
AD-7 53 670

GEOMETRIC MODELING

C. Stephen Carr

Utah University

Prepared for:

Rome Air Development Center
Advanced Research Projects Agency

August 1972

DISTRIBUTED BY:

Mi]
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

■ i ■

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

RADCnTR-69-248
Final Technical Report
August 1972

GEOMETRIC MODELING

University of Utah

.

, i
Sponsored by

Defesne Advanced Research Projects Agency
ARPA Order No. 829

Approved for public release;
distribution unlimited.

... n
U*J/ jL-»»1"1

'■■...>

OliilETfil
mM mi w

\ i

Www** U"»-* L^ t^/ (■«-...' i..-.,,..^/

^»^^ t-

The views and conclusions contained in this docuaant are those
of the authors and should not be Interpreted as necessarily
representing the offlcla?. policies, either expressed or laplled.
of the Defense Advanced Research Projects Agency or the U. S.
Government.

i

Roprmlucfrl IJV

NATIONAL TECHNICAL
INFOKMATION SERVICE

U 5; Drpai nunl of Conmnrce
Spring), M VA ??1 ■il

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, New York

/"*>

%.

■>

K

^i&i&mnw-
t^frtirHv C!iiiwsification

DOCUMENT CONTROL DATA -R&D
(ttrurlty cttttltlr nilan at Hll», l.otly ot ebtlfcl nnJ InJevinfi cnnolatlon .r.,ur,t be tnleteii wlirn Ih» overall Tfpntl It clonlllod)

gl. owiai.siA iiNti Ac Ti vi r v (Coff>or»(» ouWior;

Computer Science
Unlvfiraity of Utah
Salt Laic« City, Utah 81i.ll2

'». HEPOOT TITLE

m. RtPonT secuRiTv CUASSIFICATIOM

Unclaasifleä
2b. CROUP

GEOMETRIC MODELING

It. OEiCHiPUVE NorKS (lypa ol topotl *nd Inclusive dornt)

Technical Report
J. wrHCKisi (Pirtl ittyr*i, niUidlv tnlllat, la.ttntme)

C. Stephen Carr

August 1972
1)00. CCNIRACY OH GHA^T NO.

| AF30(6O2M&77
* b. PROJECT NO.

müh Ordor No. 829

ProjrraBi Code L'ubmers 6D30

10. Dl5ir RIQUTION STATEMENT " '" —-— ——~

I This document has been approved for public ralase

TO. TOTAL NO. OF PAGE»

69
7b. NO. OF HEI-S

12
DO. ORIGIN A'> OK'3 REPORT NUMBER(S|

TR h~13

66. OTHER REPORT NO(S) (Any ottiot numhrtt «ifi1 nnli■ bo eeeltwil
III It report)

RADC-.TR-69~2|t8

i ai and öaie; its distribxjtion is unlimited.

11. auPfLGMEMTARY NOTCS
l*Krjt*pt*tmu~

Monitored by
Rou'e Air Development Center (EflXIO)
Griffiss Air Force Base, Kew York IS^O

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
Wash DC 20301

19. Aar.inACT

A system is presented for modeling three-dimensional objects such as buildings
and mechanical devices, in the computer. The system has been implemented as an
interactive design system. Shaded, half-tone photographs of objecta designed with the
system are included:

An algorithm is presented for quickly determining if tvo objectss created by
the huuian user, interpenetrate one another. The user is informed of such violations
by the system. Additionally, basic concepts of computer graphics modeling are
presented for the benefit of readers not conversant with the terminology of computer
graphics.

The Implementation of these ideas as an interactive design system for architects
has been a formidable task on the 1108. A description of this task is included as an
Appendix. The description should be of interest to systems progrsmmers, however, aa
the implementation used the most modern programming techniques, such as n compiler/
compiler to generate a graphics programming language processor, and a hashed'
associative data base.

>
a.

rui r'f;nM ■? o w*o
IWCLASSIPIED

S'.'cmity CliiBsificntion

JLUmSSXElEDL
Sccu'lf" Clnaoiflcatlort

14,
kty tibHtii r

Computer Graphics
Computer Aided Design
Data Structures
Computer Modeling

ROt-U

.TO^WfganilllllllMWi — ■ JfXXli

N K D j u I N K C.

•JJ

WOW."mcT«MWi«J^tt:««r" Ä^.y«ir^Ar«ot-»i;-«;iwrv..ei ■ tf/i-eIWAi=B5S/™rvR««ouii\'»afc»c»7rfwf?MMji.-»*Ajsu>ir ■ Wl^JTOSn« UiKl'^WW!«»« Ml**i»^.-«i-r.-.%tTr«.S_»Ji. 'rWT»M. ^I-^.- .IM^«»»««.-, ■*i.-i r. .^-.v* .M* Awcn'mn ■•

UUCLASSIPJED
i:-ciirily ClRa&ificRUon

GEOMETRIC MODELING

C. Stephen Carr

Unfverslty of Utah

Approved for public release;
distribution unlimited.

This research was supported by the
Advanced Hessarch Projects Agency
of the Depsrtaent of Defense and
was tsonltered hj David A. Luther,
RADC (I8CB), GAPB, NY 13440 under
contract AP30(602)-4277.

^

•^;

FonmmD

'pü.B int^im rap^^t daocylbes znattzsy.
by qowpnt^r S^ianc® of the im

h

This t0ahni<?a.l peport haa bwi' rav}™** ?->>(i

11

ACKNOWLEDGEMENTS

The ideas of Geometric Modelingr as developed in this

thesis, are principally those of the author. However, the

ideas spring from work on an architectural design system*

No less than fifteen people were involved in some way on

this project.

Thanks are in order for Professor Stephen L. Macdona^d

and Dr. Robert Wehrli'11 of the Architecture and Physcholpgy

Departments and to the graduate architectures and psy-

chologists who worked under them: Max J. Smith» Ted F.

Smith, Jay A. Shadel, and John Archea.

David A. Luther, a fellow computer science graduate

student and friend, interfaced his Electrical Design Sys-

tem to the basic geometric modeling program. As the

first person to attempt this, he encountered many diffi-

culties t itween our two programs, which were straightened

out in the process. The similar task of connecting the

Structural Analysis program went much more smoothly as a

result of his labor, which is appreciated.

I wish especially to thank my programmers, who labored

with a computer system totally inadequate for interactive

computing: J. Robert Geertsen, Sherian Erdman, and David

T. Blackburn. The Univac 1108 and its batch processing

monitor are so unsuited to the tasV x.\\&t it never* ehould

have been undertaken.

iii

PinaUy, J, wish to thank my advisor. Dr. David C.

