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ABSTRACT

Fortran digital-computer routines to calculate absorption loss for radio.
wave propagation in the troposphere have been developed, and machine
plots of radar attenuation asia function of range have been made for a
standard atmosphere, over thý; frequency range 100 MHz to 100 GHz. The
tropospheric noise temperatuire has also been calculated and plotted. This
work is an updating of earlier calculations that were less accurate, especially
in the frequency range above 10 GHz. Separate curves for the oxygen
and water.vapor components of the absorption loss are provided in addition
to the curves for total loss; this allows the loss for values of water-vapor
density other than the standard 7.5 g/m 3 to be found, by applying a simple
muliplicative factor. The computer routines, listed at the end of the
report, have also been used as part of a computer program to calculate the
inaximum range of a radar system.
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RADAR/RADIO TROPOSPHERIC ABSORPTION AND
NOISE TEMPERATURE

INTRODUCTION

The objective of the work reported here was to develop a computer program for
calculating the absorption of radio waves by the oxygen and water vapor of the earth's
lower atmosphere - the ,Ionionized region known as the troposphere. Resulting calcula-
tions have been used to produce machine-plotted curves of attenuation as a function of
frequency and other parameters. The requirement that instigated this work was the need
to know the magnitude of the absorption loss in calculating the maximum range of a
radar. The computer subrcutines to be described have in fact been incorporated into a
larger program that computes radar maximum range (1). However, the results are equally
applicable to radio systems of any type that use the troposhere as a propagation medium

The frequency range considered is 100 MHz to 100 GHz. Below 100 MHz (and
even somewhat above this frequency) tropospheric absorption is negligible. Above 10r, GIz
strong water-vapor resonance lines result in great absorption. this region is not of much
current interest for radar.

The work described updates earlier work begun in 1958, described in various NRI,
reports and other writings (2-8). The original work (2,4,6) resulted in curves plcttcd
manually from manual calculations for frequencies from 100 MHz to 10 GHz. Later
(7,8), the NRL NAREC digital computer was used to recalculate the absorption and noise
temperature- more exactly and to extend the frequency range to 100 GHz. However in
that work (as in the earlier work) the "centroid approximation" of Van Vleck (9) was
used to calculate the oxygen absorption; hence the results were not accurate in and near
the 60-GHz oxygen resonances, that is, in the region from about 50 to 70 GHz. Also,
the so-called residual ahsorption below 100 GHz due to strong water-vapor resonances at
higher frequencies was approximated by a formula suggested by Van Viick (10), but the
constant factor used has subsequently been shown to give absorption values that are too
low.

In the current work, presented in this report, the oxygen resonances are explicitly
an. individually included in the calculation, so that the re.ults are valid in the region
from 50 iu 70 C!!z. The cq,,mti-nn uisd .are thos (-f MW-ký and l~illey (11) as slightly
modified by Reher, Mitchell, and Carte- (12). Improved numerical integration formulas
are used for the cumulative-absorption and noise-tempe-ature calculations. An improved
expression is used for the residual effect of the millimeter-wavelength water.vapor
resonances, with a constant based on experimental results near 1 00 GHz reported by
Straiton and Tolbert (13). Also a more sophisticated equation for the absorption of the
22.235-GItz water-vapor line, due to Liebe (14), is used. Finally an improved model of
the atmospheric water-vapor content is used. The numerical results of these improved
calculations differ significantly from the previous results only above about 10 Gltz. Below
that frequency the differences are small.
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Many authors have made absorption calculations, and it is therefore pertinent to state
why it is necessary or desirable to publish these of the present report. Among others
the reports and papers of Bean and Abutt (15), Hogg (16), Schulkin (17), Le Fande (18),
and Ulaby and S&raiton (19) may be cited, in addition to those previously mentioned.
This list is not exhaustive; in particular, it does not include all of the work published in
other countries, some of which is referenced by the -'ithvfI- ,ited. The published results
by these authors have been either limited to calculation of the absorption coefficient
(absorption per unit distance) as a function of frequency rather than calculation of the
cumulated absorption along a rry path or limited to calculation of the total absorption
for paths traversing the entire troposphere. Some results are limited to specific frequency
regions or absorption lines. Moreover the curves presented by most other authors cannot
be read with sufficient accuracy to be useful for practical calculations of radio or radar
system performance.

For radar detection-range calculations the absorption between two points within the

troposphere is usually needed, rather than total absorption through the entire troposphere.
This report., and its predecessors, present curves of tile former tylpe (as well as the latter),
with coordinate grids and scales that permit reading valueo to at least two-significant-
figure accuracy. The curves of the present report have been plotted using the NRL Gerber
plotter (Gerber Model 875 automatic drafting machine) and special computer plotting
subroutines. The coordinate grids as well as the curves are plotted in a single operation,
to avoid registration errors. The plotting accuracy is of the order of 0.001 inch on the
original plots, which have been photographically reduced to about 1/3 to 1/5 as large for
reproduction in this report.

To the author's knowledge results published by others based on computer calculation
have not been accompanied by listings of the computer programs used. The programs
previously written for the NAREC computer, on which the author's previous reports
were based, were written (by Maurice Brinkman, of the NRL Research Computation
Center) in the NELIAC language, which was never widely used and is no longer much
used at NRL. The newer routines, described in this report, have been written by the
author in Fortran for the NRL CDC-3800 computer. Complete listings of these routines
will be given in the last section of this report. Although versions of the Fortran language
used with other machines may difier slightly, ttie differences are usually minor, so that
the routines can be readily adapted to any computer that has a Fortran compiler.

