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"ABSTRACT

The use of cepstrum is investigated as a means of detecting a
target and estimating target length in a low sigpna to rever-
beration ratio environment. A model experiment was performed
in a fresh water lake using a scale model submarine for a
target. The reverberation in the expe:-iment was due mainly to
the sound backscattered from the air-water interface. A major
result is that the cepstrum output may be averaged from ping
to pingit'o achieve a processing, gain, resulting in a higher
.probability of detection. The estimation of target length is
a classification clue and it is pointed out that if the
receive data window covers the target then the cepstrum output
is independent of epoch. That is, the cepstrum output is
independent of where the target waveform is located within the
received data window. Therefore, cepstrum is a capable tool
for estimating target length. It is also shown that the ceps-
trum processor is complex and that averaging over several ping
cycles is necessary in order to achieve the necessary process-
ing gain over reverberation.
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I. INTRODUCTION

The Problem

One of the primazy tools in antisubmarine warfare is the use of

active sonar to detect and to classify underwater objects. Two of

the problem areas in the use of sonar are the reverberation generated

by the sound puls'e and the complexity of most underwater targets.

The problem of reverberation is concerned with detection. Frequently

both targets and boundary surfaces are modeled as collections of

discrete points. The significance of this type of model is that

each discrete point backscatters a replica of the sound pulse and

one cannot distinguish between points except on the basis of energy.

That is, the statistical nature of each replica is the same but some

points are better reflectors than others. Therefore a sonar is said

to be reverberation limited. Once a target is detected then the

problem becomes one of classification. It has been shown that the

backscattered sound from simple target6 does contain sufficient

information to make fine distinctions between targets. For example,

under laboratory conditions a likelihood ratio processor has been

used to distinguish between hollow and solid spheres of slightly
1

different sizes. The success of th- likelihood processor was

dependent on tne precision of knowing the arrival time (epoch time)

of the backscattered sound relative to the transmit time. Under

field conditions the epoch time is unknown, and is difficult to

measur- depending on the relative reverberation level. An additional

problem with using a likelihood ratio processor to classify is the

variability of a real complex target. That is, as the target changes



aspect relative to the sonar (the discrete point reflectors rearrange

themselves), then the likelihood processor must change its model of

the target iL. order uo successfully classify the received sound.

An alternate procedure to using a likelihood processor or a
2

matched filter for classification is to utilize the physical parameters

describing the target such as Doppler, target length, and aspect angle.

These parameters are regarded as classification clues and it is the

puL-pose of this report to show how cepstrum can be used to detect a

tarpet and to provide an estimate of target length in a low signal to

reverberation ratio environment.

Ce r._trum Background

C pstruw, defined as the Fourier transformation of the log power

spectrum, was first proposed3 as a processor to detect the separation

between overlapping waveforms as applied to seismic problems. However,

its most successful application has been in the extraction of pitch in

speech analysis.4 When cepstrum is examined in detail, it is found to

be a special case of homomorphic5 filtering and it has been generalized

by Oppenheim, et al.6 Basically, a homomorphic proress involves a

multiplication or a convolution. A logarithm or logarithmic derivative

is then used to separate the multiplicative process into an additive

process. For example, suppose that it is desired to remove the effects

of a low frequency-function (trend) which Is multiplied against a high

frequency function. This would not be possible with an ordinary linear

highpass filter, but one could take a logarithm of the total function,

thus separating the two functions, highpass filter the log function,
7,

and then take the antilog of the filtered function to restore the high

frequency function. In the case of the backscattered sound from a

submarine, there is a multiplicative process in the frequency domain.

That is, suppose that a sound pulse x(t) is projected into the water.

2
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If the submarine consists of N point refleetors then a model of the

backscattered sound from the submarine would be

Rr(t) L a nx( t-T n) M i
n

where T is the nth waveform arrival time (time after transmission) orn

epoch time, and an is the amplitude of the nth waveform. The Folrier

transformation of Eq. (1) is

N -iw(
B~f) ~X(f)enR(f) L ,[ nXfe (2)

n

and the energy spectrum is

* N N -iW(Tn-T)R lfýR(f) -- X (f)x(f)EF ane , m
m n

where R and X are the Fourier transforms of r and x respectively.

