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!NTRODUCTION

The rise of d*gital filtering has come about as a result of two factors which

are not totally independent. The first is traceable to the fact that more process

cc -rol and signal processing operations are now being executed digitally which

were previously accomplished in the analog domain. Once signals are in a digital

format, it is obviously more efficient to complete all necessary operations digitally.

The second factor bringing about a more widespread application of digital filters

is the continuing decrease in cost per digital hardware function. This is due to

el 'vances in the state-of-the-art and economic factors of high volume production.

Digital filters, therefore, may be realized with either software as a part of a larger

executive program, or in a hardwired hardware form, with perhaps A/D and D/A

input and outpua converters, to accomplish a specific filtering task.

The decision of when to use digftal filters instead of, for example, active-

type analog filters is not dictated by hard-and-fast guidelines. This decision is

strictly dependent upon the application at hand. The principal features of digital

filters are high stability and the ease with which filter parameters can be changed.

The former is useful for separating signals very close in frequency and where the

filter must be located in other than ideal environments. The latter feature is essential

for adaptive filtering where a filter must change its characteristics in real-time to

a changing input signal. The following development presents the essentials of

digital filtering from a practical viewpoint which the practicing engineer can

immediately put to use and includes both low-pass and bond-pass design examples

with their output response plots.



FOURIER TRANSFORMS

The Fourier transform pair is useful for transforming functions between the

time and frequency doains

g(W) f f(t) e0-wt dt

I Co jWt
f(t) g(w)e d0

Consider a single pulse of amplitude A and width ,. Its transform from the time

to frequency domains provides the spectral density of the pulse. It can be seen

that a pulse of width • requires a bandwidth of 2/, Hertz for transmission or re-

production with fidelity since the majority of the energy contained within the pulse

is seen to lie between + 1/, Hertz of the spectral density plot.

f(t) W J" A e-it dt

AI
-1/2 Cb 1÷,/2 t.7-+ -A Ow

e t =A el."'w/2 "

g(-) ,.

A ( Asi-

-2w +÷2
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LAPLACE TRANSFORMS

The Laplace transform pair is a one-sided Fourier transform pair useful for

transforming discontinuous functions between the time and frequency domains which

the Fourier transforms cannot hand!e. For example, consider a Fourier transform

of a unit step function

f(t) g(U) = I • e -jt dt
0

1 -1 -jwt
ju e

0t -- -)-1
="- (cos -i sin €O -1)

lw

This result is undefined and therefore meaningless. However, convergence of this

integral can be assured by adding a constant a to 1w providing s = a + jW , which

is a complex variable. Considering now the Laplace transform of a unit step

function we obtain a useful solution

m - ( + i.)t
g(a+jw)f 1J le ci~~dt

0

iW -1 -(+ W)t O

•--o
CT j 0

a + jW
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The Laplace transform pair is therefore given by

g(ac + j•) F(s) fJ f(t) • e-st dt
0

-[F(s)] = F(t) = f F(s) e ds
a - 1w

-4-
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Z - TRANSFORMS

Laplace transforms are principally useful for continuous functions. If the

Laplace transform of a time-sampled continuous function is considered

GO -st
F(s) f f(t) e dt

0

IJ I• f(t)S (t-nT)] e-st dt

f(t) o nro

f ff 9o 0 e-Stj
"r 2f"n =f f[f (t) eISt (t-nT) dt

1 2 3 4-+1TI- n=O o
SOD -nsT

-Z f(nT) e
n--O

The final expression evaluates each time t = nT. For convenience we defile a unit

time delay operator z 1  e -sTwhich provides the Z-transform pair

Co fnT)Z-n
F(z) = 1 f(nT)

nO
1 -

f(nT) -- F(z)Zn-1 dz2ni

-5-
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RC LOW PASS FILTE:',

Both an analog and digital realization of a single-section RC filter will be

considered as an illustration of an intuitive approach to digital filter design.

