" AD-753 381

Preliminary Investigation of
High-Velocity Liquid
Impact Damage

Tennessee Technological University

prepared for

Army Missiie Command

DECEMBER 1972

~ Distributed By:

National echnial lnfnratiﬂn Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




TTU-£S-72-2

¢* PRELIMINARY INVESTIGATION OF
HIGH-VELOCITY LIQUID IMPACT DAMAGE

RAY KINSLOW, VIRESHWAR SAHAI, AND JORN PECDIESON, JR.

PRINCIPAL INVESTIGATORS

Prepared For

U.S. ARMY MISSILE COMMAND

REDSTONE ARSENAL
ALABAMA

AD7533881

CONTRACT NUMBER DAAHO1-72-C-0375

DECEMBER 1972 }

Repr=- e ' by -
NATIONAL TECHNICAL -
INFOQRMATION SERVICE

STy e v T eiCe

TENNESSEE TECHNGLOGICAL UNIVERSITY

DEPARTMENT OF ENGIMEERING SCIEMCE
COOKEVILLE, TENNESSEE 38501

LI SRR TLART A

A g,

s




SRR 2

TIREUEH

SRR

e I L

T WEERRs

Fatals,
S

TTU-ES-72-2

PRELIMINARY IRVESTIGATION OF

HIGH-VELOCITY LIQUID IMPACT DAMAGE

RAY KINSLOW, VIRESHWAR SAHAI, AND JOHN PEDDIESON, JR.

PRINCIPAL INVESTIGATORS

Prepared Fcr

;’{/\." > ¢
it é
AT
AN
/"F '/' ' ,/’
U. S. ARMY MISSILE COMMAND i / .
./ 2
REDSTONE ARSENAL ~/ !

‘ /
ALABAMA \ /
4

CONTRACT NUMBER DAAHO01-72-C-0375

DECEMBER 1972

TENNESSEE TLCHNOLOGICAL URIVERSTYTY
DEPARTMENT OF ENGINEERING SCIEWCE

COOKEVILLE, TENNESSEE 38501 jf AL




ABSTRACT

¥y . .
! r

" The res<srch deseribed has peen directed toward an understanding
of the mechanics of rain erosion of materials traveling at very high
velocities. An anailysis of the motion of raindrops in a hypersonic
shock layer is described. A high-speed jet impingc.ent analogy of che
impact of liquid drops on solid surfaces is used ‘o analytically deter-
mine the cavity profile. The effect of stress waves generated bv
liquid impact is discussed. It is shown that internal Jdamage and
spallation resulting from stress waves is oftep much grea’er than the
material failure in the impa-t area itself. Experiments have demon-
strated that water-drop impact can be closely simulated by the use of
a high-speed water jet. Craters formed in the laboratory by the jet
are compared with those of a radome surface atter a sled test in a

rainfield.
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INTR« JUCTION

The requirement of am all-veather capability for high-speed air-
craft and missiles has made rain erosior protection of these systems
a vital design factor. No dependable design criterion, however, has
yet been formulated. In a state-of-the-art survey of raindrop erosicn;
Wheelahan (1967) finds that very little quantitative information is
available on damage caused by raindrops impacting at superscaic veloc-
ities. Heymann (1967) says that there e«ists no theory for predicting
Zimage to be expected under givern <ervice conditions. A _arge number
of papers and reports on this subject has been published uver the past
few years and many of them have contributed toward a better qualitative
understanding of the mechanism of rain erosion and its relationship to
material properties, although most of them have been limited to veloc-
ities less than 1000 ft/sec. These papers have included a great deal
of experimental data and considerable theoretizal work. Many of the
theories, however, have been rigorously deduced from rather arbitrary
assumptions. Contradictory empirical relations have been formulated.
One only needs to read the discussions following many of the papers
published in the proceedings of various rain erosion conferences to
see that there is much disagreement among those who are working on this
problem. There is considerable disagreement as to the forces that are
actually responsible for the erosion and cratering resulting from a
liquid-solid interaction. According to Eisenberg (1969), "There re-
mains the mystery of which mechanism, shock waves or jet formation,
is responsible for actual damage." Engle (1957), Fyall (1870), and
others believe that the damage is produced by the introduction of
shear and tensile stresses as a consequence of the high localized com~

pressive forces exerted by the liquid.
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Regimes of Impact Velocity

The -rarious theories may not be as contradictury as they first
appear. In the case of solid-solid impact, there are at least tkree,
and perhaps four, regiwes of the impact phenomena as the projectile
velocity increases. Thcese are illustrated by the rather idealized
curve Figure }.l which shows the effect of velccity upo. the penetrat-
ing power of projectiles into a ductile target. In the l-~w-velecity
regime the penetration is strongly influenced by the ctrength of the
two materials. In this regime the penetration appears to increase as
the 4/3 power of the velocity. A n-gligible amount of the projectile
energy is converted into stress waves. A< the projectile velocity is
increased there is greater deformation and fragrentation of the pro-
jectiie. At some point there is no increase ia crater depth with ir-
creas2d velocity; in fact the depth actually decreasec although the
crater volume may continue to increase. There comes a point whn.re the
depth begins to again increase with velocity. The crater becomes mores
hemispherical in shape and the penetration is now roughly proportional
to the 2/3 power of the velocity. It is clear that a transition regime
has been crossed. The new regime is usually called the hypervelocity-
impact stage. ~.e most common criterion for the beginning of this re-
gime is when the ratio of projectile velocity to that of a stress wave
in the target material exceeds unity. At these velocities the stuesses
develorcd by the projectile's deceleration is much greater tiarn the
yield strength of either the projectile or target and the materials’
densities affect the cratering process more than that of its other
properties (mecharical properties such as target and projectile strengthc).

17 the velocity is further increased, an impact regime is reached that is,

At ARGt Ak fas
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as yet, relatively unexplored. It is called the regime of impact explo-
sions, for the tremendous amount of energy becomes sufficient to vaporize
both the projectile and a small volume of the target. The partitioning
of the ..cjactile's kinetic energy among such items as mechanical defor-
mation, heat generated, stress waves, ejected material, and perhaps vapor-
ization; the influence of material properties; the effects of stress waves;
and the mechanicm of penetration and cratering are entirely different for
the various impact regimes. It is apparent that there are also different
mechanisms of erosion and cratering for liquid-solid impacts at various
velocities., Wheelahan (1967} roints out that in the velocity renge of
1000 to 3000 ft/sec, erosion rather than cratering is the dominant form
of damage, but as the imnact velocity is increased above a few Mach num-
bars the damage is primarily by cratering. Somewhere between these twce
types of damage there is obviously a regime of transition. Those appar-
ently contradicting models mentionel may not be contradictory at all but
each may apply at various impact velocities and for different materials.
For a particular target material the velocity-damage curves would be very
different for liquid and solid projectiles but vould proiably converge
in the hypervelocity range. If this be true, it will be possible to simu-
late the higher velocity liquid impacts with solid projectiles. This
would pi hably be at a higher velocity than is presently of interest in
the scudy of rain damage to high-speed aircraft and missiles. For example,
the hypervelocity regime of aluminum starts at a velocity greater than
20,00C ft/sec.

Altncygh much research has gone into the accumulation of information
now available relative to high-speed liquid impact, it is obvious that

there is much more to be done. Mathematical models must be derived that
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take into account the effects of the various material properties including
hardness,density, elastic modulus, yield strengths, fracture strengths,
and Poisson's ratio, as well as surface conditions and porosity; the frac-
ture criteria for various materials, both ductile and brittle; the effects
of drop size and angle of impact; the effects cf 1arget temperature; the
impact pressures and radial flow distribution and duration; the effects
of cavitation; and the momentum and energy imparted to the target. When
il is realized that this must be done for the entire range of velocities,
including the various regimes previously discussed, it is apparent that
much is yet to be learnmed relative to liquid impacts., This will require
the exchange of ideas among all investigators in this field of research.
There will continue to be conflicting theories but controversy always

stimulates research.

Scope of the Investigation

Although the rain field may be defined in terms of drop size, dis-
iribution, velocity, direction, and duration, it cannot be assumed that
this describes the conditions between the shock wave and the target sur-
face, vhich in this study is a conical nosecone. It has been suggested
that water drops passing through the shock wave may be fragmented,
slowed down, and turned before impacting the target. The shattering
or fragmenting will not have an effect if the time to traverse the shock
layer is less than the treakup time. If the deflectior angles are of
significant magnitude, the total number of impacts will be reduced.

If the raindropc have sufficient momentum to prevent them from being
deflected, all raindrops in the path of the nosecone will impact. Se--
tion II of this report is an analysis of the motion of raindrops in

conical shock layers,
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Two damage-producing attributes of liquid-drop impact are: (a) the
impact pressure, and (b) the sheet jet produced by the radial iiquid flow.
Section III deals with the mechanisms of cratering and emnsion resulting
from these forces.

A third source of damage resulting from impact is the stress wave.
This wave may contribute to fractures at or near the point of impact, or
may produce damage by reflection from the target's rear surface. These
fractures produced by reflected stress waves will generally be some dis-
tance from the point of impact and when they occur they may be more dam-
aging than material failure in or near the impact area. This is an im-
portant problem as it may dictate the required nosecone thickness., It
is analyzed in Section IV,

This investigation includes only a small amount of experimental
work. A water jet accelerator was constructed and targets of Lucite
and slip-cast fused silica were impacted. A description of the equipment
and an analysis of the craters and fractures constitute Section V.

Finally, an SCFS nosecone was examined after travel through a rain-
field at Holloman Air Force Base and a description of the resulting
damage is included in Section VI.

A brief description of proposed future work is given in Section V1I.

As the various sections of this report were prepared by different
individuals, some variations in symbols and forms of equations will be
found; hdéwever, the ﬁeanings of all symbols are defined in the text and

no confusion on the part uf the reader should result.
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SECTION II.

MOTION OF RAINDROPS IN A HYPERSONIC SHOCK LAYER

Introduction

In order to estimate the rain-ercosion damage that will occur when
a vehicle flies through a rain field it is first necessary to know the
relative velocities with which the rain drops strike the vehicle surface
and the distribution of drops along the surface. The theoretical determin-
ation of these quantities is the subject of this section. In order to
compute these quantities it is assumed in the present work that the cloud
of drops can be treated as a quasi-continuous gas-like material. This
model is accurate when a representative volume element of the air-drop
mixture, smalil compared to the characteristic dimensions of the flow
field, contains a sufficient number of drops to allow meaningful averages
of the drop properties to be formed over the volume element. These aver-
ages are then treated macroscopically as continuous variables and the
small volume is assumed to have the mathematical properties of a differ-
ential element. Thus the air-drop mixture is viewed, for the purposes of
macroscopic analysis, as a mixture of two continuous fluid-like materials.
General discussions of the governing equations appropriate to such two-
phase flows are given in the books by Wallis (1969) and Soo (1967) and the
review article by Marble (1970).

In the present work several assumptions have been used to develop the
governing equations to be discussed subsequently. These are ihe subiject
of this paragraph. Fiprst, it is assumed that the presence of the drops
has an insignificant effect on the motion of the gas phase. This assump-

tion is justified when the mass fraction of the dispersed phase is small.

Thi.- section prepared by Dr. John Peddieson, Jr., Assis.ant Professor of
Engineering Science and Chung-Hsein Lyu, Graduate Instru:tor.




il

i S od

- w-nmumm‘mm’

atrrpares e

o e e -

-7-

This condition is invariably satisfied in shock layers. Szcond, it is
assumed that the volume fpactim of the drop phase is small enough so
that the interphase mass, momentum, andlheat transfer laws can-be eval-
uated using formulas appfopriate for a singie pgrticle. This require-
ment is more stringent than the first one but it appears to be satis-
fied in most shock layers. Third, it is assumed that collisions betwezen
drops are sufficiently rare so that the drop~phase stress tensor zdan be
ignored. Finally, it is acssumed that the drops can be modeled, with
sufficient accuracy, as idertical spheres characterized by a single
effective mass and radius, both of which are independent of time. Thus
mass loss by the drops is not explicitly accounted for. Mass loss can
occur by two mechanisms: evaporatior and breakup. In & state-of-the-
art survey Wheelahan (1967) stated that neither of the mechanisms ap-
peared to be important. A set of equationc including evaporation ef-
fects is given by Marble (197C) ( see also Panton (19€8), Panton and
Oppenheim (1968), and Lu and Chiu (1966)). An order-of-magnitude anal-
ysis of these equations was carried out in fhe course of the oresent
work and tended to confirm the belief that loss of mass due to evapora-
tion is negligible. Recent experimental research on drop breakup (see,
for instance, Waldeman, Reinecke, and Glenn (1972)) indicates that the
mass loss associated with this phenomenon can be appreciable at high
Mach numbers., Unfertunately the existing experimental data has not yet
been put in a form suitable for incorporation in the theory to be subse-
quently discussed. An expression relating the rate at which mass iz lost
by a single drop to the pirameters of the flow of the gas relative to the

drop is required. To cate, no such relationship has appeared in the




literature. Thus drop breakup cannot be comsidered explicitly. A
possible way of correcting the theory for drop breakup will be dis-
cussed later.