There are two important features to note in regard to Eq. (3). The

energpy spectrum of the transmitted sound, X*(f)X(f), is multiplied

against the double summation and can be removed (filtered) by a

homomorphic process. The second feature is that Eq. (3) is a function

only of frequency, f, and the time differences between epochs, Tn .
n m

If the energy spectrum X X of x(t) is uniformly constant in the fre-

quency domain, then it can be easily removed by taking the log or log

derivative of Eq. (3) and subtracting the mean value. If X X is

unknown, then a suggested alternate procedure is to experimentally

estimate it by projecting sound at a random surface (such as the

air-water interface), receiving the backscattered sound, and estimat-
i *ing X X over 75 or more ping cycles. The estimation <X X> zan he

• • .... • • •,•~~~~ ~~~~~'5• ••' •i|• : :• I •• '



" i~8
accomplished this waj very accurately as predicted by Ol'shevskii and

as shown experimentally by P2_emons.9 Once the estimate <X X> is

obtained, it can be divided into Eq. (3), which effectively flattens

the 'dfergy spectrum. The b asicJideaý,is to somehow remove the effect

of X X frcBq-.-(-. iuch that only the ..dependence ,on Tn - T is left.

A Fourier transformation of-a filtered log energy spectrum is a ceps-

trum, which Is almost the same as an autocorrelation. Foqr example,

the Fourier transformation of just an energy spectrum is an auto-

correlation. The resulting cepstrum is a function of lag time or

quefrency3 and it will have peaks at the times ' n -mI relative to

the cepstrum origin. Therefore, cepstrum will give an estimate of

target length.

Contents

This report is empirical in nature. It should be noted that

the data processing was performed with a general purpose! digital

computer. The second chapter discusses second order sampling

(quantizing) as applied to banqlimited signals and includes a block

diagrar. of the cepstrum processing used for the report. The third

chapter discusses the cepstruml signal processing gain by treating

cepstrum as a black box processor, and a comparison is made with other

processors. The fourth chapter compares the range resolution of

cepstrum with a replica corre ator and shows how cepstrum can be used

to estimate target length. Tie fifth chapter shows how cepstrum may

be used as a detector in a 104 signal to reverberation environment

and how it can localize a tarfet in range. The sixth chapter examines

the possibility of using a di ital computer to computE cepstriua in

real time. Chapter VII is a ;umnary of conclusions and recommenda-

tions outlining the good and tad aspects of cepstrum.

S, '- , I •r!!• • " i "'• I ma a i• 1 I • k'



II. PROCESSING TECHNIQUE

Sampling .

The initial form for any sonar return is an electrical signal,

which in this report is stored on analog tape. In order to implement

computer techniques of data analysis, it is necessary to convert this

analog signal to digital form, i.e., a time function represented by

a sequence of values of that function taken at equally spaced intervals

in time. In general this time spacing, At, must be such that the

sampling frequency, fs l/At, is twice the highest frequency present

in order to; prevent aliasing errors. Since f is constant throughout

a sampling procedure, the notation e(t) = ei will be used where

t = iAt, i = 0,1,2, ....

The data discussed in this report are restricted to signals whose

energy is confined within a frequency band of width, W, and centered

at w , the carrier frequency. This prompts the consideration of
0 s10

quadrature sampling. ..A signal satisf~ying these requirements may be

represented by the e9ua~tion-

e(t) = x(t) cos w t + y(t) sin awt (4)

where x(t) and y(t) are low frequency functions whose bandwidths are

W centered at zero. They are referred to as the x and y quadrature

components of the signal respectively. The minimum sampling ratoe for

a signal of this nature is W on each quadrature component. It should

be noted, however, that-if a signal is sampled at W on each quadrature

component, any energy at a frequency outside th *and will be aliased

5c
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into the band. Pigure 1 illustrates the quadrature sampling of a

signal of slowly changing frequency whose original sampling rate was

4fam,2x. Each mark on the signal denotes a sample point. The x and y

quadrature components are labeled as such. In this case the sampling

rate is a, on each quadrature component. The sampling rate is

reduced to W = to(2itn) by considering only each nth x and y quadrature

component pair. It becomes quite obvious that a great saving in

computational time is made due to the decreased number of points

necessary to represent a signal.

