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13 AGSTRACT

Random signal processes which have been subjected to some form of repetitive operation
such as sampling, scanning or multiplexing will usually exhibit statistical properties
which vary periodically with time. In many cases, the repetitive operation is introduced
intentionally to put the signal in a format which is easily manipulated and which
preserves the time-position integrity of the events which the signal is representing.
Familiar examples are radar antenna scanning patterns, raster formats for scanning
video fields, synchronous miltiplexing schemes, and synchronizing and framing tech-
niques employed in data transmission. In fact, in all forms of data transmiss•ion, it

seems that some form of periodicity is imposed on the signal format.
Random processes with statistical properties that vary periodically with time are
encountered frequently, not only in electrical communication systems, but in biological
systems, chemical processes, and studies concerr.cd with meteorology, ecology, and
other physical and natural sciences.
Systems analysts have tended, for the most part, to treat these "cyclostationary"'
processes as though they were stationary. This is done simply by averaging the
statistical parameters (mean, variance, etc.) over one cycle. This averaging is
equivalent to modelling the time-reierence or-phase of the process as a random variable
uniformly distributed over one cycle. Thi• type of analysis is appropriate in situations,!
where the process is not observed in synchronism with its periodic structure. However,
in a receiver that is intended for a cyclostationary signal, there is usually provided
a great deal of information--in the form of a synchronizing pulse-stream or a sinusoida'
timing signal--about the exact phase of the signal format. Most systems are, in fact,
inoperative without this information.
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ABSTRACT

Random signal processes which have been subjected to some form of

5 repetitive operation sL(h as sampling, scanning or multiplexing will

usually exhibit statistical properties which vary periodically with time.

In many cases, the repetitive operation is introduced intentionally to

[ put the signal in a format which is easily manipulated and which preserves

the time-position integrity of the events which the signal is representing.

j Familiar examples are radar antenna scanning patterns, raster formats for

scanning video fields, synchronous multiplexing schemes, and synchronizing

and framing techniques employed in data transmission. In fact, in all

L forms of data transmission, it seems that some form of periodicity is

imposed on the signal format.

S1Random processes with statistical properties that vary periodically

with time are encountered frequently, not only in electrical communicatiol1

systems, but in biological systems, chemical processes, and studies

71. concerned with meteorology, ecology, and other physical and natural sciences.

Systems analysts have tended, for the most part, to treat these

T "cyclostationary" processes as though they were stationary. This is done

simply by averaging the statistical parameters (mean, variance, etc.) over

one cycle. This averaging is equivalent to modelling the time-reference

or phase of the process as a random variable uniformly distributed over

one cycle. This type of analysis is appropriate in situations where the

T process is not observed in synchronism with its periodic structure.

However, in a receiver that is intended for a cyclostationary signal,

there is usually provided a great deal of information--in the form of a

I
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synchronizing pulse-stream or a sinusoidal timing signal--about the exact

phase of the signal format. Most systems are, in fact, inoperative

without this information.

The first chapter of this dissertation-is introductory and features

IIa detailed historical account of the meager development and application

of the theory--still in its infancy--'of cyclostationary processes. (as it

jappears in the engineering literature).

The second chapter is an extensive treatment of the topics of

14 transformation, generation, and modelling of cyclostationary processes;

iiand, among other things, serves to introduce a large number of models

for cyclostationary processas. These models are used throughout the

dissertation for illustrating various theoretical results.

The third chapter is an in-depth treatment of series representations

[Ifor cyclostationary processes, and their autocorrelatior -unctions, and

other periodic kernels. These representations are apriied to the problems

of analysing cyclostationary processes, solving linear integral equations

with periodic kernels, realizing periodically time-varying linear systems,

and defining a generalized Fourier transform for cyclostationary (and

I 1; stationary) processes.

The fourth chapter addresses itself to the problem of least-mean-

squared-error linear estimation (optimum filtering) of cyclostationary

processes, and employs the representations of Chapter III to obtain solutions,

and the models of Chapter II to illustrate these solutions. Previous

analyses of optimum filtering operations have assumed the stationary model for

these processes and result in time-invariant filters. One of the major

results in this thesis is the demonstration of the improvement in
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performance that can be obtained by recognizing that--by virtue of

timing information at the receiver--the received process is actually

cyclostationary and the optimum filter is a periodically time-varying

system. Numerous illustrative examples including amplitude-modulation,

3 frequency-shift-keying, pulse-amplitude-modulation, frequency-division-

multiplexing, and time-division-multiplexing are worked out in detail

I and include realizations of the optimum time-varying filters.

I
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C H CHAPTER I

INTRODUCTION

ill 1. Motivation and Brief Description

Random signal processes which have been subjected to some form of

repetitive operation such as sampling or scanning will usually exhibit

statistical properties which vary periodically with time. In many cases,

the repetitive operation is introduced intentionally to put the signal

in a format which is easily manipulated and which preserves the time-

L position integrity of the events which the signal is representing.

Familiar examples are radar antenna scanning patterns, raster formats

for scanning video fields, synchronous multiplexing schemes, and

synchronizing and framing techniques employed in data transmission. In

fact, in all forms of data transmission, it seems that some form of

L periodicity is imposed on the signal format.

Random processes with statistical properties that vary periodically

1. with time are encountered frequently, not only in electrical

ii communication systems, but in studies concerned with biological systems,

meteorology, chemical processes, and ecological systems.

One process which exhibits statistically periodic characteristics

. is a synchronously timed pulse-sequence as used in digital data-

•- transmission. Bennett [1] recognized this as a special case of a broader

class of processes which he termed cyclostationary [2]. Other authors

[3]-[9] have used the terms "periodically stationary", "periodic-

stationary", "periodically correlated", "periodic-nonstationary" and

"periodically nonstationary" to denote this same class.



Systems anqlysts have tended, for the most part, to treat these

processes statistically as though they were'stationary processes. This

is done s:imply by averaging the statistical paramneters (mean, covariance,

etc.) over one period. This averaging, is equivalent to assuming that
'L

the time-referenpe, or phase,'.of the repetitive operation is completely

indeterminate; i.e., the phase is a randqm variable, uniformly distributed

over one period. This type of analysis is appropriate in si~tuations I

where the process is not observed (or measured) in synchronism with its

periodic structure. For example, a cyclostationary process may be an

interference in a *ignal-transmission-channel whose receiver has no

knowledge of the phase of the interfering process. In such a situation,

the concepts used With stationary processes, such as power spectral

density, can be valuable in evaluating system performance., However, in

a receiver that is intended for a cyclos~tationary process, there is

usually provided a great deal of information--in theiform of a

synchronizing pulse-stream or a sinusoidal timing signal-,-about the

exact phase of the signal format. Most systems are,;in fact, inoperative

without this information.

Previous analyses of optimum-reqeiver filtering operatiofis have

assumed the.stationary model for these processes and--for least-mean-

squared-error reconstruction'of the signal--result in time-invariant

filters, One of the major results in this tiesis is the demonstration

of the improvement in performance that can be obtained by recdgrizipg

that--by virtue of timing information at the receiver-,-the received

process is actually cyclostationaiy' and the optimum receiver-filter is g

'I.
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I a periodically time-varying system. Numerous illustrative examples

including amplitude-modulation, frequency-shift-keying, pulse-amplitude-

modulation, frequency-division-multiplexing, and time-division-

S]multiplexing are worked out in detail and include realizations of the

optimum time-varying filters.

The many examples presented not only demonstrate improvement, but

also illustrate the general methods which are developed for representing

cyclostationary processes and solving for and synthesizing optimum

periodic filters. These methods are embodied in a general approach

which applies not only to the problems of representation and estimation

of cyclostationary processes, but more extensively to the solution of

linear integral equations with periodic kernels and the synthesis of

periodic linear systems.

The remainder of this introductory chapter serves to define cyclo-

stationarity, and to illustrate same with several examples of cyclo-

L stationary signals which are commonly employed in communication systems,

j and to give a historical account of the development and application of

the theory of cyclostationary processes (as it appears in the engineering

literature).

The second chapter is an extensive treatment of the topics of

transformation, generation, and modeling of cyclostationary processes;

and, among other things, serves to introduce a large number of classes,

or types, of models for cyclostationary processes. These models are

used throughout the dissertation for illustrating various theoretical

results.

The third chapter is an in-depth treatment of series

representations for cyclostationary processes, and their autocorrelation
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functions, and other periodic kernels; and includes brief discussions

of their application to the solution of integral equations, and to the

realiz.-Aon of periodically time-varying systems.

The fourth chapter addresses itself to the problem of least-mean-

square linear estimation of cyclostationary processes (in noise), and

employs the representations of Chapter III to obtain solutions, and the

models of Chapter II to illustrate these solutions.

The fifth chapter is a detailed summary of the contents of Chapters l}

II, III, IV and includes recommendations for further research.

As a convenience for the reader, this final chapter serves as a I
combination index, outline and summary. It is hoped that this detailed

summary will help to offset the length of Chapters II, III, IV. _

.i

ii



2. Definition of Cyclostationarity

We begin with definitions for two types of stationarity:

DEFINITION: A random process {x(t); t c JI is stationary-of-order-two

Si(S(2)) if and only if:

i) the probability density functionS(PDF's) for the random variables

{x(t)} are identical for all t e J:

LI Px(t)() = Px(o)(') i t C J,

ii) for every t,s £ J the joint PDF for the random variables x(t) and

x(s) depends only on the difference of indices t-s:

i| P~~~x(t)x(s)(.. =x(t-s)x(O).,)ts .

If x is a continuous-time random process, then the index set J

is the set of real numbers R, and if x is a random sequenceI then J is

the set of integers I.

1. We are using an extended definition of a random sequence; strictly
speaking, the domain of a sequence is the natural numbers (positive
integers). Notice also that if x is a random sequence, then the PDF's

Px(O) '), Px(t)x(O) (..) are composed of one- and two-dimensional impulse

functions.
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DEFINITION: A random process (x(t); t c J) is stationary-in-the-wide-

sense (WSS) if and only if: LL

i) the mean function for the random process x is independent of the

index t for every t c J:

mx (t) = E{x(t)} =f a PxMt)(a)da = m (O) V t C J,

ii) for every t,s c J the autocorrelation function for the random

process x depends only on the difference of indices t-s:

k xx(t,s) = E{x(t)x*(s)} = ff oy*px(t)x(s) (u,y)dcddy

= k xx(t-s,O) • t,s C J.

"In the above definition, E{.} denotes statistical expectation,

and * denotes complex conjugation. In the interest of notational

economy, we will (with some abuse of notation) identify the auto-

correlation function for a WSS process x as k (t-s) = kxx (t-s,O).xx x

Notice that stationary-of-order-two processes compose a subclass L

of the class of processes which are wide-sense stationary, and both of

these classes are characterized by the invariance of certain statistical

parameters to arbitrary shifts of the indexing variable. We now define

two superclasses which are characterized by the invariance of certain

statistical parameters to shifts of the indexing variable by multiples

of a basic period. To emphasize the cyclic character of these processes,

the term cyclostationary will be used:

DEFINITION: A random process {x(t); t c J} is cyclostationary-of-order-

two (CS(2)) with period T if and only if:

i) the PD1F for the random variable x(t) is identical to that for the
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random variable x(t+T) for every t c J:

Ip = MPxt+T) V t C J,

Jii) for every t,s c J the joint PDF for the random variables x(t)

and x(s) is identical to that for the random variables x(t+T) and

x(s+T):

P x(t)xts)(''") = Px(t+T)x(s+T)('") Vt's C J.

DEFIN lION: A random process {x(t); t c J) is cyclostationary-in-the

I wide__w_-sense (WSCS) with period T if and only if:

i) the mean function for the random process x is T-periodic:

m (t+T) = E{x(t+T)} = m(t) MV t ,J,

I ii) for every t,s c J the autocorrelation function for the random

process x is jointly T-periodic in t and s:

k xx(t+T,s+T) = E{x(t+T)x*(s+T)} = k xx(t,s) V t,s £ J.

LI Notice that condition ii) in this last definition--that k xxC.,.)

be jointly T-periodic in its two variables--is less restrictive than the

condition that k xx.,.) be individually T-periodic in each of its

variablesf

k xx (t+Ts) = k (t,s+T) = k (ts) V t,s £ J,
XX XX

which if substituted for ii) would define the class of processes which

• are periodic-in-the-wide-sense (WSP).

No• Lce also that it is possible--in fact, occurs frequently in

practiccl--for WSCS processes to have constant mean and variance

(k (t,t)-m2 (t)) like WSS processes, and yeL have autocorrelation
xx x

functions which display periodic fluctuations.
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Now, all processes which are stationary-of-order-two are cyclo-

stationaryof -order-two with any choice of period T, and all wide-

sense stationary processes are wide-sense cyclostationary with any choice

of period T, and all wide-sense periodic processes are wide-sense L
cyclcstationary and are not 2 wide-sense stationary. In summary, these 13
various classes of processes are related as shown in the Venn diagram

of Figure (1-1).

We will be primarily concerned with WSCS processes in this thesis

and, from this point on, will refer to these simply as CS. L
Most of the cyclostationary processes studied in this thesis are 13

derived from stationary processes which have been subjected to some form

of repetitive operation such as sampling, scanning, multiplexing, or

time-scale modulation. There is, in fact, a large variety of mechanisms

by which periodicity is imposed on a process which mignt otherwise be i
stationary. Following are several representative examples:

i) Sampling and synchronous data signals. A particularly interesting

example of a cyclostationary process is the signal x which results from L

synchronously sampling a WSS process y and reconstructing the waveform 7

with a prescribed interpolating pulse. Realizations of this process

take the form: 13
x(t) = y(nT)q(t-nT) (1-1)

where {y(n'r)) are the sample values of the realization y(.), and q(.)

is the interpolating pulse- For example, the familiar sample-and-hold I

a-. is so except for the single degenerate case where k (t,s) constantfor all t,s F_ J. xx.,
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operation is characterized by a rectangular q(.) of unit height and

width T. A typical realization of a sampled-and-held process is shown

in Fig. (1-2). The mean and autocorrelation for the process are given

by the expressions [2]:

m (t) = m I q(t-nT)

k (t,s) = • k (nT-mT)q(t-nT)q(s-mT) (1-2)
xx yyn,m

and cyclostationarity of x is easily verified. Notice that, for the

U sample-and-hold pulse, x ha. constant mean and variance but its auto-

correlation function has strong periodic fluctuations which are shown

1 graphically in Figure (1-3). (The periodic fluctuations of a CS process

are displayed along lines parallel to the(t = s)diagonal.)

Another version of this process is synchronous pulse-amplitude-

modulation (PAM) where the numbers {y(nT)) = {ynI are realizations of a

random data-sequence, and the pulse shape q(.) is selected to minimize the

ill effects of intersymbol-interference [2] which result from transmission

over a dispersive communication-channel. This model can be made more

realistic by modifying the time-position of each pulse with a random

jitter variaole:

x(t) = I ynq(t-nT+6n).
n

The resultant process termed jittered PAM can still be cyclostationary

with period T [2] (See Sec. 7 of Chapter II).

Other pulse-modulation techniques such as frequency-shift-keying,

phase-shift-keying, pulse-width-modulation, and pulse-position-

modulation also give rise to synchronous pulse-trains which can be

modeled as CS processes [10] (see Sec. 4 of Chaptez II). In fact even
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asynchronous pulse-trains can be modeled as CS processes as shown in

Sec. 2 of Chapter II.

ii) Scanning and time-division-multiplexed signals. In communications,

one often encounters processes formed by interleaving finite-length

records from a multiplicity of signal sources. As an example consider

the process with realizations of the form

x(t) = [ xn(t)q(t-nT) (1-3)
n=-.

where q(t-n') is a "gating pulse" (evaluated at time t) which "turns on"

the nth signal source in the time-interval [nT, (n+l)T], and {x n} are the

various random signals. Specifically, consider the time-division-

multiplex (TDM) of M 6ifferent jointly WSS signals {xn; xn = Xn+M V n't

with crosscorrelations k n(t-s) = E{x n(t)x t(s)I and means mn = E{x n(t)).

A typical realization of such a TDM signal is shown in Fig. (1-4). The

mean and autocorrelation for the composite TDM process are given by the

expressions:

mx (t) = • mnq(t-nT)
n

k xx(t,s) = n n(t-s~q(t-nT)q(s-ZT) (1-4) 1
and the cyclostationarity (period MT) is easily verified. Notice that

regardless of the differences among the various auto- and cross-

correlation functions for the M signals, if the means and variances are

equal, the mean and variance of the composite cyclostationary process

are both constant (for a rectangular gate function). Yet its auto-

correlation function can have pronounced periodic variations even when

all N of the signals are statistically identical (in which case the period

.II



of cyclostationarity is T). Other CS models for TIM signals are derived

LIin Sec. 2 of Chapter II.

As another special case of those processes which take the form of

Equation (1-3), consider the video signal which results from conventional

line-scanning of a rectangular visual-field [11]. Here the {xn I represent

consecutive one-line segments of the video signal and M is the number of

U lines per frame. Using the Markov model derived by Franks [11] for the

line segments (see Figure (1-5)) we obtain

U kn(t-s) = p1n foItslmod e (t-nT),(s-IT) c [0,T].

Thus, the video autocorrelation. function becomes (from Equation (1-4)):
kxx (t,s) = e -2nfot-simod T I PIn-II q(t-nT)q(s-IT) (1-5)

S~n,Z

which, interestingly, is the autocorrelation function of a sampled and

Sheld process (Equation (1-2)) modified by a factor--call it k1(t-s)--

which is T-periodic in t-s.. This periodic factor is shown graphically

Sin Fig. (1-6), where the parameter fo has been chosen much greater than

l/T as it is for typical viewing material. See Secs. 3,6 of Chapter II

for a more detailed model of the video process which takes into account

Sframe-to-frame correlation as well as line-to-line co'rrlation.

Many other CS processes such as amplitude-modulated signals, analog and

[I digital phase and frequency modulated signals, frequency-division-multiplexed

signals, etc. are introduced and discussed in Chapter II.

r•
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3. Historical Notes

Interest in cyclostationary random processes seems to have

originated in the investigations of a group of communications engineers i
and scientists involved in the development of pulse-code-modulation

(PCM) at Bell Telephone Laboratories 3 in the late 1940's [4]. However,

the cyclostationarity of these PCM processes did not specifically begin

to receive attention until the late 1950's. In 1958, Bennett M1]

developed a statistical model for the synchronous pulse-train of PCM and [3
demonstrated that the process is nonstationary and exhibits periodically

varying mean and autocovariance functions. fie coined the term

"€cyclostationary" to denote the class of nonstationcry processes which

exhibit these cyclic characteristics, and he introduced the Fourier series

representation for the mean and autocovariance functions. In addition, Li
Bennett discussed the phase-randomization method of obtaining a stationary

model for a cyclostationary process, and he pointed out that the power

spectral density obtained from this model is identical to that obtained

by Macfarlane (121 in 1949 using Rice's general definition of the average LI
power spectral density of a nonstationary process [13].

Four years prior to Bennett's publication, Deutsch [8] presented a

paper on the envelope detection of cyclostationary processes--which he I
referred to as "periodically-stationary"--composed of one or more

periodic signals each amplitude modulated with a stationary Gaussian

process. Although this article preceded Bennett's, it did not deal

primarily with the periodic structure of the cyclostationary processes.

6 The basic ideas of--and original patents on--PCM date back to the early
1930's. See T of Pulse Code Modulation for a historical review [39]. .I
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At about the same time (late 1950's), interest in cyclogtationary

jj •processes was initiated in Russia with a series of theoretical works on

radiophysics. Gudzenko, motivated by these works, published a paper in

ii1959 on the general structure of cyclostationary processes which he

referred to as "periodically nonstationary" [14]. He briefly examined

I]the periodi: correlation function and corresponding "time-varying

U spectrum" for the general (arbitrary) cyclostationary process, and gave

sufficient conditions for the consistent estimation of the coefficient

U functions in the Fourier series expansion of the autocorrelation function.

He also mentioned the interpretation of the zero erder Fourier

L coefficient as the autocorrelation function of a stationary process, and

briefly discussed linear filtering of cyclostationary processes.

Following Gudzenko's paper were two works published by Gladyshev who

rj •was associated with the Institute of Atmospheric Physics in the Academy

of Sciences' of the USSR [15,16]. The first paper (1961) was an

U• investigation of the mathematical structure of cyclostationary sequences,

and the second (1963) was a more brief investigation of the properties

of continuous-time cyclostationary and "almost cyclostationary" processes.

"Specifically, he considered the non-negative definiteness of the Fourier

series coefficient functions, and the harmonizability of these processes

u which he referred to as "periodically and almost periodically correlated".

* - Following these pioneering works, there have been a number of

publications dealing with cyclostationary processes as related to

meteorology, signals for communication, and noise in electrical devices
a.
and circuits. Jordan (1961) derived the least-squares series representation,
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on a finite interval,of a random signal in the presence of noise, and

briefly discussed its application to the problem of least-squares

estimation of cyclostationary signals in noise [25). Monin (1963)

suggested using cyclostationary processes as models for meteorological L
processes [17]. Willis (1964), motivated by a study of cosmic ray [
extensive air showers, investigated a non-homogeneous Poisson process

with periodic rate parameter, and indicated how the amplitude and

frequency of the periodic rate-of-occurrence of events can be estimated

from measured time intervals between events [18]. Parzen (1962) suggested

that a non-homogeneous Poisson process with periodic rate parameter

would serve as a suitable model of electron emissions from the cathode

of a temperature-limited diode with alternating filament-current [22].

Markelov (1966) studied some statistical properties of the cyclostationary

output of a parametric amplifier driven by a stationary process. lie

derived the average number of axis-crossings and relative staying time in

an interval [21]. Anderson and Salz (1965) derived the power spectral

density for the stationarized version of a cyclostationary digital FM iJ

signal [23], and Lundquist (1969) similarly derived the power spectral

density for digital PM [24]. 1j
Several additional references to work related to cyclostationary

processes can be found in the references in Brelsford's doctoral

dissertation "Probability Predictions an 'd Time Series with Periodic

Structure", (1967) [19]. Chapter V of his dissertation is devoted to

a brief review of representations for cyclostationary processes (mostly

sequences) and the presentation of' autoregressive techniques for the

]i
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II linear prediction of cyclostationary sequences. In particular,

IiBrelsford (and Jones [20]) demonstrated--using meteorological data--

that autoregressive techniques which employ periodically varying

U coefficients can yield better predictions of cyclostationary sequences

than prior techniques which used only constant coefficients.

A Zew other references to work related to cyclostationary processes

can be found in the bibliography and historical notes in Hurd's doctoral

dissertation "An Investigation of Periodically Correlated Stochastic

Processes" (196ý) [S]. In his dissertation, Hurd investigates (with

mathematical rigor) the structure and experimental analysis of cyclo-

L stationary processes which he refers to as "periodically correlated".

His work centers around the Fourier series representation for the

correlation functions for cyclostationary processes, and is closely related

to the pioneering works of Gudzenko (1959) and Gladyshev (1963). Hurd's

dissertation is !ivided i.to two main areas. The first contains an

examination of the general mathematical structure of cyclostationary

L []processes and their correlation functions, and contains a brief

discussion of the stationarizing effect of a random phase and the effects

of linear filtering, and includes a few models for the generation of

cyclostationary processes from stationary processes. The second area

contains treatments of several topics in experimental analysis. Specifically,

71 cyclostationary processes are shown to have "ergodic" properties in the

sense that the autocorrelation function and its Fourier series

coefficient-functions can--under certain conditions-- be estimated from

one sample function of a cyclostationary process. Also, some methods for

testing observed waveforms for cyclostationarity are presented along with

7- some experimental results.
L.
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The textbooks of Stratonovich (1963) [7], Papoulis (1965) [3],

Bendat and Piersol (1966) [9], and Franks (1969) [2], define the class

of cyclostationary processes, give various examples, and (except [91)

discuss the stationarizing effect of phase-ragdomization. The most

extensive treatment is that of Franks. In a, chapter devoted mostly to

the development of models for cyclostationary processes, he points out

that most scanning'operations, such 4s radar antenna circular-scanning

and video line-scanning, can produce cyclostationary signals,,and in

fact that many of the commoniy used repetitive signal procqssing

-operations including sampling, scanning, and multiplexing can transform

stationary processes into cyclostationary processes. He 4evelops, in

detail, a cyclostationary model for synchronous pulse&amplitude-

modulation (PAM) and shows that "jittered" PAM (non-synchronous) can

also be cyclostationary. He also intioduces cyclostationary mo4els for

the time-division multiplex of two statioharylsignals, and for synchronous

pulse-width-modulation.

Finally, we mention the very recent work of Ogura (1971) in which

he briefly discusses series and integral represeptations for cyclostationary'

processes, and presents in some detail an interesting harmonic series:

representation for cyclostationary processes and their autocorrelation

functions. fe also briefly discusses the measurement of the coefficients

in his harmoniq series representation for "ergodic" cyclostationary'

processes, and concludes with three examples of cyclostationary

processes: AM, PAM, and PPM.

II
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[IIn summary, the major works which deal directly with the general

class of cyclostationary processes are, in chronological order, those

of: Bennett (1958), Gudzenko (1959), Gladyshev (1961, 1963),

"Brelsford (1967), Franks (1969), Hurd (1969), and Ogura (1971).

4. Preliminary Comments on Mathematical Rigor

Although most engineers are familiar with and use the Riemann

integral [26] rather than the Lebesgue integral [27], it is the latter

* which is indispensable in analyses where questions of the existence of

integral and series representations of functions (random and deterministic)

arise, and where the interchange of the order of execution of integration,

infinite summation, and statistical expectation must be justified.

S(See, for example, Wiener [28] pp. 4-5, and Epstein [29] p. 29). Such

questions of existence and needs for justification arise throughout every

i remaining chapter of this dissertation, and can only be rigorously

dealt with in terms of Lebesgue integration theory and associated

j" measure-theoretic notions. For example, the work of Hurd [5], which is

closely related to this thesis, is thoroughly based in measure theory.

U Despite these comments, it is not my intent to clutter the

presentation of the methods, techniques, and results of this thesis with

rigorous justifications of the numerous manipulations, and with precise

statements of the conditions under which the various (known)

representations are valid. Such an undertaking would surely transform

this engineering thesis into a mathematical work of limited appeal to

most engineers.



Rather, I will assume that all random processes of interest are

harmonizable in the sense that the double Fourier transform of their i
autocorrelation functions exist (with the possible inclusion of i~pulse

functions); that all periodic functions (including periodic trains of LI
impulses) possess Fourier series representations; and that wherever

necessary, the order of execution of integration, infinite summation,

and statistical expectation can be interchanged. Clearly then, all proofs j
based on these assumptions will be formal proofs.

I refer the mathematically inclined reader, interested in the

validity of these assumptions, to the following references chosen on

the basis of their potential appeal to engineers: 71

(1) Lebesgue integration theory: Riesz and Sz-Nagy [31], and Epstein [29],

(2) Properties of the Lebesgue integral, and development of series and

integral harmonic representations for deterministic functions: Wiener [28],

and Titchmarsh [32,33],

(3) Theory of linear integral equations: Riesz and Sz-Nagy [31],

(4) Theory of Distributions (impulse functions and their relatives):

Zeman!an [30],

(5) Development of series and integral representations for random functions

(introductory treatments for engineers): Pugachev [34], and Papoulis [3],

(6) Linear functional analysis: Epstein [29], and Riesz and Sz-Nagy [31].

Finally, I mention that the use of the Fourier transforms and

Fourier series (except in Chapter III, Section 2h where a generalized

Fourier transform for random processes is defined) and the use and

manipulation of infinite integrals, infinite series, and impulse functions

in this dissertation are not uncommon in the engineering literature, and

are often easy to justify heuristically.
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jCHAPTER II

TRANSFORMATION, GENERATION, AND MODELING

OF CYCLOSTATIONARY PROCESSES

1. Introduction

SI This chapter provides a foundation upon which many of the develop-

•i ments 'n this thesis are based, and upon which subsequent studies

dealing with cyclostationary processes can be based. We consider here

the generation of cyclostationary processes and transformations on them.

We develop formulas which describe, in terms of input-output relations,

Svarious classes of transformations such as linear time-invariant,

periodically varying, and time-scale transformations; and random linear

L stationary and cyclostationary transformations. Also considered are

U nonlinear random and deterministic transformations encountered in various

modulating schemes and common models of distortion. We derive models for

a multitude of cyclostationary processes which are generated from

stationary processes that have been subjected to transformations from

• .1 the above classes. We also present a number of theorems on transforma-

tions mostly related to the generation and preservation of

cyclostationarity.

Most of the developments in this chapter relate to the system

diagram shown in Figure 2-1 where y is a random process referred to as

the input to the system G, and x is a random process termed the output.

S- x is also referred to as the image of y under the transformation G, and

y is termed the inverse-image of x.
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In Section 2, we consider Transformations G which are linear.

After deriving general input-output relations, we individually discuss,

in some detail, the three subclasses of linear transformations referred

to as time-invariant filters (2a), periodically time-varying systems (2b),

and time-scale transformations (2c). Zadeh's "system function" is

introduced as a means for characterizing linear systems, and is used

throughout most of this section. A number of theorems on the properties

of these three classes of transformations are proven and illustrated

with examples which also serve to introduce seven types or classes of

cyclostationary processes including time-division-multiplexed signals, i
frequency-division-multiplexed signals, and a-synchronous pulse trains

including facsimile, and telegraph signals.

In Section 3, we briefly discuss multidimensional linear

transformations as a means for characterizing scanning operations. LI

Examples are given to illustrate two common types of scanning, and to

introduce two additional classes of cyclostationary processes including

video signals.

In the fourth section, we introduce a generalization of Wiener's

"Volterra series representation" for characterizing input-output relations I

for periodic nonlinear systems. Two subclasses of periodic Volterra j
systems are considered, and theorems for each, on the generation of

cyclostationary processes, are proven and illustrated with examples

which also serve to introduce several additional classes of cyclo-

stationary processes, including synchronous pulse-trains such as

frequency-shift-keyed signals.

~__
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Section 5, on random linear transformations, parallels Section 2

Iil on deterministic linear systems. After deriving general input-output

relations in terms of a generalization of Zadeh's "system correlation

function", we individually discuss, in some detail, the three subclasses

referred to as wide-sense-stationary systems (5a), cyclostationary systems

(Sb), and random time-scale transformations (5c). A number of theorems

L on the preservation and generation of cyclostationary processes are

proven and illustrated with examples which also serve to introduce

L another eight classes or types of cyclostationary processes, including

U analog and digital frequency-modulated and phase-modulated signals.

Section 6, on random multidimensional linear transformations,

parallels Section 3. The major application of the theory in this section

is to random scanning.

SThe final section (7), on random nonlinear transformations, is an

{i extension of Section 4 on deterministic nonlinear systems. The major

issue in this section is "jitter". This random disturbance is

Li characterized in general terms, and shown to preserve cyclostationarity

under a fairly liberal set of conditions.

- 2. Linear Transformations

Due to the length of this section, we begin by giving a brief

outline of the theorems proved and the cyclostationary process models

defined:

a) Time-invariant filters

Theorem(2-1): Preservation of cyclostationarity by time-invariant filters.

I.
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L

Theorem(2-2): Sampling theorem for nonstationary processes.

Theorem(2-3): Reduction of cyclostationary processes to stationary.

processes via bandlimiting filters.

b) Periodically time-varying systems

Theorem(2-4): Generation of cyclostationary processes from stationary

processes via periodic systems.

Model(1): Amplitude-modulated signals

Model(2): Pulse-amplitude-modulated signals

Model(3): Time-division-multiplexed signals

Model(4): Frequency-division-multiplexed signals

c) Time-scale transformations

Theorem(2-5): Generation of cyclostationary processes from stationary

processes via periodic time-scale transformations.

