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"ABSTRACT

The use of cepstrum is investigated as a means of detecting a
target and estimating target length in a low signal to rever-
beration ratio envirconment. A model experiment was performed
in a fresh water lake using a scale model submarine for a
target. The reverberation in the experiment was due mainly to
the sound backscattered from the alr-water interface. A major
result is that the cepstrum output may be averaged from ping
to ping~“to achieve a processing gain, resulting in a higher
_probability of detection. The estimation of target length is
a classification clue and it is pointed out that if the
receive data window covers the target then the cepstrum ocutput
is independent of epoch. That is, the cepstrum output is
independent of where the target waveform is located within the
received data window. Therefore, cepstrumn is a capable tool
for estimating target length. It is also shown that the ceps-
trun processor is complex and that averaging over several ping
cycles 1s necessary in order to achieve the necessary process-
ing gain over reverberation.
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I. INTRODUCTION
The Problem :

One of the primary tools in antisubmarine warfare is the use of
active soner to detect and to classify underwater objects. Two of
the problem areas in the use of sonar are the reverberation generated
by the sound pu%yé and the complexity ot' most urnderwater targets.

The problem of feverberation is Qoncerned with detection, Frequently
both targete and boundery surfacés are modeled as collections of
discrete points. The significance of this type of model is thut:
each discrete point backscatters a replica of the sound pulse and

one cannot distinguish between points except on the basis of energy.

W A

That 1s, the statisticel nature of each replica is the same but some
points are better reflectors than otheis. Therefore a sonar is said ) |
to be reverberation limited. Once a target is detected then the

problem becomes one of classification. It has been shown thaet the

backscattered sound from simple targeté does contain sufficient
information to make fine distinctions between targets. For example,
under laboratory conditions a likelihocod ratio processor has been
used to distinguish between hollow and solid spheres of slightly
different sizes.l The success of th. likelihood processor was
dependent on tne precision of knowing the arrival time (epoch time)
of the backscattered sound relative to the transmit time. Under
field conditions the epoch time is unknown, and is difficult to
measur" depending on the relative reverberation level, An additional
problem with using a likelihood ratio processor to classify is the

variability of a real complex target. That is, as the target changes
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espect relative to the sonar (the discrete point reflectors rearrange
themselves)s then the 1likelihood processor must change its model of
the target i. order .o successfully classify the received sound.

An alternate procedure to using a likelihood processor or a
matched filter? for classification is to utilize the physical parameters
describing the target such as Doppler, target length, and agpect angle.
These parameters are regarded as classification clues and it 1s the
purpose of this repcrt to show how cepstrum can be used to detect a
terret and to provide an estimate of target length in a low signal to

reververation ratio environment,

Cegtrum Background

€ pstrum, defined as the Fourler transformation of the log power
spectrum, was first proposed3 as a processor to detect the separation
between overlapping waveforms as applied to seismic problems. However,
its most successful application has been in the extraction of pitch in
speech analysis.h When cepstrum is examined in detail, 1t is found to
be & speclal case of homomorphic5 filtering and it has been generalized
by Oppenheim, 33‘2;.6 Basically, a homomorphic process involves a
multiplication or a convolution. A logarithm or logaritimic derivative
is then used to separate the multiplicative process into an additive
process, For exemple, suppose that it is desired to remove the effects
of a low frequency-function (trend) which js multiplied against a high
frequency function. This would not be possible with an ordinary linear
highpass filter, but one could teke a logarithm of the total function,
thus separating the twe functions, highpass filter the log function,
and then teke the antilog of the filtered functioﬂY to restore the high
frequency function. In the case of the backscattered sound from a
submarine, there is & multiplicative process in the frequency domain,
That is, suppose that a sound pulse x(t) is projected into the water.