EvanB, and my wife, Lynne, who played the obvioug and neces-

sary roles. Their contribution need not be explained or

emphasised to anyone who has struggled through a graduate

program.

iv

TABLE OP CONTENTS

Page

ACKNOWLEDGEMENTS . . iii

ABSTRACT vii

OVERVIEW , . . f 1

Section

1. BASIC CONCEPTS 5

Objects and Envelopes 5
Trees and Graphs !.".'! 7
Copies and Instances '.'.[[9
Making Copies of Instances .1,1 10
Constraint Öeclaration and Satisfaction . .* 13
General Constraint Satisfaction 13
Constraint Representation for Geometric

Modeling . . , ^3
Modeling Elements - Lines, Planes and*

Volumes 16

2. THE MODEL 21

The Model 21
Why the Model Works'.'. 33
The Partial Copy ,,.... f .* ^ 36
Algorithm for Quickly Detecting the Inter-

penetration of Objects 36
The Importance of a Metric , ,' 37
The Algorithm , , * ,' 38
Growth of Computation with Complexity' .* .' \ 39
Updating the Bounding Envelopes 39

3. THE SYSTEM 41

Starting the System 42
Modes ^2
Spaceform Design'.*!,* 1 42
Design Coiqmand # 44
Primitive Commands . . * 44
Positional Commands , . ! 46
Instance 48
Copies , 50
Aids to Interaction ,] 50
Saving Designs for Later Use '. ', 53
Halftone Production 53
Electrical, Structural, Heating , 53

v

TABLE OF CONTENTS (Continued)

BIBLIOGRAPHY , 56

Appendixe«

I. INTRRPENETRATION ALGORITHM 57

II. SYSTEMS PROGRAMMING TECHNIQUES 58

Graphics Fortran t 5^
Asfioctiative Data Base 63

VITA . 67

vi

ABSTRACT

-

■

i
■

A system is presented for modeling three-dimansion^l
'■. •

I ,. objects, such as buildings and mechanical devices, in the

computer. The system has been implemented as an inteiactive
■

design system. Shaded, half-tone photographs of objects

designed with the system are included.

An algorithm is presented for quickly determining if

two objects, created by the human user, interpenetrate one

another. The user is informed of such violations by the

system. Additionally, basic concepts of computer graphics

modeling are presented for the benefit of readers not con-

versant with the terminology of computer graphics.

The implementation of these ideas as an interactive

design system for architects has been a formidable task on

the 1108. A description of this task is included as an

Appendix, the description should be of interest to systems

programmers, however, as the implementation used the most

modern programming techniques, such as a compiler/compiler

to generate a graphics programming language processor, and

a hashed associative data base.

vll

-LuununviwaicwitaiKSWEuaBnK«

&T'

OVERVIEW

Solving a problem on a computer amounts to (1) con-

structing a model in a representation the computer can work

with; and (2) constructing procedures to interactively

modify the model. Geometric Modeling is the creation of

abstract representations of three-dimensional world ob-

jects in the computer. Such modeling was motivated by

the construction of a computer-aided design system for

architects. Buildings, furniture and mechanical devices

such as machinery are examples of objects which require

a three-diinensional model in the computer as a basis for

their manipulation.

Many objects are easier to model in computer terras

than are three-dimensional objects. For example, electronic

circuit diagrams are easier, since they are highly sty-

lized, descrete abstraptione of zeal world objects. A tran-

sistor is satisfactorily represented by a number of attri-

butes, one of which is its circuit schematic symbol (fig-

ure 1). This abstract schematic is what circuit designers

need. The architect and mechanical designer yvit riqh

detail, instead of abstraction., Detailed, three-dimensional

objects are difficult to model and difficult to display on

the CRT.

Modeling complicated three-dimensional real-world ob-,

jecta is difficult, and relatively little hj*s been done in

this area. Previous work has advanced general data struc-

tures for modeling heirarchically defined objects.2'4'9

The present work concerns the decisions necessary to

adapt the general structure to three-dimensional objects,

A number of geometric solids are provided as basic

object elements in lieu of points, lines and planes. The

other forms are easily derived from this basic form, when

necessary. The designer works at a line drawing scope

and sees the edges of surfaces and volumes. This is a

limitation of present-day technology.. Research is under-

way to provide a raster (half-tone) picture to interact

with. In the meantime, the user can produce a shaded

picture of this design on an auxiliary scope in about

thirty seconds .

Examples are given to show how the resulting modex

works in practice. The modeling methods described here

have been implemented as a part of an interactive graphics

system. A simple design done with the system is shown

in figure 2.

:

"*"' '• tsiraTd'ttrxj?^* "•»«tic.u. two space.

Reproduced from
best available copy.

k

Section 1

BASIC CONCEPTS

Objects and Envelopes

Two fundamental moüeling entities are objects and

envelopes.

Objects represent physical things ~ a block of con-

crete, or a plate of glass, for example.

Envelopes define regions in three-space a opposed to

material objects.

Envelopes are analogous to political boundaries. The

States are wholly contained in the United States An ob-

ject in a state is in both regions at once, rot one or the

other.

The "grain* or fineness of the model is reflected by

the number of levels of nested envelopes, if the model is

to represent cities within states and building within

cities, additional branches to smaller envelopes c n be

added (figures 3 and 4).

Objects are abstract representations of .eal matter.

As such, all the properties of matter may be specif ed,

such as color, mass, finish, boundary surfaces, etc

Real objects cannot interpenetrate and neither should

their abstract representations. One object must be ut

away to make room for another one.

A basic property of objects and envelopes ir. th ir

geometric shape. The most common shape is the cuboi

The cylinder and a triangular wedge are useful, also In

United States

New York Calif. Utah

Figure 3. Model of the United States showing the

division into states.

United States

Provo

Office
Building

School

Figure 4. Model of the united States at a f ner grain

showing the divisions and objects within a
state.

". •

eJdltion, the boundary surfaces of envelopes and object«

can be warped or otherwise deformed into complex shapes.

Architects and mechanical designers shape and place

both envelopes and objects. A computer-aided design system

for their use must deal with both types of entities.

To better understand how the two interact, consider the

model of a room. A room is a region of space and, hence,

an envelope in the model (figure 5). Room do not exist

in the way steel beams and concrete do. Rather, they are

spaces which exist first in the designer's mind, and then

because walls enclose them.

"Walls" are envelopes or regions in which actual

building materials may be placed. The room envelope and

wall envelopes encompass or delimit some of the same space.

They are not thought of as interpenetrating, however.

A window region is defined in a wall envelope by

simply placing the window at the desired spot. To put

a window object (solid, such as glass» in a wall defined

to be an object, an opening for it must first be cut in

the wall. The data structure models distinctly:

(1) the wall;

(2) an opening in the wall; and

(3) a window assembly positioned in that opening.

Trees and Graphs

To be useful, a model must have structure. Components,

of the model such as rooms are themselves composed of com-

Figure 5. Room envelope containing wall envelopes.

6

ponents (e.g. wills, doors, etc.). Such heirarchies can

be modeled by mathematical graphs namely collections of

nodes and branches. A particularly useful class of graphs

are trees (figures 3 and 4 show two examples). Techniques

exist for storing and manipulating trees within the computer.

These details are discussed briefly in Appendix II.