Previous investigations along the lines of the present work are
limited to the following papers. Probstein and Fassio (1970) computed
the drop-phase velocity field and streamline pattern for shock layers
on thin wedges and cones and in the stagpation regions of cylinders
and spheres. They employed the constant demsity approximation to deter-
mine the gas flow field. For the wedge they obtained results in closed
form while numerical integration was necessary to solve the equations in
the other cases. Waldeman and Reinecke (1971) cbtained results for the
velocity field and streamline pattern for flow past a cone and a sphere.
They relaxed the constant demsity assumption invoked by Probstein and
Fassio (1970) but solved the governing equations for the drop phase
approximately by a perturbation method. Both of these reports also
gave results for the collection efficiencies of the various body shapes
analyzed in them. (The collection efficiency is defined to be the ratio
of the actual rate at which aasc is removed from the drop phase by col-
lection of drops on the body surface to the rate that would exist if the
motion of the drop phase were entirely unaffected by the presence of the
shock layer.) Further collection efficiency calculations were made by
Spurk and Gerber (1972) who considered cones and slender power-law axi-
symmetric bodies.

In the present work the drop-phase velocity field, strec.line pat-
tern, density distribution, and temperature distribution are ~omputed
for conical shock layers. Since the collection efficiency seems to have

little relevance to radome design, no results for this quantity are
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presented. These calculations should Le representative cf thke condi-
tions ocourring in radome shock layers because the results of Spurk
and Gerber (1972) show that small deviations from a perfectly comical
: body shape produce insignificant chamges in the flow variables of the
dispersed phase. The solutions are cbtained numericaily and results are
presented graphically to illustrate various parametric trends. In addi-
tion, some results are given for shock layers on wedges. While such

calculations have no direct application to radome tecimology, the wedge
is a useful test case because the gas-phase flow field has ar especially

simple form. In fact, by invoking the thin-shock-layer approximation it

R T IR

is possible to obtain solutions in closed form for this case. This pro-
cess was begun by Probstein and Fassio (1970) and is completed in the

present work.

Goveming_tggatims )

The appropriate governing equations for analysis of the behavior

of the drop phase are found from balances of mass, linear momentum, and

B L I x ot Tl el

energy. These are respectively

pp,t + v'(pp-\'lp) =0
Op(ﬁp’t + -ﬁp'ﬁp) = .P'
pp(ep,t + up-Vép) =S (2.1)

where (2.1a) results from balance of mass, (2.1b) from balance of linear

momentum, and (2.1c) from balance of energy; Py is the drop-phase mass

density, ;p is the drop-phase velocity vector, ep iz the drop-phase

internal energy, ? is the force per unit volume applied t» the drop phase ¢

by the gas phase, S is the heat per unit volume transferred to the drop

phase by the gas phase, V is the gradient operator, t is time, and a
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corma demotes partial differemtiation with respect to the Following

scdscript. Tomﬂ.l)mmmnmﬁrcr

P, and § mve required. For the internal epergy it is assumed (see

Barile (1972)) that

‘chPTP 2.2)
wicre ¢, is the beat capacity of the dispersed phase and T, is its tem-
Jerature. Two sets of mcmentus and beat supply terms are used in the

presemt work. The first is (with U denoting the fluid-phase velocity vector)

P- —(ppltl)lap:;il.b(l:p-—;)
S$= ~w(ppcltz)(‘l‘p-r) (2.3)

whe & c is the specific heat at comstant pressure of the gas phase,
bisanwicalfacto:;mdtlmdtzmwtmandﬂumlmhuﬁm

factory defined as

21"‘1.:‘ Mix a2-bp l‘buh

b1
mc/8xax (2.%);

2
In (2.%) N is a vumerical factor, m is the mass and a is the radins of

a representative spherical particle, p is the gas-phase density, p is

the gas-phase viscosity, and x .- the gas-phase thermal conductivity.

The relative Reynolds nmber is

R = (2ao/u)|;p—;| (2.5)
Its value determines the numerical factors b and N as follows.

0O<R<1l : b=1,N=24

1 <R <1000

b

"

0.6, N = 24

[1]

1000 <R<w : b=0,N=0.44 (2.6
Equation (2.3a) is obtained by dividing the standard drag curve for

steady flow past a sphere into three part: and fitting an equation to
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each part as descridbed by Probstein and Fassio (i970). It i x7umed
in the present work that the anly significast contribution to thye inter-
phase force is the steady state dreg. This is lnom to pcedominate the
drag due to added mass and that due to msteady motion in most cases.
Lift forces were included in some of the calculatices made in the course
of the present work and were formd to have a negligible effect. Equa-
tion (2.3b) resuits from the pure-conduction heat transfer law for a
single sphere. Equations (2.3) hawe a convenient amalytic:* form which

facilitated the determinaticn of the exact solution referred to previously.

These equations were useiui in checking the computer program developed in
the present work.

The second set of drag and heat transfer laws used is

4/5

P = —loy/r + R ONNa 6D

B A AP R Y

5 = (o c/t,)1 +(371008Y 2ppt/ 3)(1{1) 2.1
t where all symbols previously defined retain their mearings with the stipu- ’

lation that b be set equal to zero in (2.%a). Im (2.7b) Pr is the Prandtl

T

number defined by

Pr = pc/x (2.8)
Formulas of the form of (2.7) have been proposed by many authors (see, for
instance, Panton (1968)) with slightly different values of the coefficients

and exponents and are known to be reasonably accurate over a wide range of

Reynolds and Prandtl numbers.

Thin Shock Layers on Wedges#

Consider a wedge of surface length L and half-angle 6, . The free-

stream velocity is U_ and the ratio of the gas-phase density before the

shock to thzi after the shock is €. The density of the gas phase and the

*A shortened account of this work is ccntained in Peddieson and Lyu (1973).
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free-stream temperature of the mixture is T_. It is convemiest to use f
cartesian coordipates x and y vith x measured parellel to the body sur-
face and y measured normal to it. It is comvenient to define dimension-
less variubles as follows.

s =x/L, n=yl/L

B+ 6, =0/, Fe vGe =0/ (2.3)
Q= olog, op = pplcp,
H=1T/T, up = rp/r_ (.120)

wberei!s mdé’naremitvecta-sassoc.iatedviththe . and n axes.

Substituting (2.9) and {2.10) into (2.1), (2.2), and (2.3) {equations
(2.3) are used initially because their forms ‘acilitate the subsequent
analytical work), and substituting (2.2) and (2.3) into (2.1) results in
(QPPP)’S + ‘QPGP)"! =0

= _F )2 2
Fofpses * Gprp’n = o, ((F r?) + (G—Gp) )

- )2 24(1-b)/2
rpcp, st GpGp.n al((f‘ rp) + (G—Gp) ) (G—Gp)

(1-b)/2 (F—Fp)

Fpﬂp’s + GPHP’D = az(H—Hp) (2.11)
where .
a2 W, o = (LU )(c/e) (2.12) |

The gas flow variables are modeled by the inviscid solution for super-
sonic flow past a wedge. This solution is known ex~.ctly and for a thin
shock layer (which oceurs when 8 and ¢ are small) r.as the form

F=1, 6=0, H=H, Q=1 (2.13) |

where the subscript s denotes the value of the variable on the downstream
side of the shock wave. The shock wave is known to be a straight line

making an angle (for a thin shock layer)
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0, = 8/(1-¢) (2.1%)
with the centerline of the wedge. The solutiom of (2.11) must satisfy
the conditions
o=l 6,=-6, B=1, Q=1 (2.15)

on the shock wawe which is the line
o= (as - Ob)s (2.16)
This problem is most easily sclved using a Von Mises tramsformation
familiar from boundary-layer theory. This is done by defining a stream
function Op such that
s = 4% %m T %Y
2nd converting the independent variables from s amdntoopandzwbere
z = n. The total differential of 'p is
= = T 2.18
dtp $pogds + ¢p,ndn -QpGpds + prpdn ( )
Solving (2.18) for ds yields
d = --(llQpﬁnp)a:lo;p + (Fplcp)dz (2.19)
How regarding s as a dependent variable which is a function of *p and z
it is clear thar
s,*‘ = -l/QpG s Ssy = rplcp (2.20)
Converting the derivatives in (2.11b,c,d) and rewriting (2.20b) one obtains

(1-b)/2

- F )2 2 -
pr'p,z °1((1 Fp) + Gl> ) (1 PP)

pCprz
Cplpsz = %(Hs'ﬂp)

cps,z = rp (2.21)
where (2.13a,b,c) have been used. Substituting(2.15a,b,d) and (2.16) into

_ 32 2,(1-b)/2
al((l Fp) + Gp ) Gp

(2.18), integrating along the shock wave, and assuming wp(o,o) = 0 yields

@p = eszs/(es-eb) (2.22)

R MR
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Ithmmmfphz‘amofﬁewm.
Then this is dome (2.202) reads

Ql, = '.s,“.s'ab)cp”z ) (2.23)
s .

The initial conditions are

l‘p =1, GP = -0, BP =1, 8= z,/(o‘—ob) (2.2%)

o 2 = 2,. Since equations (2.21) contain mo derivatives with respect

to zy they can b= integrated like ordiaary differential equations along
the streamlines (lines of constant z_.). The dependence of the soljuticn
on z, enters through the application of the boundary conditions. For all
values of b the solution for the tangential welocity is

Fp=1 (2.23)
The other variables have different forss depending on the value of b. F
They are

b=1 :

= (2,/(8,-8,)) - (1/0))1og(1 - (a;/8, )(z.-2))

G, = -0, + a,(z.-2)

Hy = Hy - (H-1)( - (0y/8,)(z,-2))"2/%2

Qp = 1/(1 - (8,/6,)(1 - (0,/8,)(z;-2))) (2.26)
b=0.6 :

']
|

= (2,/(0,-8,)5 - (5/2008,2/5)(1 - (1 - (3 /50, 3/5) (2.-2))"%/)

6, = -8, (1 - (3a,/58,3/5)(z -2)°/3
Hy = Hg - (H-LDexp(-(5a,/20,8,2/3)((1 - (30,758, 3/%) (220 2310
Q, = 1/(1 - (8,/8)(1 ~ (1 ~ (30,/56,3/5)(2,-20)>/%)) (2.27)
b=o0
s = (25/(8,-0_)) - (1/8y0,3(1 - expla, (z,-2)))
= -6, exp{-a;(25-2))
Ho = Hg - (H, - 1)exp(-(ay/c, 8, ) (expla) (z5-2))-1))
Qp = /(1 - (8,/85)(1 - explay(zg-2)))) (2.28)
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Results equivalent to (2.26a,b), (2.27a,b), and (2.28a,b) have been given
by Probstein and Fassio (1970). They used a Lagrangian description. The
temperature and density results are new. The use of az Eulerian descrip-
tion facilitates the determination of the drop-pbase density. These re-
sults vere used as a check on the numerical calculations to be described
subsequently and a check on the approximate amalytical solutions discussed

in Appendix 1.

Numerical Solutions for Thin Shock Layers

In this sub-section the symbol j is introduced to differentiate be-
tueen plane and axisymmetric flow. For the former j = 0 while for the
latter j = 1. The discussion will be for the conical -ase but the result-
ing equations are also valid for wedge flows if j is set equal to zeo.

