GEOMETRIC MODELING

C. Stephen Carr

Utah University

I

Prepared for:

’]
Rome Air Development Center

Advanced Research' Projects Agency

August 1972 ' : :

. DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

oSG b

'RADCPTR-59-24.3
Final Technical Report
August 1972

; . f

GEOMETRIC MODEL ING
University of Utah

Sponsored by
Defesnec Advanced Research Projects Agency
ARPA Order No. 829

ey

i i [A I
, | S AN S N
! Approved for public release;

distribution unlimited, 'mEE}IEﬂﬂJLT‘H m\i

' Wi 22 or |
’ ' R
" JE&:Z)L-;U L L

3
| | [X

The views and conclusions contained in this documsnt are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
: of the Defense Advanced lesearch Projects Agency or the U, S,
, Government., '

Reproduced by

NATIONAL TECHNICAL
INFOKMATION SERVICE

U S Depar went of Cammerce
Spingh bl VA 20181

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, New York

rprtara

I TS IR R Y)

"wrumv (!n.ulhr‘uhon

GROMETRIC MODELING

! DOCUMENT COMTROL DATA - R & D
: (Socurlty clascilicatlon of title, Lady ot ebstrect pnd indering annolation riuet be entored when the overal! report Is classifiod)
POMIINATING ACTIVIYY (Comarate outhor) 4, RTPORT SECURITY CLAsalFlc‘.ATION
Conmputer Science ' Unclessified
Univeraity of Utah b, GROUP
Salt Lake City, Utah 8h41)2
3. REPDIQT TITLE
: 14
L]

12 DEscRmT IVE NOTES {Iypo of toport end inclunive datos)
Technical Report -

j Ve AU THCRISY (Flead neme, middle inftisl, 123t nesme)

C. Siephen Carr

¢ NUPORY DATE

August.1972

78, TOTAL NO. OF PAGES

69 12

76, NC. OF REFS

Ba, CONTRACY DR GRAMT HO.

AF30{602)L2TT

b, PROJELT NO.

Qi ORIGINATOKR'S REPORT NUMHBERIS)

TR 4-13

[ARPA Order No. 829
< 0. OTHER REPORT NOI5) (4Any other numberas tha' ma; be sesignosdt
thle repori)
\ Progrem Code Nubmer: 6D30 .
. RADC-TR-69-218
10. DISYRIOUTION STATEMENT
This document has been cpr“cved for publlc relase

and gale; its distribution iz unlimited.

T SURPRLEMENTARY NOTES [ionitorad by

Rowe Air Development Center (EMIIO)

i Griffiss Air Yorce Bese, Mew York 134L0

12, SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
Wesh DC 20301

13, AUSTRACT

and mechunical devices, in the computer,
interactive design system,
§ gystem sre included:

the hui:an user, interpenetrate one another.
by the system. Addaltienally, basic

fgrephics,

has been o formideble task on the 1108,
Appendix,

i corpliler to generate a graphics
associative dﬂuﬂ bagse,

,L a’

A system is presented for modeling three-dimensional objects such as buildings
The gystenm has been implemented as an
Sheded, half-tone photograplis of objects designed with the

An alporithn is presented for quickly determining if two objects, created by

The user is informed of such violatiocns

concepts of computer graphics modeling are
y presented for the benefit of readers nol conversant wvith the terminology of computer

The implementation of these 1deas as an intersctive design system for architect
A description of this
The description should be of interest to systems progremmers, however, &s
P the implcisestation used the most modern programming techniques,
]

ask is included as an

such &s o nompiler/

programming langusge processor, and a hashed

AL LRSS T U TITL TIS % [2 Yo T A TR

3} FOnM ,E ,‘ oo ,o’?
b’ 1 novoes “H !r\.

RN TRIYY SR L

UHRCLASSIFIED

Security Classification

.

oz T

T g
NS

UNCLASSTIIED -
_ LSeqyrity Claseification - e
fa. KEy woRbs LIiNK A LINK B l LIMNK C
. ROL K wT ROLE wT ROL wT
Computer Graphies ‘ '
Computer Aided Design)
Data Structures !
Computer Modeling
.
*
i
]
-]
i .
‘ At :
!
t
. ’ |
- !
| 3
g
o 3
J
| -
by - £y 3
Z/—""
-
L 40w AR TR v pev ZWMAM. RO NISABABAA RS UAPLUTARIISY AT BRI OIS

UNCLASSIIILD

Security Clussification

GEOMETRIC . MODELING
C. Stephen Carr
Unfversity of Utuh

Approved for public release;
distribution unlimited.

This research was supported by the
Advanced Ressarch Projects Agancy
of the Department of Defence and
vas monitored by David A. Luther,
RADC (ISCE), GAFB, NY 13440 under
contract AF30(602)-4277,

7/

[

PORESIARD

%k 4 v g TS et
fhia inuwmxm repert degceilbaes fascarrhy poeaea b i el

by Gionputar Sclence of the laiwsraf s oe |1leh : MY,
f:i.i’f: Viqd, E€or I‘_i":.l"\ Nl ey e _ﬂgt.,-_:l--l.._.;l _f!‘_-.ll,l"'"rn. = :1) W
E'AE..[ILL[FLETEL:I h? -Hﬂ;'m“ nir I"I:'nr.; 'I‘.:F!II..IIII'". i mip ! -',_ el |'|_.|::.
ﬂhf Forca Hapa, Mew York undos Cenbroop AP I0tent:
‘nognday rebort nuplier {8 MR 8512, He. Dneda b e
(BHIZ0) G2 Eho RADL Hrcdrob Bngbnome '

170 4 40 - £ e T gy - 7 e .
1h}m technigal pepori has Lasy veulawed Pl b
eppraved, ' |

() SRV ARNeNY

/ S
ST /A
/&//ﬁ"‘ £y ,"/ J Lk

Epprovad: DAVEN b, LULHER
Projack Engineex

ACKNOWLEDGEMENTS

The ideas nf Geometric Modeling, as developed in this
thesis, are principally those of the author. However, the
ideas spring from work on an architectural design system.
No less thar fifteen people were involved in some way on
this project.

Thanks are in orcder for Professor Stephen L. Macdona}da
and Dr. Robert Wehrli11 of the Architecture and Physcholqgy
Departments and to the graduate architectures and pay-
chologists who worked under them: Max J. Smith, Ted F.
Smith, Jay A. Shadel, and John Archea.

David A. Luther, a fellow computer science graduate
student and friend, interfaced his Electrical Design Sys-
tem5 to the basic geometric modeling program. As the
first person to attempt this, he encountered many diffi-
culties Lotween our two programs, which were strajghtened
out in the process. The similar tack of connecting the
Structural Znalysis program went much more smoothly as a
result of hias labor, which is appraciated.

