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13 ABSTRACT

Random signal processes which have been subjected to some form of repetitive operation
such as sampling, scanning or multiplexing will usually exhibit statistical properties
which vary periodically with time., In many cases, the repetitive operation is introduced
_ intentionally to put the signal in a format which is easily manipulated and which
! preserves the time-position integrity of the events which the signal is representing.
Familiar examples are radar antenna scanning patterns, raster formats for scanning
video fields, synchronous miltiplexing schemes, and synchronizing and framing tech-
niques employed in data transmission. In fact, in all forms of data transmission, it
seems that some form of periodicity is imposed on the signal format,

Random processes with statistical properties that vary pericdically with time are
encountered frequently, not only in electrical communication systems, but in biological
systems, chemical prccesses, and studies concerncd with meteorology, ecology, and

other physical and natural sciences.

Systems analysts have tended, f or the most part, to treat these "cyclostationary

] processes as though they were stationary. This is done simply by averaging the
statistical parameters (mean, variance, etc.) over one cycle. This averaging is
equivalent to modelling the time-reference or- phase of the process as a randem variable
unifcormly distributed over one cycle., Thin type of analysis is appropriate in situations’
where the process is not observed in synchronism with its periodic structure. However,
in a receiver that is intended for a cyclostationary signal, there is usually provided

a great deal of information=-~in the form of a synchronizing pulse-stream or a sinusoidal
timing signal--about the exact phase of the signal format. Most systens are, in fact,
inoperative without this information, §.
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ABSTRACT
7

y:

Random signal processes which have been subjected to some form of
repetitive operation such as sampling, scanning or multiplexing will
usually exhibit statistical properties which vary periodically with time.
In many cases, the repetitive operatior is introduced intentionally to
put the signal in a format which is easily manipulated and which preserves
the time-position integrity of the events which the signal is representing.
Familiar examples are radar antenna scanning patterns, raster formats for
scanning video fields, synchronous multiplexing schemes, and synchronizing

and framing techniques employed in data transmission. In fact, in all

forms of data transmission, it seems that some form of periodicity is
imposed on the signal format.

Random processes with statistical properties that vary periodically
with time are encountered frequently, not only in electrical communication
systems, but in biological systems, chemical processes, and studies
concerned with meteorology, ecology, and other physical and natural sciences.

Systems analysts have tended, for the most part, to treat these
'cyclostationary" processes as though they were stationary. This is done
simply by averaging the statistical parameters (mean, variance, etc.) over
one cycle. This averaging is equivalent to modelling the time-reference
or phase of the process as a random variable uniformly distributed over
one cycle, This type of analysis is appropriate in situations where the
process is not observed in synchronism with its periodic structure.
However, in a receiver that is intended for a cyclostationary signal,

there is usually provided a great deal of information--in the form of a
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synchronizing pulse-stream or a sinusoidal timing signal--about the exact
phase of the signal format. Most systems are, in fact, inoperative
without this information.

The first chapter of this di;sértation_is introductory and features
a detailed historical account of the meager development and application
of the theory--still in its infancy--of cyclostationary processes (as it
appears in the engineering literature).

The second chapter is an extensive treatment of the topics of
transformation, generation, and modelling of cyclostationary processesy
and, among other things, serves to introduce a large number of models
for cyclostationary process2s. These models are used throughout the
dissertation for illus“rating various theoretical results.

The third chapter is an in-depth treatment of series representations
for cyclostationary processes, and their autocorrelatior :unctions, and
other periodic kernels. These representations are apriied to the problems
of analysing cyclostationary processes, solving linear integral equations
with periodic kernels, realizing periodically time-varying linear systems,
and defining a generalized Fourier transform for cyclostationary (and
stationary) processes.

The fourth chapter addresses itself to the problem of least-mean-
squared-error linear estimation (optimum filtering) of cyclostationary
processes, and employs the representations of Chapter III to obtain solutions,
and the models of Chapter II to illustrate these solutions. Previous
analyses of optimum filtering operations have assumed the stationary model for
these processes and result in time-invariant filters. One of the major

results in this thesis is the demonstration of the improvement in
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performance that can be obtained by recognizing that--by virtue of
timing information at the receiver--the received process is actually
cyciostationary and the optimum filter is a periodically time-varying
system. Numerous illustrative examples including amplitude-modulation,
frequency-shift-keying, pulse-amplitude-modulation, frequency-division-
multiplexing, and time-division-multiplexing are worked out in detail

and include realizations of the optimum time-varying filters.
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CHAPTER 1

INTRODUCTION
1. Motivation and Brief Description ~

Random signal processes which have been subjected to some form of
repetitive operation such as sampling or scanning will usually exhibit
statistical properties which vary periodically with time. In many cases,
the repetitive operation is introduced intentionally to put the signal
in a format which is easily manipulated and which preserves the time-
position integrity of the events which the signal is representing.
Familiar examples are radar antenna scanning patterns, raster formats
for scanning video fields, synchronous multiplexing schemes, and
synchronizing and framing techniques employed in data transmission. In
fact, in all forms of data transmission, it seems that some form of
periodicity is imposed on the signal format.

Random processes with statistical properties that vary periodically
with time are encountered frequently, not only in electrical
communication systems, but in studies concerned with biological systems,
meteorology, chemical processes, and ecological systems.

One process which exhibits statistically periodic characteristics
is a synchronously timed pulse-sequence as used in digital data-
transmission. Bennett [1] recognized this as a special case of a broader

class of processes which he termed cyclostationary [2]. Gther authors

131-[9] have used the terms "periodically stationary", "periodic-
P p

stationary", "periodically correlated", "periodic-nonstationary'" and

"pericdically nonstationary" to denote this same class.
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Systems anglysts have tended, for the most part, to treat these

pfocesses statistically as though tﬁey were stationary processes. This

is done simply by averaging the statistical parameters (mean, covariance,

etc.) over one period. This averaging, is equivalent to assuming that

the time-reference, or phase, of the repetitive operation is completely

I3 ] , B .
indeterminate; i.e., the phase is a randam variable, uniformly distributed

over one period. This type of analysis is appropriate in situations
! : '

where the process is not observed (or measured) in synchronism with its
i ! *
periodic structure. For example, 4 cyclostationary process may be an
. T ' ' }

interference in a signal-transmission-channel whose receiver has no

!
knowledge of the phase of the interfering process. In such a situation,
1 ' ! H

the concepts used with stationary processes, such as power épectnal

density, can be valuableiin evaluating system performance.. However, in
! ! ' .

a receiver that is intended for a cyclostationary process, there is

usually provided a great deal oflinformation--%n the :form of‘a
synchronizing pulse-stream or a sinusoidal timing signal--about the'
exact phase of the signal format. Most.systemﬁ are, 'in fact: %noperafive
without this infﬁrmatio;. | | ; : ’

1
|

Previous aﬁalyses of optimum-regeiver filtering operations have
assuﬁed the stationary mgdel for these processes and--for least-mean-
squared-error reconstruction of the sigﬁal——result in,time-invariént
filters. One of‘the major results in this thesis is the demonstration
of the improvement in performance that can be obtaineh by recdgﬁizipg

that--by virtue of timing information at the receiver--the received

process 1s actually cyclostationary and the optlmdm receiver-filter is
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a periodically time-varying system. Numerous illustrative examples
including amplitude -modulation, frequency-shift-keying, pulse-amplitude-
modulation, frequency-division-multiplexing, and time-division-
multiplexing are worked out in detail and include realizations of the
optimum time-varying filters.

The many examples presented not only demonstrate improvement, but
also illustrate the general methods which are developed for representing
cyclostationary processes and solving for and synthesizing optimum
periodic filters. These methods are embodied in a general approach
which applies not only to the problems of representation and estimation
of cyclostationary processes, but more extensively to the solution of
iinear integral equations with periodic kernels and the synthesis of
periodic linear systems.

The remainder of this introductory chapter serves to define cyclo-
stationarity, and to illustrate same with several examples of cyclo-
stationary signals which are commonly employed in communication systems,

and to give a historical account of the development and application of

the theory of cyclostationary processes (as it appears in the engineering

literature).

The second chapter is an extensive treatment of the topics of
transformation, generation, and modeling of cyclostationary processes;
and, among other things, serves to introduce a large number of classes,
or types, of models for cyclostationary processes. These models are
used throughout the dissertation for illustrating various theoretical
results.

The third chapter is an in-depth treatment of series

representations for cyclostationary processes, and their autocorrelation
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functions, and other periodic kernels; and includes brief discussions
of their application to the solution of integral equations, and to the
realiz ..ion of periodically time-varying systems.

Tha fourth chapter addresses itself to the problem of least-méan-
square linear estimation of cyclostationary processes (in noise), and
enploys the representations of Chapter III to obtain solutions, and the
models of Chapter II to illustrate these solutionms.

The fifth chapter is a detailed summary of the contents of Chapters
I1I, III, IV and includes recommendations for further research.

As a convenience for the reader, this final chapter serves as a
combination index, outline and summary. It is hoped that this detailed

summary will help to offset the length of Chapters II, III, IV,
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2. Definition of Cyclostationarity

We begin with definitions for two types of stationarity:

DEFINITION: A random process {x(t); t € J} is stationary-of-order-two

(S(2)) if and only if:
i) the probability density functions(PDF's) for the random variables

{x(t)} are identical for all t ¢ J:

px(t)(') = Px(o)(') ¥teld,

ii) for every t,s € J the joint PDF for the random variables x(t) and

x(s) depends only on the difference of indices t-s:

Py(t)x(s) ") = Px(e-s)x(0) 0 ) ¥t,sed.

If x is a continuous-time random process, then the index set J

is the set of real numbers R, and if x is a random sequence! then J is

the set of integers I.

1. We are using an extended definition of a random sequence; strictly
speaking, the domain of a sequence is the natural numbers (positive
integers). Notice also that if x is a random sequence, then the PDF's
px(o)(-), px(t)x(O)(.’.) are composed of one- and two-dimensicnal impulse

functions.
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DEFINITION: A random process {x(t); t € J} is stationary-in-the-wide-
sense (WSS) if and only if:

i) the mean function for the random process x is independent of the

index t for every t € J:

[o Py(t) ()40 = m, (0) vteld,

mx(t) = E{x(t)} =

ii) for every t,s € J the autocorrelation function for the random

process x depends only on the difference of indices t-s:

u

k  (1,8) = E{x(t)x*(s)} = f£ VP () (s) &7 Y)404Y

k_ (t-s,0) ¥t,s ed.
XX

In the above definition, E{-} denotes statistical expectation,
and « denotes complex conjugation. In the interest of notational
economy, we will (with some abuse of notation) identify the auto-
correlation function for a WSS process x as kxx(t-s) = kxx(t—s,O).

Notice that stationary-of-order-two processes compose a subclass
of the class of processes which are wide-sense stationary, and both of
these classes are characterized by the invariance of certain statistical
parameters to arbitrary shifts of the indexing variable. We now define
two superclasses which are characterized by the invariance of certain
statistical parameters to shifts of the indexing variable by multiples
of a basic period. To emphasize the cyclic character of these processes,

the term cyclostationary will be used:

DEFINITION: A random process {x(t); t ¢ J} is cyclostationary-of-order-

two  (CS(2)) with period T if and only if:

i) the PDF for the random variable x(t) is identical to that for the

[ m— fr——y
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random variable x(t+T) for every t ¢ J:

p)'(t)(.) = Px(t+-r)(') ¥teld,

ii) for every t,s € J the joint PDF for the random variables x(t)
and x(s) 1s identical to that for the random variables x(t+T) and
x(s+T):

Pr(tyx(s) (7) = Px(eamyx(semy (2 ) ¥t,seld

DEFIN:1I0ON: A random process {x(t); t € J} is cyclostationary-in-the
wide-sense (WSCS) with period T if and only if:

i) the mean function for the random process x is T-periodic:

mx(t+T) = E{x(t+T)} = mx(t) ¥tel,

ii) for every t,s ¢ J the autocorrelation function for the random
process x is jointly T-periodic in t and s:

T = * =
kxx(t+l,s+T) E{x(t+T)x*(s+T)} kxx(t,s) Vt,s eld.

Notice that condition ii) in this last definition--that kxx(-,-)
be jointly T-periodic in its two variables--is less restrictive than the
condition that kxx(-,-) be individually T-periodic in each of its
variables:

kxx(t+T,s) = kxx(t,s+T) = kxx(t,s) Y t,s eld,

which if substituted for ii) would define tke class of processes which

are periodic-in-the-wide-sense (WSP).

Notice also that it is possible--in fact, cccurs frequently in
practice--for WSCS processes to have constant mean and variance
(kxx(t,t)-mi(t)) like WSS processes, and yet have autocorrelation

functioas which display periodic fluctuations.
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Now, all processes which are stationary-of-order-two are cyclo-
stationary-of -order-two with any choice of period T, and all wide-
sense stationary processes are wide-sense cyclostationary with any choice
of period T, and all wide-sense periodic processes are wide-sense
cyclcstationary and are not? wide-sense stationary. In summary, these
various classes of processes are related as shown in the Venn diagram
of Figure (1-1).

We will be primarily concerned with WSCS processes in this thesis
and, from this point on, will refer to these simply as CS.

Most of the cyclostationary processes studied in this thesis are
derived from stationary processes which have been subjected to some form
of repetitive operation such as sampling, scanning, multiplexing, or
time-scale modulation. There is, in fact, a large variety of mechanisms
by which periodicity is imposed on a process which mignt othcrwise be

stationary. Following are several representative examples:

i) Sampling and synchronous data signals. A particularly interesting

example of a cyclostationary process is the signal x which results from
synchronously sampling a WSS process y and reconstructing the waveform

with a prescribed interpolating pulse. Realizations of this process

take the form:

x(t) = 1 y(@T)q(t-nT) (1-1)

where {y(nT)} are the sample values of the realization y(-), and q(-)

1s the interpolating pulse. For example, the familiar sample-and-hold

2Tkis is so except for the single dcpenerate case where kxx(t’s) = constant
fov all t,s ¢ J.
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operation is characterized by a rectangular q(-) of unit height and
width T. A typical realization of a sampléd-and—held process is shown
in Fig. (1-2). The mean and autocorrelation for the process are given
by the expressions [2]:

m(t) =m t-nT
(1) Y;Z. q(t-nT)
k , (t,s) = ) kyy(nT—mT)q(t-nT)q(s—m’l‘) (1-2)

n,m

and cyclostationarity of x is easily verified. Notice that, for the
sample-and-hold pulse, x has constant mean and variance but its auto-
correlation function has strong periodic fluctuations which are shown
graphically in Figure (1-3). (The periodic fluctuations of a CS process
are displayed along lines parallel to the(t = s)diagonal.)

Another version of this process is synchronous pulse-amplitude-
modulation (PAM) where the numbers {y(nT)} = {yn} are realizations of a
random data-sequence, and the pulse shape q(-) is selected to minimize the
ill effects of intersymbol-interference [2] which result from transmission
over a dispersive communication-channel. This model can be made more
realistic by modifying the time-position of each pulse with a random

jitter variavle:

x(t) = } y,a(t-nT+8 ).
n

The resultant process termed jittered PAM can still be cyclostationary
with period T [2] (See Sec. 7 of Chapter II).

Other pulse-modulation techniques such as frequency-shift-keying,
phase-shift-keying, pulse-width-modulation, and pulse-position-
modulation also give rise to synchronous pulse-trains which can be

modeled as CS processes |10] (see Sec. 4 of Chapter II). In fact even
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asynchronous pulse-trains can be modeled as CS processes as shown in

Sec. 2 of Chapter II.

ii) Scanning and time-division-multiplexed signals. In communications,

one often encounters processes formed by interleaving finite-length
records from a multiplicity of signal sources. As an example consider

the process with realizations of the form

o
x(t) = [ x (t)q(t-nT) (1-3)
n=-o
where q(t-nT) is a ''gating pulse" (evaluated at time t) which "turns on”
the nth signal source in the time-interval [nT, (n+1)T], and {xn} are the
various random signals. Specifically, consider the time-division-
multiplex (TODM) of M uifferent jointly WSS signals {xn; X = XM ¥ n?
with crosscorrelations knz(t-s) = E{xn(t)xz(s)} and means m = E{xn(t)}.
A typical realization of such a TDM signal is shown in Fig. (1-4). The
mean and autocorrelation for the composite TDM process are given by the

expressions:

mx(t) = E mnq(t—nT)

ke (t:8) = 1 ko (t-s)q(t-nT)q(s-2T) (1-4)

,
and the cyclostationarity (period MT) is easily verified. Notice that
regardless of the differences among the various auto- and cross-
correlation functions for the M signals, if the means and variances are
equal, the mean and variance of the composite cyclostationary process
are both constant (for a rectangular gate function). Yet its auto-
correlation function can have nronounced periodic variations even when

all M of the signals are statistically identical (in which case the period
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of cyclostationarity is T). Other CS models for TDM signals are derived
in Sec. 2 of Chapter II.

As another special case of those processes which take the form of
Equation (1-3), consider the vided signal which results from conventional
line-scanning of a rectangular visual-field [11]. Here the {xn} represent
éonsecutive one-line segments of the video signal and M is the number of
lines per frame. Using the Markov model derived by Franks [11] for the
line segments (see Figure (1-5)) we obtain .
pIn-zle—21rfo|t-s|mod T

knz(t-s) = (t-nT), (s-2T) ¢ [0,T].

Thus, the video autocorrelation. function becomes (from Equation (1-4)):

-Zufolt-slmod T Z pln-zl

kxx(t,s) = e q(t-nT)q(s-2T) (1-5)

n,L

which, interestingly, is the autocorrelation function of a sampled and
held process (Equation (1-2)) modified by a factor--call it kl(t-s)--
which is T-periodic in t-s. This periodic factor is shown graphically
in Fig. (1-6), where the parameter f, has been chosen much greater than
1/T as it is for typical viewing material. See Secs. 3,6 of Chapter II
for a more detailed model of the video process which takes into account
frame-to-frame correlation as well as line-to-line cosrrelation.

Many other CS processes such as amplitude-modviated signals, analog and
digital phase and frequency modulated signals, frequency-division-multiplexed

signals, etc. are introduced and discussed in Chapter II.
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3. Historical Notes

Interest in cyclostationary random processes seems to have
originated in the investigations of a group of communications engineers
and scientists involved in the development of pulse-code-modulaticn
(PCM) a2t Bell Telephone Laboratories3 in the late 1940's [4]. However,
the cyclostationarity of these PCM processes did not specifically begin
to receive attention until the late 1950's. In 1958, Bennett [1]
developed a statistical model for the synchronous pulse-train of PCM and
demonstrated that the process is nonstationary and exhibits periodically
varying mean and autocovariance functions. He coined the term
"cyclostationary" to denote the class of nonstationzry processes which
exhibit these cyclic characteristics, and he introduced the Fourier series
representation for the mean and autocovariance functions. In addition,
Bennett discussed the phase-randomization method of obtaining a stationary
model for a cyclostationary process, and he pointed out that the power
spectral density obtained from this model is identical to that obtained
by Macfarlane {12] in 1949 using Rice's general definition of the average
power spectral density of a nonstationary process [13].

Four years prior to Bennett's publication, Deutsch [8] presented a
paper on the envelope detection of cyclostationary processes--which le
referred to as 'periodically-stationary'--composed of one or more
pericdic signals each amplitude modulated with a stationary Gaussian
process. Although this article preceded Bennett's, it did not deal

primarily with the periodic structure of the cyclostationary processes.

$ The basic ideas of--and original patents on--PCM date back to the early

1930's. See Techniques of Pulse Code Modulation for a historical review [39].

e

—

o

bt

SERIRTES IR




=

i

.

| PR— | -

.

o e
L,..—-...u) [ Se——

g
| SR

P

rw
13

At about the same time (late 1950's), interest in cyclostationary
processes was initiated in Russia with a series of theoretical works on
radiophysics. Gudzenko, motivﬁted by these works, published a paper in
1959 on the general structure of cyclostationary processes which he
referred to as "periodically noﬁstationary" [14]. He briefly examined
the periodic correlation function and corresponding 'time-varying
spectrum" for the general (arbitrary) cyclostationary process, and gave
sufficient conditions for the consistent estimation of the coefficient
functions in the Fourier series expansion of the autocorrelation function.
He also mentioned the interpretation of the zeroth erder Fourier
coefficient as the autocorrelation function of a stationary process, and
briefly discussed linear filtering of cyclostationary processes.
Followiné Gudzenko's paper were two works published by Gladyshev who
was associated with the Institute of Atmospheric Physics in the Academy
of Sciences of the USSR [15,16]. The first paper (1961) was an
investigation of the mathematical structure of cyclostationary sequences,
and the second (1963) was a more brief investigation of the properties
of continuous-time cyclostationary and '"almost cyclostationary' processes.
Specifically, he considered the non-negative definiteness of the Fourier
series coefficient functions, and the harmonizability of these processes
which he referred to as 'periodically and almost periodically correlated'.

Following these pioneering works, there have been a number of
publications dealing with cyclostationary processes as related to
meteorology, signals for communication, and noise in electrical devices

and circuits. Jordan (1961) derived the least-squares series representation,
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on a finite interval,of a random signal in the presence of noise, and
briefly discussed its application to the problem of least-squares
estimation of cyclostationary signals in noise [25]. Monin (1963)
suggested using cyclostationary processes as models for metcorological
processes [17]. Willis (1964), motivated by a study of cosmic ray
extensive air showers, investigated a non-homogeneous Poisson process

with periodic rate parameter, and indicated how the amplitude and
frequency of the periodic rate-of-occurrence of events can be estimated
from measured time intervals between events [18]. Parzen (1962) suggested
that a non-homogeneous Poisson process with periodic rate parameter

would serve as a suitable model of electron emissions from the cathode

of a temperature-limited diode with alternating filament-current [22].
Markelov (1966) studied some statistical properties of the cyclostationary
output of a parametric amplifier driven by a stationary process. He
derived the average number of axis-crossings and relative staying time in
an interval [21]. Anderson and Salz (1965) derived the power spectral
density for the stationarized version of a cyclostationary digital FM
signal {23], and Lundquist (1969) similarly derived the power spectral
density for digital PM {24].

Several additional references to work related to cyclostationary
processes can be found in the references in Brelsford's doctoral
dissertation '"Probability Predictions and Time Series with Periodic
Structure", (1967) {19]. Chapter V of his dissertation is devoted to
a brief review of representations for cyclostaticnary processes (mostly

sceuences) and the presentation ol autoregressive techniques for the
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linear prediétion of cyclostationary sequences. In particular,
Brelsford (and Jones [20]) demonstrated--using meteorological data--

that autoregressive techniques which employ periodically varying

coefficients can yield better predictions of cyclostationary sequences

than prior techniques which used only constant coefficients.

A iew other references to work related to cyclostationary processes
can be found in the bibliography and historical notes in Hurd's doctoral
dissertation "An Investigation of Periodically Correlated Stochastic
Processes'" (196.) {S]. In his dissertation, Hurd investigates (with

mathematical rigor) the structure and experimental analysis of cyclo-

stationary processes which he refers to as '"periodically correlated".

His work centers around the Fourier series representation for the

correlation functions for cyclostationary processes, and is closely related
to the pioneering works of Gudzenko (1959) and Gladyshev (1963). Hurd's
dissertation is divided ii..to two main areas. The first contains an
examination of the general mathematical structure of cyclostationary
processes and their correlation functions, and contains a brief

discussion of the stationarizing effect of a random phase and the effects
of linear filtering, and includes a few models for the generation of

cyclostationary processes from stationary processes. The second area

‘ contains treatments of several topics in experimental analysis. Specifically,
cyclostationary processes are shown to have "ergodic' properties in the
sense that the autocorrelation function and its Fourier series
coefficient -functions can--under certain conditions-- be estimated from
one sample function of a cyclostationary process. Also, some methods for
testing observed waveforms for cyclostationarity are presented along with

some experimental results.




. modulation (PAM) and shows that "jittered" PAM (noﬁ-synchronous) can

'
H
s

The textbooks of Stratonovich (1963) {7], Papou1i§ (1965) [3]}, ¢
Bendat and Piersol (1966) [9], and Franks (196?) [2]), define the class

of cyclostationary processes, give various examples, and (except [9])

: 1
discuss the stationarizing effect of phase-rarndomization. The most
1 .

extensive treatment is that of Franks. In a chapter devoted mostly to
the development of models for cyclostationary processés, he points out
that most'scanning‘operations, such as radar antenna circular-scénnfng

and video line-scanning, can produce cyclostationary signals, and in

fact that many of the éommoniy used repetitive signal processing ‘

‘operations including sampling, scanning, and multiplexing can transform

stationary»processes into cyclostationa}y précesses. He develops, in
detail, a cyclostationary mo%el for synchronous pulse-amplitude-
| ! '
| |
also be cyclostationary. He also introduces cyclostationagy models fo;
the time-division multiplex of two stationary'signals, and for synchronous
pulse-width-modulation.
\ : . !

* Finally, we mention thg very yecent wofk of Ogura (1971) inuwhich
he briefly discusses series and integral representatidns }or cfclostationary
processes, ané presents in some detail an int?resting harmonic series:
reprégentation'for éyclostationary procesées and their autocorrelation
functions. He also briefly discusses the measﬁrément Qf the coefficients

. . . ! '
in his harmonic series representation for "ergodic' cyclostationary’
I .

5

processes, and concludes with threelexamples of cyclostationary ’

processes: AM, PAM, and PPM.
}
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In summary, the major works which deal directly with the general
class of cyclostationary processes are, in chronological order, those
of: Bennett (1958), Gudzenko (1959), Gladyshev (1961, 1963),

Brelsford (1967), Franks (1969), Hurd (1969), and Ogura (1971).

4. Preliminary Comments on Mathematical Rigor

Although most engineers are familiar with and use the Riemann
integral [26] rather than the Lebesgue integral [27], it is the latter
which is indispensable in analyses where questions of the existence of
integral and series representations of functions (random and deterministic)
arise, and where the interchange of the order of execution of integration,
infinite summation, and statistical expectation must be justified.

(See, for exampie, Wiener [28] pp. 4-5, and Epstein [29] p. 29). Such
questions of existence and needs for justification arise throughout every
remaining chapter of this dissertation, and can only be rigorously

dealt with in terms of Lebesgue integration theory and associated
measure-theoretic notions. For example, the work of Hurd [S5], which is
closely related to this thesis, is thoroughly based in measure theory.

Despite these comments, it is not my intent to clutter the
presentation of the methods, techniques, and results of this thesis with
rigorous justifications of the numerous manipulations, and with precise
starements of the conditions under which the various (known)
representations are valid. Such an undertaking would surely transform
this engineering thesis into a mathematical work of limited appeal to

mest engineers.
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Rather, I will assume that all random processes of interest are
harmonizable in the sense that the double Fourier transform of their
autocorrelation functions exist (with the possible inclusion of izpulse
functions); that all periodic functions (including periodic trains of
impulses) possess Fourier series representations; and that wherever
necessary, the order of execution of integration, infinite summation,
and statistical expectation can be interchanged. Clearly then, all proofs
based on these assumptions will be formal proofs.

I refer the mathematically inclined reader, interested in the
validity of these assumptions, to the following references chosen on
the basis of their potential appeal to engineers:

(1) Lebesgue integration theory: Riesz and Sz-Nagy [31], and Epstein {29},
(2) Properties of the Lebesgue integral, and development of series and
integral harmonic representations for deterministic functions: Wiener (28],
and Titchmarsh [32,33],

(3) Theory of linear integral equations: Riesz and Sz-Nagy [31],

(4) Theory of Distributions (impulse functions and their relatives):
Zemanian [30],

(5) Development of series and integral representations for random functions
(introductory treatments for engineers): Pugachev [34], and Papoulis [3],
(6) Linear functional analysis: Epstein [29], and Riesz and Sz-Nagy [31].

Finally, I mention that the use of the Fourier transforms and
Fourier series (except in Chapter III, Section 2h where a generalized
Fourier transform for random processes is defined) and the use and
manipulation of infinite integrals, infinite series, and impulse functions
in this dissertation are not uncommon in the engineering literature, and

are often easy to justify heuristically.
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", Figure(1-1) Venn diagram of various classes of random processes:
NS = generally nonstationary, WSCS = wide-sense cyclostationary,
WSS = wide-sense stationary, CS(2) = cyclostationary-of-order-

two, S(2) = stationary-of-order-two, WSP = wide-sense periodic.
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Figure(1-5) Line-scanning diagram.
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CHAPTER 1I
TRANSFORMATION, GENERATION, AND MODELING

OF CYCLOSTATIONARY PROCESSES
1. Introduction

This chapter provides a foundation upon which many of the develop-
ments in this thesis are based, and upon which subsequent studies
dealing with cyclostationary processes can be based. We consider here
the generation of cyclostationary processes and transformations on them.
We develop formulas which describe, in terms of input-output relations,
various classes of transformations such as linear time-invariant,
periodically varying, and time-scale transformations; and random linear
stationary and cyclostationary transformations. Also considered are
nonlinear random and deterministic transformations encountered in various
modulating schemes and common models of distortion. We derive models for
a multitude of cyclostationary processes which are generated from
stationary processes that have been subjected to transformations from
the above classes. We also present a number of theorems on transforma-
tions mostly related to the generation and preservation of
cyclostationarity.

Most of the developments in this chapter relate to the system
diagram shown in Figure 2-1 where y is a random process referred to as
the input to the system G, and x is a random process termed the output.

x 1s also referred to as the image of y under the transformation G, and

y is termed the inverse-image of x.
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In Section 2, we consider Transformations G which are linear.
After deriving general input-output relations, we individually discuss,
in some detail, the three subclasses of linear transformations referred
to as time-invariant filters (2a), periodically time-varying systems (2b),
and time-scale transformations (2c). Zadeh's ''system function" is
introduced as a means for characterizing linear systems, and is used
throughout most of this section. A number of theorems on the properties
of these three classes of transformations are proven and illustrated
with examples which also serve to introduce seven types or classes of
cyclostationary processes including time-division-multiplexed signals,
frequency-division-multiplexed signals, and a-synchronous pulse trains
including facsimile, and telegraph signals.

In Section 3, we briefly discuss multidimensional linear
transformations as a means for characterizing scanning operations.
Examples are given to illustrate two common types of scanning, and to

introduce two additional classes of cyclostationary processes including
video signals,

In the fourth section, we introduce a generalization of Wiener's
"Wolterra series representation" for characterizing input-output relations
for periodic nonlinear systems. Two subclasses of periodic Volterra
systems are considered, and theorems for each, on the generation of
cyclostationary processes, are proven and illustrated with examples
which also serve to introduce several additional classes of cyclo-

stationary processes, including synchronous pulse-trains such as

frequency-shift-keyed signals.

—
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Section 5, on random linear transformations, parallels Section 2

on deterministic linear systems. After deriving general input-output

relations in terms of a generalization of Zadeh's ''system correlation

function", we individually discuss, in some detail, the three subclasses
referred to as wide-sense-stationary systems (5a), cyclostationary systems
(5b), and random time-scale transformations (5c). A number of theorems
on the preservation and generation of cyclostationary processes are

proven and illustrated with examples which also serve to introduce

another eight classes or types of cyclostationary processes, including
analog and digital frequency-modulated and phase-modulated signals.

Section 6, on random multidimensional linear transformaticns,
parallels Section 3. The major application of the theory in this section
is to random scanning.

The final section (7), on random nonlinear transformations, is an
extension of Section 4 on deterministic nonlinear systems. The major
issue in this section is '"jitter'". This random disturbance is
characterized in general terms, and shown to preserve cyclostationarity

under a fairly liberal set of conditions.

2. Linear Transformations

Due to the length of this section, we begin by giving a brief
outline of the theorems proved and the cyclostationary process models
defined:

a) Time-invariant filters

Theorem(2-1): Preservation of cyclostationarity by time-invariant filters.
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Theorem(2-2): Sampling theorem for nonstationary processes.
Theorem (2-3): Reduction of cyclostationary processes to stationary
processes via bandlimiting filters.

b) Periodically time-varying systems

Theorem(2-4): Generation of cyclostationary processes from stationary
processes via periodic systems.

Model (1): Amplitude-modulated signals

Model (2): Pulse-amplitude-modulated signals

Model (3): Time-division-multiplexed signals

Model (4) : Frequency-division-multiplexed signals

c¢) Time-scale transformations

Theorem(2-5): Generation of cyclostationary processes from stationary
processes via periodic time-scale transformations.

Model (5): Time-division-multiplexed signals

Model (6): Doppler shifted processes

Model (7): Random facsimile signal

Model (8): Asynchronous pulse-amplitude modulated signals

We now turn to the development of general input-output relations which

will be employed throughout the remainder of this thesis. ™

4Throughout most of this dissertation, we will use single letters,
say x, to denote random processes, and we will use the form x(t) to
denote a realization of x. Similarly, we will use the notation y(t),
z(t,s) to denote deterministic functions of one and two variables.
ilowever, on occassion, the notation y(+), z(*,*) will be used for the

purpose of clarification. The index sets for random processes, and domains

for deterministic functions will, unless otherwise stated, be (-«,«)
or cartesian products thereof.
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All linear transformations of interest in this thesis are linear

integral transformations and can be characterized by an impulse-response

function (kernel) g(t,t), which may possess impulse functijons and their

derivatives. Thus any realization x(t) of the output of G can be related

to its inverse-image (input) y(t) as follows:3

x(t) = [ glt,7)y(x)dr. (2-1)

The mean function for x is related to the mean function for y as follows:

n (t) 4 Etx()}

E{ [ g(t,t)y(r)dr}

1

[ g(t,")E{y(t)}dr

-]

/ g(t, Im (v)dv, (2-2)

and the autocorrelation function for x is related to that for y as follows:

1>

ke (£:8) = E{x(t)x*(s)} = EL [[ g(t,1)g*(s,v)y(1)y* (y)ddy)

ff g(t,t)g*(s,y)Ely(t)y*(y) }dtdy

-0

/] g(t,1)g* (s,7)k (r,v)drdy. (2-3)

The double Fourier transform of thc autocorrelation function

(sometimes referred to as tne cointensity spectrum) is a quantity which
finds much application in the theories of representation and estimation
of random processes. We denote the double Fourier transform of kxx(t,s)

as Kxx(f,v):

SThis characterization is generalized in Section 3 of this chapter to
multidimensional transformations.
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K, (£,9) 2 [f Ky (E15)e” -32n(ge- $gtds. _ (2-4) °

We can express the double Fourier transform of a function of two variables !

in terms of a repeated single Fourier transform as follows:

let Set,1) 1[ g(t, e -jonfey,

then - G(£,v) = [ E(f,f)ejz"ffdr. } | ‘

With'the aid of this definition of § we can easily relate K _ (£,v)

- directly to kyy(f,v) by comﬁfning Egs. (2-3), (2-4):

1

K () = [[]] kyy(r,y)g(t{t)g*(s,y)e’izn(ft_vs)drdyd;ds
= [f kyy(&,y)c(f,r)a*(v,y)drdy : L L

Now, hsing Parseval's relation [2] we have

1 1

/! Ky @01 [ i a*(f,r)etjzwadr}*'

Kxx(f,v}

C j &(v y)el? Y°dy)dwdo

- 00

\ /I Kyyfw,o)G(f;w)G*(v,o)dwdo. 1 }2-5)

'

NOth¢ that Eq (2-5) is the L'frequency t1me dual" of Eq (2-3).
There are twq interesting subclasses of linear transformatlons that
are dealt with throughout this thesis. We describe these in the next

' i
1

two subsections. ‘

a) Time inyariant'filters. The subclass, time-invariant linear

transformations--frequently referred to as filters--is characterized by
the defining relation (with some abuse of notation) g(t,1) = g(t-1)

for all. t and 1, That is, the impulse-response function for a linear

pro————
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time-invariant filter depends only on the difference of its arguments
and is, in fact, a function of a single variable. The double Fourier

transform of g(t-t) exhibits the following singular behavior:

. G(f,v) = G(f)8{f-v), (2-6)

where G(f) is the single Fourier transform of g(t) and is referred to

as the transfer function for the filter, and § is the Dirac delta

function (impulse function).

Using Eq. (2-6), the input-output relation of Eq. (2-5) reduces to

Kxx(f,v) = Kyy(f,v)G(f)G*(v). S (2-7)
: EJ Now, if y is WSS then its autocorrelation function depends only on the
; : difference of its arguments and, as a result,
Kyy(f,v) = Kyy(f)s(f-v) (2-8)
T where Kyy(f) is the single Fourier transform of the autocorrelation
] ’ 3 function kyy(t) and is referred to as the power spectral density (PSD)
‘ | for y (and sometimes as the autointensity spectrum). Using Eq. (2-8) in
L Eq. (2-7) yields
o
§ Ko (F29) = K (F)8(E-)G ()6 (v)

i

2 - .
K, (6) |G(£) |28 (£-v)

Also, if y is WSS then its mean function is a constant and (from Eq. (2-2)
with g(t,t) = g(t-1)) so too is the mean functior for x. Thus, x is WSS

| and, from the last equation, has PSD
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Ky (6) =[G (6, (2-9)

The following theorem is an intuitively obvious, but useful, result
on the preservation of the property of cyclostationarity by time-

invariant filters:

THEOREM(2-1): If the input to an arbitrary time-invariant filter is a
cyclostationary process with period T, then the output is cyclostationary

with period T.

Proof: From Eq. (2-3) we have

k,  (t+T,5+T) = ffg(t+T-T)g*(s+T~v)kyy(t.v)dtdY

-0

= ffg(t-T')g*(S-v'3kyy(T'+T'7'*T)df'dv'

-00

= ffg(t-T')g*(S-v')kyy(r',Y')dr'dv'

-00

= kxx(t’s) v t,s

»

and from Eq. (2-2)

m_ (t+T) =_wf g(t+T-1)m (v)d

©o

= f g(t-tIm (v'+T)dr!

= [ g(t-t"Im (r')d’

= mx(t) vte.

Hence, both the mean and autocorrelation for x are T-periodic so that

x is T-CS.®
QED

6We will use the short-hand notation T-CS to denote cyclostationary (in
the wide sense) with period T.




i) Bandlimiting.
(1) Sampling Theorem: The well known sampling theorem for WSS processes

[2,3] may be stated as follows:

L If the PSD Kxx(f) of a WSS process. x is bandlimited to the interval

3 (-1/2T,1/2T) in the sense that K__(f) = 0 for |f] > 1/2T, then x :

i xx 2 |

= admits the mean-square equivalent "'sample representation ?

| !

LJ v sinn(t-nT)/T |
B((x(e) - | xn) S2REET 23 -0 v |

=- i 2

LJ We now state and prove a generalization of this theorem which removes ‘

;} the restriction to WSS prbcesses:

- THEOREM(2-2): If the double Fourier transform Kxx(f,v) of the auto-

Lj correlation function for a process x is bandlimited to (-1/2T,1/2T) in

the sense that K _(f,v) = 0 if |£] > 1/2T or if |v| > 1/2T, then x

S

admits the mean-square equivalent representation

-]

f ) sinn(t-nT)/T |9, _
8 E{(x(t) ,\Z_J‘(“T) Saanyr ) o vt
E; Proof:
b ©
A _ sinn(t-nT)/T >

Let e - E{(x(t) nz_w x(nT) —;TE?H?T7?r—-) }.
id

Expanding the square and interchanging expectation and summation yields
- e =k (t,t) - 2% k_, (t,nT)¢(t-nT)

+ 1k, (T,mT)¢(t-nT)¢(t-nT)
n,m

. where

o A sinnt/T
() = /T




Since kxx(t’s) is the inverse double Fourier transform of Kxx(f,v), then

k (t.s) = [f K (£,v)e?2" -V )agay

1/2T .
I x (g,ved?"(EV)agqy,
-1/21

and the last equality is a result of the bandlimiting hypothesis.
Substituting this last equation into the last expression for ¢
we obtain

1/2T . .
c = ff Kxx(f,v)[ejzn(f-v)t -2 z e)Zn(ft-vnT)¢(t_nT)
-1/2T n

o 7 I2TERT-T) o TYe(t-nT)]dfd.

n,m

But using the Poisson sum formula [2] we have

Z e-JZ"vnT¢(t—nT) - % Z 0(2/T-v)e'32"(v'2/T)t
n L
where
T, |f] < 1/2T
o(f) = i -
0, |f] > 1721,
so that
e d2™Ty ety = e732™ | || < 1/0T.
n

Now, substituting this equation into the last expression for e yields

™
n

1/2T . . .
ff Kxx(f’v)[eJZW(f-v)t_2e32n(f-v)t+e32n(f—v)t]dfdv
-1/2T

=0 ¥t
QED
Notice, from Eq. (2-7), that the bandlimiting constraint on Kxx(f,v)
in the above theorem is satisfied for a process x which is the output of

any time-invariant filter whose transfer function is bandlimited to

oy o I
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(-1/2T, 1/2T) regardless of the input process y. Notice also that if x

is HSé then the bandlimiting constraiiat in the above theorem becomes
Kxx(f,v) = Kxx(f)c(f-v) =0

if |£] > 1/2T or if |v| > 1/2T and is satisfied if and only if K (£) =0
for |f| > 1/2T which is precisely the bandlimiting constraint in the
sampling theorem for WSS processes. Hence, the sampling theorem for
WSS processes is simply a special case of the general sampling theorem
presented here.

(2) Reduction eof cyclostationary processes. Any CS process can be
reduced to a WSS process via bandlimiting. This fact is stated here
as a theorem:

THEOREM(2-3): If x is the output of a filter with transfer function
bandlimited to (-1/2T,1/2T) and the input y is T-CS, then x is WSS.
Proof: From Eq. (2-7) Kxx(f,v) is bandlimited to (-1/2T,1/2T). Thus,

from the sampling theorem for deterministic functions [2], we have

sinn(t-nT)/T][sinw(s~mT)/T].

K, (t,8) = nXm kx0Tm0 Sy Steoen/T

But, from Theorem (2-1), x is T-CS so that

kxx(nT,mT) = kxx[(n-m)T,O] ¥ n,m,
and
_ . sinn((t-mT)-pT), sinw(s-mT)/T
kxx(t’s) - mzpkxx\pT’O)[ n((t-mT)-pT) 1 n(s-mT)/T ]
_ ] sinn(s-mT)/T
- % kxx(t-mT,O)[ n(s-mT)/T ]
= kxx(t—s,O) ¥ t,s,
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where the last two equalities are due to the sampling theorem for
deterministic functions. Now, from Eq. (2-2) it is easily shown that
the Fourier transform of 'x(t) is bandlimited to (-1/2T,1/2T). Thus,

from the sampling theorem for deterministic functions, we have

sina(t-nT)/T
PRNCO IRty ond

n

LR (t)

sinw(t-nT)/T
mx(O) E n(t-nT)/T

mx(O) Ve,

wheve the second equality is due to the fact that x is T-CS (from
Theorem (2-1)), and the last equalify is due to the sampling theorem
for deterministic functions. Hence, both the mean and autocorrelation
functions for x are invariant to arbitrary time shifts so that x is WSS.
QED
Notice that this last theorem does not, as might appear, contradict
Theorem (2-1) since any WSS process is CS with any choice of period T.

b) Periodically time-varying systems. The subclass, periodically

time-varying linear transformations (with period T), frequently--but
sometimes inappropriately’--termed "periodically time-varying filters"
are characterized by the defining relation g(t,7) = g(t+T,t+T) for all

t and 1. That is, the impulse response (kernel) for a linear T-periodic
transformation is invariant to time-translations that are integer

multiples of the period T.

7In the event that *he transformation is non-dispersive--it's impulse-
response function contains a factor of the form §(f(t)-1) for some
function f(t)--it is not a filter.

I =

i.—...w_

-

!




For many analyses involving linear time-varying systems (transformations)

it is beneficial to separate the time-varying and time-invariant

characteristics. The system functicn defined by Zadeh [35,36] and its

inverse Fourier transform do just this. The system function H is

- defined as follows :

—
® -j2
Hee,£) 2 [ gt t-)e 32 T4y, (2-10)
-
g and the inverse Fourier transform w.r.t. (with respect to) f of this
4 ! —J system function is
1
E (
3 —} h(t’T) = g(tat'T)s (2-11)
? ' where 1 is frequently referred to as the age variable or memory variable
, and t may be referred to as the fluctuation variable. Now, the time
i
g —d invariant behavior is characterized by the section function h(t,+) where
: t is considered to be a parameter, and the time-varying behavior is
- 8

characterized by the section function h(+,1) where t is a parameter.

LU S e

For example, if the transformation is time-invariant, then
h(t,t) = g(t-(t-t)) = g(tr) = h(0,1) for every t and there are no time
fluctuations--h depends solely on the age variable. Similarly, if the
transformation is T-periodic, then h(t+T,t) = g(t+T,t+T-1) = g(t,t-1) = h(t,1)
for all t and T, and the periodicity is reflected only in the fluctuation

variable. Treating 1 as a parameter, we can expand the T-periodic

8A quantity closely related to the system function is the bifrequency

function which is simply the Fourier transform w.r.t. t of H(t,f). The
: bifrequency function finds much application in analyses of time-varying
systems, but will not be used here.
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section function h(°,t) into a Fourier series

j2mt/T

h(t,7) = § h (1)e (2-12)

Thus, from Eq. (2-11), the impulse response g has the representation

j2mt/T

gt,1) = ] h (t-1)e (2-13)
n

One interesting result of this representation is the obvious realization
of a periodic system as a parallel connection of time-invariant filters

{hn} followed by periodic multipliers {eJZ"nt/T

} as shown in Figure (2-2).
Notice that if the sine-cosine Fcurier series were used rather than the
exponential Fourier series, then all components--sine and cosine
multipliers and time-invariant filters--in the realization would be real
not complex. (See Chapter III for other realizations of periodically
time-varying linear systems )

The double Fowmrier transform of the impulse response of a T-periodic
system also has an interesting representation which we obtain directly
from Eq. (2-15j:

[ gle,0e I3 E-VTgeq,

G (f, V)

f[ z hn(t_r)e-jZHt(f—n/T)ejZ'nT\)dth
- 00 n

z f Hn(f_n/T)e-j2wr(f—n/T)ej2n1vdth
n-m

y H (£-n/T)8 (£-v-n/T), (2-14)
n
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vhere Hn is the single Fourier transform of hn' We see that G(f,v)

consists of impulse fences along lines parallel to the (f = v)-diagonal,

so that the general input-output relation of Eq. (2-5) reduces to:
. o o
K (£,) = nz-; l“‘Z:_mun(f-n/ TH; (v-n/ TIK  (£-n/T,v-u/T), (2-15)
Notice that if we consider the degenerate case of a time-invariant
filter, then Hn =0 forn# 0, and Ho(f) = G(f) so that Eq. (2-15)
reduces to Eq. (2-9) as it should.
Now, if the input y is WSS then, from Eqs. (2-8), (2-15), the

double Fourier transform of the output-process autocorrelation function

takes the form

Kex (£29) = ) H (E-n/ TIHR(E-0/T)K  (£-0/T).

n,m

§(f-v -(n-m)/ T)

g [E H_(f-n/ T)H;_p(f-n/T)Kyy(f—n/T)].