Walking thr tree refers to algorithms which select

particular nodes according to some sequence in order to

process the tree in some way. Trees can be traversed in

many ways. The following illustrates only one possible

way of accomplishing this traversal.

To display a tree for example, the tree walking pro-

cedure beings at the top node and advances down the left

most branch repeatedly until a terminal node (leaf) is

encountered. Next the algorithm walks back up one level

over one branch to the right and then down again, etc.

Copies and Instances

As explained previously, a tree structure represents

something which has been designed. This might be a window

or a chair in an architectural model. The structure is

given a name and can be referenced by other structures

in two uniquely different ways. One way is to copy the

entire tree over into the structure where it io needed

(i.e., copy), giving it a new name in the process. The

other method is simply to reference the object by name

(i.e., instance). In computer programming terms, the

10

copy is a macro; the instance is a closed subroutine.

Consider a wall with two windows of Type X placed 11

it. If the windows are in bha wall as instances, then the

modeling structure is as shown in Figure 6. If the win-

dows are referenced as copies, the model is as shown m

Figure 7. The two pictures look the same, but the model

is quite different and has different properties.

In the first situation {instance) a change in the de-

sign of the window is reflected in both windows in the pic-

ture since both windows are referenced as instances. In

the second situation, each copy acts independently. A

change to window number one leaves window number two un-

altered. When modeling a high rise building with 1,000

windows of five different types, the proper choice between

instances and copies is critically important.

Making Copies of Instances

The window in the previous section is most likely an

entire tree structure, rather than a single node (figure 8).

Making a copy of the window amounts to copying its entire

structure and assigning this copy a new name (figure 9).

Since all the nodes in the model of the window have been

copied, and every node must have a unique name, new names

are generated for each copied node. The copy operation

applied to a complex object generates considerable additional

data, which must be stored somewhere. This is a practical

reason to restrict the use of copies.

10

■ ■■IlllWCimillnü

structure

Figure 6. Windows referenced an instances.

HALL

Figure 7. Windows referenced as independent copies,

11

HALL

Figure 8. Two instances of a tree structure defining

a window are referenced in a wail.

WALL

WINDOW

Figure 9. Two copies of a tree structure defining

a window are referenced in a wall.

12

'"'; Constraint Declaration and Satiafaction

! . •' Constraints are declarations of relationships between

two or more objects. For example, the plumbing in a build-

ing should be constrained to stay in the walls, even as the

walls are moved about and repositioned. Powerful computer-*

aided design systems should provide the user with some way

of declaring constraints and then solving them or, at least,

signalling when a constraint, is violated.

Before this processing is done, constraints specified

by the user are usually reformulated by the computer, rend-

ering them more manipulatible.

General Constraint Satisfaction

Given a set of relationships, the goal of constraint

satifaction is to choose values of the variables which re-

sult in all constraint relationships being satisfied.

Typically» there are more vaiables than constraints, hence

infinitely many possible solutions exist. For example,

the constraint that two walls remain parallel admits to

infinitely many orientations of the walls in a floor plane.

General constraint satisfaction is a task akin to

theorem proving. It is a hard problem that is as yet un-

solved.

Constraint Representation for Geometric Modeling

For many situations in Geometric Modeling, the solving

of arbitrary constraints is not necessary. The choice of

13

representation can facilitate constraint processing or

provide an implicit constraint solution, in a number of

cases. For example, a house might be defined as a set of

rooms posit-oned in some manner. The rooms in turn could

be defined as a set of four wall envelopes (figure 10).

By this definition, the walls move with their respective

rooms when the configuration of rooms is changed.

An alternative definition is a house composed of a

set of rooms and walls (figure 11). By this definition.

the rooms and walls move independently, and explicit con-

straint declarations are needed to keep the walls with the

rooms as the rooms are moved.

Another essential representation decision for con-

straint satisfaction is the property of proper inclusion.

An additional piece of data at each node describes an

envelope, which is the smallest cuboid that completely

encloses all the components of the object. These envelopes

allow an algorithm to quickly determine if two ejects

attached to different tree structures are accidently inter-

penetrating. The proper inclusion requirement turns out

to be a very natural one where buildings are concerned.

The designer intuitively thinks of the walls as parts of

a house, and not the other way around. The system per-

mits him to structure an object in the reverse order,

should he want to do so, in which case interpenetration

checker simply runs more slowly.

li»

HOUSE

rooms

walls

Figure 10. Definition to avoid constraint processing.

HOUSE

walls room room room room

Figure 11. Definition of HOUSE which requires a constraint

processor to maintain the walls with rooms.

15

Modeling Elements - Liney Surfaces and Volumes

Suppose we wish to represent . solid pentagon (figure

12). A line representation of this object has the x, y, z

coordinates for the end points of each edge of the object

as separate data blocks. A surface representati^ i contains

seven data blocHs/ each containing the x, y, 2 coordinates

of the end points of the boundary lines stored in an

appropriate order. A volume representation amounts to one

block containing the coordinates of the extreme points in

an order to indicate how they relate to one another.

A line representation of an object requires the most

storage space and a volume representation the least. Both

extremes are needed at various times. However, an object

stored as a volume can be easily converted to a set of sur-

faces. Given a set of surfaces, it is extremely difficult

to deduce what volumetric shape they represent (cube, prism,

etc.), if indeed they do at all. One direction is simple

and algorithmic; the other is complex and probably heuristic

The physical analog of this is a ball on a ledge. With

very little work (corresponding to computing time), the

ball can be knocked off the ledge to reach the other state.

Considerable work (computing) is required to raise the

ball to the ledge from the plateau below (figure 14).

If the task is to determine which surfaces are hidden

from a particular vantage point and which are visible,

then data can reasonably be stored as a set of surfaces

16

line representation

Jb.
Ä. g^g^

surface representation

I 1

* » * •

surface 1 surface 2 surface 7

volume representation

Figure 12. Various coaputer representations of

a pentahedron.

IT

OJ i
Ü
rt
CU w 0»

O) (0 ! '
ty a m w
M
0 0)
4i D> •
w (Ö w

M v
,0 c
!4J •H
(0 iH

•■o CO ' , c (0
r«

•o
(U <ü

,E w,
i '•H 3

■P
>i

t3i ^i
C G)

i1-1 ■P
^ IÖ
rJ g
& •H
ß ^ 1

i 0 -H '
u 3

§ 0) ,
U '

<u (d
^ +) ä
0) o

J3 •H

iw ^
i »H

c
1
OJ o

•Ö Q)
<0 •r-i
M XI
-P

I
01

<u U
Ä 0

, H M-l

CO

ß E
-r» -H
■P +»
3

o
Ü

a)

18

volume

surface

representation

line

representation

Figure 14. Analogy between work to change the state

of a physical Object and the computing work

required to ohar-ge the state of information

representation.

19

with associated normal vectors 10. For most other pro-

cessing, however, a surface representation is cumbersome.

