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ABSTRACT

The res,.arch deeý e has been directed toward an understanding

of the mechanics of rain erosion of materials traveling at very high

velocities. An analysis of the motion of raindrops in a hypersonic

shock layer is described. A high-speed jet impingc-ent analogy of che

impact of liquid drops on solid surfaces is used to analytically deter-

mine the cavity pzofile. The effect of stress waves generated by

liquid impact is discussed. It is shown that internal damage and

spallation resulting from stress waves is oftev much grea'er than the

material failure in the impa'-t area itself. Experiments have demon-

strated that water-drop impact can be closely simulated by the use of

a high-speed water jet. Craters formed in the laboratory by the jet

are compared with those of a radome surface after a sled test in a

rainfield.
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INTR( AJC7ION

The requirement of an all-reather capability for high-speed air-

craft and missiles has made rain ezxosior protection of these systems

a vital design factor. No dependable design ewiterion, however, has

yet been formulated. In a state-of-the-art survey of raindrop erosicns

Wheelahan (1967) finds that very little quantitative information is

available on damage caused by raindrops impacting at supersonic veloc-

ities. Heymann (1967) says that there P.ists no theory for predicting

!.,?mge to be expected under givez q.rvic:e conditions. A _±rge number

of papers and reports on this subject has been publishea ucr the past

few years and many of them have contributed toward a better qualitative

understanding of the mechanism of rain erosion and its relationship to

material properties, although most of them have been limited to veloc-

ities less than 1000 ft/sec. These papers have included a great deal

of experimental data and considerable theoretizal work. Many of the

theories, however, have been rigorously deduced from rather arbitrary

assumptions. Contradictory empirical relations have been formulated.

One only needs to read the discussions following many of the papers

published in rhe proceedings of various rain erosion conferences to

see that there is much disagreement among those who are working on this

problem. There is considerable disagreement as to the forces that are

actually responsible for the erosion and cratering resulting from a

liquid-solid interaction. According to Eisenberg (1969), "There re-

mains the mystery of which mechanism, shock waves or jet formation,

is responsible for actual damage." Engle (1957), Fyall (1970), and

others believe that the damage is produced by the introduction of

shear and tensile stresses as a consequence of the high localized com-

pressive forces exerted by the liquid.
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Regimes of I!pact VelocLty

The -arious theories may not be as corztradictory as they first

appear. In the .se of solid-solid impact, there are at least three,

and perhaps four, regimes of the impact phenomena as the projectile

velocity increases. Those are illustrated by the rather idealized

curve Figure 1.1 which shows the effect of velocity upo,, the penetrat-

ing power of projectiles into a ductile target. In the 2-w-velocity

regime the penetration is strongly influenced by the rtrength of the

two materials. In this regime the penetration appears to increase as

the 41/3 power of the velocity. A n.gligible amount of the projectile

energy is converted into stress waves. A- the projectile velocity is

increased there is greater deformation and fragrentation of the pro-

jectile. At some point there is no incrcazt in crater depth with ir-

c±-ea!?d velocity; in fact the depth actually decreasez althouh the

crater volume may continue to increase. There comes a point wn..re the

depth begins to again increase with velocity. The crater becomes more.

hemispherical in shape and the penetration is now roughly proportional

to the 2/3 power of the ielocity. It is clear that a transition regime

has been crossed. The new regime is usually called the hypervelocity-

impact stage. "..e most common criterion for the beginning of this re-

gime is when the ratio of projectile velocity to that of a strEss wave

in the target material exceeds unity. At these velocities the stý.esses

develorcd by the projectile's deceleration is much greater t,-An the

yield strength of either the projectile or target and the materials'

densities affect the uratering process more than that of its other

properties (mecharical properties such as target and prolectile strengths).

T' the velocity is further increased, an impact regime is reached that is.
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ds yet, relatively unexplored. It is called the regime of impact explo-

sions, for the tremendous amount of energy becomes sufficient to vaporize

both the projectile and a small volume of the target. The partitioning

of the e,zactile's kinetic energy among such items as mechanical defor-

mation, heat generated, stre3s waves, ejected material, and perhaps vapor-

ization; the influence of material properties; the effects of stress waves;

and the mechanism of penetration and cratering are entirely different for

1he various impact regimes. It is apparent that there are also different

mechanisms of erosion and cratering for liquid-solid impacts at various

vielocities. Wheelahan (19b7) points ou t that in the velocity renge of

1000 to 3000 ft/sec, erosion rather than cratering is the dominant form.

of damage, but a. the iwnact velocity is increased above a fev Mach num-

bers the damage is primarily by cratering. Somewhere between these tw•

types of damage there is obviously a regime of transition. Those appar-

ently contradicting models mentioned -iay not be contradictory at all but

each may apply at various impact velocities and for different materials.

For a particular target material the velocity-damage curves would be very

different for liquid and solid projectiles but Y.ould probably converge

in the hypervelocity range. If this be true, it will be possible to simu-

!ate the higher velocity liquid impacts with solid projectiles. This

would pxi.bbly be at a higher velocity than is presently of interest in

the s'zudy of rain damage to high-speed aircraft and missiles. For example,

the hypervelocity regime of aluminum starts at a velocity greater than

20,000 ft/sec.

AJtrc ugh much research has gone into the accumulation of information

now available relative to high-speed liquid impact, it is obvious that

there is much more to be done. Mathematical models must be derived that
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take into account the effects of the various material properties including

hardness,density, elastic modulus, yield strengths, fracture strengths,

and Poisson's ratio, as well as surface conditions and porosity; the frac-

ture criteria for various materials, both ductile and brittle; the effects

of drop size and angle of impact; the effects of larget te•nperature; the

impact pressures and radial flow distribution and duration; the effects

of cavitation; and the momentum and energy imparted to the target. When

it is realized that this must be done for the entire range of velocities,

including the various regimes previously discussed, it is apparent that

much is yet to be learned relative to liquid impacts. This will require

the exchange of ideas among all investigators in this field of research.

There will continue to be conflicting theories but controversy always

stimulates research.

Scope of the Investigation

Although the rain field may be defined in terms of drop size, dis-

tribution, velocity, direction, and duration, it cannot be assumed that

this describes the condi- ions between the shock wave and the target sur-

face, 0iich in this study is a conical nosecone. It has been suggested

that water drops passing through the shock wave may be fragmented,

slowed down, and turned before impacting the target. The shattering

or fragmenting will not have an effect if the time to traverse the shock

layer is less than the breakup time. If the deflection angles are of

significant magnitude, the total number of impacts will be reduced.

If the raindrops have sufficiei:t momentum to prevent them from being

deflected, all raindrops in the path of the nosecone will impact. Se--

tion II of this report is an analysis of the motion of raindrops in

conical shock layers.



Two damage-producing attributes of liquid-drop impact are: (a) the

impact pressure, and (b) the sheet jet produced by the radial liquid flow.

Section III deals with the mechanisms of cratering and erosion resulting

from these forces.

A third source of damage resulting from impact is the stress wave.

This wave may contribute to fractures at or near the point of impact, or

may produce damage by reflection from the target's rear surface. These

fractures produced by reflected stress waves will generally be some dis-

tance from the point of impact and when they occur they may be more dam-

aging than material failure in or near the impact area. This is an im-

portant problem as it may dictate the required nosecone thickness. It

is analyzed in Section IV.

This investigation includes only a small amount of experimental

work. A water jet accelerator was constructed and targets of Lucite

and slip-cast fused silica were impacted. A description of the equipment

and an analysis of the craters and fractures constitute Section V.

Finally, an SCFS nosecone was examined after travel through a rain-

field at Holloman Air Force Base and a description of the resulting

damage is included in Section VI.

A brief description of proposed future work is given in Section VII.

As the various sections of this report were prepared by different

individuals, some variations in symbols and forms of equations will be

found; h6wever, the meaningt of all symbols are defined in the text and

no confusion on the part of the reader should result.
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SECTION II.

MOTION OF RAINDROPS IN A HYPERSONIC SHOCK LAYER

Introduction

In order to estimate the rain-erosion damage that will occur when

a vehicle flies through a rain field it is first necessary to know the

relative velocities with which the rain drops strike the vehicle surface

and the distribution of drops along the surface. The theoretical determin-

ation of these quantities is the subject of this section. In order to

compute these quantities it is assumed in the present work that the cloud

of drops can be treated as a quasi-continuous gas-like material. This

model is accurate when a representative volume element of the air-drop

mixture, small compared to the characteristic dimensions of the flow

field, contains a sufficient number of drops to allow meaningful averages

of the drop properties to be formed over the volump element. These aver-

ages are then treated macroscopically as continuous variables and the

small volume is assumed to have the mathematical properties of a differ-

ential element. Thus the air-drop mixture is viewed, for the purposes of

macroscopic analysis, as a mixture of two continuous fluid-like materials.

General discussions of the governing equations appropriate to such two-

phase flows are given in the books by Wallis (1969) and Soo (1967) and the

review article by Marble (1970).

In the present work several assumptions have been used to develop the

governing equations to be discussed subsequently. These are the subject

of this paragraph. First, it is assumed that the presence of the drops

has an insignificant effect on the motion of the gas phase. This assump-

tion is justified when the mass fraction of the dispersed phase is small.

Th,- section prepared by Dr. John Peddieson, Jr., AssisLant Professor of
Engineering Science and Chung-}{sein Lyu, Graduate Instructor.
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i This condition is invariably satisfied in shock layers. Second, it is

assumed that the volume fraction of the drop phase is small emough so

that the interphase mass, momentum, and heat transfer laws can be eval-I uated using formulas appropriate for a singLe particle. TLhis require-

ment is more stringent than the first .ne but it appears to be satis-

fied in most shock layers. Third, it is assumed that collisions between

drops are sufficiently rare so that the drop-phase stress tensor zdn be

ignored. Finally, it is assumed that the drops can be modeled, with

sufficient accuracy, as idertical spheres characterized by a single

effective mass and radius, both of which are independent of time. Thus

mass loss by the drops is not explicitly accounted for. Mass loss can

occur by two mechanisms: evaporation and breakup. In a state-of-the-

art survey Wheelahan (1967) stated that neither of the mechanisms ap-

peared to be important. A set of equations including evaporation ef-

fects is given by Marble (1970) ( see also Panton (1968), Panton and

Oppenheim (1968), and Lu and Chlu (1966)). An order-of-magnitude anal-

ysis of these equations was carried out in the course of the oresent

work and tended to confirm the belief that loss of mass due to evapora-

tion is negligible. Recent experimental research on drop breakup (see,

for instance, Waldeman, Reinecke, and Glenn (1972)) indicates that the

mass loss associated with this phenomenon can be appreciable at high

Mach numbers. Unfortunately the existing experimental data has not yet

been put in a form suitable for incorporation in the theory to he subse-

quently discussed. An expression relating the rate at which mass is lost

by a single drop to the parameters of the flow of the gas relative to the

drop is required. To date, no such relationship has appeared in the



Literature. Jim drop breaW cmwt be considered eiiplicitly. A

possible way of correcting the theory for drop breakp will be dis-

cussed later.

Previous investigations along the lines of the present work ae

limited to the following pampers. Probstein and Fassio (1970) cmputed

the drop-phase velocity field and streamline pattern for shock layers

on thin wedges and cones and in the stagunation regions of cylinder's

mine the gas flow field. For the wedge they obtained results in closed

form while numerical integration was necessary to solve the equations in

the other cases. Waldeman and Reinecke (1971) obtained results for the

velocity field and streamline pattern for flow past a cone and a sphere.

They relaxed the constant density assumption invoked by Probstein and

Fassio (1970) but solved the governing equations for the drop phase

approximately by a perturbation method. Both of these reports also

gave results for the collection efficiencies of the various body shapes

analyzed in them. (The collection efficiency is defined to be the ratio

of the actual rate at which masF is removed from the drop phase by col-

lection of drops on the body surface to the rate that would exist if the

motion of the drop phase were entirely unaffected by the presence of the

shock layer.) Further collection efficiency calculations were made by

Spurk and Gerber (1972) who considered cones and slender power-law axi-

symmetric bodies.