8 (£-v-0/T) . (2-16)

Thus, we see that Kxx(f,v) also consists of impulse fences on lines
parallel to the (f = v)-diagonal so that kxx(t,r) must exhibit the same
pericdicity as g(t,t). We state this result as a theorem which provides
the foundation for the generation of a large class of CS processes:
THEOREM(2-4): If the input y to a T-periodic system is WSS, then the
output x is T-CS.

Prcof: From Eq. (2-3), we have
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0

ki (84T,5+T) = [[ g(04T, 1)g* (s+T, 1)k (r-v)ddy

= [ g(t,-Tg* (s,v-Thk  (x-T-(y-T))ddy

= [] gt )g* (557" Dk (' -y " Y dy

= kxx(t’s) V’t,S:

and, from Eq. (2-2),

f g(t+T,T)my(T)dT

mx(t+T)

= f g(t,T-T)my(T-T)dr

= g(t,'r')my(r')dr'

-00

mx(t) ¥ t:

where g is the impulse response of the T-periodic system. Hence, both
the mean and autocorrelation functions for x are T-periodic so that
x is T-CS.
QED

We now present four examples of CS processes which can be generated
by passing WSS processes through periodic systems. These examples are
all signal formats used in communication.
MODEL(1): Amplitude-modulation (AM). Conventional amplitude-modulation
is nothing more than multiplication of a signal by a periodic waveform p(t)--
usually a sinusoid. If x is the AM process obtained from the WSS signal
y as follows: x(t) = p(t)y(t), then we sec that x is obtained from a
periodic linear transformation on y where the kernel (impulse response)

is g(t,t) = p(t)86(t-1). Thus, from Theorem (2-4), x is CS. An interesting
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special case of AM is that where y has a zero-mean value and p(t) is a

sinusoid with period T. Then

kxx(t,s) cos(Znt/T)cos(Zns/T)kyy(t-s)

%[cos(Zw(t+s)/T)+cos(Zn(t-s)/T)]kyy(t-s),

so that x is CS with period T/2 even though p(t) is T-periodic, not
T/2-periodic.
MODEL(2): Pulse-amplitude-modulation (PAM). As discussed in Chapter I,
a synchronous PAM signal x is simply a periodic train of equally spaced
(in time) pulses with random amplitudes:

x(t) = nZ.manqo(t-nT) .
The random sequence {an} may be a random data sequence with a finite
alphabet (finite number of admissable values for realizations of each an)
or {an} may be the sample val:'es {y(nT)} of some continuous-time process
y. In this latter case, x can be generated by passing y through a
pericdic system composed of a periodic impulse sampler followed by a
time-invariant filter with impulse response qo(t) as shown in Figure (2-3).

The impulse response for this composite T-periodic system is

g(t,7) = q (t-1) } §(t-nT) .
n

If y is WSS then, from Theorem (2-4) x is T-CS.

In Sec. 7 of this chapter we discuss a generalized model of PAM
which includes é random disturbance termed jitter. In this generalized
model, the pulse stream is no lenger synchronous, but x is still CS.

Also, if the pulses comprising a single PAM signal are sufficiently

)
%
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separated in time, then several of these signals can be interleaved in
time to form a composite time-division-multiplex PAM signal which will
be CS if the random amplitude sequences are jointly WSS. Note that
processes which are individually WSS and are statistically independent
are also jointly WSS.
MODEL(3): Time-division-multiplex (TDMI). The TDM1 process, as discussed
in Chapter I, is formed by interleaving finite-length records from a
multiplicity, say M, of signal sources. This can be done by passing each
component process through a periodic gate, and summing the gated procegses
as shown in Figure (2-4a). A typical periodic gate-function is shown in
Figure (2-4b). Realizations of the composi:: process take the form

x(t) = nz_jn(t)qo(t‘““o)

where TO = T/M and Yn for all n. As pointed out in Chapter I,

= Yn+M
X is CS with period T if the {yn} are jointly WSS. This result can be
explained in terms of 3 vector formulation of Theorem (2-4) where the WSS
y is replaced by an M-vector of jointly WSS processes, and the T-periodic
system is replaced with a 1 x M matrix of T-periodic systems.
Alternatively, the cyclostationarity of x can be attributed to the fact
that a4 sum of jointly T-CS processes is a T-CS process.

Notice that the gating operation in the multiplexor discards portions
of each component process, so that conceivably there could be a loss of
information in this multiplexing scheme. In the following subsection

on time-scale transformatious, we introduce a '"lossless' time-division

multiplexing scheme, TDMZ.
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MODEL(4): Frequency-division-multiplex (FDM). A multiplexing scheme
which is frequently encountered in radio communication systems is that
of frequency-division-multiplex (FDM). The FDM signal is formed by'_
interleaving in frequency a multiplicity, say M, of "frequency-translated"
signals, and is to some extent the frequency-time dual of TDM.
Specifically, each component process Yy is bandlimited to (-1/2T,1/2T)
and then amplitude-modulated with a sinusoid (translated in frequency)
into disjoint frequency bands, as shown in Figuré (2-5b), and the
resultant translates are summed to form the composite FDM signal with
realizations of the form:
M
x(t) = nZ1 x_(t)cos (v t+2mt/T),

where the {xn} are the ban&limited versions of the {yn}. The complete
multiplexor is shown in Figure (2-5a).

Now, if w, is an integer multiple of 2w/T, and the {xn} are jointly
WSS, then x is the sum of M jointly T-CS processes and is therefore T-CS.
Again, as in the case of TDM, this .cesult can be interpreted in terms of
a vector version of Theorem (2-4).

Notice that in both TDM. and FDM, the composite signal is the sum of

1
CS AM processes; that is, the sum of deterministic periodic signals
amplitude-modulated by random WSS signals.

¢) Time-scale transformations. The realization y(t') of a process

which has undergone a time-scale transformation t'{t) is a function of a

function y[t'(t)] and may therefore be referred to as a composition. We

will consider WSS input processes y which undergo time-.cale transformations



consisting of a' scaled identity function and a periodic function ptt),
: ’ ! s i i 1
so that the time parameter t is replaced by t* = at + p(t) to yield an

output composition-process x with realizations of the form .

x(t) = y(at+p(t)). P - © o (2-17)

Time-scale transformations of this form can . be characterized by
their impulse response functions which take the form

!

étt,T) = G(T-at-p(t)).i pe ! . §2;18)

Notice th?t

' . j
g(t+T,71+T) = g(t, 1+ (3-a)T)

#g(t,r) ifafl,' !

so that these "periodic" time-scale transformations are not periodic
systems unless a = 1. ! ' !

The following tbeorem serves ‘as a basis for the generaﬁion of a
large class of CS processes:? . |

THEOREM(2-5): If X is a process with realizations obtained: from the
| ' o
realizations of a WSS process y by the time-scale transformation:

x(t) = y(at+p(t)), where a is a dctérministic constant and p(t) is a

deterministic T-periodic function, then x.is T-CS and has constant mean
! ' B

and variance.

Proof: : ‘ ,
m (t+T) = E{y(a(t+T)+p(t+T))} : ,
l = my, a constantly vt
=m (t) ¥,

9This class has also been considered by Hurd [5].
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and

E{y (a(t+T)+p(t+T))y(a(s+T)+p(s+T))}

kxx(t+T,s+T)

E{y(a(t+T)+p(t))y(a(s+T)+p(s))}

kyy(a(t+T)+p(t)-a(s+T)-p(s))

i}

kyy(at+p(t)-as-p(s))

kxx(t,s),
so that x is T-CS with constant mean, and variance
2 - - m2f(t) = _ m2
c kxx(t,t) mx(t) kyy(o) my

which is also constant.
QED
It is worth emphasizing that all members of the subclass of CS
processes which are generated from WSS processes via periodic time-scale
transformations have constant mean and variance regardless of the severity
of periodic fluctuations in the transformations.
We proceed with three examples:

MODEL(5): Time-division-multiplex (TDMZ). The time-division—muliiplexing

scheme (TDMI) introduced in Chapter I and discussed earlier in this section

can result in a loss of information in the sense that only a fraction (1/M)

of every T-length record of the component processes is contained in the

composite TDM1 process--the remaining fraction ((M-1)/M) is discarded by
the gates in the multiplexor (see Fig. (2-4)). This loss of information
can be circumvented if every T-length record is first compressed in time

to 2 T/M -length record. The resultant periodically compressed component

"
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processes can then be multiplexed together without loss of information.
The periodic time-scale compression can be effected by applying a
time-scale transformation to the original component processes:
xn(t) = yn(t+p(t)). An appropriate function p(t) is the periodic
triangular waveform shown in Figure (2-6a). With this choice, the
transformed time variable t' = t + p(t) remains constant (time does not
advance) over the éirst (M-1)/M of each adjacent T-length interval, and
then increases linearly with slope M (time advances at a rate accelerated
by the factor M) over the final 1/M of each adjacent T-length interval
(see Figure (2-6b)).
The resultant effect of this periodic time-scale compression is
shown in Figure (2-7) with a typical realization of the Mth process
YM and its compressed counterpart Xy
In order that the M processes,to be time-division-multiplexed,can
be properly interleaved, the component processes must be compressed into

interleaving time-slots as expressed here:
x (t) =y (t+p(t+M-n)T/M)).

Now, the compressed component processes can be applied to the multiplexor

of Figure (2-4) to yield the composite TDM, signal with no loss of

2

information, and with realizations of the form:

x(t) = ]y (t+p(t+(M-n)T ))q (t-(n-1)T )
n

where To = T/M.
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If the original component processes {yn} are jointly WSS, then
each compressed component process x wil} be T-CS (from Theorem (2-5))
and, in fact, the M components will be jointly T-CS. An extended
version of Theorem (2-4) (a vector of jointly T-CS inputs into a matrix
of T-periodic systemns yields a T-CS output) guarantees that the composite
TDM2 signal x is T-CS.

Notice that any time-scale transformation (including the time-scale
compression in the above example) can be realized, in principle at least,
with a recording machine which either records or plays back {(not both) at
a variable speed determined by the time-scale transformation.

MODEL(6): Doppler shifted processes. A realization of any random
waveform--be it acoustic, electromagnetic, mechanical, etc.--which is
transmitted, radiated, or reflected from a body whose spatial frame of
reference varies w.r.t. that of an observer of the random waveform will

undergo a time-scale transformation which is frequently referred to as

a Doppler effect or Doppler shift. If the spatial variation is an

oscillation or is, in some sense, periodic so that the resultant time-
scale transformation exhibits the periodicity described in the hypothesis
of Theorem (2-5), and if the original process is WSS, then the resultant
Doppler-shifted process is CS (by Theorem (2-5)).

This Doppler effect is encountered frequently in studies in nuclear,
atomic, and astronomical physics, and in radio-science, radio-astronomy,
and other fields of science.

i) Processes derived from the Poisson counting process with periodic rate

parameter: In contrast to the synchronous pulse-train processes such as
PAM, one often encounters processes where only the average rate of pulsc

occurrences is known. In such situations, where pulse occurrences are
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totally asynchronous (random), the Poisson counting process is frequently
used in constructing a model (2,3,22]. In particular, models for random

facsimile signals [2], random telegraph signals [2,3], and shot noise

[2,3,22) have been constructed on the basis of the Poisson counting process.

If the rate parameter u in the counting process is constant, then
the above models are WSS. However, if the rate parameter varies
periodically with time, then the models become CS. Such CS models have
been proposed in studies of meteorology [18] and noise in electronic
devices [22].

We will show here that the mean and autocorrelation functions for
the CS random facsimile signal derived from the inhomogeneous Poisson
counting process with rate parameter u(t) = u,* ulp(t) are identical to
those corresponding to the process which is obtained from the time-scale

!

transformation: t' =t + ™.
0

Jp(t) on the WSS facsimile signal derived
from the homogeneous Poisson counting process with constant rate parameter
Mo (A similar, but less general result, for the random telegraph signal
has been stated by Hurd [5].)

MODEL(7): Random facsimile signal. A random facsimile signal is
obtained by optically scanning a black and white picture according to,
for example, the line scanning scheme discussed in the following sub-
section. For a random picture, the scanner output x will be a two-valued
random process, say x(t) = 1 for black portions and x(t) = 0 for white
portions. The times at which transitions from black-to-white and white-
to-black occur will be an ordered sequence of random variables which we

will model in terms of the inhomogeneous Poisson counting process with
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L
rate parameter u. Using precisely the same assumptions and method of
{_ derivation as Franks [2], but generalized from the case of a constant
3 rate parameter u, to that of the fluctuating u(t), we obtain the
. L- foilowing set of coupled differential equations :'®
¥ 9P_(t,s)
L 3 ° -u(s)[Pn(t,s)-Pn_l(t,s)], s>t,n>0
i) P (t.t) = 1, n-= 0
n 0, n#0
ij . Pn(t,s) =0, n<0, (2-19)
[} where P_(t,s) is defined to be the probability that exactly n

transitions occur in the interval (t,s). x is constant over each interval
b defined by consecutive transition times, and assumes the values 1 or 0
with probabilities p or 1-p, and the values of x in different int:rvals

- are assumed to be statistically independent.

YRR
_ L

| Now, from this model, we find that:

-

mx(t) = E{x(t)} = Pr(x(t)=1) = p ¥t,

kxx(t’s) = E{x(t)x(s)} = Pr(x(t)=1 and x(s)=1)
1 ' = p*Pr(t and s are in the same interval)
s : + p2e¥r(t and s are in diff:rent intervals)
]

= prPy(t,s) + p2(1-Py(t,s)) ¥s > t,
E where Pr(+) indicates ''the probability of the event in the parenthesis'.
But, from Eq. (2-19), we easily obtain the solution for PO:
. s
b Py(t,s) = exp[- [ w(o)da] , s>t
t
10Sec also Parzen [22], and Papoulis [3].
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so that
2 s 2
k (t,s) = (- =d)exp[- tI u(o)do] + m2 ¥s >,
and since kxx(t,s) is symmetrical in t and s then
2 s 2
kxx(t,s) = (mx - nx)exp[-l tf u(o)do]] + me ¥ t,s.
If we now consider a process y with constant rate parameter o
then

= - m2 - - 2
kyy(t,s) (mx mx)exp[ uolt s|] + m2, ¥t,s

which is the result derived by Franks [2]. The interesting point here

u
is that if we subject y to the time-scale transformation: t' = t + ;l fp(t),
0

then we obtain a process x' with the same mean and autocorrelation
functions as the above process x with fluctuating rate parameter

w(t) = uy + uyp(t).

We conjecture that various WSS models for piecewise constant processes

derived from the Poisson counting process with constant rate parameter
u,y can be extended to CS models with the time-scale transformation:

t' =t + ;l fp(t), where the resultant mean and autocorrelation functions
will be idgntical to those corresponding to the model obtained directly
in terms of the inliomogeneous Poisson counting process with periodic rate
parameter: u(t) = Mo * ulp(t).

MODEL(8): Asynchronous PAM. A specific model which we wiil be concerned
with in Chapter IV can be derived, via a time-scale transformation, from
the general WSS asynchronous random pulse-sequence

y(t) = [ aq (t-t) (2-20)

n=-o
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where {an] is an arbitrary WSS sequence independent of the occurrence
times {tn} which form an ordered sequence distributed according to the

Poisson counting process with constant rate parameter Bos and qo(t) is

— = =

an arbitrary pulse shape. This proc.ss y has been used as a model for

——
——

shot noise and, as shown by Franks [2], has mean and autocorrelation

i)
C

functions given by
; '
: [ J
my = uoh, -£ qo(t)dt

L

TR T I PO s TV R gaTe

Y = m2 2
kyy (13 = w2 + "o"a_,,f q, (t+1)q (t)dt,

s

] where oi is the variance of {an} and m is the mean. Now, we create a
\ new process x by subjecting y to the time-scale transformation:
!
; ‘..J
t' = t + p(t), where p(t) is any T-periodic function such that t'(t) is
: 1j a nondecreasing function (time never regresses), and obtain
i' ’
. Pl t) =nm
, mx() y

k  (t:s) = kyy(t + p(t) - s - p(s))

la

as the mean and autocorrelation functions for the T-CS asynchronous
b
e random pulse-sequence x whose average rate of pulse-occurrences {(and pulse-

shapes) varies periodically with time.
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3. Multi-dimensional Linear Transformations (Scamning)

In this section we briefly discuss the transformation of multi-

dimensional quasi-stationary processes into one-dimensional cyclo-

stationary processes, and the application of this concept to the generation
of CS processes via scanning.

A three-dimensional process y is a random function of three

independent variables: y(t,u,v), t ¢ R, u € Dl’ veD In the applications

2
discussed here, u and v represent two spatial coordinates and t the usual

time coordinate. The domains Dl and D2 will be finite intervals in R the

set of real numbers. We will define y to be quasi-wide-sense stationary

if and only if each of the one-dimensional processes y(+,u,v) is WSS for
each value of u ¢ D1 and v € Dz.11

We are interested in linear transformations which map y into a one-
dimensional CS process x (a random function of the single variable t).

As a generalization of the one-dimensional linear transformations

discussed in Section 2 of this chapter, we characterize a three-dimensional

linear transformation in terms of a three-dimensional impulse response ;12

If v is the input to a transformation G, and x is the output, then the
realizations of x are related to thc corresponding realizations of y as

follows:

x(t) = f f f g(t,t,u,v)y(t,u,v)drdvdu, (2-21)
D1 D2 R

11This notation does not parallel our convention for one-dimensional
processes, but is the least ambiguous.

12 The terms "three-dimensional linear transformation' and '"three-dimensional
€ impulse ?esponse? are not quite appropriate since the output (image)
process is one-dimensional.
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where g(t,T,u,v) is the three-dimensional impulse response.
We say that G is a quasi-periodic transformation with period T if

and only if
g(t+T,1+T,u,v) = g(t,7,u,v) ¥ t,teR, us= Dl’ Ve DZ' (2-22)

With these definitions we can generalize Theorem (2-4) as follows:
THEOREM(2-6): If the input y to a three-dimensional quasi-periodic
transformation with period T is a three-dimensional quasi-WSS process,

then the one-dimensional output x is a T-CS process.

The proof directly parallels that for Theorem (2-4).

We now give two applications of Theorem (2-6) to the generation of
CS processes via scanning:
MODEL(9): Line-scanning a rectangular field (video). The process of
scanning a finite rectangular field--performed by a video camera, for
example--can be modeled with a three-dimensional linear transformation.
Then the scanner is fully characterized by the impulse response g(t,T,u,v)

which is sometimes referred to as a window function. With reference to

i

Figure (2-8) and Eq. (2-21), D1 (O,Wl) and D, = (O,Wz) are the domains

2
for u and v, and y(to,uo,vo) is a realization of the three-dimensional
process y evaluated at time to horizontal distance u . and vertical
distance Vo The video signal is the scanner output process x and is
obtained from y as in Eq. (2-21).

The conventional video camera employs a constant velocity line-

scanner whose impulse response can be modeled as (with some abuse of

notation):

i at e e m sy za e el SN, ”, v eoe L N —
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g(t,t,u,v) = g(u (t) - u,v, (t) - v)8(t-1)

where the functions uy and v, are as shown in Figure (2-9), and each are
LT-periodic where T is the time required to scan a single line and L is
the number of lines per frame. Therefore, the scamner G is a quasi-
periodic transformation with period LT, so that if y is quasi-WSS then

the video process x is CS (period LT), by Theorem (2-6).

If the above window function g(-,*) is ideal--a two-dimensional

impulse function--then we have

x(t) = y(t,ul(t).vl(t))-

Using this ideal model for the scanner along with the assumption of

zero retrace time (see Fig. (2-9)), and the model for y proposed by
Franks [10], results in an autoc. *r~elati~z function for x which is
composed of three periodic factors. The first factor characterizes the
correlation within any given line, the second characterizes line-to-
line correlation, and the third characterizes frame-to-frame correlation

as follows:
kxx(t,s) = kl(t-s)kz(t,s)kz(t,s) (2-23)

where, for

correlation within a line:

kl(t-s) - pl(t-s)modT
- ] el (eeseamy (2-24)
n:—m

and is T-periodic in (t-s) (qo is a rectangular gate function of

width T),
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line-to-line correlation:
%|(t-tmodT)modLT - (s-smodT)modLT|
k,(t,s) = », (2-25)
= ) p(n-m)modL qo(t-nT)qo(s-mT)
n,m=-
and is jointly T-periodic in t and s,
frame-to-frame correlation:
1 (t-tmodLT) - (s-smodLT)|
ks(tﬁs) = 93 (2°26)
n_
= z pL | ql(t-nLT)ql(s-mLT)
n,m

and is jointly LT-periodic in t and s (q1 is a rectangular gate
function of width LT).

Finally, if the contribution to kxx(t,s) due to frame-to-frame
correlation is ignored because of its relatively low-frequency nature
(this is done in practice for some analyses of video systems) then the
period of cyclostationarity reduces from LT to T as in the model
introduced in Chapter I.

MODEL(10): Circular scanning (radar). The process of continuously
scanning a one-dimensional circular field--performed by a radar antemna,
for example--can be modeled with a two-dimensional linear transformation
with impulse response g(t,7,6). With reference to Figure (2-10) and the
two dimensional analog of Eq. (2-21), D1 = (0,2n) is the domain for 6,
and y(to,eo) is a realization of the two-dimensional random process y
evaluated at time t, and angular displacement Go. The received radar

signal is the scanner output process x and is obtained from y as in
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Eq. (2-21):
x(t) = [ [ glt,1,8)y(1,0)dedr (2-27)
R D,
If a constant velocity scanner is used, then the impulse response

can be modeled as (with some abuse of notation):
g(t,'l‘,e) = g(el(t) - e)s(t'T)

where the function e1 is as shown in Figure (2-11,, and is T-periodic,
where T is the time required for one complete revolution of the scanning
antenna. Therefore G is a quasi-periodic transformation with per ed T,
so that if y is quasi-WSS then the radar process x is T-CS by tk. wwo-
dimensional version of Theorem (2-6).

As an example of a 'mon-ideal" window function g, consider the

rectangular window shown in Figure (2-12). For this case, the signal

x is given by

21
x(t) = f f g(el(t) - 8)8(t-1)y(1,6)dtde
0 -w
2m
= [ gle,(t) - 8)y(t,0)de
0
1
© 8 (t)+_
= 2 ! "10 y(t,0)do
" 0](t)'7
] 10
ant | r
= -ﬁ- [T 9 yi,eu

and is the average vilue of y{t,8) over the range (-n/10,%/10) of 9.
In Section 9, we generalize the discussion here to riandom multi-

dimensional 1linear tvansfnrmations, and show that random scanners with

random windcw shdpes and velocities cdan also pgenerate cyclostatioaary signels.
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4, Nonlinear Transformations

Many nonlinear transformations which arise in engineering problems

can be characterized with Wiener's Volterra series representation [44-47]

in which the output x(t) of an NEh-order Volterra system driven by the

input y(t) is expressed as
N ©
x(t) = Z f'°°j gn(t-rl,t-12,°°,t-rn)y(11)’°y(rn)dtl'°drn,
n=l-» -o
where the kernels {gn} can be thought of as generalized impulse response
functions. This series is sometimes referred to as a power series with
memory,
Note that a first order Volterra system (N = 1) is simply a linear

system and the above representation is, for this case, the super-position

integral (Ed.(z-l)) used in Section 2 for representing linear transformations.
Hence g, is for this case, the usual impulse-response function.
The nonlinear transformations of interest in this thesis can, for
the most part, be characterized with a generalized Volterra series in
which the kernels are invariant under joint shifts, in their arguments,

which are multiples of a basic period T:

gn(t,rl;t,rz;--o;t,rn) = gn(t+T,11+T;'~';t+T,rn+T), ¥n

for all t, 1

:"sTn»

1
whereas, the kernels in the standard Volterra series are invariant under

arbitrary joint shifts.
In addition to allowing periodically time-varying kernels, we will
afso include a T-periodic zero th order term so that our generalized

\

periodic volterra series becomes:
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x(t) = g, o Z frefe, (ty5eest, Yy (1)) oy (x MdT e ot . (2-28)

We will refer' to this more general class of Volterra systems as
. i i

t

periodic Volterralsystems. For this class, we have tHe following

t

generallzatlon of Theorém (2- 4) on the generation of Cs processes

THEOREM(Z -7): l3'I'he output process x of an N~h-order T-periodic Volterra
systcm, which is driven by a statlonaxy-;of-crder 2N (S(ZS)) input
process y, is T-CS.

Proof:

i) From Eq. (2-28), the mean of the output x is

m (t) = g (t)+ Z f---fg (trpseest, Bl (1) ey (1 )My emdT -
DS 1

n= |
!

go(t+T1+n§11-~Igﬁ(t+T;r14T;--;t+T,fn+T)-

| | E{y(Tl)---y(1n)}drl"'drn

n=l

g, (t+T)+ I [+ o, (toTynpseeseaTy ey

§

E(y(ri-T)'~~y(Tﬁ—T)}dTi"-drﬁ

=]

mg(t+T) ¥ t.

i

where the next-to-last equality is a result of the S(2N) property of y.:

I
1

13A process i S(N) iff ics 133 through Nzh‘order joint PDF's are invariant
under arbitrary joint shifts in their indexing arguments [3]..
1

i

)

SN o |
go(t+T)*nZ f"fgn(t‘*T,Tii"';t*‘T,TI")EF)'(Ti)"Y(Tr'l):}d'ri”drr'l

=

—
——

[
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ii) Again, using Eq. (2-28), we have
k  (t:8) = g (t)g (s) + g (t)m (s) + g (s)m (t)
N N
RN R R AN AR NCR NI RME
n=1 m=1 .

E{)’(Tl) . OY(Tn)y(Yl) hd .Y(Ym) }d—rl . od-tnd.Yl - 'de

Using the periodicity of the {gn} and of m s and the stationarity of y,

as in part i), yields the result:
kxx(t,s) = kxx(t+T,s+T) ¥ t,s.

Hence, from i) and ii), x is T-CS.
QED

MODEL(11): Parametric amplifiers. The parametric amplifier [48] is an
example of a nonlinear system which can be accurately modeled as a
periodically time-varying nonlinear transformation with memory, and might
therefore be modeled as a periodic Volterra system. Hence, the output
of a parametric amplifier driven by a strict-sense-stationary (SSS) processl“
might well be expected to be CS, and has, in fact, been so modeled in
Reference [21].

In the next two subsections, we consider special periodic Volterra
systems which generate CS process from input processes which are only S(2).

a) Zero-memory nonlinearities. If the kernel functions in the

periodic Volterra series representation of a system take the form

gn(t,rl;t.rz;-'-;t.rn) = gn(t)é(t-11)°°°6(t-tn)

14A process is SSS iff it is S(N) for all natural numbers N [3].
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where

g,(t+T) = g (1),
then we have the reduced input-output relation
N n
x(t) = ] g (B)y())",
n=1

and tne system is a zero-memory periodic nonlinearity. The input-output

relation for these systems can be compactly expressed as
x(t) = G(y(t),t)

where G(*,t) is the nonlinear function with power series coefficients

{gn(t)}, and
G(*,t+T) = G(-,t) ¥t

For these systems, the output x at any time, say tys depends on the input
y only at time to’ and on the time to itself.

For this class of zero-memory nonlinear systems, we have the
following theorem on the generation of CS processes:
THEOREM(2-8): If the input y to a zero-memory time-varying nonlinearity,
which satisfies the periodicity condition: G(+,t) = G(*,t+T) for all t,
is S(2) then the output x is T-CS.
Proof:

m (t) = E{G(y(t),t)} = ] 6(o,t)p(0)do

-]

= f G(o,t+T)p(o)do

= mx(t+T) ¥t

where p(+) is the PDF for y(*) for all t; and
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k., (t,s) = E{G(y(t),t)G(y(s),s)}

I] 6(0,t)6(v,5)p,_(0,)dody

-£f G(o,t+T)G(y,s+T)p(,*T)_(S+T)(o,y)dody

kxx(t+T,s+T) ¥ t,s,

where pt_s(-,-) is the joint PDF for y(t) and y(s). Hence x is T-CS.
QED

As an example of a transformation which satisfies the hypothesis

of Theorem (2-8), consider the form:

G(y(t),t) = G(y(t) + q(t))

where q(t) is any T-periodic function. Here, the signal y is subjected
to an additive periodic component q(t) and then applied to a nonlinear
device such as a diode, square-law device, or some type of threshold
device. This type of transformation is frequently incurred in optimum
detectors for periodic signals in stationary noise. Note that if G were
a square-law device, then the generalized Volterra kernels would be given

explicitly by
8, ° 0 n >3
gz(t,Tl;t,rz) = G(t—rl)é(t-rz)
g, (t,7)) = 2q(8)8(t-1))

g, (t) = a%(t) .
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bj Nonlinear modulation of synchronous pulse-trains. If the kernel

functions in the periodic Volterra series representation take the form
g, (t,Ty5e05t,T ) = iZ_qu(t—iT)a(iT-rl)---c(i'r-rn),
then we have the reduced input-output relation
@ N n
x(t) =] [ g (t-iDGETN"]
i=-= n=1
which can be expressed in the more compact form

x(t) = § q(t-iT,y(im?),

= =00

where q(t,*) is the nonlinear function with power series coefficients
{gn(t)}. This last expression represents a signal format which has
received much attention as a means for transmitting random sequences

of numbers {ai} = {y(iT)}, and is referred to as a mcdulated synchronous
pulse-train.

With this signal format, each pulse q(t-iT,*) carries the realization
of one random number, a,. If the modulation is linear, then the signal is
PAM, as discussed in Section 2b, and the random numbers are carried
as pulse-amplitudes. However, if the modulation is nonlinear, then there
is a multitude of different schemcs--each with its own theoretical and
practical advantages and disadvantages. Following are six specific
examples:

MODEL(12): Frequency-shift-keying (FSK). A sinusoidal signal with

gating envelope w(t) is frequency-shifted by the parameters {an} such that

q(t-nT,an) w(t-nT)cos(Zw(f+an)(t-nT))

w(t-nT)cos(2w(f+an)t)
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where the second equality is valid if (f+an)T is an integer for every
realization of a for every n,
MODEL(13): Phase-shift-keying (PSK). A sinusoidal signal with gating

envelope w(t) is phase-shifted by the parameters {an} such that

q(t-nT,an) w(t-nT)cos(an(t-nT)+an)

w(t-nT)cos(ant+an)

where the second equality is valid if fT is an integer.
MODEL(14): Pulse-width-modulation (PWM). The width (duration) of a

basic pulse shape q_(t) is determined by the parameters {an} such that
q(t-nT,an) = qo((t-nT)/an)

where {an} take on only positive values.
MODEL(15): Pulse-position-modulation (PPM). The epoch (time-of-
occurrence) of a basic pulse qo(t) is determined by the parameters {an}

such that
q(t—nT,an) = qo(t-nT-an)

where {an} take on only values which are non-negative and less than T.
MODEL(16): Digital pulse-frequency-modulation (DPFM). The frequency-ot-
occurrence--number--of basic pulses qo(t) in each time-slot is determined

ty the parameters {a } such that

a

n
q(t-nT,a ) = igl q ((t-nT)a - (i-1)T),




where {an} take on only non-negative integer values. Note that if qo(t)
is an integral number of cycles of a sinusoid with duration T, then this
DPFM signal is an FSK signal with rectangular envelope w(t).
MODEL(17): General M-ary signaling. The parameters {an} serve to index
a set of M basic pulse-shapes, which need not be "functionally" related
as in the above cases, such that

q(t-nT,an) =q, (t-nT)

n

where, for example, {qi(t); i=1,2,3,...,M} might be a set of mutually
orthogonal pulses duration limited to the interval (0,T).

Paralleling Theorem (2-8), we have the following theorem which
establishes a sufficient condition for the general synchronous pulse-
train signal to be CS:

THEOREM(2-9): If x is a synchronous pulse-train with period T and the
modulating sequence {an} is stationary-of-order-two, then x is T-CS.
Proof:

x(t) = Z q(t-nT,an) so that
n

mx(t) = f z q(t-nT,o)p(o)dc
©

= [ 1 q(t+T-(n+1)T,0)p(0)do
© n

-00

= [ ] q(t+T-n'T,0)p(0)do
n'

]

mx(t+T) Vot,

where p(+) is the PDF for a for every n, and
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k  (t,5) =-£I an q(t-n’l'.o}q(S-mT.v)pn_m(o.v)dfdv

- { | n{m q(t+T- (n+1)T,0)q(s+T- (@+1)T,y)p (n+1) - (me1) (027 )dody

= ff X q(t+T-n'T,o)q(s+T-m'T,y)pn,_m,(o,y)dody
- pn' ,m'

= kxx(t+T,s+T) ¥t,s,

where Py *,*) is the joint PDF for x(t) and x(s). Hence x is T-CS.
QED
In Section 7 we present a generalized model for pulse-train signals
which incorporates random jitter wherein the pulse train is no longer

synchronous but the signal is still CS.
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S. Random Linear Transformations

The developménts in this section on random linear transformations
closely parallel those in Section 2 on deterministic linear
transformations. Due to the length of this section, we begin by giving
a urief outline of the theorems proved and the cyclostationary process
models defined:

a) Wide-sense-stationary systems

Theorem(2-10): Preservation of wide-sense stationarity by random
transformations.

Model (18): Random periodic signals

Theorem(2-11): Conversion of deterministic periodic systems into wide-
sense-stationary systems via phase-randomization.

Theorem(2-12): Preservation of cyclostationarity by random transformations.

b) Cyclostationary systems

Theorems (2-13): Generation of cyclostationary processes from stationary
(@19 processes via random transformations.

Model(19): Random periodic attenuation of stationary processes

Model(20): Multiplication of a stationary process by a cyclostationary

process

¢) Random time-scale transformations

i) Phase randomization:

Theorem(2-15): Reduction of cyclostationary processes to stationary
processes via phase-randomization

Theorem(2-16): Equivalence betwecn phase-randomizing and time-averaging
of random processes.

Theorem(2-17): Preservation of system-cyclostationarity by phase-

randomization.
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Theorem(2-18): Reduction of cyclostationary systems to wide-sense-
stationary systems via phase-randomization.

Theorem(2-19): Equivalence between phase-randomizing and time-averaging
random systems.

ii) Generalized angle modulation:

Theorem(2-20): Preservation of cyclostationarity by a stationary time-
scale transformation.

Theorem(2-21): Generation of cyclostationary processes from periodic signals
via stationary time-scale transformations.

Model (21): Phase-modulated signal

Model(22): Frequency-modulated signal.

Theorem(2-22): Generation of cyclostationary processes from PAM time-scale
transformations.

Model(23): Digital phase-modulation

Model(24): Digital frequency-modulation

Theorem(2-23): Generation of cyclostationary processes from stationary

processes via cyclostationary time-scale transformations.
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A random transformation, like any other random process, can be

thought of as an ensemble of deterministic transformations. A single
deterministic input to a random transformation yields an ensemble of
deterministic outputs (a random output process) with each output resulting
froﬁ one member of the ensemble of transformations. Of course, for any
given event, only one member of the ensemble of transformations will
occur and a single input wiil result in a single output. In this section
we will be primarily concerned with random transformations of random
processes. In particular, we will consider linear wide-sense-stationary
and wide- sense-cyclostationary transformations (defined herein) in
connection with the generation and preservation of cyclostationarity.

All random linear transformations of interest in this thesis will
be integral transformations characterized by random impulse-response

functions. Thus, input and output processes will be related as follows

x(t) = [ g(t,)y()dr (2-29)

where y(t) is a realization of the input process, g(t,t) is a realization

of the two-dimensional random impulse-response process, and x(t) is the

resultant realization of the output process. We will consider only those
random transformations which are statistically independent of their
inputs.

As pointed out by Zadeh [37], the system function(defined in Sec. 2)
can be useful for characterizing random linear systems (transformations)
as well as deterministic linear systems. Using the same notation as for

deterministic systems, we denote the r. Jom system function for a random
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system G as

Hee,£) = [ h(t,0)e 2™ g,

® .
= | g(t,t-r)e-JZWdet.

In addition, we denote the autocorrelation function for the random

system function as KG and refer to it as the system autocorrelation

function for G:

P Ky (t,5,£,v) & E(H(E, £)H*(s,v))

; L‘ = [ Eth(t, Oh*(s,y) re 2T ETV gy (2-30)
LJ We note that K. is a generalizationt 5 of the quantity referred to as a

system correlation function by Zadeh [37].

i L} We proceed to derive an input-output relation for autocorrelation

‘3 fi functions in terms of KG' From Eq. (2-29) we have:

U .

e x(t)x*(s) = [[ g(t,1)g* (s,¥)y (1)y* (y)ddy

. e

- = [ h(t,t-1)h*(s,s-y)y (1)y* (y)drdy
L

= [[ h(t,h*(s,y)y (t-T)y* (s-y)ddy .

-00

YT ST

Equating the expected values of both sides of the above equations yields:

C k,, (t;s) /] E{h(t,t-r)h*(s,s-y)}kyy(r,y)drdy

- 00

/] E{h(t,r)h*(s,y)}kyy(t-r,s-y)drdy. (2-31)

15Kc(t,s,f,v) is also the inverse double Fourier transform w.r.t. f' and V'
of IG(f',v',F,v) which is referred to as the bifrequency intensity spectrum

and is the autocorrelation function for the bifrequency function for the
system G (see, for example, Middleton [41]).

TN
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Using Fourier trunsforms in a manner similar to that used to derive
Eq. (2-5) results in tne equation:
K (t.s) = [f KG{t,s,f,u)xyy(f,v)er"(ft“’s’afd\». (2-32)

Equations (2-30)-(2-32) will piove usefu) in the following development-.

4) Linear wide-sense-stationary systems. An interesting subclass of

random linear transformations are those which preserve wide-sense-
stationarity: the output of a member of this class will be WSS if the
input is WSS. Although the most general class of deterministic linear
systems which preserves wide-sense-stationarity is the class of time-
invariant filters, it is not true that the most general class of random

linear -ystems which preserves wide-sense-stationarity is the class of

random systems with ensemble members all of which are time-invariant filters.

The following thecrem--first stated and proved by Zadeh [37] for ergodic '8
random processes and transformations--establishes a general class of
random systems--to be called wide-sense-stationary (WSS) systems--

which preserves wide-sense-stationarity:

THEOREM(2-10): 1If the system autocorrelation function for a random

system G, whose input y i', a zero-mean WSS process, satisfies the

stationarity condition:
KG(t,s,f,f) KG(t—s,O,f,f)

for all t,s,f then tne output x is a zero-mean WSS process .

16 Zadeh used time averages rather than ensemble averages in ais Lover,

—
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Proof:

i) From Eq. (2-29), the mean of the output x is

m (t) = mf E{g(t, ") Im (1)d1

=0 ¥t since my(r} =0 ¥ 1.
ii) From Eq. (2-32), we have

ko (®s) = ] KG(t,s,f,v)xyy(f)acf-v)er"(ft‘“s)dfdv

_ _ j2nf(t-s)
= mf KG(t s,O,f,f)Kyy(f)e df

= kxx(t-s) ¥ t,s (with some abuse of notation)

Hence, from i), ii) x is WSS.
QED
Notice that if all realizations of the random system G are time-

invariant filters, then

KG(t,s,f,f) E{H(t,f)H*(s,f)}

E{H(0,f)H*(0,f)}

KG(O,O,f,f) ¥t,s,f

so that G is clearly a WSS system.
Following are four specific examples of WSS systems which have
been used in analyses dealing with statistical communication theory17[38].

Notice that the realizations of the first WSS filter presented are time-

17A number of more sophisticated models for WSS systems (communication
channels) are decined and discussed at length in the very ''readable' report
of Maurer [38]. Also, a number of models (for physical and biological
applications in cceanography) for random time-varying channels are derived
in the extensive four-part paper of Middleton [42].
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varying systems (multipliers): . o ’ !

(1) Random WSS multipliers: If an input process y is multiplied by a
1
i
WSS process z to yield an output process x, then realizations of the
random impulse-response function which characterizes this syétem take

the form !

g(t,7) = 2(t)8t-1)

and h(t,) = gt,t-1) = 2(t)8(1) K

1
i : '

The system autocorrelation function is, from Eq. (2-30),

]

If E{Z(tBG(T)z*(s)d(y)}e-?Z"(fT_vY)drdy

KG(t,s,f,v)

E{z(t)z*(s)} - '

1
.

1

kzz(t-s) V:t,s,f,v

so that KG(t,s,f,f) = KG(t-s,O,f,f) for all t,s,f and G is a WSS system.
(2) Random first-order filter: The random first-order ’ilter is simply
a deterministic first-order filter with its inverse-time-constant replaced

with a random variable w so that we have

.
"
EEAHOKY

hit,1) = e u(r)

o o

where u(+) is the unit step function. Thus, if pw(') is the PDF for w,

then the inverse double Fourier transform of the system autocorrelation

i

function KG is

Eth(t, oh*(s,0)) = [ ¢ "7 (@)dou(nu(y)

-0

SO

-

P Sy
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i b
(3) Random ideal low-pass filter: The random ideal low-pass filter is
’ simply a deterministic ideal low-pass filter with its cutoff freauency
R replaced with the random variable w so that
2 . 1, Ifl <w
H(t,f) = -
. J 0, |f] >w
Thus, if pw(-) is the PDF for w, then
U )
i . K;(t,s,f,v) = E{H(t,£)H*(s,v)}
ot min(-£],-]v]) -
j b ) = f pw(c)do+ f pm(o)do
3 - max (| £],|v])
}'; max (| £],|v])
L =1 - f pw(o)do
-max(|f],|v])
O
!
=1 - P (max(|£],]v])) + P (-max(|£],]v]))
g! where Pw(') is the indefinite integral of pw(') and is, therefore, the
' { probability distribution function for w. Note that since all realizations
[
b of w should be >0, then the last term in the final expression is
T ‘ identically zero.
’ (4) Random delay: A frequently uscd model for a random communication
;E channel is that of the random delay:
‘ Hee,£) = e 2™ pe oy = s(x-0)

where A is the random delay variable. If pA(') is the PDF for A, then

o0 i s
f R j2na(f-v)

-0

KG(t,s,f,v)

pA(o)do

PA(f-\)),

O N o
i

where PA(°) is the Fourier transform of pA(-) and is, therefore, the

conjugate characteristic function for 4.

RT
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i
The following class of CS signals are generated by the class of

o
random time-invariant filters: LJ

I MODEL(18): Random periodic signals. In some biomedical experiments, a _
subject modeled as a random time-invariant linear system is excited by LJ
5 a known deterministic pericdic signal. The measured response signal is i]

then modeled as a random periodic signal: period known, but harmonic

content random. In addition to these biomedical test signals, the periodic

-

timing and test s*3znals sent through communication transmission channels

{
can also be modeled (at the receiver) as random periodic signals. All LJ

: signals in this class are CS and take the form o

i x(t) = z a eJZTmt/T
; n n

AW,

where {an} is a random sequence with the constraint a = afn ¥ n. ’
it is apparent from the discussion and examples in Section 2 of iy

this chapter that periodically varying systems are very common ccmponents i

in communication systems. Although a suitable deterministic model for a

periodic system may well be known, it is not uncommon for the phase i

: (time-origin) of the periodic variations to be unknown. In such cases it

is sometimes sufficient to model the phase as a random variable uniformly

distributed over one period. In fact, in some analyses, this is done

even though the phase is known (this point will be discussed in Chapter 1V).

; The following theorem establishes the fact that periodic systems with

uniformly distributed random phases are WSS systems:

5 THEOREM(2-11): If the phase (time-origin) oy a deterministic T-periodic

system is modeled as a random variable 6 uniformly distributed over one

period, say (-T/2,T/2), then the resultant random system is WSS.

| |
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Proof: The PDF for the uniformly distributed random variable 6 is

/T, |o| < 1/2

A

P.(ad) = .
o o o} >1/2

Thus,

KG(t,s,f,v) = E{H(t+0,f)H*(s+0,v)}

= H(t+o,£)H* (s+0, V)P, (0)do
T/2
[ H(t+o,£)H*(s+o,v}do
-T/2
s+T/2
[ H(t-s+y,f)H* (v, f)dy
s-T/2

o Ll

-3)

But since H(t,f) is T-periodic in t, then the integrand is T-periodic

in y and the integral is simply an average over one period and is

therefore independent of the absolute end points of the one-period interval,

50 that

1 T/2
Ko(t,s,6,0) = 5 [ H(t-s+y, £)H* (v, £)dy
-T/2

-]

= H(t-s+y, £)H” (v, £)P, (v)dy

= KG(t-s,O,f,v) ¥ t,s,f,v .