I wish especially to thank my programmers, who labored
with a computer system totally inadequate for interactive
computing: J. Robert Geertsen, Sherian Erdman, and Dayid
T. Blackburn. The Univac 1108 and ite batch processing

monitor are so unsuited to the tas* chat it never. should

have been undertaken.

iid

Finally, I wish to thank my advisor, Dr. David C.
Evans, and my wife, Lynne, who played the obvious and neces-

sary roles. Their coutribution need not be explained or

~ emphasized to anyene who has struggled through a graduate

program.

iv

ik

TABLE OQF CONTENTS

Page
ACKNOWLEDGEMENTSiii
ABSTRACT . . & v v v v ¢ v v 4 0 0 o v v . e o . Vii
OVERVIEW \ & & 4 v v v v v o v v e e e e s o 1
Section | |

1. BASIC CONCEPTS ‘EE - B 5

Objects and Envelopes
Trees and Graphs
Coples and Instances
Making Copies of Instances 10
Constraint Declaration and Satisfaction . . 13
General Constraint Satisfaction 13
Constraint Representation for Geometric
Modeling . . ,, 13
Modeling Elements - Lines, Planes and
Volumes 16

® e &
s 3 s
3
3

2 L] THE MODEL [}]]] .]] .] L] [}] . 21

The Model e o o o 21
Why the Model Works 33
The Partial Copy . + . « v &« 4, +'v . . ,
Algorithm for Quickly Detecting the Inter-

Penetration of Objects, . 36

The Importance of a Metric o 37

The Algorithm, ... 38
Growth of Computation with Complexity . . , 39
Updating the Bounding Envelopes . . ., . , . 39

3. THE SYSTEM o o o . . 3

Starting the System 42
Modes 42
Spaceform Degign 42
Design Command 44
Primitive Commands

Positional Commands, . . ' B 46
Instance « . . . « « « 48
COPies « 4 v & ¢« v v 4 4 4 e 0 .. .« - 50
Alds to Interaction . . , 50
Saving Designs for Later Use 53
Halftone Production . . ., 53
Electrical, Structural, Heating 53

v

TABLE OF CONTENTS (Continued)

Fage

BIBLIOGRAPHY « . & &« ¢ ¢ 4 4 4 o o o o « ¢« ¢« o « o« + 56
Appendixesg

I. INTERPENETRATION ALGORITHM . . . « . « « » o« 57

IT. SYSTEMS PROGRAMMING TECHNIQUES, 58
Graphics Fortran, 59
Assoctiative Data Base . « « ¢« « « . « « o . 63

VITE [] [* L] L] .] L) L] L] L]] [] L) L] - L] » L] [. [] o] ' 6 7

vi

s

" ABSTRACT

A system is presented for modeling three-dimansional
objects, such as buildings and mechanical devices, in the
computer. The system has been implemented as an inte:active
design system. Shaded, half-tone photographs of objects
designed with the system are included.

An algorithm is presented for quickly determining if
two objects, created by the human user, interpenetrate one
another. The user is informed of such violations by the’
system. Additionally, basic concepts of computer graphics
modeling Qre presented for the benefit of readers not con-
ve:a;nt with the terminology of computer graphics.

The implementation of these ideas as an interactive

design system for architects has been a formidabls task on

'the 1168. A description of this task is included as an

Appendix}~ The dgséription should be of intereét to systems

programmers, however, as the implementation used the most

. modern programming toéhniquep, such as a compiler/compiler

-to qcﬂorato a graphice'proqramming language processor, and

a hashed associative data base.

vii

OVERVIEW

Solving a problem on a computer amounts to (1) con-
structing a model in a representation the computer can work
with; and (2) constructing procedures to interactively
modify the model. Geometric Modeling is the creation of
abstract representations of three-dimensional world ob-
jects in the compﬁter. Such modeling was motivated by
the conscruction of a computer-aided design system for
architects. Buildings, furniture and mechanical devices
such as machinery are examples of objezts which require
a three-dimensional model in the computer as a basis for
their manxpulétion.

Many objects are eusier to model in computer terms
than aré three-dimensional objects. For example, electronic
circuit diagrams are easier, since they are highly sty-
lized, descrete abstractions of real world ohjects. A tran-
sistor 1s satisfactorily represented by a number of attri-
butes, one of which is its gircuit schematic symbol (fig-
ure 1). This abstract schematic is what circuit designers
need. The architect and mechanical designer want xich
detail, instead of abstraction, Detailed, three-dimensional
objects are difficult to model and difficult to display on
the CRT.

Modeling camplicated three-dimensional real-world ob-
jects is difficult, and relatively little has been done in

this area. Previous work has advanced general data struc~

1

tures for modeling heirarchically defined objects.2'4'9
The present work concerns the decisions necessary to
adapt the general structure to three-dimensional objects.

A pumber of geometric solids are provided as basic
object elements in lieu of points, lines and planes. The
other forms are szasily derived from this basic form, when
necessary. The designer werks at a line drawing scope
and sees the edges of surfaces and volumes. This ic a
limitation of present-~day technology. Research is under-
way to provide a raster (half-tone) picture to interact
with. In the meantime, the user can produce a shaded
picture of this design on an auxiliary scope in about
thirty secondslo.

Examples are given to show how the resulting mode.
works in practice. The modeling methods described here
have been implemented as a part of an interactive graphics
system. A simple design done with the system is shown

in figure 2.

S AT

3

G e)

R T G s e gy e Z4
N RS

o
ik

sl

1s easily portrayed schenatically
n two space.

stor
by a sketch i

A transi

Figure 1.

: ‘AT0SULY ARTOGSIP
ATSATIIRLILICT pwilssad jdalqo ojdu,g

Reproduced from
best available copy.

Section 1
BASIC CONCEPTS

IObjects and Envelopes

Two fundainental modeling entities are objects and
envelopes.

Objects represent physical things -~ a block of con-

| crete, or a plate of glass, for example.

% Envelopes define regions in three-space a opposed to
material objecte,

Ervelopes are analogous to political bouncaries. The

States are wholly contained in the United States An ob-

ject in a state ie in both regions at once, rot one or the
other.
The "grain" or fineness of the model islreflected by

the number of ievels of nested envelopes. 1f the model is

. to represent cities within states and building' within

cities, additional branches to smaller envelopes ¢ n be

‘added (figures 3 and 4).

Objects are abstract representations of -eal matter.
As such, all the properties of matter may be specif ed,
such as color, mass, finish, boundary surfaces. etc

Real objects cannot interpenetrate and neirther should
their abstract representations. Ome object must be ut
awa§ to make room for another one.

A basic property of objects and envelopes i:: th ir
geometric shape. The most common shape is the cuboi

Theicylinder and a triangular wedge are useful. also 1In

United States

New York | Calif. Utah

Figure 3. Model of the United States showing the
division into states.

United States

Office
Building gcheal

Figure 4. Model of the United States at a f .ner grain

showing the divisiona and objects within a
gtate.

tidition, the boundary surfaces of envelopes and objects
can be warped or otherwise deformed into complex shapes.

Architects and mechanical deaiéners shape and place
both envelopes and objects. A computer-aided design system
for their use must deal with both tyree of entities.

To better understand how the two interact, consider the
model of a room. A room is a region of space and, hence,
~an envelope in the model (figure 5). Rooms do not exist
in the way steel beams and concrete de. Rather, they are
- spaces which exist first in the designer's mind, and then
because walls enclose them. |

"Walls” are envelopes or regions in which actual
building materials may be placed. The room .envelope and
wall envelopes encompass or delimit some of ths same space.
They are not thought of as interpenetrating, hcwever.