In the present work the drop-phase velocity field, streL..line pat-

tern, density distribution, and temperature distribution are -omputed

for conical shock layers. Since the collection efficiency seems to have

little relevance to radome design, no results for this quantity are
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Praesented. Teseta should be repuatative of t4 Condi-

tions isg iadwe shock Lqe became the results ofSp rk

ad Gerber (1972) show that small deviations fr a perfectly conical

body shape produce insipificwat baqpes in the flw variables of tIe

dispersed phase. The solutieos are obtained 1 mieically aind resultS ae

presented grapbically to illmtrate vious parmetric tmds. In addi-

tio., some results are given for shock layers oa wedges. Mlile such

calculations have no direct application to radome tecbuology, the wedge

is a useful, test case because the gas-phase flow field has an especially

simple form. In fact, by invoking the thin-shock-layer inn-dal it

is possible to obtain solutions in closed form for this case. This pr*-

cess was begun by Probstein and Fassio (1970) and is cmopleted in the

present work.

Governing Equations

The appropriate governing equations f-or analysis of the behavior

of the drop phase are found from balances of mass, linear momentum, and

energy. These are respectively

S+ s -(+uV ) = 0

pp(ept + it' ) = S (2.1)
p pt up p

where (2.1a) results from balance of mass, (2.1b) from balance of linear

momentum, and (2.1c) from balance of energy; 0Pp is the drop-phase mass

density, up is the drop-phase velocity vector, ep is the drop-phase

internal energy, P is the force per unit volume applied t- the drop phase

by the gas phase, S is the heat per unit volume transferred to the drop

phase by the gas phase, V is the gradient operator, t is time, and a
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emam dMatms partial dFFm~ta~ UWith winpsct to the ftodkmog

XABCV:Wt. To remse (2.1) det3w0 1 ti omftitutIwe .epatt for opt

, d S nv, wequlreI. re the intaml, .mx it is amuud (oef

Subic (197A) that

P P p (2.2)

*h-rw c P s the beat capacity, of the dispersed phas an TP, is its too-

,,peratue. Two sets of me t-m a"d beat wply t1 ms ase mued in the

pa esent wag*. The first is (vith U denoting the flidt-phase velocity vector)

S -(Ppc/t 2 )(T-T) (2.3)

be ..* c is the specific beat at constant pressure of the gam phase,

b is a numerical facto, and and r2 are nmmnteu and therml relaxation

factozw defined as

TI = 21t :*yOwa2-bol-blb

1 2 = nc/4. aw (2.4)

In (2.4) N is ax, wurical factor, w is the mass and a is the radiix6 of

a representative spLa-rical particle, p is the gas-phase density, P i

the gas-phase viscosit', and o _' the gas-phase thermal conductivity.

The relative Reynolds nwher is

"R= (2aO/I)1u -ul (2.5)

Its value determines the nuex'ical factors b and N as follows.

0 < R < 1 : b = 1, N = 24

1 < R < 1000 : b = 0.6, N = 24

1000 < R < - : b = 0, N = 0.44 (2.6)

Equation (2.3a) is obtained by dividing the standard drag curve for

steady flow past a sphere into three parl" and fitting an equation to



emac part as described by h abstain a Tassio (GwIO). It 4 nmmed

in the present oun that the rey ElcFit cPut - tibution to t% inatr-

p-as rce is the steady state dr. ThIis Is kJnm to pedinae the

drag de to added mass and that due to unsteady motio in t ses.

Lift rces were icluded in sma of the calculations made in the couse

of the present work and re fond to hae a negligible effect. Equa-

tios (2.3b) results froa the puwe-mcdtion beat trmafer I'w for a

single spbere. Euattions (2.3) hawe a covenimt malytice' farm which

facilitated the det nation of the exact solution referred to previously.

These equations were wes'iil Ln checkdig the mputer prgvam developed in

the prteseet wik.

SThe seon set: of dragK and beat lawsfr used is

SS =-(PpC/•[2)(1L ÷(3/10O)RI/2prl_13)lTý-T) (2.7)

Swhere all symbols previously defined reain their- mearaing with the stipu-

lation that b be set equal to zero in (2.4a). In (2.7b) Pr is the Prandtl

number defined by

Pr = pc/ (2.8)

Formulas of the form of (2.7) have been proposed by many authors (see, for

instance, Panton (1968)) with slightly different values of the coefficients

and exponents and are known to be reasonably accurate over a wide range of

Reynolds and Prandtl numbers.

Thin Shock Layers on Hedges*

Consider a wedge of surface length L and half-angle 8 b. The free-

stream velocity is U and the ratio of the gas-phase density before the

shock to that a'ter the shock is c. The density of the gas phase and the

*A shortened account of this work is ccntained in Peddieson and Lyu (1973).
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dvqa Owae lost behind the shock am m ad pp. respectively. The

free-strein stj s-at-me of the mixture Is T,. It Is conawusiat to w~e

caw•asian toordinates x md y with x nemurd pramlel to the body ur-

faen mad y inwed momal to it. It is cmwienit to def dinea sic-

lass vaiables follows.

SxulL, n ylL

Q =P/pas OP = pp/pp..

H /~gH =TIT U-.10
p p m

where 4. and t are unit vectws associated with the and n awn.

Substituting (2.9) and (2.10) into (2.1), (2.2), and (2.3) (equations

(2.3) are used initially because their fo-m .acilitate the subsequent

analytical wwok), and substituting (2.2) and (2.3) into (2.1) results in

(vp),F + (%pG), .= 0

S ps + G r a ((IIF- )2 +(G-G )2)(l-b)/2 (F4 .

FPGS +GG, atGG,)2+(GG)2(
s ppn 1 p p p

pHps * GpHpn a (H-Hp (2.1])

where

a, = L/T 1 b % (L/(2.)(c/c) 12)

The gas flow variables are modeled by the inviscid solution for super-

sonic flow past a wedge. This solution is known ex-.ctly and for a thin

shock layer (which occurs when•Ob and c are sinal) ,..s the form

F = 1, G = O, H = , QH (2.13)

where the subscript s denotes the value of the variable an the downstream

side of the shock wave. The shock wave is known to be a straight line

making an angle (for a thin shock layer)
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Os~ =b2/(1c€ (2.1w}

with the -•aterline of the wedge. The solution of (2.11) =ut satisfy

the omnditlios

Fr,= 1, = AS~ 1,1 Q = 1 (2. 15)

an the shock wave which is the ine

n = (e% - %bs (2.16)

This problem is =at easily solved using a Von ises tmfomaticn

familiar from boundary-layer theory. This is done by defining a stream

function op Such thatlp

*P 95ý -V -Vp(2.17)

and converting the independent variables f s ad n to Op ad z where

Sz = n. The total dif ferential, of Op is

d~p 11P3ds* Opdr, -% ds +11PIpdn(2.1le)

Solving (2.18) for ds yields

& z -(1/QpGp)dop + (Fp/Gp)dz (2.19)

now regarding s as a dependent variable which is a -functian of and z

it is clear that

5,*, = -1/Q= 2p/Gp (2.20)

Converting the derivatives in (2.l1h,c,d) and rewriting (2.20b) one obtains

Gppsz = -al((i-rp )2 + * p)(1-b)/2Gp

Y'Hp'Z = a2 (H s-H )

Gps, z = F p (2.21)

where (2.13a,b,c) have been used. Substituting(2.lSa,bFd) and (2.16) into

(2.18), integrating along the shock wave, and assuming p (0,0) = 0 yields

p = eSZS/(Os-Ob) (2.22)



It is cmmvimat to replam* by zasa of 00 aspmm wals

Umn this is dae (2.20a) romb

Q 0, ,-)% . (2.23)

The initial coaditios are

Fr 1, C - = 11 = %/(O.-l) (2.2,)P P P I(
n = x . Since equations (2.21) omntain no deriwati with respect

to z. they am be inteprsted Me ordinar differemtial equatim along

the st-11ines (0lnes of c tnsta zs). The dependence of the soiuntiem

an m enters through the application of the boundary conditions. For ail

valus of b the solution for the tamqptial velocity is

rp = L (2.25)

The other variables have different form depending an the value of b.

They are

b1

S = (zs/(%s-eb)) - (1/al)log(i- (-t/%)(xs-z))

GP = A + 0a1(z5-z)if H -% H -D(l -)

Qp = 1/(1- (%/s)(I - (el/b)(zs-z))) (2.26)

b=0.6

S = (zs/(Os-eb))- (5/2G8b 2/5)(1- (1 ( 3 * /A 3/5) (z,-z))-2/3

= Aft(- (3al/5 % 3/)(zS-z))5 / 3

HP = Hs - (Hs-)exp(-(SE 2 /2al% 2/ 5 )((1 (3a 1 /Sb 3 /5 )(ZsZ))-2/3-1))

= 1/(1 - (b/Os( - (1 - (3a1/5b3/5 )(Zs-Z))5/3 (2.27)

S- (l/O%%'(l - exp(cz(zs-z)))

S= -Ob exp(-cx(zs-z))

Hp = Hs - (Hs - 1)exp(-(a2/cl%)(exp(al(Zs-Z))-())

Qp = 1M( - (eb/Os)( - exp(aj(zS-Z)))) (2.28)



Xesults equivalent to (2.26,b), (2.27a~b), and (2.2btb) have been, giv=

by Protmea and Fassio(10M). They ued a La• ains ri . The

tand density reults are sm. The use of an Eulerim descrip-

tio, facilitates the detwinatiom of the drap-pbie density. These re-

sults we= usedas a dock c the uamrical calc tion to be describedIs equently and a heck ca the qprqmcaate analytical solutions discussed

in ppendixLI

Numerical Solution for Thin Sbock Layers

In this sub-section the symbol j is intraduced to dif tiate be-

t. plane and axIsymtric flow. For the forme j = 0 vwNie for the

latter j = 1. The discussion will be for the conical -ase but the result-

ing equations are also valid fobr wedge flows if j is set equal to ze=o.

For numerical work it was found convenient to use a system of polar

coordinates r and 0 with r = 0 at the leading edge of the body and 6 = 0

on the axis of symsetry of the cone. Defining the dinensionless variables

S=r/L, n 8

re' tG; u10., F e"+ G e'z~ (2.29)

where " and -n are mit vectors associated with C and q, substituting

(2.29) and (2.10) into (2.1), (2.2), and (2.3) and substituting (2.2) and

(2.3) into (2.1) yields

pFp, C + (Gp/&)FprT - (GP2 /&)= al((F-Fp)2 + (G-Gp) 2 )(1-b)/2(F-Fp)

F*pGPC + (Gp/,)Gp,n + (Fpyt) z al((r-Fp)2 + (G-G))2)(1-b)/2(G-Gp)

FpHp,E + (Gp/)',Hpn i 2 (Hs-Hp) (2.30)

The gas flow variables are modeled by the constant density approximation

(see Probstein and Fassio (1970))
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F= 1, G -(2(vi-%))J, Il s, Q = 1 (2.31)

(Mote that, withi the thiu-shock-layew al jscuratiosu these exp iaas I:

ar e t for j = 0.) Tbe shock vai is a oos m king an angle

s = %/(1 - (c/2b)) (2.32)

with the axis of symmetry. The conditions

It1 G =- V Is (2.33)
1p p *s~ ~1

mst be satisfied on the shock wave.

