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Review of Fourier, Lapiacs and Z-transforms provides introduction to discrete time systems. !
The RC low=pass filter is modeled in terms of a feedback structure and compared with its analogy t
to recursive low-pass digital filters, These topics introduce the preferred transversal digital !
filter for low-pass and band-pass applications. An efficient method of synthesizing transversal
filters is demonstrated from the derivation of Fourier coefficients and time delays. A method
, of weighting the truncated Fourier terms by Hamming coefficients to suppress Gibb's oscillation

<1
is also shown. Design examples demonstrating the magnitude and phase response of low-pass i i
and band-pass transversal filters are presented. by
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HNTRODUCTION

The rise of digital filtering has come about as a result of two faciors which

are not totally independent. The first is traceable to the fact that more process

cc .rol and signal processing operations are now being executed digitally which
were previously accomglished in the analog domain. Once signals are in o digital
format, it is obviously more efficient to complete all necessary operations digitally,
The second factor bringing about a more widespread application of digital filters

is the continuing decracse in cost per digital hardware function. This is due to

~ 'vances in the state-of-the-art and economic factors of high volume production.
Digital filters, therefore, may be realized with either software as a part of a larger
executive program, or in a hardwired hardware form, with perhaps A/D :md D/A
input and outpur converters, to accomplish o specific filtering task.

The decision of when to use digital filters instead of, for example, active-
type analog filters is not dictated by hard-and-fast guidelines. This decision is
strictly dependent upon the application at hand. The principal features of digital
filters are high stability and the ease with which filter parameters can be changed.

The former is useful for separating signals very close in frequency and where the

filter must be located in other than ideal environments. The latter feature is essential
for adaptive filtering where a filter must change its characteristics in real-time to

a changing input signal. The following development presents the essentials of

digital filtering from a practical viewpoint which the practicing engineer can
immediately put to use and includes both low=pass and band-pass design examples

with their output response plots.




FOURIER TRANSFORMS

The Fourier tronsform pair is useful for transforming functions between the
time and frequency domains
@® “jwt
glw) = S f)e " ot
-®
©®
4
) == S o) el dy
-

Consider a single pulse of omplitude A and width v, Its tronsform from the time
to frequency domains provides the spectral density of the pulse. It can be seen
that a pulse of width 7 requires o bandwidth of 2/v Hertz for transmission or re-
production with fidelity since the majority of the energy contained within the pulse

Is seen to lie between + 1/7 Hertz of the spectral density plot.
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LAPLACE TRANSFORMS {

The Laplace transform pair is a one-sided Fourier transform pair useful for
transforming discontinuous functions between the time and frequency domains which

the Fourier transforms cannot hand!e. For example, consider a Fourier transform

of a unit step function

f(t)

I — -1

-jut
e

o
| ' t—> -1
=-T;- (cos @ -j sin @ -1)

This result is undefined and therefore meaningless. However, convergence of this
integral can be assured by adding a constant ¢ to jw providings = ¢ + jw , which
is a complex variable. Considering now the Laplace transform of ¢ unit step

function we obtain a useful solution

Ry

) .
glo*jw)=S 1€ o+ jult dt
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The Laplace transform pair is therefore given by

© -st
glo tjw) = F@) =S f@t) -e ST gt

(o]

+ o
{-] [F6)] = F@t) = fo FGs) * ™ ds

o= jw




Z - TRANSFORMS

Laplace transforms are principally useful for continuous functions. If the

Laplace transform of a time-sampled continuous function is considered

@® t
Fs)=/ fie ™ dt

(o]
[e 0]
=S l? f)s (t-nT)) e gt
f(t) = o n=0
(e o]
Q .
olfilf2lf3fafsfs - =P 7 D e t-nT) dt
1 23 HTe n=0 o
-nsT
=? fnT) e
n=0

The final expression evaluates each time t =nT. For convenience we define a unit

time delay operator z.'] = e-sT which provides the Z-transform pair

m -
Flz) = £ faNZ™"
n=0

fnT) =5,‘r—i— SF@Z" dz




RC LOW PASS FILTE' ‘

Both an analog and digital realization of a single-section RC filter will be

considered as an illustration of an intuitive approach to digital filter design.