— Tvw
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If the submarine consists of N point reflectors then a model of the

backscattered sound from tke submarine would be

r(t) -—Z anx(t-rn) , (1)

where T is the nth waveform arrival time (time after transmission) or
epoch time, and &, is the amplitude of the nth waveform., The Fourier
transformation of Eg. (i) is

N =
R(f) = E a X(£)e , (2)
n
and the energy spectrum is
% * N N -iaﬂtn-ﬂq)
RATIR(E) = X (£)K(£) Y D am e v, (3)
m n

where R and X are the Fourier transforms of r and x respectively.
There are two important features to note in regard to Eq. (3). The
energy spectrum of the transmitted sound, X*(f)X(f), is multiplied
against the double summation and can be removed (filtered) by a
homomorphic process. The second feature is that Eq. (3) is a funetion
only of frequency, f, ang the time differences between epochs, Tn;Th.
If the energy spectrum X X of x(t) is uniformly constant in the fre-
quency domain, then it can be easily removed by taking the log or log
derivative of Eq. (3) and subtracting the mean value, If XX 1is
unknown, then a suggested alternate procedure is to experimentally
estimate it by projecting sound at a random surface (such as the
alr-water interface), receiving the backscattered sound, and estimat-

* 3%
ing X X over 75 or more ping cycles, The estimation <X A> can he
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accomplished this way very accuratéiy as predicted by Ol'shevsk118 and
as shown experimentally by P’.-'.emons.9 Once the estimate <x¥x> is
obtained, it can be divided into Eq. (3), which effectively flattens
the éﬁérgy spectrum., The basic idea-is to somehow remove the effect
of #fx_fgqm:EqT—GB)“ﬁﬁgﬁ‘that only the.dependence on T -7 1is left.

A Fourier transformation of s filtered log energy spectrum is a ceps-
trum, which is ahhost the same as an autocorrelatioﬁ. For example, \
the Fourier transformation of just an energy spectrum is an auto-
correlation, The resulting cepstrum is a function of lag time or

quefrency3 end it will have pesks at the times ITn-Tml relative to

the cepstrum origin. Therefore, cepstrum will give an estimate of

target length.

Contents

This report is empirical iﬁ nature. It should be noted that
the data processing was performéd with a general purpos~ digiﬁal
computer. The second chapter éiscusses second order sampling )
(quantizing) as applied to bandlimited signals and includes a block
diagrar. of the cepstrum proces%ing used for the report. The th;;d
chapter discusses the cepstrumfsignal processing gain by treating
cepstrum as a black box procesgor, and a comparison is made with other
processors, The fourth chaptér compares the range resolution of
cepstrum with a replica correﬂator and shows how cepstrum can be used
to estimate target length. TAe fifth chapter shows how cepstrum may
be used as a detector in a 104 signal to reverberation enviromment .
and how it can localize & tar%et in range. The sixth chhpter examines
the possibility of using a digital computer to compute cepstrum in
real time, Chapter VII is a I
tions outlining the good and ﬁad aspects of cepstrum.

umary of conclusions and recommenda-

e g -
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ITI. PROCESSING TECHNIQUE

———

Sempling - e

$—’_ﬁ—~,,~————“""’ The initial form for any sonar return is an electrical signal,

which in this report is stored on analog tape. In order to implement !

{ ’ computer tecﬁniques cf data analysis, it is necessary to convert this

analog aigna} to digital form, 1.e., a time function represented by

a sequence of values of that function taken at equally spaced intervals

in time, In general this time spacing, At, must be such that the

& sampling fréquency, fs = LﬂAt, is twice the highest frequency present
in order tofprevent aliasing errors. Since fs is constant throughout

a sampling brocedure, the notation e(t) = ey will be used where
t = mt’ i = 0’1’2’ LI ]

The data discussed in this report are restricted to signals whose
energy is confined within a frequency band of width, W, and centered
at @, the carrier frequency. Thils prompts the considerstion of

quadrature sampling.lo-~A signal satisfying these requirements may be 1

- - 7 represénfed by the”ggygtion~
e(t) = x(t) cos ot + y(t) sin w t , ()

where x(t) and y(t) are low frequency functions whose bandwidths are

W centered at zero, They are referred to as the x and y gquadrature

components of the signal respectively. The minimum sampling ra*e for
8 signal of this nature is W on each quadrature component. It should
be noted, however, that-if a signal is sampled at W on each quadrature
component,'any energy at a frequency outside th ‘and will be aliased




B gl

S

T T - >- ¥ r—— ——

into the band. ¥igure 1 1llustrates the quaedrature sampling of a
signal of slowly changlng frequency whose original sampling rate was
ha%/2n. Each mark on the signal denotes a sample point. The x and y
quedrature components are labeied as such. In this case the sampling
rate is a%/éﬂ on each quadrature component, The sampling rate is
reduced to W = ab/(2ﬂn) by considering only each nth x and y quadrature
component pair, It becomes quite obvious that a great saving in
‘computational time is made due to the decreased number of points
necessary to repregent a signal.