Suppose the volume (or weight given a material) of the

parallelepipeds is to be determined. Stored as a volume,

this computation is trivial while, stored as a set of

surfaces, it is difficult, since the surfaces must be

checked pairwise for common edges. Recovering the data as

volume is a difficult and lengthy task.

Geometric modeling is usually done as a part of an

interactive design system. To be economically feasible,

such systems must do more than simply present and mani-

pulate pictures. Facilities must exist to attach arbit-

rary attributes (such as weight and cost) to objects, and

the meaningful elements with which to associate this in-

formation are solid objects.

When planes, lines and points are occasionally needed

in the model, they are easily represented as degenerate

cases of volumes. While it is true that many one and two-

dimensional objects appear in the pictures derived from

the three-dimensional model, they are not particularly

useful as elements of the model itself, however. A plane

is frequently used for sectioning an object for viewing

purposes. It is important to recognize, however, that

this plane is the result of the sectioning algorithm and

is net part of the data of the object itself.

20

Section 2

THE MODEL

The Model

The basic modeling structure proposed here is a type of

tree called a semi-tree (figure 15). Trees have two proper-

ties: (1) a single root node exists from which the tree

grows; and (2) a unique path exists from the root node to

any leaf. Semi-trees satisfy the first property, but not

the second. Both types of trees are free of loops, but more

than one path can exist from the root of a semi-tree to a

leaf.

The semi-tree structure is not new. It is essentially

the instance-and-copy structure used for modeling in the

past. The problem is how to model a building with such a

structure so that manpuiations on the building happen

sir^othly and naturally.

Consider the model of a house. It consists of rooms

and the rooms are composed of walls, a floor, and a ceiling,

(figure 10). The question arises as to whether the wails

shoalJ be modeled as a part of the house or a part of the

individual rooms. If the walls are elements of the rooms,

then two rooms have c wall in common. Another possibility

xs to have one wall envelope of each room occupy the common

volume between the rooms (figure 16). Walls in the model

shown are represented as-envelopes, and therefore do not in-

tervene träte each other. They simply delineate regions in

the rooms. On a display screen this appears in plan view as is

21

tree

semi-tree

Figure 15. Two important special classes of

graphs.

22

house

room 1 room 2

physical wall (object)

Figure 16. Use of envelopes, to define the region

where a physical wall object will be
placed.

23

n •,»>».• «•

<tt,Xiit.i'.

shown in figure 17. \

What should happen If one room is removed? Is an inter-

mediate wall associated with one room or the other or direct-

ly with the house? What will happen depends on the way the

wall envelopes are assigned to nodes and the way these nodes

are referenced.

This author has found the structure described above to

be fairly natural for representing structures such as rooms

designed separately which must fit together in a building

with common walls. Each room is designed with the walls

around it defined as envelopes or regions. After the rooms

are in place, wall material is positioned in the envelope

region between rooms (figure 16).

Each node of the semi-trie has a unique name, such as

W1ND0W21. Each node in the tree is the root of a sub-tree

by that name. Corresponding to the tree structure is a

heirarchy of coordinate systems, one for each node of the

tree (figure 18). The coordinate axes associated with the

root node are inertial axes with no frame of reference. The

coordinate systems of immediately dependent nodes are ref-

erenced to the coordinates of their dominant nodes.

The relationship of the dependent coordinate system to

the dominant one is established by nine parameters: three

translations (T), three rotetionr (R), and three scaling (S)

numbers, corresponding to the three orthogonal axes (TRS

parameters, for short) (figure 19). Scale factors other

2k

room 1 room 2

vail
2a

house

room 1

"n
. room 2 4C=

wall Id wall 2a

Figurel?.Display vlsw eorraaponding to Figure 16.

25

•ÖL

>^-

N

X

o

M

«0
0)
•p
m
H 0
0) u
M «0

U u
TJ «0
C ß
(0 «J

(0 b

m k

g M
Q)
+» (0
(0 0)
>i X t

0) t

<
id o

0) 0) 0
4J e 4J ■p
rt 0) <0
c *i c •0
H m •H 0»
•0 >« •0 •p
n M n>
0 0 H
0 0 0 0)
u 4i U M

M

0)
+•
(0
c
rl
•0
u
o
0
ü

Q)
X
■P

-0
G
rö
OJ
M
P
4J

3
M
4J
(0

0)
0)
M
4J

C
0)
0) •
s a)
+) -0
a) 0
ja ß

a> J3
o ü
c (Ö
<u <u
•0
c p
0 (0
cu
0) g
0) (U
u p
u (0
0 >1 u n

oo

U
ß

•H
fr.

26

•* X

-z

Figure 19. Translation, rotation and scaling parameters
expressed in terms of the dominant node?'s coor-
dinate system relate the dependent node to it.

27

than unity result in magnification or contraction of all ob-

jects dependent to that branch.

The translation, rotation and scaling (TRS) parameters

are associated with branches, not nodes. One dependent node

can be referenced from several places or many times from one

place (several instances). The placement of each instance

in relation to the coordinate systems of the dominant sys-

tems is indicated by the TRS parameter»? ön the branch to

that instance (figure 20).

Another qualifier which can appear on any branch is

that of subtraction. Subtraction Cruses the dependent ob-

ject to be subtracted from the object to which it is at-

tached The system checks to be sure that undefined or

otherwise meaningless situations are not set up in the

structure. The property of subtraction is an expression

of a suggestion by D. Cohen* on f> technique devised by

Euler. The bounding edges of a urface are traversed

clockwise for exterior edges, counterclockwise for in-

terior edges while facing a poin: somewhere in the plane

of the object. If the sum of tf.e angles is 360, the

point is in the object; if zero, the point is outside.

Producing a displayable picture of an object rep-

resented heirarchically amounts to walking the tree in a

post-fix fashion, updating a rotation matrix with each

♦Harvard Unive. sity graduate student in computer
science.

28

X
x

•J o a>
c f-x
a; *-> ■M
e c
0) o <*<
u u o
rt
r-l (/) fc. 4J

4-1 0)
rH (/) (Ü -i-»
« V E XI
C u rt o
o<u^
H "—i cB o

co ♦J
(U w
e .p c^ o

•H C H *->
•a a)

' 13 (Ü x!
0) C X' u
(U 0) ■!-> c
^ p. ns
X OJ >s VH
H "OX X

o
ro

(U

3

29

step. When a leaf is encountered, th matrix reflects its

rotation translation and scaling appropriate for that leaf.

An alternative scheme is to associate a rotation ma-

tnx w.th each object, instead of developing it on the fly.

Such an approach involves less computing, but it i- unac-

ceptable, since one obiect may be referenced as a part of

! many objects. With each reference, its orienta.ion and.
i
I

therefore, associated matrix, will be different.
I

The terminal nodes of the semi-trees are marked as

such and contain data describ .ng basic geometric forms.

Typical basic forms are the cuboid, sphere, cylinder, etc.

