a direct computation of the C. E. S. function by substituting the new 
parameter estimates into the formula.   A multiple correlation coefficient was 
computed between the predicted and observed ready hours.   When the multiple 
correlation coefficient failed to increase appreciably between successive iterations, 
convergence was assumed. 

Cost Function 

A program was written to determine the optimal mixture of the resources 
to be supplied to a squadron given various funding levels for resource usage. 
The non-linear optimization model used in this analysis is presented in the results 
of the cost function analysis section of this volume. 

The parameter estimates derived from the production function, the per-unit 
prices of the.resources - man-hours, spares and planes - and a range of funding 
levels for resource usage were input.   The program solved production function 
equation for the optimal level of planes (P*) through an iterative procedure 
initial estimate of the optimal number of planes (P*) was input, and the equation 
was directly solved for C (funding level).    The estimate of P* was incrementally 
adjusted, and the equation reevaluated until the value of C was equal to the funding 
level desired.   Given this optimal value of planes, the optimal values of man- 
hours (M*) and spare parts usage (S*) were determined through the direct solution 
of equations (2) and (3) on page 20.   This procedure was continued for each of the 
funding levels desired. 

SECTION HL    SYSTEM ILLUSTRATIONS AND AIRCRAFT SUMMARY FILE 
FORMATS 

This section includes on the following pages a Macro-flowchart of the data 
processing system and formats of the aircraft summary files for illustrative 
purposes. 
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MACRO-FLOWCHART FOR PROCESSING OF EACH AIRCRAFT TYPE 

1 
COBB- 

DOUGLAS 
CBS COST 
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MAF DATA SUMMARY RECORD FORMAT 

Columns 

1-2 
3-5 
6-13 

14-21 
22-29 
30-37 
38-47 

48-57 

58-67 
68-77 

Format Description 

12 Month (1-18) 
A3 Squadron 
18 No. jobs at squadron level 
18 No. jobs at intermediate level 
18 No. jobs activity cannibalization 
18 Total no. jobs 
F10. 0 Maintenance man-hours at squadron 

level 
F10. 0 Maintenance man-hours at inter- 

mediate level 
F10. 0 Cannibalization hours 
F10.0 Total hours 

Columns 

1-2 
3-5 
6-17 

18-29 
30-41 
42-53 
54-65 
66-77 

MAT DATA SUMMARY RECORD FORMAT 

Format Description 

12 Month (1-18) 
A3 Squadron 
F12. 2 No. repairable parts 
F12. 2 Price repairable parts 
F12. 2 No. cannibalization parts 
F12. 2 Price cannibalization parts 
F12. 2 Total no. parts 
F12. 2 Total price of parts 

NOR DATA SUMMARY RECORD FORMAT 

Columns 

1-2 
3-5 
6-15 

16-25 
26-35 
36-45 
46-55 
56-65 
66-75 
76-85 

Format 

12 
A3 
110 
110 
110 
110 
110 
110 
110 
110 

Description 

Month (1-18) 
Squadron 
Scheduled NORM hours 
Unscheduled NORM hours 
NORS hours 
Number of flights 
Flight hours 
Custodial hours 
Ready hours 
Number of planes 
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AIRCRAFT SUMMARY FILE FORMAT 

Columns 

1-2 
3-5 
6-19 

20-33 
34-47 
48-61 
62-75 
76-89 
90-103 

104-117 

1-14 
15-28 
29-42 
43-66 
67-80 
81-94 

1-14 
15-28 
29-42 
43-66 
67-80 
81-94 
95-108 
109-122 

Format Description 

Record 1 

12 Month 
A3 Squadron 
F14.2 Scheduled NORM hours 
F14. 2 Unscheduled NORM hours 
F14. 2 NORS hours 
F14. 2 Number of flights 
F14.2 Flight hours 
F14. 2 Custodial hours 
F14.2 Ready hours 
F14. 2 Number of planes 

Record 2 

F14. 2 No. repairable parts 
F14. 2 Price repairable parts 
F14. 2 No. cannibalization parts 
F14. 2 Price cannibalization parts 
F14. 2 Total no. parts 
F14. 2 Total price of parts 

Record  3 

F14. 2 No. jobs at squadron level 
F14.2 No. jobs at intermediate level 
F14. 2 No. jobs-cannibalization activity 
F14. 2 Total no. jobs 
F14. 2 Hours at squadron level 
F14. 2 Hours at intermediate level 
F14. 2 Cannibalization hours 
F14. 2 Total hours 
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