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I. Introduction:

A random signal process which is produced by a periodic sampling,

scanning or synchronous multiplexing operation can often be modelled

by a process which exhibits periodicity in its mean and autocorrelation

functions. A process, x(t), is said to be cyclostationary in the wide

sense (with period T) if

E[x(t)J * E[x(t * T)] (1)

k xxCs, t) * E[x(s)x*(t)] k xxCs T, t * T) (2)

for all s and t. Bennett [1] introduced the term, "cyclostationary",

to denote this class of processes in his treatment of synchronously

timed pulse sequences used in digital data transmission. Other investi-

gators [2]-[SJ have used terms such as "periodicall) stationary", "pern-

odically correlated", and "periodic nonstationary" to denote this same

class.

One important example of a cyclostationary process Ls the synchro-

nous pulse amplitude modulation (PAM) signal. Assuming that the pulse

amplitudes {ak) form a stationary sequence of random variables, we have

x(t) • aks(t - kT) (3)

where E[ak] ]

for all k

E I%+Kal "1

m~
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In this case the mean and autocorrelation are given by (6]

E[x(t)] a • s(t - kT)
ku -w•

xt t) yqt, in• ptT)

where q(t, T) = s(t + T - kT)s(t - kT) (4)

By inspection, the expressions in (4) are periodic T in t and hence the

PAM signal is a cyclostationary process. Typically, the pulse amplitudes

could be the result of uniformly sampling a wide-sense stationary process.

For example, the output of a conventional sample-and-hold device can be

represented by (3) where s(t) is a unit amplitude rectangular pulse of

width T. Other forms of pulse modulation such as frequency-shift keying

(FSK) and phase-shift keying (PSK) will also yield cyclostationary processes [7].

The conventional formats for time-division and fcequency-divisioi& multi-

plexing of signals, and video signals generated by rectangular scanning

of a two-dimensional field [9] provide additional examples of cyclostationary

processes.

In the communication system examples cited above, it is clear that

the receiver used for demultiplexing or reconstructioln of the signal into

its original format will require accurate timing information for satisfactory

operation. This information is normally supplied by inserting synchronizing

or framing pulses or by superimposing some other form of periodic signal

on the random signal process. Another function of the receiver is to ]
remove, to the extent possible, the effects of noise interference. It is
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of interest to determine the amount of improvement in filtering that

results from the cyclostationary character of the received signal process

and employing filters with time-variable elements whose periodic fluctua-

tions are "locked in" to the fundamental period of the cyclostationary

process. We have obtained solutions for optimum periodically-varying

filters and expressions for improvement in performance over that obtainable

by the best time-invariant filters. The receiver structures implied by

these solutions have a form dictated by the choice of representation used

for the cyclostationary process. Two representation techniques which have

been found generally useful are briefly presented in the following section.

II. Representation and Properties of Cyclostationary Processes:

We say that a process has a harmonic representation when expressed

in the form vrnt•
x(t) = an(t) exp [j2T (5)

where choosing

an(t) - v(t -) exp X-( T) d

v(t) L 7-sin T

makes the mean-squared value of the difference of both sides of (5) vanish.

Generation of the sequence of bandlimited random processes, (an (t)), is

illustrated in Fig. 1. If x(t) is cyclostationary, then we can show that

(a (t)} is jointly wide-sense stationary and we define:

I
'Ogura [5] has presented a discussion of harmonic representation; however,
he observes only that the individual terms in (5) are wide sense stationary.
They are not jointly wide sense stationary, as the coefficient processes
are, and this point has important consequences in the estimation or
filtering problem.

A •
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r - t) E[an (s)am (t) (7)

with the result that

k k(s0, t) rn(s - t) exp i L (ns - t)1 (8)

*xx f
.n4

There are certain properties of the infinite-dimensional matrix, 4

r_.),or its Fourier transform Rj() which will be useful in the estimation

problem.
*. I

1) R(f) is bandlimited to the frequency interval, I fI 2_ . This

is because the (aCt)) are similarly bandlimited.