In addition, these basic forms may be stretched, the sides

of the cuboid may be warped into a Coons surface in a man-

ner similar to that described by Forrest . In this case,

the primitive block holds functional descr:p'io s of the

warped surfaces. The edges of the basic geometric object

provide boundary conditions for the mathematical descrip-

tions. Warped surfaces are used only infrequently in pres-

ent-day architecture. Possibly they will be used more often

as better tools for designing and building them become avail-

able.

In most respects the primitive geometric forms attached

to terminal nodes are processed in the same fashion as en-

tire trees. One set of rules applies to all. The primi-

tive forms are mainly used to build up more useful, but

still primitive, forms. An I-beam, for example, can be

30

built from three stretched cuboids (figure 21). Afcter it

is once defined, it becomes a primitive to a structural

designer and can be rotated, stretched and referenced in

many places.

Arbitrary attributes can be attached to any node. At-

tributes typical for computer-aided design are weight,

cost, supplier, etc. These data are of the form:

ATTRIBUTE of OBJECT is VALUE.

For example, a node defining a beam might have these re-

lationships attached to it:

NAME OF BEAM is WP30.

WEIGHT OF BEAM is 570.

It is essential that the users be free to assign ar-

bitrary attributes to any node in the model. Useful proc-

essing programs depend on the presence of descriptive at-

tributes . An example of this occurred recently when it was

desired to add color to objects. A description for each

color was typed in.

•DESC * 'RED' « 00075

Subsequently, the user typed:

'COLOR' * ,PART21, = 'RED*.

The only conventional computer programming as such amounted

to a procedure in the display routine to check for the pres-

ence of a color, look up its description, and pass it on the

shaded picture routine. As another example, the smallest en-

closing envelopes referred to earlier are actually attached

to modes as attributes.

31

Figure 21.
cüböiSs P irr1™! m0deled as thr^ stretched
"n5?i-!* nhe system treats this usei^-defined
bSsi? fJrm eXaCtly the San,e " any bui^-in

32

in the bullding trades, hardware fixtures are repre-

sented in a catalog. Designers refer to these basic de-

signs without modifying them (figure 22). This corresponds

to subroutining in computer programming. The ability to

model this process is essential, since a designer usually

begins with standard components. The resulting sturcturer

while still tree-like, is even less of a pure tree (figure

22).

Why the Model Works

The viability of the modeling scheme rests with: (1)

the ease with which a model is constructed and altered;

(2) the faithfulness of the representation; and (3) the

ease with which algorithms can manipulate the structure.

The use of user-defined node names and user-specified

attributes gives the model considerable flexibility. The

ability to reference any previously designed object as

part of some new design allows the designer to proceed

in a modular and orderly fashion.

, The grain or fineness of the model is readily con-

trollable. Greater detail is attained by attaching an

entire tree in place of a terminal leaf on an existing

coarse tree.

Since there are so few basic elements to the struc-

ture, primitive routines define and delete nodes; make and

break branches; and attach and remove attributes of nodes.

The physical implementation used by the author is a variant

33

house 1 house 2

Hypothetical standard
window assembly

Figure 22. Mos large objects are composed pr marily of
instances of standard things.

31»

of the associative triples scheme of Rovner and Peldman7.

The use of hashed names instead of pointers allows the

structure to work effectively in primary, secondary and

tertiary storage.

The faithfulness of the representation depends on the

actions of the user in building up a structure. If the

user is a typical architect, he will need considerable

guidance and experience to become fully effective. He

need not become a computer programmer to become facile

with the structure, but the considerations to which a

programmer is accustomed are germane.

An architect, experienced in the use of a computer

as a design tool, might approach the design of a high

rise building as follows.

He probably has a broad outline of the building in

mind before sitting down at the console. If not, he can

stretch and place a few geometric forms, representing the

outline of the edifice in general terms.

Next, he considers the functions of different floors.

Intermediate floors often have a common general plan. The

designer will develop a typical floor plan and then ref-

erence instances of this prototype, as required. The few

standard office plans can be worked out and referenced as

instances with varying orientations and positions in the

typical floor plan.

The above description might suggest the model is

35

. f. >.

oriented to the design of modular building, but this is not

the case. In the building example, an equipment closet or

stairwell could be placed on a particular floor, even if

the floor were otherwise an instance of the standard floor

plan prototype.

The Partial Copy;

A considerable fraction of any building consists of

subassembles, designed by various designers and obtained

as standard units. The model of an entire window assem-

bly is best referenced as an instance, since the designer

can only select a new window assembly, not alter a part of

it.

Partially copying an object amounts to working down

each branch of the modeling tree until a node is reached

which is flagged as an "instance only" node. Such flags

are easily set and changed by attaching them as attributes

of nodes.

The representation of a house may require 100,000

words of memory. A copy of it would require the same

amount of memory again and this a practical reason for

not making full copies.

Algorithm for Quickly Detecting the Interpenetration of

Objects

Interpenetration of two objects in the model rep-

resents a departure from the real world being modeled,

36

since two physical objects cannot occnpy the same space si-

multaneously. Violations of this kind can easily occur, how-

ever. Two structures, designed separately, are moved into

close proximity with one another. This is done by orienting

the top node of each tree with respect to a dominant third

node. Objects attached to the leaves of the trees may in-

terpenetrate as a result. A typical structure has several

hundred objects attached. Comparing them individually with

a similar number of items attached to another tree woul

take far too long (many minutes, in some cases). The user

needs to be informed of such difficulties at cnce so that

he can take corrective action. The problem is to do this

computation quickly.

The Importance of a Metric

When a Ir.rge number of objects must be compared to de-

termine if hey together exhibit some relationship (e.g.,

interpe-etra ion), a straightforward approach of pairwise

comparison is inadequate. What is needed is some way of

determining if two objects are in some sense "close" and

therefore must be compared. Such a measure is called a

metric.

The metric is simply a criterion for determining how

far two objects are from one another. In a two or three-

space environment, candidates for the metric are easily

found. The common distance function is one.

d -^U^-Xj)2 + (y1-y2)2 + (x1 - z2)
2 '

37

»$

In N-dlmenslonal space with no Immediate physical interpre-

tation, an appropriate metric is harder to come by.

The geometric model advanced here ha.s an envelope at-

tached at each node which defines the maximum extent in

+x, +y and +z of the elements attached to that node. These

envelopes provide global information about the entire sub-

tree. With this information, a processor can quickly de-

termine if the sub-tree needs to be checked in finer detail.

The Algorithm

The algorithm for determining interpenetrations quickly

consists of recursively testing the envelopes associated with

the nodes at each level of the semi-tree to determine if they

interpenetrate.- If they do not, the substructure of the two

nodes need ba compared no further, since the proper nesting

of the envelopes insures that their components cannot inter-

penetrate if they themselves do not. This fact greatly re-

duces the computing time, which increases with the amount

of overlap of substructures, rather than with the total

complexity of the object. After only a few tests down from

the top of the tree, most objects are partitioned off from

the envelope under consideration and need not be compared

with it.