A window region is defined in a wall envelope by
simply placing the window at the desired spot. To put
a window object (solid, such as glass) in a wall defined
td be an object, an opening for it must first be cut in
the wall. The data structure models distinctly:

(1) the wall;

(2) an opening in the wall; and

(3) a window assembly positioned in that opening.

Trees and Graphs

To be useful, a model must have structure. Components ,

of the model such as rooms are themselves composed of com-

Figure 5.

Room envelope containing wall envelopses.

e e g

PARERU YR,y Itcivn, 2 A e s

ponents (e.g. wills, doors, etc.). Such heirarchies can
be modeled by mathematical graphs namely collections of
nodes and branches. A particularly useful class of graphs
are trees (figures 3 and 4 show two examples). Techniques
exigt for storing and manipulating trees within the computer.
These details are discussed briefly in Appendix 1IX.
| Walking thr tree refers to algorithms which select
particular nodes according to some sequence in order to
process the tree.in some way. Trees can be traversed in
many ways. The following illustrates only one possible
way of accomplishing this traversal.

To display a tree for example, the tree walking pro-
cedure beings at the top node and advances down the left
most branch répeatedly until a terminal node (leaf) is
encountered. Next the algorithm walks back up one level

over one branch to the right and then down again, etc.

Copies and Instances

As explained previovsly, a tree structure represents
something which has been designed. This might be a window
or a chair in an architectural model. The structure is
given a name and can be refe:enced by other structures
in two uniquely different ways. One way is to copy the
entire tree over into the structure where it ioc needed
(i.e., copy), giving it a new name in the process. The
other method is simply to reference the object by name

(i.e., instance). In computer programming terms, the

10

copy is a macro; the instance is a closed subroutine.

| Consider a wall with two windows of Type X placed in
it. If the windows are in the wall as instances, then the
modeling structure is as shown in Figure 6. 1If the win-
dows are referenced as copies, the model is as shown in
Figure 7. The two pictures look the same, but the model
is quite different and has different properties.

In the first situation (instance) a change in the de-
sign of the window is reflected in both windows in the »ic-
ture since both windows are referenced as instances. In
the second situation, each copy acts independently. A
change to window number one leaves window number two un-
altered. When modeling a high rise building with 1,000
windows of five different types, the proper choice between

instances and copies is critically important.

Making Copies of Instances

The window in the previous section 1is most likely an
entire tree structure, rather than a single node (figure 8).
Making a copy of the window amounts to copying 1its entire
structure and assigning this copy a new name (figure 9).
Since all the nodes in the model of the window have been
copied, and every ncde must have a unique name, new names
are gencrated for each copied node. The copy operation
applied to a complex object generates considerable additional
data, which must be stored somewhere. This is a practical

reason to restrict the use of copies.

10

po—

structura

“ER

Figure 6. Windows referenced an instances.

N | B OH

Figure 7. Windows referenced as independent copies.

1)

WALL

WINDOW

Figure 8. Two instances of a tree structure defining
a window are referenced in a wall.

WALL

WINDOW WINDOW

Figure 9. Two copies of a tree structure defining
a window are referenced in a wall.

12

Constraint Declaration and-Satisfaction

Constraints a?e declarations of relationships'between
two or more objects. For example, the plumbing in a build-
ing should be constrained to stay in the walls, even as the
walls aré moved about and repositioned. Powerful computer-
aided design systems should provide the user with some way
of declaring constraints and then solving them or, at least,
signalling when a constraint is violated.

Before this processing is done, constraints specified

by the user are ﬂsually reformulated by the computer, rend-~

.ering them more manipulatible.

General Constraint Satisfaction

Given a set of relationships, the goal of constraint
satifaction is to choose values of the variables which re-
sult in all constraint relationships being satisfied.
Typically, there are more vaiables than constraints, hence
infinitely many possible solutions exist. For example,
the constraint that two walls remain parallel admits to
infinitely many orientations of the walls in a floor plane.

General constraint satisfaction is a task akin to
theorem proving. It is a hard problem that is as yet un~

solved.

Constraint Representation for Geometric Modeling

For many situations in Geometric Modeling, the solving

of arbitrary constraints is not necessary. The choice of

13

representation can facilitate constraint processing or

provide an implicit constraint solution, in a number of
cases. For example, a house might be defined as a set of
rooms positﬁbned in some manner. The rooms in turn could
be defined as a set of four wall envelopes (figure 10).
By this definition, the walls move with their respective
rooms when the configuration of rooms is changed.

An alternative “efinition is a house composed of a
set of rooms and walls (figure 11). By this definition.
the rooms and walls move independently, and explicit con-
straint declarations are needed to keep the walls with the
rooms as the rooms are moved.

Another essential representation decision for con-
straint satisfaction is the property of proper inclusica.
An additional piece of data at each node describes an
envelopé, which is the smallest cuboid that completely
encloses all the components of the object. These envelopes
allow an algorithm to quickly determine if two ojects
attached to different tree structures are accidently inter-
penetrating. The'proper inclusion requirement turns out
to be a very natural one where buildings are concerned.
The designer intuitively thinks of the walls as parts of
a house, and not the other way around. The system per-
mits him to structure an object in the reverse order,
should he want to do so, in which case interpenetration

checker simply runs more slowly.

14

HOUSE

rooms

walls

Figure 10. Definition to avoid constraint processing.

walls room room room room

Figure 11. Definition of HOUSE which requires a constraint
processor to maintain the walls with rooms.

:15-

Modeling Elements ~ Line, Surfacss and Volumes

Suppose we wish to represent .. solid pentagon (figure
12). A line representation of this object has the x, y, z
cocrdinates for the end points of each edge of the object
as separate data blocks. A surface representatir 1 contains
seven data blocks, each containing the x, y, 2z coordinétes
of the end points of the boundary lines stored in an
appropriate order. A volume representation amounts to one
block containing the coordinates of the extreme points in
an order to indicate how they relate to one another.

A line representation of an object requires the most
storage space and a vélume representation the least. Both
extremes are needed at various times. However, an object
stored as a volume can be easily convarted to a set of sur-
faces. Given a set of surfaces, it is extremely difficult
to deduce what volumetric shape they represent (cube, prism,
etc.), if indeed they do at all. One direction is simple
and algorithmic; the other is complex and probably heuristic.
The physical analog of this is a ball on a ledge. With
very little work (corresponding to computing time), the
ball can be knocked off the ledge to reach the other state.
Considerable work (computing) is required to raise the
ball to the ledge from the plateau below (figure 14).

If the task is to determine which surfaces are hidden
from a particular vantage point and which are visible,

then data can reasonably be stored as a set of surfacés

16

B

line representation

surface representation

—

surface 1

Figure 1l2.

surface 2

volume representation

potaRednon

x|

17

surface 7

Various computer representations of
a pentahedron.

aoeds abeaoas

- -Sout] se pesn ATo3eWTITN IR YOTuM S303[q0 I03I
soeds abexo3s pue sut3 bur3indwoo uesmiaq FFo-sSpeIF SYL €1 axnbryg -

auITy
furanduoo

18

‘
2 ;

Figure 14.

surface

representation

line
representation

Analogy between work to change the state

of a physical object and the computing work
required to charge the state of information
representation.