2) x(t) is a wide-sense stationary process if, and only if, r(.)

-. "is a diagonal matrix. This can be seen by direct substitution

into (8).

•) Let x(t) be the result of a time-invariant filtering operation on

-- a cyclostationary x'(t), with representation R.(.), given by

x(t) h h(t -r) x' r)dr

then we have
j

Rnm(f) V V(f) H (f H* ~. (f + R) R(f) (9)

where V(f) is a rectangular function of width, li/T, which is the

Fourier transform of v(t) in (6). Using this result with H(.) corre-

sponding to an ideal lowpass filter with cutoff at W, we see that a

bandlimited process, x(t), can be represented by a finite matrix of

order M where N < 2 TW.

4) Let x(t) be derived from a cyclostationary x'(t) where an uncortainty

"* •- "•'' ' -•" - - -- - - - - - - - - - - - - - - - - --"- - - - ----- - - - - - - ---.- -- " .- -=• " ... .... .. '• •k' - , .. ... •,• , , ••,, , ... •, -•,- ,..-



in the time origin or "phase" of the process has been introduced,

bility density function, p,(.). The modification in the representa-

tion is expressed by

where P,(.) is the Fourier transform of p6 (-) so we know that

P P (0) 1 Ii

In particular, if 6 is uniformly distributed over the interval [0, T1,

then P(S) - 0 for n 0 0 and R(f) is diagonal. Thus if a cyclostationary

process is completely "phase randomized" it becomes a stationary pro-

cess. Its autocorrelation function would be

'k (-r) ri ii)ep j2
T

f * (t r, t)dt (12)

which is simply a time-averaged version of the noustationary correlation.

An alternative form of representatlon which affords a simpler solution

to the filtering problem in many cases of practical interest is the time-

series representation. This representation has the form

x (t) - ani #i (t - nT) (•13
Jul n=--,

where the ({i(t)) are "doubly-orthogonal" in the sense that

f Yt()*%t - T)dt S ij6n. (14)



M*AYý -" -,_

-6-

and the process is represented by the random variables

ani J x(t) •* (t -nT)dt (,S)

This leads to a representation for the autocorrelation given by

k (s. t) Al Ys *. nT) *~(t -mT) (16'xx n-m1nm j

where

ii
A =E(~*ca .
n-r - ni mj

k xx(t + nT -iT, T) 0*'(t) Cj(T)dtdr (17)-C1

The time-series representation is particularly appropriate for the

various forms of digita' pulse modulation. For example, in the simplest

case, PAM with {s(t - nT)} forming an orthonormal sequence, we have M = 1

and

~t)= S(t)

•nR (18)

and the Aýnm matrices in (17) are simply the scalar correlation values of

the polse amplitudes as given in (3).

A mo:z. general application of the time-series representation for an

arbitrary cyclostationary process results from a Karhunen-Loeve expansion

of the process over each T second interval [6], using tho same basis

functions for each interval. This has proved particularly effective for

the random videc process described later.

:1 ii
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III. Continuous Waveform Estimation:I

One of the estimation problems of interest is tie problem of

filtering to reproduce a faithful replica of the signal waveform, at

each point in time, in the situation where the received waveform has

an additive noise component. In the following, we consider the case

where there is no channel dispersion and the noise is white, although

more general results with these restrictions removed, follow directly.

Accordingly, the estimation problem we consider here is evaluation

of the performance of the noncausal, periodically-variable filter

which gives least mean-squared error reconstruction of a cyclostationary

signal process with additive white noise having spectral density, No.

The impulse response function, h(., *), for the filter which minimizes

m2

I(t) = E[{x(t) - h(t, s)z(s)ds) 2  (19)

where z(t) is signal plus white noise, must satisfy the orthogonality

condition [6]

k (s, o)h(t, o)do+ Noh(t, s) k (s, t) for all sandt
XX 0 XX

"(20)

Substitution of (20) into (19) and rearranging terms yields a compact

expression for the minimum mean-squared error.