Cepstrum Processing

The cepstrum is defined as the inverse Fourier transform of the

log power spectrum. Figure 2 is a flow chart of a computer program

to calculate the cepstrum. The X array contains N x quadrature

component samples of the signal and the Y array contains the corre-

sponding N y quadrature component samples of the signal. The energy

spectrum is found directly from the Fourier transform of the signal.

The Fourier transform is estimated digitally by use of the Cooley-

Tukey12 Fast Fourier Transform algorithm. The number of points

transformed must be an integer power of two; thus if N does not

satisfy this requirement, enough zeroes are added to the end of the

X and Y arrays so that the numaber of points is an integer power of

two; N is also modified to equal this number. Since cepstrum is a

correlation process, N additional zeroes are placed at the end of

each array to prevent a recycling of the signal due to its harmonic

nature. The energy spectrum of an frtificially produced signal is

shown in Fig. 3; since the sampling r-.te is W on each quadrature

component, the frequency samples ar, independent. That is, the

correlation between frequency components is near zero. It is

realized that for real data some aliasing will occur at this

sampling rate, but it was found in this case that its effect is

negligible when the data are sufficiently filtered. ,• ntioned in

6
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the introduction, it is assumed that the effect of the frequency

response of the entire electronic system may be found by calculatingý

the estimated energy spectrum of a large number of signals. This

average power P is divided into the energy spectrum of a single

signal to remove the effects of the electronic system signal. The

effect of the "flattened" signal energy is removed by extracting the

mean log power form each point of the log power. The application of

the Fast Fourier Transform to the X array, which contains the log

power and the zeroed Y array., produces the x quadrature component of

the cepstrum in the X array and its corresponding y quadrature com-

ponent in the Y array. The cepstrum envelope is found by forming

the modulus of the X and Y arrays. The log power and cepstrum

envelope of an artificially produced signal along with its power

spectrum is shown in Fig. 3. It will be noted that in a high

signal-to-noise ratio situation the log process in the cepetrum will

generate summation .;erms (e.g., (0.70 + 0.01) see), which are not

ordinarily visible in a low signal-to-noise situation.

10
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III. PROCESSING GAIN

One method with which to evaluate the effectiveness of cepstrum

as a processing technique is to compute its processing gain. Consider

the cepstrum processor to be a black box with a certain signal-to-noise

ratio on its input and a correŽsponding signal-to-noise ratio on its

output. The processing gain, G, is defined here to be

Peak( s+n) 2 (
(S+N)in /Nin

where

Peak(s+n)2 peak signal plus noise out squared,

N = mean square noise out,0

(S+N)in = mean square signal plus noise in,

N = mean square noise in.

This is a variation of the definition given by Stewart and Westerfield.

G is computed numerically as a function of Sin/Nin using artificially

generated data for four different processors. Figure 4 shows the

results for artificial data whose time-bandwidth product is 16.

Notice that for a replica correlator, the crosscorrelation between

a replica of the transmitted signal and the received signal, that

the processing gain approaches twice the time-bandwidth, TW, product,

which is the result predicted by Stewart and Westerfield for their

definition of processing gain. The results for the polarity coincidence

11
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correlator are somewhat similar to those for the replica correlator.

It is assumed that the degradation is due to nonavailability of

amplitude information in the correlation.

The results for the autocorrelation and the cepstrum require an

explanation of the procedure used in the calculation. The primary

point of interest is to be able to detect the time difference between

two received replicas of the transmitted signal superimposed in a

noise background, as shown in Fig. 5a. The autocorrelation of Fig. 5a

is shown in Fig. 5b, and the cepstrum of Fig. 5a is shown in Fig. 5c.

