
AD-7 53   670 

GEOMETRIC   MODELING 

C. Stephen Carr 

Utah University 

Prepared for: 

Rome Air Development Center 
Advanced Research Projects Agency 

August 1972 

DISTRIBUTED BY: 

Mi] 
National Technical Information Service 
U. S. DEPARTMENT OF COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 

■ i ■ 



DISCLAIMER NOTICE 

THIS DOCUMENT IS THE BEST 

QUALITY AVAILABLE. 

COPY FURNISHED CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE LEGIBLY. 



RADCnTR-69-248 
Final Technical Report 
August 1972 

GEOMETRIC MODELING 

University of Utah 

. 

, i 
Sponsored by 

Defesne Advanced Research Projects Agency 
ARPA Order No. 829 

Approved for public release; 
distribution unlimited. 

... n 
U*J/     jL-»»1"1 

'■■...> 

OliilETfil 
mM mi w 

\ i 

Www** U"»-* L^  t^/   (■«-...' i..-.,,..^/ 

^»^^ t- 

The views and conclusions contained in this docuaant are those 
of the authors and should not be Interpreted as necessarily 
representing the offlcla?. policies, either expressed or laplled. 
of the Defense Advanced Research Projects Agency or the U. S. 
Government. 

i 

Roprmlucfrl IJV 

NATIONAL TECHNICAL 
INFOKMATION SERVICE 

U 5; Drpai   nunl of Conmnrce 
Spring), M VA ??1 ■il 

Rome Air Development Center 
Air Force Systems Command 

Griffiss Air Force Base, New York 

/"*> 

%. 



■> 

K 

^i&i&mnw- 
t^frtirHv C!iiiwsification 

DOCUMENT CONTROL DATA -R&D 
(ttrurlty cttttltlr nilan at Hll», l.otly ot ebtlfcl nnJ InJevinfi cnnolatlon .r.,ur,t be tnleteii wlirn Ih» overall Tfpntl It clonlllod) 

gl. owiai.siA iiNti Ac Ti vi r v (Coff>or»(» ouWior; 

Computer Science 
Unlvfiraity of Utah 
Salt Laic« City, Utah 81i.ll2 

'».  HEPOOT   TITLE 

m. RtPonT secuRiTv CUASSIFICATIOM 

Unclaasifleä 
2b.   CROUP 

GEOMETRIC MODELING 

It. OEiCHiPUVE NorKS (lypa ol topotl *nd Inclusive dornt) 

Technical Report 
J. wrHCKisi (Pirtl ittyr*i, niUidlv tnlllat, la.ttntme) 

C. Stephen Carr 

August 1972 
1)00.   CCNIRACY   OH  GHA^T  NO. 

| AF30(6O2M&77 
*    b.  PROJECT NO. 

müh Ordor No.     829 

ProjrraBi Code L'ubmers    6D30 

10.  Dl5ir RIQUTION STATEMENT " '" —-—        ——~ 

I This document has been approved for public ralase 

TO.   TOTAL  NO.  OF PAGE» 

69 
7b.  NO. OF  HEI-S 

12 
DO.  ORIGIN A'> OK'3 REPORT NUMBER(S| 

TR h~13 

66. OTHER REPORT NO(S) (Any ottiot numhrtt «ifi1 nnli■ bo eeeltwil 
III It report) 

RADC-.TR-69~2|t8 

i ai and öaie; its distribxjtion is unlimited. 

11.  auPfLGMEMTARY  NOTCS 
l*Krjt*pt*tmu~ 

Monitored by 
Rou'e Air Development Center (EflXIO) 
Griffiss Air Force Base, Kew York IS^O 

12.  SPONSORING MILITARY   ACTIVITY 

Advanced Research Projects Agency 
Wash DC 20301 

19. Aar.inACT 

A system is presented for modeling three-dimensional objects such as buildings 
and mechanical devices, in the computer. The system has been implemented as an 
interactive design system. Shaded, half-tone photographs of objecta designed with the 
system are included: 

An algorithm is presented for quickly determining if tvo objectss created by 
the huuian user, interpenetrate one another. The user is informed of such violations 
by the system.  Additionally, basic concepts of computer graphics modeling are 
presented for the benefit of readers not conversant with the terminology of computer 
graphics. 

The Implementation of these ideas as an interactive design system for architects 
has been a formidable task on the 1108. A description of this task is included as an 
Appendix. The description should be of interest to systems progrsmmers, however, aa 
the implementation used the most modern programming techniques, such as n compiler/ 
compiler to generate a graphics programming language processor, and a hashed' 
associative data base. 

> 
a. 

rui r'f;nM ■? o w*o 
IWCLASSIPIED 

S'.'cmity CliiBsificntion 



JLUmSSXElEDL 
Sccu'lf" Clnaoiflcatlort 

14, 
kty tibHtii r 

Computer Graphics 
Computer Aided Design 
Data Structures 
Computer Modeling 

ROt-U 

.TO^WfganilllllllMWi — ■ JfXXli 

N K   D j u I N K C. 

•JJ 

WOW."mcT«MWi«J^tt:««r" Ä^.y«ir^Ar«ot-»i;-«;iwrv..ei ■ tf/i-eIWAi=B5S/™rvR««ouii\'»afc»c»7rfwf?MMji.-»*Ajsu>ir ■ Wl^JTOSn« UiKl'^WW!«»« Ml**i»^.-«i-r.-.%tTr«.S_»Ji.    'rWT»M. ^I-^.-     .IM^«»»««.-, ■*i.-i r. .^-.v* .M* Awcn'mn ■• 

UUCLASSIPJED 
i:-ciirily ClRa&ificRUon 



GEOMETRIC MODELING 

C. Stephen Carr 

Unfverslty of Utah 

Approved for public release; 
distribution unlimited. 

This research was supported by the 
Advanced Hessarch Projects Agency 
of the Depsrtaent of Defense and 
was tsonltered hj David A. Luther, 
RADC (I8CB), GAPB, NY 13440 under 
contract AP30(602)-4277. 

^ 

•^; 



FonmmD 

'pü.B  int^im rap^^t daocylbes  znattzsy. 
by qowpnt^r S^ianc® of the im 

h 

This   t0ahni<?a.l peport haa bwi'  rav}™**  ?->>(i 

11 



ACKNOWLEDGEMENTS 

The ideas of Geometric Modelingr as developed in this 

thesis, are principally those of the author. However, the 

ideas spring from work on an architectural design system* 

No less than fifteen people were involved in some way on 

this project. 

Thanks are in order for Professor Stephen L. Macdona^d 

and Dr. Robert Wehrli'11 of the Architecture and Physcholpgy 

Departments and to the graduate architectures and psy- 

chologists who worked under them: Max J. Smith» Ted F. 

Smith, Jay A. Shadel, and John Archea. 