R _ Y6 _ 1/juc
o-wv—-I—-o T = XH R+L]@7i,,,c
X <O Y(t) _ 1

L. =TT
G
_Y(x) _ ]
T6) = XF © TFRGS

Recalling that the transfer function for a feedback structure is given by T = G/(1+GH),

we represent the analog RC filter in like manner

+
Xe) — G ~Y(s)
H e
input memor
scaling Y
1
X(S) _R__ Y(S)

corner
frequency
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Consider now filter excitation by a unit step function beginning at t = 0. The result-
ing RC filter output response is obtaii.ed with the cid of laplace transforms of this

input step and the filter transfer function )

® -st
X6) =S V-e  dt
<)

X (1) =1

YG6) = X(s) - Ti)

1 1
s~ T+RCS

Expansion of Y(s) by partial fractions and obtaining the inverse laplace transform

from tables yields the RC filter output tir-> response in terms of an exponential

function

1
YO = ¢ - sERe

vy =L (e




RECURSIVE DIGITAL FILTERS

The foregoing single-section RC filter may also be realized in digital form
by obtaining the Z-transform of the input step function and the just presented output
time response Y(t). The transfer function formed with these quantities is also realiz-

able with a recursive feedback structure as shown for the analog case.

o o]
X@) =1 X(nDZ™"

n=0
X(f)l ©
] =3 1.27"
jo AR n=0
I = 1
0 1|7 le I
Yi) = £ YeDZ™"
n=0
n=0

©
=g° 1.2 e-nT/RC 70

1
-l - Z"] .l - e"T/RC Z"']

The transfer function T(z) and its realization are

A, -TRC
=Yz _ Z (-e )
[ (o B 7cop
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unit delay
X(z) _ﬂ ]_e-T/RC 1 Y(z)
input |
scaling .
multiplier e ~-T/RC

The foregoing introduction is meant to bridge the gap between continuous-
function analog filters and sampled-function digital filters. The particular example
chosen is intended as a simple exercise rather than a practical example of digital
filter design. Recursive filter designs are feasible only under rather severe realizability
constraints. The details of these constraints can only be briefly addressed here.
However, since they are feedback 1 iures recursive filters are subject to all of
the stability considerations of analog feedback systems plus additional ones which
can defy practical solution. For exampie, quantization noise encountered in the
sampling process when fedback and multiplied by the various filter coefficients can
produce non-linear behavior and filter limit cycling. In addition, passband phase
shift in recursive filters is gencrally difficult to linearize and/or compensate satis-
factorily. A more practical and useful approach to digita! filters is possible with

the transversal structure. For the above stated reasons the follow ing development

is devoted to a detailed presentation of transversal digital filter design.




TRANSVERSAL DIGITAL FILTERS

The transversal filter, also known as a finite-memory or nonrecursive filter,
is not suitable for integration applications due to this avallability of only a finite
memory. However, it is usefu! for low-pass filtering, interpolation and extrapolation
(delay and prediction), differentiation and combinations of the above. In addition,
and to be introduced subsequently, with the low~pass to band-pass transformation the
transversol filter mechanization provides a band-pass filter with all of the advantages
represented by transversal filters.

Digital filtering of continuous signals involves the signal processing operations
of sampling and quantization, which is addressed elsewhere in this treatise, as well
as the computational operations of storage, multiplication and addition. Digital
filters can be ma._e to approximate their RLC counterparts insofar as conforming to
the Butterworth, Bessel, or Chebyshev characteristics, for example, if this is of in-
terest. However, a more direct approach is elected in this presentation whereby
we will be concerned with considerations of passband, transition regions, stopband,
ripple and phase. This direct approuzh will provide more insight into the design of
digital filters without manipulating esoteric transfer functions in order to achieve
particular response characteristics.