Cepstrum Processing

The cepstrum is defined as the inverse Fourier transform of the
log power spectrum. Figure 2 1s a flow chart of a computer program
to calculate the cepstrum. The X array conteins N x quadrature
component samples of the signal and the Y array contains the corre-
sponding N y quadrature component somples of the signal. The energy
spectrumll is found directly from the Fourier transform of the signal.
The Fourier transform is estimated digitally by use of the Cooley-
Tukey12 Fast Fourier Transform algoritim. The number of points .
transformed must be an integer power of two; thus if N does not
satisfy this requirement, enough zeroes are added to the end of the
X and Y arrays so that the nunber of points is an integer power of
two; N 1is also modified to equal this number. Since cepstrum is s
correlation process, N additional zercec are placed at the end of
each array to prevent a recycling13 nf the signal due to its harmonic w
neture, The energy spectrun of an artificielly produced signal is |

shown in Fig. 3; since the sampling vate is W on each gquadrature
component, the frequency semples ar independent, That is, the
correlation between frequency components is near zero.lu It is }
realized that for real data some allasing will occur at this
sampling rate, but it was found in this case that its effect is
negligible when the data are sufficiently filtered. .. =ntioned in
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X(1),I=1,N x~-component of signal .
Y(1),I=1,N y-component cf signal

!

X(1) & Y(I) = 0.0 I~N+3,2N
FFT(X,Y;2N)

l

X(1)

- Log(R(AX(DHY (DM (1) /(L))  I=1,2N

3

|

Y(I) = 0.0 [I=1,2N

r

' BIAS = 0.0

1
BIAS = BIAS+X(I) 1I=1,2N
. * [ ' R

X(I) = X(I) - BIAS - .,2N

T

FFT(X,Y,2N)

X(1),I=1,N x-component of cepstrum
Y(1),I=1,N y-component of cepstrum ;

FIGURE 2

FLOW CHART OF CEPSTRUM COMPUTER PROGRAM

8
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the introduction, it is assumed that the effect of the frequency
response of the entire electronic system may be found by calculating’
the estimated energy spectrum of a large number of signals. This
average power P 18 divided into the energy spectrum of a single
signal to remove the effects of the electronic system signal. The
effect of the "flattened" signal energy is removed by extracting the
mean log power form each point of the log power. The application of
the Fast Fourler Transform to the X array, which contains the log
power and the zeroed Y array, produces the x quadrature component of
the cepstrum in the X array and its corresponding y quadrature com-
ponent in the Y array. The cepstrum envelope is found by forming
the modulus of the X and Y arrays. The log power and cepstrum
envelope of an artificially produced signal along with its power
spectrum is shown in Fig. 3. It will be noted that in & high
signal-to-noise ratio situation the log process in the cepstrum will
generate summation erms (e.g., (0.70 + 0,01) sec), which are not
ordinarily visible in a low signal-to-noise situation,

10
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III. PROCESSING GAIN ‘

Orne method with which to evaluate the effectiveness of cepstrum
a8 a processlug technique is to compute its processing gain, Consider
the cepstrum processor to be a black box with a certain signal-to-noise
ratio on its input and a corresponding signal-to-noise ratio on its
output, The processing gein, G, is defined here to be

2
Peak
.. e (s+n)o/N0 ’ (5)
(S+N) /Ny

where

Peak(s+n)§ = peak signal plus noise out squared,

No = mean square noise out,
(S+N)1n = mean square signal plus noise in, ﬁ
Nin = meen square noise in.

-

This is a variation of the definition given by Stewart and Westerfield.l)
G is computed numerically as a function of Sin/Nin using artificially
generated data for four different processors. Figure 4 shows the

results for artificial data whose time-bandwidth product is 16.