Again it is useful to employ a Von Rises transformation. Defining

a stream function Op such that

# t= 40 i,, ' &(CTijQF~ (2.34&)

and converting to the independent variables #p and z = n - ob me obtains

GpFp - 2 a((- F,)2 t((2z)j+ -)2)()-b)/2(1 F)
P Pz p i % 1-(b)/2(l

P p
Gp., = c2(Hs -H,

Q = -1/((&I,z + Ob))jG p.9 lo (2.35)

The relationship between *p and &s the shock position where a streamline

originates is easily found using (2.34) to be

1P = (es-,÷J/(l+j))c s +j (2.36)

Using this expression (2.35) can be written as

_Q -(¢s/00(Os/(Z + ,/G C ) (2.37)

Equations (2.35a,b,d) were numerically integrated simultaneously along

various streamlines using a fourth-order Runge-Kutta algorithm. Since

each streamline represents a line of & = a constant, the partial deriva-

tives with rerpect to z can be treated as ordinary derivatives in this

calculation. After the determination of rp, G , and C (2.35c) was integrated
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using a fourth-order Runge-Kutta method to obtain H and p was obtained

from (2.37) where the derivative with respect to C was pproximated by

a tmo-point backward difference. A discussion of the numerical results.

obtained by this method is the subject of the next three paragraphs.

Figures 2.1 and 2.2 show the distribution of the drop-phase normal

velocity and the drop-phase density along the vehicle surface. These

calculations are for a vertex half-angle 0b = 0.1 and a gas density ratio

c = 0.1. Results are plotted for various values of the dimensionless

drag parameter aI. These results are for the linear drag law b = 1.

Figure 2.1 pertains to wedges while Figure 2.2 pertains to co ical shock

layers. It can be seen that for small values of the drag parameter the

drop-phase normal velocity and the drop-phase density are nearly constant

along the surface. This represents a situation in which the motion of

the drops is almost unaffected by the presence of the shock layer. As al

increases significant daviations from the free-strem• values of the

variables qut.ckly become apparent. It is clear that this effect is

greater for the wedge than for the cone. Figure 2.1 represents either

the numerical solution or the analytical solution represented by (2.26a,d).

For the step sizes used in this work (ACs = .005, Az = (( s-b)/i00)) it

was found that the numerical and analytical solutions were indistinguish-

able. Reductions in the step sizes failed to produce any change in the

solution variables.

Figures 2.3 through 2.8 present further results for the problem dis-

cussed in the previous paragraph. The distributions of various variables

are plotted along selected streamlines. The parameter = 9

increases as the distance from the origin of the streamline to the nose



increases. Figures 2.3 and 2.4 show the variation of the normal velocity

with z for two values of a,. On the streamlines close to the nose of the

vehicle the particles are slowed down the least. The drag becomes in-

creasingly more effective as the distance from the nose increases. This
trend becomes more pronounced as a1 becomes larger. As the normal veloc-

ity is decreased along a given drop-phase streamline the drop-phase density

increases. This is shown in Figures 2.5 and 2.6. The increases in density

are larger for plane flow than for axisymmetric flow and become steadily

larger as the value of dimensionless drag coefficient is raised. Figures

2.7 and 2.8 depict selected drop-phase streamlines. The streamlines are

slightly deflected downstream by the action of the interphase drag. This

effect is accentuated as the distance of the origin of the streamline from

the nose increases and as a increases. The radial velocity Fp has not

been plotted because its value was found to be very close to unity for all

the calculations discussed here.

Figure 2.9 shows some comparisons of the results obtained in different

drag regimes (different values of b) for 0 = 0.1 and e =01. Obviously
b

the sensitivity of the solution variables to the value of b increases as

al increases because b is contained only in the drag terms whose magnitude

is determined by the value of al. It is clear from the plotted data that

for al = 10 significantly different values of the flow variables exist in

different regions of the standard drag curve. For thin shock layers it is

reasonable to assume that one drag law will be applicable throughout the

flow field. This has been verified jy the calculations of Spurk and

Gerber (1972). Calculations of the type described in the previous two

paragraphs were carried out for the cases of b = 0.6 and b = 0. Since
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the results were qualitatively sialaw to those already discussed they

are not presented graphically.

Numerical Solutions for General Conical Shodc Layers

It is now desired to eliminate any assumption that either the cone
rthe shock layer is thin. Since this implies that a wide range of

relative Reynolds numbers may be encountered by a typical drop as it

traverses the shock layer, it is appropriate to use the drag and heat

transfer Laws given by (2.10). The governing equations (2.30) are

now replaced by

C2 sin(q)QpFp ).C + (E sinln)QpF) 0

FpFpt + (Gp/F)Fp, - (G.2/) = a11 Q(l +(64/(a3Q((F-Fp)2 +
p n p

(G-.P )2)1I2)4IS))((F-Fp)2 + (G-Gp)2)1/2(F-Fp)

F pG p It + a1)Gs (PPE)=oQ(l +(64/(a 3Q((F-F p)2 +

(G-.P)2)1/2)11/5))((F-Fp)2 + (G-pp)2)1/2(G-Gp)

FPHpt + (Gp/t)Hp,n a2(l + (3Prl/ 3 /10)40 3Q((F-Fp )2 +

)2)1/2)1/2)(H-H (2.38)

where a, is given by (2.12) with b = 0 and p replaced by ps in the equa-

tion defining TI (equation (2.4a) with b = 0) and a3 = (2aU=ps)/j. Note

that *3 has the form of a Reynolds number based on the free-stream veloc-

ity, the effective particle radius, the gas density just behind the shock,

and the gas viscosity. The gas flow variables are modeled as follows.

F = coS(es) - al(l - (O/Os))

G = -a2(sin(O5)/8) (e-eb)

SQ + a3 (1- (0e/))

SH H + a (U - (W/es)) (2.39)
54 s
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Equations (2.39a,b,c) were obtained by Waldman and Reinedke (1971) by

F fitting linear functions to existing theoretical and experimental data

for the gas flow field. Equation (2.39d) was obtained the same way in

the comse of the present work. Representative values of the constants

contained in (2.38) are a1 = 0, a2 = 1.67, a3 = 0.35, a4 = 4.0. Calcula-

tions carried out in the course of this work showed that the drop-phase
I flow variables were rather insensitive to the values of the als. The

shock angle is computed (following Waldman and Reinecke (1971)) from the

formula

OS= hb/(l - (W/a 2 )) (2.40)

The boundary conditions to be satisfied on the shock (0 0s) are

F = cos(gs), G = -sir(es), H = Hs, Q = 1 (2.41)
p p ' s p

In this case the drop-phase stream function defined so that

-4 sin(n)QpGp, qp,, = E2 sin(n)Qp F (2.42)

and the modified governing equations (2.35) are replaced by

GpFp9 G2 = aI Q(l +(64/(a 3 Q((F-Fp )2 +

(G-Gp)2)/ 2 ) /S))((F-Fp)2 + (G-G )2)l/ 2 (.-r )

G ppG + F G x= alQ(l +(64/(ac3Q((F-Fp) 2 +

(G-G p )2)/2)/5))((F-p)2 t (G-Gp)2)1/2(G-Gp)

is 14PIZ a2&(1 + (3Prl/ 3/1O)(a 3 Q((F-Fp )2 + (G-G P)2)1/ 2)I/ 2 )(H-H )p p
SG •,= •F

G• P Z & p

Qp -1/( sin(z + Gb)Gp Cp (2.43)

Equation (2.36) is replaced by

= ((sin(es))/2)&s (2.44)

This relationship can be used to rewrite (2.43e) as

Qp = -(Es/&)(sin(8s)/sin(z+eb))(sin(es)/Gp,&s ) (2.45)
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Equations (2.43ab,c~d) and eqadon (2.15) vwer's owved 8meitcally using

the method discussed earlier. Tbese slutions were found to be isignifi-

cantly diffezsnt from those ddscribed earlier, for values !.

the parmeters.

In order to carry out a paraetric study a ripreseutative density

ratio of s = 0.2 was selebted and used in all the calculations to be eon-

siderod below. Figures 2.10 and 2.11 illustrate the influence of the

pazmeter aa on the solution variables evaluated on the wall of the•ccne

for 0b = 0.1. For large 13 the quadratic drag law is approached mad the

solution is insensitive to a3. As a3 decreases thq sensitivity of the

solution to its value increases and large reductions in the drjphase

normal velocity and increases in tl/e drop-phase density pccur. The power

ofa to influence the numbrical results increases w~th increasing a,.

Figures 2.12 through 2.17 depict the variation of the transverse

velocity and the density along selected streamlines and the sh~apes of

these streamlines for various values of a3. The yertex half-angle for.,

these cases is 0 = 0.2. The parameter / = •s/10. It is evident that

the variation of quantities frow streamline to streamline is increased

by decreasing a(3. Fr thý data plotted in these fikures there is little

variation across the streamlines for any of the parametric values shown.

Comparison of the results for a = 105 and a 109 reveals that they are

virtually identical indicating that tbe quadratic-drag-law asymptote to

the standard drag curve has been at*ained.

Figures 2.18 throtgh 2.20 show the influence of ýhe cone half-angle

ob on the surface values of the normal velocity and the density ofi the

drop phase for various values of 03. As the angle Ob increases the



amount of variatio of the flow vmiaL les aloft the surfacs dwmim.

This trend is wost apparent for a= 1. It Is ovious that both the

nor~mal velocity and the density of the d&W phase ar increasing fuyictioms;

of the •ae half-angle.

Figures 2.21 tbreagb 2.23 illustrate the influence of a, on the dro-

phase normal velocity and the drop-phase density at the vehicle surface

for , = 0.4 and various values of a3. As discussed earlier small values

of allead to v,--rtuanly constant distributions of Gp andQ(ýAlong the

surface. As a1 increases large variations in the values of the fum

variables at the wall appear. This effect is much mrwe pronounced in

this case than it was for the thin shock layers discussed previously.

The largest variations occur for the smallest value of the Reynolds

number parameter a3. Even for the larger values of a3 significant varia-

tions of G and Q can occur.

Figures 2.24 through 2.29 present results for the streamline shapes

and the variations of the transverse velocity and the density of the drop

S~phase along selected streamlines for the same geometry discussed in the

previous paragraph. The streamline parameter 0 /10. In all cases it

can be seen that the variations of the plotted variables with z increases

as the distance of the streline from the leading edge of the cone in-

creases. This trend becomes less prominent as a3 is increased and more

prominent as a1 is increased.

In all the cases discussed in the present work the temperature dis-

tributions were computed along with the other results that have been

discussed. Since the surface temperature distribution of the drop phase

does not now appear to be pertinent to design procedures for the preven-

tion of rain erosion damage this data was not presented graphically.
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Fr- drop sie typicl of thoe famd in rain fields ]uprssinttiw

values of the dimensionless drag parameter hl L=it 1 li iz the ruie

ri- IL if zI */(.2 saý) a 6.04aG /0 6 is the density of

the material cantained in a sinqle drop) is evaluated ming the initial

drop radius. It should be possible to accomut for bredie& of the drops

(when this occm) by using an equivalet value of a which is sma]lIthan the free-strera value. Ibis would deres i, which would increas

the dimensionless dragparmneter al. Ahas be b o•m• , this haste

effect of decreasing sidlatl the computed velocity with which

the drops strike the surface. It also appears to have the effect of

increasing the surface density of the drop phase but it st be rm-

bered that

S(2.46)

where q is the nuber of drops per unit volume. If a (and thus p p) is

evaluated using the effective value of a the values of P p on the wanl

will decrease even though those of Qp increase. It should be possible

to determinp the effective values of a appropriate to various flow con-

ditions by matching numerical solutions of the type discussed in the

present report with experimental results.

Conclusion

In the present section a numeri'-Al procedure to compute drop-phase

flow fields in shock layers has been developed. A computer program was

written to carry out the calculatcions. Ihe method was verified by com-

parison with an analytical solution for flow over a thin wedge. Numeri-

cal results were computed and presented graphically for various represen-

tative cases in order to ilustrate various parametric trends. Further

results, corresponding to a particular experimertal setup were found.