David A. Luther, a fellow computer science graduate 

student and friend, interfaced his Electrical Design Sys- 

tem to the basic geometric modeling program. As the 

first person to attempt this, he encountered many diffi- 

culties t itween our two programs, which were straightened 

out in the process. The similar task of connecting the 

Structural Analysis program went much more smoothly as a 

result of his labor, which is appreciated. 

I wish especially to thank my programmers, who labored 

with a computer system totally inadequate for interactive 

computing: J. Robert Geertsen, Sherian Erdman, and David 

T. Blackburn. The Univac 1108 and its batch processing 

monitor are so unsuited to the tasV x.\\&t  it never* ehould 

have been undertaken. 

iii 



PinaUy, J,  wish to thank my advisor. Dr. David C. 

EvanB, and my wife, Lynne, who played the obvioug and neces- 

sary roles. Their contribution need not be explained or 

emphasised to anyone who has struggled through a graduate 

program. 

iv 



TABLE OP CONTENTS 

Page 

ACKNOWLEDGEMENTS .  . iii 

ABSTRACT  vii 

OVERVIEW , . . f  1 

Section 

1. BASIC CONCEPTS   ...... 5 

Objects and Envelopes    .... 5 
Trees and Graphs !.".'! 7 
Copies and Instances '.'.[[ 9 
Making Copies of Instances   .1,1 10 
Constraint Öeclaration and Satisfaction  . .* 13 
General Constraint Satisfaction  ...... 13 
Constraint Representation for Geometric 

Modeling . . ,  ^3 
Modeling Elements - Lines, Planes and* 

Volumes  16 

2. THE MODEL  21 

The Model  21 
Why the Model Works ....'.'. 33 
The Partial Copy ,,.... f .* ^ 36 
Algorithm for Quickly Detecting the Inter- 

penetration of Objects  36 
The Importance of a Metric ,  ,' 37 
The Algorithm , , * ,' 38 
Growth of Computation with Complexity' .* .' \ 39 
Updating the Bounding Envelopes    39 

3.  THE SYSTEM  41 

Starting the System  42 
Modes  ^2 
Spaceform Design ...... .....'.*!,* 1 42 
Design Coiqmand  # 44 
Primitive Commands  . . * 44 
Positional Commands , . ! 46 
Instance  48 
Copies ,  50 
Aids to Interaction , ] 50 
Saving Designs for Later Use '.   ', 53 
Halftone Production   53 
Electrical, Structural, Heating    , 53 

v 



TABLE OF CONTENTS (Continued) 

BIBLIOGRAPHY ,  56 

Appendixe« 

I.     INTRRPENETRATION ALGORITHM  57 

II.     SYSTEMS PROGRAMMING TECHNIQUES  58 

Graphics Fortran t   .   .   .   . 5^ 
Asfioctiative Data Base  63 

VITA    . 67 

vi 



ABSTRACT 

- 

■ 

i 
■ 

A system is presented for modeling three-dimansion^l 
'■. • 

I ,. objects, such as buildings and mechanical devices, in the 

computer. The system has been implemented as an inteiactive 
■ 

design system. Shaded, half-tone photographs of objects 

designed with the system are included. 

An algorithm is presented for quickly determining if 

two objects, created by the human user, interpenetrate one 

another. The user is informed of such violations by the 

system. Additionally, basic concepts of computer graphics 

modeling are presented for the benefit of readers not con- 

versant with the terminology of computer graphics. 

The implementation of these ideas as an interactive 

design system for architects has been a formidable task on 

the 1108. A description of this task is included as an 

Appendix, the description should be of interest to systems 

programmers, however, as the implementation used the most 

modern programming techniques, such as a compiler/compiler 

to generate a graphics programming language processor, and 

a hashed associative data base. 
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OVERVIEW 

Solving a  problem on a computer amounts to (1) con- 

structing a model in a representation the computer can work 

with; and (2) constructing procedures to interactively 

modify the model. Geometric Modeling is the creation of 

abstract representations of three-dimensional world ob- 

jects in the computer.  Such modeling was motivated by 

the construction of a computer-aided design system for 

architects. Buildings, furniture and mechanical devices 

such as machinery are examples of objects which require 

a three-diinensional model in the computer as a basis for 

their manipulation. 

Many objects are easier to model in computer terras 

than are three-dimensional objects. For example, electronic 

circuit diagrams are easier, since they are highly sty- 

lized, descrete abstraptione of zeal world objects. A tran- 

sistor is satisfactorily represented by a number of attri- 

butes, one of which is its circuit schematic symbol (fig- 

ure 1).  This abstract schematic is what circuit designers 

need. The architect and mechanical designer yvit  riqh 

detail, instead of abstraction., Detailed, three-dimensional 

objects are difficult to model and difficult to display on 

the CRT. 

Modeling complicated three-dimensional real-world ob-, 

jecta is difficult, and relatively little hj*s been done in 

this area. Previous work has advanced general data struc- 



tures for modeling heirarchically defined objects.2'4'9 

The present work concerns the decisions necessary to 

adapt the general structure to three-dimensional objects, 

A number of geometric solids are provided as basic 

object elements in lieu of points, lines and planes.  The 

other forms are easily derived from this basic form, when 

necessary.  The designer works at a line drawing scope 

and sees the edges of surfaces and volumes.  This is a 

limitation of present-day technology..  Research is under- 

way to provide a raster (half-tone) picture to interact 

with.  In the meantime, the user can produce a shaded 

picture of this design on an auxiliary scope in about 

thirty seconds . 

Examples are given to show how the resulting modex 

works in practice. The modeling methods described here 

have been implemented as a part of an interactive graphics 

system. A simple design done with the system is shown 

in figure 2. 
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Section 1 

BASIC CONCEPTS 

Objects and Envelopes 

Two fundamental moüeling entities are objects and 

envelopes. 

Objects represent physical things ~ a block of con- 

crete, or a plate of glass, for example. 

Envelopes define regions in three-space a opposed to 

material objects. 

Envelopes are analogous to political boundaries. The 

States are wholly contained in the United States  An ob- 

ject in a state is in both regions at once, rot one or the 

other. 

The "grain* or fineness of the model is reflected by 

the number of levels of nested envelopes, if the model is 

to represent cities within states and building within 

cities, additional branches to smaller envelopes c n be 

added (figures 3 and 4). 

Objects are abstract representations of .eal matter. 

As such, all the properties of matter may be specif ed, 

such as color, mass, finish, boundary surfaces, etc 

Real objects cannot interpenetrate and neither should 

their abstract representations. One object must be ut 

away to make room for another one. 

A basic property of objects and envelopes ir.  th ir 

geometric shape. The most common shape is the cuboi 

The cylinder and a triangular wedge are useful, also  In 



United States 

New York Calif. Utah 

Figure 3. Model of the United States showing the 

division into states. 