The processing gain is computed by repeating these experiments 10

times and averaging to get the peak signal plus noise out squared.

Typical results for the processes with noise only are shown in

Fig. 6. The processing gain, G, for the autocorrelation grows as

the square once the peak signal plus noise out is greater than the

surrounding mean square noise out. The mean square output from the

cepstrum is independent of the signal amplitude; consequently the

processing gain goes to zero as Sin/Nin goes to infinity. To show

this, consider a normally distributed, independent random variable,

x, with a zero mean and a unity variance. Define a new variable,

y=ax. Let y be the noise input to the cepstrum processor.

N 1 MF2 1  2 2 2
in = - Yli-Y X= C (6)

i=l i=l

Without loss of generality it is assumed the variations in the

signal-to-noise ratio are directly proportional to variations in

the variance of the noise and not the target strength. If the

Fourier transform of y is denoted F(y) the cepstrum, Cep, may be

written

13
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Cep = IFCfn(IFty) 12) - mean) I , (7)

where

M

mean n(IFMy) 12) 1  (8)mean= •i=l

ad

IF(y) 12 = 2II'(x)12  (9)

Thus Eq. (7) reduces to

Cep = IF 2LnIF(x)I - E 2fnIF(xili}1 (10)

which is a constant with respect to a , and therefore the mean square

noise out is a constant, K. In the limiting case of large noise and

small signal, the processing gain becomes

urn [Peak(s+n )2/] 2/
Est RK = 2 2 (11)[(S+N)i/ in j= al

where it is found that

Est(Peak(s+n) 2  = Est(N2 ) f NX2 ,(N)dN- 2K (ia)
0

for the dominating Gaussian noise, because N, which is defined in

Eq. (12), is a 'hi-square variate with two degrees of freedom.16

16



For a large signal and comparatively low noise consider the

special case of a received signal r, consisting of two sunerimposed

replicas of the traulsmitted signal,

r(t) = ax(t) + ax(t-T) . (13)

Thus

Cep = IF(In2a2 + InIF(xl12 + In(l+cos2wr)- meanl , (14)

which shows once more that the cepstrum is independent of changes in

the variance of the signal. The peak signal plus noise out is equal

to a constant c; therefore

Peak(s+n) 1
SIN_ (+N)i/N- .in L-+ 2/2J

_2

where a denotes the mean square signal in. The results shown in

Eqs. U1 and 15 agree very well with the experimental results shown in

Fig. 4.

As would be expected the processing gain is a function of the

transmit signal as is illustrated in Fig. 7, which presents the

calculation of the processing gain of cepstrai for several different

time-bandwidth products.

The conclusion is that the processing gain of cepstrum is low

compared to other techniques; however, the processing gain may be

increased by averaging the quadrnture components before forming the

envelope. It is not shown in this repoit, but a linear relationship

was experiment.lly found between processing gain and averaging. That

17
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is, if N cepstrums are averaged then the processing gain is N times

the curves shown in Fig. 7. From observing Fig. 7. it is found

that it takes between 6 and 11 cepstrums to equal the processing

gein of a replica correlator where the greate:r TW product requires

the larger number of cepstrums for averaging.

19



IV. DETERMINATION OF TARGET LENGTH

Range Resolution

Assuming a "flat" energy spectrum, the range resolution of

cepstrum is greater than that of replica correlation where the width

of a peak from a replica correlator is 2/W measured from null to null.

An exact relationship for the cepstrum resolution is not known due to

its nonlinear nature. A comparison may be made, however, between

replica correlation and cepstrum by using artificial data. The test

signal contains two FM slides spaced At apart. Figure 8 gives an
indication of the range resolution for the replica correlation for

several different values of At. Figure 9 shows the cepstrum of the

same signals. From Figs. 8 and 9 it is concluded that the range

resolution of cepstrum is greater although there are greater side

lobes.