R T(t) -(t) = 1/iuc

X(t) Y(t) _ 1

1 + jWRC

T (s) Y(x) _ 1
T~s) - fI+ RCS

Recalling that the transfer function for a feedback structure is given by T = G/(I+GH),

we represent the analog RC filter in like manner

X(s) G Y(S

input memoryscaling mmr

corner
frequency

-6-
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Consider now filter excitation by a unit step function beginning at t = 0. The resu It-

ing RC filter output response is obtahi.ed with the aid of Laplace transforms of this

input step and the filter transfer function

X(s) I -c' dt
0

X(t) 
I
S

Y(s) = X(s) • T{11
0 t-4

11

s I + RCS

Expansion of Y(s) by partial fractions and obtaining the inverse Laplace transform

from tables yields the RC filter output tirý: response in terms of an exponential

function

Y(s) 1 1
s s + 1/RC

Y(t) I Y(s)l

= 1- -et/RC

.67 •

0 RC t

-7-



RECURSIVE DIGITAL FILTERS

The foregoing single-section RC filter may also be realized in digital form

by obtaining the Z-transform of the input step function and the just presented output

time response Y(t). The transfer function formed with these quantities is also realiz-

able with a recursive feedback structure as shown for the analog case.

()= 1 X(nT) 7n

n:O

X(t) 0o -n

II

0o- IT I(-z- Z

VE Zoo -nII

Y(z) I- Y(nT)
n-O

00 e-nT/RC) Z-n
n=O

I Z-n I -n T/RC Z-n

n=O n --0

1 1

I - 1 - e-T/RC Z-
1

The transfer function T(z) and its realization are

T(z) = - (1 - e - T/RC)

-8 -



unit delay

X(z) _T/RC + I Y(z)

The foregoing introduction is meant to bridge the gap between continuous-

function analog filters and sampled-function digital filters. The particular example

chosen is intended as a simple exercise rather than a practical example of digital

filter design. Recursive filter designs are feasible only under rather severe realizability

constraints. The details of these constraints can only be briefly addressed here.

However, since they are feedback frt;-'ures recursive filters are subject to all of

the stability considerations of analog feedback systems plus additional ones which

can defy practical solution. For exampie, quantization noise encountered in the

sampling process when fedback and multiplied by the vcrious filter coefficients can

produce non-linear behavior and filter limit cycling. In addition, passband phase

shift in recursive filters is gene.rally difficult to linearize and/or compensate satis-

factorily. A more practical and useful approach to digital fi Iters is possible with

the transversal structure. For the above stated reasons the following development

is devoted to a detailed presentation of transversal digital filter design.

-9-



TRANSVERSAL DIGITAL FI:LTERS

The transversal filter, also known as a finite-memory or nonrecursive filter,

is not suitable for integration applications due to this availability of only a tCnite

memory. However, it is useful for low-pass filtering, Interpolation and extrapolation

(delay and prediction), differentiation and combinations of the above. In addition,

and to be introduced subsequently, with the low-pass to band-pass transformation the

transversal filter mechanization provides a band-pass filter with all of the advantages

represented by transversal fi Iters.

Digital filtering of continuous signals involves the signal processing operations

of sampling and quantization, which is addressed elsewhere in this treatise, as well

as the computational operations of storage, multiplication and addition. Digital

filters can be ma,'e to approximate their RLC counterparts insofar as conforming to

the Butterworth, Bessel, or Chebyshev characteristics, for example, if this is of in-

terest. However, a more direct approach is elected in this presentation whereby

we will be concerned with considerations of passband, transition regions, stopband,

ripple and phase. This direct approuoh will provide more insight into the design of

digital filters without manipulating esoteric transfer functions in order to achieve

particular response characteristics.

Low-pass transversal digital filter structures are useful for estimating, at discrete

time instants, the value of a random signal perturbed by additive noise. Transversal

filters are always stable since no feedback paths are involved and designs with exactly

linear phase are easily realized. In addition, due to this inherent stability coefficient

-10 -



value approximations may be relaxed which permits shorter coefficient multiplier word-

lengths. This plus the foci that only a finite number of states are generally required

for a transversal filter realization provides efficiency in its hardware mechanization.