For nweerical work it was found convenient to use a system of polar
coordinates r and 0 with r = 0 at the leading edge of the body and 6 = 0
on the axis of symmetry of the cone. Defining the dimensionless variables

E=r/L, n=9

» > - s _ =
!’e£ + Gen = u/u_, Ppeg + Gpen up/U‘ (2.29) |
where Eg and En are unit vectors associated with £ and n, substituting

(2.29) and (2.10) into (2.1), (2.2), and (2.3) and substituting (2.2) and
(2.3) into (2.1) yields

3 i -
(e(€n) C)?f‘p),C + ((&n) QpGp)," z 0
(1-b)/2

2 = -5 )2 2 -
FpFpsg + (G /E)Fp, = (G2/6) = oy ((F-F)? + (6-Gy)?) (F-F,)

- _r 32 24(1-b)/2
FPGP’E + (Gplg)cps" + (FPGP/E) Ul((r rp) + (G-GP) ) (G"Gp) :
FPHP’E + (Gpli)ﬂp’n = 02(H8‘Hp) (2.30)
The gas flow variables are modeled by the constant density approximation

{see Probstein and Fassio (1970))

e s 3
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F=1, 6=-(2n-8)Y, H=l, Q=1 (2.31)
{Note that, within the thin-shock-layer approximations, these expressions
ave exact for j = 0.) The shock wave is a cone making an angle

= 8,/(1 - (c/29)) (2.32)
with the axis of symmetry. The conditions
F,=1, 6,=-0, B=1, Q=1 (2.33)

must be satisfied on the shock wave.
Again it is useful to employ a Von Mises transformation. Defining

a stream function ¢ such that

|
= -(en) = i .
’P’E (E“) Qpcp’ ’P’“ E(gn) QPFP (2.34)
and converting to the independent variables "p and z = n - 6 one obtains
—e? = _F )2 j 24(1-b)/2¢ _
Gpl‘p. Gp 315((1 Fp) +((2z)'+ Gp) )( ) (1 f:p)
= - F )2 3 2,(1-b)/2 3

GPG - F G = alﬁ((l rp) +((2z)'+ Gp) ) ((22) +Gp)
Gpﬂp z a2(ﬂs - Ht-)
pi.z = F.Fp
Q = -1/ ((glz + ab))JG £s (2.35)

Y%

The reiationship between *p and Es the shock position where a streamline

originates is easily found using (2.3%) to be

- (e Wieresrye 14
Y (6,77 /7(1+3))E_ (2.36)
Using this expression (2.35) can be written as

- . b 3
Q, = -(£,/8) (8 /(z + 8.)) "%’Gpg'gs) (2.37)

Equations (2.35a,b,d) were numerically integrated simultaneously along
various streamlines using a fourth-order Kunge-Kutta algorithm. Since
each streamline represents a line of £, = a constant, the partial deriva-
tives with respect to z can be treated as ordinary derivatives in this

calculation. After the determination of Fp, Gp, and ¢ (2.35¢) was integrated
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using a fourth-order Runge-Kutta method to obtain Hp and Qp was obtained
from (2.37) where the derivative with respect to {; was approximated by
a two-point backward difference. A discussion of the numerical results .
obtained by this method is the subject of the next three paragraphs.
Figuves 2.1 and 2.2 show the distribution of the drop-phase normal
velocity and the drop-phase density along the vehicle surface. These

calculations are for a vertex half-angle 6, = 0.1 and a gas density ratio

b
€ = 0.1. Results are plotted for various values of the dimensionless

drag parameter a These results are for the linear drag law b = 1.

1
Figure 2.1 pertains to wedges while Figure 2.2 pertains to couical shock
layers. It can be seen that for small values of the drag parameter the
drop-phase normal velocity and the drop-phasc density are nearly constant
along the surface. This represents a situation in which the motion of
the drops is almost unaffected by the presence of the shock layer. As o,
increases significant dsviations from the free-stream values of the
variables quickly become apparent. It is clear that this effect is
greater for the wedge than for the cone. Figure 2.1 represents either
the numerical solution or the analytical solution represented by (2.26a,d).
For the step sizes used in this work (AEs = ,005, Az = ((es-eb)/loo)) it
was found that the numerical and analytical solutions were indistinguish-
able. Reductions in the step sizes failed to produce any change in the
solution variables.

Figures 2.3 through 2.8 present further results for the problem dis-
cussed in the previous paragraph. The distributions of various variables
are plotted along selected streamlines. The parameter ¢ =€s/(9(l+j))

increases as the distance from the origin of the streamline to the nose
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increases., Figures 2.3 and 2.4 show the variation of the normal velocity
with z for two values of a,. On the streamlines close to the nose of the
vehicle the particles are slowed down the least. The drag becomes in-

creasingly more effective as the distance from the nose increases. This

trend becomes more pronounced as oy becomes larger. As the normal veloc-

ity is decreased along a given drop-phase streamline the drop-phase density

increases. This is shown in Figures 2.5 and 2.6. The increases in density

are larger for plane flow than for axisymmetric flow and become steadily
larger as the value of dimensionless drag coefficient is raised. Figures
2.7 and 2.8 depict selected drop-phase streamlines, The streamlines are
slightly deflected downstream by the action of the interphase drag. This
effrct is accentuated as the distance of the origin of the streamline from
the nose increases and as ) increases. The radial velocity Fp has not
been plotted because its value was found to be very close to unity for all

the calculations discussed here.

Fizure 2.9 shows some comparisons of the results obtained in different

drag regimes (different values of b) for 6. = 0.1 and ¢ = 0,1, Obviously

b
the sensitivity of the solution variables to the value of b increases as
a; increases because b is contained only in the drag terms whose magnitude
is determined by the value of a;. It is clear from the plotted data that
for u; = 10 significantly different values of the flow variables exist in
different regions of the standard drag curve. For thin shock layers it is
reasonable to assume that one drag law will be applicable throughout the
flow field. This has been verified v the calculations of Spurk and

Gerber (1972). Calculations of the type described in the previous two

paragraphs were carried out for the cases of b = 0.6 and b = 0. Since

R
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the results wvere qualitatively similar to those already discussed they

are not precented graphically.

Numerical Solutions for Gemeral Conical Shock Layers

It is now desired to eliminate any assumption that either the cone
or the shock layer is thin. Since this implies that a wide range of
relative Reynolds nusbers may be encomntered by a typical drop as it
traverses the shock layer, it is appropriate to use the drag and heat
transfer laws given by (2.10). The governing equations (2.30) are
now replaced by
(€2 sin(n)QyF ). + (& sin(n)QF ), = 0
FoFpsg + (G/E)E, - (62/£) = ajeQ(1 +(64/(a,QUF-F)? +
(G—Gp)z)l/"’)“/s))((r-rp)2 + (6-6,)2)1/2(r-xy)

FoBpsg + (Gp/8)Cp,  + (FG./E) = ;8001 +(64/(agQ((F-F ) +
(6-6,)2)H/2)5))((E-F )2 + (&-G)2)M 2 (6-G))

Folsg + (6,/0)H,, = 0p6(1 + (3Prt/3/10)@,Q((F-F,)? +
(G~Gp)2)l/2)1/2)(ﬂ-ﬂp)

where a; is given by (2.12) with b = 0 and p replaced by Pq in the equa-
tion defining 1, (equation (2.4a) with b = 0) and a, = (2aU.)/u. Note
that aj has the form of a Reynolds number based on the free-stream veloc-
ity, the effective particle radius, the gas density just behind the shock,

and the gas viscosity. The gas flow variables are modeled as follows.

F = cos(eg) - a;(1 - (6/65))
G = -a,(sin(8,)/8 ) (6-0,)
Q=1+ag(1- (8/6))
H=H +a/(1l- (6/6;))

(2.38)

(2.39)
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Equations (2.39a,b,c) were obtained by Waldman and Reinecke (1971) by

fitting linear functions to existing theoretical and experimental data
for the gas flow field. Equation (2.39d) was obtained the same way in
the course of the present work. Representative values of the constants
contained in (2.38) are a; = 0, a, = 1.67, ag = 0.35, a, = 4.0. Calcula-
tions carried out in the course of this work showed that the drop-phase
flow variables were rather insensitive to the values of the a's. The
shock angle is computed (following Waldman and Reinecke (1971)) from the
formula

bs= 6, /(1 - (e/ay))

The boundary conditions to be satisfied on the shock (8 = 65) are

FP = COS(GS), Gp = ‘Sides), HP = HS' QP =1

In this case the drop-phase stream function defined so that
Vprp = 6 sin(n)QpGp, Voo, = g2 sin(n)Qpr
and the modified governing equations(2.35) are replaced by

GFpsg - G; = a,£Q(1 +(64/(a,QU(F-F)? +
(6-6))/2)¥5)) ((e-F )2 + <c-cp)2)1’?(r-rp>
GpGp:z + FpGp = 0,801 +(6u/(a3Q((F-Fp)2 +
(6-6 )/ 2)4/5)) ((F-F )2 + (6-6,)2)"?(e-¢,)

= 3 - 2 _ 2y1/2,1/2 _
GHps,, = (1 + (3PPMY10GQU(F-F )% + (6-G,)2) ™Sy 5y (- )
G g, =¢F
PE z ¢ P
Qp = -1/(€ sin(z + eb)Gpg,wp)

Equation (2.36) is replaced by
= i 2
wp ((sin(6,))/2)£Z
This relationship can be used to rewrite (2.43e) as

Q = ~(ES/E)(sin(OS)/sin(2+6b))(sin(es)/Gpi,Es)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)
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Equations (2.43a,b,c,d) and équation (2.45) were .so].nd numetically using -

the method discussed earlier. ‘!hesa solutions were fomd to be insignifi

cantly diffmt from those désmbed earher, for eon'espmding values ~‘

the paxweters. ) o

3

In order to carry out a parametric study a répmsentative density

r'at:i.cnfezo2wasselet:tedandnsedm:-111‘checalc:ulatmustobemon-E

sidered below. Figures 2,10 and 2.11 ulustrate the mfluence of the

parameter ay on the solutzon vamables evaluated on the wall of the cone

foreb 0.1. !‘orlargea:;thequadrancdraglavmappmadxedmdthe’

solution is insensxnve to az. As ag decreases t‘:g sensitivity of the
solution to its value increases and 1arge reductions ia the drop—ph:ase
normal velocity and ‘increases in the drop-phase density pccur The power
of%:to influence the numérical results inm"eases with increasing a,.
Figures 2.i2 through 2.17 depict the varia.tion'of the transverse '
velocity and the density glong selected streamlines énd tge shapes of
these stz;eamlines fc;r various values of az. The vertex half-angle for.
these cases is 6, = 0.2. The parameter ¥ = £.,/10. It is eﬁident that
the variation of quantities from streamline to streamline is increased
by decreasing a,. For the data plotted in these figures there is little

variation across the streamlines for any of the parametric values shown.

Comparison of the results fop a, = 10° and a, = 109 reveals that they, are

virtually identi:cal ;{ndicating that the quadratic-drag-law asymptote to
the standard drag curve has been at+ained. ) |

Figures 2.18 through 2.20 show the influence of the cone half-angle
8, on the surface values of the normal velocity anq the density of the .

drop phase for various values of az. As the angle 8y increases the
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amomt of variation of the flow variables along the surfaces Jecreases.
This trend is most apparent for o, = 10?. It is cbvious that both the
normal velocity and the demnsity of the drop phaze are increasing functions
of the cone half-amgle.

Figures 2.21 threugh 2.23 illustrate the influecce of a, on the drop-
phase normal velocity and the drop-phase density at the wehicle surface
for 8, = 0.4 and varicus values of aj;. As discussed earlier small values
of a; lead to virtually constant distributions of Gp and QP along the
surface. As e, increases large variations in the values of the flww
variables at the wall appear. This effect is much more promounced in
this case than it was for the thin shock layers discussed previously.

The largest variations occur for the smallest value of the Reynolds
number parameter a,. Even for the larger values of ay signjificant varia-
tions of Gp and Qp can occur.

Figures 2.24 through 2.29 present results for the streamline shapes
and the variations of the transverse velocity and the density of the drop
phase along selected streamlines for the same geometry discussed in the
previous paragraph. The streamline parameter ¢ = £,/10. In all cases it
can be seen that the variations of the plotted variables with z increases
as the distance of the streamline from the leading edge of the come in-

creases. This trend becomes less prominent as a, is increased and more

3
prominent as o, is increased.

1
In all the cases discussed in the present work the temperature dis-
tributions were computed along with the other results that have been
discussed. Since the surface temperature distribution of the drop phase

does not now appear to be pertinent to design procedures ror the preven-

tion of rain erosion damage this data was not presented graphically.
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For drop sizes typical of those fommd in rain fields represemtative
m&mmwmmﬁsthﬁekﬁew
101 a, 3 1if 1) = a/(.220p,a) = 6.08( /o) (5 is the density of
the material contained in a single drop) is evaluated using the imitial
drop radius. It should be possible to account for breakup of the drops
(vhen this cccurs) by using an equivalent value of a which is smaller
than the free-stream value. This would decrease 7, which would increase
the dimensionless dragparueteral. As has been shown, this has the
effect of decreasing significantly the computed velocity with which
the drops strike the surface. It also appears to have the effect of
increasing the surface density of the drop phase but it sust be remem-
bered that
Pp =™
where q is the number of drops per umit volume. If m (and thus op.) is
evaluated using the effcctive value of a the values of p p on the wall
will decrease even though those of QP increase. It should be possible
to determin~ the effective values of a appropriate to various flow con-
ditions by matching numerical solutions of the type discussed in the

present report with experimental results.

Conclusion

In the present section a numerical procedure to compute drop-phase
flow fields in shock layers nhas been developed. A computer program was
written to carry out the calculavions. The method was verified by com-
parison with an analytical solution for flow over a thin wedge. Humeri~
cal results were computed and presented graphically for various represen-
tative cases in order to illustrate various parametric trends. Further
results, corresponding to a particular experimertal setup were found.