Hence by Theorem (2-10), C is a WSS system.
QED

i) Preservation of cyclostationarity. While it is true that all WSS

systems preserve wide-sense-stationarity (by definit.on), it is not true--
as might be expected--that all WSS systems preserve cyclostationarity.
However, all the WSS system examples considered above do, indeed, preserve
cyclostationarity. In fact, most WSS systems of practical interest do
preserve cyclostationarity. This next theorem defines the most general

subclass of WSS systems which preserve cyclostationarity:

T
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THEOREM(2-12): if the system autocorrelation function for a random

system G, whose input y is a zero-mean T-CS process, satisfies the

stationarity condition:
K (t,s,£,v) = K(t-s,ed 2 (FE-vs) ¢ 5

for all t,s,f,v and for some function K, then the output process x is a
zero-mean T-CS process.
Proof: The mean of x is (as in the proof of Theorem (2-10)) obviously

zerc. and from Eq. (2-32) along with the stationarity condition we have

K, (t,s) = [ K(t-s,ejz“(f““s),f,v)xyy(f,v)ejz“(ft’“s)dfdv .

-0

Now, taking advantage of the periodicity of kyy’ we can expand its

double Fourier transform Kyy into a series of the form of Eq. (2-14):

Kyy(f,v) = ng_ﬁn(f)a(f-v+n/r) ¥ f,v,
so that
k,, (£,5) = -ff K(t-s,ejzn(ft-vs),f,v)g K (£)6 (£-ven/T)

eJZn(ft-vs)dfdv

= 1 [ Keees, TECEIIID g ek (h)-
n_oo

ej2n(f(t-s)—ns/T)df

Since this last expression is jointly T-periodic in t and s, then x is

a zero-mean T-CS process.

QED

et

|
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An example of a random system which satisfies the 'stationarity
condition" of both Theorems (2-10) and (2-12), but does not satisfy the
more stringent and more obvious condition: KG(t,s,f,v) = KG(t-s,O,f,v)
for all t,s,f,v--which is satisfied by all previous examples--is the

random S(2) delay. This random system has random impulse response

g(t,1) = 6(r-z(t))

where z is any S(2) process, and its system function is

Hee£) = I 2TE(E-2(E)

so that its system autocorrelation function is

E{ej21r(fz(t)—vz(s))}e-jZﬂ(ft—\)s)

KG(t,s,f,v)

fm ej2n(fo-vy) -j2mn(ft-vs)

-0

p,_¢ (0,y)dodye

e-j2n(ft—vs)

*
Pt_s(f,v)

where Pt_s(f,v) is the double Fourier transform w.r.t. o and y of
pt_q(o,y) which is the joint PDF for z(t) and z(s). The realizations of

the T-CS output x which result from any T-CS input y take the form

x(t) = y(z(t)).

Since z is $(2), then the time parameter for y does not increase
monotonically and, in fact, "hovers' about the constant mean value of z,

sc that G is a rather poculiar transformation.

b) lLinear cyclostationary systems. In the last subsection we

defined the class of WSS systems 1o be those which, when driven with a
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WSS input process, produce a WSS output process. We now define the class

of cyclostationary (CS) systems tc be those which, when driven with a

WSS input, produce a CS output.
THEOREM(2-13): If the system autocorrelation function for a random
system G, whose input y is a zero-mean WSS process, :atisfies the

cyclostationarity condition:
KG(t,s,f,f) = KG(t+T,s+T,f,f)

for all t,s,f and for some non-zero T, then the output process x is a

zero-mean T-CS process.

Proof: From Eq. (2-32) we have

K (ts) = [f KG(t,s,f,v)xyy(f)scf-v)ejz"(ft‘“s)dfdv

> <]

janf(t-s)
mf Kg(tss,£,6K  (£e df

©

{ KG(t+T,s+T,f,f)xyy(f)ejz"f((t*T “(5+M)ye

n

k__(t+T,s+T) ¥ t,s,
XX

and the mean for x is clearly zero. Hence, x is T-CS,

QED
A large subclass of CS systems is the class of random periodic
systeirs. The members of this class have ensembles with elements all of
which are periodic deterministic systems. These random periodic systems
can be characterized by a random system function H which is a one-
dimensional random process indexed by f with parameter t, such that the

random processes H(t+T,+) and H(t,+) are identical for ail t.
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Such random system functions can te represented by a random Fourier series

H(t,) = ] H“(.)ejZﬂnt/T

n=-o
where the coefficients are random functions. Thus, paralleling
deterministic periodic systems, we see that random periodic systems have
realizations with the structure shown in Figure (2-2) where the path-
filter transfer functions are realizations of the random coefficient
functions Hn'

The fact that random periodic systems are CS systems is obvious, but
will be stated here as a theorem for convenient reference:

THEOREM(2-14): If the input to a random T-periodic system is WSS, then
tke output is T-CS.

This theorem is a generalization of Theorem (2-4) which applies to
deterministic periodic systems and serves as a basis for the generation
of many CS procegges of interest. This more general theorem (2-14) also
serves as a basis for the generation of CS processes, and to illustrate
this we give two examples of random periodic systems:

MGDEL(19): Random periodic attenuation of a WSS process. The random
periodic attenuator is a useful model for some communication channels
and for some modulators,and has a random impulse-response function with

realizations of the form
g(t,t) = p(t)s(t-1)

where p is a random periodic function. Thus, the random system function

takes the form
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H(t,f) = I p(t)s(r)e I 2" Ty,

where {pn} are the random Fourier coefficients for p.
Another useful model for communication channels is a deterministic
periodic attenuation followed by a random dispersion. The random

impulse-response function for this model has realizations of the form
g(t,7) = p(rdg, (t-1)

where p(t) is the periodic attenuator and g, is the random time-invariant
impulse-response function. Thus,

Ht,£) = [ p(t-vg (e ™ Tar

j2mnt/T
g G, (f+n/T)p e

where {pn} are the deterministic Fourier coefficients for p(t) and Go
is the random transfer function for the dispersion.

The following is an example of a CS system which is not a periodic
system:
MODEL(20): Multiplication of a WSS process by a cyclostationary process.
In communication systems, signals are sometimes subjected to multiplicative
noise. If the noise is a CS process, then we have a CS system with impulse

response realizations of the form
g(t,1) = n(t)s(t-1)
where n is a CS process, and the system autocorrelation function is

KG(t,s,f,v) = knn(t,s).

o
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c) Random time-scale tzansformations. In Section 2 we discussed

5 deterministic time-scale transformations of the form t'(t) = t + p(t)

% where p(t) was a deterministic periodic function. Here, we will consider
random time-scale transformations with realizations of the form

t'(t) = t + z(t) where z is a random process which is stationary (or, in

some cases, cyclostationary) of order two (S(2)).

j
L i) Phase randomization. The simplest possible random time-scale

§§ transformation is the random phase-shift: ¢t'(t) = t + 6, where 0 is a
single random variable with PDF pe(-). The phase-shift, as defined here,

{j is identical to the random delay which was discussed in subsection 5a.
Thus, we know by Theorem (2-12) that random phase shifts preserve

- cyclostationarity. That is, it is not necessary that the time-origin or

gj phase of periodicity be known precisely (be deterministic) in order hat

L a process be CS. In fact, the phase can be ; random variable with

L arbitrary PDF and the process still be CS. Furthermore, there is an

interesting class of PDF's for the random phase which reduce all CS

i
L processes to stationary processes. This result, which is similar to that

of Theorem (2-11) is established in the following theorem; 18
THEOREM(2-15): For every T-CS random process y, the random process x with
realizations of the form x(t) = y(t+c) is WSS if and only if the PDF pe(-)
E for the independent random-phase variable, with realization o, satisfies

the condition:

§ 18This theorem (in a slightly different form)} has been stated and proved

by turd [5], and the '"sufficient" portion has .een proved and/or demonstrated
3 for specific processes by a number of authors (1,2,3,7]. In addition, Hurd
has given an interesting companion theorem which states that a process is

CS if and only if its phase-randomized version is WSS.




I pglonT) = YT ¥oa;

n=-w

and if the PDF is constrained to be duration limited to (-1/2T,1/2T),

then this necessary and sufficient condition reduces to

YT, |o] <12t
pylo) =
0 o , lo] > 1/2T

Proof:
i) The mean for x is
]

mx(t) = E{y(t+0)} = f my(t+c)pe(o)da.

-0

Now, since my is T-periodic, we make use of its Fourier series

representation

i j2mn(t+o)/T
mx(t) = f g a e P

-0

e(c)do

_ j2unt/T
= g a P¥(n/T)e

where Pe(') is the Fourier transform of p6(°). Clearly, from this last

expression, m will be independent of t for every sequence {an} if and

only if Pe(n/T) = 0 for all n # 0.

ii) The autocorrelation for x is

k. (t,5) = E{y(t+8)y(s+0)} fmf ky (t+0,5+0)p, (0)do.

Now, since kyy(t,s) is jointly T-periodic in t and s, we make use of

its Fourier series representation (see Eq. (2-13)):
N . ” _yad2mn(t+0)/T
kg (£25) =] g k (t-s)e P, (0)do

« ]k (e-s)pa /el 2T
n

Lo i =

P e £ o
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Clearly, from this last expression, kxx(t’s) will be a function of only
(t-s) for every sequence {kn} if and only if Pe(n/T) = 0 for every
n#0.

iii) From the Poisson sum formula [2]:

-j2mno/1

3=

) p, (o-m/T) ) Py (n/T)e
m n

©o

5 0) = ’lf_,,f p,(dy = UT ¥,

i

] L

where the second line is a valid equality if and only if Pe(n/T) =0
for all n # 0. Hence, from i), ii), iii}, x is WSS if and only if
I pyle-nT) = YT ¥ o
n=-o
and clearly, if po(-) is constrained to be duration limited to
(-1/2T,1/2T), then this condition can only be satisfiea by the uniform PDF

/T, |o| < 1/2T

A

py(0) =

v

, ol > 1721,

QED

This next theorem establishes a rather obvious, but quite useful,

result on the relationship between the statistics of a phase-randomized
process and the time-averaged (smoothed) statistics of its deterministic-
phase counterpart.
THEOREM(2-16): The first and second order statistics of the process x
obtained by phase-randomizing a process y, with a random-phase FDF pe(-),

are identical to the time-averaged (smoothed) statistics of y if the

weighting function used for averaging is pe(-)w
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Proof: For any function f(°) we have

E{f(x(t+8))} = [ E{f (x(t+0))}p, (0)do

= [ E{£(x(t+0))}py(0)do/ | py(o)do,

and this last expression is the time-averaged value of E{f(x(t))} with
weighting function pe(-); and for any function g(°,*) we have

E{g(x(t+0),x(s+0))} = [ E{g(x(t+0),x(s+0))}p, (0)do

= E{g(x(t+a),x(s+0)) Ip, (9)de/ fpe(o)do

and this last expression is the time-averaged value of E{g(x(t),x(s))}
with weighting function pa(-).
QED
A direct result of this theorem is the fact that the mean and
autocorrelation functions for the WSS process x obtained by time-
averaging over one period the mean and autocorrelation functions for any

T-CS process y:

\ IT/E
m = = m (t)dt
x T 327
2
k (t-s) = T f A (teg,se0)do,
X\ 2 Y

are i1dentical to the mean and autocorrelation functions for the WSS
process x' obtained by phase-randomizing y with a raadom phase variable
uniformly distributed over one period (-1/2T7,1/2T).

The throe preceding results generalize from onc-dimensional random

signal processes to two-dimensional random system processes as follows:

PR
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THEOREM(2-17): For every T-CS system G' with random system function
H'(t,f), the random system G with random system function realizations of
the form H(t,f) = H'(t+o,£) where o is the realization of an independent
random-phase variable with arbitrary PDF, is also a T-CS system.
THEOREM(2-18): For every T-CS system G', the corresponding phase-
randomized system G is WSS if and only if the PDF pe(') for the independent
random-phase variable satisfies the condition

E pe(a-nT) = /T Yo,

nNE-w
and if the PDF is constrained to be duration limited to (-1/2T,1/2T),
then this necessary and sufficient condition becomes

T, lo] < 121

Po () = 0 , |o| » 1/21.
THEOREM(2-19): The system autocorrelation function for the random system
G obtained by phase-randomizing a system G', with a random-phase PDF pe(°)
is identical to the time-averaged (smoothed) system autocorrelation

function for G', if the weighting function used for averaging is pe(-).

The proofs of these last two theorems directly parallel those for
Theorems (2-15), (2-16), and will not be repeated here. The proof of
Theorem (2-17) is trivial.

As a result of Theorems (2-11), (2-10), (2-19), we sce that when it
is appropriate in specific analyses to ignore period:c fluctuations in
random cyclostationary signals and systems and in deterministic periodic
signals and systems, then these fluctuations can be "averaged out" either

by uniformly randomizing, over cne period, the time-origin or phase of the
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periodic fluctuations, or by time-averaging, over one period, the
fluctuations with a uniform weighting function.

Also; from the discussion at the beginning of this subsection and
Thaorem (2-17), we see that it is not necessary that the time-origin or
phase of periodicity be known exactly (be deterministic) in order that a
signal or system be cyclostationary. In fact, the phase can be a random

variable with arbitrary PDF.

ii) Generalized angle modulation. We now consider more general random

time-scale transformations.
THEGREM(2-20): A random time-scale transformation G, with realizations
of the form t'(t) = t ¢« z(t) where z is a S(2) process with joint PDF for

2(t) and 2(s) denoted pt-s("')' has system autocorrelation function
KG(t.s,f,v) = P;_s(f.v)

where Pt-s is the double Fourier transform of Py.g? and the trausformation

G preserves cyclostationarity.

Proof: The impulse-response function for G haz realizations of the form

g(t, 1) = 6(r-t-2(t))
so that

h{t,1) = &(1+2(t))
and

(e, £) = e2"2(O)E

Now, the system autocorrelation function is

& . I3
KG(t,s,f,v) s ff chnfU e-JZ"VY pt_s(o,y)dody

-l

= P;_S(t,v).
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This system autocorrelation function clearly satisfies the hypothesis
of Theorem (2-12); hence, the system G preserves the cyclostationarity

of zero-mean processes. But since the mean of the output x satisfies
L
.mx(t) =-“j m, (t+0)p(0)do

= [ my(t+T*o)p(o)do

= mx(t+T).

where y is the input to G and p(-) is the PDF for z(t) for all t, then
G also precerves cyclostationarity of non-zero-mean processes.
QED

The degenerate case in which the input process is a deterministic
T-periodic signal is actually generalized angle modulation, and is of
special interest in communications. For convenient refercnce, we restate
the above theorem for this special case:
THEOREM(2-21): If a deterministic T-periodic signal q(t) is subjected
to a random time-scale modulation with realizations of the form t'(t)=st + z(t)
where z is S(2), then the resultant process x with realizations of the
form q(t + 2(t)) is T-CS.
Examples:
MODEL(21): Conventional phase-modulation (PM). If q(t) is a sinusoid,
then x is a conventional phasc-modulated signal where z is the modulating
signal.
MODEL(22): Conventional frequency-modulation (FM). If q(t) is a sinusoid,

and if the reaiizations of z take the form




t
z(t) = f zo(a)do

then x is a conventional frequency modulated signal where 2, is the
medulating signal.'

Variations on these two commonly used communication signal formats
are those of digital PM and digital FM, the statistics of which have
been partially analyzed by various authors (23], [24]. The following
theorem establishes the cyclostationarity of digital angle-modulated

signals under a stationarity assumption which differs from that in the

above theorem.

THEOREM(2-22): If a deterministic T-periodic signal q(t) is subjected
to a random time-scale modulation with realizations of the form

t'(t) = t + z(t) where 2z is a PAM signal with realizations of the form

z(t) = ) a_p, (t-nLT)
n

where {an) is a S(2) random sequence and L is an integer, then the resultant

signal x with realizations of the form

x(t) = q(t + E a p, (t-nLT))

is CS with period LI.

Proof:

i) m (t) = [ a(r + ] op (t-ntT))p(o)do
- n

"

[ qit + LT+ 0} Py(t + LT - (n+1)LT))p(0)do
n

-t

i

f q(t + LT + o E lB(t + LT - a'LT))p(o)do
» n'

m‘(t + LT) Ve,

S B A

L prestaa b

ot
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where p(+) is the PDF for a for all n,

%2 L cing,y S dm st
. .
pu -

: i1)
k(628 = [[ 2t + T opo(e-ntD)a(s + I voo(s-ulr))p, (0, v)dody
- « [fat+ 1T+ 0 ]p(t+IT - @)L
: Lﬁ e n
- als + v [ py(s + LT = Ge)LTIP 1) ey (O5Y)d0dY
L m
) = kxx(t + LT,s + LT) ¥ t,s,
U where pn-n("°) is the joint PDF for a and a for all n and m. Hence,
i from i) and ii), x is CS with period LT.

Qep
ij Examples: ;
MODEL(23): Digital phase-modulation (DPM). If q(t) is a sinusoid, then
L x is a conventional digital‘phase-modulated signal with modulating

sequences {an}. and pulse-shape p_(t).

MODEL(24): Digital frequency-wodulation (DFM). If q(t) is a sinusoid,
) and if the '"pulses" po(t) take the form
t
| Po(t) = [ pgla)do,
i then x is a conventional digital frequency-modulated signal with
) modulating sequence {an}. and pulse-shape p;(t).
»j Finally, we point out that random time-scale transformations can

be CS systems in that they can transform WSS inputs into CS outputs:

s e e
b
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THEOREM(2-23): The output x of a random time-scale transformation G

with realizations of the form t'(t) = t + 2(t), where z is a T-CS(2)

process, is T-CS if the input y is WSS.

Proof: The system autocorrclation function for ¢ is (as shown in the

proof of Theorem (2-20))
Kc(t,s,f,v) = P;.s(fﬂ))o

where Pt s

s

PDF for z2(t) and z(s). But since z is T-CS(2) then

is the double Fourier transform of P which is the joint
L

Peot,soT = Pt,s fOF

all t and s, so that KG satis¥ies the hypothesis of Theorem (2-13), and
G preserves cyclostationarity of zero-mean inputs. But since the mean

for the output x takes the form

mx(t) = f mypt(o)dn = my ¥t

-

= mx(t +7T)

where P, is the PDF for 2(t), then G also preserves the cyclostationarity

of non-zero-mean inputs y.

QED

FAS—

s
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6. Random Multi-dimensional Linear Transformations (Random Scanning)

-4 In this section, we briefly present a generalization of the ideas

presented in Section 3 on deterministic multi-dimensional linear

transformations. The motivation here is to develop a theory upon which
studies of random scanners can be based. We use the same definitions and
input-output relation (Eq. (2-21)) as in Sectioca 3; however, we now allow
. the three-dimensional impulse-response function to be a (four-dimensional)
random process. Thus, generalizing our definition of "quasi-periodic

transformation" (Section 3, Eq. (2-22)) and our definition of

“cyclostationary system' (Séection 5b), we define the transformation G to

be quasi-cyclostationary with period T if and only if the generalized

N

system autocorrelation function KG satisfies the cyclostationarity condition:

I

KG(t+T,s+T,f.f.u1,vl,uz,vz) = KG(t,s.f.f,ul.vl.uz.vz)

for all t.s,f,ul,vl.u,.v2 where Kc is defined as in Eq. (2-30) of

Section 5. (In most applications U, Uy, v

» vV, will be position

1’ "2
cocrdinates; t,s will be time variables, and f wili be the frequency
variable.)

Now, we have the following generalization of Theorems (2-6),(2-13):

§ THEOREM(2-24): If the input y to a three-dimensional quasi-cyclostationary
transformation with period T is a zero-mear quasi-wide-sense-stationary

process, then the one-dimensionual outpuc process x is T-CS.

The proof of this theorem is a simple extension of that for Theorem (2-13).
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For applications of this theorem, we have the generalizations of
those applications of Theorem (2-6) in Section 3: i.e., random

scanners. Consider, for example, the line scanner of Section 3, but

with the random window function
g(t,7,u,v) = g(u, (t)-u,v, (t)-v)é(t-1),

where g is a two-dimensional random function, and vy and u, are
one-dimensional random processes. If g is statistically independent of
u, and 4} which are either jointly CS(4) (cyclostationary of order 4)
or are independent and CS(2), then the random line-scanner G satisfies
the hypotheses of Theorem (2-24). Hence, random line-scanners with
random (randomly selected) window shapes and random CS window velocities
generate CS signals from WSS inputs.

Thus, we see that the precise (dcterministic) periodicity used in
the video line-scanning model of Section 3 is not necessary in order for
the resultant video signal to be modeled as (S.

More generally, we see that signals obtained from various scanning
operstions can be modeled as cyclostationary even if there is no precise

(deterministic) periodicity in the model of the scanner.

| nronng ]

1

| pemegre




a fairly liberal set of conditions.

. . |
s said to have zero-memory

7. Nonliqear Random Transformations (Jitter) .
| 3

Unlike the random linear transformations of the preceding sections,

i

there does not exist one simple éharagterization, such as a syﬁfem function,
tfor the random nonlinear transformations of interest in this thesis. The
. { . b

periodic Volterra series representation introduced in Section 4 on

deterministic nonlinear transformations could be generalized here by

i
{

allowing the kernel functions to be random; however, such a répresentation
would not servc the purposes of this thesis.

In this section, thep, we briefly"exteﬁd the results on deterministic

i
' '

Zero-memory nonlinearities presented in Section 4, and then turn tes the
important 'issue of jitter. We characterize this random timing disturbance

in ‘general ternms, and then shev that it preserves cyclostationarity under

t

a)y Zero-memory random nonlinearities. A nonlinear random transformation

if and only if for every member of its

t 4

ensemble of transformations, every image function evaluated at any time,

say t . depends on the corresponding inverse image fuuction evaluated
l ]

only at the same time.t . Realizations of tiic input and output of such

trapsformations are related as follows

i
|

X(£) = Gly(t),t) .

where G{+,*) is a realization of the random transformation G. !

We begin with a ;heorem,which establishes a class of such

transformations which generate (S processes from's(2) processes:
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THEOREM(2-25): If the input y to a zero-memory random nonlinearity G
15 $(2), and if G satisfies the cyclostationarity condition:

E{G(o,t)} = E{G(0,t+T)} ¥t,o

E{G(o,t)c(y,gl) = E{G(0,t+T)G(¥,s+T)) ¥ t,s,0,v,

then the output x is T-CS.

Proof:

m (t) = E{G(y(t),t)}
= [ E{(G(o,t)Iplo)do

= [ E{G(0,tT) Ip(0)do

= nx(t+T).
where p(+) is the PDF for y(t) for all t, and
kyx(ts8) = E{G(y(t),t)G(y(s),s)}
= _{7 E(G(o,t)G(Y,s)}pt_s(d.v)dodv

=[] E(G(o,t+T)Gly,s¢T) )p

-tn

(t+T)- (s+T) (92 Y)dody

= kxx(t*T,s+T) ¥t,s,

where pt_s(',-) is the joint PDF for y(t) and y(s). Hence x is T-CS.

QED
As an example of a cyclostationary zero-memory nonlinearity, consider

the very elementary transformation of "additive noise":

“y(t),t) = y(t) + n(t), where n is a CS random "noise" process. ¢ clearly
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satisfies the cyclostaticnarity conditior of the theores. In fact, the

sum of any mmber of statistically independent WSS and T-CS processes
wili be T-CS.

b) Jitter. The various repetitive operations such as sampling,
scanning, and multiplexing, to which signals are often subjected, are--
of course--never exactly periodic. In some analyses, this departure froa
exact periodicity can be neglected; however, in the event that it is--
or may be--significant, this departure from exact periodicity should be
modeled so that it can be dealt with analytically.

We have seen, throughout this chapter, a number of models for T-CS
processes with realizations of the foram

y(t) = [ x (t-nT)

|

where, for example, the translates {xn(t-nT)} might be one-line segments
from a line-scanned rectangular field as in Video, or finite length
receyds from a3 multitude of sources as in time-division multiplexing
schemes, or individual random pulscs as in the various synchronous pulse
modulation schemes such as PAM, FSK, and othiers, For CS processes with
realizations of this form, we model departures from exact periodicity by
incorporating a random epoch-jitter variable § in each translate so that
x(t) = ,§ x_ (t-nT+3 )

where {Gn) is a random sequence. Hence x is obtained from y via a vandom
nonlinear transformation with memory.

Now, two fundamental models for this sequence {Gn} are of importance,

in that each accurately represents onc of the two most common physical
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mechanisms which cause jitter:
(1) each translate is jittered w.r.t. the time-origin of the total
process (t =0 ),

(2) each translate, say the n-t—h, is jittered w.r.t. the time-origin of

the preceding translate ( t = (n-1)T + nil 61).

In the first case, where "jitter" is thei '-oor; appropriate terminology,

the random sequence {cn} can be modeled as 2 stationary finite-variance

sequence with autocorrelation function denoted kcc(n-m). Then the second

case, for which the term jitter is somewhat inappropriate, can be modeled

by a new sequence {vn} which is composed of the partial sums of the {Gn}:
xt) = § X (t-nTey )

n
where

As an example consider the case where the {§ n} are all independent
with zero mean and equal variance o2, Then
02, n=nm
k“(n«) ) 0, nénm '

kw(n.a) = E(yn‘r'}

n

n

E{5,6.)
is0 jgo 1
min(n,m)
) E(&?)

j=0

ol(min(n,m)+1),  n,m> 0.

Thus, {yn} is a discrete Wiener process (Wiener sequence) and is non-

stationary with growing variance. bue to the difficulties associated with
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- this model, we will simply state that the corresponding jittered nrocess
| x is not, in general, CS; but, in the event that the process is ubserved
by a tracking receiver, then the observed process can be remodeled--
A using the time-varying frame of reference provided by the tracker--in
terms of the first model for jitter (mentioned above) which is more
-4 tractable.
The new text book Theory of Synchronous Communications by J.J.Stifler
B {40] provides a comprenensive tutorial treatment of synchronization: the
L‘ problems of detecting and estimating symbol epochs and carrier phase, and
i of tracking fluctuations in periodicity, and related synchronization
. problems are treated using the theories of maximum-liklihood detection and
{j estimation, and familiar communications components such as matched filters
or correlators and phase-lock loops.
é} Returning now to the first model for jitter, we establish the
‘ preservation of cyclostationarity with the following thearem:
L‘ THEOREM(2-26): If a T-CS process y with realizations of the form
i @
. y(¢) = [ x (t-a)
nE.w
L! and autocorrelation function of the form

y ky (t.s) = ngm k. _p(t-nT,s-aT)

is modified to include jitter:
x(t) = § x, (t-nT+§ )
n
where the random jitter sequence (6n} is $(2), then the jittered process

x is T-CS.
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Proof: -

i) m (t) = E _ / E{xn(tm'l‘wn)}p(on)don

= [E{] X, (t-nT+0)}p (0)do
“

. .f.E{y(tw) Yp{5)do

..'f.ny(tw)p(c;)do

-..f“nly(tﬂ'#c)p(c)do
() ¥t,

where p(¢) is the POF for cn for every n.
ii)

k. (t,s) = n?;'If E{xn(t-nT+on)xn(s-lT*y.)}pn_n(on.vm)dandy.

= -ff'E{ n?; xn(t-nT+o)xn(s-nT+v)}pn_n(c.y)dody

= [} kn_m(t-nT+a.s-nT+Y)Pn_m(o.y)dody
= n,m

= ff nz; k(n’l)_(m’l)(toT-(n+l)T+o.s+T-(m+l)T+y)-

P(nel1)-(me1) (O»¥)dody

= Il Knime (80T-0"Too, seT-m'Toy)p |, (0,v)dody
- n'.m

= kxx(t0T.s+T) ¥t,s,

where pn-n("°) is the joint PDF for dn and Gm for all n and m. Now,

from i) and ii), x is T-CS.

QED
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As examples, we merely note that the hypotheses of this theorem
. are satisfied by the time-division-multiplexing scheme (TDMI) with

independent sources, by the videv model derived by Franks (see Sec. 3),
and by all the synchronous pulse-modulation schemes, with S(2) modulating
sequences, such as PAM, FSK, PWM, and others (see Sec. 4).

We now give an extension of this theorem to CS random systems:
THEOREM(2-27): If a T-CS random system G',with system function realizations
of the form

H'(t,£) = [ H (t-nT,f)

n=«o
and system autocorrelation function of the form
KG' (t.s.f,\)) = X Kn_‘(t‘nT.S"MT,f,‘\",': . .
l‘l,ll - .

is modified to include jitter
H(t,f) = Eun(t-n7+sn.f)

where {sn} is §(2), then the resultant jittered system G is T-CS.

The proof directly parallcls part ii) for Theorem (2-26) and will
not be repeated here. Note that, for the special case of deterministic
signals and systems, the two preceding theorems establish the fact that
T-periodic signals and systems, when jittered, become T-CS signals
and systems.

In conclusion, we emphasize the fact that there need be 10 exact
periodicity in the realizations of a CS process: the occurrence of pulses
in jittered PAM, for example, is not periodic, nor are the pulse

occurrences in a Poisson pulse process with periodic rate parameter.
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_The periodicity need only be present in the first and second order

ensenble averages. Yet, es pointed out a number of times in both this
chapter and Chapter I, the mean and variance for a CS process can be
constant so that the periodicity in these quantities is degenerate, and
still such processes can exhibit strong periodic fluctuations in
correlation, as exemplified by tbg time-division-multiplex (TDM1 or TDMZJ
of WSS processes with equal means and variances but with.disjoint

PSD's, or as illustrated in Figure (1-3) for PAM.
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Figure(2-1) Diagram of system(transformation) G with input

(inversc-ixage) y and output (image} x.
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Figure(2-2) Structural diagram of the Fourier series representation

of a periodically(T) time-varying linear system.
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Figure(2-3) Generation of PAM signal.



SE—
O

104 .

y,(t)

%
E;

4
s
5

T
X

T
T TS 4

Y,o(t)
2 x(t)

At ¢ TN

g /
[

Yyy(t) —_

q(t + (M-1)T/M)

; a)

q(t)
q,(t)

T/M T
b)

Figure(2-4) a) TDMl multiplexor. b) Gatinp signal for TDMI.
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Figure(2-¢1 a) Periodic component of the time-scale compression
transformation. h) time-scale compression transformation. (t' is

compressed time, t is unaltered tim:.)
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Figure(2-7) a) Unaltered process. b) Transformed process ]

obtained by compressing T-length records into T/M-length

records. "
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CHAPTER 111
SBRIEé REPRESENTATIONS FOR CYCLOSTATIONARY PROCESSES
(AND THEIR AUTOCORRELATION FUNCTIONS)

1. Introduction

Many analyses involving random processes are greatly facilitated
by the use of appropriate representations for the processes and their
autocorrelations functions. These representations are frequently
categorized into one of two classes: "integral" representations and
"series' representations. It is the latter class which concerns us here.
In this chapter we develop two types of series representations for
cyclostationary processes:

(1) Discrete "translation series" representations of the form

M
x(t) = 2 Z a

¢_(t-nT) ¥te (-=,%)
ns-w p:] npp e
where {¢p} are deterministic basis functions, and {{anp}; p=1,2,..,M}
are jointly wide-sense-stationary discrete random processes (random
sequences) referred to as ''representors".
t2) Continuous series representations of the form
M
x(t) = § a (t)é (t) ¥te (-=e),
=1 P p
p

where (3p} are deterministic periodic basis functions, and (ap) are
jointly wide-sense-stationary (or cyclostationary) continuous-time random

processes referred to as the representors.

o e
.
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One of the advantages typically gained in representing one process

in terms of a multiplicity of others is that these other processes

:

(representors) are chosen for convenience of analysis and/or synthesis.
For example, the translation series representation employs representors
which are not only discrete, but also jointly wide-sense-stationary.
Similarly, the continuous series representations developed in this chapter

employ simple continuous-time representors such as piecewise constanf

= o &

processes with constant mians and variances, or jointly wide-sense-
stationary bandlimited processes. As shown in the next chapter, such

representations enable us to convert single-variable problems with

- ==

periodically varying parameters to multi-variable problems with constant

parameters.

g
| SUE—

All representations presented in this chapter are valid on the

infinite interval (-»,»), and since all WSS processes are CS, then the

{

representations apply to all WSS, as well as all CS, processes.
h} Before delving into the topic of representation, we first define a

Hilbert space of random processes that will provide a framework within

L which we can unambiguously present our results on representation. We begin
i with the definitions of two well known Hilbert spaces:

(1) Hilbert space of random variables: We define "RV to be the Hilbert
‘ space of finite mean-square random variables with the following inner

product
(x,y),,  ° Eixy*)
Hav

and induced norm

lIxll,, = [6tx)2nt/2,
RV
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(2) Hilbert space of functions: We define L2[a,b] to be the Hilbert
space of square-integrable functions on ;he interval ti,b] with the
following inner product
A 0
(x.y)p2 = af x(t)y* (t)dt

and induced norm

b
lxllyz * 1 1 el ar}'/?

We remind the reader that the elements in infinite-dimensional
Hilbert spaces such as these are equivalence classes, each of which may
be comprised of an uncountable number of equivalent elements, where tio
elements are equivalent if and only if they are equal modulo the set of
zero-norm elements [2]. For example, the uncountable set

x(t), t# ci’ t ¢ [a,b]
xi(t) = Vci € [a,b]
0, ts= <4
is an equivalence class ( and therefore a single element) in L2[a,b]

since the norm of the difference between any two members is zero. The

terminology
xi(t) = xj(t) a.e. t ¢ [a,b]

which is read "Xy equals xj for almost every t contained in the interval

[a,b])" is often used to denote equivalence in L%{a,b], and will be used

here occasionally; however, for the most part, the a.e. will be suppressed.

In HRV the terminology ''mean-square equivalent" is frequently used to
denote the nature of equality in that space, and will be used here

occasionally,
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Now, although periodic functions are not contained in the Hilbert

space L2(-»,»), they can be made into a related Hilbert space of their own:

(3) Hilbert space of periodic functions: We define L%CT)(-.’.) to be
the Hilbert space of square-integrable (on [0,T]) periodic functions on

(-»,») with the commensurable periods {Th; Th = T/n, n=1,2,...}
with the following inner product
A T
(o) - of x(t)y* (t)dt

qnd induced norm
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xll2 2 1 ] Ixe)]2at)
b o

The cyclic character of the functions in this space is directly responsible
for the existence of an L2-type of inner product and norm which are valid

for functions on (-»,») which are not in L2(-»,»)., Although this Hilbert

space is a trivial variation on (and, in fact, isomorphic to) L2[0,T], it
leads directly to the following--far more interesting--Hilbert space of

cyclostationary processes:

(4) Hilbert space of cyclostationary processes: We define "CS(T)('G’")
to be the Hilbert space of all finite mean-square jointly CS processes on
(-»,») with the commensurable periods {Tn; 'l‘n =T/n, n=1,2,.....}

with the fullowing inner product

T
(x:¥)y & [ Byt t))a
¢S 0
and induced norm
4

T
xlly  * 0 [ etxe]2an'?
CS 0
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Note that, paralleling the case for L%(T)’ the existence of an
Lz-type of norm for HCSCT) is a direct result of the cyclic character

of the second order moments of the elements in our space; i.e.,
E{x(t+T)y*(1+T)} = E{x(t)y*(7)} a.e. t,t ¢ (-=,»)

for every x,y in qCSCT)‘ When visualizing the elements of this space,
recall that statistically independent and/or uncorrelated CS processes
are jointly CS, and that all WSS processes are CS with arbitrary period
T. In fact, the elements of HCS(T) might be more amenable to visualization
if thought of as functions of two variables x{t,w) where the section
function x(t,*) is a random variable with domain: the set of events
(sample space) on which the underlying probability space is defined, and
with range: the complex numbers, and where the section function x(*,w)
is a function in the usual sense with domain: the real numbers, and
range: the complex numbers.

In concluding this introductory section, we emphasize that throughout

this chapter, expressions of the fora
x(t) = x'(t) Vte (-=)

--where, for example, x' is a representation for the CS process x--
should be interpreted as meaning that x and x' are in the same equivalence

class in “CS: i.e., the norm of their difference is zero.
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2. Translation Series Representations

length of this section,. and the fact that it is the

heart of the. theoretical cdﬁtent of this dissertation, we begin by giving

a brief outline

Subsection: a)

b)

c)

d)
e)

f)

8)

h)

of the cight subsections included herein:

Definition of; and existence and identification theorem
for, translation series representations.

Interpretation of translation series representations as
representations in terms of PAM processes.
Implementation of the process-resolution and
reconstruction operations.

Examples of translation series representations.

Classes of processes which admit finite order translation
series representations.

Application of translation series representations to

the solution of linear integral equations.

Application of translation series representations to the
realization of periodically time-varying linear systems.
Application of translation series representations to the
definition of a generalized Fourier transform for

cyclostationary (and WSS) processes.
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a) Definition. A particularly interesting class of discrete
representations for cyclostationary processes is the class of

translation series representations.}?® A cyclostationary process x with

period T is said to admit a translation series representation of order
M if there exists a set of M deterministic basis functions : : i

{Op; p=1,2,...,M}, and a set of M jointly wide-sense-stationary random

sequences {{anP}; p=1,2,...,M} such that

E{|x(t) - } Z a ¢ (t-nT)|2} = 0 a.e. te (-=,=). (3-1)
n=-% p=l PP

-

where, by jointly WSS, we mean that E(anp}, E{a * } are independent

(n+m)p°nq
of n for all p,q. Thus a translation series representation (TSR) of St

[—

order M is a representation of a scalar cyclostationary coatinuous-time

.L.__.,

process in terms of an M-vector of jointly wide-sense-stationary discrete-

et
st

time processes.

The autocorrelation function for a process with a TSR of order M T

e

has the corresponding representation: ~
[ M pq '
ko (tis) = ] I Apogtp (£-NT)0 (s-0T) 5

n,ms-» p,q=l i

a.e.t,s ¢ (-»,») (3-2)

where the elements of the M x M matrix {An_m} of correlation sequences |

e

are given by

P _ g . .
AP, = Ela s ), (3-3)

19 Representations of this type have been alluded to by Jordan [25] and i

Breisford [19] and perhaps some others; but have not (to my knowledge) C }
received more than a brief mention. !

el |
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]
) and the double Fourier transform of the autocorrelation function has
- . the représentation:
d
[ f l M E
) | : K__(f,v) = = A (v)e (f)e*(v) §'F-ven/T), (3-4)
3 xx . ? T pqul Pa P 1 piee
where the elements of the matrix A(f) aré given by
' " -j2neTE
‘A (f) = APY ¢7J . 3-5
| Pq.“-rz--’- . (3-5)
and are z transforms of the”éleuents (cdrrelatiop seq: eces) of {Ar}
evaluated at z = e"JZ"Tf; and where,Op is the Fourier iransform of ¢p.
P From'Eq. (3-3), we see that the matrix of correlation sequences
exhibits the symmefry ’
i
' *
,{Ar} {A-r} | ,
, so that, from Eq. (3-4), iqs z-transform is Hermitian symmstric:
A'(£) = A*(f). , ' (3-6)

i
, . Using Theorem (2+16) of Chapter II (on the equivalence between time-

averaging and phase randomizing), and Eq. (3-2), it is easily shown that
1 ( ,

the power spectral density for the stationarized version of a CS process

with the above TSR Has the following quadratic representation:

. [X]
1 .
K _(f) = = A (F)¢ _(f)e(f). 3-7
GRS Zl pqF)9p (D41 (E) ‘ (3-7)
' p.q :
The type of separability exhibited by the TSR for the uutocorrelation

function is useful in solving integral cquations--as shown in Section 2f
. f
of this chapter--which arise i estimation and detection problems (where
{

the autocorrelation function is the hernel of a linear integral
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transformation), and will be exploited in the following chapter on . .
least-mean-square estimation.

Most CS processes =f theoretical and-practical interest (those
contained in Hcsﬂ.) (-=,=)) admit translation series representations of
infinite order. That is, the norm of the difference betweén such a

process and an u"‘

order approximate representation of it monotonically
approaches zero as M approaches infinity. Hence, most CS processes of
interest can be arbitrarily closely approximated, in norm, by a finite
order TSR.

The most generally applicable type of TSR is that which employs a
complete orthonormal (CON) set of basis functions {Op} in the Hilbert

space 1L2[0,T). Orthonormality insures that, by definition,

00028 [0 @eeaess b t Lpne (3-8)
» 2 - = - -
PaLs P P 0 pta, :
and completeness insures that Bessel's equality [2] holds:
- ¥ £ ¢ L?[0,T]
£(t) = T (£,4 )24 (t) . (3-9)
p=1 L P a.e. t ¢ [0,T]

Note that if we extend the {OP} from L2[0,T] to L2(-»,») by defining
A
¢p(t) -0 ¥t ¢ [o0,T],

then the set of translates {op(t*n’l'); P=12,...; n=0,:1,22,,..}

is an orthonormal set in L"’(-w,w) in the sense that

/ ¢p(t-n'r)¢a(t-mr)dt = § (3-10)

5 .
] pq wm

For this class of TSR's we have the following fundamental theorem

on existence and identification:

. = 2°

U

—
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THEOREM(3-1) : 2%Every random prpces§ xe qcs(T)(--,-) (every finite
mean-square T-CS process) admits the mean-square equivalent TSR:
x(t) = § 2 3ty (=0T a.e. t ¢ (-»,%) (3-11)
n=~-» p=1 ‘
where the elements of the jointly WSS sequences {ahp} are:
T
= *(t)dt 3-
- o! x(tenT)o8 (¢) (3-12)

and where {op} is any CON set in L?[0,T].

Proof: Define

et) 2 E{fx(v) - ¥ Y 8ptp (E0T) |21,
ne-« p: npp

Expanding the square and interchanging summation and expectation yieids:

e(t) = k  (t,t) - 2Re[ E g Bla, x* ()6 (t-T)]
! n?m P?(‘ {anpa[;('}¢ (t nT)¢'(t'mT)

Substituting the given expression for anp and interchanging integration

and ‘vectation yields:

20Note that any generally nonstationary finite mean-square random process
can be represented on (-»,») with a TSR. The discrete representors will
not, in general, be jointly WSS, but the representation will be a genuine
discrete series representation in teims of a countable number of
deterministic basis functions with random-variable weights. However, in
conirast to the usual discrete representations on a finite interval, the
TSR on (-=,») cannot be truncated at a finite number of terms to prov1de
an arbitrarily close (in mean-square) approximation (because the sum over
the translation index must always be fron -= to = if the representation
is to apply over the entire interval (-«,®).
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T
e(t) = k  (t,t) - 2Ke[ E g Gf kxx(o#nT,t)¢;(o)do¢p(t-nT)]

T
* - *(t-
+ n?n p?q g[ kxx(a+nT.t+uT)¢p(o)oq(r)dodt¢p(t nT)oq(t nT)
or, changing the variables of integration:

}n*l)T .
o(t) = k  (t,t) - 2Re( E g 4 kxx(o,t)op(o-nr)doop(t-nr)1
)

}n*l)T f(m+1)T
k._(0,t)9*(0-nT)¢ (t-mT)dodz*
n,mp,qnT  wT XX P q

op(t-nT)oa(t-mT). (3-13)

Now, since x is a finite mean-square process, then the section function

ko (*22) is in L2[0,T] for every t ¢ (-»,«), and since x is T-CS, then

kxx is jointly T-periodic in its two arguments so that kxx(-.t) is in
L2(nT, (n+1)T) for all integers n and every t ¢ (-=,=). Also, by hypothesis
{¢p(t-nT)} are CON in L2[nT,(n+1)T]. Hence, from Bessel's equality

(Eq. (3<9)), we have:

o }nOI)T ‘ '
pgl gy K,y (05 t)op(o-nT)doop(t -nT) = K (t',t)

for all n, for a.e. t' ¢ [nT,(n+1)T], and for a.e. t ¢ (-=,»), and the
left member is identically zero for t' £ [nT,(n+1)T]. Hence,

© N }nol)T
'Y ‘" - . )
n§~w pzl T g etdegomnmdos, (x0-n) ke (t'ht)  (3-14)
for a.e. t,t!' ¢ (-=,%),

Similarly,
mel)T nel)T
0 PN )
mq

ot npnT

b
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= kxx(t'.t) ' (3-15)

fOt a.e. t’t. € ("",')o

Now, substituting Eqs. (3-14,15) into Eq. (3-13) yields:
e(t) = k  (t,t) - 2k (t,t) + k (t,t) =0 ae. te (=%,%).

Hence, x and its TSR are mean-square equivalent for a.e. t € (-w,%),
The fact that the sequences {anp} are jointly WSS can be trivially
demonstrated using their defining equation (Eq. (3-12)) and the fact
that x is T-CS.
QED
Note that if we substitute Eq. (3-12) of this theorem into Eq. (3-3),
then we obtain the following direct formulas for the correlation matrices

of the jointly WSS sequences:

T
APR . £] Ky (£4TT, 708 (£)9, (1)dtdr (3-16)

and, using Parseval's relation [2]:

£

LAy Reg (£ (618, (1)) Fagay . (3-17)

b) Representation in terms of PAM processes. An interesting

interpretation of the TSR of Theorem (3-1) results from the following
manipulation:

Define the periodic extension of ép as

v 4
¢,(t) - ) 4, (t-nT) (3-18)

n=-



"%@iﬁw "’;&w A% e S I TR T -,
3
and define a gate function'w as
E: w(t) = . (3-19)
: 0, t¢I[o,7) -
. . Now, we have %
t t)w(t o
Op()'p()(). 4
r 1
and we can write the discrete Mth order TSR for x as an M-term continuous 3
series representation as follows:
A ot 521 .
i x(t) = a ¢ (t-nT)
& nz-o p=1 npp -
. « )7 anpw(t-n'rﬁ (t) -
: p n P
4 M
] I a (6)é (v), (3-20) -
: prt PP
B
where {ap(t)} are pulse-amplitude modulated (PAM) processes with full w{
; duty-cycle rectangular pulses: ri
i ay(t) = T & w(t-nT). (3-21)
‘ ne=-« p I
A typical realization of one of these PAM processes is shown in
. Fig. (1-2) of Chapter I. |
‘ The autocorrelation function for x has the corresponding representation
J
Ky (£5) = ] A (53328, (0F2 (5), (3-22)
3 P»q=1 A
’ where
!
Apq(t3) = Ela (D)az(s))
- = ¥ AP it nT)w(s-nT), (3-23)
E n,m M0
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and since the correlation matrix A(t,s) is jointly T-periodic in its

two arguments, its easily shown that the M PAM processes {ap(t)} are

jointly T-CS. Furthermore, as pointed out in Chapter II, these PAM

representors have constant means and variances.