If the envelopes of two nodes at one level do define

a region in common, thi^ semi-tree attached to one of the

nodes must be walked to determine which of its components

intersect with the other node at the first level. These

30

tests are made with a postfix tree walk. This walk la not

exhaustive, as each node is checked to see if the tree be-

low it can be skipped

Growth of Computation with Complexity

A figure of merit for an algorithm of this sort is how

rapidly the computation time grows as the complexity of the

model increases.

The time required for a simple two-at-a-time comparison

of a set of items grows by the square of the .-.terns involved

The algorithm given above has global information, which al-

lows most of the possible t"sts to be skipped entirely. The

nodes at one lev.1 m the t ee must be compared, f o by two

However, there are relatively few of them (typicfllly, five

to ten). If they do not intersect, they ar€. not considered

again. If they do have a reg on in common, the sub tree V

one must be checked againpc the envelope of he o hor. This

process is more n=arly lin arf for if the two nodes have

little in common, the sub- ee is quicklv dispens d with

by examining the global in ormation the envelopes provide.

Updating the Bound ng Envelopes

As useful as the envelopes are for quickly detecting

interpenetration, they present an updating prob em. Several

heuristic procedures have been found which ate quite effec-

tive. The procedure employed is as follows:

Whenever a structure is connected to the presen design,

39

•-.'fu,*..-

t-p:.

the hew unit is assumed to be intorpenetration tree within

itself.. Using the outer dimensions of the new substructure,

the envelope of the node to which it is connected is easily

updated.

Whenever the user shifts his context to a totally dif-

ferent object (a command exists for this purpose), the en-

tire tree for this object is checked and updated, as re-

quired. These changes of context happen relatively in-

frequently compared to other operations. A tull check of

the object reasonably insures that it wij| be internaliy

interpenetration-free when it is used as d component of

something else.

1*0

Section 3

THE SYSTEM

Experimenting with interacitve computer graphics on a

batch processed 1108 is obviously difficult. However, con-

structing a full-scale time-sharing system before commenc-

ing graphics research is unattractive, also. To allow

graphics research to begin quickly, a swapping system was

added to Exec H by computer center personal to accomo-

date two users: a batch stream and a single interactive

graphics console. This system allows a smgJe user of

the Design System described here to inteiact at less cost

than if he commandered the entire HOC system (approx-

imately one hundred and fifty dollars per hour instead of

six hundred dollars per hour or more;.

All program development and debuggiwj was done in

batch mode, as swap mode provides for execution of binary

programs and nothing more. As of June, 1969, work is

underway to move the system to the time-shared PDP-10

recently acquired for computer science research. This

new system will be more interactive, less costly, and

certainly much more fun to use.

The 1108 version of the Design System is currently

operational. It is not as interactive as we believe the

PDP-10 version \ ill be, but it does provide tools for

creating all aspects of the previously described model.

At any point in the construction of a model, a halftone

photograph can be created, the mechanical structure of

the object can be analyzed, etc.

Starting the System

A deck of about 12 cards is read into the 1004 remote

batch terminal causing the 1108 system to read in the

design system from the Fastrand drum. All further oper-

ations are performed at the graphics console, which con-

sists of the display tube, Sylvania tablet, teletype,

rotation ball and zoom stick. Initially, the user is in

a mode appropriate for the design of space and form.

Modes

Five modes are presently implemented on the 1108

system (figure 23). These are:

1. Spaceform design

2. Halftone production

3. Electrical design

4. Structural analysis

5. Heating analysis

The basic programming is designed and implemented to

support an unlimited number of such modes,

Spaceform Mode

Spaceform mode is the basic mode in which the model

described in the previous section is created. Spaceform

mode, and the under-pinning systems programming for all

modes, has been the central responsibility of the author.

k2

initial
entry

Figure 23. System modes.

h3

te ■■ .isfv '.J5

3ml-'.-: '^'?;>:- •S^^m-.ärf

Subsystems, ^uch as electrical design, are the respon-

sibility of others and are described elsewhere5' 12.

In Spaceform mode, an exclamation point is typed by the

system to indicate its readiness for user input.

Design Command

PEISIGN is often the first command typed by the user.

e.g.: 1 DESIGN 'DHWIND*

The design command changes the user's context to the in-

dicated object (internally, a modeling tree>, which may ör

may i>ot exist. If the name supplied is not it\ the data

base, a new node is created and the usec MS a clean slate

(internally, a tree of a single node) on Which to attach

things.

The DESIGN commapd makes the indicated node the top

node for display purposes. Viewing parameters position the

Structure attached to this node relative to the viewer's

inertial frame of reference (figure 24/. Commands to be

described are available which change the viewing para-

meters at will without modifying the model of the object

in th^ data base. The context declared with the DESIGN

command can be changed by the user at any time.

Primitive Commands

The geometric primitives provided are cube, trinaguiar

rod, hexagonal rod and cylinder.

kk

tostgp hi Data Base

ROOM

WALL? Mill t kr [^ WINDOW

t k I WINDOI

^ALL2 *

ROOM

DKIGN •WINDOW*

viewer

par^eters
riNDOW

^

21
U
WINDOW

Figure 24. The subtree (object) currently under desien is
effectively detached froa other objects fS?
viewing purposes. J

*5

•■Hmi
, .fi/i^ßf,

'i - ■■-•«?. ■

1CUBE 'name' , i

1TRI-R0D 'name'
i

1 HEX-ROD 'name1

1 CYLINDER 'name* %t

supplying a name is optional. If the name is absent,1 the

system generates a unique name from a pool of unlikely

identifiers. A copy of the indicated primitive is attached

to the current top node. The translation, rotation pind

scaling (TRS) parameters for this branch are set to no-

minal values which the user will usually Want to modify

at once with the positional commmands.

Positional Commands ,
' ' i '

Objects (tree structures) may be translated, rotated

or stretched about any or all of the three axes. ,

I TRANSLATE 'A' 20 FEET X , , l .

1R0TATE 'B' 10 DEGS Y

I STRETCH 'C 2 TIMES Z ,

A left-handed coordinate system is used with the viewing ,

window at the origin (figure 25). i
1 i

If the indicated node (object) is the direct dependent
i ,

of the top node (object being designed), the TRS parameters
i

associated with its connecting branch are changed accord-

ingly and the object is redisplayed to reflect the change.

If, instead, the current top npde is indicated,■the viewing

paramters are altered, changing the way the object appears

on the screen, but not altering its representation in the

1*6

I

I

data base1.

Stretching an object by naming its top node scales it

arid: all its dependent structure proportionately.

The uSftA is brought closer to the object by typing

;ZOOM r^ 10 FEET

or pushing forwaxd on the stick. The cevecae operation

is ZOOM OUT 10 FEET or pulling the stick towards the user.