Imin (t) N oh(t, t) (21)

71



The mean-squared error in (21) is periodic T in t. As a performance

functional, we select the value of I in(t) averaged over one period, i.e.,

T

SJo T h(t, t)dt (Ž2)
0

Using the harmonic representation scheme of (5), the optimum filter

can be interpreted as an estimator of the jointly wide-sense stationary

sequence, (an(t)). This is accomplished by forming the corresponding

sequence of processes for the received signal by means of the structure

shown in Fig. 1. The estimate of the nth process is a linear combination

of time-invariant operations on the received signal processes which is

atthen multiplied by exp [j 2w Y-]- to form one component of the filter output.

The structure of this estimator is shown in Fig. 2 and the overall filter

is obtained as a cascade of the structures in Figs. I and 2. The filter

is realized as a bank of input and output modulators interconnected by atr-ftieivai" bn imtd 1 filter paths. We can then
matrix of ttm-invariant, bandli2ited y- ,
write the impulse respons* as

h(t, s)- gnk(t -sexp[j k- (nt ks)] (23)Snk

Now using (23) and (8) in (20) and performing the integration, the coeffi-

cients of the exponentials in t and s are equated and the orthogonality

condition is satisfied by a .(-) matrix whose Fourier transform is the

solution of

(f) •flf " (f)* If I ITT' (24)

a-a

where RaC.) denctes the conjugate transpose of R(.).

I
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Using (23) in (22), the expression for optimum performance becomes

J .No gn(O)N Jtr G(f)df (25)

To evaluate the performance of the best time-invariant filter for

a cyclostationary signal relative to that of the best periodically-

variable filter, we use h(t - s) in (19) and find the condition which

minimizes the time-averaged value of I (t). The constraint of time-

invariance is equivalently imposed by requiring that tne L(-) matrix

for (23) be diagonal. The new orthogonality condition has the simple

solution,

%nnC() R (f)' N - (26)

and since G(.) is diagonal, the filter transfer function is

H (f) G. ~ (f- .)(27)
n

Taking into account the bandlimited nature of R (f) in (26), the sum
nn

in (27) can also be written as

11(f)- n -.. •f
- R.nf" •) * No 0f (28)nn

The expression (28) is the familiar solution for the noncausal Wiener

filter for a stationary signal with power spectral density K(f) in white

noise [61. NOW referring to (12), we see that KNf) is actually the power

spectral density for the (stationary) phase-randomized version of the

cyclostationary process. Thus we make the interesting observation that
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the best time-invariant filter for the cyclostationary process is identical

to the best filter for the phase-randomized version of the process. Further-

more, this filter is the result of simply disregarding the crosscorrelation
among the (a%(t)) processes in making the estimation. The performance

functional for the time-invariant filter is

%n(f--)df•,•: • • "oh(°) N o . nf o(9
J~Nf(0uN 'I-nn Tf NO (29)

When the time-series reproAentation approach (13) is used, the optimum

filter exhibits a similar representation.

I kp q Ikq

"Substituting (30) and (16) into the orthogonality condition (20) and

performing the indicated integration by making tae of (14), we obtain an

equation whose terms have the same form as (16) nd (30). Equating coeffi-

cients in this equation, the orthogonality condition is satisfied by the

solution of

Aft-, !. .H N•o HO" ; for alln (31)

where the matrices A and H in (31) have elek.:-- s as indicated by the

superscripts in (16) and (30).

The first term in (31) is a discrete convolution, so z-transform

- techniques can be used to express the solution. To this end we define

.- exp[j2wnTf]

H. exp[j2wnTfj (32

- nm..
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and (31) is expressed as

B~)Lf)+ N L(f) =B(f) (33)

I The optimum filter is given by

l/2T

L(f) exp[-j21rnTf]df (34)

-1/2T

where L(f) = (B(f) + NI]' B(f).