Low=-pass transversal digital filter structures are useful for estimating, at discrete
time instants, the value of a random signal perturbed by additive noise. Transversal
filters are always stable since no feedback paths are involved and designs with exactly

linear phase are easily realized. In addition, due to this inherent stability coefficient

-10 -
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value approximations may be relaxed which permits shorter coefficient multiplier word-
lengths. This plus the faci that only a finite number of states are generally required
for a transversal filter realization provides efficiency in its hardware mechanization.

The spectral response in the Z-domain of a transversal filter is expressed by Equation

(1) and its block diagram by Figure 1.

m -]
Hiz) = I anz" (1)
n=0

~® Y(nT)

I.ET_.._...._

Figure 1. Transversal Filter Mechanization

LOW PASS TRANSVERSAL FILTERS

Consider now the design of a low pass filter whose frequency response is in
general represented by Figure 2. In radians per second, CH is the filter cutoff
frequency, wstop the frequency where high attenuation exists, and w the filter
sampling, computation and Z-] delay rate which in practice is selected sufficiently

high to satisfy the Nyquist Sampling Thecrem and to prevent overlap of the pericdic
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spectrum foldover. This will be addressed in sufficient detaii at the appropriate

point later.

H{w)

s - - -y

|
!
i
|
Bon

- - "0 w w
stop < c stop

Figure 2. Frequency Domain Filter Response

The designer initially determines the allowable filter transition region between

the passband and the stopband which is given by Equation (2)
Ystop ~ Y =Aw @)

Since there are no signal components passed by the filter at frequencies above Ostop”

then the filter output must drop from its passband value at w_ to the desired attenuation

at Otop” Filter rolloff in temms of DB/decade or DB/octave is therefore easily specified.

Note that no comment was made about how many DB down the filter respcase will be
at the cutoff frequency. This is because it is not necessary to impose the parametric
characteristics of analog RLC filters on digital filter designs. As we will see shortly,
response factors are determined by parameters alien to analog filter design. Before

discussing this, however, the Fourier-series method for obtaining the filter multiplier

coefficients, a, of Figure 1, will be presented.

-12 -
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The frequency response of the transversal filter defined by Equation (1) may
be focnd by the substitution shown in Equation (3) which provides the frequency domain

filter response of Equation (4)

z= & _.o=el! @3)
m =T

Hw =1 o ™ @
n=0

H(w) may then be divided into its real and imaginary parts described below

Hw) = UW) +i V) 5
©
Uw) = a, + n)E—_i a cos nwT ©)
©
V(u) =73 Bﬂ sin nuT (7)
n=1

We may also write these terms in the form of their exponential equivalent
Y po

m . -.
U = °°+ 11 an(elnuT+e lnuT) ©)
n:
m - -.
iV =3 T ™ol ©)
n=1

In practice , the series is truncated symmetrically for economy of implementation.

This yields a total of 2J+1 filter states, where m=2J. The Z-domain expression for

the transversal filter in terms of Fourier coefficients is given by Equations (10) and (11)




P T

J J
He)=a_+31I (@ -B)Z"+I (@ +p)Z"] (10)
n=1 n=1
2J _
= Z an Z n (]])
n=0

The filter coefficient multipliers are specifically given by

a =‘§(0J_]“[3J_l)
a, =2la;-6)

If the Fourier series is truncated using a rectangular window s indicated by
Equations (10) and (11) and the resu” ing filter multiplier coefficients, the filter
frequency response will exhibit Gibb's oscillation due to the discontinuity in H).
Gibb's oscillatien can be effectively reduced by modifying the Fourier coefficients
by means of a weighting function. The Hamming window is particularly useful for
controlling the ripple in the frequency response of finite-length sequences. A function
describing this window is presented by Equation (12)

0.54 +0.46 cos () n< J

W, o = |
HR) g n>J (12)




YT (13)
The Hamming weighted filter coefficient multipliers are then given by

a = ;W(J) (aJ+pJ)

TR LR TRY

ajy =2 Wy gt py)

O =Wy lay-By)

.
.