The idea JS that of a viewer flying around a stationary
i

building,

Instance

An ins-tance of a structure is ahdi uej by connecting

a branch tö Jt from the curent top Rode»
i

1N&TW«CB 'name'

NomihaJ TtoS parameters are assigned ifci fctie branch just as

is done fbc primitives. The position OP ^he instance

relative "60 thfi- axes of the current top nod«-can be changed

iat will V-i'th the previously described öö/nmands.

It is the user's responsibility to tn&ure that in-

finite loops are not established vid the IrtSTANCE command

(figure 20/. A graph with a loop is no longer a semi-tree.

The situation modeled by a loop is so unreal that in prac-

tice it is unlikely to occur. In bniet, it is an object,

one of whose components is the object itself. The system
1 />,£

informs the user that such a condition exists as soon as ^
o ö>

he attempts to display it.

1.8
1

1

data base.

Stretching an object by naming its top node scales it

and all its dependent structure proportionately.

The ü$eA is brought closer to the object by typing

.'ZOOM tfi 10 FEE1

or pushing forwaxd on the stick. The cevetse operation

is ZOOM OUT 10 I-'EET or pulling the stick towards the user.

The idea is ihat of a viewer flying around a stationary

build ma ,

Instance

An !.r)5tance of a structure is ohtti fJC^ by connecting

a branch tö }t from the curent top node

INS^NCE 'name'

Nominal TftS pacameters are assigned ia the branch just as

is done foe primitives. The position OP the- instance

relative -to the, axes of the current top nod«-can be changed

at will With the previously described öömmands.

It is the user's responsibility to injure that in-

finite loups are not established via the INSTANCE command

(figure 2bi. A graph with a loop is no longer a semi-tree.

The situation modeled by a loop is so unreal that in prac-

tice it is unlikely to occur. In briet, it is an object,

one of whose components is the object itself. The system

informs the user that such a condition exists as soon as y^Vjy

he attempts to display it.

1»8

I

B

u

Figure 26. The object «A1 is a component of
itself. Unreal!

^9

(
/

Copies

The facility to produce a copy is implemented as a

partial copy. That is, a copy is made of the Indicated

node, and it is assigned a new and unique name and attached

to the current top node. The nodes dependent from the

copied one are referenced as instances from the new copy

(figure 27) .

Partial copies are expedient from the point of view

of implementation, but they are also what is usually de.^d

by the user, A recursive copy-producxng command that is

applied repeatedly for many levels, ox until some other

condition xs satisfied, rs a possible future extension.

A method for automatically choosing all the new unique

names would need to be be developed for this to work.

Aids to Interaction

The author does not believe the ultimate system should

be as keyboard-oriented as is the 1108 implementation.

Button boxes and light buttons are only incrementally

better, however, not major improvements. Plans are

underway to try some radical methods of direct interaction

on the PDP-10 implementation along the lines described in

reference 5. The 1108 Exec II swap mode proved too

clumsy to make research in highly-interactive graphics

worth attempting.

In the interim, a number of minor things have been

50

before

after

A ^ top node

/K
B

COPY 'B' AS »BB»

Figure 27. Creation of a copy.

51

•>.

added to the 1108 system to facilitate its use. For one,

a node name »eed be typed only once in a sequence of

conunands relating to it:

For example:

INSTANCE 'B'

TRANSLATE 'B' 10 FEET X

CUBE 'C

STRETCH 'C.' .1 TIMES X

can be type^ a?:

INSTANCE 'B'

TRANSLATE 10 FEET X

CUBE 'C

STRETCH .1 TIMES X

Various units of lineal measure ate permissible. In-

itially, distances are in feet. Subsequently, the user

types distances in other units and the system makes the

conversion. For example, the first time 17 INCHES is

given as a distance, the system counters with HOW MANY

INCHES PER FOOT?. The user supplies the conversion

factor '12.0 , which is stored away for automatic use in

the future.

The syivania tablet stylus can be used to select an

object on the screen, obviating the need to type or even

know its name. This allows the user to place primitives

without naming them. Future references are made by point-

ing, which retrieves the system-assigned name.

52

.«. •

Saving Designs for Later Use

A terminal session is ended by typing STOP. Before

the design system actually signs off, all design-related

data in core is written out on the Fastrand for later use.

This Faptrand region is 700,000 words and, though large,

xs too small to hold all designs.

Facilities are provided for writing out tree structures

onto magnetic tape and reloading them at a later time.

Exec II swap mode (stifling as always) does not allow tape

drives to be assigned to the nraphics user's program. There-

fore, two batch programs are available fo Le run before

and after the terminal session. DUMi- OBJECT reads data

cards containing the names of the top i:ud<rs of tree struc-

tures on the Fastrand. The entire trees attached to these

nodes are written on tape. Load design performs the con-

verse operation.

Halftone Production

A halftone photograph of the object currently on the

screen is produced by typing PHOTOGRAPH. The 1108 com-

putes for about 30 seconds, after which the design system

types READY. With the Polaroid camera in readiness., type

SEND. The same view can be transmitted any number of times.

To return to the Spaceform design mode, type EXIT.

Electrical, Structural, Heating

The electrical design and structural and heating

53

:'

;■;• '.T'W/SM.vWl

■■ i

analysis modes are entered by typing

1ELECTRICAL

1 STRUCTURAL

1 HEATING

The object under design (current top node) when these com-

mands are given is the geometric object treated by the node.

■

w
■■:■-

BIBLIOGRAPHY

1. Carr, C.S. Design System Technical Report. Technical
Rep(; 4-16. Salt Lake City, Utah: university
of. Utah, 1969.

2. ChrisL-ensen, Carl and Pinson, Elliot N. "M'tlti-
Function Graphics for a Large Computer System,"
AFIPS Conference Proceedings, Fall Joint Computer
Conference. XXXI (1967), 697-712

3. Forrest. A.R. Curves and Surfaces for Computer-Aided
Des loii, England: Joint Computer-Aided Design
Group, University of Cambridge, July, 968.

4. Luh, J.Y. 3. and Krolak, R.J. "A Mathematical Model
for Mechanical Part Description," Communications
of ACM. VIII, Mo :' (Febru.ii y, 1965), 125-28.

5. Luthei, i;., A. Electrica i be sign .,, o;. „HI. Work in progress,
Sale Lake City, UtTn: Unj ■."":;Tr'',;"v oi Utah, 1969.

6. Roberts, L.G. Machine rerceptio:: .'f 't'hree-Dimensional
So.lids. Technical Report NoT'Tr?" Lexington
Massachusetts • Lincoln Laborat;-.j:ies , May, 1963

7. Rovner, Paul D. and Feldman, Jerome A. The Leap
Language and Data Structure. Technical Report
Lexington, Massachusetts: Lincoln Laboratories
October, 1967.

8. Smith, M.J., Macdonald, S.L., and Carr, C.S. Space Form
Computer-Aided Design for Architecture. Technical
Report 1-2. Salt Lake City, Utah: University of
Utah, September, 1968.

9. Sutherland, I.E. SKETCHPAD: A Man-Machine Gr phical
Communication System. Technical Report No ^ 6.
Lexington, Massachusetts Lincoln Laboratories,
January, 1963.