These will be discussed in Section VI.
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Inatf1G -r AO=- IR

Ibis pmat of the iesear& is directed d e deveImed of a

ratodal theory which will adequately predict the weaii between

the impact velocity and pmse and the crater size in a given in

Seni nt cc a given ta-ial. A review of Literture (faw recent

acomprehensive surve•, see Heyump, (1967) and isenherg (1970)) has

shomw that there have been mayn recent advances toward an understandig

of liquid impact erosion. However, wbile an impressive amount of ex-

perimental data has been generated, most of the analytical models sW-

gested hafe been phenomenological and not such work has been done toward

the development of a physicel theory for quantitative prediction of

erosion damage. This is understandable in view of the very complex

nature of the danage mechanism. The theoretical analysis described

bIow is not in itself expected to quantitatively predict all the rain

erosion characteristics of materials; nevertheless, it is hoped that

it will provide a better understanding of the erosion mechanism and

help identify the parameters that are important.

The models proposed in this study are based upon the assumption

that for high speeds of impact, the initial pressure developed is high

enough to liquefy the target material in the neighborhood of the impact

area. Recent studies by Heymann (1969) have shown that initial pres-

sures of several times the magnitude of "water-hammer pressure" are

possible. At sufficiently high velocities of impact, therefore, these

impact pressures are likely to exceed the mechanical strength of the

This section prepared by Drr. Vireshwar Sahai, Associate Professor of
Engineering Science mnd Peter W. Hsu, Graduate Assistant



targt msateial, mma it III lowe a Hiqud 1Aanth Immliame

P! bf M of the Paint of impact.

Such a fLUid-flid modatinl furi-~ot impacts o

first comeeiv"s by Cpik (1.9S). Reomtly this model usa studied both

eupesimentally and awLyticaULy by Enp (1366, 1967). 11e anlytical

study, b .eve, was semi-, ad it ium -ved a rbitr as-

sumptiom with regard to partition of the iemmy of the imyinglua dro.

It wa assmed abitmil that balf of this emerff is imparted to

the tart and the other half is retained by the drop.

The Initial part of the present research um dewoted to further

study of the rog--A's model of rain erosio. It was hoped that it wa3ml

be possible to use a moe rational basis for the det- ination of

enry partition than that used by Engel. It was soon realized, how-

ever, that the energy balance associated with liquid-solid impact is

very complex. Part of the kinetic energy of the impinging drop goes

to the lateral outflow, part is dissipated in the shock waves passing

through the drop and in the shearing associated with change of liquid

flow direction, and the remaining part is dissipated in the target

material. Consideration of all these energy term made the problem

unwieldy, and attempts to refine Engel's model were subsequently

abandoned.

Instead it was found that incorporation of the concept of "appar-

ent mass," used by Ludloff (1967) in the treatment of hypervelocity

impacts of solids on solids, into the Opik-Engel model makes this model

more amenable for application to the rain erosion problem. Furthermore,

this concept allows the calculation of mass and energy of the ejecta

from the crater.



a -o •tw f e n -Im sodel. b , - flaid-

fluid h iact now bind aM M mO vith the O quimW of a bim

qeed let on a liquid M-awm UM be -n ~ I Ibis mesa -m am-

tmw"Vf 04ly43" ha" yiede i4*M P" M&U- As poit** Got by

Smulaks KidMs, Md Sidl (169), the ouriti.. fa bedy the *is-

ping t of hig-speod jets a a lqdui sm'e bow a strbidg ie-

silnme to tO se feed e solid m'facus by hig-spee impact.

fail' ie""p Jets w M lOp used to si"Mae rafi MWSI (34e,

for emale, Hammitt, et al (1M67)), little WM* bas been d to es-

pNAt thX amauf.

Jet Mdel

As indicated earlier, this model is based upon the asmmption

that for L;O speeds of i a, the initial peessure developed is hih

eno•Ul to lifefy the tawt material alladin the Impact to b cate-

gorized as a fluid-fluid impact. Based on the arguments of Plesset

and Cbapman (1971) and other, it is assumed, however, that the high

contact pressure due to the initial impact decays very soon and Is re-

duced to the stagnation level. The calculations of Plessert and Cbmpman

showed that the duraton of the stagnation pr*essure pulse is an order

of magnitude higher than the period over which the initial water hammer

pressure acts. They further expressed the opinion that this longer

acting stagnation pressure pulse may be the prisary source of damage

causea by fluid impact.

B ased upon the above-mentioned arguments, a simple idealized model

of steady-state impingement of a cylindrical liquid jet on a liquid

surface will be used. The drop is replaced by a cylindrical jet in

order to simplify mathematical analysis. This simplification is prompted



by the fiect that Jets am OftnmG Nwiath SOCmN to SIm~lat. aisi

CPA.M b of its Impartince ;Au Inawrial IIP - I (such a

the IMr mollM iroem w ~In tIW -. twa inaow"Y), the jet iNVAN-r

as em Imi9d surfaces ba beem studie~d extasivoly both Vqerit~

ad aalyticaly. sam of this week is described be] .

g awks (a293) pT semted aneuperimental invti-

gation of umaum penetration of a high-Yelocity gm Jet tbwcum a liquid

surface. gawks md havmai (2195) extended this stuil to a imae g•aml

cue--.zperimental stub' of the impingemenrt of a liquid jet onthe surface

of a heavier liquid. Sam 300 emperi•mt were made to measmue the sizes

of cavities formed due to impact of oil jets an water aId water jets mo

carbon tetrachloride.

From the viewpoint of the present application, the east useful na-

lytical study of the problm is by Rossler and Stewart (1968). Thy de-

rived the governing differential equation for the cavity profile using a

steady-state force analysis. However, since their eventual purpose was

to explore the instability of the indention formed by the impact, they

did not verify their equation against experimental results such as those

cited above. In what follows, a general form of the Rossler-Stewart

equation, applicable to any given pressure and shear distribution on

the liquid surface, will be derived. After testing the theory against

experimental results of Banks and Bhavamai (1965) for the case of impact

of a liqrid jet against a liquid surface, it will he applied to determine

the crater sizes in the high-speed impingements of water and mercury drops

against metals. Attempts will be made to determine the correspondence of

surface tension with some strength property of the targex material. Experi-

mental results of Engel (1959, 1960) will be used for this purpose. An
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•ir 1m of o n slart equation an its sobta m wMl

also be pmsmted.

Sr4 i -I t is ass m d that the cavity ft by sm in

ipac is Asim"tn i. Is mfig I-Iion of the caity ad the Cardi-

sate system used me shmm in F1m 3.1. The ft amcts actig O infi-

itmime seiet ds al]ng the cavity 130111. are shoms In Figue 3.2.

P = pmsmre differenc aros the interface

T = shear stress an the interface

a = surface tensio of the target liqid

W = might of the impinging jet occu~ing the cavity

3 = buoyant force

For the cavity to be in equilibrium, the sum of the wertical con-

porents of these forces oust vanish. Hence

2xrds p cosO + 2x[rasinekr

= 2xrds r sinO t 2xrdr(o] - P2)gb + 2x[rzsin6]rt& = 0

Here ol and 02 are jet and target densities respectively, g is the gravi-

tational constant, and 0 is the angle between ds and a horizontal line.

Noting t1hat ds = dr/cosO and taking the limit results in

p - T tane = (P2 - P1 )gh + (o/f'td/dr(r sinG) (3.1)

Finally, if the trigonometric relation tan8 = -dh/dr and a corresponding

one for sine are used, equation (3.1) becomes

h" + (h'/r)[l+(h' )2] = (1/0)"(02-- 1 )gh-p-Th' J[1+Tth' )2J3/2 (3.2)

Here h and r are coordinates describing the cavity profile (see Figure 3.1a)

and the primes, denote differentiation with respect to r. Equation (3.2) is

the governing equation for the cavity profile and is to be solved subject to

the following boundary conditions:
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bh 0 atr= 0 mdat r -both b' amndb 0 (3.3)

Equatics (3.2) Is a higihy WmOL~iear second andex diffIerwtial

eqtiom. seee iou iana aed for its soluti ncludes

two desitis, the surface tUsion of the tagept fluid, and the pmvsusem

and shea' distr1i ticus aLg the cavity profile. Ibfornately no an&-

ILytical foirm of pressue" amd shear ditributioos ie avai!able foe hi

speed impacts. AhI iaate foe based on experimental resulti willi

theefie be needed.

Befoue discussing the possible f s of pressure and shear distribu-

-ans for the soUtion of equation (3.2), it will be convenient to non-

dimensionalize the equation. The following xelationships are used for

this purpose:

h* = h/6Rs, X* = r/OR, p*l/(ýP.JV), T* = T/(ýFJV2) (3.4•)

Here R is the jet radius, V is the impact velocity, and 0 is an adjust-

able nondimensional parameter chosen so that r* 1 will be the location

of zero pressure point. The starred quantities are nondimensional. The

dimensionless form of equation (3.2) can then be written as follows:

h*" + (h*/r*)[) + (h*') 2 ] = [Ah* _ B(p* + T*h*')][l + (h*')2]3/ (3.5)

Here A = C(p 2 -Pll)g0 2 R2 ]/o and B =(Jg!V2 3R)/o. A and B are both dijmen-

sionless parameters. Approximate forms of the pressure and shear distri-

butions will now be described in terms of the new dimensionless variables.

Pressure Distribution--In view of the assumptions stated above, the

form of pressure distribution needed is that for steady-state impact of

a liquid jet on a flat surface. B anks and Chandrasekhara (1963) used a

normal distribution

p* = exp(-Kr *2 ) (3.6)



which sved as a fair aoo, to the meawnr. data of Gibnm (MM).

hINS dist jribu D, hmesr~evg doss not tic, the possible negative pr'insm'

no5w the cavity epe into wcosut. Rmsle and Stmart (L968) used a

differet distribution to fit Wson's data, a modified foem of which

p* = F sin(--r*)v/2 (3.7)

1 ~ ~ 0 rA d

where F j0.015 (1-1), I * < 3

03'r*,

This sectionally continuous distribution does take the negative pressure

newa the cavity edge into account. A conservation of momentum analysis

showed that the parameter 0 in the definition of r*(r* = WOR) must be

equal to 2.72. However, a value of 0 = 2.0 pro.ides a better fit with

the experimental data of Gibson. The pressure distributions given by

equation (3.6) and equation (3.7) with 8 = 2.0 and 8 = 2.72 are compared

with Gibson's results in Figure 3.3a.

Another useful equation for pressure distributicn is that by Leech

and Walker (1966). They carried out an extensive set of experiments and

fitted their results with the following polynomial:

p* = 1 - 3r* 2 + 2* 3 , =2.6 (3.8)

Their res Its however do not differ significantly from those of Gibson.

A pressure distribution which is close to that of Leech and Walker and

which takes negative pressures near the cavity edge into account is given

by the equation

p* (1 - r* 2 ) exp (-r*2 ), 8 = 2.6 (3.9)

The pressure distributions given by equations (3.7), (3.8), and (3.9) are

compared with each other in Figure 3.3b.



-31-

Shear Distribution--Banks and Chandrasekhara (1963) and Cheslak,

et al (1969) concluded from their experimental results that the viscosity

of the impinging jet has a negligible effect on stable cavities on liquid

surfaces. In the impact of drops on solid surfaces, however, the shear

stresses may not be negligible because the velocity of the lateral flow

is expected to be very large. To take the shear stresses into account,

the following approximate distribution suggested by Rossler and Stewart

(1968) will be used:

T* = (a2)(0.664/Res){1 - exp[-(s/R) 2 ]} (3.10)

Here Res = plaVs/p is the local Reynolds number based on the distance s

along the cavity profile. p is the viscosity of the jet fluid. The

numerical factor a (to be called the shear factor) has been introduced

to take care of the possibility that the lateral flow velocity may be

larger than the normal impact velocity. In the case of liquid-solid

impacts, several experimenters (see, for example, Heymann (1967)) have

found the lateral flow velocity to be several times the velocity of impact.