Another feature of the curves presented in this report is the separation of the oxygen

and water-vapor absorption losses, in addition to curves showing the combined absorption
loss. The combined results are for a "standard" atmospheric water-vapor density of 7.5
grams per cubic meter. The oxygen component of absorptiii v. relatively stable and
insensitive to day-to-day changes in the atmosphere. For various atmospheric conditions
however the water-vapor conte:-' may vary between roughly 2 and 20 grams per cubic
meter. The water-vapor absorption is (except for a small an : gnnerr2- :.y ik 'ificant non-
linearity) proportional to the water-vapor density, Consequently separate oxygen and
water-vapor curves allow the water-vapor component to be adjusted for any water-vapor
content other than the standard 7.5 grams per cubic meter by simply multiplying the
7.5-gram absorption value by p/7.5, where p is the actual gram--per-cubi c-meter water-vapor
content. This corrected water-vapor absorption can then be directly add-ed to the oxygen
absorption to obtain the total absorption.
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The curves presented for cumulative attenuation along a ray path are for thle radar
case of two-way traversal of thle path. Conse-quently the decibel attenuptions are exactly
twice as great as they would be for thle radio-UommunliCation) case of one-way p~ropagationi.

The curves can 1)0 used for one-way systems b~y simp~ly taking half of the decibiel at tevtat ion

values shown for the radar case.

ABSORPTION COEFFICIENT FOR OXYGEN

As mentioned in the Introduction, the absorption coefficient for oxygen has been
calculated using equations given by Meeks aind Lilley (11), as slightly modified by Reber
et al. (12). The theory was originally due to Van Vleck (9), later workers hive refined
some of thle details. In particular Meeks and Lilley have formulated a refinement of thle
dependence of the line-breadth constant (which will here be dlenoted Yf) oil altitudle
(prc'~sLrv and temperature), and Reber et al. have made a slight further refinement of

this factor.

The Meeks and Lilley equations are a summation of the absorption over maily oxygen
resonance lines in thle vicinity of 60 Gli-z. These resonances occur for odd-integral values
of the rotational quantum number N, that is, for N = 1, 3, 5------. .It has been determined
(11) that the contribution of terms above N = 45 is negligible; hence 45 is thle largest
value included in the summation, For each odd value of N there are two resonance
frequencies, denoted f and fN-- Thiese resonances are listed in Table 14 as given by
Meeks and Lilley - The absorption at an arb~itrary frequency f is the sumn of contributionls
from each of these collision-broadened resonance lines, p~lus a nonresonant component. .
The broadened resonance lines are assumed to have shapes defin(-d by thle Van-Vcevk-
Weisskopf formula:

FN± (f) + - -- ) Tlf2 1
-f f)2 + (.Af)2 O~N- + f72 +(f) 

1

The nonrcsonant contribution is of the form

-ifF0 = (2)
f2 + (Aýf) 2

The termis sumnied over odd values of N a-re of tefurm

A-F 2  FN 2 2 -E IkT (3)AN FN M+ F -- N- + FOPNO) V

whereJ
2 N(2N +3)(4
N+ N +1 (4

2 (N +-1) (2N- I)
N - N(5)



4 L. V. BLAKE

Table 1
Oxygen Resonance Frequencies

N fN÷ (GHz) fN- (GHz)

1 56.2648 118.7505
3 58.4466 62.4863
5 59,5910 60.3061
7 60.4348 59.1642
9 61.1506 58.3239

11 61.8002 57.6125
13 62.4112 56.9682
15 62.9980 56.3634
17 63.5685 55.7839
19 64.1272 55.221-1
21 64.6779 54.6728
23 65.2240 54.12941
25 65.7626 53.5960
27 66.2978 53.0695
29 66.8313 52.5458
31 67.3627 52.0259
33 67.8923 51.5091
35 68.4205 50.9949
37 68.9478 50.4830
39 69.4741 49.9730
41 70.0000 49.4648
-13 70.5249 48.9582

45 71.0497 48.4530

2 2(N 2 + N 4 1)(2N + 1) (6)

NNO N(N + 1) (

and

EN!k = 2.06844N (N + 1). (7)

The complete expression for the absorption coefficient is

oz(f, p, T) = CpT- 3 f2 >- AN (8)

N

where D is the atmospheric prosgure and T is the al,.-ooh:tc tempcrature. For f anid L, III
gigahert4, p in millibars, T in degrees Kelvin, and 0 in decibels pir kolonmeter, C = 2.0058.
For a in decibels per nautical mile, C = 3.7148. (One nautical mile is 1852 meters
exactly.)

Van Vleck (9) estimated that Af was approximately 0.6 G(1z at 1 atmosphere pressure

and standard sea-level temperature and that it was proportional to pressure and inver.-,ly
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proportional to the square root of absoluto temperature. Later workers have suý.gested,
based on experimental evidence, that the dependence on pressure and temperature is more
complicated. The Rebet MitchM11-CarL•r (12) modification ur the Mtcks-Lilley (11 ) model
for this dependence is given in ternis of altitude h above sea level:

Af = g(h) (P/P 0 ) (T 0 /T), (9)

where Po 1013.25 millibars (760 torr), To = 300'K, and

g(h) = 0.640, 0 < h < 8 km, (10)

g(h) = 0.6,10 + 0.04218(h -- 8), 8 < hi < 25, (11)

g(h) = 1.357, h > 26 km. (12)

These are the equations and constants that have been coded in Fortran in ,ubroutine

ALPHA, listed in the last section of this report, for computation of ALPH02, fhe oxygen
absorption coefficient.