Notice that for a replica correlator, the crosscorrelation between

a replica of the transmitted signal and the received signal, that

the processing gain approaches twice the time-bandwidth, TW, product,
which 1s the result predicted by Stewart and Westerfield for their
definition of processing gain, The results for the polarity coincidence

PN P adlh
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correlator are somewhat similar to those for the replice correlator.
It 1is assumed that the degradation is due to nonavailability of

amplitude information in the correlation.

The results for the autocorrelation and the cepstrum require an
explanation of the procedure used in the calculation, The primary
point of interest is %o be able to detect the time difference between
two received replicas of the transmitted signal superimposed in a
noise background, as shown in Fig. 5a., The autocorrelation of Fig. 5a
is shown in Fig. 5b, and the cepstrum of Fig. 5a is shown in Fig. 5c,
The processing gein is computed by repeating these experiments 10
times and averaging to get the peak signal plus noise out squared,
Typical results for the processes with noise only are shown in
Fig. 6. The processing gain, G, for the autocorrelation grows as
the square once the peak signal plus noise out is greater than the
surrounding mean square noise out. The mean square output from the
cepstrum is independent of the signal amplitude; consequently the
processing gain goes to zero as Sin/Nin goes to infinity. To show
this, consider a normally distributed, independent random variable,
x, with a zero mean and a unity variance. Define a new variable,

y=0X. Let y be the noise input to the cepstrum processor.

==
2=

PRI (6)
1

-

1

M
Nin =

M
i i=
Without loss of generality it is assumed the variations in the
signal-to-noise ratio are directly proportional to variations in

the variance of the nolse and not the target strength. If the
Fourier transform of y is denoted F{y} the cepstrum, Cep, may be

written
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Cep = |F(n( |P(y}|?) - mean}| (7)
where
M
mean = % 12; n( [Py} |2)i (e)
and
IF 2 = Plrm (9)

Thus Eq. (7) reduces to

M
Cep = |F{2tn|F(x}]| - ’n‘Ji > 2P} (10)
=1

which is a constant with respect to 02, and therefore the mean square
noise out is a constant, K. In the limiting case of large noise and
smell signal, the processing gain beccmes

1n Peak(s*“)i/"o] _&EK

8/iso TSR] N J‘ 212 y (12)

where it is found that

Est(Peak(a+n)§ = Bst(N°) = f ) WXG(N)aN = 2K (12)

0

for the dominating Gaussian noise, because N, which is defined in

Eq. (17), is a chi-square variate with two degrees of freedom.16

16




For a large signal and comparatively low ncise consiler the
speclal case of a received signal r, ccnsisting of two sguperimposed

replicas of the trausmitted signal,

r(t) = ax(t) + ax(t-7) . (13)

Cep = |F[ln2a2 + tan{x]l2 + In(1+cos2wr) - mean}| ) (14)

which shows once more that the cepstrum is independent of changes in
the variance of the signal. The peak signal plus noise out is equal

to a constant c¢; therefore )

2
/N
im Peaﬁgsm)o/o Jlm | S/ (15)
S/N-w —(S+N)in/ﬁin g=0 .52/02

2
where a denotes the mean square signal in. The results shown in
Egs. 11 and 15 agree very well with the experimental results shown in ‘
Fig. 4.

As would be evpected the processing gain is & function of the
transmit signal as is illustrated in Fig. 7, which presents the
calculation of the processing gai:n of cepstrum for several different
time-bandwidth products,

The conclusion is that the processing gain of cepstrum is low
compared to other techniques; however, the processing gain moy be
increased by averaging the gquadrature components before forming the
envelope, It is not shown in this report, but s linear relationship
was experimentally found between processing gain and averaging. That
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is, if N cepstrums are averaged then the processing gailn is N times
the curves shown in Fig. 7. From observing Fig. 7. it is found
that it takes between 6 and 11 cepstrums to equal the processing
geln of a replica correlator where the greatzr TW product requires

the larger number of cepstrums for averaging.