These will be discussed in Section VI,

(2.45)

N . Y LT
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SECYION IIX.
CRATERING AND EROSION MECHANISHS

Intyoduction

R

This part of the research is directed tovard the dewelopment of a
rational theory which will adequately predict the reiationship betiscen
the impact velocity and pressure and the crater size in a given rain
enviromment on & given material. A review of literatwre (for recent
comprehensive surveys, see Heymamm (1967) and Eisenberg (1970)) has
shoum that there have been aany recent advances toward an understanding
of liquid impact erosion. However, while an impressive amount of ex-
perimental data has been generated, most of the analytical models sug-
gested have been phenomenological and not much work has been dome toward
the development of a physical theory for quantitative prediction of
erosion damage. This is understandable in view of the very cosplex
nature of the damage mechanism. The theoretical analysis described
Ezlow is not in itself expected to quantitatively predict all the rain
erosion characteristics of materials; nevertheless, it is hoped that
it will provide a better understanding of the erosion mechanism and
help identify the parameters that are important.

The models proposed in this study are based upon the assumption
that for high speeds of impact, the initial pressure developed is high
enough to liquefy the target material in the neighborhood of the impact
area. Recent studies by Heymann (1969) have shown that initial pres-
sures of several times the magnitude of "water-hammer pressure" are
possible. At sufficiently high velocities of impact, therefore, these

impact pressures are likely to exceed the mechanical strength of the

This section prepared by Dr. Vireshwar Sahai, Associate Professor of
Engineering Science and Peter W. Hsu, Graduate Assistant
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target material, making it behave like 2 liguid in the immediare
neighdorhood of the point of ispact.

Such a fluid-fixnid imGact model for high-welocity impacts was
first conceived by Tpik (1936). Recently this model was studied both
experinentally and amaly*ically by Eoge: (1966, 1967). Her amalytical
study, bowewer, vas semi-empirical, and it involwved an apbitravy as-
sumption vith regard to partition of the esergy of the impimging drop.
It was assumed arbitrarily that balf of this emergy is imparted to
the target and the other hali is retained by the drop.

The initial part of the present research was dewvoted to further
study of the Eng=l's model of rain erosioa. It was hoped that it would
be possible to use a more rational basis for the determinatioe of
energy partition than that used by Engel. It was soor realized, how-
ever, that the energy balance associated with liquid-solid impact is
very complex. Part of the kinetic energy of the impinging drop goes
to the lateral outflow, part is dissipated in the shock waves passing
through the drop and in the shearing associated with change of liquid
flow direction, and the remaining part is dissipated in the target
material. Consideration of all these energy terms made the problem
unwieldy, and attempts to refine Ingel's model were subsequently
abandoned.

Instead it was found that incorporation of the concept of "appar-
ent mass,” used by Ludloff (1967) in the treatment of hypervelocity
impacts of solids on solids, into the Opik-Engel model makes this model
more amenable for application to the rain erosion problem. Furthermore,
this concept allows the calculation of mass and energy of the ejecta

from the crater.




Seforc describing the appavest mass model, hevever, svother Tiuid-
fluid impact wodel based e a» malogy with the ispingement of a high-
spead Jet on a liguid surface wiil be considered. Yhis model was am-
tensively aalyzed and has yielded good results. As pointed ost by
Cheslak, Nicholls, aad Sichel (1969), the cavities formed by the im-
pingment of high-speed jets on a liquid swface bear a strikciag re-
sestlance to those formed on solid swrfaces by high-spesd impact.
hile high-speed jets are commonly used to simulate rain ercsion (see,
for example, Hammitt, et al (1967)), little woek bas been dme to ex-
ploit this analogy.

Jet Nodel

As indicated earlier, this model is based upon the assumption
that for rLigh speeds of impact, the initial pressure developed is high
enough to liquefy the target material allowing the impact to be cate-
gorized as a fluid-fluid impact. Based on the arguments of Plesset
and Chapman (1371) and others, it is assumed, however, that the high
contact pressure due to the initial impact decays very soon and is re-
duced to the stagnation lewel. The calculations of Plesset and Chapman

showed that the duration of the stagnation pressure pulse is an order

of magnitude higher than the period over which the initial water hammer i
pressure acts. They further expressed the opinion that this longer

acting stagnation pressure pulse may be the prisary source of damage

caused by fluid impact.

B ased upon the above-mentioned arguments, a simple idealized model
of steady-state impingement of a cylindrical liquid jet on a liquid
surface will be used. The drop is replaced by a cylindrical jet in

order to simplify mathematical analysis. This simplification is prompted
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by the fact that jets are often wsed with success to sisulate rain
ervsion. Becawse of its importamce ' indwstrial processes (such as
the cayges comversion process in th: cteel industry), the jet impinge-
ment on liquid surfaces has been studied extensively both experimentally
and analytically. Some of this work is described below.

Banks and Chandrasekbara (1963) presented an experimental investi-
gation of normal penetration of a high-wvelocity gas jet tirough a liquid
sorface. Bamks and Phavamai (1965) extended this study to a more gemeral |
cne--experimental study of the impingemexnt of a liguid jet om the surface
of a beavier liquid. Some 300 experiments were made to measure the sizes

of cavities formed due to impact of oil jets on water and vater jets on
carbon tetrachloride.

From the viewpoint of the present application, the most useful ana-
lytical study of the problem is by Rossler and Stewart (1968). They de-
rived the governing differential equation for the cavity profile using a
steady-state force amalysis. Howewver, since their eventual purpose wa:z '
to explore the instability of the indention formed by the impact, they
did not verify their equation against experimental results such as those
cited above. In what follows, a general form of the Rossler-Stewart
eguation, applicable to any given pressure and shear distribution on
the liquid surface, will be derived. After testing the theory against !
experisentzl results of Banks and Bhavamai (1965) for the case of impact

of a liquid jet against a liquid surface, it will be applied to determine

the crater sizes in the high-speed impingements of water and mercury drops
against metals. Attempts will be made to determine the correspondence of
surface tension with some strength property of the targev material. Experi-

mental results of Engel (1959, 1960) will be used for this purpose. An
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approxivate form of the Rossler-Stewart equation and its sclutiom will
also be preseated.

Gowrning Equations—It is assumed that the cavity forwed by normal
impact is axisymmetric. The configuration of the cavity and the coordi-
nate system used zre shown in Figure 3.1. The forces acting on an infin-
itesimal segment ds along the cavity profile are shown in Figure 3.2.
Nere

P = pressure difference across the interface
1T = shear stresc on the interface

¢ = surface tension of the target liquid
v = weight of the impinging jet occupying the cavity
B = buoyant force

For the cavity to be in equilidbrium, the sum of the vertical com-
ponents of these forces must vanish. Hence
2xrds p cos8 + 2x[rosine],
= 2xrds T sin@ + 2xrdr(p; - py)gh + 2x[rosing] . =0
Here p; and py are jet and target demsities respectively, g is the gravi-
tational constant, and 6 is the angle between ds and a horizontal line.
Noting that ds = dr/cos® and taking the limit results in
p - T tand = (p, - 0,)gh + (6/r'd/ér(r sind) (3.1)
Finally, if the trigonometric relation tand = -dh/dr and a corresponding
one for sin® are used, equation (3.1) becomes
b + (h'/r)[1+(h')?] = (1/a)[(p2--pl)gh-p-rh'][1+r(h')2]3’ 2 (3.2)
Here h and r are coordinates describing the cavity profile {see Figure 3.la)
and the primes denote differentiation with respect to r. Equation (3.2) is
the governin; equation for the cavity profile and is to be solved subject to

the following boundary conditions:

PP R
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M=0atr=0adatr>~bothh* aad h+ 0 (3.3)
Equation (3.2) is a highly uonlinear second order differeatial

equation. The input information needed for its solutiom includes tae

two demsities, the surface temsion of the target fluid, and the pressure

and shear distributions along the cavity profile. Unfortumately nc ana-

lytical forms of pressure and shear distributions are avai’able for high-

speed impacts. Approximate forms based on experimental results will

therefore be needed.

Before discussing the possible forms of pressure and shear distribu-
tions for the solution of equation (3.2), it will be convenient to non-

dimensionalize the equation. The following relationships are used for

this purpose:
b* = h/gR, r* = r/BR, P¥/ (3 V), 1% = ¢/(p V) (3.%)
Here R is the jet radius, V is the impact velocity, and 8 is an adjust-

able nondimensional parameter chosen so that r®* = 1 will be the location

of zero pressure point. The starred quantities are nondimensional. The
dimensionless form of equation (3.2) can then be written as follows:

h*" + (h%/r¥)[1 + (h*')2] = [Ah* - B(p* + 1*h#')I[1 + (h%' )2]3/' (3.5)
Here A = [(p,-p,)g8?R?]/c and B = (%,VBR)/o. A and B are both dimen-
sionless parameters. Approximate forams of the pressure and shear distri-

butions will now be described in terms of the new dimensionless variables.

Pressure Distribu*ion--In view of the assumptions stated above, the

form of pressure distribution needed is that for steady-state impact of
a liquid jet on a flat surface. B anks and Chandrasekhara (1963) used a
normal distribution

p* = exp(-Kr#*?) (3.6)



T

vhich sarved as a fair approximation to the measured data of Gibean (193%).

This distribution, however, does not take the possible negative pressur:z
near the cavity edge into accovnt. Rossler and Stewart (1968) used a
different distribution to fit Gibson's data, a modified form of which
is given by
p® = F sin(1-r*)x/2

1 s 0534 <
where F = { 0.015 (r%-1), 13 r* <3

0 s 3 S pk
This sectionally continuous distribution does take the negative pressure
near the cavity edge into account. A comservation of momentum analysis
showed that the parameter B in the definition of r*(r®* = r/gR) must be
equal to 2.72.- However, a value of 8 = 2.0 provides a better fit with
the experimental data of Gibson. The pressure distributions given by
equation (3.6) and equation (3.7) with 8 = 2.0 and 8 = 2.72 are compared
with Gibson's results in Figure 3.3a.

Another useful equation for pressure distributicn is that by Leech
and Walker (1966). They carried out an extensive set of experiments and
fitted their results with the following polynomial:
pt =1 -3rk +2r%3, g =26
Their res 1ts however do not differ significantly from those of Gibson.
A pressure distribution which is close to that of Leech and Walker and
which takes negative pressures near the cavity edge into account is given
by the equation
p* = (1 - r#2) exp (-r#?), B = 2.6
The pressure distributions given by equations (3.7), (3.8), and (3.9) are

compared with each other in Figure 3.3b.

(3.7)

(3.8)

(3.9)
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Shear Distribution--Banks and Chandrasekhara (1963) and Cheslak,

et al (1969) concluded from their experimental results that the viscosity
of the impinging jet has a negligible effect on stable cavities on liquia
surfaces. In the impact of drops on solid surfaces, however, the shear
stresses may not be negligible because the velocity of the lateral flow
is expected to be very large. To take the shear stresses into account,
the following approximate distribution suggested by Rossler and Stewart
(1968) will be used:

* = (a2)(0.664/Re) (1 - expl-(s/R)?1}

Here Res = pluVs/u is the local Reynolds number based on the distance s
along the cavity profile. u is the viscosity of the jet fluid. The
numerical factor a (to be called the shear factor) has been introduced

to take care of tha possibility that the lateral flow velocity may be
larger than the normal impact velocity. In the case of liquid-solid
impacts, several experimenters (see, for example, Heymann (1967)) have
found the lateral flow velocity to be several times the velocity of impact.

Numerical Solution--A generalized program (for a listing of the pro-

gram, see Hsu (1972)) usin; a fourth-order Hamming's method based on an
interval-halving iterative technique was developed to solve the govern-
ing equations on a Xerox Sigma 6 computer. This program was used to
determine the cavity shapes and sizes in the case of jet impingement

on liquid surfaces as well as liquid drop impact on solid surfaces.

Because of the nonlinear nature of the governing equation and the

nature of the boundary condition made convergence difficult, s.:veral
subroutines were written to take care of the various difficulties. The
final form of the computer program seems to provide fast and stable con-

vergence in all cases under consideration.,

v

=]

(3.10)
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niscussion of Results--First, the effect of various parameters in

the governing equation was investigated. For simplicity, the center

line velocity of the jet was assumed to remain unchanged upon impact,

TR

§ thus neglecting the effect of jet spreading. The parametcrs used were
those for impact of an air jet on water. As shown jn Figure 3.4, the

1 cavity depth increases with increasing velocity. When the velocity

exceeds a certain limit, the cavity shape is no longer shallow, and a ']
cavity 1lip is created. Both the cavity depth and the lip height con-

tinue to grow until a maximum cavity size is reached at a critical

{ velocity. Beyond this value the cavity depth starts to decrease while

the 1lip height continues to increase. It might be mentioned, however,

that the pressure distribution used becomes less and less accurate as

the cavity gets deeper,

In Figure 3.5, the effect of increasing the shear factor a on the
cavity size is presented. The shear factor seems to have a more signif-
icant influence on deep cavities than on shallow cavities. Note also

that the numerical solution is capable of providing the cavity profile

as well as the cavity depth. Figure 3.5 alsc shows the presence of a

cavity lip in the case of deep cavities,

O

Next, the effect of increasing the surface tension was investigated.
As expected, the depth of the cavity decreases as the surface tension is
increased. The effect of changing the parameter 8 in the pressure dis- é
tribution will be discussed later.