19

with associated normsl vectors 19, For most other pro-
cessing, howevar, a surface representation is cumbersome.
Suppose the volume (or weight given a material) of the
parallelepipeds is to be determined. Stored as a volume,
this computation is trivial while, stored as a set of
surfaces, it is difficult, since the surfaces must be
checked pairwise for common edges. Recovering the data as
volume is a difficult and lengthy task.

Geometric modeling is usually done as a part of an
interactive design system. To be economically feasible,
such systems must do more than simply present and mani-
pulate pictures. Facilities must exist to attach arbit-
rary attributes (such as weight and cost) to objects, and.
the meaningful elements with which to associate tﬁis in-
formation are solid objects.

When planes, lines and points are occasionally needed
in the model, they are easily represented as degererate
cases of volumes. While it is true that many one and two-
dimensional objects appear in the pictures derived from
the three-dimcnsional model, they are not particularly
useful as elements of the model itself, however. a plane
is frequently used for sectioning an object for viewing
purposes. It is important to recognize, however, that
this plane is the result of the sectioning algorithm and

is nct part of the data of the Object itself.

20

| ..

T W

Section 2

THE MODEL

The Model

The basic modeling structure proposed here 1s a type of
tree called a semi-tree (figure 15). Trees have two proper-
ties: (1) a single root node exists from which the tree
grows; and (2) a unique path exists from the root node to
any leaf. Semi-trees sat:sfy the first property, but not
the second. Both types of trees are free of loops, but more
than one path can exist from the root of a semi-tree to a
leaf.

The semi-tree structure is not new. It 1s essentially
the instance-and-copy structure used for modeling 1n the
past. The problem is how to model a building with such a
structure so that maripulations on the building happen
sr~cthly and naturally.

Consider the model of a house. 1t consists of rooms
and the rooms are composed of walls, a floor, and a ceiling.
{figure 10). The question arises as to whether the wa.ils
shoald be modeied as a part of the house or a part of the
individual rooms. If the . walls are elements of the rooms,
then two rooms have . wall in common. Another possibility
13 to have one wall envelope of each room occupy the common
volume between the rooms (figure 16). Walls in the model
shown are represeated as-envelopes, and therefore do not in-

rerpenetrate each other. They simply delineate regions in

the rooms. On a display screen this appears in plan view as is

3 §

Figure 15.

tree

semi-tree

Two important special clilasses of
graphs.

house

wvall 2a
asnvelope

physical wall (object)

studa i At

Figure 16. Use of envelopés. to define the region
where a physical wall object will be
placed.

23.

‘.\.x.»‘

'x'-‘-,..:t‘.'g.-y s te N . LT l',h:u.!l'f} ﬂ :Ej 1]5 i
SRR St .-:LI m :_ H..-.l-'lr%

shown in figure 17.

What should happen if one room is removed? 1Is an inter-
mediate wall associated with one room or the other or direct-
ly with the house? What will happen depends on the way the
wall envelopes are assigned to nodes and the way these nodes
are referenced.

This author has found the structure described above to
be fairly natural for representing structeres such as rooms
designed separctely which must fit together in a building
with common walls. Each room is designed with the walls
around it defined as envelopes or regions. After the rooms
are in place, wall material is positioned in the envelope
region tetween rooms (figure 16).

Each node of the semi -trae has a unique name, such as
WINDOW21. Each node in the tree is the root of a sub-tree
by that name. Corresponding to the tree structure is a
heirarchy of coordinate systems, one for each node of the
tree (figure 18). The coordinate axes associated witl the
root node are inertial axes with no frame of reference. The
coordinate systems of immediately dependent nodes are ref-
erenced to the coordinates of their dominant nodes.

The relationship of the dependent coordinate system to
the dominant one is established by nine parameters: three
translations (T), three roteztion® (R), and three scaling (S)
numbers, corresponding to the three orthogonal axes (TRS

parameters, for short) (figure 19). Scale factors other

24

room 1 room 2

wall wall

house

wvall 14 wvall 2a

Figurel?7.Display view corresponding to Figure 16.

a5

*?pou yoea 3 walsds
93PUTPIOCD BY3 pueB 2IN3 NIJS 2313 uUIaM3Iaq aduapuodsaaao) "gT InbTa

*D 03 pajeral
sie 9 pue J ‘HJ SOXE IIBRUTIPIOOD 2

gy wa3sis 03
po3eTaI O pue g swajlsds ajeurp.ood °T

26.

g B

R

Figure 19. Translation, rotation and scaling parameters
expressed in terms of the dominant noda's coor-
dinate system relate the dependent node to it.

2T.

]

than unity result in magnification or contraction of all ob-

jects dependent to that branch.

The translation, rotation and scaling (TRS) parameters

are associated with branches, not nodes. One dependent node

can be referenced from several places or many times from one

place (several instances). The placement of each instance

in relation to the coordinate systems of the dominant sys-

tems is indicated by the TRS parameters on the branch to
that instance (figure 20).

Another qualifier which can appear on any branch is
that of subtraction. Subtraction ciuses the dependent ob-
ject to be subtracted from the object to which it is at-
tached. The system checks to be sure that undefined or
otherwise meaningless situations are not set up in the
structure. The property of subtraction is an expression
of a suggestion by D. Cohen* on » technique devised by
Euler. The bounding edges of a 'urface are traversed
clockwise for exterior edges, courterclockwise for in-
terior edges while facing a poin: somewhere in the plane
of the object. If the sum of the angles is 360, the
point is in the object; if zero. the point is outside.

Producing a displayable picture of an object rep-
resented heirarchically amounts to walking the tree in a

post-fix fashion, updating a rotation matrix with each

*Harvard Unive. sity graduate student in computer
scilence.

28

- -

=

4

L]

"152{qo 9yl 03 ysueiq

24yl jo 1xolaueied Sy1 ayi 4Aq

pair1013Uu0> ST s3dalqo juapuadep
§o juswedeld TeUOCISULWIP-891Y] *02 9anf1yg

Hl

AT e Ot - e

step. When a leaf is encountered, th matrix reflects its
rotation translation and scaiing appropriate for that leaf.

An alternative scheme is to associate a rotation ma-
trix w.th each object, instead of developing it on the fly.
Such an. approach involves less computing, but it i* unac-
ceptable, since one object may be referenced as a part of
many objects. With each reference, its orienta:ion and.
therefore, associaved matrix, will be different.

The terminal nodes of the semi-treses are markei as
such and contain data describ .ng basic geometric forms.
Typical basic forms are the cuboid, sphere, cylinder, etc.
In addition, these basic forms may be stretchec, the sides

of the cuboid may be warped into a Coons surface in a man-

.her similar to that described by Forreste. In this case,

the primitive block holds functional descr:p'ic s of the
warped surfaces. The edges of the basic geometric object
provide boundary conditions for the mathematical descrip-
tions. Warped surfaces are used only infrequertly in pres-
ent-day architecture. Possibly they will be used more often
as better tools for designing and building them become avail-
able.