Model(5): Time-division-multiplexed signals

Model(6): Doppler shifted processes

Model(7): Random facsimile signal

Mlodel (8): Asynchronous pulse-amplitude modulated signals

We now turn to the development of general input-output relations which

will be employed throughout the remainder of this thesis. 4

4Throughout most of this dissertation, we will use single letters,
say x, to denote random processes, and we will use the form x(t) to
denote a realization of x. Similarly, we will use the notation y(t),
z(t,s) to denote deterministic functions of one and two variables.
However, 3n occassion, the notation y(.), :z(,.) will be used for the
purpose of clarification. The index sets for random processes, and domains
for det;rministic functions will, unless otherwise stated, be (-w,-)
or cartesian o)riducts thereof.
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All linear transformations of interest in this thesis are linear

I integral transformations and can be characterized by an impulse-response

function (kernel) g(tT), which may possess impulse functions and their

derivatives. Thus any realization x(t) of the output of G car, be related

] Uto its inverse-image (input) y(t) as follows: 5

x(t) = f g(t,T)y(T)dT. (2-1)

The mean function for x is related to the mean function for y as follows:

mx t) M E{x(t)) = E{ f g(t,T)y(T)dT)

"L = f g(t,T)E{y()d

=f g(t,jm) (T)dT, (2-2)

U and the autocorrelation function for x is related to that for y as follows:

A
kxx(t,s) - Efx(t)x*(s)} = E{ ff g(t,T)g*(s,y)y(T)y*(y)dxdy)

=_ff g(t,T)g*(s,y)E{y(T)y*(Y)}dTdy
-00

00

= ff g(t,T)g*(s,y)ky (T,y)d'dy. (2-3)

The double Fourier transform of the autocorrelation function

(sometimes referred to as tne cointensity spectrum) is a quantity which

finds much application in the theories of representation and estimation

of random processes. We denote the double Fourier transform of k (t,s)

as K (f,v):

SThis characterization is generalized in Section 3 of this chapter to
multidimensional transformations.

I"
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K ~:ffv) ~ tk. (t,s)ei2'w(ft~v1)dtds. (2-4)S~L
Kxx:fv _f kxxýtseJ•f-V)ts 24

We can express the double Fourier tr~ansform of a function of two variables

in terms of a repeated single Pourier transform as follows:

let ?(t,T) A if g(t,T)e-J22ftdt;
w

then G(f,-v) = f ý(ft)eJ2 TdT.

With'the aid of this definition of 'we can easily relate K (f,v)

Sdirectly to Ky(f,v) .by combining Eqs. (2-3), (2-4):

*-j,2wft-vs)dyts
Kxx (f, v) = ffff k (T,y)g (tT)g* (s,y)e (ft dtdydds

= ff k (T,y)G(f,T)a*(v,y)dTdy

*00 yy

Now, Using Parseva.l's relation [2] we have

Kxx(f, v). ff K (w,a){ f .*(fT)eJ Tv
yy ,00 1

-00

00

ff K (, ,a)G(f,w)G*(v, a)dwda. (2-5)
-0 yy

Noticy that Eq. (2-5) is Ithe 6'frequency-time dual" of Eq. (2-3).

There are twq interesting subclasses of linear ti'ansfo'rmations that

are dealt with throughout this thesis. We describe these in the next

two subsections.

a) Time inyariant' filters. The subclass, time-invariant linear

trAnsformations--frequently referred to as filters--is characterized by

the defining relation (with some abuse o notation) g(t,T) g(t-1)

for all. t and T, That is, the impulse-response 'function foý a linear
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time-invariant filter depends only on the difference of its arguments

7 t-T and is, in fact, a function of a single variable. The double Fourier

transform of g(t-T) exhibits the following singular behavior:

G(f,v) = G(f)6(f-v), (2-6)

where G(f) is the single Fourier transform of g(t) and is referred to

as the transfer function for the filter, and 6 is the Dirac delta

function (impulse function).

Using Eq. (2-6), the input-output relation of Eq. (2-5) reduces to

LI K (f,v) = K (fv)G(f)G*(v). (2-7)t• ~xx = yy f

SNow, if y is WSS then its autocorrelation function depends only on the

"difference of its arguments and, as a result,

K (f,v) = K (f)6(f-v) (2-8)

LIyy yy
where K Y(f) is the single Fourier transform of the autocorrelation

SL1 function k yy(t) and is referred to as the power spectral density (PSD)

for y (and sometimes as the autointensity spectrum). Using Eq. (2-8) in

Lit  Eq. (2-7) yields

K K (f,v) = K YY(f)6(f-v)G(f)G*(v)

= K (f)IG(f)1 26(f-v).

yy

Also, if y is WSS then its mean function is a constant and (from Eq. (2-2)

with g(t,T) = g(t-T)) so too is the mean function for x. Thus, x is WSS

and, from the last equation, has PSD
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Kx (f) IG(f) 212K y (f)* (2-9)

The following theorem is an intuitively obvious, but useful, result

on the preservation of the property of cyclostationarity by time- L

invariant filters:

THEOREM(2-1): If the input to an arbitrary time-invariant filter is a

cyclostationary process with period T, then the output is cyclostationary

with period T.

Proof: From Eq. (2-3) we have

k (t+T,s+T) = ffg(t+T-T)g*(s+T-y)ky (T,y)dTdy

= ffg(t--•')g*(s-y')k (-"'*T,I/'+T)dT'dy'

=ffg (t-T')g* (s-y')ky (-' ,y')dT'dy'

= xx(t,s) Vr t,s

and from Eq. (2-2)

m (t+T) = f g(t+T-T)m (T)dT

x rn

-- 00

CO

= f g(t-T')m (T'+T)dT'

-- CO

C fg(t-T')My(T')dT'

M W t r t•

Hence, both the mean and autocorrelation for x are T-periodic so that

x is T-CS. 6

QED

6We will use the short-hand notation T-CS to denote cyclostationary (in
the wide sense) with period T.
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i) Bandlimiting.

LI(1) Sampling Theorem: The well known sampling theorem for WSS processes

[2,3] may be stated as follows:

L If the PSD K xCf) of a WSS process. x is bandlimited to the interval

(-1/2T,1/2T) in the sense that K X(f) = 0 for Ijf I 1/2T, then x

L~i
admits the mean-square equivalent "sample representation"

E t- x sinir(t-nT)/T 2} V tE{Cx(t) - x(nT) i (t-nT)/Tn=o-

Li We now state and prove a generalization of this theorem which removes

the restriction to WSS processes:

THEOREM(2-2): If the double Fourier transform K xx(f,v) of the auto-

J correlation function for a process x is bandlimited to (-1/2T,1/2T) in

the sense that K (f,v) = 0 if If => 1/2T or if Ivi > 1/2T, then x

j admits the mean-square equivalent representation
oo sin7 (t-nT)/T

E{(x(t) - • x(nT) s )2} = 0 V t.n=- it(t-nT)/T

Proof:
00 ~sin• (t-nT)/T )2}.

Let c _ E{(x(t) - I x(nT) n(t-nT)/T
i ~n=-•

Li

Expanding the square and interchanging expectation and summation yields

k = kx(t,t) - 21 kxx(t,nT)O(t-nT)
n

+ I kxx(nT,mT)4(t-nT)O(t-mT)
n,m

where

A siniTt/T
iTt/T
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Since k xx(t,s) is the inverse double Fourier transform of K xx(f,v), then

kxx(t,s) = K Kxx(f,v)eJ 2 W(ft-VS)dfdv

= if K xx(f,v)e 32 ft D)dfdv,_
-l/2T

and the last equality is a result of the bandlimiting hypothesis.

Substituting this last equation into the last expression for c

we obtain

= /2T K (fv)[ej2 w(f-v)t - 2 • eJ 2 w(ft-vnT),(tnT)

-I/2T xx n

+ I eJ 27r(fnT-vmT) f (t-nT) , (t-rmT) ] dfdv .
n,m

But using the Poisson sum formula [2] we have
=Ilrn - 2r(v-t/T)t i

Se- 2 •vnT(t-nT) ¢(/T-v)e
n T

where Il
wh reT, Ifl < 1/2T

t(f) =

0, If! > 1/2T , i-
so that

Se- 2•nT(t-nT) =e-Jat Iv < 1/2T. i

n

Now, substituting this equation into the last expression for c yields

1 j2T
S=f K xx(f,v) [e v)t-2e2(f-v)t+e - ]dfdv

-1/2T

:0 tt.

QED

Notice, from Eq. (2-7), that the bandlimiting constraint on K xx(f,v)

in the above theorem is satisfied for a process x which is the output of

any time-.invariant filter whose transfer function is bandlimited to
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(-1/2T, 1/2T) regardless of the input process y. Notice also that if x

iis WSS then the bandlimiting constrait in the above theorem becomes

K xx (f,v) = K xx(f)6(f-v) = 0

if Ifl > 1/Tr or if vj> 1/2r and is satisfied if and only if Kx (f) = 0

for Ifj > 1/2T which is precisely the bandlimiting constraint in the

j sampling theorem for WSS processes. Hence, the sampling theorem for

WSS processes is simply a special case of the general sampling theorem

L • presented here.

j (2) Reduction of cyclostationary processes. Any CS process can be

reduced to a WSS process via bandlimiting. This fact is stated here

as a theorem:

.* THEOREM(2-3): If x is the output of a filter with transfer function

bandlimited to (-1/2T,I/2T) and the input y is T-CS, then x is WSS.

Proof: From Eq. (2-7) K xx(f,v) is bandlimited to (-1/2T,1/2T). Thus,

from the sampling theorem for deterministic functions [2], we have

sinw (t-nT)/TI [sin7r (s-mT)/1 1

k xx(ts) = k xx(nTmT)[ w(t-nT)/T 7r(s-mT)/T
n,m

But, from Theorem (2-1), x is T-CS so that

k (nT,mT) = k [(n-m)T,O] V n,m,
xx xx

and

k (ts) k ~r(pTO) sin((t-mT)-pT) sin" (s-mT)/Tkxx~ts = xx(P') -((t-mT)-pT) Tr •(s -mT) /T

xx - (st-mT )[ (s-wT)/T]
m

= k (t-sO) V- t,s,
xx
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where the last two equalities are due to the sampling theorem for

deterministic functions. Now, from Eq. (2-2) it is easily shown that

the Fourier transform of a x(t) is bandliiited to (-I/2T,l/2T). Thus, j
from the sampling theorem for deterministic functions, we have

a" (t) = a mx(nT)[ sinv(t-nT)/T ]

n

sinw(t-nT)/TM rx (0) w (t-nT)/T I

n
M m (0) It t ,

where the second equality is due to the fact that x is T-CS (from ]
Theorem (2-1)), and the last equality is due to the sampling theorem

for deterministic functions. Hence, both the mean and autocorrelation j
functions for x are invariant to arbitrary time shifts so that x is WSS.

QED L
Notice that this last theorem does not, as might appear, contradict

Theorem (2-1) since any WSS process is CS with any choice of period T.

b) Periodically time-varying systems. The subclass, periodically

time-varying linear transformations (with period T), frequently--but

sometimes inappropriately 7 -- termed "periodically time-varying filters" A

are characterized by the defining relation g(t,T) = g(t+T,T+T) for all

t and x. That is, the impulse response (kernel) for a linear T-periodic

transformation is invariant to time-translations that are integer

multiples of the period T.

71n the event that 'he transformation is non-dispersive--it's impulse-
response function contains a factor of the form 6(f(t)-T) for some
function f(t)--it is not a filter.
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For many analyses involving linear time-varying systems (transformations)

L it is beneficial to separate the time-varying and time-invariant

' I characteristics. The system function defined by Zadeh [35,36] and its

inverse Fourier transform do just this. The system function H is

defined as follows:

A -j2irfdrH(t,f) - f g(t,t-T)eJ di, (2-10)

and the inverse Fourier transform w.r.t. (with respect to) f of this

system function is

Sh(t,T) = g(t~t-r), (2-11)

where T is frequently referred to as the age variable or memory variable

and t may be referred to as the fluctuation variable. Now, the time

invariant behavior is characterized by the section function h(t,-) where

t is considered to be a parameter, and the time-varying behavior is

characterized by the section function h(.,T) where T is a parameter'.8

For example, if the transformation is time-invariant, then

h(t,T) = g(t-(t-T)) = g(T) = h(OT) for every t and there are no time

fluctuations--h depends solely on the age variable. Similarly, if the

transformation is T-periodic, then h(t+T,T) = g(t+T,t+T-T) = g(t,t-t) = h(t,T)

for all t and T, and the periodicity is reflected only in the fluctuation

variable. Treating T as a parameter, we caht expand the T-periodic

8A quantity closely related to the system function is the bifrequency
function which is simply the Fourier transform w.r.t. t of Ii(t,f). The
bifrcquency function finds much application in analyses of time-varying
systems, but will not be used here.
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section function h(-,r) into a Fourier series

h(t,,r) = ( hn(eJ2wntlT. (2-12)

Thus, from Eq. (2-I1), the impulse response g has the representation

g(t,T)= h (t-,)ej2wnt/T (2-13) LI
n

One interesting result of this representation is the obvious realizationL

of a periodic system as a parallel connection of time-invariant filters

(hnI followed by periodic multipliers {e j2wnt/T) as shown in Figure (2-2).

Notice that if the sine-cosine Fourier series were used rather than the

exponential Fourier series, then all component,.--sine and cosine

multipliers and time-invariant filters--in the realization would be real

not complex. (See Chapter III for other realizations of periodically

time-varying linear systems )

The double Fouxier transform of the impulse response of a T-periodic

system also has an interesting representation which we obtain directly

from Eq. (2-13):

G(f,v) = ff g(t,T)e-2dtdT

= ff I hn(t-T)e-J 2 1t(f-n/T)edJ2T Vdtdd

_00 n

I f* 1in(f-n/T)e-J2Tf-n/T)e TvdtdT

ncoo

= I (f-n/T)6(f-v-n/°r), (2-14)
n
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where H is the single Fourier transform of hn. We see that G(f,v)
nt

consists of impulse fences along lines parallel to the (f = v)-diagonal,

so that the general input-output relation of Eq. (2-5) reduces to:

K (f,v) = X H (f-n/ T)C*(v-m/ T)K (f-n/T,v-m/T)* (2-15)
XX n~man 'a yy

Notice that if we consider the degenerate case of a time-invariant

filter, then H = 0 for n ý 0, and H (f) = G(f) so that Eq. (2-15)
Sreduces to Eq. (2-9) as it should.

U Now, if the input y is WSS then, from Eqs. (2-8), (2-15), the

double Fourier transform of the output-process autocorrelation function

;b takes the form

I, • K (f,v) = ( Hnf-n/ T)H*(f-n/T)K (f-n/T).xx n m yyn,m

H= • [. (f-n/ T)H*_ (f-n/T)K (f-n/T).
p n n n-p yy

6S(f-v-p/T) . (2-16)

I$ Thus, we see that K (f,v) also consists of impulse fences on lines
xx

parallel to the (f = v)-diagonal so that k xx(t,T) must exhibit the same

periodicity as g(t,T). We state this result as a theorem which provides

the foundation for the generation of a large class of CS processes:

THEOREM(2-4): If the input y to a T-periodic system is WSS, then the

output x is T-CS.

Proof: From Eq. (2-3), we have
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kxx (t+T,s+T) =_f g(t+T, r)g*(s+Ty)k (r-y)drdy
xx -~~ yy iI

= ff g(t,T-T)g*(s,y-T)k (T-T-(y-T))dTdy

-~ yy

= ff g(t,T')g*(s,yl)k (c'-y')dT'dy'

- k xx(ts) f t,s,

and, from Eq. (2-2),

m (t+T) = f g(t+T,T)m y(T)dT

00f g(t,T-T)my (T-T)dT

f g(t,T')my (')dT'

= (t) V t,

[M

where g is the impulse response of the T-periodic system. Hence, both

the mean and autocorrelation functions for x are T-periodic so that

x is T-CS.

QED

We now present four examples of CS processes which can be generated

by passing WSS processes through periodic systems. These examples are

all signal formats used in communication. i

MODEL(l): Amplitude-modulation (AM). Conventional amplitude-modulation

is nothing more than multiplication of a signal by a periodic waveform p(t)--

usually a sinusoid. If x is the AM process obtained from the WSS signal

y as follows: x(t) = p(t)y(t), then we see that x is obtained from a

periodic linear transformation on y where the kernel (impulse response)

is g(t,T) = p(t)6(t-T). Thus, from Theorem (2-4), x is CS. An interesting
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special case of AM is that where y has a zero-mean value and p(t) is a

L sinusoid with period T. Then

k xx (t,s) = cos(2wt/T)cos(2rs/T)kyy (t-s)

= I[cos(2n(t+s)/T)+cos (2wr(t-s)/T)]k (t-s),

so that x is CS with period T/2 even though p(t) is T-periodic, not

T/2-periodic.

MODEL(2): Pulse-amplitude-modulation (PAM). As discussed in Chapter I,

a synchronous PAM signal x is simply a periodic train of equally spaced

(in time) pulses with random amplitudes:

x(t) = n qo(t-nT)
n=-o

LI The random sequence fann may be a random data sequence with a finite

alphabet (finite number of admissable values for realizations of each a n)

or {a n may be the sample val-es {y(nT)) of some continuous-time process

y. In this latter case, x can be generated by passing y through a

L-i periodic system composed of a periodic impulse sampler followed by a

Li' .time-invariant filter with impulse response qo(t) as shown in Figure (2-3).

The impulse response for this composite T-periodic system is

Sg(t,T) = q (t-T) I 6(T-nT) .

n

If y is WSS then, from Theorem (2-4) x is T-CS.

In Sec. 7 of this chapter we discuss a generalized model of PAM

which includes a random disturbance termed jitter. In this generalized

model, the pulse stream is no longer synchronous, but x is still CS.

Also, if the pulses comprising a single PAM signal are sufficiently
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separated in time, then several of these signals can be interleaved in

time to form a composite time-division-multiplex PAM signal which will

be CS if the random amplitude sequences are jointly WSS. Note that

processes which are individually WSS and are statistically independent

are also jointly WSS.

MODEL(3): Time-division-multiplex (TDM1 ). The TDMI process, as discussed

in Chapter I, is formed by interleaving finite-length records from a

multiplicity, say M, of signal sources. This can be done by passing each

component process through a periodic gate, and summing the gated processes

as shown in Figure (2-4a). A typical periodic gate-function is shown in

Figure (2-4b). Realizations of the composi'-• process take the form

x(t) = • Yn(t)q (t-nT )
n=-•

where To = T/M and yn = Yn+M for all n. As pointed out in Chapter I,

x is CS with period T if the {yn) are jointly WSS. This result can be

explained in terms of a vector formulation of Theorem (2-4) where the WSS

y is replaced by an M-vector of jointly WSS processes, and the T-periodic

system is replaced with a 1 x M matrix of T-periodic systems.

Alternatively, the cyclostationarity of x can be attributed to the fact

that a sum of jointly T-CS processes is a T-CS process.

Notice that the gating operation in the multiplexor discards portions

of each component process, so that conceivably there could be a loss of

information in this multiplexing scheme. In the following subsection

on time-scale transformatioits, we introduce a "lossless" time-division

multiplexing scheme, TDM2 .2'
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U
MODEL(4): Frequency-division-multiplex (FDM). A multiplexing scheme

L which is frequently encountered in radio communication systems is that

of frequency-division-multiplex (FDM). The FDM signal is formed by

interleaving in frequency a multiplicity, say M, of "frequency-translated"

signals, and is to some extent the frequency-time dual of TDM.

Specifically, each component process Yn is bandlimited to (-1/2T,1/2T)

and then amplitude-modulated with a sinusoid (translated in frequency)

into disjoint frequency bands, as shown in Figure (2-5b), and the

resultant translates are summed to form the composite FDM signal with

realizations of the form:

M
x(t) = • Xn(t)cos(wt+2wnt/T),in=l 1

where the {xn) are the bandlimited versions of the {yn. The complete

multiplexor is shown in Figure (2-5a).

I !Now, if w is an integer multiple of 2ff/T, and the {x } are jointly

WSS, then x is the sum of M jointly T-CS processes and is therefore T-CS.

Again, as in the case of TDM, this .'esult can be interpreted in terms of

a vector version of Theorem (2-4).

Notice that in both TDM1 and FDM, the composite signal is the sum of

CS AM processes; that is, the sum of deterministic periodic signals

amplitude-modulated by random WSS signals.

c) Time-scale transformations. The realization y(t') of a process

which has undergone a time-scale transformation t'(t) is a function of a

function y[t'(t)] and may therefore be referred to as a composition. We

will consider WSS input processes y which undergo time-.cale transformations
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consisting of a scaled identity function and a periodic function p(t),

so that the time parameter t is replaced by t% = at + p.(t) to yield an

output composition-lrocess x with realizations, of the form

I

x(t) = y(at+p(t)). . - (2-17)

Time-.scale transformations of this form can ,be characterized by

their impulse response functions which, take" the form

g'(t,T) = 6('r-at-p(t)) , (2-18)

Notice that

g(t+T,,T+T) = g(t,T+(I-a)T) n

• g(t,'r) if a • 1,

so that these "periodic" time-scale transformations are not periodic

systems unless a = 1. i I

The following theorem serves as a basis for the generation of a

large class of CS processes: 9

THEOREM(2-5): If x is a process with realizations obtainedfrom the

realizations of a WSS process y by the time-scale transformation:

x(t) = y(at+p(t)), where a is a deterministic constant and p(t) is a

deterministic T-periodic function, then x. is T-CS and has constant mean

and variance.

Proof: •'m (t+T) = E{y(a(t+T)+p(t+T))} * 1

= m, a constant V, t

M x(t) Vt,

9This class has also been considered by Hurd [5].



s 45

and

1 xx (t÷T,s+T) = E{y(a(t+T)+p(t+T))y(a(s+T)+p(s+T)) }

U = E{y(a(t+T)+p(t))y(a(s÷T)+p(s))}

-= kyy (a(t+T)+p(t)-a(s+T)-p(s))

-= kyy (at+p(t)-as-p(s))

= xx (t,s)

so that x is T-CS with constant mean, and variance,I
a 2 = k (t,t) - m2 (t) = k (0) - M2

xx x yy y

which is also constant.

QED

It is worth emphasizing that all members of the subclass of CS

J processes which are generated from WSS processes via periodic time-scale

transformations have constant mean and variance regardless of the severity

of periodic fluctuations in the transformations.

We proceed with three examples:

MODEL(5): Time-division-multiplex (TDM 2 ). The time-division-multiplexing

scheme (TDMI) introduced in Chapter I and discussed earlier in this section

can result in a loss of information in the sense that only a fraction (I/M)

of every T-length record of the component processes is contained in the

composite TDM1 process--the remaining fraction ((M-l)/M) is discarded by

the gates in the multiplexor (see Fig. (2-4)). This loss of information

can be circumvented if every T-length record is first compressed in time
to a T/M -length record. The resultant periodically compressed component

,iI
I
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processes can then be multiplexed together without loss of information.

The periodic time-scale compression can be effected by applying a

time-scale transformation to the original component processes:

x n(t) = y n(t+p(t)). An appropriate function p(t) is the periodic

triangular waveform shown in Figure (2-6a). With this choice, the
L

transformed time variable t' = t + p(t) remains constant (time does not

advance) over the first (M-l)/M of each adjacent T-length interval, and i

then increases linearly with slope M (time advances at a rate accelerated

by the factor M) over the final 1/M of each adjacent T-length interval

(see Figure (2-6b)).

The resultant effect of this periodic time-scale compression is

shown in Figure (2-7) with a typical realization of the Mth process

y. and its compressed counterpart xM.

In order that the M processes,to be time-division-multiplexed,can

be properly interleaved, the component processes must be compressed into

interleaving time-slots as expressed here:

xn = Y (t+p(t+(M-n)T/M)).

Now, the compressed component processes can be applied to the multiplexor

of Figure (2-4) to yield the composite TDM 2 signal with no loss of

information, and with realizations of the form:

x(t) = Yn (t+p(t+(M-n)To0))qo0(t-(n-1)To0

n

where T = TIM.

Lo
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If the original component processes {ynI are jointly WSS, then

Seach compressed component process xn will be T-CS (from Theorem (2-5))

and, in fact, the M components will be jointly T-CS. An extended

version of Theorem (2-4) (a vector of jointly T-CS inputs into a matrix

of T-periodic systens yields a T-CS output) guarantees that the composite

TM 2 signal x is T-CS.I Notice that any time-scale transformation (including the time-scale

compression in the above example) can be realized, in principle at least,

with a recording machine which either records or plays back (not both) at

a variable speed determined by the time-scale transformation.

MODEL(6): Doppler shifted processes. A realization of any random

S~waveform--be it acoustic, electromagnetic, mechanical, etc.--which is

transmitted, radiated, or reflected from a body whose spatial frame of

reference varies w.r.t. that of an observer of the random waveform will

undergo a time-scale transformation which is frequently referred to as

a Doppler effect or Doppler shift. If the spatial variation is an

oscillation or is, in some sense, periodic so that the resultant time-

scale transformation exhibits the periodicity described irn the hypothesis

of Theorem (2-5), and if the original process is WSS, then the resultant

Doppler-shifted process is CS (by Theorem (2-5)).

This Doppler effect is encountered frequently in studies in nuclear,

atomic, and astronomical physics, and in radio-science, radio-astronomy,

r and other fields of science.

i) Processes derived from the Poisson counting process with periodic rate

parameter: In contrast to the synchronous pulse-train processes such as

PAM, one often encounters processes where only the average rate of pulse

occurrences is known. In such situations, where pulse occurrences are
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totally asynchronous (random), the Poisson counting process is frequently

used in constructing a model (2,3,221. In particular, models for random

facsimile signals [2], random telegraph signals [2,3], and shot noise •1

[2,3,22] have been constructed on the basis of the Poisson counting process.

If the rate parameter u in the counting process is constant, then

the above models are WSS. However, if the rate parameter varies

periodically with time, then the models become CS. Such CS models have U

been proposed in studies of meteorology [18] and noise in electronic

devices (22].

We will show here that the mean and autocorrelation functions for [j
the CS random facsimile signal derived from the inhomogeneous Poisson

counting process with rate parameter p(t) = vo 0+ p(t) are identical to

those corresponding to the process which is obtained from the time-scale

transformation: t' = t + I fp(t) on the WSS facsimile signal derived

from the homogeneous Poisson counting process with constant rate parameter

V 0' (A similar, but less general result, for the random telegraph signal

has been stated by Hurd [5].) .

M1ODEL(7): Random facsimile signal. A random facsimile signal is

obtained by optically scanning a black and white picture according to,

for example, the line scanning scheme discussed in the following sub-

section. For a random picture, the scanner output x will be a two-valued

random process, say x(t) = 1 for black portions and x(t) = 0 for white

portions. The times at which transitions from black-to-white and white-

to-black occur will be an ordered sequence of random variables which we

will model in terms of the inhomogeneous Poisson counting process with

- - - - - - - -
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rate parameter p. Using precisely the same assumptions and method of

i tJderivation as Franks [2], but generalized from the case of a constant

- rate parameter P 0 to that of the fluctuating u(t), we obtain the

U following set of coupled differential equations " 0

SPnp (t,s)
Ua= _P(s)[Pn(ts)-P (t,s)], s > t, n > 0

1, n =0
P n(t't); 0, n# 0

SPn(t,s) = 0, n < 0, (2-19)

where P (t,s) is defined to be the probability that exactly n

transitions occur in the interval (t,s). x is constant over each interval

defined by consecutive transition times, and assumes the values 1 or 0

with probabilities p or 1-p, and the values of x in different int3rvals

are assumed to be statistically independent.

Now, from this model, we find that:
L.

m (t) = E{x(t)} = Pr(x(t)=l) = p V t,

k (t,s) = E{x(t)x(s)} = Pr(x(t)=l and x(s)=l)
xx

= p*Pr(t and s are in the same interval)

+ p2 .Pr(t and s are in diffarent intervals)

= p.Po(t,s) + p2 (1-Po(ts)) s > t,

where Pr(.) indicates "the probability of the event in tile parenthesis".

But, from Eq. (2-19), we easily obtain the solution for PO:

s

Po(t,s) = exp[- f p(o)do] , s > t
t

lOSee also Parzen [22], and Papoulis [3].
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so that ]
kx (t's) = (3x - x2)exp[- f (o)da] + U2 V s > t,

XXX t X =L

and since k, (t,s) is symetrical in t and s then

k xx(t,s) = (mx - m2)exp[-j f ui(cy)dol] + m2 y t,s.
XXx x txt ,

If we now consider a process y with constant rate parameter 10, ,

then j

ky(t,s) = Cm - m2)exp[-_p 0 t-sI] + M2 ts

which is the result derived by Franks [2]. The interesting point here

is that if we subject y to the time-scale transformation: t' = t + -- fp(t),
V0

then we obtain a process x' with the same mean and autocorrelation

functions as the above process x with fluctuating rate parameter

I(t = 1 1 + p1p(t).

We conjecture that various WSS models for piecewise constant processes

derived from the Poisson counting process with constant rate parameter

]0 can be extended to CS models with the time-scale transformation:

t' = t + - fp(t), where the resultant mean and autocorrelation functions
10

will be identical to those corresponding to the model obtained directly

in terms of the inhomogeneous Poisson counting process with periodic rate

parameter: p(t) = p + p lp(t) "

MODEL(8): Asynchronous PAM. A specific model which we will be concerned

with in Chapter IV can be derived, via a time-scale transformation, from

the general WSS asynchronous random pulse-sequence
Co

y(t) = j anqo(t-tn) (2-20)
n=--O
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where (a:) is an arbitrary VSS sequence independent of the occurrence

Ltimes Itn) which form an ordered sequence distributed according to the

Poisson counting process with constant rate parameter pop and qo(t) is

an arbitrary pulse shape. This process y has been used as a model for

shot noise and, as shown by Franks [2), has mean and autocorrelation

functions given by

my = poma I qo(t)dt

kyyT) = m2 + pOa 2 -f (t÷T)qo(t)dt,
yy y 0 a 0(t% r0

! where a2 is the variance of {a I and m is the mean. Now, we create a
a n a

new process x by subjecting y to the time-scale transformation:

t' = t + p(t), where p(t) is any T-periodic function such that t'(t) is

j a nondecreasing function (time never regresses), and obtain

m (t)= m

k xx (t,s) = kyy (t + p(t) - s - p(s))

as the mean and autocorrelation functions for the T-CS asynchronous

random pulse-sequence x whose average rate of pulse-occurrences -(and pulse-

shapes) varies periodically with time.
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3. Multi-dimensional Linear Transformations (Scanning)

In this section we briefly discuss the transformation of multi-

dimensional quasi-stationary processes into one-dimensional cyclo-

stationary processes, and the application of this concept to the generation

of CS processes via scanning.

A three-dimensional process y is a random function of three
Li

independent variables: y(t,u,v), t c R, u c DI, v D2 . In the applications

discussed here, u and v represent two spatial coordinates and t the usual

time coordinate. The domains D and D will be finite intervals in R the

set of real numbers. We will define y to be quasi-wide-sense stationary .I

if and only if each of the one-dimensional processes y(-,u,v) is WSS for v
each value of u c D and v D Li

We are interested in linear transformations which map y into a one-

dimensional CS process x (a random function of the single variable t).

As a generalization of the one-dimensional linear transformations L
discussed in Section 2 of this chapter, we characterize a three-dimensional H
linear transformation in terms of a three-dimensional impulse response :12

If y is the input to a transformation G, and x is the output, then the

realizations of x are related to the corresponding realizations of y as

follows:

x(t) = f f f g(t,T,u,v)y(T,u,v)dtdvdu, (2-21)
DI D2 R

IlThis notation does not parallel our convention for one-dimensional
processes, but is the least ambiguous.

12 The terms "three-dimensional linear transformation" and "three-dimensional
impulse response" are not quite appropriate since the output (image)
process is one-dimensional.
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where g(t,T,u,v) is the three-dimensional impulse response.

We say that G is a quasi-periodic transformation with period T if

and only if

g(t+T,T+T,u,v) = g(t,T,u,v) V t,T c R, u s D1P v c D2* (2-22)

With these definitions we can generalize Theorem (2-4) as follows:

jjTHEOREM(2-6): If the input y to a three-dimensional quasi-periodic

transformation with period T is a three-dimensional quasi-WSS process,

L then the one-dimensional output x is a T-CS process.

iThe proof directly parallels that for Theorem (2-4).

We now give two applications of Theorem (2-6) to the generation of

CS processes via scanning:

MODEL(9): Line-scanning a rectangular field (video). The process of

scanning a finite rectangular field--performed by a video camera, for

[j example--can be modeled with a three-dimensional linear transformation.