ABSORPTION COEFFICIENT FOR WATER VAPOR

The absorption due to water vapor in the frequency region below 100 GH,. can be
separated into two components, one due to the water-vapor resonance at 22.215 GHz
and the other due to the residual effect of the many resonance lines above 100 GHz. The
absorption coefficient due .o the 22.235-GHz line, which will be denoted a22, has been
computed from equations given by Liebe (14). The following equation is a combination
of his equations 2a, 6, 7, and 8:

C122 = 10 lo(10 e) Sop ; e2 . 4 ( 3 0 T F dBlkm, (13)

where the symbols are defined as

c = 2.998 X 105 km/sec,

SO = 13.92 tiz/torr,*

pw -partial pressure of water vapor (torr),

T - temperature (degrees Kelvin),

F - line-shape factor.

As was done for oxygen, F is taken to he the Van-Vleck-Weisskopf function (here includ-
ing the factor f/fr):

"The theoretical value (14) is 14.33 llzltorr, hut the author has been advised by Dr. Ieicbe (private
communication dated June 6, 1972) that thi value involves approximations and that the experimentally
determined value 13.92 it probhably more accurate
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! ~~~Fr • A); (-fr--f)2 +(A1f)2 ( f +f)+ (14)

where fr = 22.235 GHz.

The equation given by Liebe for Af is

Af = 17.99 x 10-a 'Pw 1[ 300/T) + 0. 2 0 8 4 6 (Pt, Pw)] (300/T)')63 (15)

where again pw is the water-%apor partial pressure in torr and Pt is the total atmospheric
pressure in torr; T is, as before, the temperature in degrees Kelvin. The atmospheric pressure
p in millibars is given by

p = 1.33322 Pt, (16)

and the water-vapor partial pressure in torr is given in terms of the water.vat)or density p
* in grams per cubic meter (for atmospheric concentrations) byr

P, = pT/288.75. (17)

Combining all of the numerical constants, with f expressed in gigahert/, p in n1W.iars,
E nd p, in torr, results in

a = 2.534 x 10-3 Ifl'p (300,'T)' 1 2 e 2 1 444 -1 U, & F] dB,'km (18)

* and

= 17.99 x 10-3 {pw 1(300.T) + 0.20846 (0.75 p -o nw)] (3001T)()it}- (19)

These are the equations and constants that are Fortran c((led in Subroutine ALPHA
for the computation of AT,P1122, the absorption coefficient for th,, 22.235-Gllz water-
vapor line, except that th,. constant 2.53.1 in Eq. (18) has been increased to 4.693 to
give the absorption in decibels per nautical mile. The water-vapor parameter actuall-
employed in the model atmosphere is the water-vapor density p (grams Ier cubic meter)
rather than the partfl pressure in torr; it is converted to partial pressure hy Eq. (17).

The residual effect of water-vapor al)sorption lines al)ove. 100 (Glz has heen asSumed,
following Ulaby and Straiton (19) and others:*

arcs = CR (P/P0) (P't0) (TO/T)'/ 2 (f,;f 0 12 (20)

where p is the water.vapor density (grams per cubic meter), p is the atmospheric pressuire,
T is the temperature, P0, P0, and To are the zero-altitude values of p, p. and T, and f0
is a reference value of f. The constant C(R van be taken from oxperimental results at any

SUlaby and Straiton dttributc this exponent For tili depeRndunce on ten'lwratur, tt, V.in Vh,.c', al Atlot h
it is not givenl explicit y in Van Vleck's papt-r oin water-valx)r absiorption (10). It is iprobabtly dt'duci d
from the footnote on page 420 of his paper on oxygen absorption (9).
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suitable frequency f0 . Based on measurements reported by Straiton and Tolbert (13),
the value CR = 0.4 dB/km at f0 n 100 GHz has been adopted here. For p in millibars,
taking Po = 1023.23 millibars*, To = 288.16'K, p0 = 7.5 grams per cubic meter (the
value for the standard atmosphere which will be described in a later section), and f0
100 GHz, this formula becomes

ores = 7.347 X 10--3 ppT-5/2f2 dB!km. (21)

This is the expression that has been coded in Fortran for the absorption coefficient (named
:ALFRES in Subroutine ALPHA) due to the residual effect of the water-vapor lines above7

100 GHz except that the constant 7.347 × 10-3 has been changed to 1.361 X 10-2 to
give the absorption in decibels per nautical mile.

DISCUSSION OF ABSORPTION-COEFFICIENT
FORMULAS

The total absorption coefficient of the troposphere is the sum of the oxygen and
water-vapor coefficients, and the water-vapor coefficient is in turn the sum of the coefficients
for the 22.235-GHz line and the residual effect of lines above 100 GHz. Of these
components of the total absorption, the one that has the poorest theoretical basis is the
residual effect of the above-100-GHz (niillimeter-wave and infrared) water-vapor resonances.
As has been well known for some time '10,14,18) the application of the theoretical line
strengths and the Van-Vleck-Weisskopf collision-broadening formula, Eq. (1-4), give absorp-
tion values that are too low by a factor of at least 5. Other line-shape formulas have
neen proposed, but no fully satisfactory theoretical solution of the problem has been
advanced, to the author's knowledge. Consequently the empirical formula and constant
used here are believed to be as good a solution as can be applied at present.