The theory was then checked against experimental results of Banks

and Bhavamai (1965) for impacts of oil jets against water and water jets !

against carbon tetrachloride. The effect of turbulent spreading of the

2
39
3
:?

jet was taken into account in this case.
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Figure 3.6 presents the results for the case of the impact of an
oil jet on water. The coordinates used are the same as those us;d by
Banks and Bhavamai. The ordinate h=ax is the cav'ty depth nondimension-
alized with respect to the jet elevation. The abscissa M* represents
nondimensional jet momentum. The experimental points of Banks and
Bhavamai for various nozzle elevations are plotted on this graph. Also
plotted are the calculated results of the present theory using pressure
distribution equation (3.7) with 8 = 2.72 and B = 2.0. In view of the
considerable scatter in the experimental data, the agreement seems to
be satisfactory.

An empirical equation cbtained by Banks and Bhavamai which fits
their experimental data is compared with the present theory in Figures
3.7 and 3.8 for oil-water and water-carbon tetrachloride impacts respec-
tively. The ordinate used here represenfs a normalized cavity depth
defined in Banks and Bhavamai (1965) or Hsu (1972). Specific compari-
sons with experimental results showed that the higher value of 8 is
better for cases of deep penetration while lower values of B are more
suitable for shallow cavities.

This model was also applied to the case of the impact of a water
drop on water surface. This case was considered by Engel (1966) as a
model for high-speed liquid-solid impingements. In Figure 3.9, her
experimental wesults are compared with those computed from the present
theowy. The agreement is satisfactory.

The fluid-fluid impact model was then applied to the impact of
liquid drops on solid surfaces. The premise on which this model is
based has already been discussed earlier. In this analysis, the pres-

sure distributions given by both equations (3.7) and (3.9) were used,
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but no significant difference was noted. As far as the shear distribution
given by equation (3.10) is concerned, it was found that increasing the
shear factor a to a value up to 4 does not significantly change the re-
sults; therefore, a was fixed at a value of 1. In fact, it was found that
the shear term in equation (3.%5) is small compared with other terms in
the equation. Several workers (see, for example, Swith and Fyall (1969))
have found from their experiments that the shearing action resulting from
the high-speed radial flow is not very significant.

One of the difficulties in applying the proposed model to liquid-
solid impacts is that of relating the surface tension parameter o to some
strength property of the solid. It was fortunately found that the use of
a simple relationship
S = g/R,
where S is the dynamic yield strength of the target material and R is the
drop radius, gives good correspondence with the available experimental
results.

Figures 3.10, 3.11, 3.12, and 3.13 present the calculated results
for the impact of 2-mm water and mercury drops on copper and aluminum
targets at high velocities. Engel (1960) carried out experiments to
measure pit depths in such impacts. Mercury drops were used because
they are capable of imparting large momenta due to their high densities.
Experimental results of Engel are also plotted on the figures for com-
parison. (alculated results seem to be surprisingly good in view of
the crude nature of the model used. Because of the assumption that the
target material behaves as a fluid, the model should be more applicable
at higher values of the momentum. This is apparent from the figures;

the correspondence between calculated and measured pit depths is better

(3.11)

|
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for ‘the mercury impact than fon the water impict. Algc;.inﬂ:émof'* o
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Approximate Solution--Examination of the relative importance of the ;
mei;th?mdimimafmnofmegmingequ;ﬁm '

(equation (3.5)) revealed the,possibility of a simple approximate soly-

tion. xnﬂ;ecaseofuqx_xid-puéi-pamaisveqimemmgse- o

quently ihe nondimensional parametér A i; very small. The first term .

on the right-hand side is therefore negligible in comparison with other

terms. As suggested earlier: the shear term makes an insignificant con-

tribution. In addition, the cavities are expected to be ‘shallou; therer

fore (h*')2 << 1, With these approximations, eqﬁation (3.5) simplifies

to | ‘ ‘

R X - "  (312)
An exact solution to eq#ation&(3.12) can bé obtained if ‘the approxi-

mate form of the pressure distribution giyen by equation (3.9) %s used.

The solution of equation (3.12) subject to the proper boundary cond%tions

(equation (3:3)) is then, simply, ) ’ ’ I

h* = (B/4) exp (-r*?-)' : - o - o (3.13)

N 1
The maximum cavity depth which occurs at r* = 0 is given, in dimensional
[ | . | |

form, by the following expression:

hpgy = P1V2B%R2/80 : L D € B ')
The approximate solution giveh by equ§tion (S.iu)yis compared with '

the numerical solution of thé entire equation'and with the experimental

results of Engel in Figures 3.1% and 3.15 for impacts of mercury drqps

against 2024-~0 aluminum and steel fespectively.' It can be concluded that

the approximate solution is quite adequate. Similar correspondencé was

found in other cases nét'presented here.
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It may be concluded from the abowe results that the jet model
described above is capable of providing good results, at least in the
case of liquid impact on metals. Unfortunately, experimental results
in a form suitable for checking the validity of the model were not
available for other materials, such as ceramics. However, the present
results are significant in two respects. First, the results may be
directly applicable because some designs of radomes suggest that aetals
may be incorporated in the attachment to the afterbody of the wehicle
or in the nose as a protection against rain erosion. Microwave engi-
neers have shown that such a use of metals is possible without serious
detriment to radar performance. Second, the development of a reliable
theory must be based upon materials on which the test data is repeatedly

reproducible. Metals are such marerials.

Apparent Mass Model

The apparent mass model, just like the jet model, is a rough,
approximate hydrodynamic model. This model, based on a concept first
used by Ludloff (1967) in connection with his study of hypervelocity
impact, is characterized by the following assumptions:

1. Upon impact a fraction of the initial kinetic energy is

expended in liquefying the surrounding target material. The
remainder of the initial kinetic energy causes impulsive

motion in the liquefied mass such as that which occurs when

a body impacts on the free surface of a liquid. Such a
motion can truly be characterized as irrotational (see
Batchelor (1967)). The theory of flows with free surfaces

suggests that the concept of "apparent" mass may be useful in

describing the flow of the target material.
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2. Since the d&rop is expected to be flattened by impact, the
welocity field of the target material is similar to that
around a disc trenslating throwgh a fluid.
3. The material resists the formation of the crater by a force
equal to the prod :t of some stremgth property S of the mater-
ial and the surface area of -the crater.
When a body of mass M enters a liquid, there is a sudden reduction
of its velocity. This is ascribed to an apparent addition to its mass
by the mass of the liquid set instantanecusly in motion. 7This additionmal
mass is called the apparent mass.
In the present case it will be assumed, for simplicity, that the
crater is hemispherical and remains in that shape as it grows with
increasing radius r. The equation of motion for the target fluid camn
then be written as
d/atl(M + M*)r] + 2sr2s = 0 (3.15)
Here M is the mass of the drop and M' is the apparent mass. For the
motion of a disc, the apparent mass is given by (see Batchelor (1967))
M' = (8/3)p,c3 (3.16)
where o, is the density of the target material and ¢ is the radius of the
disc.
If M and M' are constant, equation (3.15) can be integrated over r
to obtain the energy equation
(1/2)(M + M) + (2/3)nSr3 = (1/2)MV2 (3.17)
Here the condition r = V when r = 0 has been applied. V is the impact
velocity. The maximum cavity depth is the value of r when r = 0 and is

given by
1/3

hpax = (34V2/4nS)

(3.18)
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Most of the rain ercsion data, however, is expressed in terws of
a erosion rate. An average erosiom rate E will be defined here as
follows:

E = Bogy/teax " (3.19)
Here t,,, is the time required to achieve a cavity depth of magnitude

haax- The time t_. can easily be obtained by integrating equation

(3.17).

The solution outlined above was tested against known experimental
data. Although the modes seems to be qualitatiwvely correct, quantitative
correspondence was lacking. 7This is hardly surprising in view of the
very rough nature of the model.

It seems that the model may be improved by two additional considera-
tions. First, no provision has been made in the model for ejected material
during crater formation. This can be done, as suggested by Ludloff (1967),
by specifying an additional integral condition based upon experimental
results about ejecta. Secend, the expression for the apparent mass (equa-

tion (3.16)) should be modified to take into account the growth of the

crater. The following expression is suggested:
M = ep2r3 (3.20)
where € is an adjustable parameter.
Equatiou (3.15) can then be written as
(a/3t)L(8 + co,r’)r] + 29r%S = 0 (3.21)

This equation has to be solved numerically. Efforts are currently under-

way to determine the solution and to test it against experimental results.
The apparent mass model desérves further consideration, because, as

opposed to the jet model, it considers the process to be time-dependent.
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It is thws capable of calculating mot only the maximmm cavity depth

but also the rete of excsion. The latter parumeter, as indicated
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SECTION 1v.
SIRESS WAVES RESULYING FROS LIQUID INPACY

High-speed collisions with cbjects such as meteorvids aad other
debris in space or dwst, bail, and reindrops in the atmosphere pose
potential hazards to spacecraft, missiles, or airplanes.

A high-welocity impzct geserully creates a crater in the structure,
driving a strong shock wave into it. If the impacted structure, or
“target,” is sufficiently thin, a puscture will result. If the target
is relatively thick, the shock will rapidly decay into an elastic stress
wave. When such a vave encomters a free surface it is reflected, gen-
erally as a tensile wave, and its amplitude may be of sufficient magni-
tude to produce fractures near the rear surface. Such fractures say
appear as granular cracks pear the surface, as rear surface bulges, or
as a complete detachment of target material, creating a shraprel effect.
An example of each is shown in Figure 4.1 for copper, alminum, and
Steel targets.

The fractures in a ‘ransparent acrylic (methyl methacrylate) resin
are also shown in Figure 4.1. Although this material (trade names of

Lucite and Plexiglas) would probably never be used for the actual struc-

ture, it is excellent for the study of stress waves and fracture as both the

waves and the fracturing process can be photographed. These can then be

compared with analytical conclusions (Kinslow (1964)).

Stress Relations for Spherical Waves

Spherical dilatational wave propagation in a homogenecus, iso:ropic
material can be specified Ly the equation

32¢/3t2 = ci[a%/arz + (2/r)3¢/37]

(4.1)
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t is time. Particle displacement (u) and velocity (v) are specified by
the relations

uz=3/x amd v=u/R

wvhere r denotes the radius vector froms the poist of projectile Impact.
mmdwasnmsa:egimbyﬁemhﬁm

o, = (A + 2u)(M/3) + D (u/r)

and

o, =0, = AMW/)+202 4+ p)(u/r)
1l 2

where 1 and y are the Lanf constants and are related to Young's modulus
(E) and Poisson's ratio (v) as follows:

}

vE/(1 + v)(1 - 2v)

v = E/2(1 + v)

Model for Gemerating Stress Waves

The mathematical model for gemerating cspherical elastic waves is
that described by the author in the reference, Kinslow (1963). To sum-
marize briefly, it is assumed that there is a hollow, hemispherical
cavity in the target with its center at the point of impact and that a
time-varying pressure or forcing function is applied to this imaginary
cavity surface, generating stress waves in the material. The pressure
applied to the surface of the cavicy, having a radius r,s is an irpulse
described by the relation
p/pg = l((e-a]-t - e %2h
where p is the maximum pressure, a; and a, are decay constants, t is
elapsed time, and K is a constant. By the proper choice of vaiues of
a; and a, various wave forms can be generated. The values for describ-

ing the forcing function may be selected to approximate liquid impact.