United States 

Provo 

Office 
Building 

School 

Figure 4. Model of the united States at a f ner grain 

showing the divisions and objects within a 
state. 



". • 

eJdltion, the boundary surfaces of envelopes and object« 

can be warped or otherwise deformed into complex shapes. 

Architects and mechanical designers shape and place 

both envelopes and objects. A computer-aided design system 

for their use must deal with both types of entities. 

To better understand how the two interact, consider the 

model of a room. A room is a region of space and, hence, 

an envelope in the model (figure 5). Room do not exist 

in the way steel beams and concrete do. Rather, they are 

spaces which exist first in the designer's mind, and then 

because walls enclose them. 

"Walls" are envelopes or regions in which actual 

building materials may be placed. The room envelope and 

wall envelopes encompass or delimit some of the same space. 

They are not thought of as interpenetrating, however. 

A window region is defined in a wall envelope by 

simply placing the window at the desired spot. To  put 

a window object (solid, such as glass» in a wall defined 

to be an object, an opening for it must first be cut in 

the wall. The data structure models distinctly: 

(1) the wall; 

(2) an opening in the wall; and 

(3) a window assembly positioned in that opening. 

Trees and Graphs 

To  be useful, a model must have structure. Components, 

of the model such as rooms are themselves composed of com- 



Figure 5. Room envelope containing wall envelopes. 
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ponents (e.g. wills, doors, etc.). Such heirarchies can 

be modeled by mathematical graphs namely collections of 

nodes and branches. A particularly useful class of graphs 

are trees (figures 3 and 4 show two examples). Techniques 

exist for storing and manipulating trees within the computer. 

These details are discussed briefly in Appendix II. 

Walking thr  tree refers to algorithms which select 

particular nodes according to some sequence in order to 

process the tree in some way. Trees can be traversed in 

many ways. The following illustrates only one possible 

way of accomplishing this traversal. 

To display a tree for example, the tree walking pro- 

cedure beings at the top node and advances down the left 

most branch repeatedly until a terminal node (leaf) is 

encountered. Next the algorithm walks back up one level 

over one branch to the right and then down again, etc. 

Copies and Instances 

As explained previously, a tree structure represents 

something which has been designed. This might be a window 

or a chair in an architectural model. The structure is 

given a name and can be referenced by other structures 

in two uniquely different ways. One way is to copy the 

entire tree over into the structure where it io needed 

(i.e., copy), giving it a new name in the process. The 

other method is simply to reference the object by name 

(i.e., instance). In computer programming terms, the 
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copy is a macro; the instance is a closed subroutine. 

Consider a wall with two windows of Type X placed 11 

it.  If the windows are in bha wall as instances, then the 

modeling structure is as shown in Figure 6.  If the win- 

dows are referenced as copies, the model is as shown m 

Figure 7.  The two pictures look the same, but the model 

is quite different and has different properties. 

In the first situation {instance) a change in the de- 

sign of the window is reflected in both windows in the pic- 

ture since both windows are referenced as instances.  In 

the second situation, each copy acts independently.  A 

change to window number one leaves window number two un- 

altered. When modeling a high rise building with 1,000 

windows of five different types, the proper choice between 

instances and copies is critically important. 

Making Copies of Instances 

The window in the previous section is most likely an 

entire tree structure, rather than a single node (figure 8). 

Making a copy of the window amounts to copying its entire 

structure and assigning this copy a new name (figure 9). 

Since all the nodes in the model of the window have been 

copied, and every node must have a unique name, new names 

are generated for each copied node.  The copy operation 

applied to a complex object generates considerable additional 

data, which must be stored somewhere. This is a practical 

reason to restrict the use of copies. 

10 
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structure 

Figure 6. Windows referenced an instances. 

HALL 

Figure 7. Windows referenced as independent copies, 
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HALL 

Figure 8. Two instances of a tree structure defining 

a window are referenced in a wail. 

WALL 

WINDOW 

Figure 9. Two copies of a tree structure defining 

a window are referenced in a wall. 
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'"'; Constraint Declaration and Satiafaction 

! . •' Constraints are declarations of relationships between 

two or more objects.  For example, the plumbing in a build- 

ing should be constrained to stay in the walls, even as the 

walls are moved about and repositioned.  Powerful computer-* 

aided design systems should provide the user with some way 

of declaring constraints and then solving them or, at least, 

signalling when a constraint, is violated. 

Before this processing is done, constraints specified 

by the user are usually reformulated by the computer, rend- 

ering them more manipulatible. 

General Constraint Satisfaction 

Given a set of relationships, the goal of constraint 

satifaction is to choose values of the variables which re- 

sult in all constraint relationships being satisfied. 

Typically» there are more vaiables than constraints, hence 

infinitely many possible solutions exist. For example, 

the constraint that two walls remain parallel admits to 

infinitely many orientations of the walls in a floor plane. 

General constraint satisfaction is a task akin to 

theorem proving.  It is a hard problem that is as yet un- 

solved. 

Constraint Representation for Geometric Modeling 

For many situations in Geometric Modeling, the solving 

of arbitrary constraints is not necessary.  The choice of 

13 



representation can facilitate constraint processing or 

provide an implicit constraint solution, in a number of 

cases.  For example, a house might be defined as a set of 

rooms posit-oned in some manner.  The rooms in turn could 

be defined as a set of four wall envelopes (figure 10). 

By this definition, the walls move with their respective 

rooms when the configuration of rooms is changed. 

An alternative definition is a house composed of a 

set of rooms and walls (figure 11).  By this definition. 

the rooms and walls move independently, and explicit con- 

straint declarations are needed to keep the walls with the 

rooms as the rooms are moved. 

Another essential representation decision for con- 

straint satisfaction is the property of proper inclusion. 

An additional piece of data at each node describes an 

envelope, which is the smallest cuboid that completely 

encloses all the components of the object.  These envelopes 

allow an algorithm to quickly determine if two ejects 

attached to different tree structures are accidently inter- 

penetrating.  The proper inclusion requirement turns out 

to be a very natural one where buildings are concerned. 

The designer intuitively thinks of the walls as parts of 

a house, and not the other way around.  The system per- 

mits him to structure an object in the reverse order, 

should he want to do so, in which case interpenetration 

checker simply runs more slowly. 

li» 



HOUSE 

rooms 

walls 

Figure 10. Definition to avoid constraint processing. 

HOUSE 

walls  room room room room 

Figure 11. Definition of HOUSE which requires a constraint 

processor to maintain the walls with rooms. 
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Modeling Elements - Liney Surfaces and Volumes 

Suppose we wish to represent . solid pentagon (figure 

12).  A line representation of this object has the x, y, z 

coordinates for the end points of each edge of the object 

as separate data blocks.  A surface representati^ i contains 

seven data blocHs/ each containing the x, y, 2 coordinates 

of the end points of the boundary lines stored in an 

appropriate order.  A volume representation amounts to one 

block containing the coordinates of the extreme points in 

an order to indicate how they relate to one another. 