This representation would be even more interesting if the PAM
processes {ap(t)} turned out to be jointly WSS. Using Eq. (3-23) it can
be shown that this will, in fact, be the case if and only if the Fourier

transform of w--rather than w itself--is a gate function (on the interval

(-1/2T,1/2T])). With such a choice of w, we obtain the "harmonic series"

representation which is defined and discussed at length in Section 3.

c) Implementation of the process-resolution operation. Knowiedge

of Eq. (3-12) in Theorem (3-1) allows us to explicitly specify and, in
fact, implement the process-resolution operation; i.e., the operation
which resolves the random process x into its representors {anp). The
operation indicated by Eq. (3-12) has two realizations--both of which
are made causal [2] by the incorporation of a delay of length T: the
multiplier-integrator realization of Fig. (3-1), and the filter-sampler
realization of Fig. (3-2).

The multiplier-integrator resolution device, as shown in Fig. (3-1),
is useful only for computing a single represeantor random variable, since
the integrator must be '"dumped", after cnmputation of anp’ before it can

be used to cowpute ac But this can be easily remedied since an

n+l)p’
effect which is equivalent to dumping can be obtained by following the
sampled output of the integrator with a feedback-delay as shown in

Fig. (3-3). Furthermore, if the sampler at the output of the integrator

is replaced with a sample -and-hold device (where the sample value
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obtained at time nT is held until time (n+1)T so that the sampler's
output is piecewise constant), as shown in Fig. (3-4), then the output
of the feedback-delay device is the continuous representor (PAM process)
ap(t), and its sequence of sample values is the discrete representor
{a“p} = {ap(nT)}.

Now, using M of these resolution devices, we can construct a
causal, linear, periodically time-varying system, as shown in Fig. (3-5),
which resolves the process x into its representors. Furthermore, we can
reconstruct x from these representors with the causal, linear,
periodically-time-varying system also shown in Fig. (3-5).

In the event that the {¢p} are complex and indexed from -(M-1)/2
to (M-1)/2 such that OS » *-p’ then the resolution-reconstruction system
of Fig. (3-5) can be equivalently realized using only real devices as
shown in Fig. (3-6). This system computes, separately, the real and
imaginary parts of the representors.

Unlike the multiplier-integrator device of Fig. (3-1}), the filter-
sampler device of Fig. (3-2) can be used without modification to
continuously compute representors, so that the composite resolution-

reconstruction system takes the form shiown in Fig. (3-7).

d) Examples.

i) Harmonic translation-series-representations. If we choose as our

CON set in L2[0,T] the complex exponentials

ejant/T

0,(t) ilf' W(t)

where w is the gate function defined in Eq. (3-19), then the periodic

extension of °p is just




Aponmae ey e

« 1 32Wpt/T
3'P(t) ﬁe

and the PAM representation of Eq. (3-19) becomes:

+1)/2
x(t) = & {" a_(t)e2"PH/T
i pe-172 P

where the pth PAM process ap is given by

ap(t) = E anpw(t-nT)

and has pulse-amplitudes given by

T
-1 -j2npt/T
L. x of x(t+nT)e dt.

For this harmonic representation, the multiplier function emploved in
the resolution-reconstruction system shown in Fig. (3-6) are simply

sinusoids given by

Re"§,(£)) = jfl-cos(ant/'l‘)
In(, (t)) = ésin(vat/T).

Note that if M = }, then the process x is itself a PAM process with

full duty-cycle rectangular pulses and pulse-amplitudes {x(nT)}.

ii) Walsh translation-series-representations. An interesting choice--

from the point of view of implementation--for our CON set in L2[0,T] is
the set of two-level Walsh functions [2] defined as
/7, ¥tel
= p
$ (t)
P ST, ¥ te [0,T) - .

where Ip is the set of disjoint intervals contained in [0,T] over which

Op is positive. The first few sets are
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I, = [0,T]

1, = [0,7/2]

I; = [0,7/4),[31/4,T)
1, = [0,1/4],(1/2,31/4].

Now, since multiplication of a process by a Walsh function is equivalent
to amplitude scaling by the factor 1//T followed by a series of polarity
reversals, then the multipliers shown in the representation system of
Fig. (3-5) can be implemented as polarity reversal switches which are
actuated at the transition times of the Walsh functions (end points of the
intervals in the sets Ip). Hence, the overall implementation of the
resolution-reconstruction system can be very simple.

Note that this Walsh represcntation (Eq. (3-20)) is composed of the
sum of M piecewise constant processes, and is therefore also piecewise

constant (except in the limit when M = »),

iii) Karhunen-lodve translation-series-representation. The basis

functions chosen for our first two examples--sinusoids and two-level
functions--are appealii.g because of the resultant convenience in
implementation of the multiplier function generators and/or the multiplier-
devices used in the resolution and reconstruction systems. However, there
is another criterion which brings to our attention a third choice for
basis functions. Consider the choice of a set of basis functions which,
for a given process x and any given order of approximate representation

M, minimizes the integral-mean-squared difference between the process x
and its approximate representation x°. In this case, our choice would be

appealing from the point of view of efficiency.

e

| S

PO,
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Now, it is well known [2,25] that the set of orthonormalized
eigenfunctions {op; p= 1,2,...,&1, corresponding to the M largest
eigenvalues {Ap} of the linear integral operator on L2{0,T] with kernel

kxx(t.s), is the unique set which minimizes the integral-mean-squared

difference:
T M
o] E{[x(t) - pglaop%(t)]z}dt. aop * (x,op)Lz.
The series representation which employs these eigenfunctions
M
x'(t) = pzl 2ot () t ¢ [0,T]

is referred to as the Karhunen-Lodve representation for x on [0,T] and
is the optimum (most efficient) discrete rapresentation. The eigenfunctions

are, by definition, the solutions to the integral equation:
T
A t) = k_.(t,s ds, ¥t 0,T 3-28
php(t) OI xx (81809, (8)ds e [0,7], (3-25)

and if x is T-CS, then they are also the sclutions to the integral
equation:

}n#l)T

Ap¢p(t»nT) - kxx(t.s)¢p(s-nT)ds, ¥V ¢ ¢ [nT, (n+1)T](3-26)

nT
Hence, the series representation

M

x'(t) = ] a_ ¢ (t-nT), ¥ t ¢ [nT,(n+1)T]

p=1 PP
is also the Karhunen-Lo2ve representation for x on [nT,(n+1)T] so that
the resultant TSR

w M

' o Y ‘ = ’ v -R,®
X' (t) nz-m & dnp¢p(t nT) te( )
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minimizes the integral-mean-squared difference in every interval

[nT, (n+1)T], and is therefore the most efficient TSR for x.

For this Karhunen-Lodve TSR, the matrix éo with elements {qu}

is, as expected, diagonal; but the matrices {gr; r # 0} are not, in l

general diagonal. However, there exists an interesting class of auto-
correlation functions for which the latter matrices are diagonal and, in

fact, scalar multiples of A . For details, see Theorem (3-3) and the

éo
following discussion.

We now present explicit formulas for the eigenfunctions and
eigenvalues employed in the Karhunen-Lodve TSR for two types of CS processes:
(1) Karhunen-Lodve TSR for the video signal: In Section 3 of Chapter II,

we presented a model for the random video signal which included a formula

for the autocorrelation function consisting of three factors:

1f we ignore the frame-to-frame corrclation (because of its relatively
low-frequency nature) by letting P3 in Eq. (2-26) equal 1 (and L),
then ks(t,s) = 1 for all t,s and the video signal becomes CS with period
T rather than LT. Furthermore, on the square t,s € [0,T], the line-to-

l1ine correlation factor kz(t.s) = | (from Eq. (2-25)). Thus, we have
ke (£:8) = k,(t-s), ¥t,s ¢ [0,T]
so that, from Eq. (2-24),

. ees] .
kxx(t.s) =0y , ¥t,s ¢ [0,T].




Now, from Eq. (3-25), our TSR basis functions are the normalized

solutions of the eigenfunction equation:
T Je-s|
Aphp(t) = OI Py #y(s)ds,  ¥te (o7,

and are given (unnormalized) by {2])
cos(xnf (t-T/2)y.) , p odd
¢ (t) = ° P
P sin(tfb(t-TYZ)yp) s P even

und
llnfb

AP ) 2’
1+v)

where {yp} are the solutions of

(3-27)

l/th P odd
tan(wfoTyp) =

p’ p even
and f 41 In(1/p,)
o 2x 17
(2) Karhunen-lodve TSR for the time-division-multiplexed signal:
in Section 2 of Chapter 11, we presented 2 model for the time-division-
multiplex (Tbnl) of M random signals {yp}. If we assume that these M
component signals are unccirelated and WSS with autocorrelation functions

{kP}. then the composite autocorrelation function for the TDM1 signal x

becomes:

w M
Ky (:8) =n’m§‘m pzl kp(t-s)wp(t-nT)wp(s-mT) (3-28)

where "p is the gate function
1, ¥t e [(p-1)T/M,pi/M] 2 T

w (t) =
P 0, ¥tg T

GG
AN
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so that, on the square t,s ¢ [0,T], we have

M
k., (t.s) = |

A kp(t-s)wp(t)up(s), ¥t,s ¢ [0,T),

and on the square t,s ¢ Tb. we have

Now, the most convenient way to obtain a TSR for x is to represent
X separately on each of the M component intervals {Tb} with an Nth order
Karhunen-Lodve representation:
N
xtt) = § aPP(r) ¥teT.
q=1 Qq P
This will be equivalent to representing each of the M component processes
{yp} individually:
y PP
'(t) = a t), VteT.
Yp(®) qu ot (® €T,
The result is the composite (M'N)th order TSR:
M N = )
@ =] 1 I &b, wvre (=), (3-29)
p=1 g=1 n=-= q
If the component processes {yp} have exponential autocorrelation

functions

kp(t-S) - e-anpIt-s!

ther the eigenfunctions {¢g} can be obtained from the formula given in
the Video example. Another interesting type of autocorrelation function
which, unlike the exponcatial type, is duration limited, is that which

takes the form

B
-

| EOmrrid

ALK
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[

fﬁgl'[(t-soT.)"u(s-t)o(s-toT,)nq(t-s)].lt-s]gT,. n odd

, on lt‘sl : T.
and has the shape shown in Fig. (3-8).°

k(t-s) =

The ‘eigenfunctions on the intprval‘[-T;/2,T°/2] (centered for convenience)
which correspond to this type of kernel are very easy to solve for

provided that ' ’

T, ¢ TW/2. L

The approach, like that used to obtaii the éigenfunctions for exponential

kernels [2], :relies on conveiting the integral equation Eq. (3-25) to a

differential equation. " For the above type of kernel, the differential
’ ]
equation .is:

i

dmel,, 0. -2k(0)n} T
Aol ) 4,(1), ¥t [-T 72T /2], nodd.

'Y

. For the case'n = I, the kernel (autocorrelation function) is triangular,

and the eigenfunctions are given by: . ' :

t) = ¢os(w t), !
?p( ) = gos(ut)
and the eigenvalues by
| ' ' i
= " Wl ' -
Ap 2k(0)/1,dp. | . (3-30)

]

wher? the {wp} are the solutions, of

T
L RS LL:
plo) = T (1/(%%)i NV AN

)
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e) Finite order translation series represeatations. The TSR's

established in Theorem (3-1) are generally applicable to all CS processes
with bounded autocorrelation functions, but will usually be of iufiniie
order (M = »). There are, on the other hand, a number of subclasses of
CS processes which admit special finite order TSR's which are not based
on some CON set in L2{0,T] as in Theorem (3-1). We present two such
subciasses.

i) Bandlimited cyclostationary processes. In many analyses dealing with

random signals (particularly in communications studies) all signals are
considered to be bandlimited to the interval of frequencies [°f6’fo]
where‘fo is the highest frequency which the systems (in the problem of
interest) will respond to. Thus, given fo and a T-CS process x, we
choose the smallest integer M such that M/2T 2 fo’ and then remodel our

process as its bandlimited (to [-M/2T,M/2T]) version:

x'(t) = f x(1) Si?£E:;:&;¥/T) dt .

-t

Now, from the sampling theorem for nonstationary processes (Theorem (2-2)),
we have the following mean-squarce equivalent representation for any

process x which is baudlimited to [-M/2T,M/2T]:

x) = ] xuapn SRUGTOWD

Mme-o

Thus, if we define the M basis functions {¢p} as

A M 1/2 Sin((t-gT/M)ﬂM/T)

and the M representor scquences {anp) as

el

| R

b
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2, 2 (502 x@r + g1, @-32)
then we can rewrite the above sampling representation as an ch order TSR
o M
x(t) = I a ¢ (t-nT) (3-33)
nz_..,., npp ~
where the {Optt-nT)} are orthonormal on L2{-»,=] (as in Eq. (3-10)),
and--analogous to Eq. (3-12) of Theorem (3-1)--the elements of the M
jointly WSS sequences are given by
3o = | x(tsnDe (t)dt. (3-34)

ii) Degenerate cyclostationary processes. We use the term "degenerate"

to denote those random processes which have a countable (cardinality equal
to that of the set of natural numbers) ensemble of realizations. We
consider here a specific subclass of degenerate CS processes which are of
much practical interest in communications: synchronous M-ary signals of

the form
x(t) = ) ¢(t-nT,b ) ,
n=-v

where ¢ is a deterministic function and {bn) is an M-ary random sequence
where each random variable bn has the M-ary alphabe: of realizations
(al,uz,....aM}. In Sectinn 4 of Chapter 11, we defined this type of CS
process and gave six specific examples including frequency-shift-koyed
signals, pulse-position-modulated signals, and others.

Now, such processes can be re-expressed as an Mth order TSR as in

th

Eq. (3-33) where the p basis function is
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Op(t) = ¢(t,ap),

and where the M jointly WSS sequences {‘np} comprise a random indicator

sequence. That is, for each n, the realizations of all but one of the
It -

M elements "nl"nz"""nu} are zero, and the non-zero realization is

equal to 1. For this TSR, the matrix of correlation sequences,

AP eﬁ%fahisau&hofkhtw»ﬁﬂhhsﬁuﬁdthna
h

element c{ the pqt

th

sequence is the joint piubability that bn = ap and

bn = aq. Furthermore, the mean value of the random variable ‘np is just

the probability that bn . ap.

f) Correlation matrix decomposition and solution of integral equations.

In this subsection, we show how the TSR for an autocorrelation function
can be used to obtain the solution of a linear integral equation whose
kernel is the autocorrelation function, and we show how to simplify

this solution through decomposition of the correlation matrix of Eq. (3-5).

i) Integral equations. The solutions to many problems in functional

analysis (including estimation and detection problems as discussed in
Chapter IV) can ultimately be expressed in terms of the solution to a
linear integral equation--typically a Fredholm equation of the first

kind [29,31)
] k(t,s)his)ds = g(t), ¥tes, r3-35)
s
or of the second kind

[ k(t,s)h(s)ds + Ah(t) = g(t), ¥t €S, (3-36)
s

=
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or, more generally,

| k(t,s)h(s,7)ds = g(t,1), ¥t,res, (3-37)
s

or

| k(t,s)h(s,t)ds + Ah(t,T) = g(t,T1), ¥t,reS, (3-38)
s .

where S is some fixed indexing interval.

Since the first three equations can be considered to be special cases

of the fourth, we will restrict our discussion here to this fourth equation.
There are various sets of circumstances under which explicit solutions

to this integral equation can be obtained. For example:

(1) If S = (-»,»), and if the kernel k and right member g are time- -

invariant (k(t,s) = k(t-s)), then the integral is a convolution and the

solution is (formally):

h(e,s) = P { o,

where F.l(°)t-s is the inverse Fourier transform evaluated at t-s, and

G,K are the Fourier transforms of g,k.

(2) If the kernel k and right member g are "separable of order M':

»

M
k(t,s) -Mgl Apgtp ()4, (5)

M
g(t,s) -Mgl Goa?p(t)e, (3) ¥t,seS

((op} can always be chosen orthonormal by proper choice of tiie matrices
A,G), then the integral transformation is degenerate, and the solution

is (formally):
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M
h(t,s) -p’qgl qu¢p(t)¢q($)

where the matrix B is given by
B=(A+2D)8

where I is the M x M identity matrix.
Note, if S is finite, then under a fairly liberal set of constraints on
k,g. arbitrarily close separable approximations to k,g can be obtained
(34,36].

Now, as a combination of these two methods, we present the following

new (to our knowledge) formal sclution to Eq. (3-38):

THEOREM(3-2): If the syametric functions k,g are each jointly T-pericdic
in their two arguments (k(t+T,s+T) = k{t,s)), and if the section
furnctions k(¢,t),k(t,*), g(*,t),g{t,*) are in L2[0,T) for every

t ¢ (-»,»), then the solution to the integral equation

[ ]

| k(t,s)h{s,t)ds + Ah(t,7) = g(t,1) ¥ t,1 ¢ (-=,) (3-39)

-0

has the representation:

h(t BPY ¢ (t-nT)¢*(r-nT {3-40
(t,7) -n,mg_“ p.qga hem Op(t-nT)42 (1-mT) (3-40)
where {°p} is any CON set on L2[0,T], and the sequence of matrices {Er}

is given by the inverse z-transform

v
B =T [ B(£)eIT" T Ear (3-41)
S V4]

where the marria of functions B(f) is given by

~igida B e e e e 2on e
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B(f) = [A(f) + Alj-1G(f) (3-42)

where the matrices A, G are the z-transforms

A = ] A

TR

~j2nrTE

6(E) = | g eI (3-43)
re-
and where the elements of the sequences of matrices ér’ Qr are giyen by
T
APY o ff K(terT, 1)e* ()¢ (T)dtdt
r 0 P °q

T
[] g(t+rT,7)e7(t)¢_(1)dtdr. (3-44)
0 p q

Proof: Employing the completeness relation (Eq. (3-9)) as in the proof

of Theorem (3-1) (Eq. (3-15)) yields the translation series representations

L -]
k(t,s) = APe (t—nT)#*[s-mT).
n,nz-w P qzl n-m °p

1 = pq *fg. -
g(t,s) ngm ,Eq nem ®p(t-AT)02 (s-mT). (3-45)

Now, wssumirg the form Eq. (3-40) for h, and substituting these
representations into Eq. (3-39), and employing the orthonormality of the
{0p(t-nT)} (Eq. (3-10)) yields the discrets version of our integral

equation Eq. (3-39):

v § P‘ 1q Pq Pq
B+ Bt = G ¥n,p,q . (3-46)
zgx me- Ap-m Ba n n

But, the first term i. the left member is simply the composition of a
discrete convolution and a matrix product. Recognizing this and taking

the z-transform of both sides of this equation

B AR P LA SRS (00 A UMY Sy
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yields

A(£)*B(£) + AB(£) = G(f)
so that (formally)

B(£) = [A(£) + AL)IG(F).

Now, the sequences {ng} are the inverse z-transforms given in Eq. (3-41).

QED

Note that the matrix B(f) which characterizes the solution given in
this theorem is defined in terms of the inverse matrix [A(f) + AI}"!
where A(f) is, in general, infinite dimensional. Thus, our solution is,
in general, only formal. However, in the event that finite order (say M)
translation series representations for k,g exist, then the matrices
A, B, G are all of dimension M x M and the solution can be of great
value as illustrated in Chapter 1V. Furthermore, even when A(f) is
infinite dimensional, the inverse [A(f) + A1]~} can be computed providad
A(f) is either diagonal or can be appropriately decomposed into the sum
of a diagonal matrix and a finite rank matrix. In this next subsection,
we discuss the decomposition of A(f) and give a number of examples.

However, before turning to this topic, we note that the solution
methcd of Theorem (3-2) can easily be extended (as shown in Chapter IV)
to the case where the basis functions (¢p} are neither orthonormal nor

duration limited to [0,T].

e AR s - 2 s ttywisel ot o Lot St . = PR
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ii) Correlation matrix decomposition. In the previous section on

integral equations, we saw (Theorem (3-2)) thet an operator equation of

the form
(A -AL)B=G, (3-47)

where é, _5_, g are operators on the function space L2(-»,») with kernels
k,h,g which admit a TSR of order M (Eq. (3-45)):
I
k(t,s) -n’mg_. $' (t-nT)A _ 4* (s-nT)

(where ¢ is an M-vector, Ar.p 8 M X M matrix), can be reduced to an

m
operator equation of the form

[A(£) + AIJ-B(f) = G(f) (3-48)

where A, B, G are M x M matrices of periodic functions:

-j2nrrTf,
14

Af) = T Ae (3-49)

rs-®
and that the solution to Eq. (3-47) can be obtained from the solution to

Eq. (3-48):
B(f) = [A(£) + M]-YG(f), (3-50)

when the indicated matrix-inverse exists.

We now present three types of correlation matrices A(f) where this
inverse not only exists, but also is relatively casy to compute--even for
M=« First, however, we mention that since A, G (and thercfore B) are
1/T- periodic, then the matrix inversion need only be carried out for

values of f e [-1/2T,1/2T].
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(1) Infinite-dimensional diagonal matrices: We begin with a theorea.

THEOREM(3-3): If A(f) is the correlation matrix for. the kernel k
(defineﬁ by Eqs. (3-43,44) of Theorem (3-2)), and if k has the wide-sense
Markov-like property:

k(t+rT,t) = ark(t,t) ¥t,re [0,T], ¥

for some sequence {“r}’ then A(f) decomposes into the product of a 1/T-

periodic function and a constant matrix
A(f) = Ay Z ure‘jZ'anf,
r

and if the CON set of basis functions {¢p} employed in the TSR for k are
the cigenfunctions of the operator A with kernel k, then A, is the diagonal

matrix A whose non-zevo elements are the corresponding eigenvalues.

Proof: By definition,

(34

T
~j2urTf ! N
Apq(£) Je {[ k(t+rT, 7)43(£)9, (1)dtd

b o

T
] a e 20T 1y k(t.7)42 ()4, (T)dedr
r 0 q

-j2rrTf
qu g ureJ ,

and if {Qp) are the eigenfunctions corresponding to k, then

T
[ k(t,1)e* ()¢ (7)dtdx
0 p q

pq
Ay

T
A " d
q OI W OINOLL

AS .
g Pq

QED

=
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There are several CS random processes, of interest to us in thisi
thesis, whose autocorrelation functions k satisfy the hypothesis of
this theorem. For the sake of continuity, we give as two examples
those processes for which the eigenfunctions were obtained in Subsection
2d:

(1a) Random video signal: From our model developed in Chapter II

(Eqs. (2-23,24,25)) we have

k(t+rT,1) = ark(t,r) ¥ t,t ¢ [0,T)
- It-rl
%1

where

o

« o1 (@)modL] |r|-]|z|modL
r - P2 P3

and Py Py are the line-to-line and frame-to-frame correlation factors,
and L is the number of lines per frame. So, from Theorem (3-3) we have

the inverse matrix
A -1
D(f) - [A(f) + Al]
with elements

8 )
d = Pq_ , (3-51)
PRy, APZ are-JZﬂr??
r

where the {xp} are given by Eq. (3-27), and if we ignore frame-to-

frame correlation (03 s 1, L+»), then a. = pgrl and
© . 1 - p2

r=-o (1-92)2 * 4pzsin2(u'l‘f)

SN T T
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(1b) Time-division-multiplexed signal: As discussed in Subsection 2d

it is most convenient to obtain the TSR for the TDMI signal in terms of

R
-~

M Xarhunen-Loeve expansions--one for each component signal being multi-
plexed. Thus, the composite correlation matrix is composed of M &
matrices (the M2 - M off-diagonal matrices are zero because the M

signals arc assumed uncorrelated)

Al (£) -
A(f) = G
2 0 ~
with elements ; i
) ~j2nrTE C
A“(f) = g Ac e ®

vwhere
T/M L [}
AP = [ K, (terT-1)¢ (t+(R-1)T/M)*$ " (t+(%-1)T/M)dtdx. ‘
T, 0 ) p q
But, for the class of correlation functions discussed in Subsection

2d: wnamely ,§
k, (0)
2 [(t-1eTp) "u(r-t)+ (1-t+T) "u(t-1)], |t-1[¢T,, n odd

kz(t-t) 1

o. lt“[l : T*,

we have, for T/2M

HA

T, § TA-1/M),

kg(t+rT-T) s “rkl(t'T) ¥t,t e [0,T/M]}
where
1, r=20
a, =
0, r#0

o eesnet s e e et s o s shsaompn 2k R A A AT o M A LSO oMy oy e ) — e o et v, s




Hence,
Pqa .
Ar,t Ap“r‘pq’
and
Ate) = At
and
A.l
A(£) = a2 2|,
0 t .
- L"

so that the inversec matrix given by

D(f) = [A(f) + AL)7!

1
S}
= p?
0 °.
'09
has elements
% $
d =.._..23..,
PA 4
p

where the {x;} are given by Eq. (3-30).

(2) Infinite dimensional diagonal-plus-finite-rank matrices:

begin with a theoren.

147

(3-53)

Again, we
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THEOREM(3-4): If the inverse matrices D = [Q + 8S']"!, ¢!, and
F™} = [I + S'QIR]"? all exist, then

D=Qq!- g lRFlsigl. (3-54)

A proof of this theorem (known as the Matrix Inversion Lesma)
can be found in the appendix of reference [49].

Qur application of this theorem is to the case where the infinite-
dimensional correlation matrix A(f) can be decomposed into the sum of
an invertible diagonal matrix--call it A--and a finite rank (say N)
matrix RS', where R,S are infinite-by-N dimensional matrices. For then
the infinite-dimensional matrix inverse D(f) = [A(f) + AI]™! can be
computed in terms of the inverse of the N x N matrix
F(f) = [1 + S'(f)+[A + Al]'lg(f)] by using Eq. (3-54) of Theorem (3-4)
where Q = A + )1,

We present a major class of CS processes whose infinite dimensional
correlation matrices can be so decomposéd, and then we present a
variation of that class:

(2a) CS processes which are the outputs of periodically time-varying
finite-dimensioral linear dynamical systems driven by white noise:

Since the class of processes which arc generated by passing white noise
throvgh a finite-dimensional (order) linear dynamical system are of much
interest in statistical communication and control theories [49-51)
(because of their analytical and computational tractability), we will
present our result on decomposition in the form of a theorem and proof

which will be convenient for future reference:
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,, i
THEOREM(3-5): If x is the T-CS output_process of a T-periodic Nth

ofder lincar dyna-ical sysie- driven by a vector (of'arbitrary dimension)
of jointly white WSS processes then the 1nf1n1te dimensional correlation
matrix (Eqs. (3-43, 44)), correspondxng to the TSR of Theorem (3-1), for

X aduxts the deco-p051tion ’ '

A(E) = A, + R(E)S* @)

" where R(f), S have dimensions ® x 2N, and if the set pf basis functions
{6p} employed‘in thﬁ TSR for th:z autdporrelation function ‘k x 2re the

eigenfunctions of the operator A whose kérnel is kxx’ then A, is, the
. hand 1 i -

diagonal matrix A whose non-zero elements are the corresponding

, eigenvalues. '

th

Proof: Consider the state-equation description of an N order linear

'dynamicél system: i ‘

g ly()] = E(®)ye) + biin(e) C(3-56)

x(t) = ¢'(t)y(t),

where y is the N x 1 state vector of random‘processes, F is the N x N
{

state transition matrix, b is the input matrix, n is the input vector of

jointly white WSS processes with autocorrelation matrix

E{n(t)n' (1)} = R6(t-1J, ‘ (3-57)

and c¢'(t) is the 1 x N output matrix, and x the output process. Now,

the steady-state outpht x is given explicitly by
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t
x(t) = [ ¢’ (£)8(t,)b()n(v)dr (3-58)
where ¢ is the fundamental solution matrix corresponding to the
trunsition matrix F [S2]. From this expression and Eq. (3-57), it is
easily shown that the steady-state autocorrelation function for x is
given by
ke (t:5) = g' (t)h(s)u(t-s) + g’ (s)h(t)u(s-t) (3-59)
where the N x 1 matrices g, h are given by
£(t) = 8(t,t )c(t)
t
h(t) = [ &(t ,TIb(T)RD! ()¢’ (t,T)dTc(t) (3-60)
and t, is arbitrary (we've used the property of all fundamental
solution matrices: &(t,1) = g(t,to)gjto,t) V’to,t,t).
Thus, using Eq. (3-59) in Eq. (3-44) yields the following expressions
for the elements of the matrix of correlation sequences:
N
L g, (1), (), r>0
Pq . Pq 2 -
Ar N Ao , r=0 (3-61)
h* . (0 <0
igl 51 (F)8g; (0), r

where

T
83 (1) ° R ACLINOT

T
of h; (t+rT)¢ (t)dt

1o

hpi (r)

Frsas,
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and g;» hi are the elements of the g, h vectors of Eq. (3-60).

Now, substituting Eq. (3-61) into Eq. (3-43), we obtain the following

expression for the correlation matrix:
A(E) = A+ GH(OM) + HY(£)G), ' (3-62)

where the elements of the = x N dimensional matrices G(f), H(f) are

.V j2nrTs
cpi (£) rzx'!’i (r)e

e T h (pe-)2nrTE
Hpi(f) rgxhl’i( r)e

and the elements of the = x N dimensional matrices _(_;o, !-lo are

{gpi{c)}.{'hpi(())}. Hence,

A(f) = Ay + R(E)S' (3-63)
where

R(E) 2 (6 (), 14 ()]
and

A
$°H,8,]-

Finally, if {0p} are the eigenfunctions for the operator with kernel

kxx’ then as in Theorem (3-3), 50 = A.

QED

o RS RERSBFR O R o ¢ e o e L e e AT e i e e L OV PR
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(2b) TDM1 processes with componen. signals which have been generated

by finite-dimensional time-invariant systems: As a variation on the
above result, consider the Zﬁul process discussed throughout this
section--but this time consider component processes which can be modeled
as the outputs of time-invariant finite-dimensional linear dynamical

systems (of order N). As jn the previous subsection, the composite

correlation matrix takes the form

Al(f)
)
A(f) = AZ(E) ©
"é?(f)

where é?(f) is the correlation watrix for the pth component process,

and by Theorem (3-5) can b2 decomposed as follows
AP(£) = A, + R (£)S!
- "O.P -p -p

where 59. §P are » x 2N dimensional matrices, and if the basis functions

used in the TSR are the eigenfunctions, then A, p " Q?. the diagonal

»
matrix of eigenvalues. Now, since

(AI(£)er1)"!
0
[A(r) + aL]"! = (A2(£)+rF) ™! - (3-64)

i ean |

o

then this composite inverse can be obtainud by employing Theorem (3-4)
to obtain the inverse of each of the M component matrices--the total

computation requiring the inversion of M matrices of dimension 2N x 2N.

{3

Y W———
A
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(3) Finite-dimensional diagonal and diagenal-plus-rank-1 matrices:
Our third and last class of correlatién matrices to be considered is,
in fact, a special case of the previous two classes. We consider here
correlation matrices which aée not only finite-dimensionsl, but also
either diagonal or diagonal-plus-vank-1.

If A(f) = A(f), a diagonal matrix with non-zero elements {Ap(f)},

then the inverse matrix
D(f) = [A(£) + A1)}

has elements

8
d_(f) » —B—, (3-65)

9 Ap(t') + A
or if A(f) = A{f) + R(f)S'(f), where R(f), S(f) are M x 1 vectors with
elements {rp(f)).{sp(f)), then, from Theorem (3-4), the inverse matrix

D(f) has elements s (f)

r_(f)
6 l"ﬁu« CNHERE
L W i B DY (2-66)

P 11*2——(;,—77-1

so that, in both cases, the inverse mutrix D(f) is given explicitly
with no need for further computation.

Now, the purpose here is to present two specific examples of CS
processes--one of which has a finite-dimensional diagonal correlation
matrix, and the other of which has a finite-dimensional diagonal-plus-
rank-1 matrix. Both of the examples given here are models of random

signals which are of much interest in communications:
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(3a) Time-division-multiplexed PAM signals: As an alternative to

the TBMI and TDM2 schemes introduced in Chapter II for time-multiplexing
a multiplicity of signals, we consider here the TDM-PAM scheme. If our
M component processes {yb} are bandlimited to [-1/2T,l/2f]. then they
can b2 periodically sampled every T seconds without loss of information.
If these M sample sequences are now interleaved in time to provide a
single composite sequence of samples--one every T/M seconds--then this
composite sequence can be employed to amplitude-modulate a stream of

pulses to obtain a time-division-multiplexed PAM signal x:

- M
x(t) = [ 1y (aT)q(t-nT-pT/M). (3-67)
n=-« p=] P

If the M componrent processes are jointly WSS, then x is a T-CS process

h

with an M*" order TSR with a matrix of correlation sequences given by

Mo, )
Aln B{yp(nT)yq(mr)}

so that, if the componeiit processes are also mutually uncorrelated, then

Pq . APP
An-m An-mqu’

and the correlation matrix A(f) is diagonal:

A (f) =6 APP g-J2nrTf 3-68
pqF) g, (3-68)

M

(3b) Synchronous M-ary signals: In Subsection 2e, we pointed out that
synchronous M-ary signals such as FSK admit Mth order TSR's where the

matrix of correlation sequences is a matrix of joint probabilities:
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‘pq- = =
Al Prob[bn ap and bh aq].

Now, if we assume that the random variables in the modulating sequence
{bn} are mutually statistically independent, then

P . t Prob[b = ap]Prob[blll = “q]’ n¢un
n-m - a
quProb[bn ap], n=m

= P(PP(QI( - 6 ) + Spqf (P)orn

where P(p) 4 Prob[bn = ap] for all n. Hence, the M x M correlation

matrix is given by

o -j2nrTf .
Apg(E) = 8, P(p) + P(pIP(q) rgo e , (3-69)

and is composed of the sum of a diagonal matrix and a rank-1 matrix.

8) Implementation of periodically time-varying linear systems.
As shown in the previous subsection, the TSR of an autocorrelation
tunction which is the kernel of a linecar integral transformation (operator)
is reflected in the kernel of unother transformation which is the solution
of an operator equation (Eqs. {3-38,47)). For some applications
(especially estimation and detcction as discussed in the following
Chapter) it is desired to physically implement the solution operator
as a linear system whose impulse response function is the kernel.

An impulse response function h which has an Mth order TSR

M
h(t,1) = § I 8P 4 (t-nT)¢* (x-mT)
n.me-» pqsl "M P q
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has the straightforward implementation shown in Fig. (3-9), where

the input is applied to a bank of M time-invariant filters (with transfer
functions {0;}) whose outputs are periodically sampled every T seconds
and applied to an M x M matrix of time-invariant sampled-data filters
[53,54] (with transfer functions {qu(f)} which are z transforms of the
impulse response sequences {ng}). The sequences of output samples from
the sarmpled-data filters (assumed weighted sequences of impulses) are
then applied to a bank of M pulse-generating, time-invariant filters
(with transfer functions (Op}) whose outputs are summed to form the

final output of the system.

Note that this system can be obtained from the resolution-
reconstruction system of Fig. (3-7) simply by inserting the matrix of
sampled-data filters between the resolution portion and the reconstruction
portion. Similarly, a multiplier-integrator type cf implementation
for the system with impulse response function h can be obtained from the
resolution-reconstruction system of Fig. (3-5) by, again, inserting the
natrix of sampled-data filters between the resolution and reconstruction
portions.

Finally, it should be mentioned that the impulse response function
h will not, in general, represent a causal system, so that a physical
implementation must incorporate a delay, say to’ so that %(t.r) = h(t-to.t)
is the impulse response which is implemented. Notice, however, that if

one started with a causal h:
h(t,t) = h(t,t)u(t-1)

where u is the unit step function, and one expanded it into a TSR, then

= [ ¢ [T

rs——- 4 r"———“ r"’m" g-"""’““
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the sampled-data-filter impulse response sequences would savisfy

T
Pq - *
B {) | h(t+(n m)T, 745 (£)4, ()dtde

i =0 for n-m < 0.

% Hence, the sampled-data filters would be causal. Furthermore since

% the output filters {op} are causal, and the input filters {0;}

% can be made causal with a delay of length T, then the overall (approximate)
4

% realization (which uses only a finite number of terms) shown in Fig. (3-9)
% " would be causal with a delay of to = T. Note that a finite order TSR

; ! cannot be causal without the incorporation of at least a T-second delay.
b

; LJ h) Generalized Fourier transforms for Eyclostationary processes.

%3 A rather disappointing quirk of the transfer function thzory for linear

§ ”i time-invariant systems (as it standc) is that it applies only to

i !; deterministic signals, so that random input ani output signals cannot,

E !

i wd in general, be related by the simple formula

{-; X(£) = H(E)Y(E)

; 2 g’ where X, Y, H are, respectively, the Fourier Transforms of the outﬁut X,
;«é the input y, and the impulse response function h. The reason being

? ’ that fourier transforms of random signals are not, in general, defined.

; The standard argument against the possible existence of a Fourier

transform of a stationary random process is: the Fourier transform--like

any other linear transformation of a random process-should be interpreted
as the ensemble of Fourier transtorms of the deterministic functions

g which comprise the ensemble of realizations of the process; but due to
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the."continuing" patuwe of a stationary process, its realizations will

not be in L2(-w,»), and therefore will not be Fourier transformable.

The prevalence of this attitude is evidenced by this statement from a
popular modern engineering textbook on random processes [Ref. 3,

pp. 336,465]: 'We assume the reader is familiar with linear systems

and transform techniques. We should emphasize, however, that we transform
only deterministic signals and not stochastic processes.... Stationary
processes have, in general, no Fourier transforms."

The purpose of this subsection is to employ the TSR of Theorem (3-1)
to define a simple, yet adequate, generalized Fourier transform for the
class of all finite mean-square CS (and WSS) processes. With this
generalized Fourier transform, the transfer function methods, which are
so useful in the analysis of linear time-invariart systems and
deterministic signals, can be directly extended to the analysis of these
sysvems and random signals. For example, the frequency-domain input-
output relations of Chapter II (Eqs. (2-7,8,9)), which were derived in
a round-about way in the time domain, can be re-derived in the frequency
dcmain in one or two simple steps. This is, in fact, done in [Ref. 3,
pp. 465-467) by "...ignoring the mathematical difficulties."

We begin by presenting a generalized version of the well known
formal derivation of the generalized Fourier transform of a periodic
function. Consider any periodic function x in the Hilbert space
le,(.n (-»,»), defined in Sec. (3-1). If wp} is any CON set in L2[0,T],
then x admits the deterministic translation series representation

R s
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x(t) = pgl nz-w appfp(t-nT) a.e. t ¢ (-=,%)

a ¢ (t-nT)
Tt Lt

where

T

= [ x(tenT)¢*(t)dt = a ¥ n.
0 p

anp op

Now, we define the generalized Fourier transform for any

x ¢ L2 (-»,%) to be the equivalence class of transformations F 2{*}
P(T) LP.

with representatives

-4

Fl%{x(t)} = X(f) !2) %p E FL2{¢p(t-nT)}

a o (f) e-ijan
L]

1
-5 g %0p £ op(m/r)c(f-n/'r)

where th{-} is the usual Fourier transform defined on L%(-=,»), and
where the last equation is the Poisson sum formula [2,55]. The

equivalence relation which generates this equivalence class is

X, v X, “’,J [X, () - X,(£)]df = 0,

where xl and x2 are the two transforms of x corresponding to the two
representatives of FL% obtained from any two CON sets in L2[0,T],

and x is any function in L%(T)' It is not difficult to show that all
representatives of FL§{°} corresponding to any specific signal x, do
indeed satisfy this equivalence condition.
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Now consider the specific CON set of complex exponentials
1 _j2upt/T
t) = = t
¢P( ) e w(t)

where w is the unit gate function on [0,T]. The Fourier transforms

of the {Op} are
1
¢ (f) = — W(£-p/T)
P T

where

W(E) = si:gnfT!

so that
¢ (nT) = /T 6§ .
p( ) -
Also, the TSR coefficients are
Ta = fo(t)e'jZ"pt/TAt a
o P

and are the familiar Fourier coefficients for the harmonic Fourier
series representation for x. Thus, our generalized Fourier transform

now takes the well known form [55]

X(f) = § apé(f-p/T).é

p=-o

This generalized Fourier transform can easily be extended from
deterministic to random periodic functions, as discussed in [Ref. 3,
p. 467], simply by allewing the Fourier coefficients to be random

variagbles., 'In fact, our more general definition of thc generalized

Fourier transform FLz can just as easily be extended from deterministic

P
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periodic functions to cyclostationary random processes:

DEFINITION: The generalized Fourier transform for any random process,

say x, which .is contained in the Hilbert space ECS(T)("") is defined

to be the equivalence class of transformations Fh {+} with representatives
cs

A [- ] o
F, {x(t)} = X(f) - a_F (¢ (t-nT)}
Hes p§1 n§-~ np L2p

. g E "p op(f)e'jz""Tf ,
where {QP} is any CON set in L2[0,T] (extended to the zero-function
outside [0,T]) and {anp} are the random TSR representors
T
B " of x(tnT)¢a (t)dt
and FLz{-} is the usual Fourier transform defined on LZ(-=»,®).

The equivalence relation which generates this equivalence class is
Xy v X, <x> -if [EL(X, (£)-X,(£)) (X, (9)-X,(v))*}|dfdv = 0

where xl and x2 are the two transforms of x corresponding to the two

representatives of FH cbtained from any two CON sets in L?[0,T), and
(B

x is any random process in ﬂCS(T)(-w,w).
That this relation is indeed an equivalence relation (2] can be

verified by showing
JJIECX (6)-X, () (X, (v)-X, (v)) *Hdfdv = 0
<z E{Ix‘(t)-xz(t)lz} =0 ¥teg (-»,»),

where X and X, are the random processes with autocorrelation functions
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k. (t,8) = PoF SHEX, (£)X1(V)}) i=1,2

X5 %3 L

where P-PLgl is the gereralized double Fourier transform inverse for

periodic functions of two variables; and using the fact that
X, v X, <> E{|x,()-x,(t)[2} =0 ¥t e (-=e)

is a valid equivalence relation.
The following theorem extablishes the equivalence under expectation
of our generalized Fourier transform for CS processes and our generalized

Fourier transform for deterministic periodic functions:

THEOREM(3-6): The generalized Fourier transfbrmsFHc ’ FLZ are equivalent
S P

under expectation in the following sense:

E{FH {X(t)}} = 7 2{5{)((1’.)}} & FLg{mx(t)}

cs L

E{(F, {x(t)}Ft
“CS rk:

{x(s)}} = FoF {E{x(t) x*(s)}}
s Lp

[}

F'FLgkax(t,s)} 3 Kxx(°.-)
for every x ¢ HCS(T)('“’”)'

Proof: Let X(f) be the representative of the equivalence class

FHCS{.} corresponding to any TSR, say {Op.{a“p}}.
Then:

| N—

| Samunndd
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‘W) EX(E)

= E{ ) { L2{¢ (t-nT)}} (by definition)
. : p : s
=E{ [} I x(t+nT)¢*(t)thL2{¢ (t M} (Eq (3-12))
. pno '
i i | . '
L. 11, [ E{x(t+nT)}¢*(t)drF 2{0 (t-nT)} -(assumed valid)
pn
’l ! . H
‘ = { ) f mx(.+n7)¢*(r)drﬂ 24, (¢t -nT)) (o def.)
, pno ;
2{m (t)} (by def.)
: ! i : i
2 f m (r)¢*(r)dt 2 ¢ (m/T)c(f—m/T),
, po
; | : '
S G - E(X(E)X*(W)) = E{ gq “g anpa;qFL2{¢p(t-nT)}FLz{fa(s-mT)}} (by Def.)
l ’ ' .
\ . a 'gq ng E(anpa’q)FLa’¢ (t- nT)}FL2{¢a(3-mT)}
' (asswaed valid)
: i
=7 1 qu F oF 2{¢ (t- nT)h'(s mT)} (by def. and Eq. (3-3);
»pq nm
? = PR L2tk ! (t,s))' (by def. and Eq. (3-2))
: P *
g | ‘ $K () ' (by uef.)'
&
3 EE Y Apq (N9, (1E2(0) T 80-weiT)  (EQ. (3-4)).
PY m
1 ' . [ ‘ '
$ , OED
? ' ‘ l It ghould be méﬁtiongd that this theorem is, in a sense, tlie
] . extension of Helly's theorem (Ref. }35), p.247)--us applied to time

averages of ergodic stationary processcs--to easemble averages cf mone

ergodic cyclostationary (and stationary) processcs.
i
|

v : : o
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Note that the expected singular behavior of ics{x} is, in more
than ore way, "expected" since it shows up in the mean function
E{ics{x(t)}}, as a string of impulses, and in the autocorrelation
function E{Phcsfx(t)}i‘ {x(s)}}, as a string of impulse fences.

Hes

Note also that since, for WSS processes, we have
Kxx(f,v) = Kxx(f)c(f-v)

where Kxx(f) is the power spectral density for the process x, then we

now have two new foramulas for the power spectral density:
K (£) = [ E(X(£)X*(v)}dv = E{X(£)x(0)}
where

X(f) = ics{x(t)}.

The first topic considered in the next section provides a
concrete example of the utility of a generalized Fourier transform for

CS random processes.
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3. Harmonic Series Representation

a) Definition. In this section we develop a particularly interesting
and unique translation series representation which is intimately related
to the harmonic TSR discussed in Sec. 2d, and is, in fact, the frequency-
time dual of the harmonic TSR. This duality is immediately brought to
evidence if we introduce the representation in the following manner: We
begin by representing the Fourier transform X(f) of the T-CS process x(t)
with the frequency-domain harmonic translation series

X() = 1 Va0 (fp/m), (3-70)
np
where {en) is the CON (in L2[-1/2T,1/2T]) set of complex exponentials

o (f) = /T e I2MTEy 0y (3-71)

where W is the gate function defined by
1, fe [-1/2T,1/2T)
W(f) = (3-72)
0, f £ [-1/2T.1/2T)
and where the representors {anp} are given by
1/2T

Bp {/ZT X(F+p/T)O* (£)df. (3-73)

Now, if we take the inverse Fourier transform of this frequency-

domain TSR, then we obtain the following TSR in the time-domain:

x(t) = a ¢ (t-nT) (3-74)
g E np'p
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where

4 (2) = /T ITPYT ey (3-75)
and w is the inverse Fourier transform of the gate function W

w(e) = S0UT) (3-76)
Using Parseval's relation [2] in Eq. (3-73) yields the time-domain
foemulas for the representors:

8p --;[ X(tenT)en (t)de. (3-77)

Thus, we see thut our frequency-tiwe dudl of the harmonic TSR of
Section 2d is a TSR in both the time- and frequency domains.