(x.2)

(.3)

(u.%)

(%.5)

(4.6)

{4.7)

-




f Sclution of the Have Equatioa

If the forcing fumction is applied to the swface of the hemispher-
ical cavity, a solutiom of the wave equatiom is

T iar
=] Kpr Vorll + (a, - iaP( -«
pt

=1
+ %" ( 1+ ((ag-ia)/(u))?)% cos(u 1 - tan~ e -i8)/(u,)))) (%.8)
where
r =t - ((rr )y (x.9)
a, = (¢ /r N(1-2v)/(1-2)) (x.10)
6, = (C1/r N ((1-2)D/ (1)) (v.11)

Reflected Stress Wawes

The simplest example of the reflection of an elastic dilatation
wave from a free surface ~ccurs when the wave strikes norsal to the
surface. Since the resulting surface stress must be zero, a compression
wave must, therefore, always be reflected as a tensile wave, and a temsile

wave must be reflected as a compression wave. When such a wave strikes a

free surface at an oblique angle, the situation is much more complex. Not
only will waves of dilatation be reflected but there will also be generated

distortional or shear waves. From an aiilysis of these wavas reflected

.S PRI

from a plane surface (Kinslow (1969)), it seems that omly the incident and
reflected dilatation waves need to be considered in determining the maximum

tensile stress except at points some distance from the normal axis where

fractures are not likely to occur. For ti.is reason, the amplitude of the

reflected shear waves are not cowputed in this preliminary analysis, al-

though their existence is recognized and taken into account in the compu-

tation of the magnitude of the reflected dilatation waves.




-43-

Relative values of computed principal stresses soom after the wave
reflection from 3 plane surface are showm in Figure %.2. Compressive
stresses are considered as positive and teusile stresses as negative.
At the time shomn, the msaximm tenxile stress has a valuwe of -61 wmits.

It can be seen, bowever, that this is pot the maximum tension that will

L — s s e

be created as at a clightly later time this -efiected tersile wave will
cmbine vith the tensile "tail” of the incident wave to generate a much

higher tensile stress at a scaewhat greater distunce from the rear sur-

face.

Stresses Resuiting from Multiple Impacts

The coordinate system is given in Figure %.3. The locations of

P

impacts on a plane surface (the x-y plane) are designated as 0!‘(01,02 s03,—=)

and are given by the coordinates ( ). The location of any point P at

Xon*Yon
which the princical stresses are desired is specified by the coordinates

e e e e g AT SR

(x,y,2). For the computaticn of stres=es restlting from impact at (O, the

coordinates (x,y,,%,) are employed, where

X, =X - X, (4.12)
Yn =Y = Yop (4.13)
4 zn =z (lt.lu)

The location of P may also be specified by the coordinates (r;,6,,% ).
The following derivation of the components of stress at point P
are relative to the 0n coordinate system. For the sake of simplicity
the subscript n is omitted from the derivations and in the six cartesian
components of stress, the symbal{ 1 indicates that all values enclosed

by the bracket are relative to that system.

The relations between the (x,y,z) and the (r,8,0) coordinates are




r siné® cosd

y = r sin® cing

z = r cosd

(x,y,z) system as follows
cos(x,r) = ax/3r = siné cosd
cos{y,r) = 3y/3r = sin® sinb
cos(z,r) = 3z/3r = cosé

Similarly, the direction cosines of the ty - Et.-axis are

respectively
cos(x,ty) = (1/r sin6)(3x/30) = -sine

(1/r sin0)(3y/236) = cos®

cos(y,tgy)

cos(z,tﬂ) =0

and

z cos(x,t,) = (1/r)(3x/3¢) = cos® cosd
{ cos(y,t,) = (1/r)(3y/3¢) = cosé siné
| cos(z,t’) = (1/r)(3z/39) = -sind
! where
| N~
? siné = /x? + y2/r

cos¢ = z/r

sind = v/ + y2

cosé = x/Vx? + y?

As the spherical wave propagates through the material, the radial

and tangential stresses having values given by equations (4.3) and (4.4),

respectively, are shown acting on an elemental volume in Figure 4.4,

The direction cosines of the positive r-axis have components in the

At

(4.15)
(4.16)
(4.17)

(4.18)
(%4.19)
(4.20)

(#.21)
(%.22)

(4.23)

(4.24)
(4.25)

(4.26)

(4.27)

(4.28)
(4.29)
(4.30)

(4.31)
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any point, P, and for any time. The six cartesian components of stress
relative to the [o,x,y,z], coordinate system may be computed from the
following relationms.

Lo, 1, = [oggcos2(x,tg) + 0,4c082(x,t,) + 0 cos?(x,r)]

loy3, = [ot¢cosz(y,t¢) + orposz(y,r) + atecosz(y,te)]n

lo,1, = [o,c0s?(2,7) + o qco82(z,t,) + o 4cos?(z,t,)],

[t ]n = [atecos(x,ta)cos(y,te) +0

xy ¢cos(x,t°)cos(y,t@)

t
+ orcos(x,r)cos(y,r)]n

]

yzin = [otocos(y,t¢)cos(z,t°) + orcos(y,r)cos(z,r)

+ otecos(y,te)cos(z,ta)]n
[rzx]n = [0 cos(z,r)eos(x,r) + 04 4c08(2,ty)cos(x,t,)

+ atecos(z,te)cos(x,te)]n

These components of stress resulting from each of the several

impacts can now be added as follows:

o, = [0 dy + Lo, +[o 5+ ...
oy = [cy]l + [oy]2 + [ay]3 * ..
0z = [o,0) + [o,], + Qo+, ..
Tay = [Txyll tlrgdy t [rxyla + ..
Txz © [szJl ¥ [sz]2 * [sz]S Yoo

Tyz = [ryz]l + [Tyz]2 + [TszS

These six components of stress are now substituted in the following

cubic equation:

3. 2 e 2 L2 - .2 Yo
S (ox + cy + oz)s + (oxoy + °y°z + 0,0, Txy Tyz sz)s

2 =

2 _g12 +27

(0, 0.0 Oy Tox 2%y xyTszzx

x%y%z ~ 9xTyz

The roots of this equation are the three principal stresses.
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(4,36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
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Stresses Resulting from Two Liquid Impacts

One of the problems that must be dealt with in the amalysis of
radome damage resulting from rain impact is the effects of multiple

drops and the interaction of the stresses developed by the individual

drops.

When a rain field is described, the probable spatial and time
distribution of drops interacting with a radome surface moving at a
specified velocity can be determined. The effects of the distances
between two drops and the times between impacts are analyzed.

The stresses computed are relative values only and dimensionless

units of time and dimensions are employed. The radome thickness is

denoted by T, the stress by @, and the time by ¥. A pressure wave
typical of high-velocity impact is employed.

First, two impacts at the same time are considered. The maximum
tensile stress resulting from two impacts will be generated either
directly beneath the points of impact or on an axis midway between
these points. Figure 4.5 gives the values of the tensile stress for
different distances between the impact points. The maximum tensile
stress for a single impact has a relative value of ¢ = 115. If two

drops ave very close together at the same time, the resulting stress

will cbviously be twice this value, or 230. As the distance between
drops is increased, the developed stress will decrease. In this case
of cimultaneous impacts, it can be seen that the maximum stress occurs

along the axis between the two points. At a distance of about 0.8 T,

the stresses directly beneath the impact points have decreased to about !

that resulting from a single drop, but the stress on the z-axis has a

I

value of almost 200. The stress on this axis continues to decrease as
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the distance between drops increases. At a distance of approximately
1.8 T, the stress on this axis has decreased to the value created by a
single impact. This means that if the distance between two drops is
greater than twice the thickness of the target, the maximm stress can
probably be determined by computing the stress deveioped by a singie
drop and that the interaction of the stress waves can be neglected.

The effect of time (At) between érops will now be considered. The
stresses developed by two drops impacting the same point are shown in
Figure 4.6(1). As pointed out, the tensile stress will have a value
of ~30 for zero time between impacts. As t*e time increases, the stress
decreases up to a relative time of 0.50, beyond which the stress is the
same as for the impact of a single drop. If the distance between drops
is 0.4 T, the tencile stress for various times (At) is given in Figure
4.6(b). The first impact is Pl and the later impact is P2. The other
curves give this information for various distances between impacts.

I{ should be noted that these results are based on an assumed

material and for a typical stress wave. The results would not be the

same for different materials and impact conditionms.

Stresses Resulting from Single-Drop Impact

When a collision occurs between a fast-moving surface and a water-
drop, a high pressure is first generated at the point of contact. This
is followed by a lateral flow of water at very high velocity. The pres-
sure distribution at the liquid-solid interface and the times and dura-
tions of the pressures at various points on the surface have not yet
been determined exczpt for rather low impact velocities such as that

being done by Huang (1971-72). Similar data for high Mach numbers is

s e s
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perhaps the greatest need in the analysis of this problem at the present
time. Both analytical and experimental methods are being employed in
attempts to obtain this information. For the relatively low-velocity
impacts, Huang's computations indicate that the pressure is a maximum

at the center of the impact area, decreasing as the distance from the
center increases. Some, including Herbert (1970), believe that the
pressure is not a maximum at the center, but that the maximum pressure

is near the periphery of the drop. Others believe that cavitation occurs
because of the high jet velocity creating tensile stresses at the surface.

Due to the non-uniform time-varying pressure distribution generated
by liquid-drop impact, it is not possible to accurately determine the
stress wave characteristics by a single stress wave source. The method
of multiple impacts derived in a previous paragraph will be used by con-
sidering a cluster of wave sources as shown in Figure 4,7 for each drop
impact. The forcing function to be applied to each imaginary cavity will
be determined by the pressure-time history over the target surface. This
will result in a large number of wave fronts which, according to huygens'
principle, will combine to form a single wave. The stress distribution
created by this wave can be computed for various times. The maximum
pressure, tension, and shear stresses, as well as the displacements,
strains, and strain rates can be determined.

The locations cf fractures in a Perspex plate resulting from the
impact of a water jet is shown in Figure 4.8(a). This was taken from one
of the many excellent photographs by Brunton (1967) of Cambridge Univer-
sity. It shows a ring crater on the surface, a fracture directly under
the center of the impact area, and a large fracture near the rear suvface.

Not knowing the actual pressure distribution, various values were assumed
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and the maximm tensile stresses were computed throughout the tlarget.:
The a:reas vhere these stresses exmdod a'specified value are sham in
P:.gnres u.e(b) through (g). ' The sinilamt& to the observed fractms
may be seen. The stresses not only depend upon the maximum pressure
distribution but the tme rate of the spread of these pnessures from

the point of flrst contact. This is illustrated by Figures4.8(e) and

(f). The same maximum pressure distribution was assumed in both in- .
stances and onl& the times were different. These shaded areas would
' . !

represent fractures only if a critical stress criterion of fracture
i : *

applies.

By assuming various combinations of pressures and times, it may
be possible to obtain a numerical solution that will match the experi-

mental results. If this is accomplished, the pressure-time values

i

used in the computation should represent the true values for that
] i ! ! '

i
particular impact.

This method of multiple stress wave sources can also be applied

v

]
for the case of oblique impact if the pressure-time variations are
’ ol , i :

known. ’ i

e -
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SECTION V.
PRELIMINARY EXPERIMENTS

Liquid Jet Accelerator

A device similar to the one constructed at the Cavendish Laboratory,’
University of Cambridge, and described by Fyall in Chapter 8 of the

Radome Engireering Handbook, edited by Walton (1970), has been constructed

and used to accelerate small amounts of water to a relatively high veloc-
ity. The accelerator is shown in Figure 5.1. The nylom piston is in-
serted in the chamber to almost the end; a few drops of water are inserted
in the orifice with a hypodermic needle; and the piston is accelerated by
means of a 0.22-caliber rifle bullet striking its end. For the dimensions
shown, a bullet velocity of 750 ft/sec accelerates the water to a velocity
of 2200 ft/sec. Photographs of the impact range (constructed in a surplus
iron lung) are shown in Figure 5.2. The jet coming from the nozzle is
shown in Figure 5.3. Variations in the piston and nozzle design, the

amount of water, and the bullet velocities will be made in attempts to

reach higher velocities and to more accurately simulate raindrops.

Impact Damgge to Lucite Targets

Figure 5.4 shows the ring fractures on the surface of a 0.25-inch
Lucite target. The center portion of the surface was not affected. The
lower photograph on the first éage is of a sectioned target so that the
depth of fracture could be seen. Ring craters resulting from lower
;elocities are shown on the second page of the figure. These ring
craters are similar to the ones photographed by Brunton (1967) and by

Fyall (1969). Side views of targets are shown in Figure 5.5 in which
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the rear surface fractures can be semn. There were also fractures below
the center of the point ~f impact but are barely listinguishable in
these photographs.

A vertical milling machine and a dial gage were used as a profilometer
for measuring crater depths. Figure 5.6 shows the craters on a nosecone
being measured. The photograph, cmq_s-section,mddeptbcnntmofa

crater in Lucite are shown on Figure 5.7.

Damage to Slip-Cast Fused Silica Targets

The front and rear surfaces of the SCFS targets were painted with
black ink before impact so that the extent of any fractures could be
easily seen. The photographs at the top of Figure 5.8 show the damage
to a 0.25-inch target. It was completely penetrated. The fracture as
viewed from the back is interesting. The lower photographs of this
figure show the damage to a slightly thicker target. The familiar ring
crater is seen on the front and a crack is detected ca the rear. Cross-
sections of this crater are shown in Figure 5.9. The maximum depth is
about 0.0085 inch. Unlike the ring crater in Lucite, the center, appar-
ently undamaged portion, shows a permanent deformation. It may be, how-
ever, that the material is not compressed but that the crack whose
boundaries are seen on the rear surface extends intermally to the front
crater and that this entire cone of material is pushed backward. Crater
contours are shown in Figure 5.10.