In most respects the primitive geometric forms attached
to terminal nodes are processed in the same fashion as en-
tire trees. One set of rules applies to all. The primi-
tive forms are mainly used to build up more useful, but

still primitive, forms. An I-beam, for example, can be

30

built'from three stretched cuboids (figure 21). Atfter it
is once defined, it becomes a primitive to a structural
designer and can be rotated, stretched and referenced in
many places.

Arbitrary attributes can be attached to any node. At-
tributes typical for computer-aided design are weight,
cost, supplier, etc. These data are of the form:

ATTRIBUTE of OBJECT is VALUE.
For example, a node defining a beam might have these re-
lationships attached to it:

NAME OF BEAM is WF30.

WEIGHT OF BEAM is 570.

It is essential that the users be free to assign ar-
bitrery attributes to any node in the model. Useful proc-
essing programs depend on the presence of descriptive at-
tributes. An example.of this occurred recently when it was
desired to add color to objects. A description for each
color was typed in. o

'DESC' * 'RED' = 00075
Subsequently, the user typed:
"COLOR' * 'PART21' = 'RED'.

The only conventional computer programming as such amounted
to a procedure in the display routine to check for the pres-
ence of a color, look up its description, and pass it on the
shaded picture routine. As another example, the smallest en-
closing envelopes referred to earlier are actually attached

to modes as attributes. .
31.

s

e T

Figure 21. 1I-beanm "primitive” modeled as threé stretched
cuboids. The system treats this user-defined
"primitive" exactly the same as any built-in
basic form. , P :

i
1

32

In the building trades, hardware fixtures are repre-

sented in a catalog. Designers refer to these basic de-
.!signs without modifying them (figure 22). This corresponds

to subroutining in computer programming. The ability to

model this process is essential, since a designer usually

‘ begins with standard components. The resvwiting sturcture,

while still tree-like, is even less of a pure tree (figure

).

Why the Model Works

. The viability of the modeling scheme rests with: (1)
the ease with which a model is constructed and altered;
(2) the faithfulness of the representation; and (3) the
ease with which algorithms can manipulate ihe structure.
) The usc of user-defined node names and user-specified
latt;ibutes gives the model considerable flexibility. The
ability to reference any previously designed object as
,paft of some new design allows the designer to proceed
in a médular and orderly fashion.

, The grain or fineness of the model is readily con-
ﬁrollable. Greater detail is attained by attaching an
entire tree in place of a terminal leaf on an existing
coarse tree.

Since there are so few basic elements to the struc-
ture, primitive routines define and delete nodes; make and
break branches; and attach and remove attributes of nodes.

The physical implementation used by the author is a variant
33

Figmre 22.

house 1 house 2

g

wull wail

Hypothetical standard
window assembly

Mos- large objects are composed pPr marily of
instances of standard things.

3

of the associative triples scheme of Rovner and Feldman7.
The use of hashed names instead of pointers allows the
structure to work effectively in primary, secondary and
tertiary storage.

The faithfulness of the representation depends on the
actions of the user in building up a structure. If the
user is a typical architect, he will need considerable
guidance and experience to become fully effective. fie
need not become a computer programmer to become facile
with the structure, but the considerations to which a
programmer is accustomed are germane.

An architect, experienced in the use of a computer
as a design tool, might approach the design of a high
rise building as follows.

He probably has a broad outline of the building in
mind before sitting down at the console. If not, he can
Stretch and place a few geometric forms, representing the
outline of the edifice in general terms.

Next, he considers the functions of different floors.
Intermediate floors often have a common general plan. The
designer will develop a typical floor plan and then ref-
erence instances of .this prototype, as required. The few
standard office plans can be worked out and referenced as
instances with varying orientations and positions in the
typical floor plan.

The above description might suggest the model is

35

. —'qrﬁ.

.,
5
v

oriented to the design of modular building, but this is no
the case. 1In the building example, an equipment closet or
stairwell could be placed on a particular floor, even if

the floor were otherwise an instance of the standard floor

plan prototype.

The Partial Copy:

A considerable fraction of any building consists of
subassembles, designed by various designers and obtained
as standard units. The model of an entire window assem-
bly is best referenced as an instance, since the designer
can only select a new window assembly, not alter a part of
it.

Partially copying an object amounts to working down
each branch of the modeling tree until a node is reached
which is flagged as an "instance only" node. Such flags
are easily set and changed by attaching them as attributes
of nodes.

The representation of a house may require 100,000
words of memory. A copy of it would require the same
amount of memory again and this a practical reason for

not making full copies.

Algorithm for Quickly Detecting the Interpenetration of

Objects

Interpenetration of two objects in the model rep-

resents a departure from the real world being modeled,

36

t

since two physical objects cannot occupy the samz space si-
multaneously. Violations of this kind can easily occur, how-
ever. Two structures, designed separately, are moved into
close proximity with one another. This is done by orienting
the top node of each tree with respect to a dominant third
node. Objects attached to the leaves of the trees may in-
terpenetrate as a result. A typical structure has several
hundred objects attached. Comparing them individually with
a similar number of items attached to another tree woul"
take far too long (many minutes, in some cases). The user
needs to be informed of such difficulties at cnce so that

he can take corrective action. The problem is to do thais

computation quickly.

The Importance of a Metric

When a lorge number of objects must be compared to de-
termine if 'huy together exhibit some relationship (e.gq.,
interpe :etra ion), a straightforward approach of pairwise
comparison is inadequate. What is needed is some way of
determining if two objects are in some sense "close" and
therefore must be compared. Such a measure is called a
metric.

The metric is simply a criterion for determining how
far two objects are from one another. 1In a two or three-
space environment, candidates for the metric are easily

found. The common distance function is one.

—
d =-\/(=¢1 - xzbz + y, - yz)z + (% - 22)2
37

In N-dimensional space with no immediate physical interpre-
tation, an appropriate metric is harder to come by.

. The geometric model advanced here has an envelope at-
tached at each node which defines the maximum extent in
ix, +y and +z of the elements attached to that node. These
envelopes provide global information about the entire sub-
tree. With this information, a processor can quickly de-

termine Lf tha sub-tres needs to be checked in finer detail.

The Algorithm

The algorithm for determining interpenetrations quickly
consists of recursively testing the envelopes associated with
the nodes at each level of the semi-tree to determine if they
interpenetrate. .If they do not, the substructure of the two
‘nodes need be compared no further, since the proper nesting
of the envelopes insures that their components cannot.inter—
penetrate if they themselves do not. This fact greatly re-
duces the computing time, which increases with the amount
of overlap of substructures, rather than with the total
complexity of the object. After only a few tests down from
the top of the tree, most objects are partitioned off from
the envelope under consideration and need not be compared
with it.

If the envelopes of two nodes at one level do define
a region in common, th.. semi-tree attached to one of the
nodes must be walked to determine which of its components

intersect with the other node at the first level. These

38.