10. Warnock, J.E. A Hidden Line Algorithm for Half-tone
Picture Representation. Technical Report 4-5.
Salt Lake City, Utah: University of Utah, May,
1968.

11. Wehrli, Robert, Smith, M.J Space-Form II, A Description
of ARCAID, the ArchitwC ir Automated Int ractive
Design System. Techni 1 Report 1-3. Salt Lake
City, Utah: Universi y of Utah Marc , 1969.

55

i$ <* ,*:

12. West, Farrin W. Structural Analysis System. Work in
progress. Salt Lake City, Utah: University of
Utah, 1969.

56

Appendix I

INTERPENETRATION ALGORITHM

The inter penetration algorithm has been Implemented

as an independent program on the 1108 but will not be in-

cluded in the design system on the 1108. It is planned

for inclusion with the PDP-10 version, hove er. Pre-

liminary tests indicate that computing time is directly

related to the total number of nodes in the tree and the

number of overlapping envelopes. The method advanced

here is always faster than the brute force comparison

of two nodes at a time. It is at its bes^ with trees that

are short and fat, since they admit to the greatest amount

of early pruning of entire subtrees.

It is intended that the system will signal the user

of a violation by indicating the two objects that are inter-

penetrating and the dominate objects of which they are a

part. This is done when the first violation occurs. The

user must correct the situation before proceeding.

57

Appendix II

SYSTEMS PROGRAMMING TECHNIQUES

When faced with a major system programming task, one

must decide to begin coding immediately or construct tools

for the job. One such tool is an adequate time-sharing

system. This was too big a task to undertake as a part of

this thesis, however.

Another tool for systems programming is the construction

of a language and a compiler more suited for graphics and

data base manipulation than those cownonJy available. It

is not intended to use the rlesign system on the 1108

forever, and the construct Ian of a sp-ci'-i programming

language, and the generation of its compiler via a meta

compiler, are steps which are facilitating the move to

another machine.

58

M^BEi:

Graphics Fortran

A "Graphics Fortran" has been constructed as an

addition to Fortran V. The Fortran language was chosen

strictly on pragmatic grounds and not for its elegance

as a computer programming formalism. Specific reasons

are:

1) The Fortran compiler is the best maintained

compiler on the 1108 and PDP-10 computers.

2) The Fortran compiler on the 1108 produces very

efficient code even approaching the quality of hand

coding.

3) Utah's Tree-Meta system currently produces

Fortran output to take advantage of the Fortran compiler's

optimization. The Graphics Fortran Compiler was produced

using the Tree-Meta Compiler Generator system.

The Graphics Fortran compiler was not hand-coded

in the old, laborious fashion of compiler writers but

rather was generated by the Tree-Meta compiler generator

system (figure 28). Therefore, the compiler is easy to

regenerate whenever a change in the language is desired.

The following sketch outlines the process of system

generation.

59

Meta stateme
for
Graphics
Fortran (G

G.F. Suppor,
Package

G.F. State
ments
about Design
System

D.S. Runti

■ Fortran V
Compiler

Fortran V
Cojiipilor

designer (user)
at CRT

Design System
Program

D.S. Riunti me

display,
teletype,
etc.

Figure 28. System generation procedure.

6b

I

I I

I

Tree-Meta has another important advantage. By a well-

known, two-step process, it is possible to move a compiler/

compiler to a new machine with a minimum of hand coding

(figure 29). Once Tree-Meta is operational on a new machine,

compilers such as Graphics Fortran can more easily be

moved across to the new machine. The use of Tree-Meta

'makes moying the Architectural Design System to the PDP-10

vastly easier.

i

61

File 1

Specifications
for the T-M
system expressed
in T-M language.
PDP-10 Fortran
output specified.

i—

File 1:

Specifications
for the T-M sys-
tem expressed in
T-M language.
PDP-10 Fortran
output specified.

Program:
T-M
compiler'
running on
1108

Program: _
T-M compiler
on the 1108
which generates
PDP-10 Fortran.

PDP-10
Fortran IV
implementa-
». tion of
Tree-Meta

Figure 29. The two-step bootstrapping process to move
coding from one computer to another.

62

Supporting subroutines, such as the identifier

recognizer, must be receded by hand DUSL once when moving

between machines.

Graphics Fortran (G.F.) has eight sections or state-

ment types:

1) Regular Fortran statements

2) Aissociative statements

3) Interaction parsing statements

4) Graphics output statements

5) Segment statements

6) Graph following statements

7) Software interfacing statements

8) Dejagging, tracing and statistics gathering, and

other miscellaneous statements.

Associative Data Base

Various techniques exist for storing trees within a

computer The common methods involve a region of storage

divided up into small blocks representing the various nodes.

Pointers (addresses or indices) within these blocks

indicate connections (branches) to other nodes. Such

schemes have serious limitations for, among other things,

no finite core size, selected beforehand, is adequate to

model all objects. The pointers are of a fixed size and

addressing across various levels of storage with them is

costly.

63

As an alternative, the design system presented here

stores the relationship of branch/dominant node/dependent

node as an associative triple by a method developed at

Lincoln Laboratories. Associative triples consist of an

attribute/object/value triple. Names are used instead of

pointers, as they are independent of the size of the data

base.

The names are hashed in various ways such that, given

one or two of the triples' components, the third membet

can be found quickly.

The Lincoln scheme was varied sUg5 l.y to make it

more economical. Graphics Fortran ellows the programmer

to indicate which components of the triple will be used

for future retrieval. In the design system program,

retrieval requests are often made in only one or two ways.

If the programmer has this information ahead of time, he

can save the computer system considerable time and space

by indicating it to the machine.

6k

Appendix III

MODIFICATIONS TO THE HIDDEN LINE ALGORITHM

Warnock's hidden line program has been modified to

produce output for a line drawing scope, as well as a

raster display. The method involves tagging generated

points m a way that a high-speed sort results in sets

of points which form lines instead of sorting by Y and

X coordinate values for raster scope output. Each set

of points ...- teplaced by the Line (end points; they re-

present. 'A retated edges 01 interp- ■.-•:■.,■i..;.ng surfaces

were a problem, since they exist onJy ,.mp.....city in the

raster output. A technique was devised ror detecting

such an edqe and replacing it with an explicit line seg-

ment .

Warnock's implementation was intended for batch pro-

cessing use, and as such generated all visible edge points

before displaying any of them. The modified line draw-

ing algorithm works similarly. One drawback of this

method is the intermediate swell of data. One thousand

words of surface information becomes 15,000 words of

edge point data before it is reduced to 1,000 words of

line and point information.

This is not a fundamental problem of the algorithm,

of course, for it could be recoded as a set of co-routines

to convert generated points to lines as they become avail-

able. Coalescing points into lines on the fly would in-

65

crease the amount of processing done, but would save space

(the fundament.-?J. time/space trade-or£ at work, as always] .

66