Estimation of Target Length

It has been already noted that if a received waveform r(t)

consists of N superimposed waveforms anx(t--n) from a target, that is,

N

r(t) anx(t'-n) + reverberation L()
n=l

then the peaks in the cepstrum relating to the target will be located

at the lag time ITn -,r. If the target geometry relative to the sonar

21
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is held constant then the Tn, T are constants and therefore the
m

positions of the cepstrum peaks relating to the target will be constant

while the cepstrum peaks relating to noise will vary in amplitude and

position. As an illustration, a 2-point target was artificially

generated, similar to those shown in Figs. 8 and 9. The 2-point

target signal was superimposed in Gaussian noise at a 6 dB mean

square signal-to-noise ratio. The resulting cepstrum was divided

into 25 lag time gates and the experiment was repeated many times

with differing sets of noise. The probability densities for each lag

time gate are shown in Fig. 10, which is a joint probability density

of lag time and amplitude. It is clear that there are consistently

large peaks in the 6th lag time gate, which marks the target length

or time separation between the two points. Note that the cepstrum

noise appears to obey a Rayleigh law (which is expected since the

original data is Gaussian). The amplitude probability density in

the 6th lag time gate is a superposition of noise and signal. It is

clear that, at least 50% of the time, the peaks in the 6th lag time

gate are below the noise level. Therefore at the S/N level of 6 dB,

cepstrum has a 50% probability of correctly estimating the target

length. The accuracy of target length determination will be a

function of S/N level, TW product (or processing gain), and how

many cepstrums are averaged. The illustration of Fig. 10 does not

show the effects of averaging.

24
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V. CE•STRUM AS A DETECTOR

Description of the Experiment

The effectiveness of cepstrun as a detector was tested by

evaluating its ability to detect a target in a low signal-to-noise

environment. A controlled experiment was conducted at the Applied

Research Laboratories Lake Travis Test Station (LTTS). A rough

sketch of the geometry of the experiment is shown in Fig. 11. Two

hundred pings illustrated in Fig. 12 were recorded, digitized, and

stored on magnetic tape. The transmit signal was a frequency modu-

lated slide with the following characteristics:

Carrier frequency . . . . .114.87 kHz

Bandwidth .... 3.2 kHz

Pulselength .1.. .. . 10 msec

The sampling was done in quadrature with a base frequency of 459.48 kHz.

Quadrature sampling rate (on each component) . 6.4 kHz

Receive window length . . . . . 16o msec

Receive window delay . . . . . 70 msec

Number of data samples/component . . . 1024

Validity of the Ensemble

Before testing cepstrum as a detector it will be established that

the 200 sonar returns constitute a valid ensemble.17'l8 That is,
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FIGURE 12

ENVELOPES OF SONAR RETURNS
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the data samples will be shown to be random, independent, and

homogeneous. Actually, the ensemble will be shown to be valid as a

function of range (time after transmission) because reverberation

data are generally nonstationary in r:ange. It is necessary to

validate the ensemble because several cepstrums will be averaged

together to obtain a processing gain and it would not be reasonable

to average data that differ in their statistical parameters.

The test for homogeneity is done by two different hypothesis19
tests. The first, Kolmogorov-Smirnov two-sample test, is done by

comparing cumulative probability distributions taken at particular

times, tl, after transmission. For example, at time tI after trans-

mission a sample (x quadrature component) is taken from each sonar

return to form a random data set (xl(t 1 ), X2 (tl), ... , X2 0 0 (tl)).

The data set is subdivided into the first 100 numbers and the second

100 numbers. Then the test statistic, Z(tl), which is also a random

variable, is measured by computing

Z(tl) = MAX IF(Xi(tl)) - F(X (tl))I

i = l, 2, ... , 100 (16)