A line representation of an object requires the most 

storage space and a volume representation the least.  Both 

extremes are needed at various times.  However, an object 

stored as a volume can be easily converted to a set of sur- 

faces.  Given a set of surfaces, it is extremely difficult 

to deduce what volumetric shape they represent (cube, prism, 

etc.), if indeed they do at all.  One direction is simple 

and algorithmic; the other is complex and probably heuristic 

The physical analog of this is a ball on a ledge.  With 

very little work (corresponding to computing time), the 

ball can be knocked off the ledge to reach the other state. 

Considerable work (computing) is required to raise the 

ball to the ledge from the plateau below (figure 14). 

If the task is to determine which surfaces are hidden 

from a particular vantage point and which are visible, 

then data can reasonably be stored as a set of surfaces 

16 



line representation 

Jb. 
Ä. g^g^ 

surface representation 

I 1 

* » * • 

surface 1 surface 2 surface 7 

volume representation 

Figure 12. Various coaputer representations of 

a pentahedron. 
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volume 

surface 

representation 

line 

representation 

Figure 14. Analogy between work to change the state 

of a physical Object and the computing work 

required to ohar-ge the state of information 

representation. 
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with associated normal vectors 10. For most other pro- 

cessing, however, a surface representation is cumbersome. 

Suppose the volume (or weight given a material) of the 

parallelepipeds is to be determined.  Stored as a volume, 

this computation is trivial while, stored as a set of 

surfaces, it is difficult, since the surfaces must be 

checked pairwise for common edges.  Recovering the data as 

volume is a difficult and lengthy task. 

Geometric modeling is usually done as a part of an 

interactive design system.  To be economically feasible, 

such systems must do more than simply present and mani- 

pulate pictures.  Facilities must exist to attach arbit- 

rary attributes (such as weight and cost) to objects, and 

the meaningful elements with which to associate this in- 

formation are solid objects. 

When planes, lines and points are occasionally needed 

in the model, they are easily represented as degenerate 

cases of volumes. While it is true that many one and two- 

dimensional objects appear in the pictures derived from 

the three-dimensional model, they are not particularly 

useful as elements of the model itself, however. A plane 

is frequently used for sectioning an object for viewing 

purposes.  It is important to recognize, however, that 

this plane is the result of the sectioning algorithm and 

is net part of the data of the object itself. 

20 



Section 2 

THE MODEL 

The Model 

The basic modeling structure proposed here is a type of 

tree called a semi-tree (figure 15).  Trees have two proper- 

ties:  (1)  a single root node exists from which the tree 

grows; and (2)  a unique path exists from the root node to 

any leaf.   Semi-trees satisfy the first property, but not 

the second.  Both types of trees are free of loops, but more 

than one path can exist from the root of a semi-tree to a 

leaf. 

The semi-tree structure is not new.  It is essentially 

the instance-and-copy structure used for modeling in the 

past.  The problem is how to model a building with such a 

structure so that manpuiations on the building happen 

sir^othly and naturally. 

Consider the model of a house.   It consists of rooms 

and the rooms are composed of walls, a floor, and a ceiling, 

(figure 10).  The question arises as to whether the wails 

shoalJ be modeled as a part of the house or a part of the 

individual rooms.  If the walls are elements of the rooms, 

then two rooms have c  wall in common. Another possibility 

xs to have one wall envelope of each room occupy the common 

volume between the rooms (figure 16). Walls in the model 

shown are represented as-envelopes, and therefore do not in- 

tervene träte each other. They simply delineate regions in 

the rooms. On a display screen this appears in plan view as is 

21 



tree 

semi-tree 

Figure 15. Two important special classes of 

graphs. 
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house 

room 1 room 2 

physical wall (object) 

Figure 16. Use of envelopes, to define the region 

where a physical wall object will be 
placed. 
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shown in figure 17. \ 

What should happen If one room is removed? Is an inter- 

mediate wall associated with one room or the other or direct- 

ly with the house? What will happen depends on the way the 

wall envelopes are assigned to nodes and the way these nodes 

are referenced. 

This author has found the structure described above to 

be fairly natural for representing structures such as rooms 

designed separately which must fit together in a building 

with common walls.  Each room is designed with the walls 

around it defined as envelopes or regions.  After the rooms 

are in place, wall material is positioned in the envelope 

region between rooms (figure 16). 

Each node of the semi-trie has a unique name, such as 

W1ND0W21.  Each node in the tree is the root of a sub-tree 

by that name. Corresponding to the tree structure is a 

heirarchy of coordinate systems, one for each node of the 

tree (figure 18).  The coordinate axes associated with the 

root node are inertial axes with no frame of reference. The 

coordinate systems of immediately dependent nodes are ref- 

erenced to the coordinates of their dominant nodes. 

The relationship of the dependent coordinate system to 

the dominant one is established by nine parameters:  three 

translations (T), three rotetionr (R), and three scaling (S) 

numbers, corresponding to the three orthogonal axes (TRS 

parameters, for short) (figure 19).  Scale factors other 

2k 



room 1 room 2 

vail 
2a 

house 

room 1 

"n 
.   room 2 4C= 

wall Id     wall 2a 

Figurel?.Display vlsw eorraaponding to Figure 16. 
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Figure 19.    Translation,  rotation and scaling parameters 
expressed in terms of the dominant node?'s coor- 
dinate system relate the dependent node to it. 
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than unity result in magnification or contraction of all ob- 

jects dependent to that branch. 

The translation, rotation and scaling (TRS) parameters 

are associated with branches, not nodes.  One dependent node 

can be referenced from several places or many times from one 

place (several instances).  The placement of each instance 

in relation to the coordinate systems of the dominant sys- 

tems is indicated by the TRS parameter»? ön the branch to 

that instance (figure 20). 

Another qualifier which can appear on any branch is 

that of subtraction.  Subtraction Cruses the dependent ob- 

ject to be subtracted from the object to which it is at- 

tached   The system checks to be sure that undefined or 

otherwise meaningless situations are not set up in the 

structure.  The property of subtraction is an expression 

of a suggestion by D. Cohen* on f> technique devised by 

Euler.   The bounding edges of a urface are traversed 

clockwise for exterior edges, counterclockwise for in- 

terior edges while facing a poin: somewhere in the plane 

of the object.  If the sum of tf.e angles is 360,  the 

point is in the object; if zero, the point is outside. 

Producing a displayable picture of an object rep- 

resented heirarchically amounts to walking the tree in a 

post-fix fashion, updating a rotation matrix with each 

♦Harvard Unive. sity graduate student in computer 
science. 
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step. When a leaf is encountered, th matrix reflects its 

rotation translation and scaling appropriate for that leaf. 