Now, analogous to our development of representations in terms of
PAM precssscs in Section 2b, we collect terms in our time-dumain 1SR of
Eq. (3-74) to obtain

x(e) = L a (o) o 3TPY/T (3-78)
P

where
ap(t) = /T g anpw(t-nT). (3-79)

Emptoying the formulas for {anp} in the above equation vields the more
direct formulas for the continuous-time representors:
w

ap(t) = [ w(t-0)x(1)e

-in

_J.’.npr/'fdt. (3-80)

-
PUPS
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We take Eqs. (3-78,80) as our formal definition of the

harmonic series representation.zl Note that, in terms of Eq. (3-79), we

can interpret {ap(t)} as PAM processes, so that we again see that this
hermonic series representation (HSR) is the frequency-time dual of the
harmonic TSR of Section 2d--this time in the sense that the continuous-
time representors in the harmonic TSR are PAM processes with pulses which
are rectangular (width T) in the time domain, and the representors in the
HSK are PAM processes with pulses which are rectangular (width 1/T) in
the frequency dcnain.
For this harmonic series representation, we have the following

fundamental theorem:

THEOREM(3-7): Every T-CS process x admits the mean-square equivalent

harmonic seriss representation

j2npt/T a.e. t e («w,m)

x(t) = | ay(t) e

pl-'

[

ap(t) = f w(t-t)x(r)e'jznptle1

w(t) = 315133111 (3-81)

nt

where the continuous-time representors {ap} are jointly WSS and

bandlimited to the irt:i-val [-1/2T,1/2T}.

2[This representation has previously been presented, but not developed,
by Ogura [6]; e.g., the joint wide-sense-stationarity of thc representors
has not (to my knowledge) been recognized except in our preliminary
paper [43]), nor has the fundamental relationship of this representation
to the class of TSR's been previously discussed.
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Proof: Define

e(t) L E{]x(t) - | ap(t)ejzwpt/lel.
P

Expanding the square and interchanging summation and expectation yields

e(t) = kxx(t’t) - 2Re[ | B{a;(t)x(t)}e'jZWPt/T]
P

o ] E{ar(t)a (1)} e $ETP-O/T
p:q P 4

Substituting the given expression “or ap and interchanging summation
and integration resuits in

e(t) = k (t,t) - 2Re[ [ ] w(t,r)kxx(t’,)e-ijp(t-t)/Tat]

¢

-ln p

o I T wi-onienk (1 )e PO TR0/ Ty
-0 p.q

But, from the Poisson sum formula [2], we have
T wie-1)e d2PET L 2 7 g(e-t)8(e-1-qT)
P q

= §(t-7).

Hence,

e(t) kxx(t,t) - 2Re[kxx(t,t)]o kxx(t,t)

0 €. t € ("'“,m)c

Furthermore, since each process ap(t) is obtained from the T-CS process

2npt/T

x(t)e ’ via a bandlimiting tilter (impulse response function
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= sin(nt/T)/#t) with passband [-1/2T,1/2T), then Theorem (2-3) of
Chapter II insures that ap(t) is a WSS process which is bandlimited to
nd
(~-1/2T,1/2T). In fact, since the processes {x(t)e'jzupt/T; p = 0,%1,£2,..}
8 are iointly T-CS, then the representors {ap(a); p = 0,%1,%2,...}
"§< ; are jointly WSS.
.‘ 4 : .
o QED
%’ o The autocorrelation function for every T-CS process has a harmonic
‘ series representation which follows directly from the HSR for the
[j ' procuss itself:
k| ] K (6,8) = [ k _(t-s)el27(PE-as)/T, (3-82)
% L XX Paq
3 p.q
? where k(t-s) is the correlation matrix for the jointly WSS representors:
L
] % Efa_(t)ax(s))
Z ‘ k (t-s) - Efa [
Y pq(t-3) = Elap(tay
il
; : i -3 - /
;L = ] w-owGsnk (e TP Tgrey (3-83)
% Similarly, the double Fourier transform of the autocorrelation function
E
i has the representation
A . .o
K (£ = L K (£-p/T)8(E-v+ (a-p)/T), (3-84)
3 P.q
vf where K(f) is the single Fourier transform of the correl .tion matrix k(t):
‘ [N f) = F [k t);
1 pq( ) { pq( )i
y 1/21
4 ‘ = [ K (Fep/T,vq/TIAH(E), (3-85)
l/'};* ‘l/zT

and is bandlimited vo the interval [-1/2T,1/27]).

(280, e s N
AT AT ey Tos (i
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It is interesting to note that the correlation matrix K(f) for
the HSR of any T-CS process is simply related to the correlation

magrix A(f) corresponding to any TSR for that process as follows:

= X(E) -
Kg® =7 'gq.op.(f*p/T)Ap. q+ ()93, (£+q/T) (3-86)

p

where {wp} are the Fourier transforms of the basis functions employed
in the T5R. Furthermore, if the TSR is the specific one from which the

HSR is derived (Eqs. (3-74)-(3-77)), then

Op(f) = /T W(f-p/T) (3-87)

qu(f) = nz-nqu(f-n/wp. (3-88)

Thus, the HSR correlation matrix K(f) is just a bandlimited
(to [-1/2T,1/2T]) version of the 1/T periodic TSR correlation matrix
A(f); i.e., K(f) is one (centered) period of A(f).
Now, substituting Eqs. (3-87,88) into Eq. (3-7) for the power
spectral density of the stationarized version of a T-CS process, we obtain

the HSR formulas:

«©

K, (F) = pg-mgppcf)w(f-p/r)

= [ K (f-p/T) (3-89)
p:-m ?p

and we see that the stationary character of a CS process is determined

by the diagonal elements in the HSR correlation matrix.
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b) Resolution and reconstruction. The harmonic series re~—.s2ntation

is perhaps most transparent when viewed in terms of the process-resolution

operation which is defined by the integral equation Eq. (3-81) of

Theorem (3-7). Applying the convolution theorem to this equation yields X
the following simple formula for the Fourier transform of the

representor a: 5
l\p(f) = X(f + p/T)N(E) (3-90)

where W is the gate function defined in Eq. (3-72). Thus, the

resolution operation corresponds to equipartitioning the "frequency line"
into support intervals of length 1/T upon which the process is then
decomposed as shown in Fig. (3-10) for a hypothetical realization of the
Fourier transform of the process.

This resolution operation has the straightforward implementation
shown in Fig. (3-11) where W is the idecal low-pass filter with transfer
function W(f). Furthermore, the original process can be reconstructed
from the representors simply by shifting them (in the frequency domain)
and adding them. The corresponding implementation is also shown in Fig. (3-10).

Note that, pa-alleling the results in Section 2c, a resolution-
reconstruction system which decomposes CS processes into the real and
imaginary parts of the representors {a?(t)} can be implemented using only

real sinusoidal multiplier functions in the structure shown in Fig. (3-11).

¢) Properties of the harmonic series representation. In this

cubsection, we present several propertics of the HSR which illustrate
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its convenience for characterizing CS processes.

(1) Stationarity: Since the components {ap(t)ejzﬂpt/T} of the HSR are
individually WSS, but not jointly WSS (because of the exponential factor),
then a CS process will, in general, be WSS if and only if the various
representors {ap) are uncorrelated; i.e., if and only if the correlation
matrix is diagonal.

(2) Phase randomization: If X is the process which is derived from a
T-CS process x by the introduction of a random phase variable 8:

x(t) = x(t+0),then as discussed in Section 5c¢ of Chapter II X is also
T-CS. Furthermore, if pe(°) is the PDF for 6 and Pe(°) is its Fourier
transform (conjugate characteristic function), then the elements of the
correlation matrix g(f) for X can easily be shown to be related to the

elements of the correlation matrix K(f) for x by the formula:
¥ () = P_((p-q)/TIK_ (£). 3-91
pq'E) = Pelp-a)/ MK, (£) (3-91)

Now, since pe(') is a PDF, then Pe(r/T) s PS(O) = 1, and we see that the
off-diagonal el.ments are attenuated by the phase-randomization.

Furthermore, if Pe((p-q)/T) = qu , then g(f) will be diagonal and X

will be WSS (a result previously obtained in Theorem (2-15) of Chapter II).

(3) Bandlimitcdness: As defined in Section 2a of Chapter lI, a random
process x is bandlimited to the interval [-B,B} if and only if the double
Fourier transform of its autocorrelation function satisfies the

bandlimiting constraint:
Kxx(t,v) =0

for [£] > B and for |v| > B, Now, using Ey. (3-85) and this definition,

oot B st SR v
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it is easily shown that if x is a T-CS process which is bandlimited to

h

[-(M+1/2)/T, (M+1/2)/T) then x admits an Mt order HSR; i.e., all

e

‘representors with indices greater (in magnitude) than M are zero, and

L

the correlation matrix is (2M+1l) dimensional. Similarly, if x is a

"band-pass'" process:
Kxx(f,v) =0

for ||f|-f°| > B, and for I]vl-fol > B, then x admits an HSR with only

L 2M terms (where B = (M+1/2)/T).
(4) Time-invariant filtering: If } is the output of a time-invariant

: filter with T-CS ipput x, then as discussed in Sec. 2a of Chapter 11, ?
is also T-CS. [lurthermore, if G is the transfer function for the filter,
then the elements of the correlation matrix K(f) for § can be related to
tne elements of the correlation matrix K(f) for x by the formula:

v T )
Ko (F) = WIRIG(Fep/TIG (F2a/ DK (£). (3-92)

Note that if G is an ideal low-pass filter with cutoff frequency fo’ then
al: elements in the matrix E(f; vith either index greater (in magnitude)
than M & min{n; n > Tfo+l/2} wil! be zero, so that x can be represented
by an Mth order HSR--a result which is obvious from the above discussion

on bandlimiting.

d) Examples. In this subsection, we present several specific types

of €S processes which admit particularly simple finite order HSR's.
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(1) Amplitude-modulated signals: Our first example of a CS process
introduced in Chapter II (Sec. 2b) was the amplitude-modulated (AM)

signal with reslizations of the form:

x(t) = p(tjy(t)

where p is a T-perioa.. deterministic function and y is a WSS process.

Now if p has the finite harmonic Fourier series representation
M

pe) = [ el
q=-M 9

th

and y is bandlimited to [-1/2T,1/2T] then x admits an M order HSR with

representors

a y(t)’ p = o.tl,iz,....,t”
= p
a (t)
P 0, Ipl > M.
and if p is a sinusoid (as it most often is in communications applications),

then M = 1, and the correlation matrix has the form:

|1 0 1
K(f) =K (£) |0 0 o
K(f) yy()

1 0 1

(¢) Frequency-division-multiplexed signals: It was shown in Section
2b of Chapter II that a multiplicity of T-CS AM signals can be added to
form a composite T-CS frequency-division-multiplexed (FDM) -agnal with
realizations of the form

M
x(t) = E yp(t)cos(wot + Zupt/T)
p=l

¢ e m——
H
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%} ‘ l‘ where W, is an intczer multiple of 2#/T, and {yp} are each ban.:limited
? E L to [-1/2T,1/iT]. Now, by expanding the sinusoid into the sum of
|
. . exponentials, we obtain the HSR
I tﬁ
S (M+N)

. x(t) = ] a_(r)ed2™Pt/T

p=-(Meh) P

o

where N = on/Zn, and

Y (), p o= £(Ne1),£(N+2),...£(NeM)
a(t)=}2°P
P 0, NeM < |p] < N

If the components{yp} are uncorrelated, then the composite FDM signal

! has a sparse correlation matrix of the form:

- K(N-M) (-N-M) 'f(-N-M) (N+M)

o

ERIETYRY) Keny o

OIS OI0)

gt e i o S

=)

K(N+M) (-N-M) ' l<(N+M) (N+M)

T et A s

with elements given by

P

b
by
kS
ke
7]

1

- K = =
K () =} o6, Il = fal Ner
Pq 0, otherwise

where Kr(f) is the power spectral density for L
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(3) Random periodic signals: In Section 5a of Chapter II, we discussed
the random periodic signal as a reasonable model for many biomedical and
communications test signals (modeled at the receiver). These signals

can be expressed in terms of a Fourier series

M .
x(t)= ] a eI2Pt/T
p=-M
where {ap} are random Fourier ccefficients. Clearly then, these signals
admit Mth

order HSR's with representors ap(t) = ap, so that the
correlation matrix K(f) factors into the product of a constant matrix

and an impulse function.

e) Solution of integral equations and realization of periodically

time-varying systems. As discussed in Section 2f, the TSR for an

autocorrelation function can be employed tu convert an integral equation

to a matrix equation which can be solved by matrix inversion. Now, since
the HSR is derived from a TSR, then it too can be similarly employed. In
fact, using Eqs. (3-75), (3-88) in Theorem (3-2) yields the solution

he,t) = b (-l TPEAT oy e (e (3-93)
o |

to the integral equation

[ k(t,s)h(s,t)ds + Ah(t,1) = g(t,7) ¥ t,1 ¢ (-=,) (5-94)

-

where the (hpq} are the inverse Fourier transforms of the elcments

of the matrix

AR

—




o ——

. H(E) =

(K(F) + L)} G(F), ¥ f e [-1/21,1/21)
o : (3-95)
0. - ¥ f £ {-1/27,1/2T]

I ' ' f
wnere K, G are the Fourier transforms of the bandlimited (to [-1/2T,1/2T})
. i !

matrices k, g which represent the T-periodic kernels

U k(ess) = )k (tis)ed 27 (PE-as)/T
p.q P4 | |
g(t,s) = ] gpQ(th)e12v(pt-q§)/T (3.9

p.a {°

as in Eqs. (3-83, 85). : \
1 .
. Furthermore, if this solution is to be implemented as the impulse
. ’ : ! 1

response of a linear system--as discussed in Section 2g--then the

straightforward implementation shown in Fig. (3-12) suffices. Note

'
i

that this linear systcm is composed of a matrix of time-invariant filters

(w?th transfer functions npq(f)) which is flanked ai the irput and

output, fespectively, by the resolution and reccastruction systehs of
; ; !

rig. (3-11). Note also that since H(f) is bandiimited, thenr it can be

cxactly realized with a matrix sampled-data fiiter, with transfer function
[53,54]
’ I

B(F) = } HU-p/T),
p:-cn

flanked.at the input and output, respectively, by T-éeriudic impulse-
samplers and ideail low-pass filters (W(f)).

Finally, it should be mentioned that such a system is not causal
and cannhot be physicufly implemented without the incorporation of a welay

. i . L !
#s discussed 'in Section 2y,
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As an example of this integral-equation solution method, consider

the special case (which occurs frequently in practice) where the kernels

g and k in Eq. (3-94) are equal. Now if k is the autocorrelation function

for the FDM signal discussed in the previous subsection (or has the same

form), then the identical matrices G, K have the sparse form:
1

G () =K (B) =414

pq M 0, otherwise

Kr(f), 'P‘ = l‘Il =Ne+r

sC that the solution matrix of Eq. (3- 95) has elements given by the

formula 1
= K_(f)
3
1 Kr(f) N lpl = la] =N+
H (f) =1 2 * 3-97
pq( ) T ( )
0, otherwise.

In the next chapter we will extend the integral-equation solution
method of Eqs. (3-93)-(3-96) to include the case where the kernels
k, g are not only jointly T-periodic in bcth variables, but also
individually T-periodic in cach variable (as is the case for the
autocorrelation function of a random T-periodic signal), and where the

interval of integration is finite.

{-n-v-ﬂ‘
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4. Fourier Series Representation for Autocorrelation Functions

r-—-‘-‘ r-c—“m

a) Definition. In this section we briefly consider the harmonic

Er—
.

Fourier series representation for autocorrelation functions for

£t
C N
cyclostationary processes. In contrast to the autocorrelation function-
2 vy . R s . L . . 3 . . el . A .
L representations presented in. the previous two sections, this represéntation
{ }; does not result from a representation for cycléstationary -processes:
A T

‘there is, in fact, no process-representation from which the Fourier seéries

g
Mt

representation for an autocorrelation function automatically résults.<2

C?

! If x is a cyclostationary process with period T, then its
w autocorrelation funétion is--by definition-:jointly T-periodic¢ in its

two arguments:
kxx(t*T,s+T) = kxx(t,s) ¥ t,s.

Now, if we define a new function of two variables by making the change

SN,

of variables:

PE,

o A
Fo(thss') =k (stet!/2,57-11/2), ]

R TR RIS

Co then we have

i

5

t.

£

x

¢ .

3 ' X = r_ (t-s,(t+s)/2 3+
S B koo (£25) = v (t-5, (E+5)/2) (3-99)
S

A so that the first argument in r . is the time-difference or size (and

"F N

4 . A . . i .

: sense) of the time-interval (t,s) and the second argument is the time-

i average or midpoint of the time-interval (t,s). Furthermore, theé section
i

3 221his is a conjecturc which appeirs to be difficult to prove.

4 e e—————l.

G A e« ey

e

e e i e e A S ol P
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i ' 3
L function rxx(t',') is T-periodic for every t', and the section function i
E rxx(-,s') is a "decaying" function and will be contained in L2 (+w,®) {
R . )
E for most proceéses of -interest; i.e., those processes. whose correlation .
; . P
3 . ¢ H ' i
E goes to zero faster than 1/|t-s]. : ' %
1 We now represent the T-periodic functlons[r ( ',-g; t'e (mé,w)f .
D
with the1r harmonic Four1er series: o
J ey o T e (pr)el2ms'/T , .
E rxx(t ,S') = z cn(t Je ' ‘ -
? n=-o 1 : , ; s
E ' J
E where G
1 §
] T/2" : . ,
3 1 n\’ i . '
] c (') = & f r (t',s")e” -32ms /Ty © ' (3-100) §
A ' n T } L
: If we substitute Eq. (3-100) into{Eq. (3-99), then we obtain
i © . , ' ! ’ -
" ’ L&) = _s o) ™M(t+s)/T ' ! ' .
L k., (t55) Z-wcn(t s)e | f'f
! § . L
; T/2 ' '
, 1 j2 : \ .
c(t)= = [ g (541/2,5- t/2) j2ms/Tys " (3-101) b
n T -T/Z , . . i!
. ] f

0 !

which is the Fourier series representation (FSR) .for :the autocorrelation '

] function .23 , ' :
1 | t
Corresponding to this FSR for the autocorreiation function kxx’ we
have the following representation’ for the double Fourier transform ofl(xx; '

|
)

, .
23 This representation has been considered in great depth by Hurd [5]. In
the third Chapter (which is devoted entirely to this representation) of
his doctoral dissertation on cyclostationary processes, he investigates
various modes of convergence of the partial sums of this Fourier series: |

However, neither Hurd, nor any of the previous investigators referenced '

by Hurd, appear to have identified the direct relationship exssting between

the Fourier-coefficient:functions and the process as described 1n the

remainder, of this subsection. ‘ | |

S TR AT AR TSR T T T AT e
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K (£,v) = g Cn(f~n/2T)6(v-f+n/T) (3-102)

where Cn is the single Fourier transform of . Notice that if we
substitute this FSR into Eq. (3-85), then we obtain the following
relationship between the elements of the correiation matrix for the

HSR of Section 3, and the coefficient-functions for the FSR:
K (£} =C f+(p+q)/2TIW(E). 3-103
g () = €, g (£ (0r@) /2T (E) (3-103)

Furthermore, by equating the right members of Eqs. (3-102), (3-84), we

obtain the relation:

C (f-n/21) = ] K (£-p/T), (3-104)

D (p-n)p

so that the nth FSR coefficient function is equal to the sum of the

frequency-translated versions of the elements of the nth off-diagonal

in the HSR correlation matrix K(f).

In view of the fact that the HSR and the FSR for the autocorrelation

* functions of CS processes both employ the harmonic exponentials as basis

functions, one might expect to find some interesting relationships

between the two representations--in addition to Eqs. (3-103), (3-104).

The following is perhaps the most fundamental relationship existing

hetween the HSR and the FSR:

From Section 3, we know that the elements of the correlation matrix

for the HSR are--by definition--cross-correlation functions of jointly

WSS complex processes:

kpq(t-s) = E{ap(t)a;(SJ1
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where the process hp(t) is obtained by reducing the T-CS process

x(t)e"JZ"pt/'r to a WSS process via bandlimiting to the frequency-interval
[-1/27,1/2T} (Theorem (3-7)). Similarly, the FSR coefficient-functions

are crosscorrelation functions of WSS complex processes:
c_{t-s) = E{b_(t)b_(s)}
bt ) P() p()

where the process bp(t) is obtained by reducing the T-CS process

x(t)e':’"pt/T to a WSS process via phase-randomization.

We state this new result as a theorem:

THEOREM(3-8): Let x be a T-CS process whose autocorrelation function

admits the FSR

k__(t,s) = X c (t-s)ej"p(t"'s)/'r

XX

p:—w

1/2 ,

{/z kxx(s"t/?:S-t/z)e'Jz"ps/Tds, (3-105)

e T

cp(t) =

and define bp to be the WSS complex process obtained by phase-randomizing

the T-CS complex process xp:

1>

bp(t) xp(t+6)

where

-jnpt/T

xp(t) x(t)e

and where the PDF for 6 is uniform:

1/T, lo] <

A
<
~
o

P,(o) =
0 0, lo| > 1/2




| N——

i

Now, the coefficient functions in the FSR are equal to the cross-

correlation functions of the {bp}:
t- = E{b_(t)b . 3-106
cp( s) { p( ) p(SJ} ( )

Proof:

E{bp(t)bp(s)} E{xp(t+6)xp(s+9)}

-]

mf E{xp(t+o)xp(s+o)}Pe(o)dc

T/2 , .
= L [ Etx(tro)x(sto))e I TP(E4SH200/ Ty
T 172
. = IT/i (t+o s+o)e'j"p(t+5)/T e"jz"PU/TdU
T T2 XX ?
T/2 _ _
L1 ¢ (tes)ed M@ P (E4S)/T  52m(a-p)o/ Ty,
-T/2 q
= Je (t-s)el (A-P) (t+s)/T % fT/ZejZH(q-p)o/Tdo
q 1 -1/2
= cp(t-s).

QED

Note that since bp is a complex process (for p # 0), then cp(t-s)
is not the autocorrelation function for bp, but rather the crosscorrelation
function for bp and b;. Note also that since x is real, then b* = b_p.
The system which transforms any T-CS process x into the WSS processes
{bp} is shown in Fig. (3-13) wherc & is a delay line whose delay length

is a random variable uniformly distributed over the interval [-T/2,T/2].

Hence, unlike the resolution systems for the TSR's and the HSR, this
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transformation is a random periodically time-varying linear system
(as discussed in Section 5 of Chapter II), and has random impulse- (
response function .
j
gp(t,t) = e-J"pT/TG(t+e~t).
.
|1
Observe that this random system has the same form as the HSR resolution =
system of Fig. (3-11) except that "pbuse-randomizers" are used in place li
of "bandlimiters'.
The pth inverse transformation which converts bp back into the LJ
original process x is also a random periodically time-varying linear system, }i
i
}
and is statistically dependent on the resolution transformation as well -
as on its input bp' The random impulse-response function for this inverse %E
transformation is
j |
; o
gl (e, = &P Ts(z-0-0),
so that the output process is -J
x(t) = bp(t-e)eJ"Pt/T J

{
where 0 is the same random-phase variable employed (in gp) to resolve ’l

X into b_.
p

b) Properties of the Fourier series representation. In this

subsection, we present various properties of the FSR which are useful in

analyses dealing with CS processes:

. . . v . .
i) Phase randomization and stationarity. If the process x is obtained

from the T-CS process x by the introduction of a random-phase variable 6: j
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pacd
— x(t) = x(t+6)
L then the FSR coefficient-functions {gn} for the autocorrelation function
) Y .
lﬂ for x are given by
N
[ cn(t) = Pe(n/T)cn(t) (3-107)
_
where {cn} are the FSR coefficient-functions for x, and Pe(') is the
L Fourier transform of the PDF for 6, pe(°). Now, if the PDF is uniform, then
- 1, n=20
| P.(n/T) =
= o 0, n#£0
f)
LJ so that
c.(t), n=20
; N (4 ’
{.d C(t)'t
0, n#o
f; and

. k., (t-5) = ¢ (t-s).
XX

( Hence, the zeroth coefficient in the FSR is the auto¢orrelation function
for the WSS process obtained via phase-randomization. This result is

b more directly obtained by noting that

cn(t-s) E{bo(t)bo(s)}

E{x(t+6)x(s+0)} (3-108)

h

where 6 is the uniformly distributed random-phase variabie.

ii) Filtering and bandlimiting. If x is the output of a linear time-

invariant filter with transfer function G(f), and with T-CS input x, then

- ~ - e . n - . ~ ’\‘ -
the Fouricer transtorm of the FSR coefficient-functions for x are given by:
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L

en(f) = G(f+n/2T)G*(f-n/2T)Cn(f) (3-109)

.

i
R 3

where {Cn} are the Fourier transforms of the FSR coefficient-functions -

for x. Now, if G is a bandlimiting filter with bandwidth 2B:

A e

G(f) = 0, |f|] > B,

then

A

¢ (5 =0, n 28T,

] so that bandlimited processes possess only a finite number of non-zero
coefficient-functions. This is, of course, true for 'band-pass'" as well

as "low-pass' processes. Note that if B < 1/2T, then only the zeroth

e ARATE SR T

coefficient-function is non-zero and the bandlimited process is WSS--a -l
] result previously obtained. {1

iii) Constraints on coefficient-functions. There are a numbter of

P S
Y

interesting properties possessed by the FSR coefficient-furc.ions.

These properties can be viewed as constraints which must be satisfied by
the coefficient-functions corresponding to any CS process. We briefly

discuss three particularly interesting types of constraints: o

(1) Symmetry constraints: Using the defining equation (Eq. (3-102)),
for the FSR, one can easily show that the coefficient-functions {cn} i'

and their Fourier transforms {Cn} exhibit the symmetries:

cn(t) cfn(-t) = cn(-t)

C (f) = C* (f) = C (-f) (3-110)

: where the last equality in each line is valid only if x is a real process.
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(2) Norm constraints: Employing the Cauchy-Schwarz[Z] inequality for

inner products (in HRV) results in
2 (t,s) < k__(t,0)k__(s,s).
xx© 2T = Txx T xxYT?

Now, using the FSR for kxx and replacing t by (o+t/2), and s by (o-t/2),

and integrating w.r.t. o over the interval [-T/2,T/2] yields the bound
j2mnt
Ile, 12 <] [e (]2 2™ Moy e (0)]2, (3-111)
n n n

Furthermore, if we again integrate (over [-NT/2,NT/2}), then we obtain

the bound

1 NT/2
Iap [ le ]2t < e @]2. ' (3-112)
n -NT/2
(3) Support constraints: Since the mean-squared value of any random
variable must be non-negative, t.en by considering the particular random
variable

y = [ g(t)x(t)dt,

where x is a T-CS process, and g(+) is any real function, we obtain the

non-negativity condition

E{y?} = ] g(t)g(k , (t,1)dedc 3 0 (3-113)

Now, using Parseval's relation {2], we obtain

E{y?} =[] G(E)G*(w)K , (F,v)dfdv > 0 (3-114)

- OO

and, using the FSR of Eq. (3-113) for Kxx yields

o

YV J G(Een/ 2T)G* (F-n/2T)C (£)df > 0, (3-115)

|‘ -\
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This general non-negativity condition imposes various interesting
constraints on the support of the Fourier transforms of the FSR
coefficient-functions. Specifically, if we choose a "double band-pass"

shape for G:
A, fe [m/ZT-fo-B,m/ZT—fO+B]U[m/2T+f°-B,m/2T+f°+B]
G(f) = t A*, f € [-m/2T-f°-B,-m/2T-f°+B]U[-m/2T+fO-B,-m/2T+f°+B]

), otherwise

where
0 < f0 +B < 1/4T,

tnen, Eq. (3-124) becomes

-f +B

-f +B f +B o
Re{a2 [© C_(£)df + AZ [° C (£)df} + |al2 [° c,(Em/2T)af
- - f -B

0

f +B
+ |A]2 fj : Co(£+m/2T)dE > O .

Now, by choosing A equal to 1 and to j, we obtain the constraint

B B
Bf [Co(E+m/2T+£ ) +C (£4+m/2T-£ ) ]df > |_£ Re{Cm(f+fo)+Cm(f-fo)}df|

where,

0z fo +B < 1/4T. (3-116)
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Among other things, this i3 a constraint on the support of the FSR
coefficient-functions. From it, we conclude that if the mth coefficient-
function Cm has support throughout the frequency band [-1/4T,1/4T], then
the zeroth coefficient-function g must have support throughout the
frequency band [m/2T-1/4T,m/2T+1/4T]. Other constraints can be derived
by choosing other types of gate-functions for G. In fact, it appears as
though the mth coefficient-function Cm will have support throughout the
frequency band [-B,B] for any B if and only if ths zeroth coefficient-

function has support throughout the band [m/2T-B,m/2T+B].

c) Solution of integral equations, and realization of periodically

time-varying systems. In Subsections 2f, 3e, we saw that series

representations for autocorrelation functions (and other periodic functions
of two variables) can be employed for solving linear integral equations

in which these functions appear. This was possible for the TSR's because
of the separation of variables effected by the representation. Although
the FSR does not separate variables, it does provide a means for converting
the integral equation to a set of linear algebraic equations. However, as
we will see, finite order FSR's do not convert integral equations to a
finite set of algebraic equations as was the case for TSR's. The set of
algebraic equations obtained with the FSR is infinite, and not
particularly easy to solve except in special cases.

Using Parseval's relation [2], the linear integral equation
(59

[ h(t,s)k(s,t)ds + Mr(t,T) = g(t,1) ¥ t,T e (-, (3-117)

can be converted to the equivalent (dual) linear integral equation
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[ ]

[ H(E, v)K(v,0)dv + AH(E;0) = G(£,0), ¥ f,0 € (-=,=)  (3-118)

where K, H, G are the double Fourier transforms of k, h, g. Now, if
k,g are jointly T-periodic in their two variables, as are the auto-
correlation angd crosscorrelation functions for T-CS processes, then they

admit FSR's, and their double Fourier transforms can be expressed in the

form

K(£,v) = ch(f-n/zT)c(v-fm/T)
n

G(f,v) = ch(f-n/zr)a(v-fm/n. (3-119)
n

Assuming the same form
H(E,v) = ) H_(£-n/2T)8(v-£+n/T) (3-120)
n
for the solution function, and substituting into the integral equation
yields, after integration, the following equivalent set of linear
algebraic equations:

! €, (f-(m)/2TH_(£-n/2T) + M _(f-n/2T)

m=-o

= Gn(f-n/ZT) ¥ n. (3-121)

There does not appear to be any way to obtain a general closed
form solution to this infinite set of equations;%“however, if {Cn}, {Gn}
satisfy certain banalimiting constraints, then solutions are possible. We
consider the special (but common) case where g = k. Now, if the {Cn}

satisfy the constraint:

24 This difficulty appears to be related to the fact (conjecture) that the

FSR for autocorrelation functions does not result from a process-representation
as do the HSR and TSR's.

i' - r"“‘"‘f

—

c— o T
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c () =0, |£] > 1/4T, n # 0 (3-122)

then, Eqs. (3-121) admit the solutions:

I C_(£-n/2T)[1-H_(£)]
;} H_(f-n/2T) = -2 , n#0
n A+ Co(f-n/T)
; Cy(£) - S(E)
L H (£) =

A+ CO(f) - S(f)

where ' ]2
C (£-m/2T)

| s() ° m :

! mF0 A+ CO(f-m/T)

(3-123)

and the solution to the original integral equation is
h(t,1) = 2 hn(t-r)eJ"n(“T)/T
n

where {hn} are the inverse Fourier transforms of the {Hn}'

{; If the bandlimiting constraint, Eq. (3-122), is weakened to
g C () =0, |£] > M/4T, n £ 0,

( then the sclutions to Eq. (3-121) become:

L C (f-n/2T)[1-H_(£)]
H (f-n/2T) = -2 ° , n#0,tl,...,+(M-1)
P n A+ Cy(f-n/T)

and {Hn; n=0,%1,...,£(M-1)} can be obtained by inverting a (2M-1)x(2M-1)

matrix of functions.

As a simple example of this integral-equation solution method,
consider the autocorrelation function corresponding to an AM process

(see Sec. 2 of Chapter II) as a kernel:
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k(t,s) = cos(Zwt/T)cos(Zws/T)kyv(t-s) -
: )
= Jec (t-s)eJﬂn(t+s‘/T !
5o
i
where, uj
1
co(t) = i-kyy(t)cos(Znt/T) -
: A
1
c2(t) = c_z(t) = z—kyy(t)

L

cn(t) =0, n# 0,22,

e

The Fourier transforms of these FSR coefficient-functions are:

-
1 1 P
Co(f) =7 Kyy(f-l/T) + 7 Kyy(f+1/T) s
) _1
CLAf) = C, (£) = 7 K (f)
C (£) =0, n#0,x2,

Now, if Kyy (the power spectral density of the "baseband" signal) is
bandlimited to [-1/4T,1/47T], then the constraint of Eq. (3-122) is

satisfied, and substituting into Eqs. (5-123) yields the solution

coefficient-functions:

PRI

ey 1
Ho(f) =3 R(£f-1/T) + 3 R{f+1/T) %
b J
E 1
E = f) = > R({f
: H(£) = H_(£) = 7 R(£)
; Hn(f) =0, n#0,%7
: where
;
é 2K ()
R(f) &y o
23 + K ()
] yy
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Hence. the solution to the original integral ecuation is:
h(t,t) = cos(2nt/T)cos (2nt/T)r(t-1),

where r(*) is the inverse Fourier transform of R(*).

If the solution to our integral equation is to be implemented as
the impulse response of a linear system--as discussed in Subsections
2g, 3e--then the straightforward FSR realization shown in Fig. (3-14a),
can be employed. The solution to the integral equation will not, in
general, be the impulse-response function of a causal system, so that
the time-invariant path-filters shown in Fig. (3-14a) will not be causal.
However, if one is given a causal impulse-response iunction h to start
with, then the coefficient-functions {hn} in its FSR,

T/2

h (t) =% [ h(s+t/2,s-t/2)e I 2™/ Tyg, (3-124)
n T
-T/2
= 0 for t < 0.

will be the impulse-response functions of causal time-invariant filters,
so that the realization shown in Fig. (3-14a) will then be causal.

This FSR realization can be simplified for the purpose of
implementation. Such a simplified version is shown in Fig. (3-14b)
where only input modulators are used, and all devices are real. The
impulse-response functions for the path-filters with transfer functions

Gnl’ an are related to the original FSR coefficient-functions as i ‘llows:
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] K
; £ (t) = 2Re{hn(tj}cosnnt/T - 2-Im{hn(t)}simmt/T
, ,
gnz(t) = -2Re{hn(t)}sm1mt/T -“ZIm{l?n(t)}cosnnt/T . (3—12‘5)

¢ ' : ‘ .
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¢_(t-nT)
Figure(3-1) Multiplier-integrator realization of the piocess-

resclution device.
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a
x(t) h(t) X (a-p |

nT

| h(t) = 4,(T-t)

Figure(3-2) Filter-samplerrealization of the process-resolution

device.
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Section 2d (for n > 1).
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cp(t-S) = E{bp(t)bp(s)}

Figure(3-13) Transformation of ™-CS »nrocess x into WSS complex

processes {bp} whose crosscorrelations are the FSR coefficient-

functions {cp}. (The random delay 0 is uniformly distributed over [0,T].)
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cos (23Mt/T)

cos (2mt/T)

input

209

output

Gy

]

sin(2nMt/T)

Figure(3-14b) Simplified realization of a periodically(T) time-varying

linear system whose impulse-response function has an Mth order FSR,
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CHAPTER IV
LEAST-MEAN-SQUARED-ERROR LINEAR ESTIMATION

OF CYCLOSTATIONARY PROCESSES

1. Introduction

The material in the preceding two chapters serves mainly as a
theoretical base upon which various problems dealing with random
periodic phenomena can be formulated and solved. Chapter II provides a
base for obtaining mathematical models for physical systems and signals,
so that physical problems can be formulated mathematically, and
Chapter 111 provides a base for simplifying the mathematical models so
that analyses can be simplified, and solutions obtained.

In this fourth chapter, we consider a particular application of the
theory developed in these earlier chapters. Although this application
is but one of many possibilities, it has special significance in that it
has been the primary motivation for developing the theory. Furthermore,
the problem considered in this application is of significant practical
(as well as theoretical) value in that its solution provides a means for

improving the quality of present communication systems, and a means
for evaluating certain performance measures for newly proposed (as well
as existing) communication systems, and it leads to useful insight into
the nature of optimum signal processing.

Specifically, the problem to be considered is that of least-mean-
squared-error linear estimation of imperfectly observed cyclostationary

processes--or, in communications jargon, optimum filtering of noisy

r— == N s
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distorted cyclostationary signals. The gereral form of this optimum

filtering problem is shown pictorially in Fig. (4-1): A random signal

L

process x is transmitted through (and distorted by) a chamnel »hich is

\
o

composed of a dispersive transformation which can be nonlinear, time-

varying, or even random; and noise which can be additive and/or multi-

C‘w‘ L‘-

plicative. The received signal y (the distorted version of x) is

processed by an "optimum filter" which is designed to minimize the mean-

T

squared difference between its output x(t) and the transmitted signal
| x{t) for all values of t in souie interval Tb (usually (-=,=)).

T Typically, the filter is chosen to be optimum subject to the

- constraint that it be linear. Nonlinear processing of the reczived
signal is usually carried out in the receiver which follows the optimum

) filter. Such nonlinear signal processing will not be considered here.

-

B It should be mentioned, however, that if the transmitted signal x is a

Gaussian process, and if the channel is composed of a linear deterministic

=

transformation and additive Gaussian noise, then the optimum (least-mean-

squared error) filter subject to no constraints will be a linear filter [S1].

=

The particular aspects of the optimum-filtering problem that will

|

be investigated in this chapter are the structure and the performance of

optimum (linear) filters for cyclostationary signals. In fact, we will

I

prove (and demonstrate with numerous examples) the proposition that

optimum filters for cyclostationary signals are periodically time-varying

systems which can yield significantly improved performance over optimum

l filters which are constrained to be time-invariant and which thereby
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ignore the cyclic character of the cyclostationary signals.25 We will —
also prove (and demonstrate with examples) the fact that optimum linear

receivers consist of demultiplexor-demodulators followed by time-

invariant filters--the order of these operations being the reverse of

S Y O i AT TR Y E IS S LR )

AT

that sometimes employed in practice. These results are of considerable

=7

importance in view of the great preponderance of cyclostationary signals

in communication systems (as emphasized throughout Chapter II). Specific

—-—— -

{

examples which are worked out in detail include, among others, signals

& Po et

which are amplitude-modulated, frequency-shift-keyed, pulse-amplitude-

{

modulated, frequency-division-multiplexed, and time-division-multiplexed.

[P

Befcre proceeding, we briefly discuss the origin of the above

P T7 B L O S PR L P S T X AR RS T AT SO RS ol e

proposition on improved performance: In Section 5 of Chapter II, it was i

shown that any cyclostationary process can be reduced to a stationary

ome—
T AP}

% process by randomizing the phase (or time-origin) of the process (Theorem {
§ (2-15)), and that the resultant autocorrelation function is precisely the .
; same as the function obtained by averaging, over one period, the original L
autocerrelation function of the cyclostationary process (Theorem (2-16)). i
This has long been known (as brought out in the historical notes of
Section 3 of Chapter I) and indiscriminantly used to simplify analyses {

dealing with cyclostationary processes. In fact most systems-analysts,

inr solving for optimum filters for cyclostationary signals, use the f}

stationarized model for their cyclostationary signals, and come up

1 DA R T e ST R P T ET  YC A RN S AT S S
i

with optimum time-invariant (non-coherent) !

25 To my Fnowledge, the only other result of this nature was obtained by
Brelsford [19,20]. He experimentally verified the fact that pure predictions
of cyclostationary meteorological data based on autoregressive techniques
which employ periodically time-varying coefficients can be superior to
similar predictions obtained with constant coefficients.
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filters, 26

There are two dominant motives for this approach:

(1) In the past, time-varying systems were considerably more difficult--
if not totally impractical--to impiement compared with time-invariant
systems, so that even if an optimum periodically time-varying filter

was identified, it probably couldn't (or wouldn't) be built.

(2) Solutions for optimum (noncausal) filters for stationary processes
are very simple to obtain, in direct contrast to the compsete lack of

any general solution methods for optimum (noncausal) filters for non-
stationary processes. (The appropriateness of the noncausal optimum
filter for communication problems will be discussed in Section 3.)

Thus, the tack taken in the past is very understandable. However,
with the advent of integrated circuit technology, time-varying systems--
particularly periodically time-varying systems--are becoming increasingly
easier to implement. In fact, some such implementations are even more
attractive in terms of design-and-construction effort and cost than
classical time-invariant implementations based on resistors, capacitors,
and inductors. With this new technology, the question of improvements
in performance available through recognition of, and design for, the
cyclic character of cyclostationary signals becomes very interesting and

practical--and challenging, in light of the general lack of appropriate

solution methods.

26 The most predominant exception to this statement is the coherent
demodulator-filter, for AM signals, which has been derived in various
ways by many investigators.
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2. The Orthogonality Condition

The necessary and sufficient condition which implicitly specifies
the optimum (1linear) filter was derived for the case of stationary
ergodic processes and an infinite-menory filter by Wiener [56] in the
1940°'s. In 1950, the condition was derived for the case of stationary
ergedic processes and a finite memory filter by Zadeh and Ragazzini [57],
and in 1952 for the general case of nonstationary processes by Booton [S8].
These clussical results have been rederived, modified, and generalized
by a number of authors using various tools of analysis such as the calculus
of variations, directional derivative and gradient techniques in
functional analysis, the Hilbert-space projection theorem, and others.
We will present here a short derivation of a very general form of the
necessary and sufficient condition for optimality by using the projection
theorem stated below [29,59-61]:
Projection Theorem: Let H be a Hilbert space, and S a closed subspace

of H. For every element h € H there exist a unique element h € S such

that

llh-ﬁIIH < |Ih~s||H ¥seS,s#h (4-1)

and

(h'ﬁ,S)H =0 ¥s e S. (4-2)

In this theorem h is called the orthogonal projection of h onto

S, and Eq. (4-2) is called the orthogonality condition. In words, this

condition states that the difference between h and its orthogonal

~

projection h is orthogonal to all elements in the subspace S onto which

h was projected.

oy
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A simple example of this theorem is illvstrated in Fig. (4-2)

Ak paratk w0 O LA g
3 Y
L i+ D >R RN P RO

=

where we have chosen the two-dimensional Euclidean space as our Hilbert

- space. In this space, the theorem is obvious from geometrical

 J—

considerations.

Now, this theorem can be applied to many optimization problems

R

simply by identifying the quantity to be minimized as the norm of the

difference between a given element h and a variable (adjustable)

A
o>

clemeint s in an appropriate Hilbert space H, and by identifying the

 N—

censtraints on the variable element as equivalent to the restriction of

that element to an appropriate subspace S of the Hilbert space H. For

‘I

the least-mean-square (LMS) estimation problem, we set up a separate

ENT M

(independent) optimization problem for each value of the time-index:

i)

R R R

XAy

For any specific value of time, say t, we identify H as HRV the space
of finite mean-square random variables (defined in Section 1 of

Chapter II), and h as the transmitted signal process x evaluated at

I I | —

time t, and s as the output of the estimator which is to be optimized,

so that minimizing the mean-squared estimation-error is the same as

L

% ‘ mirimizing the norm

[o-s]Iff = Hx@-sllf = BHlxm-sm]2 veT,
el RV

. Ii

1 B

k| - subject to

|

1 s(t) = 1(8upy)

. where y is the observed (received) signal process, and where L(t) is

one clement of a set of linear functionals, the collection of which




comprises the estimator transformation L = {L(t); te Tb}. Now, in
order to apply the projection theorem, we need only identify the
subspace St<: HRV such that the restriction of L to a “permissable
set L is equivalent to the restriction of s(t) to the subspace St for

all values of t € T, We first give a precise definition of the term

"permissable’:

DEFINITION: L = {Li} is defined to be a permissable set of linear

transformations ».r.t. the observed process y, and P = {hi(°,°)}

the permissable set of kernels (impulse-response functions), if and
orly if:

1. The sets Pt of kernel-sections {hi(t,-)}, corresponding to the
linear functionals L(t), form Banach spaces with the L! (-»,®)- norm;
i.e., the sets Pt form linear vector spaces which are complete w.r.t.

the norm;

[, (2,110 =-J |ny (¢,7) |dt < =

2. If y contains a non-zero white component, then the kernel-sections

form Banach spaces with the L2(-®,®)-norm:

[, (e, ]2 =_mj h2(t,1)dr < =

Note that P is also a linear vector space, and its elements
are impulse-response functions of ''bounded-input-bounded-output"

stable systems [52] (because of the finite L1- norm). Note also that

216
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although the finite L2-norm constraint may seem unnecessarily

restrictive--in the sense that it excludes systems with direct

el

cennections from input to vu:put--it is a practical constraint since

"

it is necessary in order that the estimate of a finite mean-square process,

based on observations containing a white component, be a finite mean-

[——-q

square process.

j} Now, we have the following theorem:

;j THEOREM(4-1): Let L be the permissable set of linear transformations
corresponding to an arbitrary pecinissable set of kernels P, and let y

~} be a random process which can be finite-mean-square, or white, or the

. sum of both (assumed uncorrelated). Then, the restriction of the

.j transformation L to the set L is equivalent to the restriction of tbe

random variables {s(t); t ¢ To} to respective closed subspaces S, of

-

the Hilbert'space HRV’ where

sy = 2Py, ;e T}=1Lcl,

Proof: By definition of L, P, Pt’ we have the fac: that for any

transformation L ¢ L, there exist kernel-sections hi(t,-) € Pt such that

' s(t) = L(t)-[y] = f hi(t,T)y(T)dT V¥te To'

-
:
[
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Now,

E{s?(t)}

-if hi(t,t)hi(t,o)kyy(t,o)drdo.