The use of the Van-Vieck-Weisskopf line-shape formula (20) for oxygen and for the
22.23F GHz lines is similarly suspect for absorption prediction at frequencies far removed
from the resonance free: encies. Hlowever this matter is not so serious for these lines,
because at frequencies far removed from the 22.235-GHz line its contribution is dwarfed
by the contributions of the oxygen and higher-frequency water-vapor absorption lines
and because the oxygen-line contributions at frequencies above about 90 Ghz are similarly
dwarfed by the contributions of the millimeter-wave water-vapor lines, except in a very
narrow region about the isolated oxygen line at 118.75 GHz. The oxygen absorption is
also small compared to the water-vapor absorption in the near vicinity of the 22.235-GIlz
water-vapor line. At frequncies well below the z2.Z,35-GHz line the nonresonant
component of oxygen absorption is the dominant factor. No criticism of the shape factor
for this component (Eq. (2)) has been found in the literature by the author.

As mentioned in the Introduction, the results for oxygen and for water vapor are
presented in this report separately as well as in combination, so that correction to the
latter can he made for any desired deviation from the standard 7.5-gram-per-cubic-meter
water-vapor content. It was there stated that a simple multiplicative factor p/ip) could be
applied, where f) is the desired water vapor density and p0 - 7.5 is the standard value.
AS Eq. (19) shows, this is not quite true; there is a small nonlinear dependence of Af on

*This value or p, is the total prtssure, consisting of the dry-atmosphere standard pressure of 1013.25
millibars and the water-vapor partial pressure of 9.98 millibars corresponding to p = .5 g/m

3
.l
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p (through p,) in addition to thi linear explicit dependence of a on p, Eq. (18). A
similar slight nonlinearity would appear in the residual contribution of the higher-frequency
lines if an exact expression were used, but again the nonlinearity is slight, and in view of
the empirical nature of Eq. (20) it was not thought worthwhile to include it.

MODEL OF THE ATMOSPHERE

The absorption coefficients, for which formulas have been given in the preceding
sections, describe the rate at which signals traversing an atmospheric path will be attenuated,
as a function of the pressure, temperature, and water-vapor density. To find the altitude
dependence of the absorption coefficient, it is necessary to have a model of the altitude
dependence of pressure, temperature, and water vapor in the atmosphere.

Pressure-and-Temperature Model

The mode! adopted here for the pressure p and temperature 'r of the standard
atmosphere is the U.S. extension to the ICAO Standard Atmosphere (21); this is, for
the altitudes considered here (up to 100,000 feet or 30.48 kilometers), the same as the

ARDC model atmosphere.

The equations describing the temperature (degrees Kelvin) and pressure (millibars)

of this atmosphere in terms of the geopotential altitude hg (meters) are*

T = 288.16 - 0.0065 h " < 0j hg <• 11000, i22)

p = 1013.25 (T1288.16)IJ

T = 216.66 ( 11000 < hg < 25000, (23)

p (226.32,'T) exp [-3(hg - 11000)]f

T = 216.66 + 0.003 (hg -25000 )J25000<
250 h• < 47000. (24)

p = 24.886 (216.66/T)'y

where

a = 5.2561222,

S= 0.034164794

y = 11.388265.

The relationship between geopotential altitude hg and geometric altitude h, is

hg = rha/(r + ha), (25)

*Reference 21, pp. 6 and 7, Eqs. (13) and (Vi).
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where r is the radius of the earth, taken to 356,766 meters. This relationship, which
is Eq. (10) oi Ref. 21, is valid for the altif nge nonsidered here.

The absorption losses were computed in tecrms of akitude in feet and decihels per
nautical mile, to conform to the measurement units employed by Navy radars. The con-
version from feet to meters is 1 foot = 0.3048 meter exactly; the conversion from nautical
miles is 1 nautical mile = 1852 meters exactly.

This model of the atmosphere as incorporated into the absorption-coefficient computer
subroutine ALPHA, as a table of values at 75 specified altitudes, in the form of Fortran
DATA statements. The pressure is given by the dimensioned identifier PP and the tempera-
ture by TT. The 75 altitudes (hf) range from 0 to 100,000 feet in steps Ah that are
graduated according to the following scheme:

Ah = 100 ft, hf < 2000 ft,

Ah = 1000 ft, 2000 < hf < 30000 ft,

Ah = 2000 ft, 30000 < hf < 70000 ft,

Ah = 5000 ft, 70. 1,0, < hf < 10000 ft.

This graduation provides more closely spaced points at low altitudes, where absorption is
greater and therefore where more accurate interpolation of the tabulated values is dgsirable.
The interpolation is provided by the numerical integration subroutines used in computing
the cumulative absorption. As will be discussed in detail later, the integration is done by
a modification of Simpson's rule, so that the interpolation is more accurate than would be
obtained by using the trapezoidal rule (linear interpolation).

Water-Vapor Model

No accepted standard profile of water vapor has been universally adopted. The one
used here is taken from a report by Sissenwine et al. (22). Their values for the water-
vapor density up to 32 km (104,987 ft) ar,, given in Table 2. As shown, the vapor density
is specified at 2-kmn intervals, and the surface value is 5.947 g/m3 . The values correspond-
ing to the 75 altitudes specified in Subroutine ALPHA were found by interpolating. These
value,- were then multiplied by the factor 7.5/5.947 = 1.26114, to convert them to the
surface water-vapor value of 7.5 g/m 3 that seems to have been adopted as a standard by
workers in the field of water-vapor absorption. The interpolation was done by use of a
special computer subroutine by a method equivalent to using a French curve on a plot
of the data points. This method is described (in terms of curve plotting) in an NRL
Memorandum Report (23). The resulting values of water-vapor density are incorporated
in Subroutine ALPHA in the form of a DATA statement for the dimensioned identifier RR.