The spectral response in the Z-domain of a transversal filter is expressed by Equation

(1) and its block diagram by Figure 1.

H(z) = ' a zn (1)n= n

X (n T) a YnT

Figure 1. Transversal Filter Mechanization

LOW PASS TRANSVERSAL FILTERS

Consider now the design of a low pass filter whose frequency response is in

general represented by Figure 2. In radians per second, w is the filter cutoff

frequency, wstop the frequency where high attenuation exists, and ws the filter

sampling, computation and Z -1 delay rate which in practice is selected sufficiently

high to satisfy the Nyquist Sampling Theorem and to prevent overlap of the periodic

-H
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spectrum foldover. This will be addressed in sufficient detaii at the appr-ipriate

point later.

H(w)

stop c c stop

Figure 2. Frequency Domain Filter Response

The designer initially determines the allowable filter transition region behteen

the passband and the stopband which is given by Equation (2)

Wstop -c =A 6 (2)

Since there are no signal components passed by the filter at frequencies above Istop'
then the fiiter output must drop from its passband value at w to the desired attenuation

at Wstop* Filter rolloff in terms of DB/decade or DB/octave is therefore easily specified.

Note that no comment was made about how many DB down the filter resp((..se will be

at the cutoff frequency. This is because it is not necessary to impose the parametric

characteristics of analog RLC filters on digital filter designs. As we will see shortly,

response factors are determined by parameters alien to analog filter design. Before

discussing this, however, the Fourier-series method for obtaining the filter multiplier

coefficients, a of Figure 1, will be presented.

n
- 12 -



The frequency response of the transversal filter defined by Equation (1) may

be found by the substitution shown in Equation (3) which provides the frequency domain

filter response of Equation (4)

Z= esti =ejwT (3)

m _ inwTa = I a n Te (4)

n --' n

i-i(w) may then be divided into its real and imaginary parts described below

=W) U( )+iVU) (5)

co

U() a + I a cos nT (6)
n=i n

OD

V(w) = I On sin nwT (7)
n=1

We may also write these terms in the form of their exponential equivalent

u() = aa n ( + e (8)
o n1l n

n=1

In practice, the series is truncated symmetrically for economy of implementation.

This yields a total of 2J+1 filter states, where m--2J. The Z-domain expression for

the transversal filter in terms of Fourier coefficients is given by Equations (10) and (11)

- 13 -



H(z) =a 0 + ' I Tn1(an " {)Z'n +n=I (a n + P~n) Znl (10)

2J3
a - (11)

n=0 n=

n=O

The filter coefficient multipliers are specifically given by

o = -(a + Pj)

a, ( + J-1)

a +

aj =4(aaJ+1 IPI

am_ M-1 : (a .J -1 15.1I)

a (a- )am J P

If the Fourier series is truncated using a rectangular window as indicated by

Equations (10) and (11) and the resu ing filter multiplier coefficients, the filter

frequency response will exhibit Gibb' s oscillation due to the discontinuity in H(U).

Gibb's oscillation can be effectively reduced by modifying the Fourier coefficients

by means of a weighting function. The Hamming window is particularly useful for

controlling the ripple in the frequency response of finite-length sequences. A function

describing this window is presented by Equation (12)
ir n

0.54 + 0.46 cos (j--) n < J
WHn = 0 n> J (12)

14-



Use of the Hamming weighting function provides not only control of the ripple, but

specifies the optimum truncated filter sequence length J in terms of the desired filter

transition region A w. Sampling t ime T is defined in terms of the sampling frequency

u1where T =2n/w.