(-] . o
_£f h; (£, T, (£,0)K  (1,0)dedo + ij h2(t,7)dx

i . . P
where kyy is the autocorrelation function of the finite mean-square

componer.c of y, and A is the PSD of the white component. Thus, we have

E{s2(t)} < max %yy(T’T)[ f Ihi(t,o)|d0]2+A f h%(t,a)do < ®
‘r -0 -0

¥teT
o)

since h, (t,*) € L!(-=,») and since h; (t,+) € L2(-=,®) if A £ 0.

Hence, s(t) ¢ HRV ¥te To. Also, since Pt is a banach space with both
L! and L2 norms, its sasily shown that the set of all s(t) generated from
y using all the elements of Pt is a closed linear vector space. This
space of finite mean-square random variables is, then, a closed

subspace of HRV'

QED

Using the result of this last theorem, and the projection
theorem, we obtain the following theorem which provides a necessary

and sufficient condition for optimum linear filtering:

f




e

b

Ay

!
I
J
U

= THEOREM(4-2): Let P be any permissable set of kernesls. The filter

é» with impulse-response function ho(',°) minimizes the me:n-squared error
= e(t) = E{(x(t)-x(t))?} VteT

-

s

3 where

a x(t) = [ (t,70y()dr, (4-3)
2 3 -c0

4 3

| L

fié subject to ho(',°) e P, if and only if

E || - -

# ] o{ f h, (t,r)ho(t,o)kyy(r,o)drda =_°f° hi(t,r)kyx(t,t)dt (4-4)
) :

!

55 “} for every hi(',') € P, and for every t ¢ To’ and the minimum mean-squared
ii ‘i error is

| U

W oo

20 e (t) = k (t,t) -_J h, (¢, 7k, (r,8)dr. ‘ (4-5)
b | U

het A

e . Proof: From the projection theorem (Eq. (4-2)), x(t) is the LMS

¥

R estimate of x(t) ¢ HRV’ ¥te T, if and only if

iﬁ P E{(x(t)-x(t))s(t)} =0 ¥ s(t) € Stc: HRV’ ¥te To’

z " Bvt, from Theorem (4-1),

S, = {_mf h, (t,0)y(0)dt; h.(t,)) e P} ¥teT. (4-6)

s
i —
P —

Using this representation for St’ and the formula (Eq. (4-3)) for x(t)

in the above orthogonality condition yields the necessary and sufficient

=

condition of Eq. (4-4). Furthermore, the minimum mean-squared crror can

I be written as

RO R AT R A Gy
e

. eo(t) = E{(x(t)-x(t))x(t)} - E{(x(t)-X(t))X(t)},

E
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and since x(t) ¢ S,, then the last term is zero. Now, using Eq. (4-3)
we obtain the formula of Eq. (4-5).
QED

This necessary and sufficient condition of Eq. (4-4) is a
cc:.siderable generalization of the integral equation frequently, but
often inappropriately, referred to as the Wiener-Hopf equation for
optimum filters. Several specific examples are given below:
(1) "Infinite-dimensional" filters: If the linear vector space P of
peimissable kernels is infinite-dimensional, then we will call the optimum

fiiter in P an infinite-dimensional filter.2’ Typical constraints which

lead to infinite-dimensional P's are constraints on memory length. For

example, we may define P such that
hi(t,T) =0, ¥t,t 3t-1 < Trm’ or t-t > Tm’ or t,T £ [Ti’Tf] = To'

for every hi(-,-) e P, vhere Tm is the memory length of the filter
(amount of past input used to obtain the current output), Trm is the

reverse memory length of the filter (amount of future input used to

obtain the current output--also, the amount of delay necessary to make
the filter causal), and Ti’ Tf are the initial and final times which define
the interval over which the filter is to operate. In this case, our

general condition for optimality becomes:

b(c) ¥ te [a(t),b(t)]
[ b (t,ak o0 = ko (1,1), (4-7)
alt) ©° Yy y ¥te [T,,T.]

27 Note that finite order linear dynamical systems are sometimes referred
ty as finite-dimensional systems [52], but are, under the above definition,
infinite-dimensional. Furthermore note that the finite dimensional filters
d=2fined here do not necessarily have finite dimensional range spaces.
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where

1>

a(?) max{Ti,t-Th}

b(t) min{Tf,t+Trm}. (4-7)

As a specific example, if we choose -Ti = 'I‘f = Tm = o, Trm = 0, thern

P is the set of all causal filters, and if y and x are jointly WSS, then
the above equation becomes a Wiener-Hopf equation.

(2) "Finite-dimensional" filters: If P is spanned by a finite set of

kernels, then we call the optimum filter in P a finite-dimensional filter.

For example, if P is M-dimensional, then every impulse-response function
in P can be expressed as a linear time-varying combination of M basis
kernels:
M
h(t,©) = ] o, (t)h, (t,1),
i=1
where the a-priori choice of the basis kernels defines the vector space
P. Notice that the scalars in P are not real numbers as in Pt’ but
rather real time-functions. This is a result of the way in which P was
constructed from {Pt; t e To}.
For finite-dimensional filters, our optimality condition becomes:
M o
Ioag ) £f h; (t,1h; (8,0)k  (7,0)ddo

i=1
0

= [ hj(t,0k (0,t)do (4-8)

for every t ¢ To, and for j = 1,2,...,M, where {aio(t)} is the optimum
set of weighting functions. Hence, the optimum M-dimensional filter

has impulse-response function

( g N
&
|
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M -
10,0, (2,7,

h (t,1) =
0. i=1

where the M-vec;or of weights go(t) is, from Eq. (4-8)
8, () = [A()}'b(t) - : ‘, (4-9)
where A(t) is the M x M matrix with elements:

a;s (ty = [f hi(t,r)hj(t,,d)kyy(r,o)drdo | ' ' (4-10) "

and b(t) is the M-vector with elements:

4
i

b, (1) = J hi(t,r)kyx(r.,t)dr.-\ ‘ | (4-11)

)

Note that the basis filters can be chosen to have érbitrary memory
length, and reverse memory length; they can be chosen %o be ;rbitrarily
time-varying filters; or causal time-in&ariant filters. They need only
be sc1ble filters as defined in the.definition of P. Specific choices
can be based on physicél cons&derations of‘implementation, and on
considerations of efficiency '(minimization of the dimension necessary

to reduce the mean-squared estimation-error belowla prescriBed feveL.)

A formal realization of an arbitrary M-dimensional filter is shown in

Fig. (4-3) as a parallel connection of M basis filters each followed by
a multiplier, | |

In this chafter we will be primarily concerned with infinite
dimensional noncausal filters (witﬁ infinite forward and reverse memory

length) on the doubly infinite interval (-»,»); i.e., we will make the

choice of parameters: Tm =T = -T =T.=«, so that the general
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necessary and sufficient condition for optimality'becomes:
- ]
-mf hy(t,5)k (s,7)ds = k (r,8), ¥t,1¢ (-==), (4-12)
and the minimum mean-squared estimation error is given by

e (t) = k_(t,t) - mf hy(t,s)k (s,8)ds, ¥te (-==). (4-13)

Before proceeding, we comment on our choice of the "integral-
equation approach" to our linear least-mean-square estimation problems,
as opposed to the "differential-equation approach", which incidentally
can also be developed from the Projection Theorem. The type of LMS
estimation problems considered here, like many other communication-systems-
analysis problems, are most easily formulated in terms of integral
transformations and impulse-response functions, whereas typical control-
systems-analysis problems (and some communications problems) are most
easily formulated in terms of differential transformations and state-
evolution equations. For example, the various communication-signal
formats and models for cyclostationary communications signals which were
presented in Chapter II were developed in terms of subjecting elementary
information bearing random processes (including multidimensional
continuously indexed processes as well as quantized discretely indexed
sequences) to systems (including transducers, modulators, multiplexors,
and various signal processors) which were conveniently characterized as
integral transformations with easily specified impulse-response functions.
Equivalent state-equation descriptions of these signals and systems

would, in most cases, be very cumbersome or impossible due to noncausality
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and/or infinite-dimensionality. For example, the concept of an ideal
bandlimiting filter is indispensible in many analyses of communications
problems, (including data-sampling and frequency division multiplexing),
yet is not amenable to state-variable description since the filter is
noncausal; and the concept of an ideal delay-line is of great utility in
many communications problems (including filtering of pulsed signals, and
time-division multiplexing), but is an infinite dimen;ional (order)
differential system and is therefore not amenable to state-variable
description; and time-(and other index) scale transformations (which are
useful for characterizing scanning operations, Doppler effects, signal
compression, etc.) are easily described with impulse-response functions,
but are formidable with state equations duc to infinite-dimensionality;
and so on.

Now, since the state-variable approach to LMS estimation problems--
Kalman filtering--requires that all signals or processes be generated
from white noise via a causal finite-order Jifferential system [60,61],
then it is of severely iimited value for tne problems of concern here.
Furthermore, since we are specifically interested in noncausal filtering
(with infinite reverse memory), then the Kalman filter (which must be
causal with either zero or finite reverse memory) is of little value to
us. In addition, "finite-dimensional' optimum filters (not necessarily
finite order differential systems) are easily solved for with the
integral-equation approach as discussed in this section, yet are excluded

from the differential equation approach. Finally, we mention that our

approach leads to explicit solutions for optimum filters and performances,
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and useful insight into optimum tiﬁe-varying signal processors, whereas
the Kalman filtering approach leads to the Riccati matrix differentiai
equation which almost always must be solved numerically.

Cne last comment: All results derived in this chapter using
minimum-mean-squared-error as an optimality .criterion are also valid when
the optimality criterion is minimum-error-variance provided that all

processes involved are replaced with their centered versions; e.g., x

replaced with x - m .
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3. Optimum Time-Invariant Filters for

Stationary Processes

The optimum noncausal filter for wide-sense stationary processes
is very simple to solve for, and yet is of significant theoretical
and practical value. Three of the most outstanding reasons for its
utility are:

(1) The explicit solution gives useful insight into the nature of
optimum filters.

(2) A delayed version of the optimum noncausal filter can often be
closely approximated by a causal filter.

(3) The mean-squared estimation-error which results from the optimum
noncausal filter is a useful performance bound since no causal filter
can possibly perform any better.

The second fact above has useful application in communication
prcblems since communication systems are often tolerant of, or
insensitive to, the incorporation of a delay in the receiver. (Note,
however, that this is far less frequently true for control problems,
since control systems are often feedback systems, and are, by nature,
very sensitive to the incorporation of delays, and can in fact become
unstable when relatively small delays are included in the feedback locp.)

With this as motivation, we proceed to derive the optimum noncausal
filter. Assuming that the transmitted and received signals are WSS, the
necessary and sufficient condition for optimality (Eq. (4-12)) can be

written as
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,.,I ky (1-5)h, (£,5)ds = k. (r-t) ¥t,1 e (-=,%).

But the solution to fais cjuation depends only on the difference
of its two arguments. Using this fact, and making a change of variables
results in the equivalent condition for optimality:

J k  (E-h, (dt =k, (t) ¥te (-=,),

which is a convolution. Hence, the Fourier transform of ho--the
transfer function for the optimum filter--is given explicitly by the

formula
H (f) = ny(f)/Kyy(f). (4-14)

Using this formula in Eq. (4-13) and employing Parseval's relation [2]
yields the following formula for the minimum mean-squared estimation-error:
o K - 2
Ko (DK, () - (K (D)]
-0 K ()

Yy
where ny is the cross PSD for y and x, and K, Kxx are the PSD's

e, (t) = df ¥te (-=,0)  (4-15)

for y, x.

If we consider the special class of problems where the channel is
composed of a time-invariant dispersion with transfer function G and
additive noise n, assumed uncorrelated with the signal x, then the optimum
filter has transfer function given by

G*(f)Kxx(f)
l6(£) ]2k, () + K__(f)

Ho(f) = (4-16)

where Knn is the PSD for the additive noise. This filter, frequently

referred to as the Wiener filter, results in a minimum mean-squared




estimation-error which is given by the formula
= - 2 2 -
e, _,I Kxx(f)ll G(f)Ho(f)| df + -i Knn(f)lﬂocf)l df. (4-17)

In this expression, the first term represents error due to imperfect
ccmpensation for channel dispersion, while the second term represents
error due to the filtered noise remaining at the output. A more compact

formula for the error which results directly from Eq. (4-15), is

bl K _(£)K__(f)
e, = [ "“2 XX daf (4-18)
= [G()[%K  (£) + K (f)

and reduces to
. Nonx(f)
e = —————————df = N h _(0) (4-19)
© = N +K_(f) °0
o XX
when there is no dispersion (G(f) = 1) and the additive noise is white
with PSD equal to No' Although Eq. (4-19) is simple in form, it can
present difficulties in terms of numerical computation because of the
infinite interval of integration. With this in mind, we present the

following errcr bounds which require cvaluation of an integral only on

a finite interval:

THEQREM(4-3): The minimum mean-squared estimacion-error which results
from the Wiener filter for the dispersionless channel is contained

within the # 1.5 dB bounds:
f0
B/2 ¢ e < B, B=k (0)-2 of [K () - K (£))df (4-20)

provided that the signal PSD dominates the noise PSD for all frequencies

o ) 0D

K
enc}

L=
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less than fo’ and vice-versa for all frequencies greater than foz
2 K@), ] < £
K__(f) .

: x S Ka0), f] > £
b | Proof: By hypothesis,
b £ £ ' £
3 o o K (£f)K__(f) o K _(£)K__(f)
| L [k _(feg=- [ M0 __xx df < XX __ gf
I 0 fo Kex () + K () £ KB + K ()
AR f £
ke ot o o
. : < -f] K (E)ef = 2 0[ K (£)df,
i J (o]
ke
5 and
E ® @ K (£)K _(f)
1) [ K020 = e ¢
,, fo f0 l(nn(f) + l(nn(f)
AN = K _(£)K _(f) -
A < =X __gr<2 | K, (£)df
L‘ fo Knn(f) + K () fo
3
Adding these two strings of inequalities, and using the fact that
4 £
: Ly @ o
o 2 fj K ()4 =k (0) - 2 of K (£)df,
Y 0
: !_ yields the bounds of Eq. (4-20).

QED
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4. Optimum Time-Invariant Filters for

Cyclostationary Processes

As discussed in the introductory section of this chapter, an
optimum (in a sense to be defined below) time-invariant filter for
cyclostationary processes can be obtained simply by replacing the given
transmitted and received T-CS processes x, y with their stationary
versions ;, ; (Theorem (2-15))--which have realizations of the form
}(t) = x(t+6), ;(t) = y(t+8), where 6 is a random phase-variable which
is uniformly distributed over the period [-T/2,T/2]--and then solving
for the optimum filter for these stationary processes. The auto- and
cross-correlation functions for these stationary processes %, ; are

{Theorem (2-16)):

, T/2

K (0 =% [ k_(ts7,t)dt

Yy T 10 vy

N p W2

kxy(r) = 5 -4/2kxy(t+r,t)dt (4-21)

so that the optimum time-invariant filter has transfer function given

by (Eq. (4-14))
(6 = X (0K (), (4-22)

where k R ¥ are the Fourier transforms of t R X and are therefore
Xy’ yy Xy yy

. " 4"
PSD's for the stationary processes », y. However, the mean-squared

estimation-error resulting from this filter will not be given by Eq. (4-15),

. v .
since e, is, by definition,

— T T oy 9o

| R—

S

.. T

posasmrsey,
!

| Sp— f {

—— -

J




I X N e T AN D e =)
Sinaa Y

}
ti 231
&,(t) = E((x(t) - X(£)?} # E((X(t) - X(©))2)
{J and is, in fact, a T-periodic function rather than a constant. On
{j the other hand, the time-averaged value of g;(t) is indeed given by
the formula in Eq. (4-15):
| 1/2 =% O © - [X_(©)2
= <& > %- [ 8 (nat = xx Y Xy df. (4-23)
n =12 - [R5
{j %4

Furthermore, the suboptimum filter with transfer function ﬁo (sub-

because it ignores the cyclic character of the cyclostationary processes)

—

is actually optimum subject to the constraint of time-invariance; i.e.,

e
[ REGUY

it minimizes the time-averaged value of the periodically time-varying

mean-squared estimation-error. This result is stated here as a theorem:

I

THEOREM(4-4): The optimum filter, given by Eq. (4-22), for the
2 stationarized versions Q, ? of the cyclostationary processes x, y is

time-invariant and is the same as the filter which minimizes the time-

2 - . . . ) r\‘
- averaged value of che periodic mean-squared estimation-error <e>, and the

minimum error <go> is given by Eq. (4-23).
Proof: By definition,

: T/2

<& = % [ E([x(t) - [ h(Dy(t-1)d7)2}dt
H \ -T/2 -
. , 12 ©
| | = T;sz [kxx(t,t)-Z-i h(r)kxy(t,t-T)dT

+ ] h(oIh(x)k , (t-0,t-7)dodr]d:




i
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E([x(t) - [ h(0)y(t-1)dr]}2}.

But this last expression is the mean-squared estimation-error for the
problem with transmitted and received signals %, ; and filter-impulse-
response function h, and is therefore minimized when h = ﬁ;, the inverse
Fourier transform of ﬁo given by Eq. (4-22). Furthermore, the minimum

value of this time-averaged error is
<€ > = E{(¥(t)-X(£))2} = B{[X(t)- [ }_(0¥(t-1)dr)?)

and is therefore given by Eq. (4-23).

QED

If we consider the special class of problems where the channel
consists of a time-invariant dispersion with transfer function G, and
additive WSS noise with PSD Knn’ then paralleling the results in the
preceding section, we have the following formula's for the transfer
function for the optimum time-invariant filter, and for the resulting

minimum time-averaged error.

G*(B)K (1) |
ho(f) = ‘ (4-24)
l6(E) 2R, (£) + X (£)
K (H)X._(f)
0> = | m__ XX ) (4-25)
° = Je(R) | () + K ()
and for white noise and no dispersion
Y
¥ (1)
VAPPSR * S .
llo(i) = (4-26)

k0 - z-wj h(r)ﬁxy(t-(t-r))dr +-£fh(o)h(t)§;y((t-o)-(t-r))dcdt

,~.3. ol s S i S sy

=

L

—
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]
1




oNEK (f
&> - NP ()
- ?{xx(f)mo

'\‘ -
df = Noho(O). (4-27)
These last four formulas fully characterize the optimum time-
invariant filters and corresponding time-averaged estimation-errors

for the specific illustrative problems that we will consider in the

last section (6) of this chapter.

5. Optimum Time-Varying Filters for

Cyclostationary Processes

a) Introduction. In this section we present a number of general
methods of solution for optimum time-varying noncausal linear filters
for cyclostationary processes. In contrast to the dhtimum time-invariant
filters presented in the previous section, these filters are not constrained
to be time-invariant and, in fact, minimize the mean-squared ecstimation-
error for every value of time thereby taking full account of the cyclic
character of the cyclostationary processes. As claimed in the introductory
section, these optimum per.-dically time-varying linear filters result in
Tower mean-squared estimation-errors, as wili be demonstrated via a
number of specific solutions in the following section.

In order to characterize the relative performance of optimum
time-invariant and optimum time-varying filters with a single number,
we choose as a performance index I the ratio of the minimum time-averaged
mean-squared estimation-error <go>, resulting from the optimum time-

invariant filter, to the time-averaged value of the minimum mean-squarcgd

estimation-error <e > resulting from the optimum time-varying filter:

[T e
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> 1, (4-28)

whers <¢ >is given by Eqs. (4-23,25,27), and where <e_> is from Eq. (4-13),
1 1/2 o
= = - 3 -
<e > T-T£2 [k, (t.1) -mj hy(t,s)k (s, t)dsdt (4-29)

where ho is the impulse-response function of the optimum time-varying

fiiter and is the solution of the integral equation (Eq. {4-12)):
_mj ho(t,s)kyy(s,r)ds = kyx(r,t) ¥t,1e (-,9). (4-30)

If we consider the special class of problems where the channel is

a time-invariant dispersion with impulse-response function g and additive inde-

pendent WSS noise with autocorrelation function knn’ then the above condition

for optimality becomes

_mj h (t,s)lk (s,7) + k (s,1)]ds = k__(1,t) ¥t,0e (-=,)

vhere,

kzz(t,r) _if g(t-o)g(l—s)kxx(o,s)dods

[ 8(t,0)k  (0,1)do. (4-31)

-0

k_ (t,0)

For the case of white noise and no dispersion, the formula for the

time-averaged minimum error reduces to

NO T/2
<eo> = T -{/1 ho(t,t)dt (4-32)

where the optimum impulse-respcnsc function is now the solution of the

integral equation
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J h (t,8)k, (s,7)ds. + Nh (t,7) = k (t,7) ¥ t,7 e (-=,%) (4-33)

For this class of additive-white-noise problems, our performance index

takes the form

B_(0) _
I= 72 . (4-34)
[ h_(t,t)dt
-1/2 °

3|

In the remaining subsections, we present four different methods for
solution of the integral equation Eq. (4-30) (and its special forms
Eqs. (4-31,33)) which implicitly specifies the optimum filter and
minimum estimation-error. Although these solutions are not as simple to
obtain as were the solutions for optimum time-invariant filters, they
are still of significant practical and theoretical value for the same
reasons cited in Section 3:
(1) The explicit solution gives useful insight into the nature of
optimum time-varying filters.
(2) A delayed version of the optimum noncausal filter can often be
closely approximated by a causal filter.
(3) The mean-squared estimation-error which results from the optimum
noncausal filter is a useful performance bound, since no causal filter

can possibly perform better.

b) Solutions based on translation series representations. We begin

by considering the general LMS estimation problem where the channel is
arbitrary but where the transmitted and received signals are jointly

T-CS. If we assume, for generality, that y is composed of a colored
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componeﬁt w and an unporrelated white component with PSD A, then the
. . '
optimality condition ofiEq. (4-30) becomes ¢ 1 i

J h (t,5)k 1 (5, 7)ds ENCOR K (657 ¥ £, & (-=,%), (4-35)

. : ] ) ' :
h [ 3
But this integral equation is of the same form as Eq. (3-39) of Section

2f in Chapter III- (except for the juxtaposition of the kernéls h , k;w)‘

Hence, Theorem (3-2) gives us the following solution:
H . N '

THEOREM(4-5): The impulse-response function for the optimum filter for !
’ [ | K
the general LMS estimation problem where the transmitted and received

i 1 a ¢
signals x, y are jointly T-CS and where y is composed of a colored component

w and an uncorrelated white component with PSD A has -the representation:
i ] 1 !
. -] © .
h (t,1).= ] I #P3 o (t-aT)e?(s-mT) (4-36)
n,m=-o p,q:l P q
|

}
where {¢p} is any CON set on L2{0,T] and where the sequence of matrices

-

{IL} is giveni by the inverse z-transform i !

1/t =‘~ '
CHo=T 0 H(E) eI TEyg ' | (4-37)
-T -I/ZT ! ] ‘

where the matrix of functions H(f) is given by : .
, .

1

H(E) = G(£)[D(F) + A1]7! ! . (4-38)
where the matrices D; G dre the z:-transforms ‘
o« T e o
r=-e - - . (4-39)
6() = [rg e o |

r

1
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and where the elements of the sequences of matrices Qr’ Er are given by

T

A e

pa_ ([

G = g[ ke (BT, D05 ()4, (v)ddr, (4-40)

and are the correlation matrices corresponding to the translation series

representations (TSR's) for x and w:

Pq _
D = E{dnpd;q}
Pq _ -
Gn—m - E{anpd;ﬁq} (4-41)
where
= t-nT
x(t) nz_m pzl anp¢p( nT)
= d -nT . 4-42
w(t) rzl g aptp (E-0T). (4-42)

Furthermore, the time-averaged value of the minimum mean-squared
estimation-error is given by the formula:
1/2T

<e > = f trace[A(f) - G(f)[D(f) + AIJ'IEf'(f)]df (4-43)
° /2t

where A(f) is the correlation matrix corresponding to the TSR for x
(defined as in Eq. (4-39,40) for w).
Proof: The validity of the solution Eq. (4-36) to the integral equation

Eq. (4-35) follows directly from Theroem (3-2) of Chapter III. The formula

Eq. (4-43) can be derived from Eq. (4-29) as follows: Substituting

Eq. (4-36) for ho, and the TSR's for kxx and kxy into Eq. (4-29) yields:
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<e >

—ﬁru

T A8, (tonT)e2 (t-n)
0 n,m p,q P

) Hpqm¢ (t-nT)¢*(s-mT)
-® n,m p,q n-m'p

z . G;?::: ¢;,(t-n'T)¢q'(s_mvT)dS]dt
n',m' p',q

g [Agp N % g #Pa G;pq]
1/2T

[ trace[A(f) - H(£f)G*'(f)]df.
-1/2T

1
T

Now, substituting Eq. (4-38) for H(f) yields Eq. (4-43).

QED

As discussed in Section 2g of Chapter III, a linear system whose

impulse-response function has an Mth order TSR, as does ho in this
theorem (with M = «), can be realized with the structure shown in
Figure (3-9) and reproduced here as Figure (4-4a). Although the number
(M) of paths in this optimum filter for CS processes will in general be
infinite, there are a number of interesting cases where M is finite, as
discussed in Sec. 2f of Chapter lII and as illustrated in the last
section of this chapter. Furthermore, since any CS process in H
can be artitbarily closely approximated in norm by a finite order TSR
(as discussed in Section 2a of Chapter II1), then the performance of a
truncated (to M paths) optimum filter can be made arhitrarily close to
the optimum performance by choosing the finite number (M) of paths

large enough.
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An interesting interpretation of this optimum filter follows
directly from the recognition that the bank of input filters and switches
comprises the process-resclution operation (as discussed in Sec. 2c of
Chapter II1I), and that the bank of output filters and the summing device
comprise the brocess-reconstruction operation, and finally that the transfer
function'g(f) (Eq. (4-38)) for the matrix of sampled-data filters which is
inserted between the resolution and reconstruction systems is a matrix
version of the transfer function Ho(f) (Eq. (4-14)) for the optimum time-
invariant filter for stationary processes, in that G(f) in Eq. (4-38) is
the cross-correlation matrix for the representors of x, y--paralleling
ny(f) of Eq. (4-14)--and [D(f) + AI] in Eq. (4-38) is the autocorrelation
matrix for the representors ot y--paralleling Kyy(f) = wa(f) + A of
Eq. (4-14). Thus, we see that the optimum time-varying filter of
Theorem (4-5) for CS processes resolves the received CS process y into a
multiplicity of jointly WSS sequences, subjects these to an optimum time-
invariant sampled-data filter, then reconstructs from these filtered
sequences, the optimally filtered continuous-time estimate X of the
transmitted signal x. Hence, by employing TSR's we convert the problem
of LMS estimation of a scalar CS process to the problem of LMS estimation
of a vector of jointly WSS sequences. This could have been done in a
non-rigorous suboptimum way simply by periodically sampling the received
signal, and solving for the LMS estimates of the corresponding samples
of the transmitted signal.

The optimum filter derived in Theorem (4-5) can also be realized

with the alternate structure shown in Fig. (4-4b) where the filter-




B A
‘

A% MR 2o et {40 2
RN AN AN (IENE “'v.",

TR

LAY,
X

a3

RS
K%

IS )
P

eraeiRsEt e

e a -
CR L

2ot ey

S5 :,\“I;gnﬁl

R

v

R
AL A TS

e IEAR S N sy o P
o ERAR R

240 .

sampler combinations at the input have been replaced with multiplier-
integrators, and where the impulse-driven pulse-generating filters at
the output have been replaced with pulse-amplitude modulators, and
where the feedback-delay device (shown in Fig. (3-3)), which has an
effect equivalent to periodically dumping the integrator, has been
included in the sampled data filter by modifying its transfer function
to include the factor 1/(1 + e—j2nfT).

As discussed in Chapter III, some CS signals which are used in
communication systems admit finite order TSR's, but with basis functions

which are not necessarily duratior limited to [0,T], nor even orthogonal.

With this in mind, we present the following extension of Theorem (4-5):

THEOREM(4-6): If the transmitted signal x, and the colored component w

of the received signal y admit Mth order TSR's

M ow
x(t) = pzl nz_manp¢p(t-nT)

M
w(t) = pZ1 dnpep(t-nT) ¥te (-o,) (4-44)

where the functions in the sets {¢p}, {ep} are arbitrary, then the
optimum impulse-response function admits the representation

Mo e
= Pq T ) )

h (t,7) ! ! W e, (E-nT)0F (-nT) (4-45)
p,q=1 n,m=-

where {HE?m} are defined as in Eq. (4-37), where

H(F) = G(E) [E(EID(F) + 21)7} (4-46)

o

Pa—
B




i - 241
e

i
L

where G, D are defined as in Eqs. (4-39), (4-41), and where E is the

;} z-transform of the matrix of sequences

| P4 = [ g*(t-nT)e_(t-nT)dt. (4-47)
§ n-m 0 p q

Furthermore, tne time-averaged value of the minimum mean-squared

AR
I st

estimation-error is given by the formula:

1/27

<e> = [ trace[B(E)A(E)-B(E)G(E) [E(EID(F)+AI] E(E)GH" (£)]dE  (4-48)
-1/2T

- ==

—

where B is the z-transform of the matrix of sequences

& Pq oo
. B = -£ ¢, (t-nT)¢, (t-nT)ds. (4-49)
hj ' The proof of this theorem follows directly that of Theorems (3-2), (4-5).

The optimum filter given in this theorem has the same structure as

\J that given in the previous theorem and shown in Fig. (4-4), except that
the input filters have transfer functions {0*} rather than {¢*}.

) Another interesting solution for a common formulation of the LMS

L; estimation problem is given in the following theorem:

THEOREM(4-7): Consider the class of LMS estimation problems where the

channel consists of a time-invariant dispersion with transfer function G,
- and additive WSS noise with PSD Knn’ and where the transmitted signal x

: is a T-CS process which admits an Mth order TSR:

-]

M
x(t) = nZ-w pzl anp¢p(t—nr)

zﬂ@&mﬁ%&&%ﬁﬁ%ﬂ%‘&%ﬁ%ﬁﬁﬁ%&&%?ﬁ&m%ﬁ%%ﬁﬁ%ﬂ%ﬂ@@%ﬁﬁ%@ﬁﬁﬁﬁﬂ@%@ﬁ%ﬂ%@ﬁ“ﬂgﬁmmmﬁﬁﬁgﬁﬁﬁﬁﬁﬁﬁﬂﬁﬂﬁﬁ‘a~




For this class of problems, the impulse-response function for the
optimum time-varying filter admits the Mth order TSR:
o M pq
= - *f{r. -
h, (t,7) ) ) Bty (E-AT)6F (1-nT) (4-50)

m,n=-o p’qzl

wiere eq is the inverse Fourier trans%orm of the function
0,(F) = G(E)9_(E)/K  (£) (4-51)

and where the sequence of M x M matrices {ET} is given by the inverse
z-transform
1/2T

Ho=T/[ H(f
-1/2T7

)eJandef

where the M x M matrix of functions H(f) is given by

H(E) = AR [C(DAE) + 1] (4-52)
where the matrices A(f), C(f) are the z-transforms

ACE) = E ﬁTe-jzanf

C(f) =

¢
[
ke
o]

and where the sequences of matrices Ao Er are given by the formulas

PA | gy, ,
Ay = h{‘i(nﬂ‘)pd;;q}
= |G(£)|2e*(£)e (£) .,
cPd - B Q- )2y (4-53)
r
- K (£)
nn

lurthermore, the time-averaged value of the minimum estimation-error

is given by the formula

-

[.o--——\
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1/2T
<e >= [ trace[B(E)A(E) [C(EIA(E) + X]M]df (4-54)
-1/2T

where B is defined in Eq. (4-49).
Proof: Substituting Eq. (4-50) for ho and the TSR of Eq. (3-2) for kxx
into the condition for optimality-Eq. (4-31) yields:

2 Z ¢ (t-nT) [ 2 Z q q Hp f 9* , (o- n'T)¢ , (o-m'T)do-

| 1
n,m p,q=1 P n',m' p'yqt " O

¢*(r-mT) + Hﬁqm[e;ekn ]1(t-mT) - qu fa(eIN] = 0 ¥ t,7 ¢ (-o,e)

where

3,0 2 [0,881(t) = [ ¢, (-m)g(n)dr.

But since eaﬂknn = xa, then the above optimality condition can be written as

M
z Z[ z z PP Cpq Aqq +HPQ_qu].

L e n -n' 'n'-m" m'-m n-m n-m
n,m p,q=1 n',m' p',q'

n
¢p(t-nT)¢a(T-mT) =0 ¥t,1,

and will be satisfied if the composite coefficients of the time-functions
are zero for every value of n,m,p,q. This condition on the coefficients
can be written (using the new variables i =m' -m, j =n -n', k =n - m) as:
7 % WPP'CP'A' 29", yPA _ APA L o w4 o
Y Y SN T O Y k Tk »35Ps
1,)=-°p',q =1
where

ckd N e;(o-rT)gq(o)do. (4-55)
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But this quadruple sum is simply the composition of a discrete
convolution with another discrete convolution with a finite matrix
product with another finite matrix product. Recognizing this, and

takiné z-transforms, yields the equivalent condition:
HE)C(E)A(F) + H(E) - A(f) = 0 ¥ f ¢ (-=,@),

which is satisfied by the formula for H given in the theorem. Furthermore
using Parseval's r:lation in Eq. (4-55) yields Eq. (4-53) for the
sequence of mdatrices ng. Now, the formula of Eq. (4-54) for the minimum
estimation-error can be obtained from the general formula of Eq. (4-29)
by substituting the TSR's for kxx’ ho’ kxy into the latter to obtain:
M ® M t tAt 1
<g > = z E qu[qu - Z z yPP Cp 9,4 Q]‘
o £k -r'r ¢, r-(n-m) n-m “m
p,q=1 r=-= n,m p',q

This number is the trace of the zeroth element in the sequence of matrices
{(B)R{{A} - (IDR{CIR{A})

where 2 denotes the composition of discrete convolution and matrix

procuct. Taking the z-transform yields
B(E)[A(£) - H(EIC(DA(F)] = BHI(E).

Hence, <eo> is the trace of the zeroth element of the inverse z-transform
of this matrix of functions, and is given by Eq. (4-54).
QED
The optimum filter given in this theorem has the same structure as

that chown in Fig. (4-4), except that the input filters have transfer

H

LN

S
4
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functions given by
= (% *
Gs(f) G (f)0p(f)/Knn(f)

rather than @;, and are therefore matched filters for dispersed versions

of the pulses {¢p} in colored noise [2].

If we consider the class of optimum filtering problems where the
channel consists of nothing more than additive white noise with PSD No,
then its easily shown that the formulas of Theorems (4-5), (4-6), (4-7)
for the optimum impulse-response function all reduce to the simplified

versions:

M o
- Pq - * (oo -
h, (t,7) z 2 H) " nbp (£-nT)0} (x-nT) (4-56)
P;q=1 n,m=-=
where the z-transforms of the matrix of sequences {ng} is given by the

formula
H(E) = A(D)[E(DA(E) + N 1]} (4-57)
where E is the z-transform of the matrix of sequences

PA . pwre. (e j2nrTE
B = oplerDe (de = [ ox()e (e df.

Also, the formulas for the time-averaged value of the minimum estimation-
error given in the previous three theorems reduce to the formula
1/2T

<e > =N [ trace[E(E)A(EY[E(E)A(F) + N I]7!1]df. (4-58)
° °.3/2r -0 T T o~




246

Note the parallel to the formulas for the optimum time-invariant filter
transfer function Ho and for the resultant minimum value of the time-

. . n
averaged estimation-error <eo> H

T 8 (EIALE)E* ()
H(5) = Lo (4-59)
N+ 1 9! (ACE)E*(£)
1
Lemamer
ws>=N [ Lz == daf = N K (0). (4-60a)
0 0 1 00
N3 9 (IA(E)0*(£)

These latter two formulas result from substituting Eq. (3-7) for kxx
into the general formulas of Eqs. (4-26), (4-27).
Furthermore, if the {¢p(t-nT)} are doubly orthogonal, in the sense

that

o]

wf ¢p(t-nT)¢a(t-mT)dt

§ & ,
nm"pq

as in Theorem (4-5), then E(f)

1, and the formula of Eq. (4-57) reduces

to

H(E) = A()[A(F) + N 1] (4-61a)

and H(f) is the transfer function for a matrix sampled-data Weiner filter
for jointly WSS sequences in additive white noise. For this case the
formula for the minimum error also reduces to

1/2t

<e > = N°-1£2T trace[é(f)[é(f)+Nol]’l]df = ngrace[ﬂo]. (4-62a)

m—
]
As discussed in Subsection 2f ot Chapter III, there are various CS
signals of interest whose TSR correlation matrices are diagonal. For

example, it the autocorrelation function satisfices the condition

)

Rt et [ S
[ S ]

id
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kxx(t+rT,t) = arkxx(t,t), ¥ t,T ¢ [0,T],

then from Theorem (3-3) of Chapter III the .correlation matrix A(f) for

»l the Karhunen-Loeve TSR is diagonal:
) A_(f) = APPs a_e 327TE
8 pq'") Opqzr

Wher A(f) is diagonal, the transfer function for the matrix of §a-ple{-data

filters given by Eq. (4-61a) reduces to
J 8§ A (£) :
Papp - (4-61b)

H (f) =
Pq N +A_(f)
o pp

L=

and is diagonal. Hence, the optimum filter structures shown in Figs.

(4-4a), (4-4b) consist of a parallel connection of independent paths,

r

as shown in Fig. (4-4c).
LJ Also, when A(f) is diagonal the formulas for minimum estimation-error

given by Eqs. (4-60a), (4-62a) reduce to

N MOILNGIE

<>= [ TR df (4-60b)
N + A (B)le (£)]2
5 qzl qq B2 1o (D]

[

-0

3]

M 1/27 NA_(f)
- e>= ] | —2 PP gf, (4-62b)
' Pl -1/2T N, + A ()

Furthermore, as discussed in Subsection 2f of Chapter III, there
are various CS signals of interest whose TSR correlation matrices are not
only diagonal, but also constant. If we consider estimatirg one of these

signals in additive white noise, then the solutions provided by the

preceding three theorems take the particularly simple form:
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o ¥ AP
(o)
h (t,1) = SR - t-nT)¢*(1-nT
L (t.1) Z-. PZIN P ¢, (t-nT)¢5(7-nT)
[»] [+)
1 M NoAgp
<ce> = T;zi I APP R (4-63)
[+]

where M is infinite in Theorem (4-5), and may be finite in Theorems
(4-61, (4-7).

Now if M is infinite, then <e > can be difficult to evaluate to
within a known accuracy. With this in view, we present the following

discrete version of Theorem (4-3):

THEOREM(4-8): The time-averaged value of the minimum mean-squared
estimation-error which results from the optimum time-varying filter for
a CS signal in additive white noise jis contained w.thin the #!.5 dB
bounds:

B/2 < <e> < B; B=K_(0) - %pgl (A¥P-N ) (4-64)
provided that the correlation matrix of the TSR (with doubly orthonormal
basis functions) for the signal is a constant diagonal matrix whose
diagonal elements dominate the noise P3D for all indices less than some

integer Q, and vice-versa for all indices greater than Q:

.’ZN.’ p:Q
APP
(o]

A
z
el

2 Q

The proof of this theorem is simply a discrcte version of that given
fcr Theorem (4-3). Recall that Theorem {3-3) of Chapter III gives the
conditions under which the correlation matrix A(f)} for a CS process will
be comstant and diagonal, and that scveral examples arc given. We will

discuss these and other examples 1n the last section of this chapter.
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¢) Solutions based on the harmonic series representation.

i) Estimation of cyclostationary processes on an infinite interval.

As brought out in Section 3 of Chapter III, the harmonic series
represecntation (HSR) for CS processes results directly from a specific
TSR. Hence, the solution method of Theorem (4-5) must have a counterpart
which employs the HSR. The solution resulting from this counterpart is
stated in the following theorem:

THEOREM(4-9): The impulse-response function for the optimum time-varying
filter for the general LMS estimation problem where the transmitted and
received signals x,y are jointly T-CS and where y is composed of a
colored component w and an unccrrelated white component with PSD A has

the representation:

h (t,r) = ] h (t-r)eJZHCPt-qT)/T ¥t,t e (~»,) (4-65)
o --w P4
P>Q
where the matrix of Fourier transforms of the elements {h_ (<)}
is given by
SEDENAIITT ¥ £ e [-1/2T,1/2T)
H(f) = (4-66)
0 ¥ £ ¢ [-1/2T,1/2T]
where D, G are the Fourier transforms of the bandlimited (to [-1/2T,1/2T])

matrices k, g whose elements are given by

do(@ = [ V(-0 ik, (o, e 2T Taony
ORN V(e-o)V )k, (0,v)e I 2T PIT) Tyqy
v(t) A sin(mt/T) , (4-67)

mt




t i 1

.
' '
. ' i ’ '

and are the correlation matrices»corrésponding to thé HSR's for x,w: '
* M . i ’
f i

dpq(t-s) = E{di,(t)d;(s):’ri

y

[ . .
i : ]

gpq(t»s) » Efép(tld%(s)} .

; where . T ' c ' .
E x(i) = Z a (t)equpt/T . . o }
K p p! ! ; ]
‘ . ) . ! ., 1 . :
3 w(t) = Z dp(t)e32upt/T. . (4-68)
. p ' 4 '

1
L
2 - i i .

H
Furthermore, the time-averaged value of the minimum mean-squared
3 : } ¢ 0

estimation-error is , given:by the formula: ’ ' \

1/2T o ' oo
» <e > =-[  trace[K(f) - G(f)[D(£)+AI] 1c*" (£)]df (4-69) \
[s] . — — — —" ——
-1/2T H [
! . o ' .
where g(f)‘is the, Fourier transform of thé HSR correlation matrix for

o =AY,

¥

\

x (defined as in Eq. (4-67) for w).

i ’ !
¢ H

The proof of this theorem follows directly from Theorem (4-5),

as indicated in Section 3e of Chapte} I, by'using Eq. (3-88) which

relates the’correlation matrices for TSR's and‘HSR's.

!
1 ' v

As discussed in'Section 3e of Chapter 111, a linear system whose

imnulse-respoﬁse function has an Mth order HSR, as does ho in this

i : theorem (with M = »), can b; realized with the structure shown in Fig. (3-12)“
‘ and reproduéed here as Fig. :(4-5). Although the‘number;(2M+ll of paths |
in this optimuﬁ filter will, in general, be ihfinite there is an

, .
interesting‘clas; of problems for which it is finite. As discussed in
Subsections 3c,d,e of Chapter III, T-¢S processes which\are baﬁdlimitea !

to any in}erval, sa} [—BfB] admit HSR's of order M < BT., Hence. the

. 1
' I

)
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é : - ‘ optimum filters for such processes will be finite HSR structures.

g The HSR structure for optimum filters has the same interpretation

E% B I as fhe TSR structure of Fig. (4-4): The filter decomposes the received

& g_ signal into jointly WSS bandlimited processes, subjects these to a

matrix of optimum time-invariant filters, and then reconstructs from

1

as
-

these filtered WSS processes the LMS estimate of the CS transmitted

signal x. Thus, by employing the HSR, we convert the problem of LMS

— g

o~
[

3 - ' estimation of a scalar CS process into the problem of IMS estimation of

a vector of jointly WSS (bandlimited) processes.

Pl
h E——.—u

. : : As already discussed in Section 3e of Chapter III, the matrix of
, [4 * time-invariant filters employed in the HSR structure have transfer
functions Hpq(f) which are bandlimited to [-1/2T,1/2T], and can therefore
5 ﬂe exactly realized with a matrix of sampled-data filters, with transfer

functions

(-]

] ‘ A (f) = H_ (£-n/T),
ol pq ") nE_w pq (/1)

! flanked at the input and output, respectively, by T-periodic impulse

samplers, and ideal low-pass filters (transfer functions V(f)).

; There is, of course, an equivalent realization of this HSR structure

'which employs real sinusoidal multiplier functions rather than complex
exponentials (see, for example, Section 2c of Chapter III).

: ' ‘ Paralleling the results obtained using TSR's, we have the following
. simplification of the formulas in Theorem (4-8): If the channel consists

of nothing nore than additive white noise with PSD No’ then the matrix

i solution of Lq. (4-66) reduces to
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H(f) = K(E)[K(F) + N 1]71, (4-70)

whick is the transfer function for a matrix Weiner filter for jointly
WSS processes in additive white noise. Also, the formula of Eq. (4-59)

for the time-averaged minimum mean-squared estimation-error reduces to

1/2T
<e > = No -{/ZT trace[g(f)[Eﬁf)+N°£J-1]df
=N, g hpp(O). (4-71)

and parallels the formula (from Eq. (4-27)) for the minimum time-averaged

error resulting from the optimum time-invariant filter;

w LK _(f-p/T)
p PP &
<€ > =N ) K (T df = N H_(0). (4-72)
- N, + L qq( -q/T)

(where we have used Eq. (3-89) for kxx')

It is interesting to note that the optimum time-invariant filter
depends only on the autocorrelations of the HSR representors (the diagonal
elements of the correlation matrix), and is independent of the cross-
correlations. Thus, the difference between the optimum time-varying and
time-invariant filters can be interpreted in terms of the fact the latter
ignores the crosscorrelations, whereas the former takes full account of
them.

ii) Estimation of periodic processes on a finite interval. The HSR is

particularly convenient for representation of periodic preocesses; i.e.
those whose realizations are periodic waveforms. Thus the solution of
the iMS estimation problem for these processes is particularly simple

when the HSR is employed. Althdhgh periodic processes are cyclostationary

$
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processes, we can not simply apply the results of Theorem (4-9) to obtain
a IMS estimate for a periodic process since the original equation for
optimality (Eq. (4-12)), to which this theorem gives a solution, is not
well defined for periodic processes; i.e., the integral does not exist
(does not converge). This is a result of the fact that the optimum filter

is not BIBO stable, and is not therefore a permissable filter (see

Section 2 of this chapter). The difficulty can also be relegated to the
fact that the problem of estimation of a periodic process on an infinite
interval is a singular estimation problem and will result in zero mean-
squared estimation-error.