An alternative scheme is to associate a rotation ma- 

tnx w.th each object, instead of developing it on the fly. 

Such an approach involves less computing, but it i- unac- 

ceptable, since one obiect may be referenced as a part of 

! many objects. With each reference, its orienta.ion and. 
i 
I 

therefore, associated matrix, will be different. 
I 

The terminal nodes of the semi-trees are marked as 

such and contain data describ .ng basic geometric forms. 

Typical basic forms are the cuboid, sphere, cylinder, etc. 

In addition, these basic forms may be stretched, the sides 

of the cuboid may be warped into a Coons surface in a man- 

ner similar to that described by Forrest .  In this case, 

the primitive block holds functional descr:p'io s of the 

warped surfaces. The edges of the basic geometric object 

provide boundary conditions for the mathematical descrip- 

tions. Warped surfaces are used only infrequently in pres- 

ent-day architecture.  Possibly they will be used more often 

as better tools for designing and building them become avail- 

able. 

In most respects the primitive geometric forms attached 

to terminal nodes are processed in the same fashion as en- 

tire trees. One set of rules applies to all. The primi- 

tive forms are mainly used to build up more useful, but 

still primitive, forms. An I-beam, for example, can be 
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built from three stretched cuboids (figure 21). Afcter it 

is once defined, it becomes a primitive to a structural 

designer and can be rotated, stretched and referenced in 

many places. 

Arbitrary attributes can be attached to any node. At- 

tributes typical for computer-aided design are weight, 

cost, supplier, etc. These data are of the form: 

ATTRIBUTE of OBJECT is VALUE. 

For example, a node defining a beam might have these re- 

lationships attached to it: 

NAME OF BEAM is WP30. 

WEIGHT OF BEAM is 570. 

It is essential that the users be free to assign ar- 

bitrary attributes to any node in the model. Useful proc- 

essing programs depend on the presence of descriptive at- 

tributes . An example of this occurred recently when it was 

desired to add color to objects. A description for each 

color was typed in. 

•DESC * 'RED' « 00075 

Subsequently, the user typed: 

'COLOR' * ,PART21, = 'RED*. 

The only conventional computer programming as such amounted 

to a procedure in the display routine to check for the pres- 

ence of a color, look up its description, and pass it on the 

shaded picture routine. As another example, the smallest en- 

closing envelopes referred to earlier are actually attached 

to modes as attributes.  
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Figure 21. 
cüböiSs P irr1™! m0deled as  thr^ stretched 
"n5?i-!*    nhe system treats  this usei^-defined 
bSsi? fJrm    eXaCtly the San,e " any bui^-in 
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in the bullding trades, hardware fixtures are repre- 

sented in a catalog. Designers refer to these basic de- 

signs without modifying them (figure 22). This corresponds 

to subroutining in computer programming. The ability to 

model this process is essential, since a designer usually 

begins with standard components. The resulting sturcturer 

while still tree-like, is even less of a pure tree (figure 

22). 

Why the Model Works 

The viability of the modeling scheme rests with: (1) 

the ease with which a model is constructed and altered; 

(2) the faithfulness of the representation; and (3) the 

ease with which algorithms can manipulate the structure. 

The use of user-defined node names and user-specified 

attributes gives the model considerable flexibility. The 

ability to reference any previously designed object as 

part of some new design allows the designer to proceed 

in a modular and orderly fashion. 

,    The grain or fineness of the model is readily con- 

trollable.  Greater detail is attained by attaching an 

entire tree in place of a terminal leaf on an existing 

coarse tree. 

Since there are so few basic elements to the struc- 

ture, primitive routines define and delete nodes; make and 

break branches; and attach and remove attributes of nodes. 

The physical implementation used by the author is a variant 
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house 1 house 2 

Hypothetical standard 
window assembly 

Figure 22. Mos large objects are composed pr marily of 
instances of standard things. 

31» 



of the associative triples scheme of Rovner and Peldman7. 

The use of hashed names instead of pointers allows the 

structure to work effectively in primary, secondary and 

tertiary storage. 

The faithfulness of the representation depends on the 

actions of the user in building up a structure.  If the 

user is a typical architect, he will need considerable 

guidance and experience to become fully effective.  He 

need not become a computer programmer to become facile 

with the structure, but the considerations to which a 

programmer is accustomed are germane. 

An architect, experienced in the use of a computer 

as a design tool, might approach the design of a high 

rise building as follows. 

He probably has a broad outline of the building in 

mind before sitting down at the console.  If not, he can 

stretch and place a few geometric forms, representing the 

outline of the edifice in general terms. 

Next, he considers the functions of different floors. 

Intermediate floors often have a common general plan.  The 

designer will develop a typical floor plan and then ref- 

erence instances of this prototype, as required. The few 

standard office plans can be worked out and referenced as 

instances with varying orientations and positions in the 

typical floor plan. 

The above description might suggest the model is 
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oriented to the design of modular building, but this is not 

the case.  In the building example, an equipment closet or 

stairwell could be placed on a particular floor, even if 

the floor were otherwise an instance of the standard floor 

plan prototype. 

The Partial Copy; 

A considerable fraction of any building consists of 

subassembles, designed by various designers and obtained 

as standard units.  The model of an entire window assem- 

bly is best referenced as an instance, since the designer 

can only select a new window assembly, not alter a part of 

it. 

Partially copying an object amounts to working down 

each branch of the modeling tree until a node is reached 

which is flagged as an "instance only" node.  Such flags 

are easily set and changed by attaching them as attributes 

of nodes. 

The representation of a house may require 100,000 

words of memory.  A copy of it would require the same 

amount of memory again and this a practical reason for 

not making full copies. 

Algorithm for Quickly Detecting the Interpenetration of 

Objects 

Interpenetration of two objects in the model rep- 

resents a departure from the real world being modeled, 
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since two physical objects cannot occnpy the same space si- 

multaneously. Violations of this kind can easily occur, how- 

ever. Two structures, designed separately, are moved into 

close proximity with one another. This is done by orienting 

the top node of each tree with respect to a dominant third 

node. Objects attached to the leaves of the trees may in- 

terpenetrate as a result. A typical structure has several 

hundred objects attached. Comparing them individually with 

a similar number of items attached to another tree woul 

take far too long (many minutes, in some cases).  The user 

needs to be informed of such difficulties at cnce so that 

he can take corrective action. The problem is to do this 

computation quickly. 

The Importance of a Metric 

When a Ir.rge number of objects must be compared to de- 

termine if hey together exhibit some relationship (e.g., 

interpe-etra ion), a straightforward approach of pairwise 

comparison is inadequate. What is needed is some way of 

determining if two objects are in some sense "close" and 

therefore must be compared. Such a measure is called a 

metric. 