Then the scanner is fully characterized by the impulse response g(tT,u,v)

Ii which is sometimes referred to as a window function. With reference to
Figure (2-8) and Eq. (2-21), D1 = (OWI) and D2 = (OW2) are the domains

for u and v, and y(touovo) is a realization of the three-dimensional

process y evaluated at time to, horizontal distance uo, and vertical

distance v . The video signal is the scanner output process x and isf. 0

obtained from y as in Eq. (2-21).

The conventional video camera employs a constant velocity line-

scanner whose impulse response can be modeled as (with some abuse of

notation):
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g(t,T,u.v) = g(uI(t) - UVI(t) - v)6(t-T)

where the functions u1 and vI are as shown in Figure (2-9), and each are

LT-periodic where T is the time required to scan a single line and L is [1
the number of lines per frame. Therefore, the scanner G is a quasi-

periodic transformation with period LT, so that if y is quasi-WSS then

the video process x is CS (period LT), by Theorem (2-6).

If the above window function g(.,.) is ideal--a two-dimensional

impulse function--then we have

x(t) = y(t,u 1 (t),vl Mt)). j

Using this ideal model for the scanner along with the assumption of

zero retrace time (see Fig. (2-9)), and the model for y proposed by

Franks [10], results in an auto .,--1,1t,-,.- Zunction for x which is

composed of three periodic factors. The first factor characterizes the

correlation within any given line, the second characterizes line-to- Li
line correlation, and the third characterizes frame-to-frame correlation

as follows.

kx (t,s) = kl(t-s)k2 (t,s)k3 (ts) (2-23)

;1
where, for

correlation within a line:

(t-s)modT
k I(t-S) = 1 Pi

= O p t's-nT qo(t-s-nW) (2-24)
n=-o )

and is T-periodic in (t-s) (qo is a rectangular gate function of
04

width T),
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line-to-line correlation:

T11(t-tmodT)modLT (s-smodT)modLTI
k 2(t'S) = (2-25)2] 2

p2nm)modL qo(t-nT)q (s-mT)

n,m=-oD

and is jointly T-periodic in t and s,

frame-to-frame correlation:
-' (t-tmodLr) -(s-smodLr)[

k (t's) = (2-26)

In-mi= P3 ql(t-nLT)q 1(-lT

n,m

and is jointly LT-periodic in t and s (q, is a rectangular gate

function of width LT).

Finally, if the contribution to k (t,s) due to frame-to-frame

correlation is ignored because of its relatively low-frequency nature

(this is done in practice for some analyses of video systems) then the

period of cyclostationarity reduces from LT to T as in the model

introduced in Chapter I.

MODEL(l0): Circular scanning (radar). The process of continuously

scanning a one-dimensional circular field--performed by a radar antenna,

for example--can be modeled with a two-dimensional linear transformation

with impulse response g(t,T,O). With reference to Figure (2-10) and the

two dimensional analog of Eq. (2-21), D1 = (0,2n) is the domain for 0,

and y(t ,0 ) is a realization of the two-dimensional random process y

evaluated at time t and angular displacement 0 . The received radar

signal is the scanner output process x and is obtained from y as in
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Eq. (2-21):

x(t) = f f g(t,T,O)y(T,O)dOdT (2-27)
R D1

If a constant velocity scanner is used, then the impulse response

can be modeled as (with some abuse of notation):

g(t,T,O) = g(e 1 (t) - e)6(t-T)

where the function 01 is as shown in Figure (2-11j, and is T-periodic,

where T is the time required for one complete revolution of the scanning

antenna. Therefore G is a quasi-periodic transformation with por e4 T,

so that if y is quasi-WSS then the radar process x is T-CS by tl,. LWO-

dimensional version of Theorem (2-6).

As an example of a "non-ideal" window function g, consider the

rectangular window shown in Figure (2-12). For this case, the signal

x is given by

2 7

x(t= f I g(el(t) - e)6(t-T)y(T,e)dTde

2i7

f f g(el(t) - 6)y(t,e)dO
1

0
s (t) +10 )do

2=rt r y(t,7)rO
2ot5 f T o)
2nt 7

and is tOe average vilue of ykt,e, over the range (-ia/lO,u/lO) of 0.

In Section 6, we genera)ize the discussion here to -andom multi-

dimensional linear transformation-s, and show that random sc.nners with

random window shapes and velocities can also .,enerate cyclostatioaary signals.

Ii
L



4. Nonlinear Transformations

Many nonlinear transformations which arise in engineering problems

U can be characterized with Wiener's Volterra series representation [44-47]

in which the output x(t) of an N- order Volterra system driven by the

L input y(t) is expressed as

N 0
x(t) = (t-Tlpt-T2".t-Tn)Y(Tl).y(Tn)dTl..dn

n=l-m n-' nn

Swhere the kernels {gn) can be thought of as generalized impulse response

functions. This series is sometimes referred to as a power series with

[ memory.

Note that a first order Volterra system (N = 1) is simply a linear

system and the above representation is, for this case, the super-position

H integral (Eq.(2-1)) used in Section 2 for representing linear transformations.

Hence g, is for this case, the usual impulse-response function.

it The nonlinear transformations of interest in this thesis can, for

the most part, be characterized with a generalized Volterra series in

which the kernels are invariant under joint shifts, in their arguments,

which are multiples of a basic period T:

S .- gn(t,Tl;t,T2;"';tT) gn(t+T,Tl+T;...;t+T,Tn*T), V n

- for all t, T 1 ,..,'n,

whereas, the kernels in the standard Volterra series are invariant under

"fr arbitrary joint shifts.

In addition to allowing periodically time-varying kernels, we will

also include a T-periodic zero th order term so that our generalized

periodic volterra series becomes:
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n=l i

We will refer' to this more general clas's of Volterra systems as

periodic Volterra systems. For this clas's, we have tile following

THEOREM(2-7):' The ouptprocess x ofan NýL order* T-eioi ole

systcm, which is driven by a stat-ionary -,of-ordpr 2N (())input

process y, is T-CS.

Proof: I

i) From Eq. (2-28), temean of the butpUt xis, nI)

0 n=l n
N I

- (0 t+TP+ I -ftTTý;.tTi+)

n=n

N
-g tT f'fg (t+T,-r';**,;t+T,T')*

n L

- ný (t+T) IV t.

where the next-to-last equality is a resul t of the S(2N) property~of y.

13A rocss A SN) ff c1- through N- 'order joint PDF's are invariant
under arbitrary joint shifts ýn their indexing argumenits [3].-
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ii) Again, using Eq. (2-28), we havetLi

k x(t,s) = go(t)go(s) + go(t)mx(s) + go(s)mx(t)

N N
+ I f ... °fgn(t,r 1 ;°°;t,Tn)gm(s,y 1 ;..;S,ym).

n=l m=1

' E{y (rl)" Y (Tn)Y (YI)" .Y (m ))}dTl" "dTndy "dym

[ " Using the periodicity of the {g and of mx, and the stationarity of y,
n

as in part i), yields the result:

k xx(t,s) = k xx(t+T,s+T) V- t,s.

Hence, from i) and ii), x is T-CS.
QED

Li,
MODEL(11): Parametric amplifiers. The parametric amplifier [48] is an

_LI example of a nonlinear system which can be accurately modeled as a

periodically time-varying nonlinear transformation with memory, and might

therefore be modeled as a periodic Volterra system. Hence, the output

of a parametric amplifier driven by a strict-sense-stationary (SSS) process 14

might well be expected to be CS, and has, in fact, been so modeled in
Reference [21].

In the next two subsections, we consider special periodic Volterra

systems which generate CS process from input processes which are only S(2).

a) Zero-memory nonlinearities. If the kernel functions in the

periodic Volterra series representation of a system take the form

gn (t,1;tT2;...;t,Tn) = gn(t)6(t-TI)... 6 (t-I n)

14A process is SSS iff it is S(N) for all natural numbers N [3].
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where

gn (t+T) = gn (t),

then we have the reduced input-output relation

N(~t) g ( nt)Cy(t))n, [

n= 1

and the system is a zero-memory periodic nonlinearity. The input-output

relation for these systems can be compactly expressed as

x(t) = G(y(t),t)

where G(.,t) is the nonlinear function with power series coefficients

{g (t)}, and

G(.,t+T) = G(-,t) V t. i

For these systems, the output x at any time, say to, depends on the input

y only at time to, and on the time t itself. .I

For this class of zero-memory nonlinear systems, we have the

following theorem on the generation of CS processes:

THEOREM(2-8): If the input y to a zero-memory time-varying nonlinearity,

which satisfies the periodicity condition: G(.,t) = G(,t+T) for all t,

is S(2) then the output x is T-CS.

Proof:
00

m (t) = E{G(y(t),t)) = f G(o,t)p(o)do

= f G(a,t+T)p(a)da

mx (t+T) VL t,

where p(.) is the PDF for y(ý) for all t; and



k xx(t,s) = E(G(y(t),t)G(y(s),s)}

= ff G(o,t)G(y,s)pt-s(o,y)dody

= ff G(o,t+T)G(y,s+T)p. #T)_(s÷T)(Oy)dody

U = k xx(t+T,s+T) f t,s,

Swhere Pt_s(-,.) is the joint PDF for y(t) and y(s). Hence x is T-CS.

QED

As an example of a transformation which satisfies the hypothesis

of Theorem (2-8), consider the form:

G(y(t),t) = G(y(t) + q(t))

1 1where q(t) is any T-periodic function. Here, the signal y is subjected

to an additive periodic component q(t) and then applied to a nonlinear

device such as a diode, square-law device, or some type of threshold
L.i

device. This type of transformation is frequently incurred in optimum

detectors for periodic signals in stationary noise. Note that if G were

a square-law device, then the generalized Volterra kernels would be given

explicitly by

gn = 0 n > 3

g92t,TI;t,'T2 ) 6(t---r)6(t-T 2)

Sgl~t,T) 1 2q(t)6(t-,r )

"9g0 (t) q 2 (t)

I .[!.
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b) Nonlinear modulation of synchronous pulse-trains. If the kernel

functions in the periodic Volterra series representation take the form

gn(t,T1;.. ;t,Tn) = q %(t-iT)6(iT-T 1) ... 6 (iT-T),

then we have the reduced input-output relation

- N

x(t) = I [ I gn(t-iT)(y(iT))n]

i=-own=l

which can be expressed in the more compact form

x(t) = [ q(t-iT,y(iT)),

where q(t,.) is the nonlinear function with power series coefficients

{gn(t)}. This last expression represents a signal format which has

received much attention as a means for transmitting random sequences

of numbers {a.} = {y(iT)}, and is referred to as a modulated synchronous

pulse-train.

With this signal format, each pulse q(t-iT,.) carries the realization

of one random number, a. If the modulation is linear, then the signal is

PAM, as discussed in Section 2b, and the random numbers are carried

as pulse-amplitudes. However, if the modulation is nonlinear, then there

is a multitude of different schemes--each with its own theoretical and']

practical advantages and disadvantages. Following are six specific

examples: I.

MODEL(12): Frequency-shift-keying (FSK). A sinusoidal signal with

gating envelope w(t) is frequency-shifted by the parameters {a such that .n

q(t-nT,an) = w(t-nT)cos(27r(f+an)(t-nT)) j j
-n n

=w(t-nT)cos(27T(f+ant M
n-
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where the second equality is valid if (f+an )T is an integer for every

LI realization of an for every n,

MODEL(13): Phase-shift-keying (PSK). A sinusoidal signal with gating

envelope w(t) is phase-shifted by the parameters {a ) such thatn

iq(t-nT,an) = w(t-nT)cos(2nf(t-nT)+a )

= w(t-nT)cos(2rft+a )

where the second equality is valid if fT is an integer.

MODEL(14): Pulse-width-modulation (PWM). The width (duration) of a

basic pulse shape q0 (t) is determined by the parameters {an I such that

q(t-nT,an) = qo((t-nT)/an)

where {a I take on only positive values.
N n

MODEL(I5): Pulse-position-modulation (PPM). The epoch (time-of-

occurrence) of a basic pulse qo(t) is determined by the parameters {a }n

such that

q (t-nTan) = q (t-nT-an)

where {a } take on only values which are non-negative and less than T.n

MODEL(16): Digital pulse-frequency-modulation (DPFM). The frequency-ot-

occurrence--number--of basic pulses q0 (t) in each time-slot is determined

by the parameters {a n such that

an
q(t-nT,a) = q q0((t-nT)a n-(i-l)T),

Si=l0n
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where a nI take on only non-negative integer values. Note that if q%(t)

is an integral number of cycles of a sinusoid with duration T, then this

DPFM signal is an FSK signal with rectangular envelope w(t).

MODBL(17): General M-ary signaling. The parameters (a n) serve to index

a set of M basic pulse-shapes, which need not be "functionally" related

as in the above cases, such that

q(t-nTa n q a (t-nT)
n

where, for example, {qi(t); i = l,2,3,...,MI might be a set of mutually

orthogonal pulses duration limited to the interval (O,T).

Paralleling Theorem (2-8), we have the following theorem which

establishes a sufficient condition for the general synchronous pulse-
U

train signal to be CS:

THEOREM(2-9): If x is a synchronous pulse-train with period T and the L

modulating sequence {a I is stationary-of-order-two, then x is T-CS.

Proof:

x(t) = • q(t-nT,a ) so that
n n

mE (t) =-f I q(t-nT,a)p(a)dc

=-f q(t+T-(n+1)T,o)p(o)dc'

00

= f I q(t+T-n'T,o)p(a)da_00 ni'

=m (t+T) V-t,

where p(-) is the PDF for an for every ni, and

n
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kxx(t,s) = ff I q(t-nT,a)q(s-mT,y)p nm(oy)dody
S- 

• n , m

= ff I q(t+T-(n+l)T,O)q(s+T-(m+l)T,y)p 
(n+l)(m+l) (a,y)dody

-- n,m

= In q(t+T-n'T,o)q(s+T-m'Ty)pntm (ay)drdy-- ,m'

=k (t+T,s+T) v t,s,

Swhere pt-s is the joint PDF for x(t) and x(s). Hence x is T-CS.

QED
In Section 7 we present a generalized model for pulse-train signals

which incorporates random jitter wherein the pulse train is no longer
L.• synchronous but the signal is still CS.

r
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5. Random Linear Transformations

The developments in this section on random linear transformations

closely parallel those in Section 2 on deterministic linear

transformations. Due to the length of this section, we begin by giving

a brief outline of the theorems proved and the cyclostationary process

models defined:

a) Wide-sense-stationary systems

Theorem(2-10): Preservation of wide-sense stationarity by random 4
transformations.

Model(18): Random periodic signals

Theorem(2-11): Conversion of deterministic periodic systems into wide-

sense-stationary systems via phase-randomization.

Theorem(2-12): Preservation of cyclostationarity by random transformations.

b) Cyclostationary systems

Theorems(2-13): Generation of cyclostationary processes from stationary .
(2-14)

processes via random transformations.

Model(19): Random periodic attenuation of stationary processes

Model(20): Multiplication of a stationary process by a cyclostationary

process

c) Random time-scale transformations

i) Phase randomization:

Theorem(2-15): Reduction of cyclostationary processes ta stationary

processes via phase-randomization

Theorem(2-16): Equivalence between phase-randomizing and time-averaging

of random processes.

Theorem(2-17): Preservation of system-cyclostationarity by phase-

randomization.
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Theorem(2-18): Reduction of cyclostationary systems to wide-sense-

stationary systems via phase-randomization.

Theorem(2-19): Equivalence between phase-randomizing and time-averaging

random systems.

j •ii) Generalized angle modulation:

Theorem(2-20): Preservation of cyclostationarity by a stationary time-

1 iiscale transformation.

Theorem(2-21): Generation of cyclostationary processes from periodic signals

via stationary time-scale transformations.

SModel(21): Phase-modulated signal

Model(22): Frequency-modulated signal.

Li Theorem(2-22): Generation of cyclostationary processes from PAM time-scale

transformations.

Model(23): Digital phase-modulation

Model(24): Digital frequency-modulation

Theorem(2-23): Generation of cyclostationary processes from stationary

processes via cyclostationary time-scale transformations.

J



68 L

A random transformation, like any other random process, can be

thought of as an ensemble of deterministic transformations. A single

deterministic input to a random transformation yields an ensemble of

deterministic outputs (a random output process) with each output resulting

from one member of the ensemble of transformations. Of course, for any

given event, only one member of the ensemble of transformations will

occur and a single input will result in a single output. In this section

we will be primarily concerned with random transformations of random

processes. In particular, we will consider linear wide-sense-stationary

and wide-sense-cyclostationary transformations (defined herein) in

connection with the generation and preservation of cyclostationarity.

All random linear transformations of interest in this thesis will

be integral transformations characterized by random impulse-response

functions. Thus, input and output processes will be related as follows

x(t) f f g(t,-r)y(r)dT (2-29)

where y(T) is a realization of the input process, g(t,T) is a realization

of the two-dimensional random impulse-response process, and x(t) is the

resultant realization of the output process. We will consider only those

random transformations which are statistically independent of their

inputs.

As pointed out by Zadeh [37], the system function(defined in Sec. 2)

can be usefil for characterizing random linear systems (transformations)

as well as deterministic linear systems. Using the same notation as for

deterministic systems, we denote the r, dom system function for a random
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system G as

LI -j .f
H(tf) = f h(t,r)e-J2 f~dr-- w

"III = f g(t,t-r)e dr.

LI In addition, we denote the autocorrelation function for the random

system function as KG and refer to it as the system autocorrelation

LI function for G:

LiKG(t,s,f,v) A E{H(t,f)H*(s,v)}

- ff E{h(t,t)h*(s,y)e- 2 (f )ddy. (2-30)

j We note that KG is a generalization 5 of the quantity referred to as a

system correlation function by Zadeh [37].

We proceed to derive an input-output relation for autocorrelation

I functions in terms of K .From Eq. (2-29) we have:
G'

LCO
x(t)x*(s) = ff g(t,T)g*(s,y)y(T)y*(y)drdy

2 -00

= ff h(t,t-T)h*(s,s-y)y(T)y*(y)drdy

= Jf h(t,T)h*(s,Y)y(t-T)y*(s-y)dTdy

Equating the expected values of both sides of the above equa'zions yields:

k k (t,s) = ff E{h(t,t-z)h*(s,s-y)}k (T,y)dTdyxx _- yy
co

= ff E{h(t,r)h*(s,y)}k (t-T,s-y)dtdy. (2-31)

1SKG(t,s,f,v) is also the inverse double Fourier transform w.r.t. f' and V'

of IG(f',v',f,v) which is referred to as the bifrequency intensity spectrum

and is the autocorrelation function for the bifrequency function for the
system G (see, for example. Middleton [41]).
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Using Fourier trtnsfcrms in a manner similar to that used to derive

Eq. (2-5) results in tne equation:

k, (ts) = ff K,,(t,s,f,,V)K (f,v)eJ2 n(ft-vS)dfdv. (2-32) if
xx _CO ~ yy (-2

Equations (2-30)-(2-32) will piove useful in the following development-.

a) Linear wide-sense-stationary systems. An intere3ting subclass of

random linear transformations are those which preserve wide-sense- -
stationarity: the output of a member of this class will be WSS if the

input is WSS. Although the most general class of deterministic linear

systems which preserves wide-sense-stationarity is the class of time-

invariant filters, it is not true that the most general class of random

linear ystems which preserves wide-sense-stationarity is the class of

random systems with ensemble members all of which are time-invariant filters.

The following theorem--first stated and proved by Zadeh [37] for ergodic 16

random processes and transformations--establishes a general class of

random systems--to be called wide-sense-stationary (WSS) systems--

which preserves wide-sense.stationarity:

THEOREM(2-10): If the system autocorrelation function for a random

system G, whose input y i, a zero-mean WSS process, satisfies the

stationarity condition:

KG(ts,ff) KG(t-s,O,ff)

for all t,s,f then tne output x is a zero-mA-n WbS process.

16 Zadeh used time averages rather than ensemble averages in ais t,-,er.
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Proof:

P i) From Eq. (2-29), the mean of the output x is

m in (t) = f E{g(t,T)lM (tr)dT

= 0 X& t since my(T) = 0 V T.

ii) From Eq. (2-32), we have

k (t,s) = ff KG(t)s,f,v)Kyy (f)6(f-v)e2dfdv

= -f KG(t-s,O,f,f)K yy(f)eJ 2 f(t')df

= k (t-s) L t,s (with some abuse of notation)
xx

i Hence, from i), ii) x is WSS

QED

Notice that if all realizations of the random system G are time-

invariant filters;, then

KG(t,s,ff) = E{H(t,f)H*(s,f)}

= E{H(O,f)H*(O,f)}

= KG(0,0,f,f) V t,;,f

so that G is clearly a WSS system.

Following are four specific examples of WSS systems which have

been used in analyses dealing with statistical communication theor)y7 [38].

Notice that the realizations of the first WSS filter presented are time-

17A number of more sophisticated models for WSS systems (communication
channels) are de'ined and discussed at length in the very "readable" report
of Maurer [38]. Also, a number of models (for physical and biological
applications in oceanography) for random time-varying channels are derived
irn the extensive four-part paper of Middleton [42).
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varying systems (multipliers):,

(1) Random WSS multipliers: If an input process y is multiplied by a j
WSS process z to yield an output process x, then realizations of ihe

random impulse-response fuaction which chiaracterizes this sysitem take

the form

g~t,T) =z(t)6(t-T)

Li

and h(t,T) = g(t,t-T) = z(t)6(T)

The system autocorrelation function is, fron Eq. (2-30),

KG(t,s,f,v) = ff E{z(t)6(T)z*(s)6(y))e- 2 (fT-Y)dTdy

SE{z(t)z*(s)}

I.I
k (t-s) V" t,',f,V,

so that KG(t,sf,2 ) KG(t-s,O,f,f) for all t,s,f and G is a WSS system.

(2) Random first-order filter: The random first-order .'ilter i~s simply

a deterministic first-order filter with its inverse-time-constant rqplaced

with a random variable w so that we have

h(t,T) = e u(T)

where u(.) is the unit step function. Thus, if p(*) is the PDF for w,

then the inverse double Fourier transform of the system autocorre~ation

function KG is

E{h(t.-,)h*(s,y)} = f e 2 7B1(T+y)u(y)
.02
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(3) Random ideal low-pass filter: The random ideal low-pass filter is

simply a deterministic ideal low-pass filter with its cutoff frequency

replaced with the random variable w so that

l, jfj
H(t,f) = -

10, jfl' >

Thus, if p C() is the PDF for w, then

LKG(t,s,f,v) E{H(t,f)H*(s,v)l

!min(-jfj,-jvj) O

L = f p (a)do+ f pW (a)da

CO max(] f 1, 1 vi) m x j j j

Li 1 f pW(a)da

-maxCiflv)

Li = 1 - P (max(ifIjIvI)) + P o(-max(Ifjlvl))
U)l (A)

where P C') is the indefinite integral of p (') and is, therefore, the

probability distribution function for w. Note that since all realizations

,i of w should be > 0, then the last term in the final expression is

identically zero.

(4) Rarndom delay: A frequently usvd model for a random communication

channel is that of the random delay-,

H(t,f) e j2Tf, h(t,T) = 6(T-A)

where A is the random delay variable. If p6(.) is the PDF for 6, then

00

K G(tsfv) = f j ( 2 7- (fV)pA(a)d

where is the Fourier transform of p and is, therefore, the

conjugate characteristic function for A.

Lit
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The following class of CS signals are generated by the class of

random time-invariant filters:L

MODEL(18): Random periodic signals. In some biomedical experiments, a

subject modeled as a random time-invariant linear system is excited by I
a known deterministic periodic signal. The measured response signal is j
then modeled as a random periodic signal: period known, but harmonic

content random. In addition to these biomedical test signals, the periodic

timing and test sgnals sent through communication transmission channels

can also be modeled (at the receiver) as random periodic signals. All

signals in this class are CS and take the form

x(t) = a eJ 2lnt/T
n n

where {a } is a random sequence with the constraint a = T % n.n n -n

It is apparent from the discussion and examples in Section 2 of

this chapter that periodically varying systems are very common components

in communication systems. Although a suitable deterministic model for a

puriodic system may well be known, it is not uncommon for the phase

(time-origin) of the periodic variations to be unknown. In such cases it

is sometimes sufficient to model the phase as a random variable uniformly

distributed over one period. In fact, in some analyses, this is done

even though the phase is known (this point will be discussed in Chapter lV).

The following theorem establi3hes the fact that periodic systems with

uniformly distributed random phases are WSS systems:

THEOREM(2-11): If the phase (time-origin) oý a deterministic T-periodic

system is modeled as a random variable 6 uniformly distributed over one

period, say (-T/2,T/2), then the resultant random system is WSS.



Proof: The PDF for the uniformly distributed random variable 0 is

lii l/T, jot < T/2

0 Ial > T/2

L Thus,

SKG(t,s,f,v) =E{H(t+O,f)H*(s+e,v)

= f H(t+a,f)H*(s+a,v)Po(o)da

L T/2

= f H(t+of)H*(s+a,v)da
T -T/2

U 1 s+T/2

= / j H(t-s+y,f)H*(y,f)dy
. is -T/ 2

But since H(t,f) is T-periodic in t, then the integrand is T-periodic

in y and the integral is simply an average over one period and is

therefore independent of the absolute end points of the one-period interval,

i i so that

= 1 T/2
(t_•~v =F -T/ 1(t-s+y, f)H* (y, f)dy

f= H(t-s+y,f)ll*(y,f)P 0 (y)dy

= KG(t-s,O,f,v) V_ t,s,f,v

Hence by Theorem (2-10), C is a WSS system.

QED

i) Preservation of cyclostationarity. While it is true that all WSS

systems preserve wide-sense-stationarity (by definiton), it is not true--

as might be expected--that all WSS systems preserve cyclostationarity.

However, all the WSS system examples considered above do, indeed, preserve

cyclostationarity., In fact, most WSS systems of practical interest do

pxeserve cyclostationarity. This next theorem defines the most general

subclass of WSS systems which preserve cyclostationarity:
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THEOREM(2-12): if the system autocorrelation function for a random

system G, whose input y is a zero-mean T-CS process, satisfies the 1
stationarity condition:

L

K G(t,s,f,v) = K(t-s,ej
21r(ft-vs) f'v)

for all t,s,f,v and for some function K, then the output process x is a

zero-mean T-CS process.
L.

Proof: The mean of x is (as in the proof of Theorem (2-10)) obviously

zero, and from Eq. (2-32) along with the stationarity condition we have L

kx(t,s) = ff K(t-s,eJ 2 (ft-5),f,V)K (f,v)eJ 2 (ft'sdfdv L

Now, taking advantage of the periodicity of kyy. we can expand its

double Fourier transform K into a series of the form of Eq. (2-14):

0 0 L I
Kyy (f,v) I KA(f)6(f-v+n/T) I fV,n=-_ 0

so that

k xx(t,s) = ff K(t-s,eJ 2 (ft-),f,v)j Kn(f)8(f-v-n/T)"
-0 n

e 2w(ft-vs) dfdv

I o f K(t-seJ2.(f(t-s)-ns/T), ff-n/T)K (f).
n no

ej 27t (f (t-s) -ns/T) ,

Since this last expression is jointly T-periodic in t and s, then x is

a zero-mean T-CS process.

QED

I
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An example of a random system which satisfies the "stationarity

condition" of both Theorems (2-10) and (2-12), but does not satisfy the

more stringent and more obvious condition: KG(t,sf,v) = KG(t-s,O,f,v)

LIfor all t,s,f,v--which is satisfied by all previous examples--is the

random S(2) delay. This random system has random impulse response

g(t,T) = 6(T-z(t))

where z is any S(2) process, and its system function is

H(t,f) = ej2Wf(t-z(t))

so that its system autocorrelation function is

-KG(t,s,f,v) = E{ej 2 (fz(t)-vz(s)) e-j 27r(ft-vs)

=-f _2 r(favy)p (j,y)d2dyej 2 (ft-vs)

= P* (f,v)e-J 2 (ft-vs)

where P ts(f,v) is the double Fourier transform w.r.t. a and y ofit-s

Pts- (a,y) which is the joint PDF for z(t) and z(s). The realizations of

the T-CS output x which result from any T-CS input y take the form

x(t) y(z(t)).

Since z is S(2), then the time parameter for y doe3 not increase

monotonically and, in fact, "hovers" about the constant mean value of z,

so that G is a rather peculiar transfol'mation,

b) Linear cyclostationary systems. In the last subsection we

defined the class of WSS systems to be those which, when driven with a
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WSS input process, produce a WSS output process. We now define the class

of cyclostationary (CS) systems to be those which, when driven with aj

WSS input, produce a CS output.

THEOREM(2-13): If the system autocorrelation fumction for a random

system G, whose input y is a zero-mean WSS process, :iatisfies the j
cyclostationarity condition:

KG(t,s,f,f) = KG(t+T,s+T,f,f) L

for all t,s,f and for some non-zero T, then the output process x is a L.
zero-mean T-CS process. Li
Proof: From Eq. (2-32) we have

k xx = ff KG(t,s,f,v)Kyy (f) 6 (f-v)eJ 2 (ftVS)dfdv

kj (t,s) -

= f KG(t,s,f,f)Kyy (f)ej 2lf(t-)df

= f KG(t+T,s+T,f,f)K (f)eJ 27rf((t+T•-(s+T))df Jj
= k (t+T,s+T) f t,s, I

and the mean for x is clearly zero. Hence, x is T-CS. _J

QED '

A large subclass of CS systems is the class of random periodic E

systeins. The membtrs of this class have ensembles with elements all of

which are periodic deterministic systems. These random periodic systems

can be characterized by a random system function H which is a one-

dimensional random process indexed by f with parameter t, such that the

random processes ll(t+T,') and H(t,') are identical for all t.
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Such random system functions can '& represented by a random Fourier series

[IH(t,) H n-)
n=-•

where the coefficients are random functions. Thus, paralleling

b deterministic periodic systems, we see that random periodic systems have

realizations with the structure shown in Figure (2-2) where the path-

Jfilter transfer functions are realizations of the random coefficient

functions Hi} n

U The fact that random periodic systems are CS systems is obvious, but

will be stated here as a theorem for convenient reference:

THEOREM(2-14): If the input to a random T-periodic system is WSS, then

the output is T-CS.

This theorem is a generalization of Theorem (2-4) which applies to

U deterministic periodic systems and serves as a basis for the generation

of many CS processes of interest. This more general theorem (2-14) also

serves as a basis for the generation of CS processes, and to illustrate

this we give two examples of random periodic systems:

MODEL(19): Random periodic attenuation of a WSS process. The random

periodic attenuator is a useful model for some communication channels

and for some modulators,and has a random impulse-response function with

realizations of the form

g(t,T) = p(t)6(t-T),

where p is a random periodic function. This, the random system function

takes the form
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H(t,f) = f p(t)6(Cr)e- d

p e pnj2wnt/T.
n

where (pn1 are the random Fourier coefficients for p.

Another useful model for communication channels is a deterministic

periodic attenuation followed by a random dispersion. The random

impulse-response function for this model has realizations of the form

g(t,T) = p(T)g 0 (t-T)

where p(t) is the periodic attenuator and g is the random time-invariant i
impulse-response function. Thus,

H(t,f) Jp(t-T)g (T)e-J 2 VfTdT

= 0 Go(f+n/T)p nej27nt/T
n

where {pn} are the deterministic Fourier coefficients for p(t) and G

is the random transfer function for the dispersion.

The following is an example of a CS system which is not a periodic

system:

MODE.L(20): Multiplication of a WSS process by a cyclostationary process.

In communication systems, signals are sometimes subjected to multiplicative

noise. If the noise is a CS process, then we !iave a CS system with impulse

Sresponse realizations of the form

g~,)= n(t)6(t-'r)

where n is a CS process, and the system autocorrelation function is

K 6 t,s,f,v)) k knn(t's).
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c) Random time-scale transformations. In Section 2 we discussed

deterministic time-scale transformations of the form t'(t) = t + p(t)

Uwhere p(t) was a deterministic periodic function. Here, we will consider

random time-scale transformations with realizations of the form

t'(t) = t + z(t) where z is a random process which is stationary (or, in

some cases, cyclostationary) of order two (S(2)).