Now, a more meaningfu; problem is that of noncausal LMS estimation
of a periodic process on a finite interval. This estimation problem (the
fixed-interval smoothing problem) is non-singular and is characterized
by the optimality condition: :

Te

Tf ho(t,o)kyy(r,o)do = kyx(r,t) ¥t,me |T;,T] (4-73)
i
which follows directly from Eq. (4-7) with Tm = Trm = ITi—Tfl < »,

For this problem, we have the following general solution:
THEOREM(4-10): The impulse-response function for the optimum fixed-
interval smoother for a periodic process in additive white noise with
PSD N0 has the representation:

h(t,7) = p?q hpqejz“(Pt‘qT)/T ¥ t,7 e [-NT/2,NT/2]

where the matrix of harmonic coefficients is given by

b= K[NIK + N 1)7! (4-74)

where the clements of the matrix K are given by
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T/2 .
=1 ' -j2n(pt-q1)/T )
pq T2 -{;2 kxx(t,T)e dtdr, (4-75)
so that K is the correlation matrix for the HSR representors:
k= E{a_a*}
pq Pq
where
P
(see Sec. 3d of Chapter III). Furthermore, the time-averaged value of
the minimum mean-squared estimation-error is given by the formula
No N
<e > = — trace[K[K + =2 1)1, (4-76)
NT NT

The proof of this theorem can be obtained simply by substituting
the representations for ho and kxx’ into the reduced version of Eq. (4-73):

NT/2

i h (t,0)k  (1,0)do + N h(t,7) = k (t,7), ¥ t,7 e [-NT/2,NT/2].

-NT/2

For comparison, we present the following general solution for the

optimum time-invariant fixed-interval smoother:

THEOREM(4-11): The impulse-response function for the optimum time-invariant
fixed-interval smoother for a periodic process in additive white noise

with PSD No has the representation:

CSOEE) hquz“Q(t‘T)/T, ¥ t,7 e [-NT/2,NT/2]
q
where
k
h = A (4-77)
4 Ntk + N

—

r---—\

— . ¢
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; and where {kq} are the Fourier series coefficients for the periodic
‘ ! . . . . < g-
f< LJ autocorrelation function for the stationarized version of the periodic
3
= [ process, and are identical to the diagonal elements of the HSR
?‘ L, correlation matrix:
.
.
L k =k .
j § q qq
Lf Furthermore, the minimum value of the time-averaged estimation error
J
is given by the formula:

> {
E L N k
f" <'é‘°> =9 )_: -9 (4-78)
B + N ’
; f NT q k_q O/N'I

Y

The proof of this theorem, like that for the preceding theorem,

b

; {j can be obtained simply by substituting Eq. (4-77) for ﬁo’ and the Fourier

; 1 series representation for txx’ into the optimality condition:

; %t NT/ 2’\; N \ Y

j / h (t-0)k , (-0)do+N h (t-7) = K, (t-1) ¥ t,7 e [-NT/2,NT/2]. (4-79)
4 f -NT/2

; ; i Note that as the length of the observation interval approaches

% ? f infinity, the estimation errors of Theorems (4-10), (4-11) both approach

3 .

.ﬁ | zero, as expected from the preliminary discussion.

% ; The optimum smoothers of Theorems (4-10), (4-11) can be realized

g with the structure shown in Fig. (4-6), where M is the highest non-zero

% ‘ harmonic in the signal being smoothed. The numbers {5n} at the outputs

z cf the matrix of attenuators are the LMS linear estimates of the Fourier

; series coefficients of the periodic signal x. For the time-invariant

é smoother of Theorem (4-11), the matrix of attenuators is diagonal (hp = hn)

4 so that the overall structure becomes a parallel connection of 2M+1 paths.
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From this it can ve seen that the difference between the optimum time-
varying and time-invariant smoothers is that the latter ignores the

crosscorrelation between various harmonics.

d) Solutions based on the Fourier series representation for

correlation functions. We begin with a theorem:

THEOREM(4-12): The impulse-response function for the optimum filter
for the general LMS estimation problem where the transmitted and received
signals x, y are jointly T-CS and where y is composed of 2 colored component

w and an uncorrelated white component with PSD X has the representation:

ho(t,'t) = z hn(t_—l-)ej“n(t‘*'f)/'r

==

¥t,T e (-»,°) (4-80)

where the Fourier transforms {Hn} of the time-invariant impulse-response
function {hn} are the solutions of the linear algebraic equations:
[ ¢ (E-@em)/2D)L (£-m/21) + ML (£-n/2T) = G_(£-n/2T) ¥ n  (4-81)
m=-~ow
where the {Cn} and {Gn} are the Fourier transforms of the coefficient-

functions for the FSR's for the correlation functions kww’ kxw:

T/2 .
1 s -j20ns/T
c (®) = 7 i k,,(s+t/2,5-t/2)e J ds
-T/2
T/2 .
21 -j2uns/T
gn(t) =7 kxw(s+t/2,s—t/2)e ds (4-82)

-T/2
(see Section 4a of Chapter III).

The proof of this theorem is outlined in terms of Eqs. (3-117)- (3-121)
in Section 4c of Chapter III.

There does not appear to be any way to obtain a general closed-form

solution to this infinite set of equations; however, if the functions

FRreP——
H
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{Cn}, {Gn} satisfy certain bandlimiting constraints, then solutions

are possible, as discussed in Section 4c of Chapter III. For example:

THEOREM(4-13): The impulse-response functions for the optimum filter
for a T-CS process x in additive white noise with PSD No has the
representation:
B (t,7) = ] h (t-)edMED/T (4-83)
where the Fourier transforms {Hn} of the functions {hn} are given by
the formulas:
Cn(f)[l - Ho(f+n/2T)]

Hn(f) ’
N° + Co(f-n/T)

R(f)
N, + R(E) ’

Ho(f) (4-84)

wiere

Ic_(£-n/2T)|2
R(E) = Cy) - [ , (4-85)
nf0 N_ + C (£-n/T)

provided that
C (£) =0, [£]21/4T, ¥n#o0, (4-86)

where {Cn} are the Fourier transforms of the FSR coefficient functions:

/2 .
4/2 kxx(s+t/z,s-t/z)e32"“s/Tds. (4-87)

=3} =

cn(t) =

Furthermore, the time-averaged value of the minimum mean-squared estimation-

error is given by the formula:

@ N R(f)
> = [ —2———df . (4-88)
- No + R(f)
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Proof: Using the condition of Eq. (4-86) in Eq. (4-81) of Theorem (4-12),

vwhere Gn = Cn’ A= No’ yields the equations:

} C_,(£-m/2D)H (£-m/2T) + (C\(£)+N IH, (£)

C_ (f), (4-89)
m#0 0

(Co(f-n/T)+N°)Hn(f-n/2T) + Cn(f—n/ZT)Ho(f) Cn(f-n/ZT) ¥n#0, (4-90)

Now, Eqs. (4-84), (4-85) follow directly from Eqs. (4-89), (4-90).
Furthermore, the formula of Eq. (4-88) results from substituting
Eqs. (4-83), (4-84) into the formula of Eq. (4-32).

QED

Note that if kxx has an Mth order FSR satisfying the constraint of

Eq. (4-86), then so too does the solution h provided by Theorem (4-13).
As discussed in Section 4c of Chapter III, a linear system whose impulse-
response function has an Mth order FSR can be realized with the (2M+1)-path
structure shown in Fig. (3-14a), or with the simplified structure shown in
Fig. (3-14b) and reproduced here as Fig. (4-7), where the impulse-
response functions for the path filters with transfer functions Gnl’ G

n2

are related to the original coefficient-functions as follows:
gnl(t) = 2Re{hn(t)}cos(nnt/T) - ZIm{hn(t)}sin(wnt/T)
gnz(t) = -2Re{hn(t)}sin(nnt/T) - ZIm{hn(t)}cos(nnt/T). (4-91)

Note that, as mentioned in subsection 4c of Chapter III, the
solution method of Theorem (4-13) can be extended to the case where the

Fourier coefficient functions satisfy the less restrictive constraint

C (F) =0, [f] > W4T, ¥n#o0.

SRS A SURL R

P
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However, the method then requires inversion of a (2M-1) x (2M-1) matrix
of functions, and does not appea~ to offer any advantage over the

solution method based on the HSR, which is considerably less cumbersome.

e) Solutions based on inverse-operator and feedback-system methods.

i) Introduction. The basic integral equation derived in the second

section of this chapter:
_mf hy (£,5)ky (s,7)ds = k, (t,7) ¥ t,7 e (-==), (4-92)

which implicitly specifies the impulse-response function for the

optimum filter, can be interpreted as an operator equation. Specifically,
if we denote the linear integral transformations (operators) with

kernels kyy(-,-), ho(-,°), kxy(-,') as Eyy’ Eo’ Exy’ then the operator
counterpart of this integral equation can be written as

HK =K . (4-93)
0 Yy Xy
This equation has the formal solution
H =K K "1 (4-94)
-0 Xy -yy
where K°! is the inverse operator corresponding to K :
=Yy Yy
K Kl=1, (4-95)

Yy Yy

where I is the identity operator.
Now, if we denote the kernel for this inverse operator as k;;(-,'),

then the impulse-response function for the optimum filter is formally
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given by

h (t,7) = / kxy(t,o)k;;(o,r)do. (4-96)

-00

Furthermore, this optimum filter can be realized, as shown in Fig. (4-8),
as the cascade connection of the two linear systems which are characterized
by the operators K}
Y P =Yy
-1 L] L] [ L]
IO SRCRD
There are a number of interesting LMS estimation problems for T-CS

, Exy’ and have impulse-response functions

processes where the kernels of the operators Eyy’ ny can be decomposed

in such a manner that the system diagram of Fig. (4-8) can be manipulated
into the feedback configuration shown in Fig. (4-9), where Eo is a known
time-invariant system, p(*) is a known T-periodic function, and K., 52
are known periodically (1; time-varying systems. Furthermore, there is a
non-tiivial set of circumstances under which the impulse-response function

ho for this system can be obtained explicitly:

Namely,
Ko(f) =0, ||f]-M/2tr| > N/2v

P, = 0, lin|- M| <N, ¥n#0 (4-97)

where N, M are nonnegative integers, Ko(o) is the transfer function for
50, and {pn} are the Fourier coefficients for p(*).

For M > 1, EO is a bandpass filter, and for M = 0, 50 is a lowpass
filter. For N=1, M= 0, p(*) is unconstrained, and for N > 1, M = 0,
p(*) contains only frequency-components wiich are two high to be passed

by the filter 50, and for N = 1, M > 1, p(*) contains frequency components

L
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which are too low to be passed by 50. Now, when the conditions of

Eq. (4-97) are satisfied, the system of Fig. (4-9) is unaffected by

the replacement of the periodic multiplier in the feedback path with a
| constant attenuator whose attenuation is Po» the average value of p(-).

Thus, the entire feedback loop is time-invariant, and has transfer

function KS given by

| ' (1/p K, (£)

| U Ky (£) = — :
(1/pg) + Ky ()

(4-98)

L] 'so that the impulse-response function for the entire system of Fig. (4-9) is

h,(t,1) = [/ k, (t.9)k;(0,5)k, (s, T)dsdo, (4-99)

- 00
e where k3 is the inverse Fourier transform of Kz.

s We refer to this method of solving for optimum time-varying filters

4 y as the inverse-operator-feedback-system (IOFS) method. We now present
, four classes of practical optimum-filtering problems for which the

general solution of Eqs. (4-98), (4-99) is valid. In the next section,

. { we illustrate these classes of problems with specific problems.

\i 3 A .
S i ii) Examples:

1) WSS signal subjected te time-invariant dispersion, periodic

T
A e

attenuation, and additive WSS white noise: For the class of optimum-

S AR e DI

filtering problems where a WSS signal is transmitted through a channel

M—
R ey

consisting of a time-invariant dispersion with impulse-response function

$s Ko

g, T-periodic attenuation ¢, and additive WSS white noise with PSD No’

TS

the correlation functions in Eq. (4-92) take the form:

e
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—an

ky(6:5) = [ ¥ (o-v)g(t-0)g(s-v)dodra(tlals) + N 3(¢-5)

ky(8:5) = [k (t-0)g(s-0)doa(s), (4-100)

so that the systems, with these functions as impulse responses, take the
forms shown ir Fig. (4-10). Now, using elementary algebra for linear
s¥stens (36], it is easily shown that the systes of Fig. (4-8) is
eguzivalent to that of Fig. (4-9), «nere the izpulse-response functions

are ziven by

,5Y = q(t38(t-s)

Flg
X<

le
r
[
-t
L]
*ey
‘ot
o
Lare)
m
st
N
[y
™~
4

f
t

ko:1) = FHess(E:, (4-101)

zad where p(z) = o2(r). Zow zf tize chazanel Jispersior or the signal

B are badpass, and the periodic fluciuaiions in attenvation are
reiztivsly Iow-freauency, or if the dispersion or PSD zre low-pass, and
the Tiuctuatisnz in attenustion arec relatively high-frequency, (so that
*he conditions of Eg. (3-%7) ave sziisfied;, ther the general solutions
of Eqs. [:-9$8), ,3-892), for th: spiimux filter, are vaiid.

Z: CS ix signz: in adéitive WSS white meisc: For the class of optimum-
f:1.erirg probless where = o5 signal, «hichk i< ke product of a
deterministic T-periedic functicn q, ard 5 ¥SS precess =, @3 travsmitted
thrvagh 2 cranns: «sasisting onrly of addlijve KST wiite .oise with PED

e ihe correlation functions in Eg 4{4-3:
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so that the systems, with these functions as impulse-responses, take
the forms shown in Fig. (4-11). Using the algebra for linear systems,
it is easily shown that the system of Fig. (4-8) is equivalent to that

in Fig. (4-9), where the impulse-response functions are given by
kl(t,s) = q(t}6(t-s)
ko(T) = kzz(T)/No
k,(t,s) = q(t)8(t-s), ' (4-103)

and where p(t) = q2(t).

Now if the "baseband" signal z is lowpass and the periodic
fluctuations in the "carrier" are relatively high-frequency, or if the
process z is bandpass, and the multiplicative factor q is relatively
slow-varying (so that the conditions of Eq. (4-97) are satisfied), then
the general solution of Eqs. (4-98), (4-99) for thg optimum fil‘'er, are
valid.

(3) WSS signal in additive CS white noise: For the class of optimum-
filtering problems where a WSS signal is transmitted through a channel
consisting of only additive CS white noise with autocorrelation function

q2(t)é(t-s), the correlation functions in Eq. (4-92) take the forms:

. (. 2¢ -
kyy(t,s) k xit s) + g<{t)é(t-s)

X

n

kxy(t,SJ k  (t-s), (4-104)

so that the svstems, with thesce functions as impulse responses, take the

forms shown in Fig. {4-12). Using the algebra of linear systems, it is




' ’ : ' : .
again easily shown that .the system of Fig. (4-3) is equivalcnt te that
H 4

in Fig. (4-9), where the i-phlse—response funétions-are éiven by .

ky (t,5) = q72(t)8(¢-5) :

§

ko(t).= k(1) Co T
:
kz(t.b) = §(t-s), : ' ; . ~{4-105)
and where p(t) = ¢ 2@).
Now if the periodic fﬁuctuationg in thezinténzity of the additive
white noise are either low-frequency compared to the bandﬁass éig&il,'
or are high-freguency couéared to the lowpass signa{ (so that Eq. (4-97)°
is satisfied), then the general solution of Eqs. (4-98), (4499),‘fb; the
optimum f, lter, are valid.
(4) CS signalh(gbtaingd frou'pgriqdical{y ti-é—scaled WSS process) ‘in
additive WSS white noise: For the class of optimum-filtering problems
where a CS signal, which is obtainéd from a WSS pr&cess z via a periodic
time-scale transfor-ation g(t) = t + q(t) (as discussed in Section 2c orf
Chapter I1), is transmitted through a qhannel corisisting :only of additive

WSS white noise gith PSD No, the correlation functions in Eq. (4-92)

take the forms:

Ky (8,52 = k_ (g(t)-g(s)) + N_8(t-5)

L[]

Ky (Ts) = k_ (8(1)-g(s)), (4-106)

[

T
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L
i so that the systems, with these functions as impulse responses, take
i. the forms shown in Fig. (4-13). Usimng the algebra of linear systems,
. : it is easily shown that the system of Fig. (4-8) is equivalent to
1 : .
) “ that of Fig. (4-9), where the impulse-response functions are given by
i :
!
3 .
Lo . k, (t,s) = é(t-g(s))
i L i kU(T) = kzz(T)/No
! .
{ ; ' kz(t,s) = §(g(t)-<) {14-107)
-

and where p(t) = 1/g'(t), where the prime indicates differentiation.

Now if the periodic fluctuations in the time-scale transformation
(i.=., in 1/(1+g'(t})) are either low-frequency compared .o the
Eandpass WSS process z, cr are high-frequency compared te the lowpass
WSS process z (so that Eq. (4-97) is satisfied), then zhe general

! sclution of Eqs. (4-89), (4-99) are valid.
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6. Examples of Optimum Filters and Improvements in Performance .

a) Introduction. In this section we present a number of specific
examples of solutions for optimum filters for cyclostationary processes,
and of evaluations of the performance index I (defined in Eq. (4-28)),
which indicates the degree of imp}ovement in the performance of the
optimum time-varying filter over that of the optimum time-invariant
filter. We classify the examples according to the method of solution
employed, so that the examples in each of the subsections 6b-6e correspond
to the methods presented in each of the subsections Sb-Se.

For simplicity, we consider only those estimation problems where
the channel consists of nothing more than additive white noise with

PSD No (unless otherwise stated.)

b) Examples empleying translation series representations.

i) Frequency-shift-keyed signals. As a specific example of a syrnchronous

M-ary signal, we consider the frequency-shift-keyed signal (Model (12)
of Chapter II) which takes the form

x(t) = 2 w(t-nT)cos(Zﬁanfot}, (4-108)
n=-e
where the frequency-factors {an} are statistically independent random

variables which take on each of the values in the M-ary alphabet

{1,2,...,M} with probability 1/M, and where w is a sinc-pulse:

— sin{sBt)

w(t) = v28 @y’ {4-109)

where the single-sided bandwidth B < fo’ and where foT is some positive

integer.

ORI

o
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As shown in Secs. 2e, 2f of Chapter 1I, x admits an Mth order TSR

with the orthdnormai'basis functions
¢p(t) = w(t)cos(anfbt) (4-110)

and correlation matrix (for the centered process x - mk)

1 I -
A =15 -1 . 4-111
pqF) = H Pa g2 (4-111)

Now, from Theorem (4-6), the oéﬁimum {minimum error-variance)zatime—
varying filter for this FéK signal in white noise has impulse-response
function given by Eq. (4-56), and has the realization shown in Fig. (4-4),
where the transfer function for the matrix of sampled-data filters is
given by Eq. (4-63ia). The structure of this optimum filter has an
interesting interpretation. The bank of input filters are matched to
each of the M possible pulses éhat occur in the signal. The periodically
sampled cutputs of these matched fiitexs are passed through a discrete
matrix Wiener filter, the outputs of which can be shown to be the LS
estimates of the a-pcsteriori probabilities; i.e., the pth output at
time nT is the LMS estimate of the progability that the nth symbol

¥

transmitted was ;ﬁ: pth letter of the M-ary alphabet, a =p, given
that y was received i62’. These probability estimates are used to
weight the pulses which are regenerated at the output of the filter.
See Fig. (4-14).

The time-averaged minimum estimation-error is given by Eq. {4-62a),

and reduces te the expression

28 Sce the lasi paragraph at the end of scction 2 of this chapter for a
discussion of the rclationship between minimum-mean-sguared-error and
Ainimum-error-variance.
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N
=2 trace #_iA_+ N I]7!
=0 o

-3

N (4-1)
=z 2 (4-112)
MN_ + 1

=TT

(using Theorem (3-4)).
The optimum time-invariant filter has transfer function given by
Eq. (4-59), and the resultant minimum time-averaged estimation-error
is given by Eq. (4-60a):
N
Y o O APP 2
M Ay 1o ()]

. =
<€>= ) | d
=]~ l pp 4 2

p=1 N+ AP l‘i’plf)l

(4-113)

where we have used the fact that ¢ (£)¢*(f) = I@ (f)|26 .
P q P Pq

Now, since the {¢p}.are rectangular with height 1/V2B and double-sided

bandwidth 2B, then

<8 > = 2B (M-1)/2BTH ) (4-114)
(M—l)/zuTmaﬂNo
Using an effective noise-bandwidth of 2BM to obtain a noise variance of
ZBMNO, and using the time-averaged signal-variance (M-1)/MT, we can
express the performance index of Eq. (4-28) in terms of the signal-to-
noise ratio (of variances) o:
A <'é’o> 1 + p2BTM/ (M-1)

) = . (4-115)
<eo> 1 +p

The lowest practical bandwidth of the envelope w corresponds to
transmitting pulses at the Nyvquist rate, and is B = 1/T. This results in
a minimum improvement factor (vaiue of performance index) of 6 dR for
binary FSK (M = 2) in low noise. As the bandwidth is increased in order

to decrease intersymbol interference, the low noisc improvement factor

e e ) L

[,

.

r
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= I

increases in direct ‘proportion, which means that the time-varying

|

filter becomes more attractive, relative to the time-invariant filter,

as the quality of transmission increases.

A

It 1s interesting to note that for signal-to-noise ratios as low

Y
-

as uaity, there can still be a substantial improvement:

I=1/2 + BIM/(M-1) for p = 1. (4-116)

I

ii) Time-division-multiplexed PAM signals. An interesting (and perhaps

=
—

more practical) alternative to the time-division-multiplexing schemes

L.

i TDMI, TDM2 discussed in Chapter II (Models (3), (5)) is the TDM of PAM

. scheme, which was‘briefl§ mentioned in Sec. 2f of Chapter III. For this

scheme, we consider M mutually urncorrelated WSS component signals {xpl

RO TR I

with autocorrelation functions {kp} and PSD's {Kp} which are bandlimited

to the intervai [-1/2T,1/2T]., The signals are periodically sampled every

—

T seconds to amplitude-modulate orthonormal pulses {&(t-pT/M);p = 1,2,...,M},

HTATHPRHRT

i so that the composite TDM-PAM signal takes the form
4 M e
; f x(r) = I/ Y ) x_(nT)é{t-pT/M-nT). (4-117)
3 | p=1 n=-= P

Sy

Clearly x admits an Mth order TSR, and since the {xp} are uncorrclated,

—

then the correlation matrix is diagomal with on-diagonal clements

- I o —j:’.ﬂan - -l__ , g e -
,\pp(f) =g g ;cp(nz e = g hpif-rm/i ). (4-118)

- IWWW‘AMM'\‘M W

New, from Theorem (4-6), the optimum tisne-varving filter for this

3 e a3

TDM signal in white neise has impulse-response function given by Eq. (1-56),
and has the realization shewn in Fig. (4-4), where the transfer function

for the diagonal matrix of sampled-data filters is given by Eq. (4-61b).
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The structure of this optimum filter has an interesting interpreta;ion.
Since the matrix of sampled-data filters H is disigonal, then the overail
structure is simply the parallel connection of M independent paths as
shown in Fig. (4-4cj. The pth path consists of a discrete Wiener filter, X
for the pth sequence of amplitudes, flanked at the input and output, 2
respectively, by a pulse-amplitude demodulator and a pulse-amplitude
modulator. Hence, the optimum time-varying filter demodulates the signal,
optimally filters it at "baseband', and then remodulates it. See Fig. (4-15).
The time-averaged minimum estimation-error is given by Eq. (4-62b)
which reduces to the expression -
M 1/2T K_(f) -
<s>=N § [ ——P T g (4-119)
’ © p=1-1/2T MN_+ K _(f)
o P
The optimum time-invariant filter has transfer function given by
Eq. (4-59), and the resultant minimum time-averaged error is given by
Eq. (4-60b). If we assume that the pulse ¢ is the interpolating sinc-

pulse whose Fourier transform is ideal low-pass with double-sided ~

bandwidth M/T and height JT7§', then Eq. (4-60b) reduces to
sl

1/ar pzl K, (£)

47

i <e > =N : df. (4-120)
! °©  ° .y 1
§ MY+ YK (5 ]
. = q=1 q
Now, if the M processes {xp} are identical, then the TDM process L
degenerates to a WSS process, and 1 = 1: there is no improvement. ,

llowever, if the individual processes are different, there can be substantial
improvement. For example, if the processes have disjoint PSD's, then

Eq. £4-120) reduces to
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N M 1/2T K_(£)
<€> =N , P af, , (4-121)
| p=1 -1/2T MNo + ﬁ'Kp(f)
and there is a low-noise improvement factor of I = M., Similarly, if
all but one (say the qth) of the M baseband signals are zero, then the
formulas of Egs. (4-112), (4-120) for estimation-error become :
- 1/27 K (f)
<e> = N f —9a gf (4-122)
-1/2T MNO + Kq(f)
1/2T K (£)
<l¥o> =N, 1 df, (4-123)
-1/2T MNO + ﬁ-hq(f)
and there is again a low-noise improvement factor of I = M.
iii) Frequency-division-multiplexed signals. A multiplexing scheme
which Zs in some ways a frequency-time dual of TDM schemes is the
frequency-division-multiplexing (FDM) scheme discussed in Chapter II
(Model (4)). We consider here FDM signals of the form
M
x(t) = } x_(t)cos(w. t + 2mpt/T.) (4-124)
. P=1 P [»] (o]

where @ is an integer-multiple of 2%/T, and T is an integer-multiple of

_of Tb, and where the M componcont signals {xp} with correlation functions

{kp} are assumed WSS, uncorrelated, and bandlimited to [-1/2T,1/2T].
From the sampling theorem (Theorem (2-2)), the component signals admit

the representations

x (1) = §x (@) sinz(t-nT)/T (4-125)
P n !} #(t-nT)/T
so that the composite FDM signal admits the Mth order TSR
M =
x(t) =72 § } xp(nT)fbp(t-—nT), (4-126)

p=1 n=-=
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where the basis functions are given by
$_(t) = V2/T cos(wot + ant/Tb) sin(nt/T) . (4-127)
P (nt/T)
These basis functions are doubly orthonormal, and the TSR correlation
matrix A(f) is diagonal with on-diagonal elements given by
T -j2mTf _ 1
A _(f) == k_(nT)e =) K (f+n/T), 4-128
op () ZE() ZEP(” - (4-128)

The duality with the TDM-PAM scheme is now evident since the
correlation matrices are identical (except for a scale factor), and the
basis functions are time-frequency duals (if the pulse-shape used in the
TDM scheme is the interpolating sinc-pulse) in the sense that the M FDM
basis functions are frequency-translated sinc-pulses, and the M TDM
basis functions are time-translated sinc-pulses.

Now, from Theorem (4-6), the optimum impulse-response function is
given by Eq. (4-56), and has the realization shown in Fig. (4-4c), where
the transfer functions for the diagonal matrix of sampled-data filters
are given by Eq. (4-61b). As expected, the structure of this optimum

filter parallels that for the TDM-PAM signal. As shown in Fig. (4-16),

it consists of M independent paths. The pth path contains an ideal bandpass

input filter (which passes only the pth component signal xp) followed by

a periodic sampler, and a discretc Wiener filter, and an ideal bandpass

output filter, which reconstructs a smooth signal from tne filtered samples.

The time-averaged minimum estimation-error is given by Eq. (4-62b)

wh:~h reduces to
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M 1/2T K_(f)
<e>=N ) —P _ gr. . (4-129)

o 2 1,
p=1 -1/2T 2N, + K ()

The optimum time-invariant filter has transfer function given by
Eq. (4-59), and the resultant minimum estimation-error is given by

Eq. (4-60b) which reduces to’

‘ M 1/2T K_(£)
€>=N 1 | — df . (4-130)
Pl -1/2T 2N, + 3 K ()

From these last two formulas, it is clear that for low-noise conditions,
the optimun time-varying filter provides a 3 dB improvement over the
optimum time-invariant filter, regardless of the 'specific shapes or
differences amongst the M PSD's, and regardless of the number (M) of
signals multiplexed; i.e., there is an independent 3 dB improvement for
every component signal xp.
We will consider the FDM siznal again in the next section w. re we

employ the HSR to gain some additional insigiit into the structure of the

optimum filter.

iv) Pulsc-amplitude modulated signals. The PAM signal (Model (2) of

Chapter II),

[--4

x(t) = ¢10)‘ I a¢(c-nT) {4-131)

n=~-o

Lam)

is one of the simplest, and yet one of the richest examples of a CS

process. Every PAM process admits a first order TSR--in fact, as shown
in Sec. 2 of Chapter III, all T-£S processes (in “CS
in terms of T-CS PAM processes with full duty-cycle rectangular pulses,

) can be represented

and such PAM processes have con<cant means - nd variances. Furthermore,
as shown in Scc. 3 of Chaprer 111, all T-CS processes can also be

represented in terms of WSS PAYM prozesses with bandlinited (to{-1/2T,1/2T})

¥ . “
ju . e onow,
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pulses. We now, use these two types of PAM processes (those where
either the pulse ¢ or its Fourier transform ¢ are rectangular) to
demonstrate three interesting results concerning optimum filtering
of CS processes.

Before proceeding, however, we state here the simplified versions
of Eqs. (4-58), (4-60a) for estimation-errors of arbitrary PAM signals
in additive white noise:

. 1
1/ 5 [0(£)|2A(£)
<@ > =N 1
© 12T N+ |S(H)]2A)
o T
1
N = 7 o) |%a)
<eo> =N, T df
= N *F [&(£)|2A(£)
where
A(E) = 1 2 E{a a }e-]ZWHTf
¢2(0) n T
[#6)]2= [ |eten/T)|2. (4-132)
n

(1) Intuition can sometimes be misleading. In particular, one might
intuitively expect that a cyclostationary process with constant mean
and variance would be "almost" stationary, and that no substantial
improvement would result from using periodic filters for estimation

of such processes. As a counterexample, consider PAM with full duty-
cycle unit-energy rectangular pulses. This process admits a lSt order
TSR, and has constant mean and variance. If the PSD K(f) of the WSS
process, whuse samples {an} are the pulse-amplitudes, is bandlimited

tc {-1/2T,1/27], then from Eq. (4-132), we obtain the estimation-errors:

{adanane |
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1/2T N K(£f)
<e>= [ L2 g4
-1/2T  N_ + K(£)

® 1/2T N_K(£) [sinn(T£-n)/n(T£-n)]2

N\
<e >

af . (4-133)
=-= -1/2T N+ K(£f) [sinn(Tf-n)/n(T£-n)}2

Now, for low noise, <e°> = No/T’ and for any number J there is an No

small enough to guarantee that fg°> >JN°/T. For example, an improvement

factor I > J = 10 results with a signal-to-noise ratio of oZT/N° = 10%,

where we have chosen K(f) = o2T, f ¢ [-1/2T,1/2T].

(2) Another situation where intuition might lead one astray is in the

case of high noise. One might expect that signal-to-noise ratios as low

as unity would degrade time-varying filter performance to the point where

improvement over that of the optimum time-invariant filter would be

negligible. As a counterexample, we have the results for ©SK. In addition,

we again consider PAM but this time with unit-energy ideal lowpass pulses

with bandwidth M/T. From Eq. (4-132), w’ "Sh K(f) constant for

f ¢ [-1/2T,1/2T], these equations reduce

0202 /M 0’202
s n v s n
<eo> S —— {go> = — (4-134)
02 + g2/M 02 + o2
(3 n S

where cg is the time-averaged signal variance, and oi = NOM/T is the

noise variance. Notice that the effective noise variance for the time-
varying {ilter is reduced by the factor 1/M. If we fix the signal-to-
ncise ratio at unity (oé = oﬁ), then the improvement factor is I = (M¢1}/2.
If M is substantially greater than unity (M = 1 means transmission at the
Nyquist rate and renders the PAM signal WSS), then the time-varying filter
will provide substantial improvement in performance over that of the

time-imariant filter for this high noise situation.
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(3) In contrast to the two above results, the following result is very
much in agreement with intuition. By considering PAM with less than
fuil duty-cycle rectangular pulses, we find that improvement increases
as the signel becomes "more" cyclostationary. Specifically, consider a
unit-energy rectangular pulse of width T/M, and uncorrelated pulse-
amplitudes, so that the Fourier transform of the pulse is given by

8(f) = VTN sin(nfT/M) ,
(n£T/M)

and the uvne-dimensional correlation matrix is given by
A(f) = Tag

where og is the time-averaged signal variance. Now, using Eq. (7 '32)
wc obtain the estimation-errors:

2 "
osNO/l

A
o
v
1]

et (4-135)
o2 + N /T
s 0

o N°o§|¢(f)|2

N
(X4
v

H]

@ N+ oZ[e(t)]?

2 ?
. Noosl¢cf)l~df

-w N+ o?T/M
(o] S5

og No/T
= . (4-136)
\
os/d + NO/T
Hence, for iow noise, we have an improvement factor of I > M. Clearly,

as M is increased, the rectangular pulses become narrower so that the

cyclostationarity is enhanced, and improvement is increased.
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v) PAM signals through random channels. We now consider the transmission

of PAM signals through random channels consisting of either a constant,
but random attenuation and additive white noise, or of a coastant, but
random, delay and additive white noise. We assume that the pulse-
translates {¢(t-nT)} are orthonormal,

(1) Random delay: We assume that the channel consists of a constant,

but random, delay 6 with PDF pe(v), and additive white noise with PSD No’
and we essume that the phase of the received signal has been determined by
a "tracking receiver" (see Subsection 7b of Chapter II and -[40])., We
consider the problem of cstimating the transmitted signal x with its
original phase, assuming this phasc information to be of some importance.

For this LMS estimation problem, we have the correlation functions

kyy(t,s) = kxx(t’s) + Noﬁ(t-s)
= nXm A, ¢ (E-nT)e(s=mT) + N 8(t-5)
Ky (£5) =_mf k. (t+0,5)pg (0)de
= J A §(t-nT)é(s-nT)
n,m 0
where
§(t) = [ #(tso)py(0)do. (4-157)

By employing the solution method of Theorems (4-5), (4-6), (4-7) we casily
obtain the solution for the impulse-response function for the optimum

filter:

h (t,1) = n{m i, $(e-nT)é(1-uT) (4-138)



where the z-transform of {Hr} is given by Eq. (4-61). Thus, the only
difference between this optimum filter and that for the case where there
is no random delay in the channel, is that this optimum filter uses the
average pulse ¢ to regenerate the signal rather than using the exact
pulse ¢ The weighting factors used as amplitudes for the regenerated
signal are the same for both filters. Hence, linear estimators do not
appear to be very useful for obtaining phase information.

(2) Random attenuation: We assume that the chapnel consists of a
constant, but random, attenuation G° and additive white noisc with PSD
No, and we consider the problem of estimating the transmitted signal x.

For this problem, the correlation functions are

. - ) e
kyy(t,s) = bo kxx(t,s) + NO6(t 5)
kxy(t,s) = Go kxx(t,s), (4-139)

so that, from Theorem (4-7), we have the following soluticn for the

optimum impulse-response function:

ho(t,1) = 1 0 e(e-nT)(r-nT) (4-140)
n,m

where the z-transform of {”r} is given by the formula

H(E) = A/ (GZ AE) + N)
= G A(E)/ G 2ACE) + N(F)) (4-141)
where
Ny 8 (G2 - & IACE) o+ N (4-142)
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From this second expression, we can interpret our solution as the

Ew-—-

solution to the problem where the channel attenuation is deterministic

and ecqual to the mean attenuation E; , and where the additive noise is

the sum of the original white noise and the sigral weighted by the

2

variance of the channel attenuation (Eg - E; ). This result parallels

that of Maurer and Franks for optimum filtering of WSS signals through

I

random channels [63].

Note that these results for PAM signals through random channels are

 S—

valid for arbitrary CS processes if A(f) is ihterpreted as the correlation

matrix for the TSR of the CS signal,

 —

vi) The vidco signal. An interesting example of a US process that results

from scanning is the video signal (Model (9) of Chapter II) whose

? »»W«wammﬁmwwwwwﬁmwwmwggmmf

Karhunen-Locve TSR is discussed at length in Subsection 2d,2f of Chapter III.

L L O

If we ignore the frame-to-friame correlation in the video signal, because

of its relatively low-frequency nature, then the TSR correlation matrix

I

is diagonal
1 .2
s A (F) = 6\ 1-a (4-143)
M PAP (1.0)2 + dasin(nTE)
LJ where {Ap) are the eigenvalues, and where the basis function {¢p}-are

the eigenfunctions (Eq. (3-273):

, . llﬂko
t Pl .2
‘. L

cos (nf v t), p odd
u:)—."' o

(t) = ,  te [-T/2,1/2)
i [ sin(nfoypt), p cven
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where
1/y. , p odd
tan(nf v T) = P : (4-144)

"Yp » P even

In these expressions, o is the line-%u-line correlation factor, and
fo is the inverse-time-constant of the exponenti .} correlation within
a line.

Now, from Theorem (4-5), the optimum time-varying filter for the
video signal in white noise has impulse-response function given by
Eq. (4-56), (4-61b), and results in an average value for the periodically-
varying minimum estimation-error given by Eq. (4-62b):

» 1727 N A (f)

<e>= ) [ o af
©psl-lar N+ A ()

PP
NO § AP
= - . 4-145)
oL Tva 1172 =5 172 (
p=l [Ap * N ] [Ap * Nol*a]

As a specific example, we consider a square picture format with
500 lines and identjcal picture correlation along the horizontal and

vertical:

L o-2m 17500 (4-146)

where, for typical picture material, 0.7 < o < 0.99. We assume an
cifective single-sided bandwidth of 500/2T thereby obtaining a ratio

of the time-averaged-signal-variance to the noise-variance equal

p = T/500N . (4-147)

O e s 2SR s T A 2 A T e o oy WS MELR ey i A\ Wi s\ e s A i e s TR
o e 4 B Z i eitieaomsntee. s ot 3 o« . Rt ) o e -
o v i+ i oy

ol e S o

rﬂm;
! ovm—e -

o

R

§ -y
AR




T e W v e SRR TR wRdiy v ma S Feme

- - . . s

e

281

Now, since we are assuming that the receiver bandlimits the signal
to the effective bandwidth of 500/2T, then only the first 500 terms in
the Karhunen-Loeve expansion will be significant [2], so that the infinite
sum in Eq. (4-145) can be replaced with the first 500 terms. Using this
truncated sum, we obtain (from digital-computer evaluation) the plots
of minimum estimation-e}ror vs. signal-to-noise ratio for various values
of line-to-line correlation a shown in Fig. (4-17). The horizontal lines
in this figure can be interpreted as the error which results from an ideal
low-pass filter ‘with cutoff frequency 500/2T. Relative to this, the
optinum time-varying filter provides a 10 dB improvement at low signal-
to-nuise ratio (p=10 dB) and high line-to-line correiation (a = .98).
As the signal-to-noise ratio iucreases and the correlation decreases, the

improvement eventually becomes negligible. Furthermore, for all practical

values of signal-to-noise ratio and line-to-line correlation, the improvement

over the optimum time-invariant filter (not shown here) is negligible.
This absence of significant improvement can be predicted in advance since
the constraint of Eq. (4-146) on correlation renders the CS video signal
"almost stationary". This low "degree of cyclostationarity" becomes
obvious with the aid of Figures (1-3), (1-6) of Chapter I. The
autocorrelation function for the video signal is the product of the
functions shown in these two figures, and when Eq. (4-146) is satistied
with the order-of-magnitudc-of-a = 1, then the cyclic variations (along
the lines parallel to the t = s axis) of the blocks in the factor shown
in Fig. (1-3) are almost totally attenuated by the narrow fences in the
factor shown in Fig. (1-6). The cyclic character of this CS process will

only be significant when the width of these tences becomes comparable
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to (ov greater than) the width of the blocks; i.e., when foT and a are
both much less than unity, which signifies a video picture composed of
nothing more than slightly correlated horizontal lines; i.e., a PAM-like
signal with square pulses of one line-width. These results have been
confirmed by digital-computer evaluation of <2°> and comparison with
<e,s where <go> is given by Eq. (4-60u), with M = 500.

vii) Time-division-multiplexed signals. We consider hers the TDM

1
scheme (Mode! (3) of Chapter II) for time~division-multiplexing various

(say M) signals {xp} together:
« M
x(0) = 1 x.(t)w (t-nT) (4-148)
n=-« p= 1 p P
vhere {wp} are the gate functions
1 ¥t [(p-1)T/M,pT/N) 2 T,

w (t ¢
! 0 ¥ergT

. (4-149)

The Karhunen-Loeve TSR for this 'I'DM1 signal is discussed at length in
Subsections 2d,2f of Chapter IIl. [If we assume that the component

processes {xp} are uncorrelated and ciach have autocerrelation functions
which satisfy the condition

k, (t+rT-1) = agkp(t—r) ¥ 1,7 2 [0,T/M) (4-150)

then, as shown in 3ubsection 2f, the TSR correlation matrix is diagonal,
and if aﬁ - Gnm then, from a simple extension of Theorem (4-5) and
Eq. (4-63), the optimum filter has impulsc-response function

M o e AP

= S \ p P
p=l =1 n ho + \(l

se e e ——————————_——,
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h(,o=) [ ] —= ¢g(t-nT-pT/M)¢g(T-nT-pT/M), (4-151)
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and results in minimum estimation-error
M = N AP
e =3 ) ~24 (4-152)
2 p=l q=1 N_+ AP’
q
where wg; =1,2,...} and {AP = 1,2,...} are the eigenfunctions and
eigenvalues for the kernel Lp »*) on the interval {0,T/M].

Now, if we choose triangular autocorrelation functions {kp} with
widths {ZTP} then, as shown in Subsection 2d, the eigenfunctions and
cigenvalues are given by the formulas

P () = cos(wPt
¢q( ) ( q )
AP = 2k (0)/1 (Wh)? 4-153
q p()/ p(xq) , ( )
where
M Kidks )
tan (WPT/20) = ———P[(z\vwl 12 + 11Y/ (4-154)
q Wb T T
q
provided that T/2M ¢ Tp < T(1-1/M).

Also, using a simple extension of Eq. (4-60b) results in the
following formula for the minimum estimation-error resulting from the
optimun time-invariant filter:

VY g CAGIEY
<S> = [ bzl gel df. (4-155)
Towger )] CHGIEN
p=l g=1 1

Evaluation of the performance index I for this TOM, signal requires

1
munerical evaluation of Eqs. (4-152)-(4-155}, and has not been carried

out. llowever, judging from the TDM-of-PAM results of cxample ii), it

s 4 maema s e
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is expected that significant low-noise improvements will result if the
individual variances and/or correlation-widths of the component

processes {xp} differ significantly.

c) Examples employing the harmonic series representation.

i) Frequency-division-multiplexed signals. It was shown in the third

example in the nrevicus subsection that low-noise improvements of 3 dB
can be obtained if optimum time-varying filters, rather than optimum
time-invariant filters, are used for FDM signals. This result can be
rederived using the HSR instead of the TSR previously used. However,
we will employ the HSR here to study only the structure of the optimum
time-varying filter.
As shown in Section 3d of Chapter IlI, the FDM signal
M

x(t) = |

X (t)cos(wot + 2upt/T) (4-156)
p=1 P

w, = N2#/T

admits an HSR with correclation matrix

1,

KB, pl = la] =r N
K) (f) = . (4-157)
Pq 0 , otherwise

Thus, from Theorem (4-9), the impulse-response function for the optimum
time-varying filter for the FDM signal in additive white noise is given

by Eq. 74-65), where the matrix of transfer functions H(f) is given by

Eq. {4-70), which reduces to the formula
SIS
™ 1 1
—Fm— , pl = Jq| = r + N
Kr(f) + ZNO
“pq(f) = (4-158)

E 0 , otherwise
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¢ : .
as shown in Section 3e of Chapter III. This optimum filter has the

. ¢ H { . ; . i
general reali;afion’shown in Fig. (4-5).. But due to thg fact that the

*
4

matrix H displays the symmetry: ' ' ,
{ H

/

Ht=38§ Ho =&ty 8/ ., : ,
pa  pllalpe | Clpllal"p(-p) |

‘
'

the structure of the filtex can’be réduccd to that shown in Fig. (4118),.
by combining paths. This structure has an ébv;ous interpretation.
The‘baﬁk of input modulators dcmultipiex the FbM'sigﬂal into its
component signals; which are then optimally filtered at baseQandi The

?iltered signals are' then remultiplexed together By thé output bank of
| . : '

_ modulators. This is the samé sequence of operations performed by the

)

!
t

optimun Eime-yariing filtor for the, TDM-PAM signal, and emphasizes the

duality.referred to in the last subsection. '

v

i1) Amplitude modulated signals. Amplitude modulation is one:of the

most frequently used sﬁgnal formats for communication. In fact, the

: { . ' .
FDM signal considered in the previous example is nothing more than the

' sum‘af M AM signals. Hence, the Yesults for FDM with M = 1 are valid

{

for AM §ignals" That ig, for the AM signal (Model (1) of Chapter 11)

' : .
i
! B L

x(t) = x (t)cos (2nt/T), . . (4-159)

where the PSD of xo:is,bandlimi:éd €0 [TI/fT.llzT], the optimum time-
varying filter has the structure éf a single path of the ﬁ-path'filter
for FDM shown in Fig. (4-18), and provides a'3 dp improvement in perfors
mu;ce over thutiof the optimum;time-invariant éilter. Paralleling the
operations pérfofmcd by the optimum filtcrs:for FOM and TUM-PAM, this
optimum.timc-vuvyiug filter demodulates the AM dignalk, optimally

[ {

! )
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filters it at baseband, and then remodulates the filtered signal.
iii) Sinusoid with random amplitude and phase. As an example of the
‘ '

general results obtained in Section 5c for LMS smoothing of randem
periodic signals in noise, we consider here the random sinusoid

x(t) = asin(2nt/T) + bees(2nt/T), (4-160)
where a, b are zero-mean random variables with variances 02, c% and
crosscovariance cﬁb. This process admits a first order HSR with
correlation matrix elements

—’*:2_2 2
Kooy = Kip = 0g/4 - opfd + Jog,/2
¢ s g2 2
K-ll = kl-l 03/4 + ob/d
Koﬂ i SEPL 500 = 0. (4-161)

Now, from Theorem (4-10) the optimum time-varying smoother for
this signal in additive white noisec has impulse-response function given
by Eq. (4-74), and results in the time-averaged minimum estimat.on-error
given by Eq. (4-76), which reduces to

A+ B
>
A+ 2B+ dNO/NT

= 2
<e > (-NO/NT)

where
N 2.2 4
A= N (anab 0ab)
c (4-162)
= o2 2
B o" + ob .