Numerical Solution--A generalized program (for a listing of the pro-

gram, see Hsu (1972)) using a fourth-order Hamming's method based on an

interval-halving iterative technique was developed to solve the govern-

ing equations on a Xerox Sigma 6 computer. This program was used to

determine the cavity shapes and sizes in the case of jet impingement

on liquid surfaces as well as liquid drop impact on solid surfaces.

Because of the nonlinear nature of the governing equation and the

nature of the boundary condition made convergence difficult, 5,-veral

subroutines were written to take care of the various difficulties. The

final form of the computer program seems to provide fast and stable con-

vergence in all cases under consideration.
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')iscussion of Results--First, the effect of various parameters in

the governing equation was investigated. For simplicity, the center

line velocity of the jet was assumed to remain unchanged upon impact,

thus neglecting the effect of jet spreading. The parameters used were

those for impact of an air jet on water. As shown in Figure 3.4, the

cavity depth increases with increasing velocity. When the velocity

exceeds a certain limit, the cavity shape is no longer shallow, and a

cavity lip is created. Both the cavity depth and the lip height con-

tinue to grow until a maximum cavity size is reached at a critical

velocity. Beyond this value the cavity depth starts to decrease while

the lip height continues to increase. It might be mentioned, however,

that the pressure distribution used becomes less and less accurate as

the cavity gets deeper.

In Figure 3.5, the effect of increasing the shear factor a on the

cavity size is presented. The shear factor seems to have a more signif-

icant influence on deep cavities than on shallow cavities. Note also

that the numerical solution is capable of providing the cavity profile

as well as the cavity depth. Figure 3.5 also shows the presence of a

cavity lip in the case of deep cavities.

Next, the effect of increasing the surface tension was investigated.

As expected, the depth of the cavity decreases as the surface tension is

increased. The effect of changing the parameter 8 in the pressure dis-

tribution will be discussed later.

The theory was then checked against experimental results of Banks

and Bhavamai (1965) for impacts of oil jets against water and water jets

against carbon tetrachloride. The effect of turbulent spreading of the

jet was taken into account in this case.
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Figure 3.6 presents the remlts for the case of the Impact of an

oil lot on water. The nates used are the sa as those used by

Rnks and Dbawaiai. The ordinate b:. is the ca•.•ty depth nondisension-

alized with respect to the jet elevation. The abscissa N representsI
noodinmsional jet momeatum. The experimental points of Banks and

Bhavamai for various nozzle elevations are plotted on this graph. Also

plotted are the calculated results of the present theory using pressure

distribution equation (3.7) with 0 = 2.72 and 0 = 2.0. In view of the

considerable scatter in the experimental data, the agreement seem to

be satisfactory.

An empirical equation obtained by Banks and Bhavamai which fits

their experimental data is compared with the present theory in Figures

3.7 and 3.8 for oil-water and water-carbon tetrachloride impacts respec-

tively. The ordinate used here represents a normalized cavity depth

defined in Banks and Bhavamai (1965) or Hsu (1972). Specific compari-

sons with experimental results showed that the higher value of a is

better for cases of deep penetration while lower values of 0 are more

suitable for shallow cavities.

This model was also applied to the case of the impact of a water

drop on water surface. This case was considered by Engel (1966) as a

model for high-speed liquid-solid impingements. In Figure 3.9, her

experimental results are compared with those computed from the present

theory. The agreement is satisfactory.

The fluid-fluid impact model was then applied to the impact of

liquid drops on solid surfaces. The premise on which this model is

based has already been discussed earlier. In this analysis, the pres-

sure distributions given by both equations (3.7) and (3.9) were used,



but no significant difference was noted. As far as the shear distribution

given by equation (3.10) is concerned, it was found that increasing the

shear factor a to a value up to 4 does not significantly change the re-

sults; therefore, a was fixed at a value of 1. In fact, it was found that

the shear term in equation (3.5) is small compared with other terms Jn

the equation. Several workers (see, for example, Smith and Fyall (1969))

have found from their experiments that the shearing action resulting from

the high-speed radial flow is not very significant.

One of the difficulties in applying the proposed model to liquid-

solid impacts is that of relating the surface tension parameter a to some

strength property of the solid. It was fortunately found that the use of

a simple relationship

S = a/R, (3.11)

where S is the dynamic yield strength of the target material and R is the

drop radius, gives good correspondence with the available experimental

results.

Figures 3.10, 3.11, 3.12, and 3.13 present the calculated results

for the impact of 2-mm water and mercury drops on copper and aluminum

targets at high velocities. Engel (1960) carried out experiments to

measure pit depths in such impacts. Mercury drops were used because

they are capable of imparting large momenta due to their high densities.

Experimental results of Engel are also plotted on the figures for com-

parison. Calculated results seem to be surprisingly good in view of

the crude nature of the model used. Because of the assumption that the

target material behaves as a fluid, the model should be more applicable

at higher values of the momentum. This is apparent from the figures;

the correspondence between calculated and measured pit depths is better
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for -the m1.y impact than o# the water Impiwt. Also, In th cse of

water Impact, te calculated- o11td t gots aos to th lme as d daia s-

th Inram

th imhgstVelocity ieess

Anypprjo~ate Solu tion-4-Ibcination of the relative importance of the

various parametera In the nondiunswionai. form of the governing equation

(equation (3.5)) revealed the~poesibility of a simple ap~woxiinat b solu-

tion. *In the cAse of liquid-folicl Impacts a is ver'y large and conse-

quently ihe nondimemional, paremetir A is very maU. The first term

on the right-hand side is therefore -negligible in comparison with other

terms. As suggested earlier, the shear term makes an insignificant con-

tribution. In addition, the cavities are expected to be shallow, there-,

fore (h*' )2 << 1! With these approximations, equation (3.5) simplifies

to

hre' h*'/r* =-Bp* (3.12

A exact solution to equation (3.12) can be obtained if the approxi-

mate form of the pressure distribution given by equation (3.:9) is used.

The solution of equation (3.12) subject to the proper boundary conditions

(equation (3.3)) is then, simply,

h* = (B/4) exp (-r*2 ) , (3.13)

The maximum cavity depth which occurs at r* 0 is given, in dimensional
form, by the following expression:

hmax :oV202R2/8a (3.14)

The approximate solution given by equation (3.14) is compared with

the nýmerical solution, of the entire equation and with the experimental

results of Engel in Figuwes 3.14 and 3.15 for impacts of mercury drops

against 2024-0 aluminum and steel respectively. It can be concluded that

the approximate solution is quite adequate. Similar correspondence was

found in other cases not presented here.



-36-

It may be concluded frm the above results that the jet miodel

described above is capable of providing good results, at lest in the

case of liquid impact an metals. ufbortmately, experimental results

in a forim suitable for cbecking the validity of the model were not

available for other materials, such as cerics. Homever, the present

results are significant in two respects. First, the results may be

directly applicable because some designs of radomes suggest that metals

, may be incorporated in the attacimnt to the afterbody of the vehicle

or in the nose as a protection against rain erosion. Microwave engi-

neers have shown that such a use of metals is possible without serious

detriment to radar performance. Second, the development of a reliable

theory must be based upon materials on which the test data is repeatedly

reproducible. Metals are such matewials.

RApparen Mass Model

The apparent mass model, just like the jet model, is a rough,

approximate hydrodynamic model. This model, based on a concept first

used by Ludloff (1967) in connection with his study of hypervelocity

impact, is characterized by the following assumptions:

1. Upon impact a fraction of the initial kinetic energy is

expended in liquefying the surrounding target material. The

remainder of the initial kinetic energy causes impulsive

motion in the liquefied mass such as that which occurs when

a body impacts on the free surface of a liquid. Such a

motion can truly be characterized as irrotational (see

Batchelor (1967)). The theory of flows with free surfaces

suggests that the concept of "apparent" mass may be useful in

describing the flow of the target material.
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2. Sloew the &Wp Is expeCt*d to be flattNmd bY impct, the

uVlocity fie"d of the targt material is simila to that

mmm a disc tmlating thirw a fSadd.

3. The material rists the fanutiom of the cMter by a f9CeI

equal to the pro& -t of sm streugth prOPet S of the mater-

ial and the surface area of the cter.

*nen a body of mass N enters a liquid, there is a sudmd reductiia

of its velocity. This is ascribed to an apparent addition to its mass

by the mass of the liquid set It-ntaneously in motion. This additional

ass is called the apprent mass.

In the present case it will be assimed, for simplicity, that the

crater is hemispherical and remains in that shape as it grows with

increasing radius r-. The equation of motion for the target fluid can

then be written as

d/dt[(U + M')r] + 2wr 2S = 0 (3.15W

Here H is the mass of the drop and N' is the apparent mass. For the

motion of a disc, the apparent mass is given by (see Batchelor (1967))

H' = (8/3)p2 c 3  (3.16)

where P2 is the density of the target material and c is the radius of the

disc.

If M and H' are constant, equation (3.15) can be integrated over r

to obtain the energy equation

(L/2)(M + H')P + (2/3)wSr 3 = (1/2)1V 2  (3.17)

Here the condition ; = V when r = 0 has been applied. V is the impact

velocity. The maximum cavity depth is the value of r when r 0 and is

given by

hma. = (3MV2/4"S )1/3 (3.16)
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Hew. tm is the tie required to ahieve: a cavity depth of maitude

bow. The time tne easily be obtaied by integrating equmtom

(3.17).

The solutio outlined abo was tested agaist iiommn eal CrMt

data. Although the moaeL seem to be qualitatively correct, quantitative

was lacking. Ihis is hardly su isif in vim of the

very rough nature of the model.

It seem that the model may be improved by two additional considera-

tions. First, no provision has been made in the model for ejected material

during crater formation. 7his can be done, as suggested by Ludloff (1967),

by specifying an additional integral condition based upon experimental

results about ejecta. Second, the expression for the apparent mass (equa-

tion (3.16)) should be modified to take into account the growth of the

crater. The following expression is suggested:

N' = EP2r3 (3.20)

where c is an adjustable parameter.

Equatiou (3.15) can then be written as

(d/dt)[(H + co2 r 3 );] + 2rr2 S = 0 (3.21)

This equation has to be solved numerically. Efforts are currently under-

way to determine the solution and to test it against experimental results.

The apparent mass model deserves further consideration, because, as

opposed to the jet model, it considefs the process to be time-dependent.
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A bigh-a-w~city Impact uomera creates a asfitw in the structure,

driving a strmg shock une Into It. If the impacted structure, or

"target,= is su F/1ciently lthi, a pmmeture will esult. If the target

is relatively thick, the shoc will. rapidly decay into a- elastic stress

wave. Ihem such a wave ecouinters a free surface it is reflected, See-

erally as a tensile wave, and its amplitude may be of s1ff/cient mnagi-

tusde to produce fractures near the rea' surface. Such fractur may

appear as granular cracks near the surface, as r surface bulges, or

as a complete detament of target material, creating a shrapnel effect.

An example of each is shoa in Figure 4.1 for copper, aluiwnum, and

steel targets.

The fractures in a :ranspawent acrylic (methyl aethacrylate) resin

are also shown in Figure 4.1. Altbough this material (trade names of

Lucite and Plexiglas) would probably never be used for the actual struc-

ture, it is excellent for the study of stress waves and fracture as both the

raves and the fracturing process can be photographed. These can then be

compared with analytical conclusions (Kinslow (1964)).

Stress Relations for Spherical Vaves

Spherical dilatational wave propagation in a homogeneous, iso-.ropic

material can be specified by the equation

alt1at2 = C•/2L)/ar2 + (2/03,0/3r] (4.1)1
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S•Is a Sca plr Pabo , C1 Is the wavdoty,

t Is tint. ?wrtide disp m t (a) and velocity to am specified by

the relatios

u =- Olr ad v = an/at (.2)

Wwre r demotes the radius ecto fron the point of pro"ctile p"act.