The metric is simply a criterion for determining how 

far two objects are from one another.  In a two or three- 

space environment, candidates for the metric are easily 

found. The common distance function is one. 

d -^U^-Xj)2 + (y1-y2)2   +    (x1 - z2)
2 ' 
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In N-dlmenslonal space with no Immediate physical interpre- 

tation, an appropriate metric is harder to come by. 

The geometric model advanced here ha.s an envelope at- 

tached at each node which defines the maximum extent in 

+x, +y and +z of the elements attached to that node. These 

envelopes provide global information about the entire sub- 

tree. With this information, a processor can quickly de- 

termine if the sub-tree needs to be checked in finer detail. 

The Algorithm 

The algorithm for determining interpenetrations quickly 

consists of recursively testing the envelopes associated with 

the nodes at each level of the semi-tree to determine if they 

interpenetrate.-  If they do not, the substructure of the two 

nodes need ba compared no further, since the proper nesting 

of the envelopes insures that their components cannot inter- 

penetrate if they themselves do not.  This fact greatly re- 

duces the computing time, which increases with the amount 

of overlap of substructures, rather than with the total 

complexity of the object. After only a few tests down from 

the top of the tree, most objects are partitioned off from 

the envelope under consideration and need not be compared 

with it. 

If the envelopes of two nodes at one level do define 

a region in common, thi^ semi-tree attached to one of the 

nodes must be walked to determine which of its components 

intersect with the other node at the first level.  These 
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tests are made with a postfix tree walk. This walk la not 

exhaustive, as each node is checked to see if the tree be- 

low it can be skipped 

Growth of Computation with Complexity 

A figure of merit for an algorithm of this sort is how 

rapidly the computation time grows as the complexity of the 

model increases. 

The time required for a simple two-at-a-time comparison 

of a set of items grows by the square of the   .-.terns involved 

The algorithm given above has global information, which al- 

lows most of the possible t"sts to be skipped entirely. The 

nodes at one lev.1 m the t ee must be compared, f o by two 

However, there are relatively few of them (typicfllly, five 

to ten).  If they do not intersect, they ar€. not considered 

again.  If they do have a reg on in common, the sub tree V 

one must be checked againpc the envelope of he o hor. This 

process is more n=arly lin arf for if the two nodes have 

little in common, the sub- ee is quicklv dispens d with 

by examining the global in ormation the envelopes provide. 

Updating the Bound ng Envelopes 

As useful as the envelopes are for quickly detecting 

interpenetration, they present an updating prob em. Several 

heuristic procedures have been found which ate quite effec- 

tive. The procedure employed is as follows: 

Whenever a structure is connected to the presen design, 
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the hew unit is assumed to be intorpenetration tree within 

itself.. Using the outer dimensions of the new substructure, 

the envelope of the node to which it is connected is easily 

updated. 

Whenever the user shifts his context to a totally dif- 

ferent object (a command exists for this purpose), the en- 

tire tree for this object is checked and updated, as re- 

quired. These changes of context happen relatively in- 

frequently compared to other operations.  A tull check of 

the object reasonably insures that it wij| be internaliy 

interpenetration-free when it is used as d component of 

something else. 
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Section 3 

THE SYSTEM 

Experimenting with interacitve computer graphics on a 

batch processed 1108 is obviously difficult.  However, con- 

structing a full-scale time-sharing system before commenc- 

ing graphics research is unattractive, also.  To allow 

graphics research to begin quickly, a swapping system was 

added to Exec H by computer center personal to accomo- 

date two users:  a batch stream and a single interactive 

graphics console.  This system allows a smgJe user of 

the Design System described here to inteiact at less cost 

than if he commandered the entire HOC system (approx- 

imately one hundred and fifty dollars per hour instead of 

six hundred dollars per hour or more;. 

All program development and debuggiwj was done in 

batch mode, as swap mode provides for execution of binary 

programs and nothing more. As of June, 1969, work is 

underway to move the system to the time-shared PDP-10 

recently acquired for computer science research.  This 

new system will be more interactive, less costly, and 

certainly much more fun to use. 

The 1108 version of the Design System is currently 

operational. It is not as interactive as we believe the 

PDP-10 version \ ill be, but it does provide tools for 

creating all aspects of the previously described model. 

At any point in the construction of a model, a halftone 



photograph can be created, the mechanical structure of 

the object can be analyzed, etc. 

Starting the System 

A deck of about 12 cards is read into the 1004 remote 

batch terminal causing the 1108 system to read in the 

design system from the Fastrand drum. All further oper- 

ations are performed at the graphics console, which con- 

sists of the display tube, Sylvania tablet, teletype, 

rotation ball and zoom stick.  Initially, the user is in 

a mode appropriate for the design of space and form. 

Modes 

Five modes are presently implemented on the 1108 

system (figure 23).  These are: 

1. Spaceform design 

2. Halftone production 

3. Electrical design 

4. Structural analysis 

5. Heating analysis 

The basic programming is designed and implemented to 

support an unlimited number of such modes, 

Spaceform Mode 

Spaceform mode is the basic mode in which the model 

described in the previous section is created.  Spaceform 

mode, and the under-pinning systems programming for all 

modes, has been the central responsibility of the author. 
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entry 

Figure 23.  System modes. 
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Subsystems, ^uch as electrical design, are the respon- 

sibility of others and are described elsewhere5' 12. 

In Spaceform mode, an exclamation point is typed by the 

system to indicate its readiness for user input. 

Design Command 

PEISIGN is often the first command typed by the user. 

e.g.:  1 DESIGN 'DHWIND* 

The design command changes the user's context to the in- 

dicated object (internally, a modeling tree>, which may ör 

may i>ot exist.  If the name supplied is not it\  the data 

base, a new node is created and the usec MS a clean slate 

(internally, a tree of a single node) on Which to attach 

things. 

The DESIGN commapd makes the indicated node the top 

node for display purposes.  Viewing parameters position the 

Structure attached to this node relative to the viewer's 

inertial frame of reference (figure 24/. Commands to be 

described are available which change the viewing para- 

meters at will without modifying the model of the object 

in th^ data base.  The context declared with the DESIGN 

command can be changed by the user at any time. 

Primitive Commands 

The geometric primitives provided are cube, trinaguiar 

rod, hexagonal rod and cylinder. 
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ROOM 

WALL? Mill t   kr [^ WINDOW 

t k I WINDOI 

^ALL2 * 

ROOM 

DKIGN •WINDOW* 

viewer 

par^eters 
riNDOW 

^ 

21 
U 
WINDOW 

Figure 24. The subtree (object) currently under desien is 
effectively detached froa other objects fS? 
viewing purposes. J 
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1CUBE 'name' ,    i 

1TRI-R0D 'name' 
i 

1 HEX-ROD 'name1 

1 CYLINDER 'name* %t 

supplying a name is optional. If the name is absent,1 the 

system generates a unique name from a pool of unlikely 

identifiers.  A copy of the indicated primitive is attached 

to the current top node.  The translation, rotation pind 

scaling (TRS) parameters for this branch are set to no- 

minal values which the user will usually Want to modify 

at once with the positional commmands. 