It appeared that the fracture of the 0.40-inch target shown in
Figure 5.11 was very similar to the last one discussed except for the
rear surface snall directly behind the impact point and that the frac-
ture approximately 1 inch from the center was somewhat more pronounced.

Shortly after the first photographs were made, the entire rear portion
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shown in the last two photogrephs of this figure became detached. Upon
an exmination of these fractures, Figure 5.12 was drawmn. The pboto-
graphs of Figure 5.13 show an edge view of the target just before and
following impact. The spall material can be seen. Surface damage
resulting from oblique impacts is shown in Figure 5.1%.

A Possible Explanation of the Target Fracture

The fractures indicated by A, B, and C of Figure 5.12 are of
interest as eitber of them would probably cause greater damage than
does the ring crater. The crack C is of special importance for the
reason that it creates the largest spall, and hence more structural
weakening, than either of the others would have produced.

Initially the path of crack A is determined by the tensile stresses
around the immediate impact area. As suggested by Yoffee (1951) the
crack propagates intc the plate normal to the maximum tangential stress pear
the crack tip. If this maximum stress is caused to shift from its
original direction, the direction of the crack propagation would be
expected to ctange. This could be caused by the stress waves generated
by the impact and is probably the reason for A not following a straight
line. The mximum speed of the crack propagation was énalytically
determined by Yoffee to be approximately 0.6 times the velocity of the
shear wave. This agrees well with the value of 0.38 timec the dilata-
tional wave velocity as observed by Kippers (1967) in experiments with
glass.

It is apparent that the stress wave associated with the impact

travels through the plate and reflects from the rear surface, inter-

secting the crack before it has time to propagate through the target.
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It is computed that the crack reaches the first point of bramching in
approxisately 3.5 p-sec and that the reflected dilatational wave reaches
the same point in approximately 3.8 y-sec. The stresses associated with
the arrival of this wave will cause a change in the state >f stress
around the rropagating crack tip and is probably the cause of the
branching whick creates crack C. As the reflected shear wave welocity
is less than that of the dilatational wawe, it will intersect crack A
at a later time and would be expected to cuase another braaching such

as crack B.

0 catrtnh Bedead why
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SECTION VI.

SLED TEST RESULTS

A rocket sled test program was conducted 2t Holloman Air Force Base,
Yew Mexico, to determine the rain erosion resistamnce of slip-cast fused
sili~a at wvelocities above 5000 ft/sec. The fabrication te~hmiguec used
at the Georgia Institate of Tecmclogy to slip-cast, heat-treat, and
flame-glaze tiwe radomes; a description of the test facilities; and the
results of six sled tests have been described by Walton aud Harris (1966).

The radome from run No. 2, Holloman XNo. 7RBl, serial XNo. 2723 hes
been examined,ané some cbservations will be made concerning the impect

damage that it sustained in the %00-ft rainfieid. The rain intensity
was reported as 2.5 inches per howr and the average drop size was said
to be between 1.5 and 2.0-mm diameter. The average velocity was about
5300 ft/sec.

Figure 6.1 shows the radome on the sled after the run. A view of
the radome with its metal tip broken off and a closer view of some of
the craters are chown in Figure 6.2. Its dimensions as well as the
locations of the centers of the photographs of Figures 6.4, 6.5, and
6.6 are given in Figure 6.3.

The photographs of Figure 6.4 were taken around the circumference
at U45-degree intervals at a distance of 11.6 inches from the tip. By
counting all craters that could be detected,it was found that they
averaged 27.1 per square inch. Those of Figure 6.5 were 8.3 inches
from the tip and averaged 40.4 craters per square inch. At a distance
of 3.0 inches from the tip, the photographs overlapped and they are

shown in Figure 6.6. These averaged 25.1 craters per square inch. At
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this location there appeared to be more erosion from the impacts than
craters. Based on all of these photographs, it was estimated that for
the entire radome ihere was an cverall average of 31 craters per square
inch. There is prdbably some reasonm as to why the crater demsity is
grezter near the middle of the radome than pear either the tip or the
bases but we have nc explanation at this time. Tbe radowe had been
flame-glazed by the use of a plasma jet to fuse the sirface and tc
provide a coating of non-porous fused silica that served to seal the
surface. Waltoe and Harris reported the thickness of the fused layer
varied from 0.03 to 0.04% inch near the tip to less than 0.005 inch near
the base. They also reported that although each drop appeared to cause
some surface damage it did not appear to extend significantly beneath
the glazed surface. This is in agreement with our findings as we
measured only a few depths greater than 0.005 inch.

Because the impact velocities of all drops, both large and small,
are essentially the same, various authorities argue that the impact
pressures as given by the "water-hammer" equation, P = pCV, will be
the same for all drops where p is the density of the liquid, C the
velocity of the compression wave in the liquid, and V the component
of the impact velocity normal to the surface. Brunton (1967) explains
that one of the reasons why a large drop is more damaging than a small
one at the same velocity is that with the large drop the maximum pres-
sure acts for a longer period of time. This would also result in longer
stress waves being propagated into the target, affecting the internal
cracking and spall damage. The areas of the ctraters resulting from the

larger drops would obviously be greater than those caused by small drops.
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There still remains the question as to ubether or nct the "water-hammer”

pressure is the maximm.

Crater Characteristics

The depths of some of the craters were measured and depth contours

were plotted. The purpose of this is to learn more of the rature cf the
fractures and to determine the extent to which drcp impacts can be simu-
lated by the use of the water jet accelerator ard by solid projectile

impacts. Cross-sections of a typical crater near the base of tbe radome ;
are shown in Figure 6.7. The depths were measured from the curved sur-

face of the radome. 7he first profiles were taken outside the crater

and indicate the roughmess or irregevlarities of the surface. As it is

impossible to recognize the actual crater boundaries from tne measure-

= swe we s rpbeaa

ments (althcugh they can be seen visually) because of the surface rough-
ness, the depths shown in Figure 6.8 start with the 0.001-inch contour.
Comparing the profiles and depth contours of this crater with those
produced by the jet-produced cavity shown in Figures 5.9 and 5.10 several
similarities and differences will be noted. In both cases there is a
central plateau surrounded by areas of greater depth containing several
rather deep pits. The primary differences are that the radome crater

is more irregular in shape (although its actual boundary is not shown)
and the crater surface is rougher. The jet-produced crater is somewhat
larger and deeper than that formed by the drop. Also, the central
plateau of the first was the original surface which had been painted
black and it is apparent that at least some of the original radome
surface had been removed from this region in the second. The differences
are simple to explain; in fact, the similarities are more than would have

been expected.
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Although both targets were of slip-cast fused silica, the surfaces
vere entirely different. As stated, the radome had been provided with
a coating of nm-porous fused silica vhich varied from 0.005 to 0.030
inch thick. Walton (3966) obserwed that once the impact pressure was

sufficient to cause damage in the glazed surface that there was a ten-~
dency to chip out a portion of the glaze extending beyond the actual
area of impact. In an unglazed surface, be reported, “he domage was
restricted to the area of impact. ror a comparison of the damage re-
sulting from jet impacts and drop impacts, it is necessary to have two
identical materials. From these results, hovever, it appears that the

érop impact can be simulated.

o ——

Another explanation of the difference between the two craters is
that the jet impact was normal to the target's surface at a velocity
of about 2000 ft/sec and chat of the drop was at an angle cf about 15°
at a speed of approximately 5000 ft/sec, giving a normal wvelocity com-
ponent of approximately 1300 ft/sec. This diffevence may explain the
difference between maximum crater depih of 0.008 inch in the jet-
created crater and only 0.005 inch in the drop-generated.

The direction of impact seems to make little difference in the
crater's general appearance. It appears that the simulation of a high-
velocity impact at 3 small angle with the surface can be accomplished

with a lower velocity impact at a different angle as long as the normal

velocity components are the same. For example, the velocity of 5000 ft/
sec at 15° with the surface could probably be simulated with a velocity
of 2000 ft/sec at an angle of 40°.

The profiles and crater contours of another crater located near

the midpoint of the radome surface are given in Figures 6.9 aud 6.10.
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‘ Although this crater area is less than the previous one, its depth is
g somevhat greater. L

< s

; ! The Rain Field

; It has been suggested that socme of the drops may be deflected away
from the radome’s surface by the hypersonic shock layer. The simulated

rain rate for the Holloman tests was adjusted to 2.5 inches per hour.

The drop size distribution for this facility as given by Mortensen (1970)
agrees reasonably well with the one for natural rain given by Fyall (1970).
i Based upon this distribution and a terminal drop velocity of 6 m/sec, also
from Fyall (1970), which gives a concentration of 2.9% gn/n3, the follow-

F ‘ ing distribution of drop sizes was computed:

Drop Dianeter (mm) Number in 1 m°

0.25 - 0.75% 672

0.75 - 1.25 305

1.2 - 1.7% 241

i 1.75 - 2.25 145
2.25 - 2.75 74

4 2.75 - 3.25 32
3.25 - 3.7% 15

! 3.75 - 4,25 5

; 4.25 - 4,75 2

i 4.75 - 5.25 1

1492 drops/m3

The base area of the radome times the length of the rainfield gives a

volume of 3.54 m° or 5147 drops in its path. Considering the radome as

conical, its surface area is 155 in.2. This gives an average of 33 impaqys
per square inch if all drops in the radome path were intercepted. As the
number of craters was estimated to be 31 per square inch, it is concluded
that practically all drops in the radome's path produced craters. This

was also the conclusion reached by Walton (1967), who stated that an
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examination of the radome revealed that the number of drops impacted
corresponded to the number of drops larger than 0.5 mm. It is also in
agreement with the anpalytical conclusions reached in Section II of this
report which indicated that for all velocities of this radome between
2000 and 10,000 ft/sec, the maximum deflection of the raindrops would

be less than one-half degree.
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SECTION VII.

PLANNED FUTURE INVESTIGATIONS

The research described in this report will be extended in several

ways. These are described below.

é The Motion of Raindrops in a Hypersonic Shock Layer

* First, calculations will be carried out for blunt-nosed (spherical)

1 vehicle shapes. Since the shock wave is detached from the body surface

{
‘ , e e wm:f’?ﬁ,&:m‘ﬁﬂg

in such cases, one would expect that the effectiveness of the inter-

3 phase drag force in slowing down the drops before they strike the

E vehicle surface would be greater for a spherical shock layer than for
a conical shock layer. This, in turn, would lead to less likelihood
of damage to the radome. The computations described above will deter-

mine what, if any, lessening of susceptibility to rain erosion damage

would be produced by nose blunting so that tLis could be weighed
i against other factors in missile design.
Second, the interphase drag and heat transfer laws will be modified

to apply to the case of moderate void fractions (the void fraction is

the ratio of the air volume to the total mixture volume). All previous

work has been restricted to the case of large void fractions. The sen-

T

sitivity of the solution variables to the value of the void fraction

will be found and, if necessary, the appropriate correction factors to

the large-void-fraction solutions will be determined.
Third, extensive calculations will be carried out to determine the

sensitivity of the results to the distribution of drop sizes present

; within the mixture. Previous work has assumed that the exact size dis-
é tribution is unimportant and .hat the real rain field can be replaced,

for the purposes of analysis, with a fictitious rain field in which all
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drops have the same size. This effective size is usually taken to be
the average size of the actual drops. The limits of validity of this
assumption will be found and, if necessary, correction factors will be
determined.

Fourth, an aitempt will be made to obtain approximate closed-form
solutions for conical and spherical shock layers. Such formulas would
allow rapid estimation of the solutipn variables for design purposes.
The trends of the numerical data obtained thus far suggest several
possible approximations that would simplify the basic differential
equations enough to make possible analytical solutions. The limits
of validity of the approximate solutions will be determined by compari-

son with the exact numerical results.

Cratering and Erosion Mechanism

Research performed under the present contract has shown that the
jet-impingement model is a very useful tool in the investigation of
high-velocity impacts of drops against solid targets. This model will
be improved as described below.

An important ir.gredient of the model mentioned above is the distri-
bution of the pressure applied to the target by the impinging drop.

Past work has employed pressure distributions obtained by fitting curves
to experimental data found from dbservations of jets impinging on rigid
surfaces, A better pressure distribution will be found by extending

the work of Huang (1971) who investigated the two-dimensional low-speed
impact of drops of various shapes on a rigid plane by numerical solution
of the hydrodynamic partial differential equations governing the motion

of fluid in *he drop. Huang's method will be applied to both normal and
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oblique high-speed impacts on elastic surfaces. The thermal energy
equation will be solved together with the hydrodynamic equations.