j = 101, 102, ... , 200 ,

where the F's are the cumulative probability distributicris of the

experimental data. If the data are homogeneous, then the probability

distribution of Z is known and a threshold may be set for a given

confidence level. The result is shown in Fig. 13 where Z(tl) is

plotted as a function of t, or range, and the threshold levels for

a = 0.05 and a = 0.50 are shown as horizontal lines. The interpre-

tation of Fig. 13 is that if the data are homogeneous at time t1

then there is a 95% probability that Z(t 1 ) will lie below the a = 0.05

line or equivalently there is a 50% probability that Z(t,) will lie below

the a v 0.50 line. It will also be noted that Z is nonparametrtc, i.e.,
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not dependent on the sonar return intensity, because the cumulative

probabilities are always normalized to one. The second test for

homogeneity, Wald-Wolfowitz two-sample runs test,19 uses the same

data, where the first 100 numbers ire put into a set A and the second

100 numbers are put into a set B. The test statistic Z(tl) is found

by combining the sets AB, sorting the data into a uondecreasing

sequence, and then counting the number of runs NA of A and the number

of runs NB of B. Then
B

r- r
Z , (17)

r

where

r=NA +NB

2N N
A B +

r NA + N B 1

2N N (2N N - N - N)
A B AB A B

or (A+NB) 2 (NA + B l)

and the result is shown in Fig. 14 along with the threshold lines. It

is interesting to compare Figs. 13 and 14 and to note that significant

events, i.e., points above the a = 0.05 line, do not coincide, but the

number of significant events in each figure are relatively the same.

It will be recalled that even if the data are homogeneous there is a

5% probability that the test statistic Z at any point in time will lie

31



I-

N THRESHOLD LEVELS FOR:

a=0.05 ca=0.50

70.0 230.0
TIME (msec)

FIGURE 13

KOLMOGOROV-SMIRNOV TWO--SAMPLE TEST FOR HOMOGENEITY

THRESHOLD LEVELS FOR:

t=0.05 a=0.50

(n

11 
/'-4

70.0 230.0
TIME (msec)

FIGURE 14

WALD-WOLFOWITZ TWO-SAMPLE RUNS TEST FOR HOMOGENEITY
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above the Ci = 0.05 line. To complete the test for homogeneity it

would be necessary to subdivide the data again and retest it;

however, from the results it is concluded that these data are

homogeneous.

It is also necessary to test the data for independence, which

will be done two ways. The covariance matrix, which is discussed

later, is one way, and another is to use a one-sample runs test. 1 9

The same data as used in Figs. 13 and 14 were treated as positive or

negative numbers and runs of pluses md m "-nes were counted. The

test statistic Z is computed in a similar fashion as in Eq. (17)

and the result is plotted in Fig. 15- It is coniluaAd from Fig. 15

and the covariance matrix that the da - ar- independ-nt

In addition, a test for normality, which is unnecessary t

establish the validity of the ensemble, is done on the samL data.

A Kolmogorov-Smirnov one-sample test is used which is similar to

the technique described by Eq. (16) except that one of the cumulative

distributions is theoretical, with its mean and variance computed

from the experimental data. The test statistic is plotted in Fig. 16

and it is noted that there are no significant events above the

a = 0.05 line. The conclusion is that the data are normally dis-

tributed as a function of range, and the test is very conservative

because the experimental means and variances were used to compute

the theoretical distributions.

To establish the independence of the data and to obtain the

intensity of the reverberation and the backscattered sound from the

target, consider the covariance matrix of the ensemble just described.

Since the reverberation data are nonstationary, ensemble averaging

is used. The covariance matrix, C(tlt 2 ), is calculated by the

formula
20
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ONE-SAMPLE RUNS TEST FOR INDEPENDENCE

THRESHOLD LEVELS FOR:
ot =0. 05 a=0.50

70.0 230.0
TIME (msec)

FIGURE 16

KOLMOGOROV-SMIRNOV ONE-SAMPLE TEST FOR NORMALITY
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C(tt 1 [X(tl)X(t 2 ) + Y(t)Y(t)]Cx l't )=2t) ~ lY

Cy(t 1lt 2 ) = t 1 )Xt 2 ) - X(tlY(t 2 )]

where Cx(tit 2 ) and C'(tit 2 ) are the x and y quadrature components

of the autocovariance, respectively, and the envelope, E(tl,t 2 ), which

is plotted in Fig. 17, is found by the equation

E(t 1 ,t 2 ) = Cx(tl,t 2 )2 + Cy(tilt 2 )2  (19)