~
¥ - -
.
e
- s

tests are made with a postfix tree walk. This walk 1s not
exhaustive, as each node 1s checked to see :f the tree be-

low it can be skipped

Growth of Computatiun with Complexity

A tigure cf merit for an algorithm of this sort is how
rapidly the computation time grows as the complexity of the
model increases,

The time required for a simple two-at-a-time compar 1son
of a set of i1tems grows by the square c¢f the :.tems involved
The algor{thm given above has global intgrmation, which al-
lows most of the possible t«~sts to be skipped entirely. The
nodes at one lev-l in the t ee must be compared, t o by two
However, there are relatively few of them itypicAlly, fave
to ten). 1If they do nct intersect, rthey are not considered
again. If they do have a reg on in commen, the sub trzee o
one must be checked againsc the envelope of he o her. This
process 1s more n:arly lin ar, for 1f the twc nodes have
little in common, the sub- ee is quickly dispens d with

by examining the global in ormation the envelopes prov.de,

Updating the Bound .ng Envelopes

As useful as the envelopes are for guickly detecting
interpenetration, they present an updating prob em. Several
heuristic procedures have been found which are quite effec-
tive, The procedure employed is as follows:

Whenever a structure is connected to the presen desagn,

39

b oo '[.l

the rew unit is assumed to be interpenetration free within

T rret
e . 51
PSR RN

1] . wt

itself. Using the outer dimensions of the new substructure,

the envelope of the node to which it is connected 1s easily
updated.

Whenever the user shifts his context toc a totally dif-
ferent object (a command exists for this purpocse), the en-
tire tree for this object is checked and updated, as re-
quired. Thése changes of context happen :elatively in-
freéuently compared to other operations. A tull check of
the object reasonably insures that it wl]l be internaliy
interpenetration-free when 1t 1s used as ¢ component of

something else.

ko

Section 3
THE SYSTEM

Experimenting with interacitve computer graphics on a
batch processed 1108 is obviously difficult. However, con-
structing a full-scale time-sharing system before commenc-
ing graphics research is unattractive, also. To allow
graphics research to begin quickly, a swapping system was
added to Exec II by computer center personal to accomo-
date two users: a batch stream and a single interactive
graphics console. This system allows a single user of
the Design System described here to inte:ract at less cost
than 1f he commandered the entire 1108 system (approx-
imately one hundred and fifty dollars per hour instead of
six hundred dollars per hour or more;.

All program development and debugglqg was done 1in
batch mode, as swap mode provides for executicn of binary
programs and nothing more. As of June, 1969, work 1is
underway to move the system to the time-shared PDP-10
recently acquired for computer science research. This
new system will be more interactive, less costly, and
certainly much more fun to use.

The 1108 version of the Design System is currently
operational. It is not as ihteractive as we believe the
PDP-10 version vill be, but it dces provide tools for
creating all aspects of the previously described model.

At any point in the construction of a model, a halftone

0

photograph can be created, the mechanical structure of

the object can be analyzed, etc.

Starting the System

A deck of about 12 cards is read into the 1004 remote
batch terminal causing the 1108 system to read in the
design system from the Fastrand drum. All further oper-
ations are performed at the graphics console, which con-
sists of the display tube, Sylvania tablet, teletype,
rotation ball and zoom stick. Initially, the user is in

a mode appropriate for the design of space and form.

Modes

Five modes are presently implemented on the 1108
system (figure 23). These are:

l. Spaceform design

2. Halftone production

3. Electrical design

4. Structural analysis

5. Heating analysis

The basic programming is designed and implemented to

support an unlimited number of such modes.

Spaceform Mode

Spaceform mode is the basic mode in which the model
described in the previous section is created. Spacéform
mode, and the under-pinning systems programming for all

modes, has been the central responsibility of the author.

W2

initial
entry

heulinf
enilysis

halftone
production

SLructural
analysis

Figure 23. System modes.

Subsystems, such as electrical design, are the respon-
sibility of others and are described elsewheres' 12.
In Spaceform mode, an exclamation point is typed by the

system to indicate its readiness for user 1input.

Design Command

DESIGN is often the first command typed by the user.

e.g.: | DESIGN 'DHWIND'

The design command changes the user's countext to the 1na-
dicated object (internally, a modeling tree). which nay ov
may not exist. If the name supplied is not tn the data
base, a new node is created and the user h4s a clean slare
(internally, a tree of a single node) on which to attach
things.

The DESIGH command makes the indic4dted ncde the top
node for display purposes. Viewing parameters position the
strycture attached to this node relative to the viewer's
inertial frame of reference (figure 24j. Commands to be
described are available which change the viewing para-
meters at will without modifying the model of the object
in the data base. The context declared with the DESIGN

command can be changed by the user at any time.

Primitive Commands

The geometric primitives provided are cube, trinaqular

rod, hexagonal rod@ and cylinder.

P

D R Y S S ST

p—

TS P S e

SVLEE RS

Desigr. iy Data Base

ROOM

WALL2 wmitr 4
NINDOW
WALL 145)
vINROw I WINDOW
] il

DESIGN *WINDOW®

Lo

~
e WINDOW

Figure 24. The subtres object) currently under design is
. effectively detached from other objects for
viewing purposes.

bs

;%q
| . i,
ICUBE 'name'’ | ’: | | ' l |
ITRI-ROD 'name’ | ') .
IHEX-ROD ‘name’ S , i N | s
ICYLINDER ‘name' ; ’ o Co - {

" ! ' ! !
supplying a name is optional. If tle name is absent,' the

system generates a uﬁique ngme from é pool of unlikely
identifiers. A copy of the indicated primitive is‘attaéhed 3
to the current top node. The translation, fotétion and k
scaling (TRS) parameters-for‘this brapch are sét t9 no-
minal values which the user will usually Want|to modiff

I

at once with the positional commmands . 1

i ! 1

Positional Commands . ‘ L ,

! ! i

Objects (tree structures) may be translated, rotated
i

or stretched about any or all of the three axes.
|TRANSLATE 'A' 20 FEET X ! C
IlI!QTA‘I‘E ‘B' 10 DEGS Y
ISTRETCH 'C' 2 TIMES Z . |
A left-handed coordinate:systém is used with the viewing |)

\ |
window at the origin (figure 25). Co

!

If the indicated node {object) is the direct dependent
of the top node (objeqt being designed); the TRS pa;qmeteis
associated with its connecting branch are ‘changed accord—-l
ingly and the object is fedisplafed to reflgct'the!chénge.

If, instead, the current top nqde ié indicateq,lyhe viewing ' o
paramters are altered, changing the way the object appears ’ ,
; .

on the screen, but not altering its representatior in the \

b6 - -

data base.
Stretching an object by naming its top node scales it
! . and. all 1ts dependent structure proportionately,

The vger 1s brought closer to the object by typing .

, ' {Z00M IN 10 FEET

or pushing forward on the stick. The reverse operation
~is 200M OUT L0 FEET or pulling the stick towards the user.