The radial a tapstl stresm we given by the relatio

COr (I + 2pam/zIr) + M)ulp) (4.3)

and
at1 a t (1010/0) 2(1 + p)(u/r) (4-4)

wbere A and P are the Lang constants and awe related to Young's modulnus

(E) and Poisson's ratio v) as follIos:

I = vE/( + v)(1 - 2v) (4.5)

v = E12(1 # v) (4.6)

Kfode for Generating Stress Waves

The mathematical model for generating spherical elastic waves is

that described by the author in the reference, Kinslou (1963). To sum-

marize briefly, it is assumed that there is a hollow, hemispherical

cavity in the target with its center at the point of impact and that a

time-varying pressure or forcing function is applied to this imaginary

cavity surface, generating stress waves in the material. The pressure

applied to the surface of Ite cavicy, having a radius ro, is an impulse

described by the relation
= al - -02t)

P/Po K(e-alt e 4(.7)

where p. is the maximum pressure, a. and a2 are decay constants, t is

elapsed time, and K is a constant. By the proper choice of values of

a, and a2 various wave forms can be generated. The values for describ-

ing the forcing function may be selected to approximate liquid impact.
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Reflected Stress Waves

The simplest example of the reflection of an elastic dilatation

w-e fro, a free surface ,curs when the wave strikes normal to the

surface. Since the resulting surface stress umst be zero, a compression

wave must, therefore, always be reflected as a tensile wave, and a tensile

wave must be reflected as a compression wave. When such a wave strikes a

five surface at an oblique angle, the situation is much more complex. Not

only will waves of dilatation be reflected but there will also be generated

distortional or shear waves. From an a-,tlysis of these wavas reflected

from a plane surface (Kinslow (1969)), it seems that only the incident and

reflected dilatation wa'res need to be considered in determining the maxim

tensile stress except at points some distance from the normal axis where

fractures are not likely to occur. For tiis reason, the amplitude of the

reflected shear waves are not computed in this preliminary analysis, al-

though their existence is recognized and taken into account in the compu-

tation of the magnitude of the reflected dilatation waves.
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It •m be seen, h:ueoww, that this is not the aimum tensiom that will

be created as at a slightly later time this -eflected tmsiW wave will

ujiju with the tensile "tail. of the incident wave to generate a mu&

higher ten.ile stress at a saawbat greater distace from the rear sur-

Stresses esuting from aultiple Idpacad

The coor-,Enate system is eiven in Figure 4.3. _The locations of

impacts a pLe surface (the x-y plane) are designated as on(O102O,---)

and are given by the coordinates (xonyan). The locatiom of amy point P at

which the principal stresses are desirfied by the odinates

(x,y,z). For the computation of stresses resulting from impact at On, the

coordinates (x,,yn %) are employed, where

xn = x-x on (4.12)

Yn - y - Yon (4.13)

zn = z (4.14)

The location of P may also be specified by the coordinates (rn,On,n).

The following derivation of the components of stress at point P

are relative to the 0n coordinate system. For the sake of simplicity

the subscript n is omitted from the derivations and in the six cartesian

components of stress, the symbol[ In indicates that all values enclosed

by the bracket are relative to that system.

The relations between the (xy,z) and the (r,0,0) coordinates are



x r sin# 0 (w.1

y r sin# sine (41.16)
z: r cos (4.17)

The direction. cosines of the positive r-axis have compamnts hn the

(x,y,z) system as follows

oos(x,r) = 3x/1 = sin* cose (4.18)

cos(y,r) = ;y/Dr = sin* sine (4.19)

cos(zr) = 3z// = Cos# (4.20)

Similarly, the direction cosines of the t0 - gt,-axis are

respectively

Cos(x,te) = (1/r sine)(3x/aO) = -sinoe (4.21)

cos(y,te) = (1/r sing)(Dy/3e) = cose (4.22)

cos(z,t 8 ) = 0 (4.23)

and

cos(x,tf) = (1/r)(Ox/a#) = cost cose (4.24)

cos(y,tt) = (1/0)(300) = cost sine (4.25)

cos(z,tf) = (/r)(z/af) = -sin# (4.26)

where

r = ,&2 + y 2 + Z7 .(4.27)

sin# =/x2 + y2 /r (4.28)

cost = z/r (4.29)

sine = y//x 2 + y2 (4.30)

cose x=/x 2 + y 2  (4.31)

As the spherical wave propagates through the material, the radial

and tangential stresses having values given by equations (4.3) and (4.4),

respectively, are shown acting on an elemental volume in Figure 4.4. At
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any point, P, and for any time. The six cartesian components of stress

relative to the [o,x,y,zJn coordinate system may be computed from the

following relations.

[Oxf n = Eotocos 2 (x,t 6 ) + Olc7#os 2 (x,t,) + orcos2 (x,r)]n (4.32)

[Oy~n = [otocos 2 (y't,) + rCOS2(yri) + OtocOS2 (yt0)]n (4.33)

[az~n = [orCOs 2 (zgV) OteCOS2 (Z,t0) + at cos2 (Z,t)n (4.34)

[xyn = [otcos(xt 0 )cOs(y,t 0 ) + otcos(xt,)cos(y,t,)

+ arcos(x,r)cos(y,r)]n (4.35)

T yz]n = Eotcos(y,t, )cos(zt0) + orcos(yr)cos(zr)

+ a ocos(y,t 8 )cos(z,t 0 )]n (4.36)

[T zx~n [ [recos(z,r)cos(x,r) + oatcos(z,t,)cos(x,t$)

+ at 0 cos(z,t 0)cos(x,t0 )In (4.37)

These components of stress resulting from each of the several

impacts can now be added as follows:

OX =[a x] + tax 2 + ]O3 + .. * (4.38)

a y = [oy]Y 1 + [a y]2 + [a y]13 + . . . (4.39)

Oz = [oz1 + [aZ12 + [)z]3 + . . . (4.40)

Ty -- =[TXy]1, + I [;:y + TX + . (4.41)

Tx = [ITI + ETzI + Tx I3 + . . . (4.42)

Tyz =[yz] I [yz]2 + Z [Tz3 ÷...(.

These six components of stress are now substituted in the following

cubic equation:

S3 - (ox + oa + a)S 2 + (oaoy+ aoa + a- T2_ T -2 T2 )S-

(CO - XTyz 2 - aT2 OrT 2  + 2T T T ) 0 (4.44)
xyz xyz y zx z xy xyyzzx

The roots of this equation are the three principal stresses.
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Stresses Resulting from Two Liquid Impacts

One of the problems that must be dealt with in the analysis of

radome damage resulting from rain impact is the effects of multiple

drops and the interaction of the stresses developed by the individual

drops.

When a rain field is described, the probable spatial and time

distribution of drops interacting with a radome surface moving at a

specified velocity can be determined. The effects of the distances

between two drops and the times between impacts are analyzed.

The stresses computed are relative values only and dimensionless

units of time and dimensions are employed. The radome thickness is

denoted by T, the stress by 7, and the time by r. A pressure wave

typical of high-velocity impact is employed.

First, two impacts at the same time are considered. The maximum

tensile stress resulting from two impacts will be generated either

directly beneath the points of impact or on an axis midway between

these points. Figure 4.5 gives the values of the tensile stress for

different distances between the impact points. The maximum tensile

stress for a single impact has a relative value of a = 115. If two

drops are very close together at the same time, the resulting stress

will obviously be twice this value, or 230. As the distance between

drops is increased, the developed stress will decrease. In this case

of simultaneous impacts, it can be seen that the maximum stress occurs

along the axis between the two points. At a distance of about 0.8 T,

the stresses directly beneath the impact points have decreased to about

that resulting from a single dropbut the stress on the z-axis has a

-: value of almost 200. The stress on this axis continues to decrease as
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the distmnce between drops increases. At a distance of aely

1.8 T, the stress on this aids has decreased to the value created by a

single impact. This means that if the distance between two drops is

greater than twice the thickness of the target, the maximum stress can

probably be determined by computing the stress developed by a single

drop and that the interaction of the stress waves can be neglected.

The effect of time (AD) between drops will now be considered. The

stresses developed by two drops impacting the same point are shown in

Figure 4.6(0). As pointed out, the tensile stress will have a value

of -30 for zero time between impacts. As tle time increases, the stress

decreases up to a relative time of 0.50, beyond which the stress is the

sae as for the impact of a single drop. If the distance between drops

is 0.4 T, the tensile stress for various times (A0) is given in Figure

4.,6(b). The first impact is P and the later impact is P2 . The other

curves give this information for various distances between impacts.

It should be noted that these results are based on an assumed

material and for a typical stress wave. The results would not be the

same for different materials and impact conditions.

Stresses Resulting from Single-Drop Impact

When a collision occurs between a fast-moving surface and a water-

drop, a high pressure is first generated at the point of contact. This

is followed by a lateral flow of water at very high velocity. The pres-

sure distribution at the liquid-solid interface and the times and dura-

tions of the pressures at various points on the surface have not yet

been determined except for rather low impact velocities such as that

beig done by Huang (1971-72). Similar data for high Mach numbers is

L ,•... .• • ••,. .- r, .'. ..•... i.. i. ....•• "-•• '•' .... • •'.• • i '''•••... " "l"••"•.. l O



perhaps the greatest need in the analysis of this problem at the present

time. Both analytical and experimental methods are being employed in

* attempts to obtain this information. For the relatively low-velocity

impacts, Huang's computations indicate that the pressure is a maximum

at the center of the impact area, decreasing as the distance from the

center increases. Some, including Herbert (1970), believe that the

pressure is not a maximum at the center, but that the maximum pressure

is near the periphery of the drop. Others believe that cavitation occurs

because of the high jet velocity creating tensile stresses at the surface.

Due to the non-uniform time-varying pressure distribution generated

by liquid-drop impact, it is not possible to accurately determine the

stress wave characteristics by a single stress wave source. The method

of multiple impacts derived in a previous paragraph will be used by con-

sidering a cluster of wave sources as shown in Figure 4.7 for each drop

impact. The forcing function to be applied to each imaginary cavity will

be determined by the pressure-time history over the target surface. This

will result in a large number of wave fronts which, according to huygens'

principle, will combine to form a single wave. The stress distribution

created by this wave can be computed for various times. The maximum

pressure, tension, and shear stresses, as well as the displacements,

strains, and strain rates can be determined.

The locations of fractures in a Perspex plate resulting from the

impact of a water jet is shown in Figure 4.8(a). This was taken from one

of the many excellent photographs by Brunton (1967) of Cambridge Univer-

sity. It shows a ring crater on the surface, a fracture directly under

the center of the impact area, and a large fracture near *the rear suvface.

Not knowing the actual pressure distribution, various values were assumed
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and the maxim tensile stresses were computed troughout .the target.

The areas wher these stesse exceeded a specified value are shown In

Figures 4.8(b) through (g). The similari, to the observed fractures,

may be seen. The stresses not only depend vpon the maximum pressure

distribution but the time rate of the spread of these pressures from

the point of first contact. -This is illustrated by Figures4.8(e) and

(f). The same maximum pressure distribution was assumed in both In- ,.

stances and only the times were different. These sha4ed areas would

represent fractures only if a critical stress criterion of ýracture

applies.

By assuming various "combinati~ of pressures and times, it may

be possible to obtain a numerical solution that will thatch the experi-

mental results. If this is accomplishod, the pressure-time val4es

used in the computation should represent the true values for that

particular impact.

This method' of multiple stress wave sources can also be applied

for the case of oblique impact if the pressure-time variations are

known.
I

_ __
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SECTION V.