19
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IV. DETERMINATION OF TARGET LENGTH

Range Resolution

Assuming a "flat" energy spectrum, the range resolution of
cepstrum is greater than that of replica correlation where the width
of a peak from a replica correlator is 2/W measured from null to null,
An exact relationship for the cepstrum resolution is not known due to
its nonlinear nature. A comparison mey be made, however, between
replica correlation and cepstrum by using artificial data. The test
signal contains two FM slides spaced At apart, Figure 8 gives an
indication of the range resolution for the replica correlation for
several different values of At, TFigure O shows the cepstrum of the
same signals. From Figs. 8 and 9 it is concluded that the range
resolution of cepstrum is greater although there are greater side
lobes,

Estimation of Target length

It has been already noted that if a received waveform r(t)
consists of N superimposed waveforms anx(t-'rn) from a target, that is,

N
r(t) = }E: anx(t-Th) + reverberation , (1)

n=1

then the peaks in the cepstrum relating to the target will be located
at the lag time ITn-Th'. If the target geometry relative to the sonar

21
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- with differing sets of noise. The probability densities for each lag

or time separation between the two points. Note that the cepstrum

) T - v T T T T T T ey

i1s held constant then the T T, are constants and therefore the
positions of the cepstrum peaks relating to the target will be constant
while the cepstrum peaks relating to noise will vary in amplitude and
position. As an illustration, e 2-point target was artificielly
generated, similar to those shown in Figs. 8 and 9. The 2-point

target signal was superimposed in Gaussian noise at a 6 dB mean

square signal-to-unoise ratio, The resulting cepstrum was divided i
into 25 lag time gates and. the experiment was repeated many times

time gate are shown in Fig. 10, which is a jJoint probability density
of lag time and amplitude. It is clear that there are consistently
large peaks in the 6th lag time gate, which marks the target length

noise appears to obey a Rsyleigh law (which is expected since the
original data is Gaussian). The amplitude probability density in
the 6th lag time gate is a superposition of noise and signal. It is
clear that, at least 50% of the time, the peaks in the 6th lag time
gate are below the noise level. Therefore at the S/N level of 6 dB,
cepstrum has a 50% probability of correctly estimating the target
length. The accuracy of target length determination will be a +
function of S/N level, TW product (or processing gain), and how
many cepstrums are averaged. The illustration of Fig. 10 does not
show the effects of averaging.
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V. CEPSTRUM AS A DETECTCR

Description of the Experiment

w The effectiveness of cepstrum as a detector was tested by

’ evalusting its ability to detect a target in a low signal-to-noise
enviromment, A controlled experiment was conducted at the Applied
Research Laboratories Lake Travis Test Station (LTTS). A rough
sketch of the geometry of the experiment is shown in Fig. 11. Two
hundred pings illustrated in Fig. 12 were recorded, digitized, and
stored on magnetic tape. The transmit signal was a frequency modu-
lated slide with the following characteristics:

g g

Carrier frequency . . . . . . 114.87 kHz
Bandwidth . . . . . . . 3,2 kHz r

Pulselength . . . ) ) . . 10  msec 1

The sampling was done in quadrature with a base frequency of 459.48 kHz.

Quadrature sampling rate (on each component) 6.4 xHz
Receive window length . . . . . 160 msec
Receive window delay . . . . . 70 msec
Nunber of data samples/component . . . 102k
Validity of the Ensemble
’ Before testing cepstrum as a detector it will be established that
' the 200 sonar returns constitute s valid ensemble.l’?® That is,

' Preceding page blank
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the data samples will be shown to be random, independent, and
homogeneous., Actually, the ensemble will be shown to be valid as a
function of range (time after transmission) because reverberation
data are generally nonstationary in range. It is necegsary to
velidate the ensemble because several cepstrums will be averaged
together to obtain a processing gain and it would not be reasonable
to average data that differ in their statistical parameters.

The test for homogeneity is done by two different hypothesis
tests. The first, Kolmogorov-Smirnov two-sample test,l is done by
comparing cumulative probebility distributions taken at particular
times, tl’ after transmission, For example, at time tl after trans-
mission a sample (x quadrature component) is taken from each sonar
return to form & random data set (Xl(tl), x2(t1)’ ceny XZOO(tl)).
The date set is subdivided into the first 100 numbers and the second
100 numbers. Then the test statistic, Z(t
variable, is measured by computing