Also shown in Fig. 17 is an enlarged section of the covariance matrix

which covers the target region. As an aside it should be noted that

the covariance matrix is a bandlimited two-dimensional high frequency

surface. The plot in Fig. 17 is the envelope of that surface showing

a strip along the main diagonal of the covariance matrix. The width

(null to null) of the ridge running along the main diagonal is 2/W,

where W = 3.2 kHz. Note that the ratio between the target intensity

and the intensity of the immediately surrounding reverberation is in

the range 1.5 to 2.0. Since cepstrum is independent of rela7;ive

changes in intensity, the high intensity reverberation at the beginning

of the signal will have a negligible effect on the processing. A plot

similar to Fig. 17 is shown in Fig. 18 for the normalized covariance

matrix. Notice that the width of the major lobe (diagonal) is fairly

constant except in the region of the target, where a broadening effect

is present due to the finite length of the target.

It has been determined that an increase in processing gain is

obtained by averaging the x and y quadrature components of the

cepstrums of several homogeneous pings. The effect is to average out

the noise which is random in amplitude and phase, and to have a much

1
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lesser effect on the target peak. The number of cepstrums that may

be averaged is limited by the relative stabilities of the sonar

apparatus and the target, since a fluctuation in the relative phase

(changing target aspect) could tend to cause the target peak to

average to zero.

Estimated Energy Spectrum

The estimate of the backscattered sound energy spectrum <XeX>

is computed from the epoch times, 69 msec to 89 msec, averaged

over 200 pings. The estimated energy spectrum is shown in FiR. 19,

where it is observed to be shifted to the left. This is a good

illustration of the significance of using the backscattered sound

from a random surface, in this case the surface of Lake Travis, to

flatten the energy ipectrum by a division process. That is, <X X>

is not uniformly constant over frequency and this would cause a

significant peak to appear in the cepstrum, which would be in error.

Superimposed on the estimated energy spectrum is the combined fre-

quency response of the projector/receiver transducer system. The

frequency response of the recording/reproduction system is not

shown.

Detection

Once the frequency response of the entire system is known and

used to flatten the energy spectrum, then any consistent peaks in

the cepstrum will indicate the presence of a target. For example,

Fig. 20 illustrates a typical ping return divided into 15 over-

lapping receive gates. A cepstrum is computed for each gate.

However, the presence of a target is not apparent. The vepstrums

are also shown in Fig. 21. The experiment is repeated by using

three ping returns and averaging the x,y components of the cepstrums

38
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FIGURE 19

POWER SPECTRUM FROM GATE 1 AVERAGED
OVER 200 PINGS AND PROJECTOR/RECEIVER FREQUENCY RESPONSE
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FIGURE 20

THE USE OF CEPSTRUM PROCESSING AS A DETECTOR
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CEPSTRUMS OF LAGGED DATA WINDOWS
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in each gate before computing the cepstrum envelopes. This time,

significant peaks appear near the cepstrmi origin in gates 9 and 10,

as shown in Fig. 22. The experiment is repeated again by averaging

over ten pings and the results are shown in Fig. 23. Again signifi-

cant peaks appear close to the cepstrum origin. Also, the width of

the peaks indicate an acoustic target length of 1 msec. The greatest

possible acoustic length of the model target was actually 2.8 msec in

this experiment. The probability of detection is illustrated by the

receiver operating characteristics (ROC) shown in Fig. 24, which also

shows the effects of averaging. For the purpose of generating

Fig. 24, all 200 pings were used. The second, third, and fourth

points of each cepstrum were used to generate histograms of amplitude,

and knowing the target to be in gate 10 (gates 9 and 11 were ignored),

it was possible to k tnerate the ROC curves. The histograms from

gates 1 to 8 and 12 to 15 were averaged together. The dip in the ROC

curve showing an average of 10 cepstrums is probably due to an insuffi-

cient amount of data. The significant result is that averaging

cepstrums greatly improves the ROC curves as illustrated by

the increasing steepness of the curves on the left-hand portion of the

graph.
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VI. FEASIBILITY OF RqEAL TIME CEPSTRUM