LIi) Phase randomization. The simplest possible random time-scale

Li transformation is the random phase-shift: t'(t) = t + 0, where 8 is a

single random variable with PDF po(-). The phase-shift, as defined here,

is identical to the random delay which was discussed in subsection 5a.

Thus, we know by Theorem (2-12) that random phase shifts preserve

cyclostationarity. That is, it is not necessary that the time-origin or

Li phase of periodicity be known precisely (be determinislic) in order hat
f

a process be CS. In fact, the phase can be a random variable with

arbitrary PDF and the process still be CS. Furthermore, there is an

interesting class of PDF's for the random phase which reduce all CS

processes to stationary processes. This result, which is similar to that

of Theorem (2-11) is established in the following theorem; 1 8

THEOREM(2-15): For every T-CS random process y, the random process x with

realizations of the form x(t) = y(t+a) is WSS if and only if the PDF pa(.)

for the independent random-phase variable, with realization a, satisfies

the condition:

18This theorem (in a slightly different form) has been stated and proved
by iHurd [5], and the "sufficient" portion has .een proved and/or demonstrated
for specific processes by a number of authors [1,2,3,7]. In addition, Iturd
has given an interesting companion theorem which states that a process is
CS if and only if its phase-randomized version is WSS.
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p pe(o-nT) = l/T *acr;

and if the PDF is constrained to be duration limited to (-l/2T,l/2T),

then this necessary and sufficient condition reduces to

SI/T, tat < 1/2T

0 l IT: tlo /2T

Proof:

i) The mean for x is

mx (t) = E{y(t+O)} = f m y(t+a)p 0 (a)do. >_
Now, since m is T-periodic, we make use of its Fourier series

representation

m(t)= f Ia eC2 on(t+O)/Tp (a)do

= anP*(n/T)ej2•nt/T1n e
where Po() is the Fourier transform of p6(-). Clearly, from this last

expression, mx will be independent of t for every sequence {a n if and

only if Po(n/T) = 0 for all n J 0.

ii) The autocorrelation for x is

k xx(t,s) = E{y(t+e)y(s+o)) =f kyy(t+o,s+a)P0Co)do.

Now, since k (t,s) is jointly T-periodic in t and s, we make use of

its Fourier series representation (see Eq. (2-13)):

k (t,s) - f I k (t-s)ej2cnrt+) (o)do
-oo n

k k(t-s)P*(n/T)eJ
2 Tnt/T

n
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Clearly, from this last expression, k (t,s) will be a function of only
xx

(t-s) for every sequence (k I if and only if P0 (n/T) = 0 fbr everySn$O.

iii) From the Poisson sum formula [2]:

SP(a-m/T) I I PO(n/T)e-j 2wna/I

m n

1o(0) f (y)dyl/T I-,U - T_ -0)

U where the second line is a valid equality if and only if Po(n/T) = 0

for all n 0 0. Hence, from i), ii), iii), x is WSS if and only if

I Pe(c-nT) = 1/T I a

and clearly, if po(') is constrained to be duration limited to

jJ (-I/2T,I/2T), then this condition can only be satisfiec by the uniform PDFI/iT, ic[ _ 1/2T

.o) =0, Iou > 1/21'.

QED

This next theorem establishes a rather obvious, but quite useful,

result on the relationship between the statistics of a phase-randomized

process and the time-averaged (smoothed) statistics of its deterministic-

phase counterpart.

THEOREM(2-16): The first and second order statistics of the process x

obtained by phase-randomizing a process y, with a random-phase PDF pe(.),

are identical to the time-averaged (smoothed) statistics of y if the

weighting function used for averaging is pO.)
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Proof: For any function f(.) we have

E(f(x(t-e))) = f Etf(x(t+o)))p,(o)da
. 0

f f E(f(x(t0a)))pe(a)da/ f pe(a)do,

and this last expression is the time-averaged value of E(f(x(t))) with

weighting function p,(.); and for any function g(-,.) we have

E{g(x(t+O),x(s~o))) - f E(g(x(t+o),x(s40)))p 0 (o)do

f E(g(x(t~o),x(s*a)))pe(a)dr/ fpo(o)do

and this last expression is the time-averaged value of E{g(x(t).x(s))}

with weighting function p (")

QED

A direct result of this theorem is the fact that the mean and

autocorrelation functions for the WSS process x obtained by time-

averaging over one period the mean and autocorrelation functions for any

T-CS process y:

I T/2
mx T f/ m (t)dt

k (t -s) = I T/2

-T/2 Y'>

are identical to the mean and autocorrelation functions for the WSS

process x' obtained by phase-randomizing y with a ra~adom phase variable

uniformly distributed over one period (--I/Tl/2T).

The three preceding results generalize from one-dimensional random

signal processes to two-dimenbioial random system processes as follows:
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THEOREM(2-17): For every T-CS system GI with random system function

W'(t,f), the random system G with random system function realizations of

the form H(tf) = H'(t+o,f) where a is the realization of an independent

random-phase variable with arbitrary PDF, is also a T-CS system.

THEOREN(2-18): For every T-CS system G', the corresponding phase-

randomized system G is WSS if and only if the PDF p,(-) for the lndeperdent

rauidom-phase variable satisfies the condition

n pO(o-nT) alIT 141 a

and if the PDF is constrained to be duration limited to (-l/2T,l/2T),

then this necessary and sufficient condition becomes

l/T, Ju l/2T
Pe (a) a

10 , Iol > 1/2T.

THEOREI(2-19): The system autocorrelation function for the random system

G obtained by phase-randomizing a system G', with a random-phase PDF po(.)

is identical to the time-averaged (smoothed) system autocorrelation

function for G', if the weighting function used for averaging is po(-).

The proofs of these last two theorems directly parallel those for

Theorems (2-15), (2-16). and will not be zepeated here. The proof of

Theorem (2-17) is trivial.

As a result of Theorems (2-10), t2-10), (2-19), we see that when it

is appropriate in specific analyses to ignore periodic fluctuations in

random cyclostationary signals and systems and in deterministic periodic

signals and systems, then these fluctuations ca:n be "averaged out" either

by uniformly randomizing, over one period, the time-origin ur phase ofv the
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periodic fluctuations, or by time-averaging, over one period, the

fluctuations with a uniform weighting function. U
Also, from the discussion at the beginning of this subsection and

Theorem (2-17), we see that it is not necessary that the time-origin or Ll

phase of periodicity be known exactly (be deterministic) in order that a

signal or system be cyclostationary. In fact, the phase can be a random

variable with arbitrary PDF.

ii) Generalized ahgle modulation. We now consider more general random

time-scale transformations.

THEOREM(2-20): A random time-scale transformation G, with realizations Ii
of the form t'(t) = t - z(t) where z is a S(2) process with joint PDO for

z(t) and z(s) denoted Pt.s(,,), has system autocorrelatiost function U

KG(t's'f'v) -)P*--s(tv) jL

where P is the double Fourier transform of pt-s and the trakifomation

G preserves cyclostationarity. £1
Proof: The impulse-response function for G haz realizations of the form U

g(t,r) 6(T-t-z(t)) I

so that

h(t,T)

and

H(t,f) e ej2z(t)f I

Now, the system autocorrelation function is

K(;(tsf,v) = ff ej2vy Pt(odod

= 1W (fV )
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This system autocorrelation function clearly satisfies the hypothesis

of Theorem (2-12); hence, the system G preserves the cyclostationarity

of zero-mean processes. But since the mean of the output x satisfies[i -
mex(t) _ mY (t+o)p(o)do

[J - f my(t*T+a)p(o)dci

I . mx (t÷T).

where y is the input to G and p(.) is the PDF for z(t) for all t, then

G also preserves cyclostationarity of non-zero-mean processes.

QED

The degenerate case in which the input process is a deterministic
T-poriodic signal is actually generalized angle modulation, and is of

Ispecial interest in communications. For convenient reference, we restate

the above theorem for this special case:

] THF.OREM(2-21): If a deterministic T-periodic signal q(t) is subjected

to a random time-scale modulation with realizations of the form t'(t)=t + z(t)

where z is S(2). then the resultant process x with realizations of the

form q(t + z(t)) is T-CS.

Examples:

SMODEL(21): Conventional phase-modulation (PMl). If q(t) is a sinusoid,

then x is a conventional phase-modulated signal where z is the modulating

signal.

MODEL(22): Conventional frequency-modulation (PM). If q(t) is a sinusoid,

and if the realizations of z take the form
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t
z(t) Z 0 Zo(o)da

then x is a conventional frequency modulated signal where z is the

modulating signal.

Variations on these two commonly used communication signal formats

are those of digital PM and digital FM, the statistics of which have

been partially analyzed by various authors (233, (24]. The following

theorem establishes the cyclostationarity of digital angle-modulated

signals under a stationarity assumption which differs from that in the

above theorem.

Sj THEOREM(2-22): If a deterministic T-periodic signal q(t) is subjected

to a random time-scale modulation with realizations of the form

¶ t'(t) a t + z(t) where z is a PAM signal with realizations of the form

z(t) - • anpo(t-nLT)
n

where {a ) is a S(2) random sequence end L is an integer, then the resultant
n

signal x with realizations of the form

x(t) a q(t + I anPo(t-nLT))
n

is CS with period LU.

Proof:

i) mx (t) f I q(t * I op0 (t-nLT))p(o)do

4' 
n

f q(t + LT + o J po(t + LT - (n+l)LT))p(o)do
-~ n

f q(t r T + po(t * LT- n'L'r))p(o)do

M mx(t + LT)
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where p(.) is the PDF for an fir all n,
S~ii)

kxx(t,s) - (f q(t + I aop(t-nLT))q(s + 1 YPo(E-mLT))Pn.2(a.y)dadya .0 n

U ff q (t + Lt + a I po (t + IT -(n+I1)LT))..m f3n

q(s + y I Po(S + LT - (m3l)LT))P(n+,).(m.+)(ay)dOdy

Sk xx(t + LTs + iT) f t,s,

where pn.m(.,.) is the joint PDF for an and am for all n and m. Hence,

from i) and ii), x Is CS with period LT.

QED

Examples:

4MODEL(23): Digital phase-modulation (DPM). If q(t) is a sinusoid, then

x is a conventional digital phase-modulated signal with modulating

sequences (a n), and pulse-shape p (t).

MODEL(24): Digital frequency-modulation (DFM). If q(t) is a sinusoid,

and if the "pulses" p0 (t) take the form

tU~O p0 t ,f p I(o)do,

then x is a conventional digital frequency-modulated signal with

modulating sequence (a n), and pulse-shape po(t).

Li Finally, we point out that random time-scale transformations can

be CS systems in that they can transform WSS inputs into CS outputs:

r.
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THEOREM(2-23): The output x of a random time-scale transformation G

with realizations of the form t'(t) = t + z(t), where z is a T-CS(2)

process, is T-CS if the input y is WSS.

Proof: The system autocorrelation function for G is (as shown in the

proof of Theorem (2-20))

KG(ts'f'v) - P*,s(f,v),

where Pt's is tOe double Fourier transform of Pt,s which is the joint

PDF for z(t) and z(s). but since z is T-CS(2) then Pt4T,svT x Pt's for

all t and s, so that KG satisfies the hypothesis of Theorem (2-13), and

G preserves cyclostationarity of zero-mean inputs. But since the mean

for the output x takes the form

mx(t)= W yPpt(o)da = my V t

M x Ct + T)

where Pt is the PDF for z(t), then G also preserves the cyclostattonarity

of non-Zero-nmean inputs y.
I Q•
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6. Random Multi-dimensional Linear Transformations (Random Scanning)

i l In this section, we briefly present a generalization of the ideas

S~ii presented in Section 3 on deterministic multi-dimensional linear

transformations. The motivation here is to develop a theory upon which

I studies of random icanners can be based. We use the same definitions and

input-output relation (Eq. (2-21)) as in Section 3; however, we now allow

~~LI the three-dimensional impulse-response function to be a (four-dimensional)

random process. Thus, generalizing our definition of "quasi-periodic

transformation" (Section 3, Eq. (2-22)) and our definition of

1.1"cyclostationaw.v system" (Section 5b), we define the transformation G to

be gusi-cyclostationary with period T if and only if the generalized

L system autocorrelation function K. satisfies the cyclostationarity condition:

L KG(t÷T,s*T,f,f,ul,vl,u2,v 2 ) u KG(t,s,f,f,ulvl,uVv2)

Sfor all tsfu where K. is defined as in Eq. (2-30) oft ,s,f,ul-,V ,v2,

Section S. (In most applications uI, u2 , vI, v2 will be position

Ii coordinates; t,s will be time variables, and f will be the frequency

variable.)

Now, we have the following generalization of Theorems (2-6),(2-13):

THEORE•t(2-24): If the input y to a three-dimensional quasi-cyclostationary

transformation with period T is a zero-mean quasi-wide-sense-stationary

process, then the one-dimensional output process x is T-CS.

The proof of this theorem is a simple extension of that for Theorem (2-13).
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For applications of this theorem, we have the generalizations of

those applications of Theorem (2-6) in Section 3: i.e., random

scanners. Consider, for example, the line scanner of Section 3, but

with the random window function U

g(t,,u,v) I g(uI (t)-uvI (t)-v)d(t-T),

where g is a two-dimensional random function, and vI and uI are U
one-dimensional random processes. If g is statistically independent of

uI and v1 which are either jointly CS(4) (cyclostationary of order 4)

or are independent and CS(2), then the random line-scanner G satisfies LI
the hypotheses of Theorem (2-24). Hence, random line-scanners with

Srandom (randomly selected) window shapes and random CS window velocities IJ
generate CS signals from WSS inputs.

Thus, we see that the precise (deterministic) periodicity used in I.
the video line-scanning model of Section 3 is not necessary in order for

the resultant video signal to be modeled as CS.

More generally, we see that signals obtained from various scanning $j.
operations can be modeled as cyclostationary even if there is no precise

(deterministic) periodicity in the model of the scanner. :Li

i. I
3i

I!
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II La 7. Nonlinear Random Transfor~ations (jitter)

Unlike the raypdom linear transformations of the preceding sections,

there does not exist one simple characterization, such as a system function,

fbr the random nonlinear transformations of interest in this thesis. The
I

periodixc Volterra series representation introduced in Seetion 4 on

deterministic nonlinear transformatlons could be generalized here by

al allowing the kernel functibps to be' random; however, such a r'epresentation

would not servc the purposes of this thesis.

In this section, thep, we briefly'extend the results on deterministic

izero-memory nonlilearities presented in Section 4, and then turn to the

important'issue of ji . We characterize this random timing disturbance

in'general terms, and then shu-' that it preserves cyclostatioqarity under

a fairly liberal set of conditions.

a)! Zei'o-memory random nonlinearities. A nonlinear random transformation

:is said to have zero-memory if and only if for every member of, its

ensemble of transformat~ions, every image function evaluated at aqy time,

say to. depends on the corresponding inverse image fuActiofi evaluated

only at the same timet . Realizatibns of lie input and output of such

transformations are related as follows

x(t) = G(y(t),t)

where 6(.,.) is a realization of the random transformation G.'

Wý begin with a theoremwhich establishes a class of such

transformationswhich generate CS processes from'S(2) processes:*
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TIIER0(2-2.g): If the jUput Y to a zero-aumory random nonhinestity G

is S() and if G satisfies the cyclostatiouiarjty condition:

E{G(G,t)) =]E(G(ca,t+T)) [
Itti~a,t)G(y,s)J E(G(o,t.T)G(;(yDsT)) tsoy

then th otpt is T-CS.

Proof:

MxCt) - E{G(y(t),t)) j

= E(G(0.tT))p(a,)dc

4Iwhere p(- is th PF for ~tT) for all t, and T

~ affE{G(uY,t)G;(y,s)jp (a,y)dady L

ff E{G(c,t.T)G;(y,sT)p(+T sT) (aoy)dady
IPt+)(sT

=k (teT,s+T) V t~s,

where p is the joint PDF foi. y(t) and y(s). Hence x is T-CS.

QED
As an example Of a cyclostationary zero-memory nonlinearity, consider

the very elementary transformation of "additive noise":

.(Y(t),t) y(t) + n(t), where n is a CS random "noise" process. G clearly
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'1satisfies the cyclostaticnarity condition of the theoreb. In fact, the

sun of any number of statistically independent VSS and T-CS processes

will be T-CS.

b) Jitter. The various repetitive operations suoh as sampling,U • scanning, and multiplexing, to which signals are often subjected, are--

of course--never exactly periodic. In some analyses," this departure from

exact periodicity can be neglected; however, in the event that it is--

or may be--significant, this departure from exact periodicity should be

modeled so that it can be dealt with analytically.

We have seen, throughout this chapter, a number of models for T-CS

processes with realizations of the form

y~t M x Xn(t-nT)

where, for example, the translates (xn(t-nT)} might be one-line segments

from a line-scanned rectangular field as in Video, or finite length

records fwom a multitude of sources as in time-division multiplexing

L schemes, or individual random pulses as in the various synchronous pulhe

modulation schemes such as PAN, FSK, and others, For CS processes with

Lrealizations of this form, we model departures from exac' periodicity by

incorporating a random epch-jitter variable 6n in each translate so that

x(t) = x (t-nT+")
n n n

where {6 ) is a random sequence. Hence x is obtained from y via a random
n

ji nonlinear transformation with memory.
Now, two fundamental models for this sequence {6n) are of importance,

tarno n

in that each accurately represents one of the two most common physical
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mechanisms which cause jitter:

(1) each translate is Jittered w.r.t. the time-origin of the total

process ( t a 0

(2) each translate, say the tnlh, is jittered w.r.t. the time-origin of
n-1

the preceding translate ( t U (n-1)T + I aid.

In the first case, where "jitter" is the more appropriate terminology,

the random sequence (d can be modeled as a stationary finite-variance 1)
sequence with autocorrelation function denoted k 6 (n-m). Then the second

case, for which the term jitter is somewhat inappropriate, can be modeled

by a new sequence (yn) which is composed of the partial sums of the {6n}: n

x(t) x n X(t-nT~y)

where

Y~ n I a

As an example consider the case where the {6n) are all independent

with zero mean and equal variance o2. Then

k 6 (n-m) a 2 n m
0 n 11 m

k y(n,m) • E(YnYm)

I I E{6u )
10 jaO
min(n,m)

- Q2 (min(nm)+l), n,m > 0

Thus, ty n is a discrete Wiener process (Wiener sequence) and is non-

stationary with growing variance. DJue to the difficulties associated with



this model, we will simply state that the corresponding jittered process

Sx is not, in general, CS; but, in the event that the process is *bserved

by a tracking receiver, then the observed process can be remodeled--

II using the time-varying frame of reference provided by the tracker--in

terms of the first model for jitter (mentioned above) which is more

tractable.

The new text book Theory of Synchronous Communications by J.J.Stifler

(40] provides a comprenensive tutorial treatment of synchronization: the

J problems of detecting and estimating symbol epochs and carrier phase, and

of tracking fluctuations in periodicity, and related synchronization

problems are treated using the theories of maximum-liklihood detection and

Sestimation, and familiar communications components such as matched filters

or correlators and phase-lock loops.

Ki Returning now to the first model for jitter, we establish the

preservation of cyclostationarity with the following theorem:

THEOREM(2-26): If a T-CS process y with realizations of the form

y t (t-nT)

/ and autocorrelation function of the form

k yy (t,s) = I kn-m (t-nTs-mT)
n'M

is modified to include jitter:

x(t) = n x(t-nT+6nJ
n

where the random jitter sequentce (6) is S(2), then the jittered process

x is T-CS.
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Proof:

1'I (t E Bx, (t-nT+0n))p(qn)dqnn-n

f E(I xn(t-nT+cT))p(o)do
-. n

af Efy(t+0) )p ()da

a f (t+Tac)p(o)dc,
-. y

xm (t.T) t

where p(-) is the POF for 8 for every'n.

nM

~ Ct .) u ~ f E-x(t-nT~o ) s-nT+y))pn(,~ad

na ff_ xm~(coy)dody

f f I kfl.t tn+asT-(+Y)Tpo~+T-mdI)dY
-~n,m

Uff kfl~,(.Tn~4.a..T.m.T.~p ,(oy)dady

k (t4T~s.T) v t's,

where p,1, (.,.) is the joint PDF for 6 and 6 for all n and mn. Now,n
from i) and ii), x is T-CS.

QE3D



L As examples, we merely note that the hypotheses of this theorem

[jare satisfied by the time-division-sultiplexing scheme (TIM) with

independent sources, by the video model derived by Franks (see Sec. 3),

Land by all the synchronous pulse-modulation schemes, with S(2) modulating

sequences, such as PAM, FSK, PWM, and others (see Sec. 4).

We now give an extension of this theorem to CS random systems:

THEOREM(2-27): If a T-CS random system G',with system function realizations<U
of the form

jH'(t,f) H n H(t-nT~f)

and system autocorrelation function of the form

! K~IG,(t,s,f,v) - • Kn (t-nT,s-mT,f,y•:.'

<U n,m nr

U 
is modified to include jitter

SH(tf) -I H(t-nT+6,f)
n

where (6 • is S(2), then the resultant jittered system G is T-CS.

I ~'The proof directly parallels part ii) for Theorem (2-26) and will

not be repeated here. Note that, for the special case of deterministic

signals mnd systems, the two preceding theorems establish the fact that

T-periodic signals and systems, when jittered, become T-CS signals

and systems.

In conclusion, we emphasize the fact that there need be uo exact

periodicity in the realizations of a CS process: the occurrence of pulses

in jittered PAN, for example, is not periodic, nor are the pulse

occurrences in a Poisson pulse process with periodic rate parameter.



The periodicity need only be present in the first and second order

ensevible averages. Yet, as pointed out a number of tines in both this

chapter and Chapter I, the mean and variance for a CS process can be

constant so that the periodicity in these quantities is degenerate, and

still such processes can exhibit strong periodic fluctuations in

correlation, as exemplified by the time-division-multiplex (TDM1 or TOM 2)

of WSS processes with equal means and variances but with disjointL

PSD's, or as illustrated in Figure (1-3) for PAM.

L
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U1L
U

Filure(2-1) Diagram of systom(transjfvpjrmon) G with Input

Uhi (InV~z'se-imag.) y and output(image) x.
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* *-J2wpt/T 1
Y(t)fXt

ej2wqt/T

il

Figure(2-2) Structural diagram of the Fourier series representation

of a periodically(T) time-varying linear system. I
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a)

yq(t)

q 0 (t)X

q o_ _t

TIM T
b)

Figure(2-4) a) TI*IJ multiplexor. b) Gating sip.nal for MI1 .
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tt)

T t ) t[t) TO
IrI

LI I t

a)

U

/!
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I
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(T --- I) tTt t÷pt

0  0

Figure(2-61 a) Periodic component at' thc time-scale compression

transformation. 1i) time-scale compression transformation.(t' is

compressed Lime, t is unaltered ti...)
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YN(t)

a)~t

b) (H-i)To 0

Figuro(2-7) a) Unaltered process. b) Transformed process

obtained by compressing T-length records into T/Pi-length

records.
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y(t IU .vO)
00
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Figure(2-8) Line-scanning diagram.
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-L•Figure(2-10) Circle-scanning diasgram(r is an "effective"

reception radius.)
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CHAPTER III

SERIES REPRESENTATIONS FOR CYCWSTATIONARY PROCESSES

(AND THEIR AUTOCORRELATION FUNCTIONS)

1. Introduction [1
Many analyses involving random processes are greatly facilitated

by the use of appropriate representations for the processes and their

autocorrelations functions. These representations are frequently

categorized into one of two classes: "integral" representations and

"series" representations. It is the latter class which concerns us here.

In this chapter we develop two types of series representations for f
cyclostationary processes:

(1) Discrete "translation series" representations of the form

W M

x(t) u a *p (t-nT) y t £ -C )na-w pul

where {0p are deterministic basis functions, and ((anp); pml,2,..,M) Li
are jointly wide-sense-stationary discrete random processes (random

sequences) referred to as "representors".

(2) Continuous series representations of the form

x(t) a a pt) (t) I V (-t ,),

where (I) are deterministic periodic basis functions, and (a p) are

jointly wide-sense-stationary (or cyclostationary) continuous-time random

processes referred to as the reprosentors.

4i



rl

II One of the advantages typically gained in representing one process

in terms of a multiplicity of others is that these other processes

(representors) are chosen for convenience of analysis and/or synthesis.

j For example, the translation series representation employs representors

which are not only discrete, but also jointly wide-sense-stationary.

1Similarly, -the continuous series representations developed in this chapter

Semploy simple continuous-time representors such as piecewise constant

processes with constant means and variances, or jointly wide-sense-

U stationary bandlimited processes. As shown in the next chapter, such

representations enable us to convert single-variable problems with

periodically varying parameters to multi-variable problems with constant

parameters.

All representations presented in this chapter are valid on the

infinite interval (--,.), and since all WSS processes are CS, then the

representations apply to all WSS, as well as all CS, processes.

Li Before delving into the topic of representation, we first define a

Hilbert space of random processes that will provide a framework within

which we can unambiguously present our results on representation. We begin

with the definitions of two well known Hlilbert spaces:

(1) Hilbert space of random variables: We define NV to be the Hlilbert

space of finite mean-square random variables with the following inner

product

and induced norm

IIxIIR v Ex12)Jh/2.
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(2) Hilbert space of functions: We define L2 [a,b] to be the Hilbert

space of sqsare-integrable functions on the interval [ajb] with the

following inner product

b-XY x~t)y*(t)dt
a

and induced norm
b1/

IIxIlL2 A b Ix(t)12 dt]1 / 2 "

We remind the reader that the elements in infinite-dimensional

Hilbert spaces such as these are equivalence classes, each of which may

be comprised of an uncountable number of equivalent elements, where two

elements are equivalent if and only if they are equal modulo the set Cf

zero-norm elements [2]. For example, the uncountable set

I x(t), t # ci, t (ab] fxi(t) - bci e [a~b]

0, t ci

is an equivalence class ( and therefore a single element) in L2 [a,b]

since the norm of the difference between any two members is zero. The

terminology

xi(t) = xj(t) a.e. t c [a,b]

which is read "xi equals xj for almost every t contained in the interval

[a,b]" is often used to denote equivalence in L2 [a,b], and will be used

here occasionally; however, for the most part, the a.e. will be suppressed.

In HRV the terminology "mean-square equivalent" is frequently used to

denote the nature of equality in that space, and will be used here

occasionally.



Now, although periodic functions are not contained in the Hilbert

space L2 (--,-), they can be made into a related Hilbert space of their own:

(3) Hilbert space of periodic functions: We define 2 (-,-) to be

11the Hilbert space of square-integrable (on [0,TJ) periodic functions on

(-.") with the commensurable periods (Tn; T = T/n. n = 1,29...)

Si: •with the following inner product

AT
(xy)L2 -f x(t)y'(t)dt

SJand induced norm

TI Ixll 1 2 IX~t)l 2dt]

The cyclic character of the functions in this space is directly responsible

for the existence of an L2 -type of inner product and norm which are valid

for functions on (-c•) which are not in L2 (--,). Although this Hilbert

space is a trivial variation on (and, in fact, isomorphic to) L2 [0,T], it

Sleads directly to the following--far more interesting--Hilbert space of

cyclostationary processes:

(4) Hilbert space of cyclostationary processes: We define HCS(T)(-%*)

to be the Hilbert space of all finite mean-square jointly CS processes on

(-*-) with the commensurable periods (Tn; Tn = T/n, n = 1,2p .....

with the following inner product

(xY)HT- f E(x(t)y*(t)hlt
Cs0

and induced norm

TIXIllIcs [0 f E(IX~t)12}dt)l2
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Note that, paralleling the case for 2- ), the existence of an

L2-type of norm for HCST) is a direct result of the cyclic character

of the second order moments of the elements in our space; i.e.,

E~x(t+T)y*(-r+T)) Efx(t)y*(-r)] a.e. t,T c -%.

for every x,y in HCs(T). When visualizing the elements of this space,

recall that statistically independent and/or uncorrelated CS processes

are jointly CS, and that all WSS processes are CS with arbitrary period

T. In fact, the elements of HCS(T) might be more amenable to visualization

if thought of as functions of two variables x(t,w) where the section

function x(t,.) is a random variable with domain: the set of events

(sample space) on which the underlying probability space is defined, and

with range: the complex numbers, and where the section function x(.,w)

"is a function in the usual sense with domain: the real numbers, and

range: the complex numbers.

In concluding this introductory section, we emphasize that throughout

this chapter, expressions of the form

x(t) = x'(t) V t C

-- where, for example, x' is a representation for the CS process x--

should be interpreted as meaning that x and x' are in the same equivalence

class in IfCS: i.e., the norm of their difference is zero.

'4



2. *Traslatipn Series RepresOeitations

Due to the length of this section,. and the fact that it is the

LI heart of the theoretical content of this dissertation, we begin by giving

a brief outline of the eight subsections included herein:

jSubsection: a) Definition of, and existence and identification theorem

for, translation series representations.

b) Interpretation of translation series representations as

I representations in terms of PAM processes.

c) Implementation of the process-resolution and

U reconstruction operations.

d) Examples of translation series representations.

e) Classes of processes which admit finite order translation

L series representations.

f) Application of translation series representations to

the solution of linear integral equations.

g) Application of translation series representations to the

realization of periodically time-varying linear systems.

U h) Application of translation series representations to the

definition of a generalized Fourier transform for

VJ cyclostationary (and WSS) processes.

I,
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a) Definition. A particularly interesting class of discrete

representations for cyclostationary processes is the class of ]
translation series representations. 19 A cyclostationary process x with

period T is said to admit a translation series representation of order

H if there exists a set of 4 deterministic basis functions fl
(# ; p a 1,2...,M4, and a set of N jointly wide-sense-stationary random

sequences {(a np; p a 1,2,...,N) such that LI

E-ix(t) " -- planpp (t-nT)j2) . o a.e. t c (-ea). (3-1)

where, by jointly WSS, we mean that E(a 1, Eta a'*) are independent
np (n*m)p nq

of n for all p,q. Thus a translation series representation (TSR) of

order H is a representation of a scalar cyclostationary continuous-time

process in terms of an M-vector of jointly wide-sense-stationary discrete-

time processes. ii
The autocorrelation function for a process with a TSR of order M

has the corresponding representation:

k(t s) Ap 0 (t-nT)#*(s-mT)
n,m=-- p,qsl n-m pq

a.e.t5s (-e,-) (3-2) ,

where the elements of the M x M matrix (Am) of correlation sequences i
-n- M

are given by

A pq =E(anpa--* (3-3)
n-m npmq

19 Representations of this type have been alluded to by Jordan [2S] and
Brelsford [19] and perhaps some others; but have not (to my knowledge)
received more than a brief mention.

UI
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U and .the double Fourier transform of the autocorrelation function has

the representation:

:M m

S!V) j A (v)# (f)#*(v) 5 ;'f-v~n/T), (3-4)
p:,q-1 Pq p q nin-

where the elements of the matrix A(f) ari given by

(A)(f Apq e- j2nrTf (3-5)
pq • r=- r

and are z transforms of the elements (correlation seq e'ices) of (A d

-j2 wTflevAluated at z = e , and wheret p is the Fourier transform of 4p*

Prom' Eq. (3-3), we see that the matrix of correlation sequences

exhibits the symmetry

(Ar}'=-(A r1'I Ar 
A: -r

so that, from Eq. (3-4), its z-transfoirm is liermitian symmttric:

A'(f) = A*(f)' (3-6)

Using Theorem (2ý16) of Chapter 11 (on the equivalence bptween time-

averaging and phase randomizing), and Eq. (3-2), it is easily shown that

the power spectral density for the stationarized version of a CS process

with the above TSR has the following quadratic representation:

xx f)' A (f)p (f)"(f). (3-7)
pT~ P9 P, q

The type of separability exhibited by the TSR for the autocorrelation

function is useful in so:lving ýintegral'equations--as shown in Section 2f

of this chapter--which arise in. estimation and detection problems (where

the autocorrelation function is the kernel of a linear integral

I1
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transformation), and will be exploited- in the followoig chapter o"

least-men-square estimation.