- " ¥ e T T T
Use of the Hamming weighting function provides not only control of the ripple, but l
specifies the optimum truncated filter sequence length J in terms of the desired filter :

: transition region A w. Sampling time T is defined in terms of the sampling frequency
w , where T = 2u/, .
: s s
_ 2n

o, =2 Wy (e;-By

The Fourier coxfficients are obtained by noting that the filter response in the frequency
domain is periodic at a foldover repetition frequency defined by the sampling frequency
wge From Figure 3 it can be seen that in order te prevent overlap of the periodic
spectrums, u_ must be sufficiently high to assure adequate spacing. A rule-of-thumb

' is that X is taken at two to ten times the highest frequency of interest. If overlap is
allowed to occur, the phenomenon of aliasing will take place producing errors in the

reconstruction of a continuous signal at the output from its sampled representation.

- 15 -
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-0 -w 0 w oW w - 2w ’ )
stop c c stop 5 s

Figure 3. Periodic Spectrum Foldover

Due to the even symmetry imposed by the spectral response of H(y) about zero for the

low-pass filter, all of the B, terms will be zero. This leaves the DC and even a

terms to be evaluated. Considering ”5/2 = /T we then write

+w

ﬁn=-2— S cA'sin(ny—“)du=0 (i4)
H -uc us
20 \
5y = o as)
s
+ 4
o =2 5 Acos("BEwya, (16)
n w u
~ug {

Evaluating these expressions in the frequency domain with a normallized amplitude

A =1 yields

_ 2 “e
a = — f ]‘COS(nuT)du
wS

T Ye
=1 N ﬁ.nT-cos(nuT)dw

“Ww
C
= 2 sinlhe  T) (17) k
nm Ye :

-16 -
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LOW PASS DESIGN EXAMFLE

. e A

Consider a low-pass filter cutoff frequency of 1Hz, or w, = 2n. Such a filter
could be applicable to thermocouple inputs at a data logging station. A sample
frequency must then be chosen tc be greater than twice the highest frequency of

interest

. For a selected transition region of Aw = 2r the filter has an o =
stop stop

4n. A value for v, = 167 is then selected as two times the minimum practicul sampling

frequency for this filter. Then, T = 21r/¢.,S = 1/8 second and the number of required
filter states to realize this filter is obtained from Equations (18) and (19). The Fourier

DC and even coefficients are found, respectively, by Equations (20) and (21)

} . =T-A-”(:)=8 (]8)
m=2J) =16 (19)
2mc
a, = :, = 1/4 (20)
0y = 2 sin () 1)

The Fourier and Hamming coefficients for this fi'ter are then obtained from Equations

21) and (16) as

FOURIER HAMMING
ay =+ 0,462 WH] =+].44
a2=+0.318 WH2=+1.16
a3=+0.150 WH3=+0.76
‘ a4=0.0 WH3=+0.25
' a5=-0.090 WH5=-0.09
% ==~ 0,106 WH6=-0.36
07-‘--0.064 WH7=-O.46
og 0.0 W, =-0.35




The 17 filter multiplier coefficients weighted by the rectangular (simple truncation)

and Hamming windows are

HAMMING RECTANGULAR
agy: 016=0’0 ag/ a‘6=0.0
ays 015=+0.0147 ays 015=-0.032
Gps g4 = +0.0191 ays a]4=-0.053
aqe al3=+0.0040 Y c‘3=-0.045
aqr Gyp = 0.0 qr Oyp = 0.0

ags a5 =+ 0.0570 ags ayp = +0.075
ag alo=+0.1845 ags a‘0=+0.159
ays ag =+ 0.3325 g, ag =+ 0.231
ag =+0.25 ag =+0,25

The magnitude and phase response of the low-pass digital filters implemented
with the preceding Hamming and rectangularly weighted multiplier coefficients were
obtained from the following frequency~domain equations

n
Hw = T o eI
n=0

= }r:n a_ [coslnuT) = i sin (nwT)] @2)
n=0 "

- -1 sinT)
® = ton coslw 1) (23)