Subroutine ALPHA also has a COMMON statement containing a variable named
RHOFAC. This quantity is set equal to 1 in a DATA statement, but may be set to other
values by use of the COMMON statement in the main program or in another subroutine.
All the values of water-vapor density in the model atmosphere are multiplied by RIIOFAC
in Subroutine ALPHA. Consequently if for example calculations of the attenuation and
noise temperature for a surface water-vapor density of 15 g/m 3 are wanted, the desired
rps•ilt. will he obtained by setting RHOFAC = 2.
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Table 2
Midlatitude Mean Water-Vapor Densities*

Altitude (kin) Density (g/m 3 )

0 5.947 X 100
2 2.946 X 100
4 1.074 x 100
6 3.779 x 10-1
8 1.172x 10-1

10 1.834 x 10-2
12 3.708 X 10-3
14 8.413 X 10-4
16 6.138 X 10--4
18 4.449 X 10-4
20 4.449 X 10-4
22 5.230 x 10-i
24 6.138x 10-4
26 7.191 x 10-4
28 5.230 X 10-4
30 3.778 x 10--4
32 2.710 X 10-4

"From Ref. 22, Table 3.

This procedure may result in vapor densities that exceed the saturation values for
the temperatures assumed. However this is probably not a serious violation of realism.
It means that the temperature values should also be adjusted when the water-vapor density
is increased significantly. But since the water-vapor attenuation depends somewhat weakly
on the temperature, the inaccuracy that results from failure to readjust the tropospheric
temperatures to values compatible with the increased vapor densities is probably slight.

It is noteworthy that p (h) does not decrease monotonically in this mode!. It does
decrease up to 18 kin, remains constant to 20 kin, and then actually increases from 20 to
26 kin; thereafter it again decreases. However, this nonmonotonic behavior is probably
not too significant from the absorption viewpoint, because it occurs at a vapor-density
level that is too small to contribute appreciably to the absorption.

Absorption Coefficients in the Model Atmosphere

The variation of the absorption coefficients at zero altitude in this model atmosphere
for oxygen, the 22-GHz water-vapor line, the residual effect of higher-frequency waier-
vapor lines, total water vapor, and combined oxygen and water-vapor absorptions are
plotted for the frequency range 100 MHz to 100 GHz in Figs. 1 through 5. Figure 6
illustrates the behavior of the absorption coefficients with altitude at several frequencies
in the most-used part of the radar frequency spectrum, from 100 MHz to slightly above
30 GHz. These curves have been machine plotted from computations made with computer
subroutine ALPHA, which is listed in the last section of this report. The plots have been
made in terms of decibels per kilometer to facilitate comparison with other similar curves,
although the curve, of cumulative absorption loss. shown later, are plotted to nautical-mile
scales.
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EQUATIONS FOR CUMULATIVE ABSORPTION

To find the total attenuation along a ray path in the atmosphere, it is necessary to
integrate the absorption coefficient along the path. This path is formally defined by the
following relation between range R (as would be measured by a radar) and height h:

hiC dR '6R(hl) = dhd. (26)

To calculate cumulative absorption along a ray path from the earth's surface to an
altitude h, the bending of the ray path caused by refraction should be taken into account.
This is a function of the ray elevation angle as well as the refractive index profile. The
refraction is significant only at relatively low angles. In principle the refractive index
should be calculated from the water-vapor/temperature profile of the atmosphere. However,
since the refraction does not have a major effect on the absorption, it was decided to take
it into account simply by assuming a standard exponential model of the refractive index,
the so-called CRPL Exponential Atmosphere (24) for surface refractivity Ns = 313,

I given by

n(h) = 1 + 0.000313 e-kh, (27)

L where n is the refractive index and k = 0.00004385 for h in feet.

Taking the refraction into account, from Snell's law the derivative in Eq. (26) is
given bb,

dR n(h) (28)dh ]// n0 c os 0Q -12'

V' In(l - h/ro)J

in which n(h) is given by Eq. (27), no = 0.000313, 00 is the initial elevation angle of the
ray (angle at h = 0 relative to the horizontal), and ro is the earth's radius. (The earth's
radius for the CRPL Exponential Atmosphere is taken to be 6370 kin, :r 2.0899 X 107 ft.)

The cumulative attenuation along this ray path is given by

A(R 1 ) 2 (1 u(h) dh, (29)
0J

in which R 1 = R(h 1 ), a(h) is the absorption coefficient at height h, and

s . 1 dR. (30)

dh n dh

That is, ds/dh is given by Eqj. (28) with 1 substituted for n(h) in the numerator; R is the
distance as measutcd by a radar, along the ray path, and s is the corresponding geometric
distance. The factor 2 in Eq. (29) is used to obtain the radar attenuation, for twoway
traversal of the path.

___ I
_ _ _ _ _ _ _
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The cumulative absorption is calculated in a Fortran subroutine named ATLOSS, which
is listed in the last section of the report. The derivatives ds/dh and dR/dh are computed in
tne short subroutine named DDH; the derivatives are therein named DSDH3 and I)RDII3.

The cumulative integration is performed by a modified Simpson's rule which is

described in an NRL Memorandum Report (25). However instead of the actual subroutine
described in that report an equivalent procedure is programmed in Subroutine ATLOSS.
The method allows the cumulative absorption to be found at each of the 75 ranges (heights)
at which a is specified, rather than only at every other one (half as many), as would
result if the usual form of Simpson's rule were employed.

This integration cannot be performed however at h = 0 when 00 = 0, because then
the integrand becomes infinite. A special technique is used to approximate the integral
in a small region about h = 0 where 00 = 0 (actually, in this case, from h = 0 to h = 200
feet); this technique was described in a paper by the author (26).