Most CS processes of theoretical and practical interest (those

contained in nSMT)(-.-)) admit translation series representations of
infinite order. That is, the norm of the difference between such a

process and an Mth order approximate representation of it monotonically

approaches zero as N approaches infinity. Hence, most CS processes of I
interest can be arbitrarily closely approximated, in norm, by a finite

order TSR.

The most generally applicable type of TSR is that which employs a

complete orthonormal (CON) set of basis functions {p } in the Hilbert

space L2 [O,TJ. Orthonormality insures that, by definition,

(0pq)L2 - I p(t)(#Ct)dt = 6pq A (3-8)

and completeness insures that Bessel's equality [2) holds:

a V Vf £ L2 [OT]
f (t) (f , ( 2# W)(3-9)tV

p-l a.e. t c [0,T]

Note that if we extend the {0p ) from L2 [0,TJ to L2 (--,-.) by defining

Sp(t) - 0 f t j [o,T],

then the set of translates (0 (t-nT); p = 1,2,...; n * 0,±l,±2,...}
p

is an orthonormal set in L2(--,-) in the sense that

f P (t-nT)O;(t-mT)dt : 6 pq6 m. (3-10)

For this class of TSR's we have the following fundamental theorem

on existence and identification:
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THEOREN(3-1): 2 OEvery random pr9cess x c H£S(T)(--,-) (every finite

mean-square T-CS process) admits tbh man-square equivalent TSR:

X (t) s! a * (t-nT) a.e. t c(-,)3-l
flU,-- pal P

where the elements of the jointly WSS sequences (a. Iare:
UP

T
f x(t+nT)#*(t)dt (3-12)L1anp= 0

[LI and where 4# p is any CON set in L2[O,T].

Proof: Define

e(t)- E{Jx(t)- a * (t-nT)1 2 ).
n=-- p=l

Expanding the square and interchanging sumation and expectation yields:

e(t) = Ixx(t,t) - 2Re[ E • E{apx*(t))a (t-nT)Jxx n p x*MP Pn p

S+ rE{a a* )o (t-nT)O*(t-mT).•- np m(I pqn,m pb R

Substituting the given expression for a and interchanging integration

and "nectation yields:

20"Note that any generally nonstationary finite mean-square random process
can be represented on (-U•) with a TSR. The discrete representors will

not, in general, be jointly WSS, but the representation will be a genuine
discrete series representation in teims of a countable number of
deterministic basis functions with random-variable weights. However, in
contrast to the usual discrete representations on a finite interval, the
TSR on (-%,) cannot be truncated at a finite number of terms to provide
an arbitrarily close (in mean-square) approximation (because the sum over
the translation index must alwaays be frore, . to if the representation
is to apply over the entire interval (-®,m).
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kft * k (t,t) - 2Re[ 11 f kxx&+nT,t)#,*(o)dG p (t-nT)J L
+ I ff k, (QnT, T~mT)#**(O)* (,()dadr* (t-nT)#**(t-mT) [

VISAp~q 0 q q

or, changing the variables of integration: L
e(t) - (t,t)~ - 2Re[ I I rf+1 )Tk (Ot#(a.)da (t-nT)]

- x n pnT XX Pp

+ I I In f x(OT)#**(a..nT)# (,r-mT)dadr'

nim p~q AT AT

* (t-nT)#*(t-mT). (3-13) i
pq

Now, since x is a finite mean-square process, then the section function

k x (-,t) is in L2 [QJI) for every t c (.),and since x ius T-CS, then

k xis jointly T-periodic in its two arguments so that k xx(-.t) is in

L2(nT,(n+I)TI for all integers n and every t c (.) Also, by hypothesis

(4 (t-nT)) are CON in L2[nT,(n+e')TJ. Hence, from Bessel's equality
p

(Eq. (3-9)), we have.,

+n1)T

palinT X

for all n, for a.e. t' £ [nT,(n+i)TJ, and for a.e. t c a nd the

left member is identically zero for t' A (nT,(n+l)TJ. Hence,

I(k ,t)*(0-nTWdc, (tI-nT) a k (t',t) (3-14)
n=~puI nT xx p p xx

for a.e. t,t' E~

Similarly,

ImqPmIT npn 1) X k p,00n)c t-T)

k (rtmT)d T-*tmT)dOt-Tqx q

III



iU a kxkt' ,t) (3-15)

i lfor a.. t,t' C

[3Now, substituting Eqs. (3-14,15) into Eq. (3-13) yields:

e t) = k. (t,t) - 2k ,(t.t) + kx(tt) a 0 a.e. t C (...Ll
Hence, x and its TSR are mean-square equivalent for a.e. t C (-.n,-).

The fact that the sequences (anp are jointly WSS can be trivially

u demonstrated using their defining equation (Eq. (3-12)) and the fact

that x is T-CS.

Hj QED

Note that if we substitute Eq. (3-12) of this theorem into Eq. (3-3),

then we obtain the following direct formulas for the correlation matrices

of the jointly WSS sequences:

LU T
k J x(t+rT.T)#*(t)*q (r)dtdT (3-16)

I 0

and, using Parseval's relation [2):
U

"ArPq u X(fv)#*(f),q (v)ej2rTfdfdv. (3-17)

b) Representation in terms of PAN processes. An interesting

interpretation of the TSR of Theorem (3-1) results from the following

manipulation:

Define the periodic extension of 8 as

p

p t)P(t-nT) 
(-8
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and define a gate function w as

w~t) -) ( 3-19) 13is t 6 [0,T1]

01 t [ 0,T]

Now, we have

and we can write the discrete Nth order TSR for x as an N-tern continuous [V
series representation as follows:

R b LI~
x(t) a I a p (t-nT)

nm-rn pal upp

a a nw(t-nT)# Ct)
p n"N Li

apy a (O)p(t) (3-20)

where (a p(t)) are pulse-amplitude modulated (PAN) processes with full [S
duty-cycle rectangular pulses:

a (t) - i a w(t-nT). (3-21)

A typical realization of one of these PAM processes is shown in

Fig. (1-2) of Chapter I. H
The autocorrelation function for x has the corresponding representationM eu

k ~(t~s) I A (tjs)# (t)ý*(s), (3-22)p,qxl pq p q

where

A (t,s) Etap(t)aW(s)1
pq p q

= Apq w(t-nT)w(s-mT), (3-23)
n-m

kl~
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and since the correlation matrix A(t,s) is jointly T-periodic in its

two arguments, its easily shown that the N PM processes {ap(t)) are

jointly T-CS. Furthermore, as pointed out in Chapter II, these PAN

representors have constant means and variances.

This representation would be even more interesting if the PAN

processes {a (t)) turned out to be jointly WSS. Using Eq. (3-23) it can

be shown that this will, in fact, be the case if and only if the Fourier

transform of w--rather than w itself--is a gate function (on the interval

[-l/2T,l/2T]). With such a choice of w, we obtain the "harmonic series"

representation which is defined and discussed at length in Section 3.

c) Implementation of the process-resolution operation. Knowledge

L of Eq. (3-12) in Theorem (3-I) allows us to explicitly specify and, in

fact, implement the process-resolution operation; i.e., the operation

which resolves the random process x into its representors (ap). The

operation indicated by Eq. (3-12) has two realizations--both of which

are made causal [2] by the incorporation of a delay of length T: the

multiplier-integrator realization of Fig. (3-1), and the filter-sampler

realization of Fig. (3-2).

The multiplier-integrator resolution device, as shown in Fig. (3-1),

is useful only for computing a single representor random variable, since

the integrator must be "dumped", after enrputation of anp, before it can

be used to compute a(n+l)p. But this can be easily remedied since an

effect which is equivalent to dumping can be obtained by following the

sampled output of the integrator with a feedback-delay as shown in

Fig. (3-3). Furthermore, if the sampler at the output of the integrator

is replaced with a sample -and-hold device (where the sample value
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obtained at time nT is held until time (n+l)T so that the sampler's

output is piecewise constant), as shown in Fig. (3-4), then the output

of the feedback-delay device is the continuous representor (PAN process)

a p(t), and its sequence of sample values is the discrete representor

(anp} - (ap(nT)}.

Now, using M of these resolution devices, we can construct a

causal, linear, periodically time-varying system, as shown in Fig. (3-S),

which resolves the process x into its representors. Furthermore, we can

reconstruct x from these representors with the causal, linear,

periodically-time-varying system also shown In Fig. (3-5).

In the event thet the {Ip) are complex and indexed from -04-I)/2

to (4-l)/2 such that * - , then the resolution-reconstruction system

of Fig. (3-5) can be equivalently realized using only real devices as

shown in Fig. (3-6). This system computes, separately, the real and

imaginary parts of the representors.

Unlike the multiplier-integrator device of Fig. (3-1), the filter-

sampler device of Fig. (3-2) can be used without modification to

continuously compute representors, so that the composite resolution-

reconstruction system takes the form shown in Fig. (3-7).

d) Examples.

i) Harmonic translation-series-representations. If we choose as our

CON set in L2 [O,T] the complex exponentials

*pt e vt :

where w is the gate function defined in Eq. (3-19). then the periodic

extension of *p is just

pm



U ~ (t) * 1*2ipt/T

and the PAN representation of Eq. (3-19) becomes:

[ x()�- fi, 1.1)/2 .p(t)ei 2 •t/T

Rp (--)/2

3where the pth PAN process ap is given by

ap(t) a pw(t-nT)
p

* and has pulse-amplitudes given by

Tx(t~nT)eij2fpt/Tdt.

For this harmonic representation, the multiplier function employed in

u the resolution-reconstruction system shown in Fig. (3-6) are simply

sinusoids given by

Re•p(t)) C - cos(2wpt/T)p

Note that if M 1 !, then the process x is itself a PAM process with

Li full duty-cycle rectangular pulses and pulse-amplitudes {x(nT)).

ii) Walsh translation-series-representations. An interesting choice--

from the point of view of implementation--for our CON set in L2 [O,TJ is

the set of two-level Walsh functions [2) defined as

p t) / t1 I 0
V tc 10,T) -Ippwhere I pis the set of disjoint intervals contained in [0,T] over which

*p is positive. The first few sets are

fp
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ii, [0,TJ L
12 - (0,T/2]

13 - [0,T/4J, [3T/4,T] L
14 - [OT/4], [T/2,3T/4]. Li

Now, since multiplication of a process by a Walsh function is equivalent

to amplitude scaling by the factor 1/VT followed by a series of polarity

reversals, then the multipliers shown in the representation system of

Fig. (3-5) can be implemented as polarity reversal switches which are

actuated at the transition times of the Walsh functions (end points of the

intervals in the sets Ip). Hence, the overall implementation of the

resolution-reconstruction system can be very simple.

Note that this Walsh representation (Eq. (3-20)) is composed of the

sum of M piecewise constant processes, and is therefore also piecewise

constant (except in the limit when M =

iii) Karhunen-lobve translation-series-representation. The basis

functions chosen for our first two examples--sinusoids and two-level

functions--are appeali:,g because of the resultant convenience in

implementation of the multiplier function generators and/or the multiplier-

devices used in the resolution and reconstruction systems. However, there

is another criterion which brings to our attention a third choice for

basis functions. Consider the choice of a set of basis functions which,

for a given process x and any given order of approximate representation

M, minimizes the integral-mean-squared difference between the process x

and its approximate representation x'. In this case, our choice would he

appealing from the point of view of efficiency.
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Row, it is well known [2,25S that the set of orthonormalized

eigenfunctions; p - 12....,, corresponding to the R largest

eigenvalues (A ) of the linear integral operator on L2 [0,TJ with kernel

kxx(ts), is the unique set which minimizes the integral-mean-squared

A difference:

~LiT N
JE([x(t) p app(t)J2 )dt. a0p (x, Op)

0 palv~ ~ L2

The series representation which employs these eigenfunctions

M
x'(t) a p(t), t C [O,T]

plOp

Sis referred to as the Karhunen-Lobve representation for x on [O,T] and

is the optimum (most efficient) discrete representation. The eigenfunctions

J are, by definition, the solutions to the integral equation:

A p (t) - f kx(t,S)p (s)ds, V t e [0,T], (3-2S)
p p 0 xxt0

and if x is T-CS, then they are also the solutions to the integral

equation:

x A*p(t-nT) k (t,s)p (s-nT)ds, V t e [nT,(n+l)TI(3-26)

nT xx P

Hence, the series representation

k M
: x'(t) a n a0 p (t-nT), V t c [nT,(n+l)TJ

is also the Karhunen-Lobve representation for x on [nT,(n.1)TJ so that

the resultant TSR

x'(t) = T ,. a npp (t-nT), V t c (-ou1
n=-o p=l
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minimizes the integral-mean-squared difference in every interval

[nT, (n+l)TJ, and is therefore the most efficient TSR for x. [
For this Karhunen-Lobve TSR, the matrix AO with elements (APq}

is, as expected, diagonal; but the matrices (A ; r 0 0) are not, in 1
general diagonal. However, there exists an interesting class of auto-

correlation functions for which the latter matrices are diagonal and, in

fact, scalar multiples of A . For details, see Theorem (3-3) and the L

following discussion.

We now present explicit formulas for the eigenfunctions and L
eigenvalues employed in the Karhunen-Lobve TSR for two types of CS processes:

(I) Karhunen-Lobve TSR for the video signal: In Section 3 of Chapter 11,

we presented a model for the random video signal which included a formula j

for the autocorrelation function consisting of three factors:

Li
kxx(ts) a k1 (t-s)k2 (ts)kP(ts).

If we ignore the frame-to-frame correlation (because of its relatively

low-frequency nature) by letting 03 W Eq. (2-26) equal I (and L•,),

then k (ts) = I for all t,s and the video signal becomes CS with period

T rather than LT. Furthermore, on the square t,s c [O,T), the line-to- H
line correlation factor k2 (t,s) I (from Eq. (2-25)). Thus, we have

kxx(ts) a k1(t-s), V t's E [0,T]

so that, from Eq. (2-24),

It-st V Okxx(t's) V ot [,]
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Now, from Eq. (3-25), our TSR basis functions are the normalized

[ solutions of the eigenfunction equation:

T It-si
Xpp t p.01 p~, #(s)ds, Vtc 0,T1,

and are given (unnormalized) by (21

L cos(wf (t-T/2)y ), p oddUp(t) sin(Tfo(t-T/2)yP) p even

Und S~1/if0L ----- (3-27)

[ where {yp) are the solutions of

tan(foTyp). /y p odd
tan(wfy)a-yp, p9 p even

and fo in1a 2w (lp.
(2) Karhunen-Lobve TSR for the time-division-multiplexed signal:

In Section 2 of Chapter 11, we presented a model for the time-division-

multiplex (M. I ) of M random signals (y p). If we assume that these k

component signals are un.ccrelated and WSS with autocorrelation functions

(k 1, then the composite autocorrelation function for the TOMN signal x
pI

becomes: - Mq
k kxxt,s) k ( pt-s)w (t-n'T)wpCS-mT) (3-28)

n,m=-o pal

where wp is the gate function

1, V t C ((p-l)T/M,pT/M] - T
wpt) 0, V t T T

p P
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so that, on the square t,s c [0,T], we have

j(ts) - p C .,(t-s)w,(,t)wp(s). V , t os e [0,TJ,
pp p

and on the square t,s c Tp, we have

(kxxt,s) - p(t-s), Lts C TP

Now, the most convenient way to obtain a TSR for x is to represent

x separately on each of the M component intervals (Tp} with an Nth order

Karhunen- Lobve representation:

N

x'(t) app(t) ft cT.

qal qq

This will be equivalent to representing each of the 14 component processes

{y } individually:
p

N
y(t) M aPqP(t) Vt cT

thThe result is the composite (MeN) order TSR:

M N
n(t) a q(t-nT), Y- t c (--,-). (3-29)

pal qnl n-. nq q

If the component processes {yp ) have exponential autocorrelation

functions

-Zuf It-sikp(t-s) = e p

then the eigenfunctions {(P) can be obtained from the formula given in
q

the Video example. Another interesting type of autocorrelation function

which, unlike the exponz:,tial type, is duration limited, is that which

takes the form
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'[(t-s*T*)n u(s-t)+(s-t+T. )nu(t-s),It-s 1i',, n odd

k(t-s) -

to, It-sl : T.

and has the shape shoWn in Fig. (3-8).

The .igenfunctions on the interval, -T12,T /21 (centered for convenience)
0 0.

which correspond to this type of kernel are very easy to solve for

provided that

0T' < T./2.

The approach, like thit used to obtain the eigenfunctions for exponential

kernels 12], relies on converting the integral equation Eq. (3-25) to a

differential equation. For the above type of kernel, the differential

equationis:

k, d n.- kt) - " n [-T/2,T/21, nodd.p pt - "p M, pt) M. t 0 0

For the casein - 1, the kernel (autocorrelation function) is triangular,

and 'the eigenfunctions are given b)':

*p(t) - ¢oS(W t),
p. p

and the eigenvalues by

A= 2k(0)/1',.9, (3-30)
P P

wherf the {pw are the solutions, of

ta T . . . [I/[.w T )2, + I

P 0 WT r p o
) • 0
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e) Finite order translation series representations. 'The TSs's

established in Theorem (3-1) are generally applicable to all CS processes

with bounded autocorrelation functions, but will usually be of infinite

order (K 1 4 ). There are, on the other hand, a vnmber of subclasses of

CS processes which admit special finite order TSR's which are not based

on some CON set in L2 [0,T] as in Theorem (3-1). We present two such

subclasses.

i) Bandlimited cyclostationary processes. In many analyses dealing with

random signals (particularly in communications studies) all signals are

considered to be bandlimited to the interval of frequencies [-f ,f J

where f0 is the highest frequency which the systems (in the problem of

interest) will respond to. Thus, given fo and a T-CS process x, we

choose the smallest integer M such that M/2T > fo, and then remodel our

process as its bandlimited (to [-M/2TM/2T]) version:

x' (t) - f x(.r) sin((t--r)ir/T) d&

Now, from the sampling theorem for nonstationary processes (Theorem (2-2)),

we have the following mean-square equivalent representation for any

process x which is baudlimited to [-M/2T,M/2T]:

sin((t-mT/M)i Y/T)
x(t) = i x(mT/M) - m)I/T...

Thus, if we define the M basis functions {0 p as
p

*p(t) A M /I2 sin((t-pT/1)rI/T)

p t M (T -pqun / ( T (3-31)

and the M representor scquences (a np as
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Sa ( )11 2 x(nT pT/N), (3-32)
an

[Ithen w can rewrite the above sampling representation as an Na order TSR

- N
X (t)a - I a *(t-nT (343)

1 where the 4* (t-nT)) are orthonormal on L2 [-".J] (as in Eq. (3-10)),
p

and--analogous to Eq. (3-12) of Theorem (3-1)--the elements of the M

LIjointly WSS sequences are given by

Sanp .fx(t.nT) p(t)dt. (3-34)

LI ii) Degenerate cyclostationary processes. We use the term "degenerate"

to denote those random processes which have a countable (cardinality equal

to that of the set of natural numbers) ensemble of realizations. We

L! consider here a specific subclass of degenerate CS processes which are of

such practical interest in communications: synchronous W-ary signals of

the form

x(t) = 4 *(t-nT,b)

where f is a deterministic function and (b n) is an M-ary random sequence

where each random variable bn has the M-ary alphabet of realizations

I { 2,.,) In Sectinn 4 of Chapter II, we defined this type of CS

process and gave six specific examples including frequency-shift-keyed

signals, pulse-position-modulated signals, and others.

Now, such processes can be re-expressed as an Mth order TSR as in

thEq. (3-33) where the p basis function is
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O* Wt 0 (t, U),

and where the M jointly WSS sequences (ap) comprise a random indicator

sequence. That is, for each n, the realizations of all but one of the

a elements a',,... ,an) are zero, and the non-zero realization is

equal to 1. For this TSR, the matrix of correlation sequences,

An..q .a £na* ), is a on-rix of joint probabilities of which the n-mth

element of the pqth sequence is the joint probability that bn a ap and

bm a aq. Furthermore, the mean value of the random variable anp is just

the probability that b, a aIP*

f) Correlation matrix decomposition and solution of integral equations.

In this subsection, we show how the TSR for an autocorrelation function

can be used to obtain the solution of a linear integral equation whose

kernel is the autocorrelation function, and we show how to simplify

this solution through decomposition of the correlation matrix of Eq. (3-5).

R) Integral equations. The solutions to many problems in functional

analysis (including estimation and detection problems as discussed in

Chapter IV) can ultivately be expressed in terms of the solution to a

lAnear integral equation--typically a Fredholm equation of the first

kind [29,311

Sk(t,s)hl.s)ds g(t), V t S, f3-35)

S

or of the second kind

f k(t,s)h(s)ds * Ah(t) = g(t), 4; t E S, (3-36)
S
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or, more generally,

L f k(t,s)h(s,T)ds - g(t,'r), V t,T C S, (3-37)
S

or

f k(t,s)h(s,T)ds + Xh(t,r) - g(tT), V t,T C S, (3-38)
S

Li where S is some fixed indexing interval.

3 Since the first three equations c€a be considered to be special cases

of the fourth, we will restrict our discussion here to this fourth equation.

LI There are various sets of circumstances under which explicit solutions

to this integral equation can be obtained, For example:

J (1) If S a--,-), and if the kernel k and right member g are time-

invariant (k(t,s) a k(t-s)), then the integral is a convolution and the

solution is (formally):

h(t,s) - P-1 {
K + A t-s

where F'l(.)t-s is the inverse Fourier transform evaluated at t-s, and

G,K are the Fourier transforms of gk.

(2) If the kernel k and right member g are "separable of order M":

M

k(ts) - I A q p(t) (S)
pq-I pM

g(ts) - I G pq p(t)q (s) V t,s S
p,q-lpq

((# ) can always be chosen orthonormal by proper choice of the matrices
p

A,G), then the integral transformation is degenerate, and the solution

is (formally):
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N

h(t,s) B aq (t)* (S)
p,q-1 Pq P

where the matrix B is given by

. [A,++

where I is the M x M identity matrix.

Note, if S is finite, then under a fairly liberal set of constraints on

k,g. arbitrarily close separable approximations to kg can be obtained

[34,36].

Now, as a combination of these two methods, we present the following

new (to our knowledge) formal solution to Eq. (3-38):

THEOREH(3-2): If the syemtric functions k,g are each jointly T-periodic

in their two arguments (k(t÷T,s+T) a k(t,s)), and if the section

functions k(.,t),k(t,.), g(*,t),g(t,.) are in L2 [0,T] for every

t c (-.,-), then the solution to the integral equation

f k(t,s)h(s,r)ds + Ah(t,T) g(tr) V t, £ (cv,.) (3-39)

has the representation:

h(t,r) a i 8n- Pq (3(-40)*~tm
n,ma- M p~qU n

where (p I is any CON set on L2 [O,TJ, and the sequence of matrices (Or)
is given by the inverse z-transform

1/ 2T 2 nrT
8 = T f I(f)e fdf (3-41)S-r -1/2T

where the matrix of functions B(f) is given by

•~~ ~ ~ ~ ~~ ~~~~ ~~~~~ -- _-.-....................-- . ....--. . . .. " ..
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I !(y) =[(f) ÷ ;41'- 1 (f) (3-42)

where the matrices A, G are the z-transforms

U Af). }ru "J:'r

(fC). u •e" 2wrTf (3-43)

Uand where the elements of the sequences of matrices A , G are given by
T

TGPq= IgtrT , Tl• )tlq dtdT. (3-44)

Uj o
Proof: Employing the completeness relation (Eq. (3-9)) as in the proof
of Theorem (3-1) (Eq. (3-1S)) yields the translation series representations

! kt~s- [A ^q #p(t-nT)#*(s-mT),

n,mm-m p,qml n-q

L g(t's)", _ rpq[ fp' p(t'nTl#l(S'mT)' (3-45)

n~l P,q G~np q

Now, assumipg tbe form Eiq. k3-40) for h, and substituting these

representations into Eq. (3-39). and employing the orthonormality of the

([ (t-nT)) (Eq. ý3-10)) yields the discretc version of our integral

equation Eq. (3-39):

APt Bmq + XBpq r G n q n np,q (3-46)tn m - M mn-

But, the first term ii. the left member is simply the composition of a

discrete convolution and a matrix product. Recognizing this and taking

the z-transform of both sides of this equation
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Af)._!(f) + lm(f) -_f)

so that (formally)

.!(f) + Af

Now. the sequences ON are the inverse z-transforus given in Eq. (3-41).

r

QED

Note that the matrix B(f) which characterizes the solution given in

this theorem is defined in terms of the inverse matrix [A(f) + AII]1

where A(f) is, in general, infinite dimensional. Thus, our solution is,

in general, only formal. However, in the event that finite order (say M)

translation series representations for k,g exist, then the matrices

A, B, G are all of dimension M x N and the solution can be of great

value as illustrated in Chapter IV. Furthermore, even when A(f) is

infinite dimensional, the inverse [A(f) + "l-1 can be computed provided

A(f) is either diagonal or can be appropriately decomposed into the sum

of a diagonal matrix and a finite rank matrix. In this next subsection,

we discuss the decomposition of A(f) and give a number of examples.

However, before turning to this topic, we note that the solution

methcd of Theorem (3-2) can easily be extended (as shown in Chapter IV)

to the case where the basis functions (4p) are neither orthonormal nor
p

duration limited to [0,T].

~-- - -------___---.- -- .----- ------ - - --------- ----
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ii) Correlation matrix decomposition. In the previous section on

Sintegral equations, we saw (Theorem (3-2)) that an operator equation of

the form

[A - XwJ],I - Go (3-47)

where=A , G, are operators on the function space L2 (-.,) with kernels

j k,h,g which admit a TSR of order M (Eq. (3-45)):

U~~ ~ k(t, s) =l-- (t-nT)An 4• (s'mT)

fjn,ma-m m
(where j is an N-vector, A an M x M matrix), can be reduced to an

L operator equation of the form

S[A_(f) + AijjoCf). - Gf) (3-48)

I ti where A, B, G are M x M matrices of periodic functions:

A(f) • A e -J2"rTf; (3-49)

and that the solution to Eq. (3-47) can be obtained from the solution to

Eq. (3-48):

+(f) [ACf). )dj-G(f), (3-S0)

when the indicated matrix-inverse exists.

We now present three types of correlation matrices A(f) where this

inverse not only exists, but also is relatively easy to compute--even for

M1 = F. Iirst, however, we mention that since A, C (and therefore B) are

lI/T- periodic, then the matrix inversion need only be carried out for

values of f E [-1/21',1/2T].
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(1) Infinite-dimensional diagonal matrices: We begin with a theorem. U
THEORBN(3-3): If A(f) is the correlation matrix for. the kernel k

(defined by Eqs. (3-43,44) of Theorem (3-2)), and if k has the wide-sense U
Markov-like property:

k(t+rT, -) - ark(t,)) v t,T C [O,T], V r

for some sequence (fr), then A(f) decomposes into the product of a I/T-

periodic function and a constant matrix Ei

AMf)u A) I r rej2wrTf, ii
r

and if the CON set of basis functions (0pI employed in the TSR for k are [

the eigenfunctions of the operator A with kernel k, then A. is the diagonal

matrix A whose non-zero elements are the corresponding eigenvalues. H
Proof: By definition, H

T

A pq(f) I e-j2"rTf ff k(t+rT,T)#*(t)q (T)dtd r
r 0p

T

t ~r

and if l*p) are the eigenfunctions corresponding to k, then

PI T

APoq = ff k(t,T)O*(t)O (T)dtdT

T
= A *f (tm (t)dt

4 0  p' 4

c pqQ
q q I
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There are several CS random Processes, of interest to Ui in this

f Ithesis, whose autocorrelation functions k satisfy the hypothesis of

this theorem. For the sake of continuity, we give as two examples

those processes for which the eigenfunctions were obtained in Subsection

qj2d:
(la) Random video signal: From our model developed in Chapter II

UL (Eqs. (2-23;24,2S)) we have

Sk(t+rT, r) a ar k(t,T) V tT e [O],T

where

L ar pI(r)modL0 IrI-IrlmodL

and 02, P3 are the line-to-line and frame-to-frame correlation factors,

and L is the number of lines per frame. So, from Theorem (3-3) we have

the inverse matrix

D.f) - [A(f) + XI]"1

with elements

dpq + X a e' j2itrTf (341)

r
where the (A p are given by Eq. (3-27), and if we ignore frame-to-

frame correlation (a3 1, L-w), then ar . rl and
3 r 2

r-j2vrTf 2 (3-52)
r r (1-P 2 )2 + 4p2 sin2 (wif)

V
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(Ib) Time-division-multiplexed signal: As discussed in Subsection 2d

it is most convenient to obtain the TSR for the TM41 signal in terms of H
M Karhunen-Loeve expansions--one for each component signal being multi-

plexed. Thus, the composite correlation matrix is composed of M U
matrices (the M2 - M off-diagonal matrices are zero because the M

signals arc assumed uncorrelated)

A (f) = A2(f) o LI
AM(f)

with elements

A (f) = VA -j2wrTf

r

where
TIM £ £

ArPql ' kt(t+rT-T)o I(t+Ct-1)TAI)*# (T+(Z-1)T/M)dtdT.

But, for the class of correlation functions discussed in Subsection

k2d:'x) n k [Ct-T+T£)nu(T-t)+(r-t+T )nu(t-T)],It.-T.I<T,, n odd

0, It-II >

we have, for T/2M<Tt < T(1-/i),

k,(t+rT-r) ar kt(t-T) V tT C [O,T/M]

where

r=1, r=0

r t0, r 0
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Hence,

wA perpq

{j and

A_(f) - ,2  0.
0 

0Z

so that the inverse matrix given by

Df) [Af) + -I]"

I, = U.2°•[0 0

has elements

dt (3-53)

pq A+A '

Ii p
where the (X ) are given by Eq. (3-30).

(2) Infinite dimensional diagonal-plus-finite-rank matrices: Again, we

begin with a theorem.



THEOREM($-4): If the inverse matrices 0 [Q + RS'- 1 , 4-1, and

F"- " .+ S'91RJ"1 all exist, then

D- R- ý _-RFol -.'S' (3-54) i

A proof of this theorem (known as the Matrix Inversion Lemma)
I I I

can be found in the appendix of reference [49).

Our application of this theorem is to the case where the infinite- [
dimensional correlation matrix A(f) can be decomposed into the sum of

an invertible diagonal matrix--call it A--and a finite rank (say N) I
matrix RS', where R,S are infinite-by-N dimensional matrices. For then

the infinite-dimensional matrix inverse D(f) a [A!(f) + AI]"1 can be

computed in terms of the inverse of the N x N matrix

F(f) Q [I+ S'(f).[A _ AI]'R(f)] by using Eq. (3-54) of Theorem (3-4)

where A + A l •1. L
We present a major class of CS processes whose infinite dimensional

correlation maitrices can be so decomposed, and then we present a

variation of that class: "

(2a) CS processes which are the outputs of periodically time-varying

finite-dimensio:al linear dynamical systems driven by white noise: 1..
Since the class of processes which are generated by passing white noise

through a finite-dimensional (order) linear dynamical system are of much

interest in statistical communication and control theories [49-Sl]

(because of their analytical and computational tractability), we will

present our result on decomposition in the form of a theorem and proof

which will be convenient for future reference:
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THEOREN(3-S): If x is the T-CS output, process of a T-periodic 1th

order linear dynamical system driven by a vector (of arbitrary dimension)

of jointly white WSS processes, then the infinite dimensional correlation

matrix (Eqs. (3-43,44)), corresponding to the TSR of Theorem (3-1), for

x admits thp decomposition:

A(f) = , + R(f)S- (3-ss)

where R(f), S have dimensions - x 2N, and if the set of basis functions

(p employed in the TSR'for thz autdcorrelation function-k are the
P. xx

eigenfunctions of the operator X whose kernel is kxx, then A0 i5,the

diagonal, matrix A whose non-zero eleme~nts are the corresponding

eiSenvaolues.