2,r
rA= • (13)

The Hamming weighted filter coefficient multipliers are then given by

a= I W (a +1P )2 QJ) J

1= W.1) (a J-1 + Pj.1

aj.1 = WO1) (a1I+13Ad

aj 0

aj+1 = .1 W 1 ) (01 -(a 1)

am = -W (J)j(a •J)

The Fourier cc-.fficients are obtained by noting that the ft Iter response in the frequency

domain is periodic at a foldover repetition frequency defined by the sampling frequency

Us. From Figure 3 it can be seen that in order te prevent overlap of the periodic

* spectrums, w~ must be sufficiently high to assure adequate spaci ng. A rule-of-thumb

is that w. is taken at two to ten times the highest frequency of interest. If overlap is

allowed to occur, the phenomenon of aliasing will take place producing errors in the

reconstruction of a continuous signal at the output from its sampled representation.

15 -



• -W- 0 W ~ W~ 2 w "
stop c c stop s s

Figure 3. Periodic Spectrum Foldover

Due to the even symmetry imposed by the spectral response of H(w) about zero for the

low-pass filter, all of the Pn terms will be zero. This leaves the DC and even an

terms to be evaluated. Considering w/ 2 = ir/T we then write

2w
co = - (15)

0 (dS

2 +wn
2 J c A . cos ( n 2. ) d (16)n to s W

S S
-(di

c

Evaluating these expressions in the frequency domain with a normallized amplitude

A 1 yields

2 w

= ,/ fc 1 "cos(nwT) dc

c

T W I
7 , c Y . n T cos (n wT) d w

-W
c

Ssin (nL JT) (17)

- 16-



LOW PASS DESIGN EXAMPLE

Consider a low-pass filter cutoff frequency of 1 Hz, or wc = 2r. Such a filter

could be applicable to thermocouple inputs at a data logging station. A sample

frequency must then be chosen to be greater than twice the highest frequency of

interest wstop* For a selected transition region of A w = 2nr the filter has an wstop -

41r. A value for ws = 16n is then selected as two times the minimum practical sampling

frequency for this filter. Then, T = 2n/ws = 1/8 second and the number of required

filter states to realize this filter is obtained from Equations (18) and (19). The Fourier

DC and even coefficients are found, respectively, by Equations (20) and (21)

Lr - - = 8 (1 8 )

m 2J = 16 (19)

2w

a 0 c 1/4 (20)
o •s

2 nf* = n • sin () (21)

The Fourier and Hamming coefficients for this filter are then obtained from Equations

(21) and (16) as

FOURIER HAMMING

a 1 = + 0.462 WH1 = +1.44

a2 = +0.318 WIr = +1.16

03 = + 0.150 WH3 = +0.76

a4 = 0.0 W 3 = +0.25

a5 = - 0.090 WH5 = - 0.09

o6 =-0.106 WH6 =- 0.36

a7 -0.o64 WH 7 = - 0.46

8 0.0 W = - 0.35

17



The 17 filter multiplier coefficients weighted by the rectangular (simple truncation)

and Hamming windows are

HAMMING RECTANGULAR

a0 0a16 = 0.0 a0 , a16 = 0.0

a1 , 015 = +0.0147 aO, 015 = - 0.03?

a2 , a14 +0.0191 021 a 14 =- 0.053

a3, a 13  +0.0O40  a31 a13 = - 0.045

a4 , a 12 = 0.0 q4. a12 = 0.0

a5, a I=I + 0.0570 as, aIl = + 0.075

a6, ai0 =+ 0.1845 a6 , al0 = + 0.159

a7, 09=+0.3325 a7 a9 =+0.231

a8 =+0.25 a8 =+0.25

The magnitude and phase response of the low-pass digital filters implemented

with the preceding Hamming and rectangularly weighted multiplier coefficients were

obtained from the following frequency-domain equations

H() n einT

n--O

m
I[ an (cos(nT) - j sin (ncT)J (22)

n---O

t- 1  sin(w T)COT T a (23)

A computer generated plotting routine was executed with these equations for T = 1/8

with w ranging from 0 to 41r and m = 16. Figures 4 through 7 present these results.