Subroutine ALPHA is called by Subroutine ATLOSS for a specified frequency, and
the resulting 75 absorption coefficients o(h) are used to calculate the absorption (using
Eq. (29)) at 75 corresponding ranges (found from Eq. (26)) along the ray path for the
specified elevation angle. These points allow a curve of attenuation in decibels to be
plotted as a function of the range in nautical miles, with frequency and elevation angle
as parameters. Such curves are given for 38 frequencies in the range 100 MHz to 100 GHz
for several elevation angles, as Figs. 7 through 98. Below 1500 MHz only the oxygen
attenuation is plotted (Figs. 7 through 17), since water-vapor attenuation is negligible.
At 1500 MHz and above plots are given for oxygen and water vapor separately, and for the
total attenuation. These curves can bc used for estimating tropospheric attenuation for
earth-based radars, for targets in the troposphere. They can also be used for estimating
attenuation for poit-to-point radio communication when one terminal is earth-based and
the other is airborne (ground-to-air, ship-to-air, or vice versa), by taking half of the plotted
decibel values.

The water-vapor and total-attenuation curves are plotted for the standard water-vapor
density (at zero altitude) of p. = 7.5 g!m 3 . The total attenuation for any other value
of Ps can be obtained by multiplying the decibel value read from the water-vanor curve
by p,/7.5 and then adding the result to the decibel value read from the corresponding
oxygen curve.

Curves of the absorption through the entire troposphere, for oxygen and water vapor
separately and for the total, have also been plotted, in Figs. 99 through 101.

TROPOSPHERIC NOISE TEMPERATURE

The troposphere radiates thermal noise, ind Lhe tropospheric noise temperature as
seen by an earth-based radar or radio antenna is given by the following equation (27):

Tn = 0.2303 a(R) Tt(R) e- 0. 2 3 0 3 1O a(r)dr dR, (31)
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where dR is measured along the ray path (Tn, in degrees Kelvin, is a function of the ray "
elevation angle), Tt is the thermal temperature of the troposphere, defined by the standard
atmosphere of Subroutine ALPHA, and or is the absorption coefficient. (The factors
0.2303 are needed in this equation because a is here assumed to be in decibels per unit

distance.) ]

The previously described modification of Simpson's rule cannot be used for this I
integration, because it is an integration with respect to range (R) rather than height (h).
The height intervals are (within each of the four height regions defined in Subroutine
ALPHA) uniformly spaced, as required by Simpson's rule; but the corresponding range
intervals are not uniformly spaced, because of the nonlinear relationship between range
and height in the space above a spherical earth and in a refracting atmosphere (for all
elevation angles except 90 degrees). Therefore another special modification of Simpson's
rule was devised to fit this situation; it is Fortran-eoded in Subroutine INTGRT.

When the absorption loss is great, as it is at the oxygen resonance frequency for
example, most of the tropospheric noise seen by a ground-based antenna comes from the I
lowest layer of the atmosphere. that is, the integrand of Eq. (31) is large at R = 0 and -
decreases steeply beyond R = 0, going quickly to virtually zero. Because of the extreme
departure of the integrand from a parabolic curve in this circumstance, the Simpson's
rule integration is not accurate. An analytic approximation to the integral in this region
is numerically more accurate than numerical integration of the "exact" expression.
Therefore such an approximation is used for the integration over the first two height
(range) intervals, corresponding to the first 200 feet of atmospheric altitude. The approxima-
tion is derived by assuming that both a and Tt, Eq. (31), are constants within those
intervals. If R1 and R 2 are the ranges at h = 100 and h = 200 feet, then Eq. (31) for
these intervals may be written

=2 ~R1 ke-klkR dR + 2 dR, (32)
lTn T I k 2 e 2

where k1 = 0.2303571, k 2 = 0.2303U2, Tt, is the average tropospheric temperature in the
range interval 0 to R1 , Ttz is the average temperature in the interval R1 to R 2 , and •1
and & 2 are the corresponding average ahsorption coefficients. Integrating this expression
gives

ATn = TtI(I - e-k, R11 + TL2 (e-kRl _ e-k 2 R 2 ). (33)

This is the approximation employed in Subroutine ATLOSS for the first two range intervals.
(The approximation is used whether the attenuation is large or not, because it is equally
accurate when the attenuation is not large.)

The noise temperature is calculated in Subh,,utine ATLOSS, since it is efficient to
calculate it concomitantly with the absorption. The result is reported as the output
parameter ATMP. A p!gt of the resulting values for several elevation angles in the frequency
range 100 NIHz to 100 Gli.-. is given in Fig. 102. This quantity is not computed andI
plotted separately for the o):ygen and water-vapor contributions, because they are not
linearly additive as are the absorption values.



68 
L. V. BLAKE

C)

T i Il I -T r ] C

I 
IA 1 9kl0

I ii' l~i I I

ujI
CD

ICD

CD 
00-

*030 'J3uflUY~dW31 IS0N



NRL REPORT 7461 69

COMPUTER ROUTINES

The Fortran subroutines ATLOSS, ALPHA, DDH, and INTGRT, which have been
discussed in the preceding sections of this report, are listed on the following pages. Their
calling sequences, pertinent COMMON blocks, and definitions of the parameters are as
follows-

SUBROUTINE ATLOSS (FMHZ, ELEV, ATMP)

COMMON/RGA/RG(75), ATTN(3,75)

FMHZ - radio frequency, megahertz (input)

ELEV - initial ray elevation angle, degrees (input)

ATMP - tropospheric noise temperature, degrees Kelvin (output)

RG -- 75 monotonically increasing values of range, nautical miles, along
the ray path from h = 0 to h = 100,000 ft (output)

ATWN - 75 corresponding decibel radar attenuation values (output)
for oxygen (1), water vapor (2), and oxygen plus water vapor (3)

SUBROUTINE ALPHA (FMHZ)

COMMON/PTR/PP(75), TT(75), RR(75), ALPH(3,75)

COMMON/H20/RHOFAC

FMHZ - frequency, megahertz (input)

PP, TT, RR - standard atmosphere values, specified in DATA statements
(available as output via the COMMON block if desired)

RHOFAC - A numerical factor by which the water-vapor-density values of
the standard atmosphere are multiplied. If RHOFAC is not set
to some other value by the user, the value RHOFAC = 1, set by
a DATA statement, will apply.