l), which is also a random

2(ty) = MAX [F(X,(¢})) - F(X,(%,))]
1=1,2, ..., 100 (16)
J =101, 102, ..., 200 ,

where the F's are the cumulative probability distributicns of the
experimentel data. If the data are homogeneous, then the probebility
distribution of Z is known and a threshold may be set for a given
confidence level. The result is shown in Fig. 13 where Z(tl) is

plotted as a function of t, or range, and the threshold levels for
a=0,05 and @ = 0,50 are shown as horizontal lines. The interpre-
tation of Fig., 13 is that if the datua are homogeneous at time tl

then there is a 95% probability that Z(tl) will lie below the & = 0,05
line cr equivalently there is & 50% probability that Z(tl) will lie below
the @ = 0.0 1line., It will also be noted that 7 is nonparametric, t.e.,
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not dependent on the soner return intensity, because the cumulative
probabilitlies are always normelized to one. Thec second test for
homogeneity, Wald-Wolfowitz two-sample runs test,l9 uses the same
data, where the first 100 numbers ire put into a set A and the second
100 numbers are put into a set B, The test statistic Z(tl) is found
by combining the sets AB, sorting the dete into a unondecreasing

sequence, and then counting the number of runs H

A of A and the number

of runs N_ of B, Then

B
r-u
r
Z = — ) (17)
r
where
r= NA + NB
L. 2N, Ny .1
S . I ,
r NA + NB +
. 2N, NB(QNA Ny - N - NB)
r : T \@ .
(HA + mB) (NA + N - 1)

and the result is shown in Fig. 14 along with the threshold lines. It
is interesting to compare Figs. 13 and 14 and to note that significant
events, 1.e., points above the a = 0,05 line, do not coincide, but the
number of significant events in each figure are relatively the same.
It will be recalled that even if the dsta are homogeneous there is &
5% probability that the test statistic Z at any point in time will lie
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above the & = 0,05 line, To complete the test for homogeneity it
would be necessary to subdivide Lhe data again and retest it;
however, from the results 1t is concluded that these datsa are

homogeneous .

It is also necessary to test the data for independence, which
will be done two ways. The covariance matrix, which is discussed
later, is one way, and another is to use a one-samp.e runs test.l9
The same data as used in Figs. 13 and 14 were treated as positive or
negative numbers and runs of pluses :mnd m- “ises were counted, The
test statistic Z is computed in a similar rashion as in Eq. (17)
and the result is plotted in Fig. 15 Tt is conciua.d from Fig. 15
and the covariance matrix that the da 2 ar~ independ=nt

In addition, a test for normality, which is unnecessary t
establish the validity of the ensemble, is done on the samc data.
A Kolmogorov~-Smirnov one-sample test is used which is similar to
the technique described by Eq. (16) except that one of the cumulative
distributions is theoretical, with its mean and variance computed
from the experimental data. The test statistic is plotted in Fig. 16
end 1t 1s noted that there are no significant events above the
¢ = 0.05 1line, The conclusion is that the data are normally dis-
tributed as a function of range, and the test is very conservative
because the experimental means and variances were used to compute
the theoretical distributions.

To establigh the independence of the data and to obtain the
intensity of the reverberation and the backscattered sound from the
target, consider the covariance matrix of the ensemble just described.
Since the reverberation data are nonstationary, ensemble averaging
1s used, The covariance matrix, C(tl’t2)’ 1s calculated by the

formule.20
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c(t,t,) = % LX(tl)X(tg) + ¥(%,)¥(t,)

ol -

Y(tl)x(tz) - X(tl)Y(t2)
L R

ol =

Cy(tl,tQ) =

where Cx(tl’tE) and Csr(tl,tz) are the x and y quadrature components
of the autocovariance, respectively, and the envelope, E(tl,t2), which
is plotted in Fig. 17, 1s found by the equation

B(t,,t,) =‘/cx(t1,t2)2 se(t,8)0 (19)

Also shown in Fig. 17 is an enlarged section of the covariance matrix
which covers the target region. As an aside it should be noted that
the covariasnce matrix is a bandlimited two-dimensional high frequency
surfece, The plot in Fig. 17 is the envelope of that surface showing
a strip along the main diagonal of the covariance matrix., The width
(nu1l to null) of the ridge running along the main diagonal is 2/W,
where W = 3.2 kHz. Note that the ratio between the target intensity
and the intensity of the immediately surrounding reverberation is in
the range 1.5 to 2.0. Since cepstrum is independent of rela:ive
changes in intensity, the high intensity reverberation at the beginning
of the signal will have a negligible effect on the processing. A plot
similar %o Fig. 17 is shown in Fig. 18 for the normalized covariance
matrix, Notice that the width of the major lobe (diagonal) is fairly
constant except in the region of the target, where a broadening effect
is present due to the finite length of the target.