Positional Commands , 
' ' i ' 

Objects (tree structures) may be translated, rotated 

or stretched about any or all of the three axes. , 

I TRANSLATE 'A' 20 FEET X , ,    l   . 

1R0TATE 'B' 10 DEGS Y 

I STRETCH 'C 2 TIMES Z , 

A left-handed coordinate system is used with the viewing , 

window at the origin (figure 25). i 
1      i 

If the indicated node (object) is the direct dependent 
i , 

of the top node (object being designed), the TRS parameters 
i 

associated with its connecting branch are changed accord- 

ingly and the object is redisplayed to reflect the change. 

If, instead, the current top npde is indicated,■the viewing 

paramters are altered, changing the way the object appears 

on the screen, but not altering its representation in the 
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data base1. 

Stretching an object by naming its top node scales it 

arid: all its dependent structure proportionately. 

The uSftA is brought closer to the object by typing 

;ZOOM r^ 10 FEET 

or pushing forwaxd on the stick.  The cevecae operation 

is ZOOM OUT 10 FEET or pulling the stick towards the user. 

The idea JS that of a viewer flying around a stationary 
i 

building, 

Instance 

An ins-tance of a structure is ahdi uej by  connecting 

a branch tö Jt from the curent top Rode» 
i 

1N&TW«CB 'name' 

NomihaJ TtoS parameters are assigned ifci fctie branch just as 

is done fbc primitives.  The position OP ^he instance 

relative "60 thfi- axes of the current top  nod«-can be changed 

iat will V-i'th the previously described öö/nmands. 

It is the  user's responsibility to tn&ure that in- 

finite loops are not established vid the IrtSTANCE command 

(figure 20/.  A graph with a loop is no longer a semi-tree. 

The situation modeled by a loop is so unreal that in prac- 

tice it is unlikely to occur.  In bniet, it is an object, 

one of whose components is the object itself.  The system 
1 />,£ 

informs the user that such a condition exists as soon as ^ 
o ö> 

he attempts to display it. 
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data base. 

Stretching an object by naming its top node scales it 

and all its dependent structure proportionately. 

The ü$eA is brought closer to the object by typing 

.'ZOOM tfi 10  FEE1 

or pushing forwaxd on the stick.  The cevetse operation 

is ZOOM OUT 10 I-'EET or pulling the stick towards the user. 

The idea is   ihat of a viewer flying around a stationary 

build ma , 

Instance 

An !.r)5tance of a structure is ohtti fJC^ by  connecting 

a branch tö }t from the curent top node 

INS^NCE 'name' 

Nominal TftS pacameters are assigned ia the branch just as 

is done foe primitives.  The position OP the- instance 

relative -to the, axes of the current top  nod«-can be changed 

at will With the previously described öömmands. 

It is the user's responsibility to injure that in- 

finite loups are not established via the  INSTANCE command 

(figure 2bi.     A graph with a loop is no longer a semi-tree. 

The situation modeled by a loop is so  unreal that in prac- 

tice it is unlikely to occur.  In briet, it is an object, 

one of whose components is the object itself.  The system 

informs the user that such a condition exists as soon as y^Vjy 

he attempts to display it. 
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Figure 26. The object «A1 is a component of 
itself. Unreal! 
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Copies 

The facility to produce a copy is implemented as a 

partial copy.  That is, a copy is made of the Indicated 

node, and it is assigned a new and unique name and attached 

to the current top node. The nodes dependent from the 

copied one are referenced as instances from the new copy 

(figure 27) . 

Partial copies are expedient from the point of view 

of implementation, but they are also what is usually de.^d 

by the user,  A recursive copy-producxng command that is 

applied repeatedly for many levels, ox until some other 

condition xs satisfied, rs a possible future extension. 

A method for automatically choosing all the new unique 

names would need to be be developed for this to work. 

Aids to Interaction 

The author does not believe the ultimate system should 

be as keyboard-oriented as is the 1108 implementation. 

Button boxes and light buttons are only incrementally 

better, however, not major improvements. Plans are 

underway to try some radical methods of direct interaction 

on the PDP-10 implementation along the lines described in 

reference 5. The 1108 Exec II swap mode proved too 

clumsy to make research in highly-interactive graphics 

worth attempting. 

In the interim, a number of minor things have been 
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A ^  top node 

/K 
B 

COPY  'B'  AS   »BB» 

Figure 27.    Creation of a copy. 
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added to the 1108 system to facilitate its use. For one, 

a node name »eed be typed only once in a sequence of 

conunands relating to it: 

For example: 

INSTANCE 'B' 

TRANSLATE 'B' 10 FEET X 

CUBE 'C 

STRETCH 'C.' .1 TIMES X 

can be type^ a?: 

INSTANCE 'B' 

TRANSLATE 10 FEET X 

CUBE 'C 

STRETCH .1 TIMES X 

Various units of lineal measure ate permissible.  In- 

itially, distances are in feet.  Subsequently, the user 

types distances in other units and the system makes the 

conversion.  For example, the first time 17 INCHES is 

given as a distance, the system counters with HOW MANY 

INCHES PER FOOT?.  The user supplies the conversion 

factor '12.0 , which is stored away for automatic use in 

the future. 

The syivania tablet stylus can be used to select an 

object on the screen, obviating the need to type or even 

know its name.  This allows the user to place primitives 

without naming them.  Future references are made by point- 

ing, which retrieves the system-assigned name. 
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Saving Designs for Later Use 

A terminal session is ended by typing STOP.  Before 

the design system actually signs off, all design-related 

data in core is written out on the Fastrand for later use. 

This Faptrand region is 700,000 words and, though large, 

xs too small to hold all designs. 

Facilities are provided for writing out tree structures 

onto magnetic tape and reloading them at a later time. 

Exec II swap mode (stifling as always) does not allow tape 

drives to be assigned to the nraphics user's program.  There- 

fore, two batch programs are available fo Le run before 

and after the terminal session. DUMi- OBJECT reads data 

cards containing the names of the top i:ud<rs of tree struc- 

tures on the Fastrand.  The entire trees attached to these 

nodes are written on tape.  Load design performs the con- 

verse operation. 

Halftone Production 

A halftone photograph of the object currently on the 

screen is produced by typing PHOTOGRAPH. The 1108 com- 

putes for about 30 seconds, after which the design system 

types READY. With the Polaroid camera in readiness., type 

SEND.  The same view can be transmitted any number of times. 