The 1dea 1s that of a viewer flying around a stationary

| [
f building.

i Instancé
Anllnsténce of a structure 1s ohtai ved by connecting
j a branch tg 1t from the curent top hode.
| | INSTANCE 'name’
Nomirial TRS parameters are gssSigned ¢o the branch just as
is done for praimitives. The position OF ¢he instance
relative €o the axes of the gurreant top node can be changed

" 1at will with the previously described commands.

1t 1s thg user's responsibility to lnsure that in-

finite loups are not established vie the JPSTANCE command

(figure 20). A graph with a loop 1s no longer a semi-tree.

The situation modeled by a loop 1s se unreal that in prac- !

- tice 1t 1s unlikely to occur. In briet, }t 1s an object,

one of whose components is the object i1tself. The system
! |

informs the user that such a condition exists as soon as

he attempts to display it.

data base.
Stretching an object by naming its top node scales it
and all 1ts dependent structure proportionately,
The vger 15 brought closer to the object by typing
1Z200M IN 10 FEE1
or pushing forward on the stick. The reverse operation
is ZOOM OUT 10 FEET or pulling the stick towards the user.
The idea 1s that of a viewer flying around a stationary

building.

Instance

An instance of a structure is ohCai ved by connec ting
a branch tg 1t from the curent top node

INSTANCE 'name’
Nominal TRS parameters are assSigned ¢a the,branch just as
1s done for primitives. The position of ¢he instance
relative €o the axes of the ¢urrent top node can be changed
at will with the previously described eommands.

1t 1s the user's responsibility to insuxe that in-
finite louwps are not established vie the iNSTANCE command
(figure 26). A graph with a loop 1s no lunger a semi-tree.
The situation modeled by a loop is se unreal that in prac-

tice 1t 1s unlikely to occur. In briet, }t 1s an object,

one of whose components is the object i1tself. The system

informs the user that such a condition exists as soon as

<
?
Yy

/
¥,

he attempts to display it.

u8 .

Figure 26. The object 'A' is a component of
itself. Unreal®

ko .

Copies

The facility to Produce a copy is implemented as a
partial copy. That is, a copy is made of the indicated
node, and it is assigned a new and unique name and attached -

to the current top node. The nodes dependent from the

copied one are referenced as instances from the new copy
(figure 27).

Partial copies are expedient from the point of view

of implementation, but they are also what is usually des.r~d
by the user. a recursive copy-producing command that is
applied repeatedly for many levels, or until some other
condition 1is satisfied, 1s a possible future extension.

A method for éutomatically choosing all the new unique

names would need to be be developed for this to work.

Aids to Interaction

The author does not believe the ultimate system should
be as keyboard-oriented as is the 1108 implementation.
Button boxes and light buttons are only incrementally
better, however, not major improvements. Plans are
underway to try some radical methods of direct interaction
on the PDP-10 implementation along the lines described in
reference 5. The 1108 Exec II swap mode proved too
clumsy to make research in highly-interactive graphics

worth attempting.

In the interim, a number of minor things have been

un
o

before

A —_ top node

/N

COPY 'B' AS 'BB'

after

Figure 27. Creation of a copy.

51 -

r
|

added to the 1108 system to facilitate its use. For one,
a node name weed be typed only once in a sequenca of
commands relating to 1t:

For example:

INSTANCE 'B’

TRANSLATE 'B* 10 FEET ¥

CUBE 'C'

STRETCH ‘€' .1 TIMES X
can be typed 3s:

INSTANCE 'B!

TRANSLATE 10 FEET X

CUBE 'C'

STRETCH .1 TIMES X

Various units of lineal measure are permissible. In-
itially, distances are in feet. Subsequently, the user
types distances in other units and the system makes the
conversion. For example, the first time 17 INCHES is
given as a distance, the system counters with HOW MANY
INCHES PER FOOT?. The user supplies the conversion
factor '12.0 , which is stored away for automatic use in
the future,

The syivania tablet stylus can be used to select an
object on the screen, obviating the need to type or even
know its name. This allows the user to place primitives
without naming them. Future references are made by point

ing, which retrieves the system-assigned name.

52

Saving Designs for Later Use

- A terminal session is ended by typing STOP. Before
the design system actually signs off, all design-related
data in core is written out on the Fastrand for later use.
This Fastrand region is 700,000 words and, though large,
18 too small to hold all desagns.

Facilities are provided for writing out tree structures
onto magnetic tape and reloading them at a later time.
Exec II swap mode (stifling as always) does not allow tape
drives to be assigned to the araphics user's program. There-
fore, two batch programs are avairlable to Le xrun before
and after the terminal session. DUMF QEJECT reads data
cards containing the names of the top nrodes of tree struc-
tures on the Fastrand. The entire trees attached to these
nnodes are written on tape. Load design pertorms the con-

vaersgse operation.

Halftone Production

A halftone photograph of the object currently on the
screen is produced by typing PHOTOGRAPH. The 1108 com-
putes for about 30 seconds, after which the design system
types READY. With the Polaroid camera in readiness, type
SEND. The same view can be transmitted any number of tines.

To return to the Spaceform design mode, type EXIT.

Electrical, Structural, Heating

The electrical design and‘ftructural and heating
[

53

analysis modes are entered by typing
{ELECTRICAL
! STRUCTURAL
{HEATING
The objeét under design (current top node) when these com-

mands are given is the geometric object treated by the node.

R R

%

YA
(Lt ROy

S

BIBLIOGRAPHY

l. cCarr, C.S. Design System Technical Report. Technical
Repe.: 4-16. Salt Lake City, Utah: University
of. ijtah, 1969.

2. Christrensen, Carl and Pinson, Elliot N. "Moltai-
Function Graphics for a Large Computer System,"
AFIPS Conference Proceedings, Fall Joint Computer
Conference. XXXI (1967), 697-712

3. Forrest. h.R. Curves and Surfaces for Computer-Aided
Pesion. England: Joint Computer-Aided Design
Group, University of Cambridge, July, 968.

4. Luh, J.¥. 3. and Krolak., R.J. "A Mathematical Model
for Mechanical Part Descrip::on," Communications
of ACH. VIII, Ne © (Febru.a:y, 196%:, 125-28.
5. Luthe., .A., Blectrica. besign (osiom. Work in progress.

Salc Lake City, Ut_.z: Unil.one -y i Utah, 1969,

6. Roberts, L.G. Machine ierceptio: i ''mree-Dimensional

Solids. Technical Feport No. 375. Lexington
Massachusetts+ Lincoln Laborat-ries, May, 1963

7. Rovner, Paul D. and Feldman, Jerome A. The Lea
Language and Data Structure. Technical Report
Lexington, Massachusetts: Lincoln Laboratories
October, 1967.

8. Smith, M.J., Macdonald, S.L., and Cairr, C.S. Space Form
Computer-Aided Design for Architecture. Technical
Report 1-2. Salt Lake City, Utah: Universaity of
Utah, September, 1968.

9. Sutherland, I.E. SKETCHPAD: A Man-Machine Gr phical
Communication System. Technical Report No . 6.
Lexington, Massachusetts Lincoln Laboratories,
January, 1963.