A computer generated plotting routine was executed with these equations for T =1/8

with « ranging from 0 to 4w and m = 16. Figures 4 through 7 present these results.
Consider the Hamming weighted filter of Figure 4. The atte..uation achieved

between the passband magnitude of 1.47 and the stopband ripple peak of 0.15 is a

ratio of 10, or 20 DB, The transition region, however, extends over 1.25 Hertz

- {& .

o m——— — ~  —




instead of the predicted 1 Hertz. In addition, the cutoff frequency of 1 Hertz is
centered about halfway along the transition region instead of at the beginning as
expected. These anomalies are primarily due to an insufficient sampling rate.
Referring to Equation (18), it can be seen that for the specified transition region

of 1 Hertz that a higher sampling rate, implicit in a smaller T, will provide additional
Fourier coefficients and hence filter states to better approximate the desired response.
The phase response of this filter, presented by Figure 5, is linear and well behaved
even at this minimum sampling rate. The magnitude and phase response for the digital
filter formulated from rectangularly truncated Fourier coefficients is shown by Figures
6 and 7. The behavior of this filter departs from the Hamming-weighted filter primarily
in terms of the undesired Gibb's oscillation it exhibits in the passband. 1llustration

of this oscillation, of course, is the purpose for providing this comparison.

-19 -
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BAND PASS TRANSVERSAL FILTERS

A low-pass to band-pass digital filter transformation may be effected by a
technique which parallels that of a heterodyning process in analog signal theory.
Performing this transformation on transversol filters allows the stability and well-
behaved characteristics of this mechanization to be realized for the band-pass case.
This straightforward transformotion is achieved in the ZMin by the following
algorithm which mathematically converts the low-pass filter multiplier coefficients,

a,to bond-pass multiplier coefficients, An'

m
HoZ) =% o Z" (24)
tp =0 n
Hoo ZoMo! + H (Ze ¥V
Hop(2) = — 2 (25)
e
=7 AZ" @6)
n=0
4 T
A= E o, o, 0201 27)

where o, is the filter center frequency. Derivation of the band-pass coefficients

from Equation (27) requires close attention to the subscripts on the coefficient a_,
Note that the summation of terms on r for conversion of the low-pass filter coefficients,
a.to the band-pass coefficients, An' is continued only until n = r. Negative sub-~

script values are thereby precluded.
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BAND PASS DESIGN EXAMTLE

Consider a band-pass filter based on the preceding low-pass transversal design
with the purpose of providing DC attenuation while passing slowly varying AC components.
A center frequency of 2 Hertz is chosen in the example at hand. Equation (28) provides

coefficient conversion of the previous 17 low-pass Hamming-weighted coefficients

with the same sampling time of T = 1/8 second.

16

An = r};o a _, *cos (v/2 (n=2r) ) (28)
AO =0 A4 = +,0004 A8 = +,0554 A]2 =0.15%96
A]=0 A5= A9= A‘3=0=A]5
A2 =« ,0044 A6=-.|279 A]O =.+,1026 A]4 = +.1445
A3=0 A7=0 A”=0 A]6=-.]59:

Figures 8 and 9 present the magnitude and phase response also generated by
computer methods utilizing Equations (22) and (23) us before. Both passband and stop-
band ripple is in evidence even though conversion was effected from Hamming-weighted
coefficients. This anomaly is characteristic of this method of generating a band-~pass
characteristic. Ripple reduction to a specific acceptable level is achieved as a trade-~
off with filter sampling rate in the same manner as for the low-pass design. Again,
from Equation (18) it is apparent that the faster the scmpling rate the greater the number
of filter states, hence coefficients and delays, and thereby the more closely the filter

realization will approximate the desired characteristic. In the example at hand 12 DB

attenuation is achieved at DC. However, it is apparent that a judicious selection of
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filter center frequency, such as 1.6 Hertz, will place the stopband null of Figure 8 '
at DC for 24 DB rejection. The phase response in the filter passband i found to be
reasonably linear as shown by Figure 9. The phase warp shown occurs innocuously

at the nulls of the stopband.
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