To return to the Spaceform design mode, type EXIT. 

Electrical, Structural, Heating 

The electrical design and structural and heating 
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analysis modes are entered by typing 

1ELECTRICAL 

1 STRUCTURAL 

1 HEATING 

The object under design (current top node) when these com- 

mands are given is the geometric object treated by the node. 

■ 
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Appendix I 

INTERPENETRATION ALGORITHM 

The inter penetration algorithm has been Implemented 

as an independent program on the 1108 but will not be in- 

cluded in the design system on the 1108. It is planned 

for inclusion with the PDP-10 version, hove er. Pre- 

liminary tests indicate that computing time is directly 

related to the total number of nodes in the tree and the 

number of overlapping envelopes. The method advanced 

here is always faster than the brute force comparison 

of two nodes at a time.  It is at its bes^ with trees that 

are short and fat, since they admit to the greatest amount 

of early pruning of entire subtrees. 

It is intended that the system will signal the user 

of a violation by indicating the two objects that are inter- 

penetrating and the dominate objects of which they are a 

part. This is done when the first violation occurs. The 

user must correct the situation before proceeding. 
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Appendix II 

SYSTEMS PROGRAMMING TECHNIQUES 

When faced with a major system programming task, one 

must decide to begin coding immediately or construct tools 

for the job.  One such tool is an adequate time-sharing 

system.  This was too big a task to undertake as a part of 

this thesis, however. 

Another tool for systems programming is the construction 

of a language and a compiler more suited for graphics and 

data base manipulation than those cownonJy available.  It 

is not intended to use the rlesign system on the 1108 

forever, and the construct Ian of a sp-ci'-i programming 

language, and the generation of its compiler via a meta 

compiler, are steps which are facilitating the move to 

another machine. 
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M^BEi: 

Graphics Fortran 

A "Graphics Fortran" has been constructed as an 

addition to Fortran V.  The Fortran language was chosen 

strictly on pragmatic grounds and not for its elegance 

as a computer programming formalism.  Specific reasons 

are: 

1) The Fortran compiler is the best maintained 

compiler on the 1108 and PDP-10 computers. 

2) The Fortran compiler on the 1108 produces very 

efficient code even approaching the quality of hand 

coding. 

3) Utah's Tree-Meta system currently produces 

Fortran output to take advantage of the Fortran compiler's 

optimization.  The Graphics Fortran Compiler was produced 

using the Tree-Meta Compiler Generator system. 

The Graphics Fortran compiler was not hand-coded 

in the old, laborious fashion of compiler writers but 

rather was generated by the Tree-Meta compiler generator 

system (figure 28).  Therefore, the compiler is easy to 

regenerate whenever a change in the language is desired. 

The following sketch outlines the process of system 

generation. 
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Figure 28.  System generation procedure. 
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Tree-Meta has another important advantage.  By a well- 

known, two-step process, it is possible to move a compiler/ 

compiler to a new machine with a minimum of hand coding 

(figure 29). Once Tree-Meta is operational on a new machine, 

compilers such as Graphics Fortran can more easily be 

moved across to the new machine. The use of Tree-Meta 

'makes moying the Architectural Design System to the PDP-10 

vastly easier. 

i 
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File 1 

Specifications 
for the T-M 
system expressed 
in T-M  language. 
PDP-10  Fortran 
output  specified. 

i— 

File  1: 

Specifications 
for the  T-M sys- 
tem expressed  in 
T-M language. 
PDP-10  Fortran 
output specified. 

Program: 
T-M 
compiler' 
running on 
1108 

Program:     _ 
T-M compiler 
on the 1108 
which generates 
PDP-10 Fortran. 

PDP-10 
Fortran IV 
implementa- 
». tion of 
Tree-Meta 

Figure 29. The two-step bootstrapping process to move 
coding from one computer to another. 
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Supporting subroutines, such as the identifier 

recognizer, must be receded by hand DUSL once when moving 

between machines. 

Graphics Fortran (G.F.) has eight sections or state- 

ment types: 

1) Regular Fortran statements 

2) Aissociative statements 

3) Interaction parsing statements 

4) Graphics output statements 

5) Segment statements 

6) Graph following statements 

7) Software interfacing statements 

8) Dejagging, tracing and statistics gathering, and 

other miscellaneous statements. 

Associative Data Base 

Various techniques exist for storing trees within a 

computer  The common methods involve a region of storage 

divided up into small blocks representing the various nodes. 

Pointers (addresses or indices) within these blocks 

indicate connections (branches) to other nodes.  Such 

schemes have serious limitations for, among other things, 

no finite core size, selected beforehand, is adequate to 

model all objects. The pointers are of a fixed size and 

addressing across various levels of storage with them is 

costly. 
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As an alternative, the design system presented here 

stores the relationship of branch/dominant node/dependent 

node as an associative triple by a method developed at 

Lincoln Laboratories. Associative triples consist of an 

attribute/object/value triple. Names are used instead of 

pointers, as they are independent of the size of the data 

base. 

The names are hashed in various ways such that, given 

one or two of the triples' components, the third membet 

can be found quickly. 

The Lincoln scheme was varied sUg5 l.y to make it 

more economical.  Graphics Fortran ellows the programmer 

to indicate which components of the triple will be used 

for future retrieval.  In the design system program, 

retrieval requests are often made in only one or two ways. 

If the programmer has this information ahead of time, he 

can save the computer system considerable time and space 

by indicating it to the machine. 
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Appendix III 

MODIFICATIONS TO THE HIDDEN LINE ALGORITHM 

Warnock's hidden line program  has been modified to 

produce output for a line drawing scope, as well as a 

raster display.  The method involves tagging generated 

points m a way that a high-speed sort results in sets 

of points which form lines instead of sorting by Y and 

X coordinate values for raster scope output.  Each set 

of points ...- teplaced by the Line (end points; they re- 

present. 'A  retated edges 01   interp- ■.-•:■.,■i..;.ng surfaces 

were a problem, since they exist onJy ,.mp.....city in the 

raster output.  A technique was devised ror detecting 

such an edqe and replacing it with an explicit line seg- 

ment . 

Warnock's implementation was intended for batch pro- 

cessing use, and as such generated all visible edge points 

before displaying any of them.  The modified line draw- 

ing algorithm works similarly.  One drawback of this 

method is the intermediate swell of data. One thousand 

words of surface information becomes 15,000 words of 

edge point data before it is reduced to 1,000 words of 

line and point information. 

This is not a fundamental problem of the algorithm, 

of course, for it could be recoded as a set of co-routines 

to convert generated points to lines as they become avail- 

able.  Coalescing points into lines on the fly would in- 
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crease the amount of processing done, but would save space 

(the fundament.-?J. time/space trade-or£ at work, as always] . 
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