"
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From Theorem (4-11), the optimum time-invariant smoother has
impulse response function given by Eq. (4-77), and results in the
estimation error given by Eq. (4-78), which reduces to
<6 > = (2N /NT) ——2 (4-163)
o () .

B+ 4N°/NT

From these last two formulas, it is clear that for low-noise conditions,

the performance index becomes

and is a maximum of 3 dB when A = 0. But A = 0 iff 0,0 ° ng

iff a and b are proportional iff the phase of the random sinusoid is
deterministic. This result is exactly what one would expect: The time-
varying filter outperforms the time-invariant filter by the greatest
margin when the sinusoid displays its highest degree of cyclostationarity;

i.e., when its phase is completely known.

d) Examples employing the Fourier series representation.

i) Amplitude-modulated signals. 1in the previous two subsections we

employed the TSR and HSR to derive the structurc of the optimum time-
varying filter for AM signals, and to show that the performance index is
a maximam of 3 dB for low-neise conditions. These results can alse be
derived using the FSR as briefly outiined here: The autocorrelation

function for the AM signal
x(t) = xo(t)cos(Znt;T)

where X, is bandlimited to {-3/47,1/74T}] admits 2 second order FSR with

cocfficient functions

e s e o e —————— - =
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C,(6) = % K (F=1/T) + %- K (£+1/T)
C,(f) = C_ (£) = 0
1
C,(£) = C_,(£) = + K (£) (4-164)

where Ko is the PSD for X,

Now, from Theorem (4-13), the optimum time-varying filter admits
the second order FSR of Eqs. (4-83)-(4-85). Substituting Eq. (4-194)
into these formulas yields formulas for the transfer functions for the
time-invariant filters in the optimum time-varyirg filter structure of
Fig. (3-14a). With these formulas, this structure can be
reduced to the simple demodulator-tilter-modulator structure identified
in example ii) of the last subscction.

Also, this optimum time-varying filter results in the minimum
estimation-error given by Eq. (4-88) of Theorem (4-13). Substitution
of Eq. (#-164) into this forwula yields the following expected formula:

1727 Noko(i{“

e > = daf . (4-165)

- ‘T R, Y *
1/21 .No + ko(()
Note that the above result is valid as long as X, 18 bandlimited
to [-1/2T1,1/21], but the solution methed of Theoren (4-13) is only valid
for x  bandiimited to [-i/4T,1/47]).
ii) Bandpass PAM. Consider the tollowing bandpass PAM signal

x(t) = V2T [ a ¢(t-nT),
n
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where

sin(wt/4T)
4

o(t) = VITZT cos (u t) ¢ (4-166)
‘ (nt/4T)

whara Wy i$ an integer-multiple of 27n/T. Now, if we consider the {an}
to be the sample values {xo{nT)} of a process which is bandlimited to
[-1/4T,1/4T], then Eq. (4-166) can be reexpressed, using the sampling

theorem (Theorem (2-2)), as
x(t) = 2x°(t)cos(wot)

and is therefore equivalent to the AM signal of the previous examvle.
Hence, the optimum filter and estimation-error derived there are valid
here. However, the most meaningful filter structure results from using
the TSR {this structurc consists of one path of the M-path structure of
Figure (4-16)) rather than the FSR (or the HSR). In fact, the solution
obtained using the TSR is valid even if the a, are not the sample values
of & prceess which is baidlimited.

iii) 1lmprovement for general PAM. In subsection 6b, we presented the

general formulas of Eq. (4-132) for estimution-errors for arbitrary

PAM signals in additive white noisc. We will now reexpress these formulas

in terms of PSR coefficient functions in order to gain insight into the

relationship between improved performance and the FSR coefficient functions.
Substituting the TSR of Eq. (3-2) for the autocorrelation function

for the PAM process into the formula of Eq. (3-101) for the pth FSR

coefficient function yields the formula

-j2apt/T

21
cp(t) o E A 0(t-rTe
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. where )
B A © u
8(t) = [ e(t+r)e(t)dt.
Thué, the Fourier transform Cp of cp takes the form z:
Co(6) = F A(E)O(Eop/2T)e* (£-p/2T). (4-167)
E 3
Now, from this formula, we obtain the relation
: T AME) o (Erp/T) |2 = Cy(Eep/T) = |C SEPTICH () . (4-168)
?’ Substituting this into the formulas of Eq. (4-132) yiclds the new formulas B
1/2T N C, (£+p/T)
3 <e> = ) 00 df »
? p -1/2T No + Jp(f)Co(f+p/T)
l Ul o] "
‘ 1/2% N C. (F+p/T) =
<2§0> = Z 00 df
p -1/2T No + Co(f+p/T) 1
s ¢ lSgEam)? :
J)(f) - . (4-169) r
' a CylE)CHE+p/T) i
: Now, from these formulas, it is clear that for every value of the
index p for which Jp(f) > 1, ¥ f e [-1/2T,1/27], there is a contribution 8
: to the overall improvement-in-performance (of the optimum time-varying {
filter over the optimum time-invariant filter). Furthermore, Jp(f) is ~
¢
f a measure of the relative magnitudes of the zeroth and pth order %

FSR coefficient functioms. Thus, we have here
a positive relationship between large higher order FSR coefficient fumctions,

and large improvements.

¢)  Examples cemploying the inverse-operator-feedback-system method.

In subsec. Se¢ we presented four (lasses of optimum filtering problems to

which the inverse-operator-tfeedbach-system {10FS) method of solution

H
£
.
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applies. We now illustrate these with solutions for specific problems.

i) Periodically attenuated WSS signal in WSS noise. Consider the

problem of optimally filtering a bandpass WSS signal with PSD

o21/2, ||£] - £ < y2r

Kxx(f) = . (4-170)

}] , otherwise
which has been transmitted through a channel with slowly-varying periodic
attenuation, 1 + acos(27t/T), and additive WSS white noise with 'PSD No’
This problem belongs to class (1) of Subsec. Se with M = ZTfo >> 1
(assumed to be an integer), and N ; 1 in Eq. (4-97). Thus, the impulse-
response function for the optimum time-varying filter is, from Eqs. (4-98),
(4-99), (4-101),

1 + acos(2nt/T)

h (t,1) = k. (t-1) (4-171)
° N, + 02T (1+a%/2)/2 XX

and has the realization shown in Fig. (4-19). Furthermore, the time-averaged
value of the minimum estimation-crror is, from Eq. (4-29)
1’/2 w

1 T / (l+acos(2ns/T))2k§‘(t-s)dsdt
Ny * 0§T(l+32/2)/2 “T/2-= :

[

<¢ » = g2 -

2
Cx

1 + p(1+a2/2)

(4-172)

vhere p is the signal-to-noise ratio (p = uﬁleNo).
The estimation-error which results from the optimum time-invariant
filter (i.e., that for the problem where the periodic attenuation is

repliced with its average value) is, from Eq. (4-27)

(4-173)
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Hence, there is a low-noise improvement factor of I = (1+a2/2),
and 1 < 3/2, assuming |a| < 1.

It is interesting to note that the optimum filter, Fig. (4-19)
decomposes into the cascade connection of a periodic multiplier, which
attempts to equalize the periodic attenuation, and a Weiner filter
which optimally filters the equalized signal. It should be emphasized,
however, that the multiplier is not an equalizer in the true sense, and
the use of an exact equalizer would result in inferior performance.

ii) AM-type CS signal in WSS noise. For the class of optimum-filtering

problems where a CS signal, which is the product of a deterministic T-
periodic signal q and a W3S process z with PSD
o?r |£] < 1/2t1
Kzz(f) = B (4-174)
o , otherwise,
is transmitted through a channel with additive WSS white noise with
pPSh NO (class (2) of Subsection Se), the optimum time-varying filter is

easily shown (using Eqs. (4-98), (4-99), (4-103)) to have impulse-response

function

h (t,1) = q(t)a(n)k,, ¢ 1)/ (QU2T + N.). (4-175)

Thus, the minimum estimation-error is, from Eq. (4-32),
Qo?N /7T
zZ0
<e°> = ———-—--——---——2 »
' "
Qoz + holl
wvhere

a
Q- I lq 0%, (4-176)
n

where (qn} are the Fourier coefficients for the T-periodic function q.

ot
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i Also, from Eq. (4-27), the-optimum timefinvariant filter results
' {J, in the estimation-error
' 2. 2 0
7l PR f
° 2lq 12 i
n o2lq |2+ N /T ]
L: (where we' have used i:
. é
I; ‘ %’x‘(f) = 1 g |2 K _(f+n/T).) (4-177) - L
i ‘ n N ‘ 1
[J Now, for low-noise conditions, we have %‘
' |
E <e°> = NO/T ) ‘
<'\: 9 .
¢,> > NO-N/T (4-178)

where N_ << oglqnlzT for |n| < N, so. that there is a lcw-noise improvement

factor of I > 2N. Hence, there can be significant improvement if the

periodic factor ¢ has high harmonic content as, for example, in a

.. rectangular gating function.
i One should be careful in interpreting this result. For example, if

q is the rectargular gating function shown in Fig. (4-20a), then one

i might reason that the optimum time-varying filter obviously performs much
better than the optimum time-invariant filter since the former passes zero

l noise to the output during the majority of every T-second interval (when

’ the signal x is itself :e¢ro), whercas the latter can not behave in such a

time-varying fashion. That this recasoning is invalid is clear when we

consider the new gating function shown in Fig. (4-20b). The improvement

e

factor is the same for this gating function as it is for that in Fig. (4-20a),

. yet the above argument obviously does not apply, since the optimum time-
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varying filter now passes zero noise to the output only during a very

B

small portion of every T-second interval. Hence, it must be concluded

M

that the improvement is simply due to the fact that the time-invariant

-

filter can not reproduce the sharp features in the gated signal without

passing high-frequency noise, whereas the time-varying filter easily

-

reproduces the sharp features by employing a gate of its own.

iii) WSS signal in white CS noise. Consider the class of optimum- gé ;
filtering proviems where a WSS signal with PSD . ;
s, e 5 yor 1B
Ky (£) = (4-179) ’
0, otherwise i, :

L1

is transmitted through a channel with additive white CS noise with

autocorrelation function

J——

ko (t,8) = q2(t)é(t-s), (4-180)

These problems belong to class (3) of Subsection Se. Thus, the impulse- r
response function for the optimum time-varying filter is given by

Egs. (4-98), (4-99), (4-105):

- | !
h (t,7) = q 2(1) —————— k__(t-T) (4-181) ¢
0 14 po2r X7 2
X A
and the resultant estimation-error is, from Eq. (4-29), e
L.
2 _ 1 e e 2
e > = 0f - i f q ~(s)kxx(t-s)dadt L
-1/2-00 i
o
2 e ———— R (4"182) §

1 27
| loxl
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where
T/2
Pt [ Q).
-T/2 '
The estimation-error which results from the optimum time-invariant
fiiter is, from Eq. (4-25),
‘g2
ao
<'5°> SR S— (4-1853)
1+ o?T/Q :
X
where
T/2
A1
Q=g [ a(t)et.
-T/2
Hence, the low-noise improvement factor is I = QP. For example,
if the noise intensity q2(t) switches back and forth every T/2 seconds
from No to aNo (a < 1), then
P =3 (1+a)l+ V), (4-184)

and the improvement exceeds 3 dB for a < 1/5.

iv) Doppler-shifted Poisson pulse-train. We consider here the problem

of optimally filtering a Doppler-shifted Poisson pulsc-train in additive
white noise. We model the signal x as an asynchronous PAM signal which

has been subjected to a periodic time-scale transformation t' = t + q(t)
(Model (8) of Chapter II): .

x(t) = ] a ¢(teq(t)-t), (4-185)

n=-o
wherce the original (before Doppler) pulse-occurrence-times (tn) form an
order scquence distributed according to the Poisson counting process with

constant rate parameter u , and where {a") is a zero-mean W8S sequence.
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The PSD for the original process without ‘Doppler (q{t) = 0) is

K, () = u°o§|¢(f)|2, . -(4-186)

so that if the pulse ¢ is a sinc pulse with Fourier transform
T, |£] <1721
P(f) = " (4-187)
0, otherwise,
then this optimum-filtering problem belongs to class (4) of Subsec. Se

where g(t) = t + q(t). Thus, the impulse-response function for the

optimum time-varying filter is, from Eq. (4-98), (4-99), (4-107):

1
h (t,1) = ~——o——— &k t)-g( 4-188
o B = sk, (B(0)-8(1)), (4-188)
oa o
where
1/2T
p 9,—}.— | g (t)de
-1/2T

and has the realization shown in Fig. (4-21). The structure of this
optimum filter has the interesting configuration consisting of an inverse
time-scale transformation, followed by a time-invariant Weiner filter
and a time-scale transformation at the output. Thus, the filter removes
the periodic fluctuations from the CS signal, optimally filters the
resultant WSS signal, and then re-inserts the periodic fluctuations. This
sequence of signal processing operations parallels the demodulator-filter-
modulator, and demultiplexor-filter-multiplexor sequences derived in many
of the previous examples.

The time averaged value of the minimum estimation-error which results

from the optimum time-varying filter is, from Eq. (4-32),

0 V~j
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g%aT /P (4-189) ;

£‘-«-
H
.
t
]

212 ) i
uc:)"a'r * No/P , N

v) Time-division-multiplexed signals. In Chapter II we introduced the

information lossless TDM2 scheme (Model (5)) as an alternative to the

information lossy TDM1 scheme (Model (3)) for time-division-multiplexing

i e o e m

b
, various signals together. The TDM2 signal is formed by periodically §
H
é |
-/ time-compressing the component processes into non-overlapping time-slots, !
!
i so that when the components are added they will wot interfere with each

other (Sec Fig. (2-7) of Chapter II). If the M component processes are i
statistically independent, then it can be shown that the optimum time-
varying filter for the 'I‘DM2 signal in additive white noise is a parallel
connection of M independent filters, the pth of which is the optimum time-

varying filter for the pth time-compressed component process. These M
th

filters include periodic gates at their inputs so that the p— filter

admits only the pth component signal (in white noise).
Now, the impulse-response f.action for the pth optimum filter must

satisfy the orthogonality condition

JLAN (r,0)h (t,0)do + Noh (t,7) = ke (t,7)
"= PP PP

where

(t s) = 2 . (t+q L+ (M=-p)T/M) - s - q(s+(M-p)T/M)+
P P pP

w(t=-(p-1)T/M)w(s~(p-1)T/M)
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where zp is the original component process from which the time-compressed
version xp is obtained, and where w is the periodic gate function

Af L o ftnTl e TN, ¥a
w(t) - )

0, otherwise ,
and where q is the periodic time-scale compression function shown
(as p) in Fig. (2-6) of Chapter II.
This cptimum-filtering problem is a combination of the types of
problems in classes (2) and (4) of Subsection Se, and cun therefore

be solved in some cases using the IOFS method of that subsection.

f) Summary and Conclusions. In concluding this chapter on

optimum filtering of cyclostationary processes, we emphasize the intuitively

pleasing result that optimum time-varying filters for cyclostationary
processes can always be decomposed into & sequence of three signal
processing opecrations; 1. The cyclostationary process is decomposed into
ore or more (jointly) statiomary processes. 2. The stationary component-
provesscs are passed through time-invariant filters (often Wiener filters).
3. The filtered components are recombined to form the optimally filtered
cyclostationary process. In most of the examples presented, this sequence
of signal processing operations takes onc of the following specific

forms: demodulator-fiiter-modulater, demultiplexor-£ilter-multiplexor,
inverse time-scale transformation--filter--time-scale transformation.

For those particular cyclestationary processes which decompose into a
single stationary process, the three operations are more accurately
described as: 1. Removal of periodic fluctuations. 2. Time-invariant

filtering. 3. Re-insertion of periodic fluctuations.
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- In fact, the optlmum t1me-vary1ng f11ters derived for.rSk PAM,

TDM-PAM AM, and FDM signals in additive white noise all consist of

demultlplexor-demodulaton--tzme-znvarxant Wle?er f11tgr-~modulator-

. ’
1

? m&ltipquor structures. ., . . '

¢
1 N . !

Now, if the optimum filter is to be employed in a receiver, then it
. {

will be fbllowed by a demultiplexor-demodulator. But the same "baseband"

s;gnal can be obtained more directly by simply ellmlnatxng the third

opcratxon of modulatxon and multxplexzng from the optimum' time-varying :
filter, thercby exgn1f1cantly reducing the complexlty of the overall receiver.
{
, Hence, the optimum linear recexvcr is a demult1plexpr-demodulator

followed by a time- invartant fllter(s)
]

It is interesting to note that

" this optxmum lxncar receiver emnloys the same two types of operations as

the subopt1mum recexver which ignores the cyclic character of the
b ! . H !

cyclostationary signals, but in revFrse’order; i.e., the suboptimum receiver
i

consists of an optimum time-invariant filter followed by a !

¢ t
. |
demultiplexor-demodulator. ' . : i

i

" We state this very practxual result Here as a theorem to be rcfcrred
! . |
to as thao Optxmum Llnear Recexver Theorcm. i

THEOREM(4~-14): Consider thc class of signals which are obtained by

! i i
5inqar modulation and multiblexiug of WSS waveforms and data sequences.
. 1
If the additive noise to which these signals are subjected during transmission
H i H

is equivalent29to WSS white noise after demultiplexing and demodulating,

: i
then the optimum (LMS) linear rgceiver consists of the demultiplexor-

1

demodulator followed by time-invariant (continuous- or discrete-time)

txlters. e : '
{ '

Wiener

are “cquivalent" if they resul. in the same
orthugonality condition for LMS estimation.

-
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The proof of this theorem is straightforward provided that the
linear modulation-multiplexing transformation is invertible--z
requirement whiéh must be satisfied in practice.

The essence of this theorem is, as discussed above, the fact that
the time-invariant filtering must follow--not precede--the demultiplexing
and demodulation.

Anovher result worth emphasizing is that cyclostationary processes
whose meas and variance are constant can still possess a high degree of
cyclostationarity in the sense that optimum time-varying filtering can
yield substantially lower mean-squared error than optimum time-invariant
filtering.

A third intoresting result is that optimum time-varying filters
for cyclostaticnary processes appear to yield the greatest reduction in
mean-squared error (below that resulting from optimum time-invariant
filters) when the signai-to-noisc ratio is high, but can yield

substantial reductions even at signal-to-noise ratiscs i3 low as unity.
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Figure(4-1) Communication-system diagram.
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Figure(4-2) Orthogonal projection in two-dimensional Euclidean

space.
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Figure(4-7) Structure of optimum filter derived using an ! h

order FSR. (See Thecorem(4-13).)



~1

x

| ————

. . -1
Figure(4-8) System diagram of optimum filter. (§~y. Ex

T-periodic linear systems.)

*x>

)’

are

10 ] |

PR

P
y




RS R

PU——

Figuve(4-9) Feedback configuration for optimum filter. (50 is a

.

time-invariant linear system, p{e) is a T-periodic function, and

K;:X, are T-periodic lincar systems.)
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l
4 Figure(4-19) Optimum time-varying filter for periodically
! attcnuated signal in additive white noise; q(t) = l+acos(2nt/T),
{ 2
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CHAPTER V

SUMMARY

In this final chapter we give a detailed outline and summary
of the contents of Chapters II, III, IV which comprise the body of
this dissertation. It is hoped that this combination index, outline,

and summary will help to offset the length of Chapters II, III, IV.

Following this summary, wc suggest scveral topics for further research.
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1. Summary of Chapters II, III, IV.

a) Chapter I1I: Transformation, Generation, and Modeling of
Cyclostationary Processes. The second chapter of this dissertation
provides a foundation upon which many of the developments in this
dissertation are based, and upon which subsequent studies dealing with
cyclostationary processes can be based. Specifically, Chapter II is
devoted to the topics of generation of cyclostationary processes, and
transforrmations on them. Characterizationsof the various classes of
transformations outlined beiow are developed and illustrated with
numerous models for cyclostationary processes. These models, also
listed below, are used throughout this dissertation for illustrating
various theoretical results. Most of thesi medels are of cyclostationary
signals commonly used in comnunication and control systems,

Section 1 of Chapter Il is introductory. In Section 2 we consider
transformations which are lincar. After aeriving gencral input-output
relations, we individually discuss, in some detail, the three subclasses
of linecar transformutions referred to as time-invariant filters, periodically
time-varying systems, and time-scale transformations. The impulse-response
function and Zadeh's system function are introduced as means for

characterizing linear systems, and are uscd throughout this section.
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In Section 3, we briefly discuss multi-dimensional linear
transformations as 5 means for characterizing scanning operations.

In the fourth section, we introduce a generalization of Wiener's
Volterra series representation for characterizing input-output relations
for periodic nonlinear systems.

Section 5 on random lincar transformations parallels Section 2 on
deterministic linear transformations. After deriving general input-output
relations in terms of a generalization of Zadeh's system correlation
function, we individually discuss, in some detail, the three subclasses
of random linear transformations referred to as wide-sense stationary
systems, cyclostationary systems, and random time-scale transformations.

Section 6 on random multidimensional linear transformations parallels
Section 3. The major application of the theory in this section is to
random scanning.

The final section on random nonlincar transformations is an
extension of Section 4 on deterministic nonlinear transformations. The
major issue in this scction is jitter. This vandom disturbance is
characterized in general terms, and shown to preserve cyclostationarity
under fairly liberal conditions.

The specific contents of this chapter are outlined below:

Section }: Introduction

Section 2: Linear Transformations.

#) ‘Time~invariant filters.

Theorem (2-1): Preservation of cyclostationarity by time-invariant

filrers.,
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Theorem (2-2): . Sampling theorem for nonstationary processes.

% ' Theorem (2-3): Redyction of cyclostationary prucesses to
; | ‘ o stationary processes via bandlimiting filters.
¥ i ' ! . '

b} Periodically time-barying systems. '

Theorem (2-4): Generation of cyclostationary processes from

, : stationary processes via perlodic systems.

!
¥

% Model (1): Amplitude-modulated signa}s.
A | | Model, (2): Pulsé-amplitude-modﬁlated signals.
1 Model (3):, Time-division-dul}iplexeé signals.' '
\ | | | | Model (5): Frqquency-division-multiﬁlexed,signals..
; , ‘ <) Time‘sculeltransformutiqﬁi.

t f :
! Theorem (2-5): Generation:of cyclostationary processcs from

P = stationary processes via periodic time-scale

i ‘transformations.
]

Mddel (5): Time-division-multiplexed signuls.'

ﬁ ' ' , Model (6): Uopplcr-éhiftcd processes.
p: . .

Model (7): ‘Random facsimile signal.

E: ' . i
3 ' ' {

(- . Model (8): Asynchronous pulsc-amplitude-modulated signals.
3 i ' '

i ' Section 3: Multi-dimensional lincar transtormations (scanning)
: !

. ‘ | ,
Iheorvem (2-0): Generition of one-dimensional cyclostationary

St o

{ |

3 ' processes from multi-dimensional stationary

3 ‘ ' processes via - multi-dimensional periodic systems.
% , . . -

: Model (2} the video signal (line scanningj.

Model 110):  The passive vadar signal {(cireular scanning).
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Section 4: Nonlinear Transformations.

Theorem (2-7): Generation of .cyclostationary processes from

Model (11):

stationary processes via periodic nonlinear
Volterra systems.

Parametrically amplified signals.

a) Zero-memory nonlinearities.

Theorem (2-8): Generation of cyclostationary processes from

stationary processes via periodic zero-memory

nonlinecarities.

b) Nonlincar modulation of synchronous pulse-trains.

Mode! (12):
dodel (13):
Model (14):
Model (15):
Model (16):

Model (17):

Frequency-shift-keyed signals (FSK).
Phasc-shift-keyed signals {PSK).
Pulse-width-modulated signals (PWM).
Pulse-position-modulated signals (PPM).

Digital pulse-trequency-modulated signals (DPFM).

Synchronous M-ary signals,

Theorem (2-9): Cyclostationarity of synchronous pulse-trains

nonlinearly moduiated with stationary sequences.

Section 5: Random lincar Transformations.

a) Wide-scnse stationary systems.

Theorem (2-10): Preservation of wide-sense stationarity by

Model (18):

random transformations.

Random periodic signals.

Theorem (2-11): Conversion of deterministic periodic systems into

wide-sense-stationary systems via phasc-randomization.
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Theorem (2-12): Preservation of cyclostationarity by random

transformations.

b) Cyclostationary systems.

Theorems (2-13): Generation of cyclostationary processes from
(2-14)

g,

stationary processes via random transformations.

Model (19): Random periocdic attenuation of stationary processes. !

L

Model (20): Multiplication of a stationary process by a

cyclostationary process.

Gy

c) Random time-scale transformations.

- a—

i} Phase-randomization.

Theorem (2-15): Reduction of cyclcstationary processes- to

I

statiorary processes via phase-randomization

Theorem (2-16): Equivalence between phase-randomizing and time-

RD—
e

averaging of random processes.

e

Theorem (2-17): Prescrvation of system cyclostationarity by

phasc-randomization.

Theorem (2-18): Reduction of cyclostationary systems to wide-

sense stationary systems via phase-randomization.

Theorem (2-19): Equivalence between phase-randomizing and time-

averaging random systems.

ii) Generaliz- 4 angle modulation.

Theorem (2-20): Preservation of cyclostationarity by a stationary

time-scale transformation,
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Theorem (2-21): Generation of cyclostationary processes from
periodic signals via stationary time-scale
transformations.

Model (21): Phase-modulated signals.

Model (22): Frequency-modulated signals.

Theorem (2-22): Generation of cyclostationary processes from
PAM time-scale transformations.

Model (23): Digival phasc-moduluted signals.

Model (24): Digital frequency-modulatéd signals.

Theorem (2-23): Generation of cyclostationary processes from
stationary processes via cyclostationary time-

sciale transformutions.

i Section 6: Random Multi-dimensional Linear Transformations,

Theorem (2-24): Generation of one-dimensionul cyclostationary
processes from multi-dimensional stationary
precesses via random multi-dimensional

cyclostationary systems.

-

Section 7: Nonlinear Random Transformations.

Zero-memory rapdom nonlincarities.

Theorem (2-25): Generation of cyclostationary processes from
stationary processes via zero-memory tandum
cyclostationary nonlinearities.

«itter.

Theorem (2-20): Preservation of cyclostationarity of random

proces.es by randowm jitter.
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Theorem (2-27): Prescrvation of cyclostationarity of random

systems by random jitter.

In concluding this summary of Chapter 11, we mention two interesting
facts which arise throughcut the chapter: 1. There need be no -exact
periodicity in.the realizations of a cyclostationary process: The
occurrence of pulses in jittercd PAM, for example, is not periodic, nor
are the pulse-occurrences in a Poisson pulse-process with periodic rate
parameter. The periodicity nced only be present in the first and second
order cnsemble averages. 2. The mean and variance for a cyclostationary
process can be constant so that the periodicity in these quantities is
degenerate, and still such processes can exhibit strong periodic
fluctuations in correlation, us excmplified by some time-division-

mualtiplexed signals, pulse-amplitude-modulated signals, and others.

b) Chapter 111: Series Representations for Cyclostationary
Processes (and Their Autocorrclation Functions). The third chapter of
this dissertation is an in-depth treatment of  series representations
for cycloxtationary (and stationary) processes and their autocorrelation
functions, and other periodic kerne!s; and includes discussions of their
application to the solution of lincar irtegral equations with periodic
hernels, and to the vealization of periodically time-varying linear
systems, and to the definition of a generalized Fourier transform for
cyclostationary processes.

Three types of series representations are treated:
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1. Translation series representations of the form

x(t) = pzl nz_w aptp(tAD) ¥t (=)

M
k. (t,s) = T AP? g (e- n'l‘)¢*(s-m'l‘) ¥ t,s £ (-»,0),
XX p,q=l n,m=-o PP

where {¢p} are deterministic basis functions, and {{anp}; p = 1.2,..,M}

are jointly stationary random sequences with crosscorrelations

E{a_a* } = APY
np mq Ao’

(T is the period of cyclostationarity).

If the basis functions are doubly orthonormal in the sense that

-mj ¢ (t- n!)é*(t AT = 6 S

then the representors are given by the formulas:
w

= | x(t+n’l‘)«p}‘;(t)dt

-

a

np
Pq = a e

n m II k (t‘“""m')¢;(t)¢q(r)dtd1.

2. Harmonic series representations of the form:

w

JORIENOIE e (o)
p-w
ko (ts) = ] (L) REAT g s o (e,

)
P, = - l 4
whare the {up} are jointly stationary processes bandlimited to

[-1/72T,1/2T], and with crosscorrclations
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E{ap(t)?a(s)) = kpq(t-s).

The representors are given by the formulas:

NORN w(t-1)x (e 2PV Ty,
Kyg(&s) = JJ w(t-Tw(s-y)k_ (r,y)e TP Tyrgy

where

W(t) A sin{nt/T) )

nt

3. Fourier scries representations (for autocorrelation functions)

of the form
kxx(t’s) = z cn(t_s)c.lnn(hs)/'l ¥ t,s ¢ (-w,®),
n:—tb

where the coefficient functions arc defined to be
T/2 . -
C“(T) = % f / kxx(E*I/Z,t.'/2)0-32""t/1dt.
-T/2

These three types of represeitations are developed in detail, and
the relationships existing amongst them are brought to light. The most
general representation is the translation series representation, since
many different translation series representations for a given cyclostationary
process can be obtained by making different choices for the basis
functions. In fact, a gencralization of the Karhunen-Loeve representation
is shown to be one special case of a translation series representation,

and the Sampling Theorem provides another. 1t should be emphasized

that these translation-series representations are countable discrete

representations, and are valid on the entire rcal line (-=,«).




The specific contents of this chapter are outlined below:

Section 1: Introduction

Section 2: Translation Serics Representations.

a) Definition

b)

d)

Theorem (3-1): Existence and identification of translation
series representations.
Representation in terms of PAM processes.,

.

Implementation of the process-resolution operation.

Examglcs.

i) Harmonic translation series representation.
ii) Walsh translation series representation.
iii) Karhunen-lLoeve translation series representation.

Finite-order translation series representations.

i) Bandlimited cyclostationary processes.

ii) Degencrate cyclootationary processes.

Correlation matrix decomposition and solution of integral equations.

i) Integral Equations.

Theorem (3-2): Explicit solution of general lincar integral
equation with periodic kernels.

ii) Correlation matrix decomposition.

(1) Infinite-dimensional diagonal matrices.

Theorem (3-3): Existence and identification of infinite-

dimensional diagonal corrclation matrices for

translation series reprosentations.

r—--n-a r-w--q
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(la) Random video signal.
L; (1b) Time-division-multiplexed signal.

(2) Infinite-dimensional diagonal-plus-finite-rank matrices.

o

Theorem (3-4): Matrix inversion formula.

(2a) Cyclostationary processes which are the outputs of

) periodically time-varying finite-dimensional lincar
{J : dynamical systems driven by white noise.

Theorem (3-5): Existence and identification of diagonal-plus-
J finite-rank correlation marrix for translation

} series representation.

- (2b) Time-division-multiplexed process with component signals

J which have been generated by finite-dimensional time-invariant
| systems,

o (3) Finite-dimensional diagonal and diagonal-plus-rank-1 matrices.

(3a) Time-division-multiplexed PAM signals.

(3b) Synchronous M-ary signals.

! g) Implementation of periodically time-varying linear systems.

h) Generalized Fourier transform for cyclostationary processes.

| Theorem (3-6): Lquivalence between gencralized Fourier transforms

under statistical expectation (extension of
Helly's Theorem).
Scction 3: Hurmonic Sceries Representation.
a) Definition,
Theorem (3-7): LExistence and identification of harmonic scries
representation.

b} Resolution and reconstruction.
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¢) Properties of the harmonic series representations.

(1) Stationarity.
(2) Phasc-randomization.
(3) Bandlimitedness.
(4) Time-invariant filtering.
d) Examples.
(1) Amplitudec-modulated signals.
(2) Frequency-division-multiplexed signals.
(3) Random periodic signals.

e) Solution of integral equations and realization of periodically

Time-varying systems.

Section 4: Fourier Seriecs Representation for Autocorrelation Functions.
a) Definition.
Theorem (3-8): Identification of Fourier series coefficient
functions a. crosscorrelation functions for
jointly stationary phase-randomized processes.

b) Properties of the Fourier scries representation.

e g e @

i) Phasc-vandomization and stationarity.
ii) Filtering and bandlimiting.
1ii) Constraints on coetficient functions.

¢) Solution of integral cquations and realization of periodically

time-varying systems.

We conclude this suwmary ol Chapter IHI by pointing out the fact
that the essence of the representations presented here is that they

effect o decomposition of @ single cyclostationary process into o multiplicity

g
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of jointly stutionary components. Such representations enable one to
convert many single-variable probiems (involving cyclostationary processes)
with periodically varying parameters to multi—variable problems with
constant parameters. This is the case for optimum linear filtering
problems as illustrated in Chapter IV,

Similarly, the autocorrelation-function representations presented
here, when applied to the representation of impulse-response functions,

effect a decomposition of a single periodically time-varying linear

system into a multiplicity of time-invariant filters and periodic moduiaters,

¢) Chapter IV: Least-Mean-Squared-Error Lincar Estimation of

Cyclostationary Processes. In this fourth chapter we consider a

particular application of the theory developed in the nreceding two
chapters. These carlier chapters serve mainly as a theoretical base upon
which various problems dealing with random periodic phenomena can be
formuluted and solved. Chapter !l provides a base for obtaining
mathematical models for physicual systems and signals, so that physical
problems can be formulated mathematically, and Chapter I1I provides a
base for simplifying the mathematical models so that analyses can be
simplified, and solutions obtained.

Although the application in this fourth chapter is but onc of many
possibilities, it has special significancc in that it has been the
primary motivation for developing the theory. Furthermore, the problem
considered in this application is of significant practical (as well as

theoretical) value in that its solution provides means for impreving the

)
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quality of present communication systems (and other signal processing
systems), and a means for evaluating certain performance measures for
newly proposed (as well as 2:xisting) communication systems, and it leads
to useful insight into the nature of optimum signal processing.
Specifically, the problem considered is that of least-mean-squared-
error linear estimation of imperfectly observed cyclostationary processes--
or, in communications jargon, optimum filtering of noisy distorted
cyclostationary signals. The particular aspects of the optimum filtering
problem that arc investigated in this chapter are the structure and the
performance of optimum linear filters for cyclostationary signals. In
fact, we prove (and demonstrate with numerous examples) the proposition
that optimum filters for cyclostationary signals are periodically time-
varying systems which can yicld significantly improved performance over
optimum filters which are constrained to be time-invariant and which thereby
ignore the cyclic character of the cyclostationary signals. We also show
that optimum linear receivers consist of demultiplexor-demodulators
followed by optimum time-invariant filters--the order of these two
operations being the reverse of that sometimes cncountered in
communication systems., These results are of considerable importance in
view of the great preponderance of cyclostationary signals in communication
systems (as emphasized throughout Chapter I1). Specific examples whichare
worked out in detail are included in the outline below:
Scction 1:  Introduction

Scetion 2: The Orthogonality Condition.
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Theorem (4-1): Lemma for the application of the Projection

S
V

Theorem to the optimum filtering problen.

Theorem (4-2): Statement of the orthogonality condition as

| . it applies to the optimum filtering problenm.

(1) "Infinite-dimensional" filters.

ARERSATFRIRRDRNET

(2) "Finite-dimensional" filters.
Section 3: Optimum Time-Invariant Filters for Stationary Processes:
Theorem (4-3): Bounds on mean-squared estimation-error. ;
Section 4: Optimu: Time-Invariant Filters for Cyclostationary Processes.
Theorem (4-4): Equivalence between the optimum filters_which
minimize the time-averaged error for cyclostationary
processes, and those which minimize the constant

error for the phase-randomized versions of the

cyclostationary processes.
Section 5: Optimum Time-Varyving Filters for Cyclostationary Processes.
a) Introduction.

b) Solutions based on translation series representations.

Theorem (4-5): General solution for the impulse-response function

for the optimum time-varying filter for cyclo-

stationary processes, and solution for the
minimum estimation-error.
Theorem (4-6): Extension of Theorem (4-5).

Theorem (4-7): Special case of Theorems (4-5), (4-06).

Theorem (4-8): Bounds on mean-squared estimation-error.




c) Solutions based on- the harmonic series representation.

i) Estimation of cyclostationary processes on an infinite .interval.
Theorem (4-9): General solution for the impulse-response
function for the optimum time-varying filter
for cyclostationary processes, and solution for
the minimum estimation-error.
ii) Estimation of periodic processes on a finite interval.
Theorem (4-10): Solution for the impulse-response function for
the optimum time-varying smoother for periodic
processes in additive white noise, and solution
for the minimun estimation-error,
Theorem (4-11): Counterpart of Theorem (4-10) for the optimum.
time-invariant smoother.

d) Solutions based on the Fourier series representation for

correlation functions.

Theorem (4-12): Conversion of integral equation for the impulse-
responsce function for the optimum time-varying
filter to an infinite sct of linear algebraic
equations.

Theorvem (4-13):  Specific case of Theorem (4-12) which yields an
explicit solution.

¢) Solutions based on inversc-operator and feedback-system methods.

i) Introduction.
i1} Examples.

(1) WSS signal subjected to time-invariant dispersion and

periodic attenuation, and additive white noisc.
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(2) CS AM signal in additive WSS white' noise. :
] , .

L e———————— - o

(3) WSS signal in additive CS white noise.

(4) ‘cs signaf (obtaine& from périodically time-s¢aled WSS
procéss) in add{tive WSS‘:hite n&ise. ! .

Src£ion‘6v' Examples of Opti&um Filters and improvements in Performanc;.

a) Examples employing translation series representations.

i) ‘Frequency-shift~ﬁeyod signals. ' ! .
ii) Time-division-multiplexed PAM signals.

iié) Frcqueudy-division-&ultiplexed ;ignals.
ivj Pulsc-ampli}ude-modulated s;gnals. | . oo

v) PAM signals through random channels.
vi) The video signal. |
'vii) Timé-division-multiplexed signals.!

b) Examples employing the harmanic series representation.

i) Frequency-division-multiplexed signals. !
ii) Amplitude-modulatcd signais.
i i i

iii) The random sinusoid.

¢) Lxamples employing the Fouricr series representation.

i) Amplitude-modulated signals. ! ‘

ii) Bandpass PAM signals. : \
! .
iii) Improvement for general PAM.
§

d) Examples cmploying the inverse-operator-feedback-system method,

i) Periodically attenuated WSS signal in WSS noise. 1
i)} AM-type signal in W8S noise.
Jiii) WSS signal in white CS noise.

fted Poisson pulsc-train.

, iv) Doppler-shi

v) Time-division-multiplexed signals.
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f) Summary.
Theorem (4-14): Demultiplexing and demodulation precedes time-

invariant filtering in optimum linear receiver.

We conclude this summary of Chapter IV by mentioning the intuitively
pleasing result that optimum time-varying filters for cyclostationary
processes can always be decomposed into a sequence of three signal
processing operations: 1. The received cyclostationary process is
decomposed into ene or more (jointly) stationary processes. 2. The
stationary component-processes are passed through time-invariant filters
(often Wiener filters). 3. The filtered components are recombined to
form the optimally filtered cyclostationary process. In most of the
cxamples presented, this scquence of operations takes onc of the
following specific forms: demodulator-filter-modulator, demultiplexor-
filter-multiplexor, inverse time-scale transformation--filter--time-scale
transformation. For those particular cyclostationary processes which
decompose into a single stationary process, the three signal processing
operations are more accurately described as: 1. Removal of periodic
fluctuations. 2. Time-invariant filtering. 3. Re-insertion of periodic
fluctuations.

Another result worth emphasizing is +hat cyclostationary processes
whose mean and variance dre constant can still possess a high degree of
cyclostationarity in the sense that optimum time-varying filtering can
yield substantially lower mean-squared error than cptimum time-invariant

Filtering.
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Finally, we mention that optimum time-varying filters for
cyclostationary processes appear to yield the greatest reduction in
mean-squared error (below that resulting from optimum time-invariant
filters) when the signal-to-noise ratio is high, but can yield

substantial reductions even at signal-to-noise ratios as low as unity.




2. Suggested Topics for Further Research

There are various topics dealing with cyclostationary processes
which deserve fuither research. We outline below several such areas of
investigation.

a) Degree of cyclostationarity. The only effective means we

have for determining the filtering advantage to be gained from a periodically
time-varying filter operated in synchronism with the received cyclo-
stationary signal is to carry out the complete solutions for the optimum
time-varying and time-invariant filters, and to evaluate the performance
functionals. It would therefore be desirable to devise a functional

which will indicate the "degree of cyclostationarity" of a process with
regard to filtering-performunce improvement that inherently can be
attained. Obviously, a "highly cyclostationary" process will exhibit

the largest improvement. One might expect that a constant-variance
cyclostationary process must have a limited degree of cyclostationarity
The video signal, for example has constant variance and for typical
parameter values the performance improvement factor is essentially
negligible. However, the PAM signal with fuil duty-cyele rectangular
pulses has constant vzriance, jet has an unlimited improvement factor

for low-noise conditions. Mme possible candidate for measuring the degree
of cyclostationarity is the relative size of the off-diagonal terms in the
HSR correlation matrix. For example, il the eff-diagonal terms vanish
then the process is stationary, and by derinition there is no improvement.
A relativel: simple functional tor indicating degree of cyclostationarity

or obtaining bounds on mmprovement “hould find extensive application in
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further studies since certain aspects of performance can be determined

without having to carry out a complete solution to the estimation problem.

b) Implementation of periodically time-varying filters. Although

most of the examples of optimum filters presented in Chapter IV were
finite structures, the general solutions provided in Theorems (4-5,6,7,9)
are based on infinite series representations, and result in infinite
structures (infinite number of parallel paths.) As discussed in Chapter II1,
truncated versions of the representations may provide satisfactory
approximations and finite structures, and the implementation of such
structures can be cnhanced by the use of convenient basis functions which
result in the rveplacement of modulators by switches, and by the use of
digital filters to implement sampled-data filters. llowever, these fiiters
probably do not have the minimum complexity for a given degree of
approximition to the optimum filter. Less complex filter structures

might likely result from an a-priorvi choice of bas:s {ilters, and

solution for the corresponding optimum “finite-dimensional filter" as
aiscussed in Scction 2 of Chapter IV. In fact, the basis filters can

be chosen for adjustability so that changes in signal and noise parameters
can be conveniently accomodated. An investigation into the trade-off's
available between convenicnce-of-implementation and performance could

produce some useful results.

¢} Synchronizing and trackipg. A random signal can be cyclostationary

even though there may be no strict periodicity 1n the occurrence of the

randoin events comprising the signal. For example, in direct contrast to




(%]
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the periodic occurrence of pulses in a synchronous PAM signal, the pulse-
occurrences in a Poisson pulse-train process with periodic rate parameter
are random--only the average rate-of-occurrences is periodic. In fact
some signal processes exhibit cyclic fluctuations but are only "quasi-
cyclostationary" since the period of the cyclic fluctuations varies slowly
with time. Obtaining knowledge of the phase of such non-synchronous
cyclostationary (and quasi-cyclostationary) signals is not as straight-
forward as it is for highly structured synchronous cyclostationary signals
such as PAM. Thus it would be desirable to develop methods for tracking
cyclostationary signals in order to extract useful timing informztion for
optimum filtering, and other signal processing operations. The phase

lock loop and some of its variutions such as the Costas filter loop and
the squaring loop have found much application for symbol synchronization
for synchronous pulse-trains, and ror carrier synchronization [40]. One
approach to the timing recovery problem for more general cyclostationary
signals then would be to extend these and related ideas which have been
suceesstful for the more structared <ignals {1,40].  Future investigations
might scek to evaluate the effo oty of trade-offs in complexity between

the twme-varying filter and the traching-loop structures on overall

performance.

d) Modelling. A continued study of appropriate models for random
processes resulting from various types of sampling, scanning, and multi-

plexing operitions is essential in order to take full advantage of the

results an this thesis.  In pacticular, one might concentrate on operations
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involving random parameters, such as scanning speed or clocking rate,
which produce non-synchroncus signals. The resulting processes may be
either cyclostationary ur "quasi-cyclostationary', as mentioned previously,
depending on the models chosen. See, for example, Section 7 of Chapter I

on jitter,

e) Signal Design. Related to the modelling problem above are
questions concerning the design of the sampling, scanning, and multiplexing
operations with regard to introducing a sufficient degree of cyclostationarity
for satisfactory rcceiver operation, with respect to both timing
extraction and filter performance. An investigation of such ideas could
provide the basis for the joint optimum design of transmitter and recciver.
Previous studies have treated un aspect of this known as the power
sllocation problem [10) wherein the trade-off between power in
synchronizing signals and in information-bearing signals is examined. A

new approach to this problem might be based on degree of cyclostationarity.
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