Liquid Jet Accelerator

A device similar to the one constructed at the Cavendish Laboratory,'

University of Caibridge, and described by Fyall in Chapter 8 of the

Radome Engiieering Handbook, edited by Walton (1970), has been constructed

and used to accelerate small amounts of water to a relatively high veloc-

ity. The accelerator is shown in Figure 5.1. The nylon piston is in-

serted in the chamber to almost the end; a few drops of water are inserted

in the orifice with a hypodermic needle; and the piston is accelerated by

means of a 0.22-caliber rifle bullet striking its end. For the dimensions

shown, a bullet velocity of 750 ft/sec accelerates the water to a velocity

of 2200 ft/sec. Photographs of the impact range (constructed in a surplus

iron lung) are shown in Figure 5.2. The jet coming from the nozzle is

shown in Figure 5.3. Variations in the piston and nozzle design, the

amount of water, and the bullet velocities will be made in attempts to

reach higher velocities and to more accurately simulate raindrops.

Impact Dange to Lucite Targets

Figure 5.4 shows the ring fractures on the surface of a 0.25-inch

Lucite target. The center portion of the surface was not affected. The

lower photograph on the first page is of a sectioned target so that the

depth of fracture could be seen. Ring craters resulting from lower

velocities are shown on the second page of the figure. These ring

craters are similar to the ones photographed by Brunton (1967) and by

Fyall (1969). Side views of targets are shown in Figure 5.5 in which
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the row surface fractures cam be -a . Uwe were also fracturs blelaw

the center of the point #1f impact but a barely totuil in

thempeouh

A vertical xMaig amdcine amd a dial gVe were ued a a ofibineter

for measuring crater depths. Figure 5.6 shows the erat o a inoeM

being measured. The photogrph, crogs-section, and depth cotours of a

crater in Lucite are shawn on Figure 5.7.

Damge to Slip-Cast Fused Silica Ta ets

The front and rear surfaces of the SCFS targets were painted with

black ink before impact so that the extent of any fractures could be

easily seen. The photographs at the top of Figure 5.8 show the damage

to a 0.25-inch target. It was completely penetrated. The fracture as

viewed from the back is interesting. -The lower photographs of this

figure show the damage to a slightly thicker target. The familiar ring

crater is seen on the front and a crack is detected cr the rear. Cross-

sections of this crater are shown in Figure 5.9. The maximum depth is

i, about 0.0085 inch. Unlike the ring crater in Lucite, the center, appar-

ently uidamaged portion, shows a permanent deformation. It may be, how-

ever, that the material is not compressed but that the crack whose

boundaries are seen on the rear surface extends internally to the front

crater and that this entire cone of material is pushed backward. Crater

contours are shown in Figure 5.10.

It appeared that the fracture of the 0.40-inch target shown in

Figure 5.11 was very similar to the last one discussed except for the

rear surface spall directly behind the impact point and that the frac-

ture approximately I inch from the center was somewhat more pronounced.

Shortly after the first photographs were made, the entire rear portion



sbm in the Iat to I uI h f thLs f1gure becam dataibd. Uapo

an a tion of these frcturs, Figure S.12 w &Ii. The putO-

gaphs of Figure 5.13 sAm anse vim of the taget just before and

following impact. The spall .matral can be seen. Srfae dama e

resulting fromoblique ipcts Is shown in Fngure s.l#.

A Possible Explanati%= of the Taget Fracture

The ftrtu•res indicated by A, 3, and C of Figure 5.12 are of

interest as either of them would probably cause greater damge than

does the ring crater. The crack C is of speci importance for the

reason that it creates the largest spall, and hence more structural

weakening, than either of the others would have produced.

Initially the path of crack A is determined by the tensile stresses

around the immediate impact area. As suggested by Yoffee (1951) the

crack propagates intc the plate normal to the maximum tangential stress near

the crack tip. If -his maximum stress is caused to shift from its

original direction, the direction of the crack propagation would be

expected to c.ange. This could be caused by the stress waves generated

by the impact and is probably the reason for A not following a straight

line. The mximum speed of the crack propagation was analytically

determined by Yoffee to be approximately 0.6 times the velocity of the

shear wave. This agrees well with the value of 0.38 timer the dilata-

tional wave velocity as observed by Kippers (1967) in experiments with

glass.

It is apparent that the stress wave associated with the impact

travels through the plate and reflects from the rear surface, inter-

secting the crack before it has time to propagate through the target.
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It is empsted that the crack reacies the first point of branching in

ly 3.5 *-sec and that the reflected dilattat-ial wave reaches

the same point in alpFwediately 3.4 v-sec. The stresses associated with

the arrival of this wave will cause a change in the state -af stress

around the -propagating crack tip aid is probably the cause of the

branching vh~c] creates crack C. As the reflected shear wave velocity

is less than that of the dilatatieal wave, it will intersect crack A

at a later time and would be expected to cuase another branching such

as crack B.

ii
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SLED 7ES7r IREYS

A rocket sled test propin was cndu-cted at Holosm Air Force Base,

New Mexico, to determine the rain erosion resistance of slip-east fused

sili-,a at velocities above 5000 ft/sec. The fabrication te-!miques used

at the Georgia institte of Technology to slip-cast, heat-treat, and

flame-glaze the ra&mes; a description of the test facilities; and the

results of six sled tests have been describcd by Walto a-Jd Fiaris (19%6).

The radone ror run No. 2, Holloncan No. ?RBI, serial No. 2723 has

been eximined, and sone observations will be made concerning the inpct

damage tha t susta-ned in the 40C-ft rainfield. -The rain intensity

was reported as 2.5 inches per hour and the average drop size was said

to be between 1.5-and 2.0-0am diameter. The average velocity was about

5300 ft/sec.

Figure 6.1 shows the radome on the sled after the run. A view of

the radome with its metal tip broken off and a closer view of some of

the craters are shown in Figure 6.2. Its dimensions as well as the

locations of the centers of the photographs of Figures 6.4, 6.5, and

6.6 are given in Figure 6.3.

The photographs of Figure 6.4 were taken around the circumference

at 45-degree intervals at a distance of 11.6 inches from the tip. By

counting all craters that could be detected, it was found that they

averaged 27.1 per square inch. Those of Figure 6.5 were 8.3 inches

from the tip and averaged 40.4 craters per square inch. At a distance

of 3.0 inches from the tip, the photographs overlapped and they are

shown in Figure 6.6. These averaged 25.1 craters per square inch. At
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this Jlatin there appeared to be more erosion from the ipacts than

cters. Based c all of these Idotrqd5 , it was estited that for

the entire rade tb,• was an c.eraU average of 31 craters per square

inch. There is prcbably som reasn as to why the crater density is

greaeter near the middle of the radome tha near either the tip or the

base, but we have no explanation at this time. The radome had been

flame-glazed by the use of a plasma jet to fuse the s nface and tc

provide a coating of non-porous fused silica that served to seal the

surface. Walton and Harris reported the thickness of the fused layer

varied fro 0.03 to 0.04 inch near the tip to less than 0.005 inch near

the base. They also reported that although each drop appeared to cause

some surface damage it did not appear to extend significantly beneath

the glazed surface. This is in agreement with our findings as we

measured only a few depths greater than 0.005 inch.

Because the impact velocities of all drops, both large and small,

are essentially the same, various authorities argue that the impact

pressures as given by the "water-hammer" equation, P = pCV, will be

the same for all drops where p is the density of the liquid, C the

velocity of the compression wave in the liquid, and V the component

of the impact velocity normal to the surface. Brunton (1967) explains

that one of the reasons why a large drop is more damaging than a small

one at the same velocity is that with the large drop the maximum pres-

sure acts for a longer period of time. This would also result in longer

stress wave,. being propagated into the target, affecting the internal

cracking and spall damage. The areas of the Craters resulting from the

larger drops would obviously be greater than those caused by small drops.
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The stiII remains the questio a to whether or not the "-a -ba -e

prsure is the maxim.

Crater Cbaracteristics

The depths of some of the cratt were measured and depth coatou-s

were plotted. The purpose of this is to learn more of the nature of the

fracttres and to detemu:ne the extent Io which drop impacts can be simu-

lated by the use of the water jet accelerator an' by solid projectile

impacts. Cross-sections of a typical crater near the base of the radome

are shown in Figure 6.7. The depths were measured frot the curved sur-

face of the radome. The first profiles were taken outside the crater

and indicate the roughness or irregularities of the surface. As it is

impossible to recognize the actual crater boundaries from the measure-

ments (altheugh they can be seen visually) because of the surface rough-

ness, the depths shown in Figure 6.8 start with the 0.001-inch contour.

Comparing the profiles and depth contours of this crater with those

produced by the jet-produced cavity shown in Figures 5.9 and 5.10 several

similarities and differences will be noted. In both cases there is a

central plateau surrounded by areas of greater depth containing several

rather deep pits. The primary differences are that the radome crater

is more irregular in shape (although its actual boundary is not shown)

and the crater surface is rougher. The jet-produced crater is somewhat

larger and deeper than that formed by the drop. Also, the central

plateau of the first was the original surface which had been painted

black and it is apparent that at least some of the original radome

surface had been removed from this region in the second. The differences

are simple to explain; in fact, the simrilarities are more than would have

been expected.



Altdoqh bot tma s W e of slp-cat fred silica- the surfaces

wre entifly diftemt. As stated, the had bow provided with

a coating of m-l-poams fiwed silica wbidc varied fro 0.005 to 0.030

iuc tbick. Valton (1966) observed that mce the impact pressum wa

sufficient to came & in the glamed surface that ther ws a ton-

dency to chip oat a portima of the glaze extending beyond the actual

area of impact. In an uglazed surfae, be reported, the damage ws

restricted to the area of impact. ior a comparison of the 6xuV re-

sulting from jet Impacts mad drop impacts, it is necessary to have two

identical materials. From these results, hcuewz', it appears that the

drop iupact can be simulated.

Another explanation of tbe difference between the two craters is

that the jet impact was normal to the target's surface at a velocity

of about 2000 ft/sec and chat of the drop was at an angle cef about 150

at a speed of approximately 5000 ft/sec, giving a normal velocity com-

ponent of approximately 1300 ft/sec. This diffeence may explain the

difference between maximum crater depLh of 0.008 inch in the jet-

created crater and only 0.005 inch in the drop-generated.

The direction of impact seems to make little difference in the

crater's general appearance. It appears that the simulation of a high-

velocity impact at a small angle with the surface can be accomplished

with a lower velocity impact at a different angle as long as the normal

velocity components are the same. For example, the velocity of 5000 ft/

sec at 150 with the surface could probably be simulated with a velocity

of 2000 ft/sec at an angle of 400.

The profiles and crater contours of another crater located near

the midpoint of the radome surface are given in Figures 6.9 aiid 6.10.



Althoth this crate marea is less thim the previous ne, its depth is

meaat geate.

The Rain Field

It has been wiggested that some of the drops may be deLected away

from the radome's surface by the hypersonic shock layer. The simulated

rain rate for the HollDman tests was adjusted to 2.5 inches per hour.

The drop size distribution for this facility as given by Mortensen (1970)

agrees reasonably well with the oue for natural rain given by ryall (1970).

Based upon this distribution and a teminal drop velocity of 6 m/sec, also

from Fyall (1970), which gives a concentration of 2.94 gm/ 3 , the follow-

ing distribution of drop sizes was computed:{3
Drop Diameter (m) Number in 1 m

0.25 - 0.75 672
0.75 - 1.25 305
1.25 - 1.75 241
1.75 - 2.25 145
2.25 - 2.75 74
2.75 - 3.25 32
3.25 - 3.75 15
3.75 - 4.25 5
4.25 - 4.75 2
4.75 - 5.25 1

1492 drops/m3

The base area of the radome times the length of the rainfield gives a

volume of 3.54 m3 or 5147 drops in its path. Considering the radome as

conical, its surface area is 155 in. 2 . This gives an average of 33 impacts

per square inch if all drops in the radome path were intercepted. As the

number of craters was estimated to be 31 per square inch, it is concluded

that practically all drops in the radome's path produced craters. This

was also the conclusion reached by Walton (1067), who stated that an
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Sexam:i~natio of the radome revealed that the number of drops impacted

corresponded to the number of drops larger than 0.5 mn. It is also in

agreement with the analytical conclusions reached in Section II of this

report which indicated that for all velocities of this radome between

2000 and 109000 ft/sec, the maximum deflection of the raindrops would

be less than one-half degree.