A processing system consisting of, for example, a Control Data

Corporation ALPHA-121 computer system and a compatible Control Data FFT

peripheral processing unit is considered for use as a real time ceps-

trum processor for a typical sonar system. The transmit signal is a

frequency modulated pulse with a bandwidth of 625 Hz, carrier fre-

quency of 5 kHz, and a pulselength of 51.2 msec (TW=32). The receive

gate ranges from 606.67 msec to 12906.67 msec after the transmit, thus

the maximumn repetition rate is approximately one every 13 sec. The

receive gate mentioned covers the range from 500 yd to 10742 yd. If

the data is sampled at the bandwidth of the transmit signal, 7680

samples are necessary to estimate the signal. The length of a target

is assumed to be 300 ft; thus the target length in the signal is

approximately 175 msec, which is covered amply by 256 samples or a

409.6 rsec data window. Fifty-nine cepstrums are necessary to cover

the signal if the data window is lagged 204.8 msec or 128 samples for

each cepstrum. The time necessary to process a single cepstrum is

approximately 64 msec plus any small amount of time which was unfore-

seen in the data storage. Therefore, it should be possible to handle

six signals (beams) simultaneously. The breakdown of this time is as

follows:

PROCESS TIME (msec)

1. FFT 5.o86

2. Form power 10.458

3. Calculate logarithm 58.400

4. Calculate bias 1.553
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PROCESS TIM (msec)

5. Extract bias and zero Y array 2.560

6. FFT 3.086

7. Form 128 points of envelope 5.248

Total time for one cepstrum 64.371

The logarithmic step is especially time consuming, and it is

assumed that additional special purpose hardware would make the

processing even faster.
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VII. SUMMARY

Advantages of Cepstrum Processing

The primary advantage of cepstrum is that if the data window

covers a target, then the cepstrum is independent of epoch time. That

is, the peaks of the cepstrum will always be located in the same rela-

tive position no matter where the target is located in the data window.

The significance of this is that the quadrature components of several

independent cepstrums may be averaged to achieve a processing

gain. This same advantage will also be true for autocovariance and

pseudoautocovariance. This advantage is not true, for example, in

the case of replica correlation or matched filtering where it may be

possible to average envelopes but insufficient phase control (epoch)

would cause the target to average to zero if the q9ladrature components

were used. The second advantage of cepstrum is •.at its mean square

output is independent of the mean square input. Therefore, it is

easier to choose a threshold for detection or estimation of target

length.

Disadvantages

The primary disadvantages of cepstrum are its complexity and

low processing gain. Even though the low processing gain may be

increased by averaging, a real target's relative motion will tend

to smudge the cepstrum peaks over a short period of time. Therefore

it would be necessary that many averages be spread over a period of

several minutes. Another problem which has been implied, but so

far not mentioned, is that the signal or backscattered sound from
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the target must be coherent. The reason is that cepstrum is a

correlation process and it is necessary that the transmitting signal

which insonif1's the target be intact (coherent) and not chopped up

as in a RDT-type transmission.

Conclusions and Discussion

It is concluded that cepstrum is capable of estimating target

length and it is capable of detecting a target in a low signal to

reverberation ratio environment. However, there is a restriction on

the type of reverberation. The reverberation considered in this

report was generated by sound backscattering from the air-water

interface (surface), which was in random motion. Therefore, the

surface reverberation will cancel in the averaging process while the

backscattered sound from the target (assuming little change in aspect)

will remain relatively constant. In the case of reverberation from

the sea bottom it is felt that the bottom reverberation will have the

same characteristics as the target in that it gives consistent returns

that will not average to zero. In general, it is felt that the com-

plexity of computing a cepstrum and the necessity of averaging over

a period of several minutes outweigh the advantages of cepstrum being

independent of epoch time.
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