S. Nth
Proof: Consider the'state-'equation description of an N rder linear

dynamical system:

d [),(t)] -,F(t)y(t) + :b(t)n_(t) (3-56)
dt

x(t) = c'(t)y(t),

ýwhere y is, the N x 1 state vector of randonW processes, F is the N x N

state transition matrix, b, is the input matrix, n is the input vector of

jointly white WSS processes with autocorrelation, matrix

E(n(t)n' (T)- R6(t-'T), (3-57)

and c'(t) is the 1 x M output matrix, and x the output process. Now,

the steady-state output x is given explicitly by
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x~t) - j . (t)Mt,r)b(t)n(r)dr (3-58)

where 9 is the fundamental solution matrix corresponding to the

transition matrix F [s2J. From this expression and Eq. (3547), it is jj
easily shown that the steady-state autocorrelation function for x is

given by L

kxx(ts) 1 !' (t)h(s)u(t-s) * 1' (s)h(t)u(s-t) (3-S9)

where the N x 1 matrices g, h are given by

K(t) W_(tto)c(t)

th(t) _(to T)b()!Rb'(T)!'(tT)dTc(t) (3-60)

and to is arbitrary (we've used the property of all fundamental

solution matrices: !_(t,i) = f(t,to) (to ,) V tot,r).

Thus, using Eq. (3-59) in Eq. (3-44) yields the following expressions

for the elements of the matrix of correlation sequences:
N

Ilgji(r)hqi(O) r > 0

r N r = 0 (3-61)
r Nijh*i(r)g i(0), r < 0

where

T
_A /r gi(t+TT)ýp(t)dt

0i r

hpi(r) h h(t~rT)ýp(t)dt,

(0
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and gi, hi are the elements of the g, h vectors of Eq. (3-60).

116w, substituting Eq. (3-61) into Eq. (3-43), we obtain the following

expression for the correlation matrix:

A(f) + A . G*(f)H' + H*(f)G'., (3-62)

where the elements of the - x N dimensional matrices G f), H(f) are

Gpi(f) g airied) Tf

LI Hpi(f) = ihi (re- 2 wrTf

L and the elements of the - x N dimensional matrices Go, H are

fgI fo- 0) Hence,

AM f) RMS (3-63)

where

_yf) . ([ff),Hf* f)]

and

S (H GO]

Finally, if {*p) are the eigenfunctions for the operator with kernel

kxx, then as in Theorem (3-3), AO - A.

QED
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IS2i
(2b) TDM1 processes with componen•. signals which have been generated

by finite-dimensional time-invariant systems: As a variation on the

above result, consider the !ZN1 process discussed throughout this

section--but this time consider component processes which can be modeled II
as the outputs of time-invariant finite-dimensional linear dynamical

systems (of order N). As Jn the previous subsection, the composite

correlation matrix takes the form L
L 1 (f) Ij

AI 0

A(f) A2 (f)

Ii .AM(f)

where Ac(f) is the correlation matrix for the p component process,

and by Theorem (3-5) can be decomposed as follows I]
AP3f)- A + R p(f)

O iP

where Rin St are - x 2N dimensional matrices, and if the basis functions

used in the TSR are the eigenfunctions, then Ao0p AP. the diagonal j
matrix of eigenvalues. Now, since

(Al (f)AXI]-
i• [AM +r) Ail"• AC)•]• (.3-64) '

0

then this composite inverse can be obtained by employing Theorem (3-4)

to obtain the inverse of each of the 1-1 component matrices--the total

computation requiring the inversion of Nl matrices of dimension 2N x 2N.
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(3) Finite-dimensional diagonal and diagonal-plus-rank-I matrices:

Our third and last class of correlation matrices to be considered is,

in fact, a special case of the previous two classes. We consider here

correlation matrices which are not only finite-dimensional, but also

LI either diagonal or diagonal-plus--Rnk-l.

If A(f) a A(f), a diagonal matrix with non-zero elements A p(f)},

then the inverse matrix

L D_(f) - (A(f) ,

L has elements

6

dpq(f) Pq (3-65)
A• p (f) +

Or if A(f) a A(f) + R(f)j1(f), where R(f), 1(f) are N x 1 vectors with

L elements (r p(f)),{s p(f)), then, from Theorem (3-4),. tho inverse matrix

L D(f) has elements r f

6 • A (f) +A I s f)
d pq p ( f) + A K s7(fr(f)-" , (3-66)

so that, in both cases, the inverse iwtrix 0(f) is given explicitly

with no need for further computation.

Now, the purpose here is to present two specific examples of CS

processes--one of which has a finite-dimensional diagonal correlation

matrix, and the other of which has a finite-dimensional diagonal-plus-

rank-i matrix. Both of the examples given here are models of random

signals which are of much interest in communications:



154

(3a) Time-division-multiplexed PAM signals: As an alternative to

the TODM 1 and TDM2 schemes introduced in Chapter II for time-multiplexing

a multiplicity of signals, we consider here the TDM-PAM scheme. If our

M component processes y p) are bandlimited to [-1/2T,1/2T], then they

can be periodically sampled every T seconds without loss of information.

If these M sample sequences are now interleaved in time to provide a

single composite sequence of samples--one every T/M seconds--then this

composite sequence can be employed to amplitude-modulate a stream of

pulses to obtain a time-division-multiplexed PAM signal x:

x(t) a =Iyp(nT)q(t'nT'pT/M). (3-67)
n--- p1p

If the M component processes are jointly WSS, then x is a T-CS process

with an Mth order TSR with a matrix of correlation sequences given by

An. E{y (nT)y (mT))n-rn p q

so that, if the component processes are also mutually uncorrelated, then

Apq - App 6 ,
n-rm n-m pq

and the correlation matrix A(f) is diagonal:

A (f) = 6pq APP e j2nrTf (3-68)

pq pq r r

(3b) Synchronous M-ary signals: In Subsection 2e, we pointed out that

synchronous M-ary signals such as FSK admit Mth order TSR's where the

matrix of correlation sequences is a matrix of joint probabilities:
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APq a Prob[bn aa and b a.

n-rn n q

[INow, if we assume that the random variables in the modulating sequence

fl (bn) are mutually statistically independent, then

P -rob[b -aP ]rob[b -=a , n m
n-rn 8 Probjb n a a],

SP(p)P(q)(l - 6 +

6n) pqp(P) aum

where P(p) - Prob[bn a a p] for all n. Hence, the M x M correlation
matrix is given by

A (f) 6 8pP(p) + P(p)P(q) e'j2wrTf (3-69)
pq pq (3-69

and is composed of the sum of a diagonal matrix and a rank-I matrix.

AS g) Lnplementation of periodically time-varnh linear systems.

AS shown in the previous subsection, the TSR of an autocorrelation

function which is the kernel of a linear integral transformation (operator)

is reflected in the kernel of another transformation which is the solution

of an operator equation (Eqs. %13-38,47)). For some applications

(especially estimation and detection as discussed in th; following

Chapter) it is desired to physically implement the solution operator

as a linear system whose impulse response function is the kernel.

An impulse response function h which has an Mth order TSR

h(t.r) - I p 0 (t-n);(-T

nIm=-., p,qzl n-m p n q
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has the straightforward implementation shown in Fig. (3-9), where U
the input is applied to a bank of M time-invariant filters (with transfer

functions {(']) whose outputs are periodically sampled every T seconds i
p

and applied to an M x M matrix of time-invariant sampled-data filters

[53,S4] (with transfer functions (B pq(f)) which are z transforms of the

impulse response sequences {BPq)). The sequences of output samples from

the saipled-data filters (assumed weighted sequences of impulses) are

then applied to a bank of M pulse-generating, time-invariant filters

(with transfer functions (p])) whose outputs are summed to form the LI
final output of the system.

Note that this system can be obtained from the resolution-

reconstruction system of Fig. (3-7) simply by inserting the matrix of

sampled-data filters between the resolution portion and the reconstruction j
portion. Similarly, a multiplier-integrator type cf implementation

for the system with impulse response function h can be obtained from the

resolution-reconstruction system of Fig. (3-5) by, again, inserting the

vatrix of sampled-data filters between the resolution and reconstruction

portions.

Finally, it should be mentioned that the impulse response function

h will not, in general, represent a causal system, so that a physical A
implementation must incorporate a delay, say to, so that 1(tr) - h(t-to ,)

is the impulse response which is implemented. Notice, however, that if

one started with a causal h: I

h(t,T) = h(tT)U(t-T)

whcre u is the unit stop function, and one expanded it into a TSR, then

U I
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I
the sampled-data-filter impulse response sequences would satisfy

B•.I T ff h(t,(n-m)TT)#*(t)q (r)dtdrII a0 forn-m< 0.

SHence, the sampled-data filters would be causal. Furthermore since

the output filters (f ) are causal, and the input filters {(*)
p p

can be made causal with a delay of length T, then the overall (approximate)u realization (which uses only a finite number of terms) shown in Fig. (3-9)

would be causal with a delay of to = T. Note that a finite order TSR

Slicannot be causal without the incorporation of at least a T-second delay.

h) Generalized Fourier transforms for cyclostationary processes.

A rather disappointing quirk of the transfer function theory for linear
time-invariant systems (as it stands) Is that it applies only to

L "

deterministic signals, so that random input and output signals cannot,

in general, be related by the simple formula

X(f) - H(f)Y(f)

where X, Y, iH are, respectively, the Fourier Transforms of the output x,

the input y, and the impulse response function h. The reason being

that iouxier trunsforms of randow signals are not, in general, defined.

The standard argument against the possible existence of a Fourier

transform of a stationary random process is: the Fourier transform--like

any other linear transformation of a random process-should be interpreted

as the ensemble of Fourier transforms of the deterministic functions

which comprise the ensemble of realizations of the process; but due to
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the "continuing" nature of a stationary process, its realizations will

not be in L2(--,-), and therefore will not be Fourier transformable.

The prevalence of this attitude is evidenced by this statement from a

popular modern engineering textbook on random processes [Ref. 3,

pp. 336,465]: "We assume the reader is familiar with linear systems

and transform techniques. We should emphasize, however, that we transform

only deterministic signals and not stochastic processes.... Stationary

processes have, in general, no Fourier transforms."

The purpose of this subsection is to employ the TSR of Theorem (3-1)

to define a simple, yet adequate, generalized Fourier transform for the

class of all finite mean-square CS (and WSS) processes. With this

generalized Fourier transform, the transfer function methods, which are

so useful in the analysis of linear time-invariant systems and

deterministic signals, can be directly extended to the analysis of these

sysxems and random signals. For example, the frequency-domain input-

output relations of Chapter II (Eqs. (2-7,8,9)), which were derived in

a round-about way in the time domain, can be re-derived in the frequency

domain in one or two simple steps. This is, in fact, done in [Ref. 3,

pp. 465-467] by "...ignoring the mathematical difficulties."

We begin by presenting a generalized version of the well known

formal derivation of the generalized Fourier transform of a periodic

function. Consider any periodic function x in the Hlilbert space

L2  ( defined in Sec. (3-I). If {0 ) is any CON set in L2 [O,T],
P(T) P

then x admits the deterministic translation series representation
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x (t) ua * (t-nT) a.e. t £(E )L pal n--- P P

a I a0p I p(t-nT)
P n

where

T
L a an f x(t~nT)(t)dt an.

P 0
Now, we define the generalized Fourier transform for any

x c L2  (-",) to be the equivalence class of transformations FL .}Ll P (T) L(

with representatives

FL2fX(t)) aX(f) ý 0  L(ptn)
P n

J P

I a I aop V P(f) e-j2wnTf

L p

S1 .a I # (m/T)6(f-m/T)
-p=T p 0p

where FL2(.) is the usual Fourier transform defined on L2 (--,-), and

where the last equation is the Poisson sum formula [2,55]. The

equivalence relation which generates this equivalence class is

X I X2 <V> f jx1 (f) - X2(f)Idf = 0,

where X and X2 are the two transforms of x corresponding to the two

representatives of FL2 obtained from any two CON sets in L2 [0,T],
P

and x is any function in L2 It is not difficult to show that all
P (T)*

representatives of F L{.) corresponding to any specific signal x, do

indeed satisfy this equivalence condition.



160

Now consider the specific CON set of complex exponentials

(t) 1 e 2pt/ (t)

where w is the unit gate function on [O,T]. The Fourier transforms L1
of the (Op) are

1

(pf) - W(f-p/T)

where

W(f) sin(f)

so that

*p(nT) - v* 6pn.

Also, the TSR coefficients are

Ta Op 0 f X(t)e.j 2 pt/Tdt - a p

and are the familiar Fourier coefficients for the harmonic Fourier

series representation for x. Thus, our generalized Fourier transform

now takes the well known form (SSJ

X(f) a a6(f-p/,T).,

pa-P

This generalized Fourier tratiform can easily be extended from

deterministic to random periodic functions, as discussed in [Ref. 3,

p. 467], simply by allowing the Fotirier coefficients to be random

variables. In fact, our more general definition of the generalized

Fourier transform FL2 can just as easily be extended from deterministic
3)
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periodic functions to cyclostationary random processes:

DEFINITION: The generalized Fourier transform for any random process,

Ssay x, which is' contained in the Hilbert space HCS(T)('"") is defined

to be the equivalence class of transformations P"CS{.} with representatives

=~ p~ appfeJ2wnTf,

-n

where {(p ) is any CON set in L2 [O,T] (extended to the zero-function

outside [0,T)) and (a np, are the random TSR reprosentors

T
a npa * x(t~nT)#*(t)dt

and P L2(') is the usual Fourier transform defined on

The equiv&lence relation which generates this equivalence class is

La x1  x 2 <=> ff IE((X 3(f)-X2 (f))(Xl(v)-X2(v))*)Idfdv a 0

where X1 and X2 are the two transforms of ; corresponding to the two

representatives of F obtained from any two CON sets in L2 [0,T], and

x is any random process in tCS(T)(--...).

That this relation is indeed an equivalence relation [2] can be

verified by showing

OD

.ffE((X1 (f)-X 2(f))(X1 (V)-X 2 (v))*)Hdfdv a 0

E{IxI(t)-X2(t)1 2) = 0 V t E

where xI and x2 are the random processes with autocorrelation functions
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kx x (t,s) -F-F•C1 {EXi(f)X•(v))) i 1,2

where F-F 1 is the generalized double Fourier transform inverse for

periodic functions of two variables; and using the fact that

xI " X2 <a> E(Ix 1(t)-X2 (t)l 2) - 0 V t 6 €- ' U
is a valid equivalence relation.

The following theorem extablishes the equivalence under expectation

of our generalized Fourier transform for CS processes and our generalized ij
Fourier transform for deterministic periodic functions:

THEOREN(3-6): The generalized Fourier transforms , F L2 are equivalent
HCS P

under expectation in the following sense:

E(F {CSX(t))) 'I L2{E{JC(t))) ru FL2{Mx(t)) f
11CS; P

E{F~ (x(t))F* {x(s))) =F-FL2{E(x(t) x*(s))) [
HCs '1CS P

'FP.L2(k (t,s)) = K .(,)
P x

for every x £ "CSCT)€'"')" ii

Proof: Let X(f) be the representative of the equivalence class

F .3 corresponding to any TSR, say (4 (an}
HCS np

Then: flU

-4
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p~~~ nn 20t-nT)) .(by definiti on)

T
=E{ .I f A(T+nT)#*(T)d4 L 2 4*(t-nT))1 (Eq. (3-12))

= ' P Exrn).(dFL(P~tn) (su~dlld

T

4 i Ix(-rnTO(T)dT O2(O (t-rzT)) .(assumdef) id

k = FI,2(Jn WtI (by def.)
P x

- i fim (Tr)o*(T)dTr I (tn/T) 6(f-in/T);-

t 0 po m1i

(i) E{X(f)X*(y)) =E{ a a* F 210 (t-nT) )FL2PsiT) (by Def.)
pq nm pw pq

El~a a- )FL',t (t-nT))F 2(0OC-MT))

* pq~ (asswi~ed valid)

= ~ A~F F-F{ (t -nT)6,;(S!umT)1 (bý' def. and Eq. (3-3):
pq nni

=F-FL2k"t (by def. and Eq. (3-2))
L2{xX ts

average
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Note that the expected singular behavior of F (x) is, in more
HCS

than one way, "expected" since it shows up in the mean function

2fF {x(t)fl, as a string of impulses, and in the autocorrelation

function E{P~ sx(t))F* (x(s))), as a string of impulse fences.HCS HCS
Note also that since, for WSS processes, we have

KX (f, v) - Kxx (f)6(f-v)

where xx(f) is the power spectral density for the process x, then we

now have two new formulas for the power spectral density:

xx(f) • E(X(f)X*(v))dv = E{X(f)x(O))

where

xcf) a F csHCS t)). I

The first topic considered in the next section provides a

concrete exmple of the utility of a generalized Fourier transform for

CS random processes.
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- 3. Harmonic Series Representation

a) Definition. In this section we develop a particularly interesting

fjand unique translation series representation which is intimately related

to the harmonic TSR discussed in Sec. 2d, and is, in fact, the frequency-

time dual of the harmonic TSR. This duality is iimediately brought to

SJevidence if we introduce the representation in the following manner: We

begin by representing the Fourier transform X(f) of the T-CS process x(t)

j with the frequency-domain harmonic translation series

LX(f a np a en(f-p/T), (3-70)

1 iJ where {%) is the CON (in L2 [-1/2T,1/2T]) set of complex exponentials

O (f) = VT e-J2wnTfW(f) (3-71)

where W is the gate function defined by

W(f) - (3-72)
0, f j [-l/2T1/2T]

and where the representors (a np) are given by

U 1/2T

a f X(f~p/T)On*(f)df. (3-73)

jL 1l/2Tn

Now, if we take the inverse Fourier transform of this frequency-

domain TSR, then we obtain the following TSR in the time-domain:

x(t) : a * P (t-nT) (3-74)
n p



where

v -ej ipt/T w (t) (3-7S) Lj

and w is the inverse Fourier transform of the gate function W

1 w(t) sin(wt/T) 37IWt lit "(3-76)

Using Parseval's relation [2) in Eq. (3.73) yields the time-domain

formulas for the representors:

arp " x(t+nT)#*(t)dt. (3-77)

Thus, we see chat our frequency.-time duAl of the harmonic TSR of

Section 2d is a TSR in both the time- and frequency domains. I

Now, analogous to our development of representations in terms of

PAN prociscs in Se.:tion 2b, we collect terms in our time-douain ISR of

Eq. (3-74) to obtain

x(t) a a (t) ej2ipt/T (3-78)
p

where

a p() a/ n w(t-rT). (3-79)
n np

Employing the formulas for la ) in the above equation yields the morenp

direct formulas for the continuous-time representors:

aCt) M f w(t-T)x(T)Ut di. (3-80)
P1

a • m m • • • w 6
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We take Eqs. (3-78,80) as our formal definition of the

harmonic series representation.2A Note that, in terms of Eq. (3-79), we

can interpret {ap(t)) as PAN processes, so that we again see that this

hermonic series representation (HSR) is the frequency-time dual of the

harmonic TSR of Section 2d--this time in the sense that the continuous-

time representors in the harmonic TJR are PAN processes with pulses which

are rectangular (width T) in the time domain, and the representors in the

HS1k are PAN processes with pulses which are rectangular (width I/T) in

the frequency dc.,ain.

For this harmonic series representation, we have the following

fundamental theorem:

THEOREM(3-7): Every T-CS process x admits the mean-square equivalent

harmonic serias representation

x(t) -* a (t) ej2npt/T a.e. t c

to

apt) M =- w(t-I)x(r)e'j2wpT/Td7

w(t) = sin(wt/T, (3-81)
Wit

where the continuous-time representors ta p) are jointly WSS and

bandlimited to the irtt -'ial [-I/2T,1/2T).

21"This representation has previously been presented, but not developed,
by Ogura [6]; e.g., the joint wide-sense-stationarity of the representors
has not (to my knowledge) been recognized except in our preliminary
paper [43], nor has the fundamental relationship of this representation
to the class of TSR's been previously discussed.
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Proof: Define

e(t) - E(Jx(t) I a (t)eJ2wpt/TI2}.
pp

P

Expanding the square and interchanging summation and expectation yields LI

e(t) k (xxt,t) - ZRe[ I E( (t)x(tie"j2wpt/T.
P

+ I E~a_*(t)a (t)} e-jl'w(p-q)t/T.
p~q pp

Substituting the given expression "or ap and interchanging summation

and integration results in

e(t) a k (t~t) _ 2Re[ f w(t- 2p(t- T J2(t-)/TdtJ d"
xx. i211(Y/

+.e. w(t-r)w(t-y)k x (T,)e dy.

But, from the Poisson sum formula [2], - have

w(t-r)e j2wp(t=•)/T T • w(t-i)6(t-r-qT)
P q

V 6(t-T).

Hlence,

eCt) kXX (t,t) - 2Re[kXX (t,t)]. k xx(t,t)

= 0 .e. t c (-cw).

Furthermore, since each process ap (t) is obtained from the T-CS process

t j2vpt/T
xMtC via a bandlimiting filter (impulse response f~unction
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sin(wt/T)/wt) with passband f-l/2T,1/2TJ, then Theorem (2-3) of

Chapter II insures that a,(t) is a WSS process which is bandlimited to

[-1/2T,1/2TJ. In fact, since the processes fx(t)e J2wpt/T; p a 0,±1,+2,..)

are fointly T-CS, then the representors (ap •); p a 0,+I,±2,.=.

are jointly WSS.

The autocorrelation function for every T-CS process has a harmonic

series representation which follows directly from the HSR for the

L procvss itself:

k (t's) = kpq (ts)eJ211(pt-qs)/T (3-82)
UPLq

where k(t-s) is the correlation matrix for the jointly WSS representors:

k (t-s) E(a (t)a*(s))
pq pq

ffw(t--i)w(s-y)kx (T,y)e'Jnp q)Tdidy. (3-83)

Similarly, the double Fourier transform of the autocorrelation function

has the representation

K xx f,V) . I K, pq(f-p/T)6(f-v,(q-p)/T), (3-84)

P~q

where _KMf is the single Fourier transform of 'the corral .tion matrix ktt):

K pq (f) =F [k pq t)•

1/21
= f Kxx(f+p/'r,v-q/'T)dvW(f), (3-85)

-I/2T

a.nd is bandlimited to the interval [-I/2T,I/2T].

$
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It is interesting to note that the correlation matrix K(f) for

the HSR of any T-CS process is simply related to the correlation

matrix A(f) corresponding to any TSR for that process as follows:

Kpqf T p,(q I p,(f+p/T)Apqt(f)$*,(f+q/T) (3-86)

where {p I are the Fourier transforms of the basis functions employed

in the TSR. Furthermore, if the TSR is the specific one from which the

HSR is derived (Eqs. (3-74)-(3-77)), then

p (f) Vf W(f-p/T) (3-87)

and, we have

K pq(f) W(f)A pq(f)

A (f) * • K (f-n/T). (3-88)pq pq

Thus, the HSR correlation matrix K(f) is just a bandlimited

(to [-1/2T,l/2T]) version of the I/T periodic TSR correlation matrix

A(f); i.e., K(f) is one (centered) period of A(f).

Now, substituting Eqs. (3-87,88) into Eq. (3-7) for the power

spectral density of the stationarized version of a T-CS process, we obtain

the HSR formulas:

K XX(f) = • A (f)W(f-p/T)p=.- PP

SK (f-p/T) (3-89)
P=-1 p

and we see that the stationary character of a CS process is determined

by the diagonal elements in the 11SR correlation matrix.



b) Resolution and reconstruction. The harmonic series re-'>,zntation

L is perhaps most transparent when viewed in terms of the process-resolution

Operation which is defined by the integral equation Eq. (3-81) of

- Theorem (3-7). Applying the convolution theorem to this equation yields

the following simple formula for the Fourier transform of the

representor a
p

A p(f) = X(f + p/T)W(f) (3-90)

U where W is the gate function defined in Eq. (3-72). Thus, the

resolution operation corresponds to equipartitioning the "frequency line"

Lj
into support intervals of length I/T upon which the process is then

decomposed as shown in Fig. (3-10) for a hypothetical realization of the

Fourier transform of the process.

This resolution operation has the straightforward implementation

shown in Fig. (3-11) where W is the ideal low-pass filter with transfer

function W(f). Furthermore, the original process can be reconstructed

from the representors simply by shifting them (in the frequency domain)

and adding them. The corresponding implerientation is also shown in Fig. (3-10).

Note that, pa.-allcling the results in Section 2c, a resolution-

reconstruction system which decomposes CS processes into the real and

imaginary parts of the representors fa (t)} can be implemented using only
p'

real sinu:;oidal multiplier functions in the structure shown in Fig. (3-11).

c) Properties of the harmonic series representation. In this

;ubsection, we present several properties of the IISR which illustrate
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its convenience for characterizing CS processes.

(1) Stationarity: Since the components (a p(t)ej2wPt/T) of the HSR are

individually WSS, but not jointly WSS (because of the exponential factor),

then a CS process will, in general, be WSS if and only if the various

representors {ap) are uncorrelated; i.e., if and only if the correlation U
matrix is diagonal.

(2) Phase randomization: If x is the process which is derived from a

T-CS process x by the introduction of a random phase variable 0:

x(t) - x(t+O),then as discussed in Section Sc of Chapter II x is also

T-CS. Furthermore, if p0 (.) is the PDF for e and P,(.) is its Fourier [1
transform (conjugate characteristic function), then the elements of the

correlation matrix _(f) for x can easily be shown to be related to the II
elements of the correlation matrix K(f) for x by the formula:

Spq(f) = P0 ((p-q)/T)K pq(f). (3-91)

Now, since p,(.) is a PDF, then Po(r/T) < Pe(O) = 1, and we see that the

off-diagonal el-ments are attenuated by the phase-randomization.

Furthermore, if P0 ((p-q)/T) = 6pq , then ý(f) will be diagonal and x'

will be WSS (a result previously obtained in Theorem (2-15) of Chapter II).

(3) Bandlimitedness: As defined in Section 2a of Chapter II, a random

process x is bandlimited to the interval [-B,B] if and only if the double

Fourier transform of its autocorrelation function satisfies the
q

bandlimiting constraint:

K xx(f',V) = 0

tor IJf B and for Jv1 H B. Nw. tsing E+. (3-8S) and this definition,
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i it is easily shown that if x is a T-CS process which is bandlimited to

[-(M+l/2)/T,(M+l/2)/T] then x admits an Mth order HSR; i.e., allyrepresentors with indices greater (in magnitude) than M are zero, and

the correlation matrix is (21+1) dimensional. Similarly, if x is a

"band-pass" process:

K xx(f,v) = 0

f3r Ilfl-fol ' B, and for IIjv-fo1 I B, then x admits an HSR with only

2M terms (where B = (1+1/2)/T).

(4) Time-invariant filtering: If x is the output of a time-invariant

filter with T-CS input x, then as discussed in Sec. 2a of Chapter I1, x

is also T-CS. Furthermore, if G is the transfer function for the filter,

then the elements of the correlation matrix M(f) for x can be related to

the elements of the correlation matrix K(f) for x by the formula:

pq (f) = w(f)G(f+p/lr)(;*(f+q/T)K pq(f). (3-92)

Note that if G is an ideal low-pass filter with cutoff frequency f0 , then

aJi elements in the matrix M,) iii either index greater (in magnitude)

than k1 .' min{n; n > Tf +1/2) wil! bc zero, so that x can be represented

by an Mth order iISR--a result which is obvious from tse abo.,e discussion

on bandlimiting.

d) Examples. In this subsection, we present sevcral specific types

of CS processes which admit partictilarly simple finite order IISR's.
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(1) Amplitude-modulated signals: Our first example of a CS process

introduced in Chapter 11 (Sec. 2b) was the amplitude-modulated (AN)

signal with realizations of the form:

x(t) = p(t)y(t)

where p is a T-periodlu deterministic function and y is a WSS process.

Now if p has the finite harmonic Fourier series representation

p(t) = I a eJ21qt/T
q=-Mq L

and y is bandlimited to [-l/2T,l/2T] then x admits an M th order IJSR with

representors

a y(t), p = 0,±29 .... ±H
ap(t) o,0 1Ip > M.

and if p is a sinusoid (as it most often is in communications applications),

then M4 = 1, and the correlation matrix has the form:

I 0 1

K(f) K (f) 0 0 0
yy

1 0 1

(2) Frequency-division-multiplexed signals: It was shown in Section

2b of Chapter II that a multiplicity of T-CS WN signals can be added to

form a composite T-CS frequency-division-multiplexed (FDM) .ignal with

realizations :)f the form

N1
X(t) = y p(t)coS(wot + 2-1pt/T')

P=1 P
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where w is an integer multiple of 2w/T, and {yp) are each banlimited

to [-1/2T,1/2TJ. Now, by expanding the sinusoid into the sum of

exponentials, we obtain the HSR

(ION) wp/
x(t) = ap(t)e

p.- (W+ku) P'

where N w woT/2w, and

1 y p - (S+l),+(N+2),...±(N+M)
a (t) 2=t

0, NoA < IpI < N.

If the components{yp) are uncorrelated, then the composite FDM signal

has a sparse correlation matrix of the form:

K (-N-M)(-N-M) K(-N-M) (N+M)

0

K(-N)(-N) K(-N)(N)

K 0 0 0

K(N)(-N) K (N)(N)

0

K(N+M) (-N-M) K(N+M) (N÷M)

with elements given by

i *K(f). II - - N + r
Kpq(f) 0 0, otherwise

wihere K r(f) is the power spectral density for yr"
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LU
(3) Random periodic signals: In Section Sa of Chapter II, we discussed

the random periodic signal as a reasonable model for many biomedical and

communications test signals (modeled at the receiver). These signals

can be expressed in terms of a Fourier series

N i
x(t), a

p5--1 _

where (ap) are random Fourier coefficients. Clearly then, these signals

pp
Sadmit thth order IISR's with representors ap Ct) u ap so that the ii

correlation matrix K(f) factors into the product of a constant matrix

and an impulse function.

e) Solution of integral equations and realization of periodically

time-var'ing systems. As discussed in Section 2f, the TSR for an

autocorrelation function can be employed to convert an integral equation

to a matrix equation which can be solved by matrix inversion. Now, since

the HSR is derived from a TSR, then it too can be similarly employed. In

fact, using Eqs. (3-75), (3-88) in Theorem (3-2) yields the solution

S= •hpq~-T~j2Tr(pt-q-r)/T t, (- )
h~tT) h t-Te tT (3-93),

p,q

to the integral equation

f k(t,s)h(s,r)ds + Xh(t,i) = g(t,T) V t,T c. (--,-) (3-94)

where the {h ) are the inverse F:ourier transforms of the elements
Pq

of the matrix

'4i
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~4 A ,, f i "[-l/2"•,l12T]I £

it 4

* (-Pq

g~t,s)'= 1 9 (t'-s)ej2r'(pt-qs)iT %13-96)

Sas in Eqs. (a'-83, 85)..

A l

whe u'rthexmore, if this solution is to be implemented ato the impulse

• tresponse of a linear system--as discussed in Section 2g--thnn the

mstraightforward implementation shown in Fig.c(3-12) suffices. Note

that this linear system, is fcomposed of a matrix of time-invariant filters

(wuth transfer' functions i o (f)) which bs flanked at the i ipua sand

outpiut, respectively, by the resoluti6n and'recenstruction systems of

fig. (3-11).. Note also that since 11(f) is bandiimit.-0, then it can be

exactly realized with a matrix sampled-data fiiter, with transfer function

flanked at the input and output, respectively, by T-perivdic impulse-

samplers and ideal low-pass filters (W(f)).