ALPH(I,J) - the 3-by-75 output array of absorption coefficients. The I subscripts
have the meanings I = 1, oxygen; I = 2, water vapor; I = 3, oxygen
plus water vapor. The subscripts J = 1 through 75 correspond to
the 75 altitudes to which the RG values of Subroutine ATLOSS also
correspond.

SUBROUTINE DDII(H)

COMMON/RRG/REFO, RAD, GRAD, U

COMMON/DRS/DSDH3, DRDH3, AN

Aij
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:H - altitude, feet (input)

FEFO, RAD, GRAD, U - refractive-index profile parameters transmitted from IATLOSS

DSDH3, DRDH3 - ds/dh and dR/dh corresponding to H (output) I

AN - refractive index n(h) at H (output)

SSUBROUTINE INTGRT (HI, H2, Y1, Y2, Y3, AREA)

If X1, X2, and X3 are successive points on the x axis of a cartesian coordinate
system and Y1, Y2 and Y3 are the corresponding y values, then

HI = X2 - X1 and H2 = X3 - X2. AREA (output parameter) is the value of I
the integral:

X3

ý y(x) dx, 
(34)Il I

where y(x) is the second-degree polynomial that passes through the points Y1,
Y2, and Y3. It is not necessary that H1 = H2.

The subroutine listings follow. (Slightly different but essentially the same subroutines

are used in a computer program that calculates the maximum range of a radar; this program
is described Ref. 1.) The lengths of these subroutines (number of memory locations 1
required) are as follows:

Subroutine Name Octal Length Decimal Length

ATLOSS 756 494

ALPHA 520 336
DDH 211 137
INTGRT 112 74

Totals 2021 1041

I4

!I
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7 R6(K+(J.)zRNG

AýT-N(j,K.1)t ATTEN1
AlT7 N(d~, K. 3,1 AT 7 ENL'
AlT.N(J,K+1IzAlTENj * ATIEVN?
GO TO (10#11) ISIG

11 Pn~TD=2..CC*H
RN Ti:C~l. 1*PROD/( SQ R Tr ( P .~n0*S S *'S N
Dz-?=RNG- 0S1
AlTEN3.SRNU@(ALP'4(3.,1 # ALPH(1,J) )
AlTEN2zRNGd(ALPW(2d,1) & ALPH(2,3) )
RNGzRNGi.(RPJ # . PtrU.EWP(-GRAV*H o to

Gv~ T--l 12

AITEP~j1 A7TENJ # ATT2(Y.S)
Y1:Yli

AiTEN~e: ATTEN2 * ATT2(Y3?)

AlTN (1. K+2 ):SA Is

AtTN(J,K.k):ArTENl + ATTEN21
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zýl (RO ( K*1 -R,(K))/ ( ANj AN')o. 5)I

C, APPROXIMAIION EiM0J.AYEU IN Pj.ACF ') FHkST P'T!'uQA T IfN STP
C I~tED TG GIVE VALIrl Pt:ULTs IN H4TGhWAITENUAT~vN rA",:. ANALYTIC
C APPROAIMATIeN STARTS AT STAIFM7NT 70.

/0 Ct~:O.5.CeNST.(ALPH(3.u.*ALPHC1,2))

A6'-)S13EXPF (-Ct-X$DSi
AL0S2cEXPF (-Cf:Y*DI)S)

DIFElP:(o.ýICONST. ((TI (l).TT(ie)).(1 ,-ALeSl) *( TT(7)*TT(l))*tALý,S?
I, -A6.C1S3))I

GO) Tn. 7 2
/t ALlSSa1O.#*(-ATTNJ(3,w.1)*. *l)

TW?:ALPH(3,K.I)oTT(K*2A.AL7'$SS
CALL INTGRT(DS1,nS2,TiJ1 TP2,TP3,l)TeMF)

12 Tt:P r TFMP.D)IEMP

Tb-I a TP3

Y12=YJ2

ANI 2 A.%3

01 Cv)NT INUE
60~ CO~NTINUE

Al MP3TEMPvCoNbT E~I
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CE(mN/w.20/RwerAC
rIMEN5I9N FTPP(23),PIRP C.31
r1mENI(D~N rELIIc4)&j* 1A1(4)

ICATA(CONSTmJ,7143) *(COKST2:*,206mi)

2A7,3A27,67,8923,6a.42c5,68,94701,A.4741 *7C,UDOC.7U.52GQ. ?1.0d97)

25i,25 ,5 .591 5U.9ý4,5C.4A~-4v93 ,(.4,fb93 ,4 . 4 )S
!ATA (PWZ

le.12047,E2.2/e91..,2 4,.49.,,64267J7.2

15.63~19E-2.,96,.,,5E2,. I

rATA (cT--

P; .776 L*2# .8 566P 2,2. #7,36 E#2, 2 71f ý+2

l?,8 971 *2, ,66 7ýF4 t2 P~c~cý+2,2 84ý 7/r ?,2 A617 E02 i .SY~F+P

12,8 783 *2,2-b55A E-2 -e IE7 42, F'9901 j ,2 .470 r*I
j?8 5 4 * ,~ 4 9F 7 2 P 1A * , C3 ý 2 2 ?2 0-2

C T I"E FSLLIý'fy1!~ rATA CARr6 c:v rE OýW&TIf (/?/, m I%(- k:T S1 '.