Consider the Hamming weighted filter of Figure 4. The atte.,uation achieved

between the passband magnitude of 1 .47 and the stopband ripple peak of 0.15 is a

ratio of 10, or 20 DB. The transition region, however, extends over 1 .25 Hertz



S-.. ...-- - . W - -

instead of the predicted 1 Hertz. In addition, the cutoff frequency of 1 Hertz is

centered about halfway along the transition region instead of at the beginning as

expected. These anomalies are primarily due to an insufficient sampling rate.

Referring to Equation (18), it can be seen that for the specified transition region

of 1 Hertz that a higher sampling rate, implicit in a smaller T, will provide additional

Fourier coefficients and hence filter states to better approximate the desired response.

The phase response of this filter, presented by Figure 5, is linear and well behaved

even at this minimum sampling rate. The magnitude and phase response for the digital

filter formulated from rectangularly truncated Fourier coefficients is shown by Figures

6 and 7. The behavior of this filter departs from the Hamming-weighted filter primarily

in terms of the undesired Gibb's oscillation it exhibits in the passband. Illustration

of this oscillation, of course, is the purpose for providing this comparison.

9
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BAND PASS TRANSVERSAL FILTERS

A low-pass to band-pass digital fi Iter transformation may be effected by a

technique which parallels that of a heterodyning process in analog signal theory.

Performing this transformation on transversal filters allows the stability and well-

behaved characteristics of this mechanization to be realized for the band-pass case.

This straightforward transformation is achieved in the Z-domain by the following

algorithm which mathematically converts the low-pass filter multiplier coefficients,

an, to band-pass multiplier coefficients, A.

as

H p(Z) t an Z" (24)
n=0

,Ip(z T) + *_z.iW oT)
H LIP= H (Z eluo + H LIP(Zei"

HSPz z (25)

= A A Zn (26)n-=O

m
A =n an r cat jw T(n-2r) 1 (27)

where w is the filter center frequency. Derivation of the band-pass coefficients

from Equation (27) requires close attention to the subscripts on the coefficient an-r.

Note that the summation of term on r for conversion of the low-pass filter coefficients,

a , to the bond-pass coefficients, An, is continued only until n = r. Negative sub-
nn

script values are thereby precluded.
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BAND PASS DESIGN EXAhAr..E

Consider a band-pass filter based on the preceding low-pass transversal design

with the purpose of providing DC attenuation while passing slowly varying AC components.

A center frequency of 2 Hertz is chosen in the example at hand. Equation (28) provides

coefficient conversion of the previous 17 low-pass Hamming-weighted coefficients

with the same sampling time of T = 1/8 second.

16
A = I a ,cosfSir/2 (n-2r)1 (28)

r0-

A0 = 0 A4 = +.0004 A8 =+.0554 A12 = 0.1596

A1 =0 A5 =0 A9 =0 A13 =0=A15

A2 = - .0044 A6 = -. 1279 A10 .+.1026 A14 = +.1445

A 3=0 A,=0 A, 0 A =-.155r

Figures 8 and 9 present the magnitude and phase response also generated by

computer methods utilizing Equations (22) and (23) us before. Both passband and stop-

band ripple is in evidence even though conversion was effected from Hamming-weighted

coefficients. This anomaly is characteristic of this method of generating a band-pass

characteristic. Ripple reduct.on to a specific acceptable level is achieved as a trade-

off with filter sampling rate in the same manner as for the low-pass design. Again,

from Equation (18) it is apparent that the faster the sampling rate the greater the number

of filter states, hence coefficients and delays, and thereby the more closely the filter

realization will approximate the desired characteristic. In the example at hand 12 DB

attenuation is achieved at DC. Howe,,.er, it is apparent that a judicious selection of
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filter center frequency, such as 1 .6 Hertz, will place the stopband null of Figure 8

at DC for 24 DB rejection. The phase response in the fi Iter passband i found to be

reasonably linear as shown by Figure 9. The phase warp shown occurs innocuously

at the nulls of the stopband.
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