It has been determined that an increase in processing gain is
cbteined by averaging the x and y quadrature components of the
cepstrums of several homogeneous pings. The effect is to average out

the noise which is random in amplitude and phase, and to have a much
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lesser effect on the target peak. The number of cepstrums that may
be averaged is limited by the relative stabilities of the sonar
apparatus and the target, since a fluctuation in the relative phase
(changing target a.spect) could tend to cause the target peak to
average to zero,

Estimated Energy Spectrum

The estimate of the backscattered sound energy spectrum <X*X>
is computed from the epoch times, 69 msec to 89 msec, averaged
over 200 pings. The estimated energy spectrum is shown in Fig. 19,
where it is observed to be shifted to the left. This is a good
i1llustration of the significance of using the backscattered sound
from a random surface, in this case the surface of Lake Travis, to
flatten the energy spectrum by a division process. That is, <X:'X>
is not uniformly constant over frequency and this would cause a
significant peak to appear in the cepstrum, which would be in error.
Superimpoged on the estimated energy spectrum is the combined fre-
guency response of the proJector/receiver transducer system. The
frequency response of the recording/reproduction system is not
shown,

Detection

Once the frequency response of the entire system is known and
used to flatten the energy spectrum, then any consistent peaks in
the cepstrum will indjicate the presence of a target. For example,
Fig. 20 illustrates a typical ping return divided into 15 over-
lapping receive gates. A cepstrum is computed for each gate.
However, the presence of a target is not apparent. The vepstrums
are also shown in Fig. 21, The experiment 1s repeated by using
three ping returns and averaging the x,y components of the cepstrums
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in each gate before computing the cepstrum envelopes. This time,
significant peaks appear near the cepstrum origin in gates 9 and 10,
as chown in Fig. 22, The experiment is repeated again by averaging
over ten pings and the results are shown in Fig. 25. Agaln signifi-
cant peaks appear close to the cepstrum origin., Also, the width of
the peaks indicate an acoustic target length of 1 msec. The greatest
possible acoustic length of the model target was actually 2.8 msec in
this experiment. The probability of detection is illustrated by the
receiver operating characteristics (ROC) shown in Fig. 24, which also
shows the effects of averaging., For the purpose of generating

Fig. 24, all 200 pings were used., The second, third, and fourth
points of each cepstrum were used to generate histograms of amplitude,
and knowing the target to be in gate 10 (gates 9 and 11 were ignored) s
it was posgsible to 4 *nerate the ROC curves., The histograms from

gates 1 to 8 and 12 to 15 were averaged together. The dip in the ROC
curve showing an average of 10 cepstrums is probably due to an insuffi-
clent amount of data. The significant result is that averaging
cepstrums greatly improves the ROC curves as illustrated by

the increasing steepness of the curves on the left-hand portion of the
graph.




GATE NO. GATE NO.

N LV ) 9 Mww
N VAV VN VY 1 W g
© e 2 A A
S WM A 5 b,

i ¢ i wan o vl A
7 Mg t OWWM\/W;O
s M A

TIME (msec)
0 20

TIME (msec)

' FIGURE 22

CEPSTRUMS OF LAGGED DATA WINDOWS
AVERAGED OVER THREE PINGS

AS-71-549
b3

wh Wha W Wbl

{
#




GATE NO. GATE NO.