The solution for the optimum filter (30) indicates the structure of

filter as outlined in Figure 3. The structure involves a bank of time-

invariant filters whose outputs are sampled every T seconds. The appro-

priate linear combinations of these samples are formed by the time-

invariant, multiport, sampled-data filter, characterized by the H matrices,-n

and the output signal is reconstructed by impulsing a similar bank of

output filters. The performance functional for this filter is given by

N 1/2T-to " I iifd
Jo T -otr H = N f L(35)

-1/2T

Solutions for specific examples related to time-division and

frequency-division multiplexing of an arbitrary number of independent,

band-limited signal processes have been presented [8]. In the following

section, we illustrate the application of the time-series method of

representation for finding the optimum filter for the random video

process.
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IV. Video Signal Process:

We assume that the video signal results from scanning a two-

dimensional visual pattern using the conventional rectangular raster

(without interlace). The visual pattern is modeled with a two-

dimensional random step function giving a stationary autocorrelation

with exponential form which is separable in the horizontal and vertical

"directions [9]. Neglecting frame-to-frame correlation, the scanner
output is a cyclostationary process with period T equal to the line

scan interval. Consider any two time instants t 1 and t2 where t2

occurs in the mth line after the one which contains t Then the

normalized autocorrelation of the scanner output is given by

k xx(t t2) =p m exp[-2rf 0It . t 2 + mT1] (36)

where the parameter fo characterizes correlation in the horizontal

direction and P is the linV-to-line correlation.

For the time-series representation (13), we choose the *i(t) as the

normalized solutions of

T

J exp[-2orfOlt -sl] s)ds = ii(t) for O <_t <_T
o (37)

and we are, int effect, making a separate Karhunen-Loeve expansion over

each line-scan interval. The eigenfunctions in (37) are cosine and sine

functions [6] whose frequencies, respectively, are given by the solutions

of

tan nTfi fo/f. and tan rTfi 1/f (38)0 1 i
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The eigenvalues are

1 ii= (1 [I (filfo) 2 ]- (39)

and the matrix sequence characterizing the autocorrelation (16), (17)

has an especially convenient form.

= =pm1A (40)

where A is a diagonal matrix whose elements are the.Xi. _B(f) in (32)

is obtained by summing thedouble-sided geometric series and we get

2J()=1"- p 2  A ,

() )2 A (41).+ 4p sin nTf

Solving the orthogonality condition (33) forlthe filteringiproblem and

evaluating the performance functional (35) gives the result.

N :lp .. ~ 1/20o Ai fI No l (1-P + 1P
o= - . I{Ai + No 1- J1 {fA + N 0 -.-

(42)

The performance (42) has been numerically evaluated for the 'specific case

of a 500-line, square format assuming that the visual pattern has the

same correlation in horizontal and vertical directions. This requires

P = exp[-2wfoT/500]. Assuming approximately equal resolution requirements

in horizontal and vertical directions, the essential bandwidth of the

signal is 500/2T so we take 6 = T/S00No as a measure of the signal-to-

noise power ratio. Results for various values of p and 6 are shown in

Figure 4.

4 -. :
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Multipliers Ideal Lowpass

Filters

cak(t)

-~00-- 2- 0

V(f) I 1 for Ilf 1/2T

.0 for Ifj > 1/2T

Fig. I. Harmonic representation.

Ib )A

bk (t) 0-0-
[Gnk()] ia (t)

- exp[j2w ;F-1

r kbk(t) f jv(t- T)exp[-j2w :T-z(r)dT = ak (t)• nk(t)

Fig. 2. Estimation using harmonic representation

of received signal.
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nTn

* 0 Sampled-data

Filter

Fig. 3. Structure of optimum filter from time-series approach.

-I~db

40db 1
0.7 0.8 0.9 0.95 0.98

Line-to-line correlation, p

Fig. 4. Calculated performance for the video signal filtering problem.