This will allow the calculation of heat transferred to the target.
This is expected to be important for high-speed impacts. The boundary
conditions at the target surface will be modified by a procedure simi-
lar to that used by Lee and Cheng (1971) to account for the elasticity
of the target. The pressure distributions thus obtained will then be
used in the jet-impingement model to obtain further information about
crater depths and sizes and the influence of various factors on these

quantities.

Fractures Resulting from Stress Waves Generated by Liquid Impact

Equations have been derived and computer programs have been written
that will enable values of stress in an impacted target to be computed
if the pressure-time relationships on the surface are known. The pres-
sures created by both the drop impact and the lateral jetting action
are considered in the computation of the stresses resulting from the
generated stress waves. The reflections of these waves from the inside
surface of the radome are also taken into account. This program will
also compute the stresses resulting from any number of multiple impacts
at any time intervals and on both normal and inclined surfaces.

When a rain field is described (i.e., inches per hour, duration,
and drop size distribution) and the radome profile, thickness, and
velocity are specified, it will be possible to completely determine
the probable damage. Before this can be done, however, the items men-
tioned in the previous paragraphs such as the size and motion of drops
behind the shock wave, the effects of aerodynamic heating, the distri-

bution and duration of pressure applied to the target, and the fracture
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criteria for the radome materiall must be determined. "These are some

| !
of the important topics that will be investigated during the coming year.

. \ ‘ .
Experimental and Quasi-Theoretical Investigations

‘It appears that perhaps the éreatest insight ihte'the'mechanics of
rain erosion may be~ga1ned from experzmental and seml-emplrical investi-
gations. Experimental résults are certainly necessary to establish the
valzdlty or llmitthons of' theorefical dnalyses. Although only prelxm-
inary experimental work' has been done to date, the results are 1n qual-
itative agreement with the theory'of fracture that has been proposed.

This theory does not agree with those proposed by other investigafors,
but it is the only ene that explains all types of fractures thet hiave
been oﬁserved to result from liquid impact. Further work will be per-
formed to g;ve quantitative reeulte. Although emphasis is to be placed
upon daﬁage to,ceeamic type radome materials, Lucite islbeing used as
the standard material in some of‘these studies becauée its prépebties
are well known, because of its tvansparency and easy determznntlon of
internal damage, '‘and becaese 1ts surfaces ‘can be artiflclally roughened
to determine the effect of surface conditions on the lateral jetting |
and resulting surface ﬂressubes. Once the dietripution and duration of
the preésures on the target are determined for vaviqus.pa?ameters, tbese
can be applied to other materials to determine the‘damages that would be
caused. |

A liquid jet accelerator has' been constructed to simulate raindrop

impact. The first shots gave velocities of épproximately 2000 ft/sec.

It is believed that by making modifications in dpsign; the velocities 'can .

be at least doubled. It will also be possible to accelerate two drops

1
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simultaneously so that the effects of multiple imvact can be determined
and compared with the theoretical results. By the use cf other liquids
such as mercury it will be possible to simulate higher impact velocities.

A few liquid impacts of slip-cast fused silica targets have been
made. The craters seem to be very similar to those formed during rocket
sled tests.

A profilometer has been constructed with which measurements of the
craters can be made. A series of experiments will be performed from
which data the drop velocities and sizes can be correlated with cruter
characteristics such as volume and depth for various angles of impact.
These experiments will also include the effects of varying the temper-
ature of the targets. The effects of surface roughness will also be
investigated.

It seems that the effects of the reflected stress waves from the
inner surface is very important. Spallation may present a serious
problem if thin-walled radomes are used. Detachment of radome material

from the inner surface at high velocities would destroy equipment.

" Water impact experiments show that the rear surface of the target often

suffers a greater damage than the front surface. Experiments have also
demonstrated the importance of having a smooth and uniform rear surface
as small defects such as scratches and voids greatly weaken the target.
Another phase of the proposed experimental program is to impact the
targets with small solid particles. There are at least tliree reasons for

this: (1) In flight, aircraft and missiles encounter foreign bodies

‘other than water drops; (2) To aid in a more complete understanding of

the mechanics of the collision process; (3) To examine the merits and

limitations of simulation techniques in which solid particles are
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substituted for water drops. The last of these is perhaps the principal
reason for including these experiments in this program. A light-gas gun
with the capability of accelerating drop-size plastic projectiles to
velocities as high as 40,000 ft/sec has been constructed at Temnessee
Tech. Lead and polyethylene spheres have been used to simulate rain
erosion. Plasticine (modeling clay) is said to most closely resemble
water flow characteristics on impact.

A ballistic pendulum will be used to determine the energy and
momentum transfer to the target. The momentum multiplication factor is
a very important value to be determizued for both normal and oblique
impacts. Other types of instrumentation will include the use of strain
and thermal gages, interferometry, photoelasticity, etc. as needed to
identify the important parameters that are critical to the radome's

performance in a rain environment.
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FIGURE 4.3 COORDINATE SYSTEM




o

116

Ya

FIGURE 4.4 STRESSES

o, ,
\ _
X A o
1 ] \‘
W
\
& O o,
"\
%,
o
It
%
=
vy
4 ;.74_
Z.
o, T
Tpn
T
Ty

q..___——t

0,

CREATED BY SPHERICAL STRESS WAVES

e —— Mt o e e




TR

MAXIMUM TENSILE STRESS (O°)

300

200

100

| K |

S

- *"""""'"""_r
© X
1
i
x

_ - —MAXIMU STRESS LLONG
Z- AXI5E (X=0)

\__IMAXIMIM] N
STRESS

- IMPACT AXES .

——-—J_~K_——b\ . ¥J ammmm——

\ , I
MAXIMUM |STRESS RESULTING =
FRQM SINGLE IMPAQT

o) 0.4 0.8 12 1.6 2.0

DISTANCE BETWEEN IMPACTS (2X/T)

|
i

FIGURE 4.5 MAXIMUM TENSILE STRESS DUE TO REFLECTED WAVES
RESULTING FROM SIMULTANEOUS IMPACTS

24




SLOVAWI N33ML138 3WIL CNV 3DONVLSIO
NOdN SS3YLS WNWIXVYN JO ION3AN3d3A 9P 3HNOIS

{L¥) SLoveni NIEMLIG INLL (19) Sowm wymum 3ms {39) SLOVaNI NIIMLIE WL
ofl s 001 sio  Ol0  w3v oo g1 001 $L0 080 930 o $21 001 6.0 OS0 6§20 o
o ) o
:ﬁ [ ]} ‘ e 3 L]‘._ — } ez "
J ot ~ Y L] m 3 m
Z I\ = ; :
8 > 82 m . o &
/ o™\ 4 - oo X1 m
4Gt oem \ 3 \ 3
N oM@ \ oo M
. L -lm. - - v I_& -l 190-X \/\/ m
r— ot VA oai N\ AN szt &
i D Faoteng Hivo-ad/ N N
-l ool LED+exs
1 SOvax o%i d 1/ ot
|- F1) 821 $4i
(19) Siowem NIIALDS IniL (1Y) SLO%M NIIMLIE 3N (1V) SLOvdM NIZWL3E INL
$31 001 MO 040 €30 O €1 001 @O 050 §20 o §21 001 S0 050 RO o
] o 4 [+] ] o]
r ¥
1 4 4 iT ]
. m 1] o L 0s E . s¢
] x w M £
v_d o6 m % @ m oot m
e— . r—— ——— m ———
e o / 00! m s
m ] el " N / m
Lt — / - - \
- \ > = &
- - 120-eX; a
/ A L) - A\ on ¥ su_
wou) o.ju/ | o..yzb// 0sx {2
U i ’ . p 1Focens sy oo2
4 W0 /
] s22
- 003 22 052
L. e S e o e o et - - T e )




- 119

B h o t%%ﬁ%%ggwgsgfz [ NV

FIGURE 4.7 MULTIPLE STRESS WAVE SOURCES




e,

Frea T Susfact S |

Rean svaract Py

3} NN

te) CONPUTED

(b) OWMPUTLD

f4t IWIERVTD

(a) Ty

(e) . MPUTLD

FIGURE 4.8 FRACTURES IN PLACTIC TARGETS FOR

VARIOUS IMPACT PARAMETERS

e e L L T L R



»-

i

1 "’ \\\\\\\'\

= \ )
| I\ \\\\]

SNUG FIT-—-1

FIGURE 5.1 WATER JET ACCELERATOR




FIGURE 5.2 IMPACT RANGE




1<

CONTINUED

FIGURE 52 -




L3I0 YILYM QI3dS-HOIH €79 3¥nOlJ

1224




FIGURE 5.4 WATER IMPACT DAMAGE TO LUCITE TARGETS
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FIGURE 6.2 RADOME AND CLOSE-UP OF CRATERS
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APPENDIX 1

by
H. H. Bennett, D. E. Re’ 101ds, and J. C. Saelcer

The purpose of this appendix is to present z closed-form approximate
solution for the drop-phase flow field on thin wedges and cones. Such
solutions are useful in that they allow designers to make rapid estimates
of the flow variables without having to engage in extensive numerical
calculations. The nctation is the same as in section II of the body of
this report unless otherwise stated. For simplicity in the analytical
work attention is restricted to the linear drag law and tangential and
: normal coordinates, x and y respectively, are used.

In dimensionless form the governing equations are
((Obs + n)jQpr),s + ((ebs + n)jQpGp),n =0
FPFP,S + Gpr,n = ay(1 - Fp)
FpGpsg + GPGp’n = -a,((in/s) + Gp)

1 FPHP’S + GPHP’D = al(Hs - Hp) (A1)
N where (Ala) results from balance of mass, (Alb) from balance of tangential
linear momentum, (Alc) from balance of normal linear momentum, (Ald) from
balance of energy, and the dimensionless variables are defined as in (2.9)
and (2.10). Defining a stream function such that

= - j = j
u’p,s (9b8+n) QPGP’ u"p’n (Gbs+n) QPFP (A2)
and converting the governing eguations to independent variables wp and

Z = n one obtains

GPFP 'y

al(l - Fp)

GPGP,Z = -a, ((3z/s) + Gp)

GpHys, = ap(Hg - Ho)
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A-2

GPS’Z = E‘p
= - 3 -
QP = -1/((8s + z) G?s’¢b) (&3)
Using (A2) evaluated on the shock a relation between the origin of ezch
Streamline z s and the stream function can be fowmd. This was used to

rew>ita (A3e) as

- - _a )] 3
Qp = (95/(65 Bb)) (zs/(ebs+z)) (lles,zs) (24)
The appropriate boundary conditions on the shock z = z are
Fb =1, GP = -Ob, Qp =1, Hp =1, s= zS/(Gs—eb) (45)

It was first attempted to solve (A3) and (A%) by a perturbation
method for small a,- The first two approximations we~e found but the
labor involved in computing further approximations was so extensive that
this was not done. The second approximation was found to be valid only
for @y << 1. Thus the perturbation scheme was abandoned. Instead it was
decided to linearize the nonlinear terms in (A3) using the values of GP
and s on the shock. When this is done the linearized equations have the
form

~9pr,z = ul(l - F )

P
-el’,Gp’z = -al(j(es-eb)(Z/Zs) + Gp)
-epr’z = aQ(HS - ‘{p)
'ebs,z = FP (AG)

The solutions to (A6) satisfying the boundary conditions (A5) are easily
found to be

F =
p 1l

Gp -ebexp(-(al/eb)(zs-z)) + j((es-eb)/zs)((zs

+ (8, /a1 Dexp(-(0,/8,)(2.-2)) = (z + (8, /0;)))
Hy = H_ - (H_-1Dexp(-(a,/8,)(z,~))

s = (zs/(es-eb)) + ((zs-z)/eb) (A7)
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Using (A7) and
s,zs = os/(ab(es-ab))
the dimensionless density Qp can be easily evaluated from (A%).

Figures A.1 and A.2 show comparisons of the approximate results
with the numerical solutions obtained for slender wedges and compes in
sectior II. The density ratio is € = 0.1 for this data. The quantities
chosen for comparison are the normal velccity and the density of the
drop phase evaluated at the vehicle surface. It can be seen that for
small and moderate valves of 2y the approximate solutioa i> in good
agreement with the numerical results (for the wedge the numerical results
are identical to the exact analytical solution given in section II). For
a, = 10 the approximate solution begins to overestimate the impact veloc-
ity end underestimateé the density. This could probably be corrected by
modifying the linearizing factors but this was not attempted in the _
present work.

The agreement between the exact and approximate solutions appears
to be satisfactory for small and moderate values of the drag parameter
a,. It appears that a similar procedure could also be used to obtain

approximate results for general shock layer problems.

(48)
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