A SRSV v 5 MM Ao

0 20
TIME (msec)
8 W”\J‘/\N’V’\J\M
0 20
TIME (msec)
FIGURE 23

CEPSTRUMS OF LAGGED DATA WINDOWS
AVERAGED OVER TEN PINGS

AS-71-541




PROBABILITY OF DETECTION

o
—
LINE OF
CHANCE
wn
coq
o
Q’j ¥
0.0 0.5 1.0

PROBABILITY OF FALSE ALARM

FIGURE 24

RECEIVER-OPERATOR CHARACTERISTICS OF CEPSTRUM AS
A DETECTOR USING LTTS REVERBERATION PLUS TARGEYT DATA
(S#N)/N = 1.5 dB




VI, FEASIBILITY OF REAL TIME CEPSTRUM

A processing system consisting of, for example, a Control Data
Corporation ALPHA-121 computer system and a compatible Control Dats FFT
peripheral processing unit is considered for use as a real time ceps-
trum processor for a typical sonar system. The transmit signal is a
frequency modulated pulse with a bandwidth of 625 Hz, carrier fre-
quency of 5 kHz, and a pulselength of 51.2 msec (TW=32). The receive
gate ranges from 606.67 msec to 12906.67 msec after the transmit; thus
the maximum repetition rate is approximately one every 13 sec. The
receive gate mentioned covers the range from 500 yd to 10742 yd. If
the data is sampled at the bandwidth of the transmit signal, 7680
samples are necessary to estimate the signal. The length of a target
1s assumed to be 300 ft; thus the target length in the signal is
approximately 175 msec, which is covered amply by 256 samples or a
409.6 msec data window, Fifty-nine cepstrums are necessary to cover
the signal if the data window is lagged 204.8 msec or 128 samples for
each cepstrum. The time necegsary to process a single cepstrum is
approximately 64 msec plus any small amount of time which was unfore-
seen in the data storage. Therefore, lt should be possible to handle
six signals (beams) simultaneously. The breakdown of this time is as
follows:

PROCESS TIME (msec
1, FrT 3,086
2., Form power 10.438
3, Calculate logarithm 38,400
l, Calculate bias 1.953
W7
ﬁ [
receding page blank
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PROCESS TIME (msec

5. Extract bias and zero Y array 2.560

6. FFT 3,086

T. Form 128 points of envelope 5.248
Total time for one cepstrum 64,371

The logarithmic step is especially time consuming, and it is
agsumed. that additional specisl purpose hardware would make the

processing even faster.
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VII, SUMMARY

Adventages of Cepstrum Processing

The primary advantage of cepstrum is that if the data window
covers a target, then the cepstrum is independent of epoch time. That
is, the peaks of the cepstrum will alweys be located in the same rela-
tive position no matter where the target is located in the data window.
The significance of this is that the quadrature components of several
independent cepstrums may be averaged to achieve a processing
gain, This same adventage will also be true for autocovariance and
pseudoautocovariance. This advantage ies not true, for example, in
the case of replics correlation or matched filtering where it may be
possible to average envelopes but insufficient phase control (epoch)
would cause the target to average to zero if the guadrature components
were used. The second advantage of cepstrum is w..at its mean square
output is independent of the mean square input, Therefore, it is
easier to choose a threshold for detection or estimation of target
length.

Disadvantages

The primary disadvantages of cepstrum are its complexity and
low processing galin, Even though the low processing gain may be
increased by averaging, a real terget's relative motion will tend
to smudge the cepstrum peaks over & short period of time. Therefore
1% would be necessary that many aversges be spread over & period of
several minutes. Another problem which has been implied, but so
far not mentioned, is that the signal or backscattered sound from
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the target must be coherent. The renson is that cepstrum is a
correlation process and it is necessary that the transmitting signal
which insonifizs the target be intact (coherent) and not chopped up
as Iin a RDT-type transmission.

Conclusions and Discussion

It is concluded that cepstrum is capable of estimating target
length and it is capeble of detecting a target in a Jow signal to
reverberation ratio environment. However, there is a restriction on
the type of reverberation. The reverberation considered in this
report was generated by sound backscattering from the air-water
interface (surface), which was in random motion. Therefore, the
surface reverberation will cancel in the averaging process while the
backscattered sound from the target (assuming little change in aspect)
will remein relatively constant. In the case of reverberation from
the sea bottom it is felt that the bottom reverberation will have the
same characteristics as the target in that it gives consistent returns
that will not average to zero. In general, it is felt that the com-
plexity of computing e cepstrum and the necessity of averaging over
a period of several minutes outweigh the advaentages of cepstrum being
independent or epoch time,
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