10. Warnock, J.E. A Hidden Line Algorithm for Half-tone
Picture Rgg;eseg&ation. Technical Report 4-5.
Salt Lake City, Utah: Universaity of Utah, May,
1968.

1l1. Wehrli, Robert, Smith, M.J Space-Form II, A Description
of ARCAID, the Archit.c s' Automated Int ractive
Design System. Techni 1 Report 1-3. Salt Lake
City, Utah: Universi y of Utah Marc , 1969.

55

e

R

ST R T

12.

West, Farrin W. Structural Analysis System.

Work in

progress. Salt Lake City, Utah: University of

Utah, 1969.

56

Appendix I
INTERPENETRATION ALGORITHM

The interpenetration algorithm has been implemented
as an independent program on the 1108 but will not be in-
cluded in the design system on the 1108. It is planned
for inclusion with the PDP-10 version, howe er. Pre-
liminary tests indicate that computing time is directly
related to the total number of nodes in the tree and the
number of overlapping envelopes. The method advanced
here is always faster than the brute force comparison
of two nodes at a time. It is at its besc with trees that
are short and fat, since they admit £o the greatest amount
of early pruning of entire subtrees.

It is intended that the system will signal the user
of a violation by indicating the two objects that are inter-
penetrating and the dominate objects of which they are a 7
part. This is done when the first violation occurs. The

user must correct the situation before proceeding.

51

Appendix II

SYSTEMS PROGRAMMING TECENIQUES

When faced with a major system programming task, one
must decide to begin coding immediately or construct tools
for the job. One such tool is an adequate time-sharing
system. ' This was too big a task to undertake as a part of
this thesis, however.

Another tool for systems programming is the construction
of a language and a compiler more suited for graphics ana
data base manipulation than thnse commonly available. It
is not intenled to use the design system oa the 1108
forever, and tha constructiosn of a sp=Cici programming
language, and the generation of its compiler via a meta
compiler, are steps which are facilitating the move to

another machine.

58.

Graphics Fortran

A "Graphics Fortran" has been constructed as an
addition to Fortran V. The Fortran language'was chosen
strictly on pragmatic grounds and not for its elegance
as a computer prograﬁ;ing formalism. Spec:fic reasons
are:

1) The Fortran compiler is the best maintained
compiler on the 1108 and PDP-10 computer:.

2) The Fortran compiler on the 1108 produces very
efficient code even approaching the quality of hand
coding.

3) Utai's Tree-Meta system currentiy produces

Fortran ouctput to take advantage of the Fortran compiler's

optimization. The Graphics Fortran Compiler was produced
using the Tree-Meta Compiler Generator systenm.

The Graphics Fortran compiler was not hand-coded
in the old, laborious fashién of compiler writers but
rather was generated by the Tree-Meta compiler generator
system (figure 28). Therefore, the compiler is easy to
regenerate whenever a change in the language is desired.
The following sketch outlines the process of system

generation,

59

Meta stateme

for
Graphics ™™

Fortran (G.F.

G.F. Suppord,
Package

TREE-META

Fortran V
Compiler

G.F. State-
ments e
about Design
System

D.S. Runtimg’

£

(.F. Compiler

=

designer (user)
at CRT

Figure 28,

Fortran v
Compiler

H

.S. Runtime

Design Sys'tem
Program

1

—p dJ;splay,

etc.

|
System generation procedure.

60

teletype, '

SIS

12

e

- Tree-Meta has another important advantage. By a well-
ﬁnown, two-step process, it is possible to move a compiler/
compiler ts a new machine with a minimum of hand coding
}figufe 29). Once Tree-Meta is operational on a new machine,
compileré such as Graphics Fortran can more easily be

moved across to the new machine. The use of Tree-Meta

'makes moving the Architectural Design System to the PDP-10

vastly easier.

H

File 1:

Specifications
for the T-M
system expressed
in T-M language.
PDP-10 Fortran
output specified.

File 1:

Specifications
for the T-M sys-
tem expressed in
T-M language.
PDP-10 Fortran
output specified.

Figure 29,

L

Program: v
—t - o F
c:ompiler‘t compiler
running on on
1108 L1108
Fiis 2:
PDP-10
Program: 2 Fortran IV
T-M compiler implementa-
on the 1108 —p tion of
which generates Tree-Meta
PDP-10 Fortran.

The two-step bootstrapping process to move

coding from one computer to another.

Tems ey

Supporting subroutines, such as the ldentifier

recognizer, must be recoded by hand just once when moving

between machines.

Graphics Fortran (G.F.) has eight sections or state-

mernt types:

1)
2)
3)
4)
5)
6)
7)
8)

Regular Fortran statements
Associative statements

Interaction parsing statements

Graphics output statements

Segment statements

Graph following statements

Software interfacing statements

Depugging, tracing and statistics gathering, and

other miscellaneous statements.

Associative Data Base

Various techniques exist for storing trees within a

computer The common methods involve a region of storage

divided up into small blocks representing the various nodes.

Pointeré (addresses or indices) within these blocks

indicate connections (branches) to other nodes. Such

schemes have serious limitations for, among other things,

no finite core size, selected beforehand, is adequate to

‘model all objects. The pointers are of a fixed size and

addressing across various levels of storage with them is

costly.

63 .

As an alternative, the design system presented here
stores the relationship of branch/dominant node/dependent
node as an associative triple by a method developed at
Lincoln Laboratories.2 Associative triples consist of an -
attribute/object/value triple. Names are used instead of
pointers, as they are independent of the size of the data
base.

The rames are hashed in various ways such that, given
one or two of the triples' components, the third member
can bhe found guickly.

The Tincoln scheme was varied slig'. Ls to make it
more economical. Graphics Fortran zllows the programmer
to indicate which components of the triple will be used
for future retrieval. 1In the design system program,
retrieval requests are often made in only one or two ways.
If the programmer has this information ahead of time, he
Can save the computer system considerable time and space

by indicating it to the machine.

6l -

Appendix Ill

MODIFICATIONS TO THE HIDDEN LINE ALGORITHM

10 has been modified to

Warnock's hidden line program
produce output for a line drawing scope, as well as a
raster display. The method involves tagging generated
points i1n a way that a high-speed sort results in sets

of points which form lines instead of sorting by Y and

X coordinate values for raster scope output. Each set

of points i :replaced by the line (.:.d peunts; they re-
present. 5 rerated edges u: interpsoiiauing surfaces
were a problem, since they cxist on!:- S Lecity in the
raster output. A technique was devis2d ror detecting

such an edge and replacing it with an exp!icit line seg-
ment.,

Warncck's implementation was inteaded for batch pro-
cessing use, and as such generated all vis.ble edge points
before displaying any of them. The modified line draw-
ing algorithm works similarly. One drawback of this
method is the intermediate swell of data. One thousand
words of surface information becomes 15,000 words of
edge point data before it is reduced to 1,000 words of
line and point information.

This is not a fundamental problem of the algorithm,
of course, for it could be recoded as a set of co-routines
to convert generated points to lines as they become avail-

able. Coalescing points into lines on the.fly would in-

65

crease the amount of processing done, but would save space

(the fundamental time/space trade-oif at work, as always].

66