Finally, it should be mentioned that such a syst'em is not causal

aWd cannot be physical'ly .implcmen•ted without tile i1corporatiowl ofa e-l

diin
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As an example of this integral-equation solution method, consider

the special case (which occurs frequently in practice) where the kernels {
g and k in F4. (3-94) are equal. Now if k is the autocorrelation function

for the FlM signal discussed in the previous subsection (or has the same

for), then the identical matrices G, K have the sparse form:

G (f) -K (f) (f 2

¼r[, pli Iqi =Nr

"- 0, otherwise

so that the solution matrix of Eq. (3- 95) has elements given by the

formula Lf)
1 IpI - JqJ - N + r

K K(f)+A
n1 (f)_ = (f) 2 rq (3-97) I-A

0, otherwise.
I;

In the next chapter we will extend the integral-equation solution

method of Eqs. (3-93)-(3-96) to include the case where the kernels

k, g are not only jointly T-periodic in both variables, but also

individually T..periodic in each variable (as is the case for the

autocorrelation function of a random T-periodic signal), and where the

interval of integration is finite.

i :
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Fourier series representation for autocorrelation functions for

cyclostationary processes. in contrast to the autocorrelation functioni-

representations Presented in the previous two sections,, this repjresetationl

does not result from a represenitation foir cycldostatidnAry-processes:

there is, in fact', no process-representation from which the-Fourier series-

u reýpresentation for an autdcorrelation function Automatically results.22

If x is a cyclostationary process with period T, then its

autocorrelAtion function is--by definitioni-joinitly Tý-periodic iri its

two arguments:Ll
k (t.T,s+T) =k (t,s) f V s
xx, xx

t Now, if we define a new function of two variables by making the change

of variables:

then we have

k (t,s) r (t-s,(tts)/2) (S,-99)xx xx

so that the first argumnent in r . is the time-di fferende or si ze (and

sense) of the time-interval *(t,s) and the second argument is the time-

average or midpoint of the time-interval (t,s). F~urthermore, the section

'22 fhis isý a Conjecture which ;Ippc~irs to be di fficult V) pr'ove.
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function r (t',') is T-periodic for every t', and the section function

r (.,s') is a "decaying" function and will be contlained in L2 (,-cp)

for most processes of-interest; i.e., those processes. whose correlation

goes to zero faster than I/It-sI L!
We now represent the T-periodic functions(r (t',); t' C

'xx I
with their harmonic Fourier series:

m\

rx (t',s') = . ct )J27rns/T .i

xx nn=-oo l

where

i, i ~T/2"',,

c (2) f r xx (t',s ' ds' (3-100)
-T/T-T/

If we substitute Eq. (3-100) into Eq. (3-99), then' we obtain

J Trn (i+s) /T

xx n

c (t)= 1 T/2
c f k (s+t/2,s-t/2) nS/Tds (3-101)

-T/2 x

which is the Fourier series representation (FSR),for 'the autocorrelation

function 23.

Corresponding to this FSR for the autocbrreiation function k we

have the following representationý for the double Fourier transform of K

23 This representation hasg been considered in great depth by Hurd [5]. In
the third Chapter (which is devoted entirely to this representation) of
h.s doctoral dissertation on cyclostationary processes, he investigates
various modes of convergence of the partial sums of this Fourier series,
However, neither Hurd, no-" any .of the previous investigators referenced
by Hlurd, appear to have identified the direct relat~ions1hip existing between
the Fc.urier-coefficient functions and ihc process as described in the
remainder, of this subsection.



K (f,v) = Cn(f-n/2T)6(v-f+n/T) (3-102)

xxn

where C is the single Fourier transform of cn. Notice that if we
nn

substitute this FSR into Eq. (3-8S), then we obtain the following

i relationship between the elements of the correlation matrix for the

I:HSR of Section 3, and the coefficient-functions for the FSR:

i K (f) = C (f+(p+q)/2T)W(f). (3-103)
Spq p-q

ii Furthermore, by equating the right members of Eqs. (3-102), (3-84), we

obtain the relation:

Cn (f-n/2T) = • Kpn(f-p/T), (3-104)

so that the n th FSR coefficient function is equal to the sum of the

thf frequency-translated versions of the elements of the n off-diagonal

in the HSR correlation matrix K(f).

* In view of the fact that the IISR and the FSR for the autocorrelation

* functions of CS processes both employ the harmonic exponentials as basis

functions, one might expect to find some interesting relationships

between the two representations--in addition to Eqs. (3-103), (3-104).

The following is perhaps the most fundamental relationship existing

between the HSR and the FSR:

From Section 3, we know that the elements of the correlation matrix

for the HSR are--by definition--cross-correlation functions of jointly

WSS complex processes:

k (t-s) = E(a (t)a*(S)j}
P (

.1•



182 11

w.qere the process a (t) is obtained by reducing the T-CS process

x(t)e-j21pt/T to a WSS process via bandlimiting to the frequency-interval [
[-1/2T,l/2T] (Theorem (3-7)). Similarly, the FSR coefficient-functions

are crosscorrelation functions of WSS complex processes:

c p(t-s) = E{b p(t)bp (s))

where the process bp (t) is obtained by reducing the T-CS process H
x(t)e- jpt/T" to a WSS process via phase-randomization.

1r)

We state this new result as a theorem: I_

THEOREM(3-8): Let x be a T-CS process whose autocorrelation function L
admits the FSR

kxx(ts) = (t-s)ej1p(t+s)IT

1 T/2
c(t) M f k (s+t/2,s-t/2)e-j 2 npS/Tds, (3-105)
p -T/2 XX

and define b to be the WSS complex process obtained by phase-randomizing
pthe T-CS complex process xp: l

bp (t) x p (t+O)

where

x (t) = x(t)e jnpt/T

and where the PDF for 0 is uniform:

lIT, IJI < T12
p0O() = 0, lot > T/2



Now, the coefficient functions in the FSR are equal to the cross-

correlation functions of the {b }:

c p(t-s) = E{b p(t)b p(s)}. (3-106)

Proof:

E{b (t)bp (s)} = E{x (t+o)xp (s+O)}

=1_Of E{x (t+o)x p (s+o)1}Po (o)do

1 T-T/2 2 (tpatxs(saa) 1e1 f ~E{x (t+a)x (s+o) }ejp(t+s)/TeT f
-T/2

1 T 'xx~(t+°s+)e-3(qp)(t+s)/T e- i 2w"qp°/Td°

-~T/2qT/21(~~)Jt-~P)(~s)e/-p(t1s)/T j 2 (q-p)a/Tdo

= "T/2 qqe

q q TT/2

c (t-s).p

QED

Note that since bp is a complex process (for p ý 0), then C p(t-s)

is not the autocorrelation function for b, but rather the crosscorrelation

function for b and b*. Note also that since x is real, then b* = b
p p P -P

The system which transforms any T-CS process x into the WSS processes

{b p is shown in Fig. (3-13) where 6 is a delay line whose delay length

is a random variable uniformly distributed over the interval [-T/2,T/21.

llence, unlike the resolution systems for the TSR's and the IISR, this



184_

transformation is a random periodically time-varying linear system

(as discussed in Section 5 of Chapter II), and has random impulse-

response function

9p(t,r) = e-j"PT/T (t+O-[).

Observe that this random system has the same form as the HSR resolution

system of Fig. (3-11) except that "pb~sc-randomizers" are used in place

of "bandlimiters".

The pth inverse transformation which converts b back into thep

original process x is also a random periodi.cally time-varying linear system,

and is statistically dependent on the resolution transformation as well

as on its input b . The random impulse-response function for this inverse _

p
transformation is

g91 (t,T) =eJpt/T

p

so that the output process is L

x(t) = bp(t-6)e jrpt/T LI

where 0 is the same random-phase variable employed (in gp) to resolve

x into bp

b) Properties of the Fourier series representation. In this

subsection, we present various properties of the FSR which are useful in

analyses dealing with CS processes:

i) Phase randomization and stationarity. If the process x is obtained

from the T-CS process x by the introduction of a random-phase variable 0:
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LI •(t) = x(t+0)

then the FSR coefficient-functions {'cn for the autocorrelation function

for x are given by

~+U]
ICn (t) = Po(n/T)cn(t) (3-107)

4n

where {c } are the FSR coefficient-functions for x, and P0 (.) is the
n

Fourier transform of the PDF for 0, p0(-. Now, if the PDF is uniform, then

J1, n=0IL PO (niT) = , 0

0, n 0

so that

AU = cc (t), n = 0
c n(t) O n0, 0

K Jand

k (t-s) = co (t-s).
xx

Hence, the zeroth coefficient in the FSR is the autocorrelation function

for the WSS process obtained via phase-randomization. This result is

more directly obtained by noting that

c0 (t-s) = E(bo (t)b (s)}

= E{x(t+O)x(s+O)} (3-108)

where 0 is the uniformly distributed random-phase variable.

ii) Filtering and bandlimiting. If x is the output of a linear time-

invariant filter with transfer function G(f), and with T-CS input x, then

the Fourier transform of the FSR coefficient-functions for x are given by:
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(f) G(f+n/21)G*(f-n/2T)C (f) (3-109)

where {C are the Fourier transforms of the FSR coefficient-functions LI
for x. Now, if G is a bandlimiting filter with bandwidth 2B: LI

G(f) =0, jfI > B,

then

n(f) 50, n > 2BT,

so that bandlimited processes possess only a finite number of non-zero

coefficient-functions. This is, of course, true for "band-pass" as well

as "low-pass" processes. Note that if B < 1/2T, then only the zeroth

coefficient-function is non-zero and the bandlimited process is WSS--a LI
result previously obtained. i

iii) Constraints on coefficient-functions. There are a nuriber of

interesting properties possessed by the FSR coefficient-fur,:-.ions. LI
These properties can be viewed as constraints which must be satisfied by

the coefficient-functions corresponding to any CS process. We briefly [i

discuss three particularly interesting types of constraints:

(1) Symmetry constraints: Using the defining equation (Eq. (3-102)),

for the FSR, one can easily show that the coefficient-functions {c nn

and their Fourier transforms {C n exhibit the symmetries:

c (t) = c* (-t) = c n(-t)n -nn

C (f) = C* (f) = C (-f) (3-110)
n n eh n

wh~ere the last equality in each line is valid only if x is a real process.
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(2) Norm constraints: Employing the Cauchy-Schwarz[2] inequality for

5 inner products (in HRV) results in

k2 (ts) < k (t,t)k (ss).
xx = xx xx

Now, using the FSR for kxx and replacing t by (a+t/2), and s by (o-t/2),

and integrating w.r.t. a over the interval [-T/2,T/2] yields the bound

2 < ( c(t)l 2  2 nt Ic (0)12-

Ic(1-IIc (0)1I2I (3-111)n= n = nn

Furthermore, if we again integrate (over [-NT/2,NT/2]), then we obtain

the bound

L 1 NT/ 2
I f C(t)12dt < 1c00)j2 (3-112)n L n -NT/2

(3) Support constraints: Since the mean-squared value of any random

variable must be non-negative, coen by considering the particular random

va'riable

00

y = f g(t)x(t)dt,

where x is a T-CS process, and g(°) is any real function, we obtain the

non-negativity condition

c0

E{y 2} = ff g(t)g(T)k (t,T)dtd-t > 0 (3-113)

Now, using Parseval's relation [2], we obtain

E{y 2} = ff G(f)G*(V)K x(f,v)dfdv > 0 (3-114)
CO xx

and, using the FSR of Eq. (3-113) for K yields
xx

Sf U;tfl,,/2T)tG*(f'-l/2"I')C (fldf U (3-115)
n . ,
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This general non-negativity condition imposes various interesting

constraints on the support of the Fourier transforms of the FSR j
coefficient-functions. Specifically, if we choose a "double band-pass"

shape for G: Ii

A, f c [m/2T-f- Bm/2T-f+B]U[m/2T+f -B,m/2T+fo+B]

G(f) A*, f e [-m/2T-f-B,-m/2T-f°+B]U-m/2T+f0 -B,-m/2T+f0 +B]

0, otherwise

where
L!

0 < f + B < 1/4T,
= 0

then, Eq. (3-124) becomes

e f +B f +B f -+B
Re{A2 f o Cm(f)df + A2 f 0 Cm(f)df) +IA12 f C0 (f+m/2T)df

-f -B f -B m -f -B
0 0 0

f +B L
+ 1A1 2 f 0 C0 (f+m/2T)df > 0

f-B U
Now, by choosing A equal to 1 and to j, we obtain the constraint

f [Co(f+m/2T+fo)+Co(f+m/2T-fo)]df > I f Re{C (f+f )+C)(f-fo)}dfL
-B 0 B e 0 ) f

where,

0 f + B < 1/4T. (3-116) H
0
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Among other things, this is a constraint on the support of the FSR

coefficient-functions. From it, we conclude that if the m h coefficient-

function Cm has support throughout the frequency band [-1/4T,l/4T], then

U the zeroth coefficienftfunction Cq must have support throughout the

[ i freqpency band [m/2T-1/4T,m/2T+l/4T]. Other constraints can be derived

by choosing other types of gate-functions for G. In fact, it appears as

though the mth coefficient-function C will have support throughout them

frequency band [-B,B] for any B if and only if the zeroth coefficient-

j• function has support throughout the band Im/2T-B,m/2T+B].

c) Solution of integral equations, and realization of periodically

time-varying systems. In Subsections 2f, 3e, we saw that series

representations for autocorrelation functions (and other periodic functions

of two variables) can be employed for solving linear integral equations

in which these functions appear. This was possible for the TSR's because

of the separation of variables effected by the representation. Although

the FSR does not separate variables, it does provide a means for converting

the integral equation to a set of linear algebraic equations. However, as

we will see, finite order FSR's do not convert integral equations to a

finite set of algebraic equations as was the case for TSR's. The set of

Calgebraic equations obtained with the FSR is infinite, and not

particularly easy to solve except in special cases.

Using Parseval's relation [2], the linear integral equation

f h(t,s)k(s,T)ds + Xh(t,T) = g(t,T) '- t,T c (-F ,o) (3-117)

can be converted to the equivalent (dual) linear integral equation
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f H(f,v)K(v,w)dv +'AH(fJ~w) =Gff,w), Vý f,~ :(~o) (3-118)

-00

where K, H, G are the double Fourier transforms Of k, h, g. Now, i U

k,g are jointly T-periodic in their two variables, as are the auto- I
correlation ar,,- crosscorrelation functions for T-CS processes, then they

admit FSR's, and their double Fourier transforms can be expressed in the I
form L

K(fv) I C n (f-n/2T)6(v-f+n/T)

n

SG(f,v) = I Gn (f-n/2T)6(v-f+n/T). (3-119)
nfl

LI
Assuming the same form

H(f,v) H n (f-n/2T)6(v-f+n/T) (3-120) LI
n

for the solution function, and substituting into the integral equation

yields, after integration, the following equivalent set of linear

algebraic equations:

SC nm(f-(n+m)/2T)H(f-m/2T) + H n(f-n/2T)

= G (f-n/2T) V n. (3-121) Ln

There does not appear to be any way to obtain a general closed I
form solution to this infinite set of equations; 2 4however, if (C n}, (G n

satisfy certain banalimiting constraints, then solutions are possible. We

consider the special (but common) case where g = k. Now, if the {C n

satisfy the constraint:

24 This difficulty appears to be related to the fact (conjecture) that the
FSP for autocorrelation functions does not result from a process-representation
as do the HSR and TSR's.
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C (f) = 0, Ifj >1/4T, n 0 (3-122)

Li then, Eqs. (3-121) admit the solutions:

H n Cn(f-n/2T)I[1-Ho(f)]

H (f-n/2T) = C (f-nT)n 0

H (f) COff) - S(f)
0 + Co(f) - s(f)

whereL J S m ~ I C m ( f -m / 2 T ) 1 ( 3 -2 3

SmJO X + Co0(f-m/T)

and the solution to the original integral equation is

h (t, -) h h(t-Tr)eJnt'/
n' n

where {h n} are the inverse Fourier transforms of the {Hn}.

If the bandlimiting constraint, Eq. (3-122), is weakened to

c (f) = 0, jfj > M/4', n A 0,i ~n=

then the solutions to Eq. (3-121) become:

HCn (f-n/2T) [1-Ho (f)]
H (f-n/2T) = 0 , n A 0,-+l...,- . 1

A + C (f-n/T)
0

and WH; n = 0,_l ... +(M-l)} can be obtained by inverting a (2M-l)x(2M-I)

, matrix of functions.

As a simple example of this integral-equation solution method,

consider the autocorrelation function corresponding to an AM process

(see Sec. 2 of Chapter II) as a kernel:
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IU
k(ts) = cos(21t/T)cos(2ws/T)'kyy (t-s)

= �n sJn(t+s)/T
c c(t-s)eL

nn

where, Li
Co(t) k• (t)cos(2nt/T)

c2 (t) = c_2 (t) = kyy(t)

Ll
cn(t) =0, n j 0,±2.

The Fourier transforms of these FSR coefficient-functions are:

C O(f) = • Ky(f-l/T) + I- Ky(f+i/T)

(f Ky (f)
C2(f) = C 2 (f) K

C (f) =0, n 0 0±,2.n

Now, if K (the power spectral density of the "baseband" signal) is
yy

bandlimited to [-1/4T, *4TJ, then the constraint of Eq. (3-122) is

satisfied, and substituting into Eqs. (;-123) yields the solution

coefficient-functions:

H1 R(f-/T) + 1
0 Rf/ R (f.4/T)

1

H (f) = H. (f) R~f)
2 -2 4Rf

H (f) = 0, n • 0,±2

where

A) 2K ,2 (f)1z(f) y

2X + K (f)
yy
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Hence, the solution to the original integral ecuation is:

h(t,-T) = cos(27rt/T)cos(27r/T)r(t-T),

where r(.) is the inverse Fourier transform of R(.).

If the solution to our integral equation is to be implemented as

the impulse response of a linear system--as discussed in Subsections

2g, 3e--then the straightforward FSR realization shown in Fig. (3-14a),

can be employed. The solution to the integral equation will not, in

LJ general, be the impulse-response function of a causal system, so that

the time-invariant path-filters shown in Fig. (3-14a) will not be causal.

However, if one is given a causal impulse-response iunction h to start

with, then the coefficient-functions {h } in its FSR,
n

h (t) 1 f h(s+t/2,s-t/ 2 )e-j27Tfl/T (3-124)
n T -T/2

= 0 for t < 0.

will be the impulse-response functions of causal time-invariant filters,

so that the realization shown in Fig. (3-14a) will then be causal.

This FSR realization can be simplified for the purpose of

implementation. Such a simplified version is shown in Fig. (3-14b)

where only input modulators are used, and all devices are real. The

impulse-response functions for the path-filters with transfer functions

Gnl' Gn2 are related to the original FSR coefficient-functions as -llows:
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g~1() =2Re{h (tilcosirnt/T 2- Im{h (t)lsinnfnt/T

gn2 (t) =-2Rejh nt)lsin-ant/T -21m{h n(M lcosnrnt/T (3-125)
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Figure(3-l) M1ultiplier-intepratar realization of the piacess-

Li resolution device.
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X 10 b Mt

LI

I bq(t)

X ( b Mt

! [ rarndom

e j erqt/T 
deIay

k (t,s) = c (t-s)ej1pP(ts)/T
xpp

c p(t-s) E{b p(t)b p(s) }

Figure(3-13) Transformation of "'-CS nrocess x into IVSS complex

processes {bp I whose crosscorrelations are the FSR coefficient-

functions {c p. (The random delay o is uniformly distributed over [O,T].)
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Figure(3-14b) Simplified realization of a periodicallyCT) time-varying

linear system whose impulse-response function has an Mth order FSR.
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CHAPTER IV H

LEAST-MEAN-SQUARED-ERROR LINEAR ESTIMATION

OF CYCLOSTATIONARY PROCESSES

1. Introduction V

The material in the preceding two chapters serves mainly as a

theoretical base upon which various problems dealing with random

periodic phenomena can be formulated and solved. Chapter II provides a

base for obtaining mathematical models for physical systems and signals,

so that physical problems can be formulated mathematically, and •

Chapter III provides a base for simplifying the mathematical models so

that analyses can be simplified, and solutions obtained.-L

In this fourth chapter, we consider a particular application of the V
theory developed in these earlier chapters. Although this application

is but one of many possibilities, it has special significance in that it Ii
has b~en the primary motivation for developing the theory. Furthermore,

the problem considered in this application is of significant practical L!

(as well as theoretical) value in that its solution provides a means for

improving the quality of present communication systems, and a means

for evaluating certain performance measures for newly proposed (as well

as existing) communication systems, and it leads to useful insight into

the nature of optimum signal processing.

Specifically, the problem to be considered is that of least-mean-

squared-error linear estimation of imperfectly observed cyclostationary

processes--or, in communications jargon, optimum filtering of noisy
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distorted cyclostationary signals. The general form of this optimum

filtering problem is shown pictorially in Fig. (4-1): A random signal

process x is transmitted through (and distorted by) a channel Ahich is

Lcomposed of a dispersive transformation which can be nonlinear, time-

[1 varying, or even random; and noise which can be additive and/or multi-

plicative. The received signal y (the distorted version of x) is

L processed by an "optimum filter" which is designed to minimize the mean-

squared difference between its output x(t) and the transmitted signal

U.f x(t) for all values of t in soie interval T (usually (-%,)).0

Typically, the filter is chosen to be optimum subject to the

constraint that it be linear. Nonlinear processing of the received

U signal is usually carried out in the receiver which follows the optimum

filter. Such nonlinear signal processing will not be considered here.

1 It should be mentioned, however, that if the transmitted signal x is a

Gaussian process, and if the channel is composed of a linear deterministic

transformation and additive Gaussian noise, then the optimum Cleast-mean-

squared error) filter subject to no constraints will be a linear filter [51].

The particular aspects of the optimum-filtering problem that will

be investigated in this chapter are the structure and the performance of

optimum (linear) filters for cyclostationary signals. In fact, we will

prove (and demonstrate with numerous examples) the proposition that

optimum filters for cyclostationary signals are periodically time-varying
Li

systems which can yield significantly improved performance over optimum

. filters which are constrained to be time-invariant and which thereby

* I
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ignore the cyclic character of the cyclostationary signals. 2 5 We will

also prove (and demonstrate with examples) the fact that optimum linear U
receivers consist of demultiplexor-demodulators followed by time-

invariant filters--the order of these operations being the reverse of

that sometimes employed in practice. These results are of considerable

importance in view of the great preponderance of cyclostationary signals

in communication systems (as emphasized throughout Chapter II). Specific

examples which are worked out in detail include, among others, signals

which are amplitude-modulated, frequency-shift-keyed, pulse-amplitude-

modulated, frequency-division-multiplexed, and time-division-multiplexed.

Before proceeding, we briefly discuss the origin of the above

proposition on improved performance: In Section 5 of Chapter II, it was

shown that any cyclostationary process can be reduced to a stationary

process by randomizing the phase (or time-origin) of the process (Theorem

(2-15)), and that the resultant autocorrelation function is precisely the

same as the function obtained by averaging, over one period, the original ii
autocorrelation function of the cyclostationary process (Theorem (2-16)).

This has long been known (as brought out in the historical notes of

Section 3 of Chapter I) and indiscriminantly used to simplify analyses fj
dealing with cyclostationary processes. In fact most systems-analysts,

in solving for optimum filters for cyclostationary signals, use the

stationarized model for their cyclostationary signals, and come up

with optimum time-invariant (non-coherent)

25 To my knowledge, the only other result of this nature was obtained by
Brelsford [19,20). He experimentally verified the fact that pure predictions
of cyctostationary meteorological data based on autoregressive techniques
which employ periodically time-varying coefficients can be superior to
similar predictions obtained with constant coefficients.
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filters. 2 6

LThere are two dominant motives for this approach:

(1) In the past, time-varying systems were considerably more difficult--

if not totally impractical--to impiement compared with time-invariant

systems, so that even if an optimum periodically time-varying filter

was identified, it probably couldn't (or wouldn't) be built.

(2) Solutions for optimum (noncausal) filters for stationary processes

are very simple to obtain, in direct contrast to the compiete lack of

any general solution methods for optimum (noncausal) filters for non-

Sstationary processes. (The appropriateness of the noncausal optimum

filter for communication problems will be discussed in Section 3.)

Thus, the tack taken in the past is very understandable. However,

with the advent of integrated circuit technology, time-varying systems--

particularly periodically time-varying systems--are becoming increasingly

easier to implement. In fact, some such implementations are even more

attractive in terms of design-and-construction effort and cost than

classical time-invariant implementations based on resistors, capacitors,

and inductors. With this new technology, the question of improvements

K in performance available through recognition of, and design for, the

cyclic character of cyclostationary signals becomes very interesting and

practical--and challenging, in light of the general lack of appropriate

solution methods.

26 The most predominant exception to this statement is the coherent
demodulator-filter, for AM signals, which has been derived in various
ways by many investigators.
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2. The Orthogonality Condition

The necessary and sufficient condition which implicitly specifies

the optimum (linear) filter was derived for the case of stationary

ergodic processes and an infinite-menory filter by Wiener [56] in the

1940's. In 1950, the condition was derived for the case of stationary

ergcdic processes and a finite memory filter by Zadeh and Ragazzini [57],

and in 1952 for the general case of nonstationary processes by Booton [58].

These caLssical results have been rederived, modified, and generalized

by a number of authors using various tools of analysis such as the calculus

of variations, directional derivative and gradient techniques in

functional analysis, the Hilbert-space projection theorem, and others.

We will present here a short derivation of a very general form of the

necessary and sufficient condition for optimality by using the projection

theorem stated below [29,59-61]:

Projection Theorem: Let H be a Hilbert space, and S a closed subspace fj
of H. For every element h e H there exist a unique element h c S such

that

lth-hI1H < ibh-sliM 1 s S, s (4-1)

and

(h-h,s)H = 0 A s e S. (4-2)

In this theorem h is called the orthogonal projection of h onto

S, and Eq. (4-2) is called the orthogonality condition. In words, this II

condition states that the difference between h and its orthogonal ..

projection h is orthogonal to all elements in the subspace S onto which

h was projected.
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A simple example of this theorem is illuztrated in Fig. (4-2)

where we have chosen the two-dimensional Euclijean space, as our Hilbert

space. In this space, the theorem is obvious from geometrical

considerations.

Now, this theorem can be applied to many optimization problems

simply by identifying the quantity to be minimized as the norm of the
difference between a given element h and a variable (adjustable)

clement s in an appropriate Hilbert space H, and by identifying the

ccnstraints on the variable element as equivalent to the restriction of

U that elpment to an appropriate subspace S of the Hilbert space H. For

the least-mean-square (LMS) estimation problem, we set up a separate

; (independent) optimization problem for each value of the time-index:

For any specific value of time, say t, we identify H as HRV the space

of finite mean-square random variables (defined in Section 1 of

Chapter II), and h as the transmitted signal process x evaluated at

time t, and s as the output of the estimator which is to be optimized,

so that minimizing the mean-squared estimation-error is the same as

minimizing the norm

[(h-sJ1 = [[x(t)-s(t)I2 = E{Ix(t)-s(t)J2}, t e T
RV0

subject to

s (t) = r(t). [Y]

where y is the observed (received) signal process, and where L(t) is

one element of a set of linear functionals, the collection of which
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comprises the estimator transformation L = {Lt; t C T. Now, in

order to apply the projection theorem, we need only identify the

subspace St r HV such that the restriction of L to a "permissable"

set L is equivalent to the restriction of s(t) to the subspace St for

all values of t c To. We first give a precise definition of the term

"permissable":

DEFINITION: L I {L.} is defined to be a permissable set of linear

transformations -, r.t. the observed process y, and P = {hi(.,.))

the permissable set of kernels (impulse-response functions), if and

only if:

1. The sets Pt of kernel-sections {hi(t,*)}, corresponding to the

linear functionals LM, form Banach spaces with the L1 (-cw)- norm;

i.e., the sets P form linear vector spaces which are complete w.r.t.

the norm;

I1hi(t,)IJL1 = f Ihi(t,T)jdT <

2. If y contains a non-zero white component, then the kernel-sections

form Banach spaces with the L2 (-oc)-norm:

11h i(t,'.)lL2 =f h?(t,T)dT• < •

Note that P is also a linear vector space, and its elements

are impulse-response functions of "bounded-input-bounded-output"

stable systems [52] (because of the finite L1 - norm). Note also that
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although the finite L2 -norm constraint may seem unnecessarily

Srestrictive--in the sense that it excludes systems with direct

connections from input to t.I-_put--it is a practical constraint since

Lit is necessary in order that the estimate of a finite mean-square process,

U based on observations containing a white component, be a finite mean-

square process.

Now, we have the following theorem:

H THEOREM(4-1): Let L be the pervissable set of linear transformations

corresponding to an arbitrary peimissable set of kernels P, and let y

be a random process which can be finite-mean-square, or white, or the

sum of both (assumed uncorrelated). MTen, the restriction of the
S~transformation L to the set L is equivalent to the restriction of the

random variables {s(t); t e T to r;spective closed subspaces St of

the Hilbert space H RV' where

s(t) = L't).[y], {L(t); t TO1 = T 0 L,

Proof: By definition of L, P, Pt. we have the fac': that for any

transformation L c L, there exist kernel-sections h.(t,.) e P such that

IL(t)

i I

4



218

Now,

E{s 2 (t)} = ff h.(t,T)h.(t,a)k (rco)dTdo
-wY

= ff hi(t,T)h.(t,a)iy(,o)dTd + A f hfCt,l)dT

where- is the autocorrelation function of the finite mean-square

componet: of y, and A is the PSD of the white component. Thus, we have

E{s 2 (t)} < max ý (T,T)[_ff Ih(t,o)Ida] 2+Xf h?(t,c)do < co

V t e T

since h (t,.) c Ll(--,w) and since hi(t,.) c L2 (--,w) if X A 0.

Hence, s(t) e HRV 'V t e To. Also, since Pt is a banach space with both

L1 and L2 norms, its easily shown that the set of all s(t) generated from

y using all the elements of Pt is a closed linear vector space. This

space of finite mean-square random variables is, then, a closed

subspace of H RV.

QED

Using the result of this last theorem, and the projection

theorem, we obtain the following theorem which provide:i a necessary

and sufficient condition for optimum linear filtering;

14



11 219

11THEOREM(4-2): Let P be any permissable set of kernels. The filter

with impulse-response function ho(-,-) minimizes the inemn-squared error

e(t) = E{(if(t)-x(t)) 21 V t c T

where

x(t) = f h (t,'r)y(-)dT, (4-3)

subject to ho(-,.) e P, if and only if

ff h (t,r)h (t,o)k (T,o)dTdo = f hi(t,T)k (T,t)dT (4-4)
1C 0 yy yx

for every h.i(.,.) e P, and for every t c T , and the minimum mean-squared

u error is

e Ct) = k xx(t,t) - f h0 (t,Tk yx(T,t)dr. (4-5)

Proof: From the projection theorem (Eq. (4-2)), x(t) is the LMS

U estimate of x(t) c HRV, ý t e T, if and only ifRV' 0
E{(ý(t)-X(t))s(t)) = 0 ft s(t) C Sc r HRV, V t c T.

Bt't, from Theorem (4-1),

St = { f h (t,T)y(T)dT; hi(t,-) C Pt} V-t c T. (4-6)

Using this representation for St, and the formula (Eq. (4-3)) for i(t)

1. in the above orthogonality condition yields the necessary and sufficient

condition of Eq. (4-4). Furthermore, the minimum mean-squared trror can

be written as

e0 (t) = E{(x(t)-i(t))x(t)) - E{(x(t)-i(t))i(t)},
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and since i(t) c St, then the last term is zero. Now, using Eq. (4-3)

we obtain the formula of Eq. (4-5). []
QED

This necessary and sufficient condition of Eq. (4-4) is a

:c:siderable generalization of the integral equation frequently, but

often inappropriately, referred to as the Wiener-Hopf equation for

optimum filters. Several specific examples.are given below:

(1) "Infinite-dimensional" filters: If the linear vector space P of

permissable kernels is infinite-dimensional, then we will call the optimum

filter in P an infinite-dimensional filter. 2 7 Typical constraints which

lead to infinite-dimensional P's are constraints on memory length. For

example, we may define P such that

h (t,T) = 0, f t,T 3 t-T < Tr, or t-T > Tm, or t,T [ [Tif] T
1 T1 =Tf 0

for every h.(-,-) e P, where T is the memory length of the filter

(amount of past input used to obtain the zurrent output), Trm is the

reverse memory length of the filter (amount of future input used to

obtain the current output--also, the amount of delay necessary to make

the filter causal), and T. T are the initial and final times which define

the interval over which the filter is to operate. In this case, our

general condition for optimality becomes:

b (c) V -r e [a~t),b(t)]

h h(t,)k yy,a)do = k (Tt), (4-7)
a(t) 0  t . [TiTEf]

27 Note that finite order linear dynamical systems are sometimes referred
t• as finite-dimensional systems [52], but are, under the above definition,
infinite-dimensional. Furthermore note that the finite dimensional filters
2fined here do not necessarily have finite dimensional range spaces.
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where

a(t) - maxfTi,t-T )

(b(t) - min{Tf~t+T rm. (4-7)

As a specific example, if we choose -T. = T = T = m , T = 0, then

P is the set of all causal filters, and if y and x are jointly WSS, then

U the above equation becomes a Wiener-Hopf equation.