I1

k
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SECTION VII.

PLANNED FUTURE INVESTIGATIONS

The research described in this report will be extended in several

ways. These are described below.

The Motion of Raindrops in a Hypersonic Shock Layer

First, calculations will be carried out for blunt-nosed (spherical)
vehicle shapes. Since the shock wave is detached from the body surface

in such cases, one would expect that the effectiveness of the inter-

phase drag force in slowing down the drops before they strike the

vehicle surface would be greater for a spherical shock layer than for

a conical shock layer. This, in turn, would lead to less likelihood

of damage to the radome. The computations described above will deter-

mine what, if any, lessening of susceptibility to rain erosion damage

would be produced by nose blunting so that tLis could be weighed

against other factors in missile design.

Second, the interphase drag and heat transfer laws will be modified

to apply to the case of moderate void fractions (the void fraction is

the ratio of the air volume to the total mixture volume). All previous

work has been restricted to the case of large void fractions. The sen-

sitivity of the solution variables to the value of the void fraction

will be found and, if necessary, the appropriate correction factors to

the large-void-fraction solutions will be determined.

Third, extensive calculations will be carried out to determine the

sensitivity of the results to the distribution of drop sizes present

within the mixture. Previous work has assumed that the exact size dis-

tribution is unimportant and hat the real rain field can be replaced,

for the purposes of analysis, with a fictitious rain field in which all



drops have the sae size. This effective size is usually taken to be

the am e size of the actual drops. The limits of validity of this

assuption will be found and, if necessary, correction factors will be

detemined.

Fourth, am attempt will be made to obtain approximate closed-form

solutions for conical and spherical shock layers. Such formulas would

allow apid estimation of the solution variables for design purposes.

The trends of the numerical data obtained thus far suggest several

possible approximations that would simplify the basic differential

eqitations enough to make possible analytical solutions. The limits

of validity of the approximate solutions will be determined by compari-

son with the exact numerical results.

Cratering and Erosion Mechanism

Research performed under the present contract has shown that the

jet-impingement model is a very useful tool in the investigation of

high-velocity impacts of drops against solid targets. This model will

be improved as described below.

An important ingredient of the model mentioned above is the distri-

bution of the pressure applied to the target by the impinging drop.

Past work has employed pressure distributions obtained by fitting curves

to experimental data found from observations of jets impinging on rigid

surfaces. A better pressure distribution will be found by extending

the work of Huang (1971) who investigated the two-dimensional low-speed

impact of drops of various shapes on a rigid plane by numerical solution

of the hydrodynamic partial differential equations governing the motion

of fluid io the drop. Huang's method will be applied to both normal and

. ,-
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oblique high-speed impacts on elastic surfaces. The thermal energy

equation will be solved together with the hydrodynamic equations.

This will allow the calculation of heat transferred to the target.

This is expected to be important for high-speed impacts. The boundary

conditions at the target surface will be modified by a procedure simi-

lar to that used by Lee and Cheng (1971) to account for the elasticity

of the target. The pressure distributions thus obtained will then be

used in the jet-impingement model to obtain further information about

crater depths and sizes and the influence of various factors on these

quantities.

Fractures Resulting from Stress Waves Generated by Liquid Impact

Equations have been derived and computer programs have been written

that will enable values of stress in an impacted target to be computed

if the pressure-time relationships on the surface are known. The pres-

sures created by both the drop impact and the lateral jetting action

are considered in the computation of the stresses resulting from the

generated stress waves. The reflections of these waves from the inside

surface of the radome are also taken into account. This program will

also compute the stresses resulting from any number of multiple impacts

at any time intervals and on both normal and inclined surfaces.

When a rain field is described (i.e., inches per hour, duration,

and drop size distribution) and the radome profile, thickness, and

velocity are specified, it will be possible to completely determine

the probable damage. Before this can be done, however, the items men-

tioned in the previous paragraphs such as the size and motion of drops

behind the shock wave, the effects of aerodynamic heating, the distri-

bution and duration of pressure applied to the target, and the fracture
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criteria for the radome material' must be determined. These are some

of th" iu~ortant topics that wi#l be investigated duting the coming year,.

Expermental ,and Quasi-Tlieoretical Investigations

It appears that perhaps the greatest insight iito the mechanics of

rain erosion may be gained from experimental and semi-empirical investi-

gations. Experimental rbsults are certainly necessary to establish the

validity or limititions ofltheoretical dnalyses. Although only prelim-

inary experimental work has been done t9 date, the results are in qual-

itative agreement with the theory 'of fracture that has been proposed.

This theory does not agree with those proposed by other investigators,

but it is the only one that explains all types of fractures that h~ve

been observed to result from liquid impact. Further work will he per-

formed to give quantitative re6ults. Although emphasis is to be placed

upon damage to, ceramic type radome materials, Lucite is being used as

the standard material in some Of' these studies because its properties
- I

are well known, because of its transparency and easy determination of

internal damage, and because its surfaces can be artificially roughened

to determine the effect of surface conditions on the lateral jetting

and resulting surface 1ressu~es. Once the distribution and duration of

the pressures on the target are determined for varigus parameters, these

can be applied to other materials to determine the damages that would be

caused.

A liquid jet accelerator has' been constructed to simulate raindrop

impact. The first shots gave velocities of &pproximately 2000 ft/sec.

It is believed that by making modifications in design; the velocities can

be at least doubled. It will also be possible to accelerate two drops
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simultaneously so that the effects of multiple Impact can be determined

and compared with the theoretical results. By the use cf other liquids

such as mercury it will be possible to simulate higher impact velocities.

A few liquid impacts of slip-cast fused silica targets have been

made. The craters seem to be very similar to chose formed during rocket

sled tests.

A profilometer has been constructe, with which measurements of the

'Icraters can be made. A series of experiments will be performed from

which data the drop velocities and sizes can be correlated with crater

characteristics such as volume and depth for various angles of impact.

These experiments will also include the effects of varying the temper-

ature of the targets. The effects of surface roughness will also be

investigated.

It seems that the effects of the reflected stress waves from the

inner surface is very important. Spallation may present a serious

problem if thin-walled radomes are used. Detachment of radome material

from the inner surface at high velocities would destroy equipment.

Water impact experiments show that the rear surface of the target often

suffers a greater damage than the front surface. Experiments have also

demonstrated the importance of having a smooth and uniform rear surface

as small defects such as scratches and voids greatly weaken the target.

Another phase of the proposed experimental program is to impact the

targets with small solid particles. There are 4t least three reasons for

this: (1) In flight, aircraft and missiles encounter foreign bodies

other than water drops; (2) To aid in a more complete understanding of

the mechanics of the collision process; (3) To examine the merits and

limitations of simulation techniques in which solid particles are



substituted for water drops. The last of these is perhaps the principal

reason for including these eAperiments in this program. A ligbt-gas gun

with the capability of accelerating drop-size plastic projectiles to

velocities as high as 40,000 ft/sec has been constructed at Tennessee

Tech. Lead and polyethylene spheres have been used to simulate rain

erosion. Plasticine (modeling clay) is said to most closely resemble

water flow characteristics on impact.

A ballistic pendulum will be used to determine the energy and

momentum transfer to the target. The momentum multiplication factor is

a very important value to be determsied for both normal and oblique

impacts. Other types of instrumentation will include the use of strain

and thermal gages, interferometry, photoelasticity, etc. as needed to

identify the important parameters that are critical to the radome's

performance in a rain environment.
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FIGURE 4.4 STRESSES CREATED BY SPHERICAL STRESS WAVES
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FIGURE 5.6 MEASURING CRATER DEPTHS
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* ~APPENIX 1

by

H. W. Bennett, D. E. Re: oio&, and J. C. Szelcer

The purpose of this appendix is to present a closed-formt approximate

solution for the drop-phase flow field on thin wedges and cones. Such

solutions are useful in that they allow designers to make rapid estimates

of the flow variables without having to engage in extensive numerical

calculations. The notation is the same as in section II of the body of

this report unless otherwise stated. For simplicity in the analytical

work attention is restricted to the linear drag law and tangential and

normal coordinates, x and y respectively, are used.

In dimensionless form the governing equations are

((obs + n)jQpF p)s + (("bs + n)JQpGp) n = 0

FpFps + Gps F pn al(l - Fp)

Fp•, 5s + G H = a (Hs - p (Al)
pp n

where (Ala) results from balance of mass, (Alb) from balance of tangential

linear momentum, (Alc) from balance of normal linear momentum, (Ald) from

balance of energy, and the dimensionless variables are defined as in (2.9)

and (2.10). Defining a stream function such that

p9ps = -(Obs+n)JQpG I p'n- (ebs+n)jQpF (A2)

and converting the governing equations to independent variables p and

z = n one obtains

GpFpIz a1 (l Fp)

G pGpIz= -al1({Jz/s) + G )

GpHpz = a2 (Hs - Hp)2I



IR#
A-2

GSz = F

%ý= -lI((Obs +zJG s,~ (As)
Using (W2) evaluated on the shock a relation between the origin of each

streamline z and the stream fumction can be found. 7hi, was used to

rewi'te (A3e) as

=-(9s1(eS.-Ob)) 1tj(zs/(ebs+z)~I s, ) A

.The appropriate boundary conditions on the shock z = zs are

=1 G = -6b-, Q :=l, H = 1, s = zs/(Oes- (A5)

It was first attempted to solve (A3) and (A4) by a perturbation

method for small a1 . The first two approximations we-e found but the

labor involved in computing further approximations was so extensive that

this was not done. The second approximation was found to be valid only

for a1 << 1. Thus the perturbation scheme was abandoned. Instead it was

decided to linearize the nonlinear terms in (A3) using the values of Gp

and s on the shock. When this i's done the linearized equations have the

form

-ObFp9z = a 1(i - Fp

-8LGDz = -a 1 (J(Os-Ob)(z/zs) + G )

-GbHpz = a2 (Hs - HP)

-ObS~z = Fp (A6)

The solutions to (A6) satisfying the boundary conditions (A5) are easily

found to be

Fp= 1

Gp = -Gbexp(-( 1i/b)(zs-z)) + j(( s-b )/zs)((Zs

+ (0b/a l))exp(-(a1i/8b)(Zs-z)) - (z + (6b/al)))

H = Hs - (Hs-l)exp(-(a2/Ob)(ZI---)

s (Zs/(Ss-Gb)) + ((Z s -Z)/8b) (A7)
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Using (W)an

Sthe diuemsionless density • can be easily evaluated fýo (04).

Figures A.1 --md A.2 shw coarisons of the approximate results

with the numerical solutions obtained for slender wedges and cones in

section II. The density ratio is e = 0.1 for this data. The quantities

chosen for comparison are the normal velocity and the- density of the

drop phase evaluated at the vehicle surface. It can be seen that for

small and moderate values of a, the approximate solutia 1 iz in good

j agreement with the numerical results (for the wedge the numerical results

-( are identical to the exact analytical solution given in section HI). For

a., = 10 the approximate solution begins to overestimate the impact veloc-

ity and underestimate the density. This could probably be corrected by

modifying the linearizing factors but this was not attempted in the

present work.

The agreement between the exact and approximate solutions appears

to be satisfactory for small and moderate values of the drag parameter

aI. It appears that a similar procedure could also be used to obtain

approximate results for general shock layer problems.

-I
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