C AT A (R Wa 7,cr :o2 0 C 7 4j,8AE 7 ~,3717(eF 0j 7.7?62w'F C."?~' ,~63e .~f~'U .3C "~~ 7. 10
1 ?.24~3R7E A.7ICA ,7i6~0.0~f 5 ?-r, * r-a

1 6 610 7 7E C s. 4 o, 2E 6.4 25 AtF 0. 4, 42 6 E 6 3 ~A I ,tj,

j ~9FI36k .ý .5U,7 3~~2 , ~0467f-1 ý 0 P h2. r39F (" , 2 '1 0.L o
I 190l459F 0, 1 .;I c7 1 :C , 1 ,3 QC~ 0e4r C i,1 81~' 2 3, Ic1.C~1 0

I t t64635En. I 7,30447L -1 6, jC 17 t -1,S. ý34 1 1 E -, 1 4 7), 1 L 1

1 3 9 t 1* 1 1P2 E -1 2.7574tF . , k14 ..i , _ I 4i 7, 7. , I
I ,5 fC 2 1 -1 1 23,!C7E -1, 9 q4 A~r, jF- -2 7. 18(-4 E -2, j 1ý5 -2..8'9' 1~ 1. %2 .- L -,1,0'ly1I -2, . 4 jQ It C ~ 2P4 ,
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1 0 f~4F ., i46$0t 3,1,0',2Q5F -3, 9,n27O7t -4. 6.4M842E -4.

17.9,0/At -.4, 7,'446CE -4, O.37848F -4v K,79%OPE -d# 5.5i11P7F.4
t , 5,.JA2I- *a, 5 , lue5%c -4. 5.640P)4P -4. 5,87972E -4, 6.2143ZtF -4.

7, ?,ct7?6F .1, A.ni&4FE -4, 9,09l'
5 P -4, 7,32%/&E -4, 5,68;1ý2F .4.

14.4t,2?4F .4$
rATA WwriF AC:

r GH 8HZ2Sr M*V~rt

rSLJM~r ($I,H?.Vkk2~'z )e2

Ian,
1.2 -100.
rt IaC Jjl4

!r:31',AYJ)

P~C a5WR () I* 4ý
p F..C *Ty(I)/;:dp,75

r IC T AL PRý-StUIE IS !.4Yek!I%,CjPIEPE FFESSU4F *PAPTIAL PR4F5ctPE er
r -AIEF; VAP$F (rILLIPAPS),

FkaPM-() * pchý/C%'

fl4*.PELN(J)
If U-.LE.k1 2 10.f11

1P A L I a b4
r.E 7c$ V5

11 IF (H *G'T. Hi7) 12,13

rC YE 15'
13 AL1;,td
15 §-AL13C&ThýJS7, *ALI .t'P( )IT C))I

b-SAjz1-ALl*$ ALl
rC:HALI/(FCNZe#.MAI)
S Lm:a0,
CC 50 aij

A NZIt2 * I' 1,

LNM2:A%1s(;.eA\¶,3,)/All

FNPZIAL1/CCFTNF(MJ4C.I4? )e.2.I.CAI ).HALI/((FTPpug)*rQ&421.2.HsA¶ )

FNMzb.AL1/((FTRM(Lý).FCb-o? )62 -~ ).H4AL1/CCFTRo(P,).FGwZ)'e2.NSA:I

5n Cr.%T1NuI-
C ALPb-G2ZALPI'(1,I1 IS A~cRPPTI-'wl cr.EFFICl&LI FOR exvr,ý'.

ALPHF2 a CCNcT.EPN /TT(1)..j)SFCWZ?.S.IM
ALPM(1,I )SAL"'I'C2

rELp3LL-L/Lr(9.(PPAeIlrS. PP(fl*CVP *'x.~..3..-
rELFBntLf *DwLr

~ (2.1446,1 .-T~O) ).p PR7
ALFNiS'1.Jý1F-2 o rGb-Z? * OSI PQ 1 t()**(-2,5)

r ALPHCZI) IS APSCNFTISNK COýFFirjrN1 V0Q WATI.P VACOP
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06/29/72
ALPH(i,l) t ALPP12C + ALOR~r
A LPk(jo I) IS I CTAL A FSC-PT? Ct. r:CrFr E IT.
ALPh(3,j)l ALP~d(1,!) *ALPkJ(?,Y)

1~ CNI~ifl
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SwRROWgTINL DDH(Ht.
COMHMON ,RRGRLFO ,WALJ,tQAE!.IJ,
COMM~ON/DRS/ D~flH3,'nR0H'3,AN

AN '.Ex

w1! A/i4AD

D- N n1.4:At SD'i

SUR Q O I I NE I 1T rQT ( H ,W1 , .Y4 ,Y 2 1,",ARE t

Ne2%H2oI.2
PI.I* W?

Ai. AC= ( Y,.k2
AHEA 2 (AFICIý,).IN??.hdŽ * '4 2".k) + (Y3-Y2-AFAý.*W2.et:22.HI2

1 12 1-2)~ Y2-)
En
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