(2) "Finite-dimensional" filters: If P is spanned by a finite set of

L kernels, then we call the optimum filter in P a finite-dimensional filter.

For example, if P is M-dimensional, then every impulse-response function

in P can be expressed as a linear time-varying combination of M basis

kernels:

M

h(tT) = ai(t)hi(t,•),
i=l

where the a-priori choice of the basis kernels defines the vector space

P. Notice that the scalars in P are not real numbers as in Pt. but

rather real time-functions. This is a result of the way in which P was

constructed from Pt ; t e To}.

For finite-dimensional filters, our optimality condition becomes:

M
I aio(t) ff hi(t,T)h.(t,a)k yy(r,)dTdo

•-i=l _ooy

=_O f h. (t,a)k yx(a,t)da (4-8)

for every t e T0, and for j = 1,2,...,A, where {a. (t)} is the optimum

set of weighting functions. Hence, the optimum M-dimensional filter

has impulse-response function
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M
h0 .(t,T) = io (t)h itT),

i=}

where the M-vector of wei~ghts a Ct) is, from Eq. (4-8)

a (t) = [A(t)l-lb(t) (4-9)

where A(t) is the M x M matrix with elements:

a. (t) = ft h.(t,T)h.(ta)k (T,a)dTdo ' (4-10)
1J- - ~;i (411

and b(t) is the M-vector with elements,

bi(t) - f hi(t,()kyx(T,t)dT.. (4-11)

Note that the basis filters can be chosen to have arbitrary memory

length, and reverse memory length; they can be chosen to be arbitrarily

time-varying filters, or causal time-invarjant filters. They need only

be b2ble filters as defined in the definition of'P. Specific choices

can be based on physical considerations of implementation, and on

considerations of efficiency'(minimization of the dimension necessary

to reduce the mean-squared estimation-error below a prescribed lievel.)

A formal realization of an arbitrary M-dimensional filter is shown in

Fig. (4-3) as a parallel connection of M basis filters each followed by

a multiplier.

In this chapter we will be primarily concerned with infinite
H

dimensional noncausal filters (with infinite forward and reverse memory

length) on the doubly infinite interv.1l (-•,•) i.e.', we will make the

choice of parameters: T = Tr -T = T =, so that the generalm rm 1 , ta h eea
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necessary and sufficient condition for optimality becomes:

Sf ho(t,s)k (s,c)ds = k (-r,t), V t,T • (-Cm), (4-12)
_-b yy yx

U and the minimum mean-squared estimation error is given by

eo(t) = k xx(t,t) - f h (ts)kyx (s,t)ds, V t e (-0,w). (4-1i)

Before proceeding, we comment on our choice of the "integral-N, equation approach" to our linear least-mean-square estimation problems,

as opposed to the "differential-equation approach", which incidentally

can also be developed from the Projection Theorem. The type of LMS

estimation problems considered here, like many other communication-systems-

analysis problems, are most easily formulated in terms of integral

transformations and impulse-response functions, whereas typical control-

L . systems-analysis problems (and some communications problems) are most

easily formulated in terms of differential transformations and state-

evolution equations. For example, the various communication-signal

* formats and models for cyclostationary communications signals which were

presentIed in Chapter II were developed in terms of subjecting elementary

information bearing random processes (including multidimensional

continuously indexed processes as well as quantized discretely indexed
3, I

. . sequences) to systems (including transducers, modulators, multiplexors,

and various signal processors) which were conveniently characterized as

S integral transformations with easily specified impulse-response functions.

Equivalent state-equation descriptions of these signals and systems

would, in most cases, be very cumbersome or impossible due to noncausality
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and/or infinite-dimensionality. For example, the concept of an ideal

bandlimiting filter is indispensible in many analyses of communications

problems, (including data-sampling and frequency division multiplexing),

yet is not amenable to state-variable description since the filter is [
noncausal; and the concept of an ideal delay-line is of great utility in

many communications problems (including filtering of pulsed signals, and

time-division multiplexing), but is an infinite dimensional (order)

differential system and is therefore not amenable to state-variable

description; and time-(and other index) scale transformations (which are

useful for characterizing scanning operations, Doppler effects, signal

compression, etc.) are easily described with impulse-response functions,

but are formidable with state equations due to infinite-dimensionality;

and so on.
Now, since the state-variable approach to LMS estimation problems--

Kalman filtering--requires that all signals or processes be generated

from white noise via a causal finite-order Jifferential system [60,61],

then it is of severely limited value for tne problems of concern here.

Furthermore, since we are specifically intere~ted in noncausal filtering

(with infinite reverse memory), then the Kalman filter (which must be

causal with either zero or finite reverse memory) is of little value to

us. In addition, "finite-dimensional" optimum filters (not necessarily

finite order differential systems) are easily solved for with the

integral-equation approach as discussed in this section, yet are excluded

from the differential equation approach. Finally, we mention that our

approach leads to explicit solutions for optimum filters and performances,
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and useful insight into optimum time-varying signal processors, whereas

the Kalman filtering approach leads to the Riccati matrix differential

U• equation which almost always must be solved numerically.

One last comment: All results derived in this chapter using

Lminimum-mean-squared-error as an optimality .criterion are also valid when

v •the optimality criterion is minimum-error-variance provided that all

processes involved are replaced with their centered versions; e.g., x

replaced with x - m .i x

3L

A'

9,
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3. Optimum Time-Invariant F.lters for

Stationary Processes

The optimum noncausal filter for wide-sense stationary processes

is very simple to solve for, and yet is of significant theoretical

and practical value. Three of the most outstanding reasons for its

utility are:

(1) The explicit solution gives useful insight into the nature of

optimum filters.

(2) A delayed version of the optimum noncausal filter can often be

closely approximated by a causal filter.

(3) The mean-squared estimation-error which results from the optimum

noncausal filter is a useful performance bound since no causal filter

can possibly perform any better.

The second fact above has useful application in communication

problems since communication systems are often tolerant of, or

insensitive to, the incorporation of a delay in the receiver. (Note,

however, that this is far less frequently true for control problems,

since control systems are often feedback systems, and are, by nature,

very sensitive to the incorporation of delays, and can in fact become

unstable when relatively small delays are included in the feedback loop.)

With this as motivation, we proceed to derive the optimum noncausal

filter. Assuming that the transmitted and received signals are WSS, the

necessary and sufficient condition for optimality (Eq. (4-12)) can be

iwcitten as

£
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fk (T-s)h (ts)ds = kxr(c-t) V tKE CS_CO yy 0oX

But the solution to this vq+ation depends only on the difference

Jof its two arguments. Using this fact, and making a change of variables

results in the equivalent condition for optimality:

f k (t-T)h (T)dT = kxCt) M t £ (-C•,),

which is a convolution. Hence, the Fourier transform of h -- the0

transfer function for the optimum filter--is given explicitly by the

formula

H 0(f) = Kxy (f)/Kvy (f). (4-14)

Using this formula in Eq. (4-13) and employing Parseval's relation [2]

Lyields the following formula for the minimum mean-squared estimation-error:

OK (f)K (f) - IK (f)12

et = ( f df IV t (-,) (4-15)
-00 •yy (f)

where Kyx is the cross PSD for y and x, and Kyy, K are the PSD's

for y, x.

I If we consider the special class of problems where the channel is

composed of a time-invariant dispersion with transfer function G and

additive noise n, assumed uncorrelated with the signal x, then the optimum

filter has transfer function given by

G*(f)K (f)
1H (f) = (4-16)' 0
0 IG(f)1 2 Kxx(f) + Knn(f)

where K is the PSD for the additive noise. This filter, frequently

nn
referred to as the Wiener filter, results in a minimum mean-squared
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estimation-error which is given by the formula

e0 Kxx) -(f)H 0-(f)If 2df + fK n(f)IIIC()1 2df. (4-17)
CO

in this expression, the first term represents error due to imperfect U

compensation for channel dispersion, while the second term represents L
error due to the filtered noise remaining at the output. A more compact

formula for the error which results directly from Eq. (4-15), is i
O Knn (f)K Kx(f)

e f df (4-18)
OD jG(f)1 2K (f) +K (f)

and reduces to

C N K (f)
eN f xx If =XN 0Nh (0) (4-19)

0~ N +lK (f) 0
0 xx"

when there is no dispersion (G(f) = 1) and the additive noise is white

with PSD equal to N0 . Although Eq. (4-19) is simple in form, it can L

present difficulties in terms of numerical computation because of the

infinite interval of integration. With this in mind, we present th•.

following error bounds which require evaluation of an integral only oni

a finite interval:

THEOREM(4-3): The minimum mean-squared estiinacion-error which results

from the Wiener filter for the dispersionless channel is contained

within the ± 1.5 dB bounds:
f

0

B/2 <' e < B, B = k (0) - 2 f [K (f) - K (f)Jdf (4-20)
= 0 XX nn

provided that the signal PSD dominates the noise PSD for all frequencies



229

less than 0, and vice-versa for all frequencies greater than fo:
K __> (f n(f), If I < f o0

K ( f) , Ifl f
0 0

Proof: By hypothesis,f f o Knn(f)KC()f0 K f ff °Kncfdf TM- df < nn o Kc)xxf df
0, o- K (f) + K (f) -f Kn(f) + Kcfff f

L)0 0Knnf)d = 2 0f Knnn f)df,

S-% 0
and

o o~K (f) K (f) o K() f

f K x(f)df = 2f K x - df

< foo K (f)K (f) -<f K (f)df
nn xx

Sfo Knn(f) + Kxx(f) =fo

nf X xx d<0 nn xx0

Adding these two strings of inequalities, and using the fact that

Go0

00

"• fKxxf f K fc'2 f Kxxf)df,
ff nfxlO0

yields the bounds of Eq. (4-20).

I QED

K fK f

fKfif9 X d

ii;XJ~-0 
nf f+ f

)

K fK f
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"*3
4. Optimum Time-Invariant Filters for

Cyclostationary Processes

As discussed in the introductory section of this chapter, an

optimum (in a sense to be defined below) time-invariant filter for

cyclostationary processes can be obtained simply by replacing the given

transmitted and received T-CS processes x, y with their stationary

versions x, y (Theorem (2-15))--which have realizations of the form

x(t) = x(t+O), y(t) = y(t+O), where 0 is a random phase-variable which

is uniformly distributed over the period [-T/2,T/2]--and then solving

for the optimum filter for these stationary processes. The auto- and

cross-correlation functions for these stationary processes x, y are

(Theorem (2-16)):

T/2
'( (T) f k (t+T,t)dtkyy ) -WT/2 yy

k = T) f k (tff,t)dt (4-21)
wxy -T xy

0o(f) = xy (f)/• yy (f), (4-22)

where ý X are the Fourier transforms of k X k and are therefore

PSD's for the stationary processes x, y. However, the mean-squared

estimation-error resulting from this filter will not be given by Eq. (4-15),
s i
since e is yI definition,
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e ct) = E{(x(t) -(t))21 0 E•o(t) -(t))21

and is, in fact, a T-periodic function rather than a constant. On

' the other hand, the time-averaged value of o Ct) is indeed given by

the formula in Eq. (4-15):

1 T/2, f (f - ......k ( f.1 (423
e (t)dt = f " df. (4-23)

<eT /2 " - (f)

Furthermore, the suboptimum filter with transfer function ho (sub-

because it ignores the cyclic character of the cyclostationary processes)

is actually optimum subject to the constraint of time-invariance; i.e.,

it minimizes the time-averaged value of the periodically time-varying

mean-squared estimation-error. This result is stated here as a theorem:

THEOREM(4-4): The optimum filter, given by Eq. (4-22), for the

.i stationarized versions x, y of the cyclostationary processes x, y is

time-invariant and is the same as the filter which minimizes the time-

"averaged value of che periodic mean-squared estimation-error <e>, and the

Sminimum error <e 0> is given by Eq. (4-23).

Proof: By definition,

T/2
1 [kxx(t)_2 f h(T)y(t-t)dT

-T/T2 -00

+ off h(a)h(-r)k yy(t-o,t-T)dadT]d'-

-CO
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= k x (0) -2 f h(T)i X (t-(t-r))dTr + ffh(c1)h(T)ý y ((t-o)-(t--T))dod¶r

=E{[xCt) -f h(T)Y0Ct-T)dT2.

But this last expression is the mean-squared estimation-error for the U

problem with transmitted and received signals x, y and filter-impulse- L
response function h, and is therefore minimized when h = 0, the inverse

Fourier transform of given by Eq. (4-22). Furthermore, the minimum L-

value of this time-averaged error is

<e>= E{((t)-(t))21 = E{['(t)- f (T(r)1(t-T)dT]21
<0 >0

and is therefore given by Eq. (4-23).

QED

If we consider the special class of problems where the channel [3
consists of a time-invariant dispersion with transfer function G, and

additive WSS noise with PSD Knn, then paralleling the results in the

preceding section, we have the following formula's for the transfer

function for the optimum time-invariant filter, and for the rfesulting

minimum time-averaged error.

G* (fA XX (0
io(f) = (4-24)

JG(f)12 xx(f) + K (f)L)

SK nn(fxx (f)<e>=• nnf Knnf) C4-25) .
0 _0 IG(f) 12ý x(f) + K(f)

and for whize noise and no dispersion

,I (f) = (4-26)
() K it(f)) + N

Sxx o 1

XX
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<e > f 0 df = Nh (0). - (4-27)0 k _ (xf)+N° o0o

These last four formulas fully characterize the optimeu time-

invariant filters and corresponding time-averaged estimation-errors

for the specific illustrative problems that we will consider in the

L last section (6) of this chapter.

5. Optimum Time-Varying Filters for

tUCyclostationary Processes

a) Introduction. In this section we present a number of general

methods of solution for optimam time-varying noncausal linear filters

for cyclostationary processes. In contrast to the optimum time-invariant

filters presented in the previous section, these filters are not constrained

to be time-invariant and, in fact, minimize the mean-squared estimation-

i* error for every value of time thereby taking full account of the cyclic
character of the cyclostationary processes. As claimed in the introductory

{ section, these optimum per: :dically time-varying linear filters result in

lower mean-squared estimation-errors, as will be demonstrated via a

number of specific solutions in the following section.

V In order to characterize the relative performance of optimum

time-invariant and optimum time-varying filters with a single number,

we choose as a performance index I the ratio of the minimum time-averaged

mean-squared estimation-error <C0 ?' > resulting from the optimum time-

invariant filter, to the time-averaged value of the minimum mean-squarcd

estimation-error <e 0 > resulting from the optimum time-varying filter:

0I
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:1r
I A o 1,(4-28)

<e- > 1

0

where <e >is given by Eqs. (4-23,25,27), and where <e > is from Eq. (4-13),
0 J0

<e >= k, f/ [k(t,t) - fh (t,s)k (s,t)dsldt (4-29) F
0 T_T/2 _O 0 yx

where h is the impulse-response function of the optimum time-varying L

filter and is the solution of the integral equation (Eq. (4-12)): L

f h(t,s)k yy(s,,r)ds = kyx T,t) AF t,T • (_c:,w). (4-30) L

If we consider the special class of problems where the channel is

a time-invariant dispersion with impulse-response function g and additive inde-

r7 pendent WSS noise with autocorrelation function knn, then the above condition -

for optimality becomes

f h (•:,s)[k (sT) + k (s,i)]ds k t) dt,' -0• o [zz(S nns zx (T't t"

-here,

k (t,T) = f g(t,o)kx(OT)do. (4-31)zx xx

For the case of white noise and no dispersion, the formula for the

time-averaged minimum error reduces to

SN T/ 2

< > /f h (t,t)dt (4-32)
0 T 0

where the optimum imnpulse-respcnse function is now the solution of the

integral equat ion
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f ho(t,s)k.xx(S,T)ds. + N0h (t,t) = k xx(t,t) * t,r £ (-r , ) (4-33)

For this class of additive-white-noise problems, our performance index

takes the form

0 (0)
I = . (4-34)

T/2
1- f h (t,t)dt

In the remaining subsections, we present four different methods for

solution of the integral equation Eq. (4-30) (and its special forms

Eqs. (4-31,33)) which implicitly specifies the optimum filter and

minimum estimation-error. Although these solutions are not as simple to

obtain as were the solutions for optimum time-invariant filters, they

are still of significant practical and theoretical value for the same

reasons cited in Section 3:

(1) The explicit solution gives useful insight into the nature of

optimum time-varying filters.

(2) A delayed version of the optimum noncausal filter can often be

closely approximated by a causal filter.

(3) The mean-squared estimation-error which results from the optimum

noncausal filter is a uselul performance bound, since no causal filter

can possibly perform better.

b) Solutions based on translation series representations. We begin

by considering the general LDS estimation problem where the channel is

arbitrary but where the transmitted and received signals are jointly

T-CS. If we assume, for generality, that y is composed of a colored
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a, ' I. [

component w and an uncorrelated white component with PSD X, thbn the

optimality con~fition ofEq. (4-30) becomes a E
.f h0(t,s)kw(ST~ds + A0 (t,r) = kxW(t,T) f t,T C (--,),(4-35)

S I

But this integral equation is of the same foR as Eq. (3-39) of Section

2f in Chapter III-(ex'cept for the juxtaposition of the kernels ho, k*).
0 ww

Hence, Theorem (3-2) gives Vs thp following solution:

THEOREM(4-S); The, impulse-response function for tho optimum filter for "

the general LMS estimation problem where the transmitted and received
I I ,,,,i

signals x, y are jointly T-CS and where y is composed of a c6lored component U

w and an uftcorrelated white component with PSD X has the representation:
I ! a

'Hpq * (t- aT) *(s -mT)(4-36)
0 n,m=-o pq=l n-m p q :

where {rp} is any CON set on L2 [O,T] and'where the sequence of mat'rices

(ir I is given' by the inverse z-transform I L
1/2f':•H T H(f);e2 rTdf (4-37)

4-1/2T

where the matrix of functions H('f) is given by iII
11(f) = (f)[D(f) + XI] (4-38)

where the matrices D; G are the z-transforms,

D rf=) e-j2 21rI'f

ra (4-39)

G(f) _G 
e-j21rrf

r
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. and where the elements of the sequences of matrices D , G are given by

T

Dpq

Dqr = f k (t+rT,r)**(t), (T)dtd'r

G = f k (t+rT,T)ý*(t)ý (T)dtdT, (4-40)41r 0

and are the correlation matrices corresponding to the translation series

L representations (TSR's) for x and w:

D DPq = EldnpdmqI
Sn-m np mq

G Pq = E{a d*m (4-41)
* n-rn np mq

where

x (t) = I Ia np p t-nT)

Sw(t) = I I d np p (t-nT). (4-42)

I n p

Furthermore, the time-averaged value of the minimum mean-squared

estimation-error is given by the formula:

1/2T
<e 0 > f trace[A(f) - G(f)[D(f) + XI]- 1 G*'(f)]df (4-43)

-1/2T

where A(f) is the correlation matrix corresponding to the TSR for x

(defined as in Eq. (4-39,40) for w).

Proof: The validity of the solution Eq. (4-36) to the integral equation

Eq. (4-35) follows directly from Theroem (3-2) of Chapter III. The formula

Eq. (4-43) can be derived from Eq. (4-29) as follows: Substituting

Eq. (4-36) for ho and the TSR's for k and k into Eq. (4-29) yields:
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< > fpq (t-nT)O*(tsmT)0C>m ~ ~ n-m pq

- n,m p,q

Gp p, 1Pq1 0p, (t-n'T)Oq (s-m'T)ds]dt

n',m' p9,q

[APP Hap pq Gmpq]
p m q L

1/2T
- f trace[A(f) - t!(f)G*'(f)]df.

-1/2T

Now, substituting Eq. (4-38) for H(f) yields Eq. (4-43).

QED

As discussed in Section 2g of Chapter III, a linear system whose

th
impulse-response function has an M order TSR, as does h in this

theorem (with M = •), can be realized with the structure shown in

Figure (3-9) and reproduced here as Figure (4-4a). Although the number

(M) of paths in this optimum filter for CS processes will in general be

infinite, there are a number of interesting cases where M is finite, as

discussed in Sec. 2f of Chapter III and as illustrated in the last

section of this chapter. Furthermore, since any CS process in HCS(T)(--,-)

can be artitbarily closely approximated in norm by a finite order TSR

(as discussed in Section 2a of Chapter III), then the performance of a

truncated (to N paths) optimum filter can be made arbitrarily close to

the optimum performance by choosing the finite number (M) of paths

large enough.
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An interesting interpretation of this optimum filter follows

directly from the recognition that the bank of input filters and switches

comprises the process-resolution operation (as discussed in Sec. 2c of

Chapter III), and that the bank of output filters and the summing device

comprise the process-reconstruction operation, and finally that the transfer

function H(f) (Eq. (4-38)) for the matrix of sampled-data filters which is

:4 inserted between the resolution and reconstruction systems is a matrix

version of the transfer function H0 (f) (Eq. (4-14)) for the optimum time-

Li invariant filter for stationary processes, in that G(f) in Eq. (4-38) is

the cross-correlation matrix for the representors of x, y--paralleling

K xy(f) of Eq. (4-14)--and [D(f) + AI] in Eq. (4-38) is the autocorrelation
xy

matrix for the representors ot y--paralleling K (f) = K (f) + X of
~ Lyy ww

Eq. (4-14). Thus, we see that the optimum thre-varying filter of

STheorem (4-5) for CS processes resolves the received CS process y into a

multiplicity of jointly WSS sequences, subjects these to an optimum time-

invariant sampled-data filter, then reconstructs from these filtered

sequences, the optimally filtered continuous-time estimate i of the

transmitted signal x. Hence, by employing TSR's we convert the problem

of LMS estimation of a scalar CS process to the problem of LMS estimation

of a vector of jointly WSS sequences. This could have been done in a

non-rigorous suboptimum way simply by periodically sampling the received

signal, and solving for the LIS estimates of the corresponding samples

of the transmitted signal.

The optimum filter derived in Theorem (4-5) can also be realized

with the alternate structure shown in Fig. (4-4b) where the filter-
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sampler combinations at the input have been replaced with multiplier-

integrators, and where the impulse-driven pulse-generating filters at

the output have been replaced with pulse-amplitude modulators, and

where the feedback-delay device (shown in Fig. (3-3)), which has an

effect equivalent to periodically dumping the integrator, has been

included in the sampled data filter by modifying its transfer function

to include the factor 1/Cl + e-J2wfT

As discussed in Chapter III, some CS signals which are used in

communication systems admit finite order TSR's, but with basis functions

which are not necessarily duration limited to [0,T], nor even orthogonal.

With this in mind, we present the following extension of Theorem (4-5):

THEOREM(4-6): If the transmitted signal x, and the colored component w

of the received signal y admit N1th order TSR's

M 0
x(t) = I I a n (t-nT)

p=l n=-o np p

M
w(t) = I d npp (t-nT) V t E (-.,o) (4-44)

p=l n

where the functions in the sets (p ), (0 } are arbitrary, then the.1 ~pp

optimum impulse-response function admits the representation

M

h (t,T)= p (t-nT)0*(T-mT) (4-45)
0 p,q=l n,m=-_ q

whcre {(pq } are defined as in Eq. (4-37), where
n-m

11(f) G(f)[E(f)D(f) + .l]-I (4-46)
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where G, D are defined as in Eqs. (4-39), (4-41), and where E is the

z-transform of the matrix of sequences

n -r f = e(t-nT)Oq (t-nT)dt. (4-47)

Furthermore, tne time-averaged value of the minimum mean-squared

estimation-error is given by the formula:IL l/2T

<e 0> =f /2Ttrace[B(f)A(f)-B(f)G(f) [E(f)D(f)+Z]-IfE(f)G*' (f)]df (4-48)o -1/2T

where B is the z-transform of the matrix of sequences

rBpq = f *, (t-nT)q (t-mT)dt. (4-49)n-m _CO p

The proof of this theorem follows directly that of Theorems (3-2), (4-5).

The optimum filter given in this theorem has the same structure as

that given in the previous theorem and shown in Fig. (4-4), except that

the input filters have transfer functions {O*} rather than {P*}.
~ Lp p

Another interesting solution for a common formulation of the LMS

.i estimation problem is given in the following theorem:

THEOREM(4-7): Consider the class of LMS estimation problems where the

channel consists of a time-invariant dispersion with transfer function G,

and additive WSS noise with PSD K n, and where the transmitted signal x
th

is a T-CS process which admits an Mth order TSR:

00 M
x~t) I Ia npp(t-nT)

n=-op p1 np p
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For this class of problems, the impulse-response function for the D
optimum time-varying filter admits the Mth order TSR: ii

G M

h (t,T) = I 11pq (t-nT)bq(T-mT) (4-50)
0 m,n=-o p,q=l n-rnp q 4

where 0 is the inverse Fourier transform of the function

O q(f) = G(f)ý q(f)/K nn(f) (4-51)

and where the sequence of M x M matrices {H ) is given by the inverse--r

z-transform U
1 /2T

H =T f H(f)eJ 2 •rTfdf
-r -1/2T L

where the M x M matrix of functions lt(f) is given by

H(f) = A(f)[C(f)A(f) + ]-i (4-52)

where the matrices A(f), C(f) are the z-transforms

A(f) = I-A e-j 21r'rf
_ I.

C(f) = I C e-j2 Tr'l'f

r

and where the sequences of matriccs A , C are given by the formulas--'F -- r

A pq = Epa a*}r (n+r)p nq
0p0 J Gcf)12ýp*(f)ý rir)

42 1)__df (4-53)

S-00 K (f)
nnl

lurthermore, the time-averaged value of the minimum estimation-error

is given I)y the formula
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1/2T

<e >= f trace[B(f)A(f)[C(f)A(f) + I]-]df (4-54)

1-/2T

where.B is defined in Eq. (4-49).

Proof: Substituting Eq. (4-50) for h and the TSR of Eq. (3-2) for kxx

into the condition for optimality-Eq. (4-31) yields:

AqMq Hpp f 6*,(o-nT)¢, (a-m'T)da-
O*p (t-nT)[ m'-mn-n' P p'

n,m p,q=l n',m' p,q' -

L*(T-mT) + Hq[0*1kn](r-mT) - A~ q*(.-mT)] = 0-V t,T (eooo)

Liq n-rn q nn n-m q

where

YOCt) - [4q g](t) = 0f q (t-r)g(T)dT.

But since knn then the above optimality condition can be written as
q nM q . HP H I Cp lq' Aq 'q + H pq _Apq ]

n,m pq=l n',m' p',q' n-n n -m m -m n-r n-rn

. (t'nT)O*(¶-mT) = 0 V-t,,
p q

and will be satisfied if the composite coefficients of the time-functions

are zero for every value of n,m,p,q. This condition on the coefficients

can be written (using the new variables i m' - m, j = n - n', k = n - m) as:

CO I~ppP qI q~q + q - q 0
SHPP'Pq Aq' Hq A Vkq ~p

i,j=-j p',q'=l - k-i-ji k k

where

cpq f O((orT)• (a)do. (4-55)

r _ p q
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But this quadruple sum is simply the composition of a discrete

convolution with another discrete convolution with a finite matrix L
product with another finite matrix product. Recognizing this, and LI
taking z-transforms, yields the equivalent condition:

H(f)C(f)A(f) + H(f) - A(f) -_0 f e - LI
which is satisfied by the formula for H given in the theorem. Furthermore

using Parseval's relation in Eq. (4-55) yields Eq. (4-53) for the

sequence of matrices Cpq. Now, the formula of Eq. (4-54) for the minimum U
r

estimation-error can be obtained from the general formula of Eq. (4-29) Ui

by substituting the TSR's for kxx, h0 , kxy into the latter to obtain:

xy.<e > = q • BP[A Pq - f p p fqt pP 'qAq 1

p,q=l r=-c -r r nm p'q' n-i m

This number is the trace of the zeroth element in the sequence of matrices

{B}O{A) - {II}&{C}&{A1)lI

where 9 denotes the composition of discrete convolution and matrix 1
product. Taking the z-transform yields

B(f) [A(f) - H(f)C(f)A(f)] = lt(f)I/(f).

lience, <e > is the trace of the zeroth element of the inverse z-transform

of this matrix of functions, and is given by Eq. (4-54).

QED

The optimum filter given in this theorem has the same structure as

that Fhown in Fig. (4-4), except that the input filters have transfer
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functions given by

O*(f) =G*(f)*(f)/K (f)
p p nfl

*rather than P, and are therefore matched filters for dispersed versions
p

of the pulses {} in colored noise [2].{L p
If we consider the class of optimum filtering problems where the

channel consists of nothing more than additive white noise with PSD No,

then its easily shown that the formulas of Theorems (4-5), (4-6), (4-7)

for the optimum impulse-response function all reduce to the simplified

y j versions:

M
h•(t,T) I I H Hpq 0 (t-nT)C*(T-mT) (4-56)p,q=l n,m=-- n-mip

where the z-transforms of the matrix of sequences {Hpq} is given by thei r
formula

H(f) = Aff)[E(f)A(f) + N oil-i (4-57)

where E is the z-transform of the matrix of sequences

=Epq f 0*(t-rT)ý (t)dt = f 0*(f) M(f)eJ 2 TrTfdf.
r p q _ q

Also, the formulas for the time-averaged value of the minimum estimation-

error given in the previous three theorems reduce to the formula

1/2T
<e > N f trace[E(f)A(f){[E(f)A(f) + N I]-l]df. (4-58)
0 -l/2T 0
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Note the parallel to the formulas for the optimum time-invariant filter

transfer function H° and for the resultant minimum value of the time-

averaged estimation-error <e >:

I I (f)A (f) * (f)
H o(f) = 1 (4-59)

N (f))A(f~*(f) L
0 , (f)A(f)4,*(f)

0 0 > = - df N 0 (0). (4-60a)o o N Y- _..]
0 T _ -1

These latter two formulas result from substituting Eq. (3-7) for

into the general formulas of Eqs. (4-26), (4-27).

Furthermore, if the { p(t-nT)} are doubly orthogonal, in the sense

that

COL
f e (t-nT)ý*(t-mT)dt = 6  6CO p qnm pq'

as in Theorem (4-5), then E(f) = J1, and the formula of Eq. (4-57) reduces

to

H(f) = A(f)[A(f) + N 01]-1 (4-61a)

_ L
and 11(f) is the transfer function for a matrix sampled-data Weiner filter

for jointly WSS sequences in additive white noise. For this case the

formula for the minimum error also reduces to

1/21' _t

<e > = N f trace[A(f)[A(f)+N I]-l]df = N trace[Ho]. (4-62a)
S 0 -1/2T 0- _0 [

As discussed in Subsection 2f of Chapter III, there are various CS

signals of interest whose TSR correlation matrices are diagonal. For LI
e\:wiple, if the autocorrelation ftnction satisfies the condition

71
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k (t+rT,r) -a k (t,r), V tr C [O0T],

then from Theorem (3-3) of Chapter III the-correlation matrix A(f) for

the Karhunen-Loeve TSR is diagonal:

A (f) = APP6 a e-j 2 wrTf
pq 0 pq r r

When A(f) is diagonal, the transfer function for the matrix of szapl'.:-data

filters given by Eq. (4-61a) reduces to

6 A (f)
H pq (f) = p (4-61b)

-~0 pp(f

and is diagonal. Hence, the optimum filter structures shown in Figs.

(4-4a), (4-4b) consist of a parallel connection of independent paths,

as shown in Fig. (4-4c).

geAlso, when A(f) is diagonal the formulas for minimum estimation-error

given by Eqs. (4-60a), (4-62a) reduce to

N 0 1 A (f)I1' (f) 12
< 0>= T P=l PP N df (4-60b)

1i -• No + A (f) (f)12

q-1

M 1/27. NoA (f)i"<e > =I f 0-- dr. (4-62b)

o p=l -!/ýT N + A (f)

10 pp

Furthermore, as discussed in Subsection 2f of Chapter III, there

Sare various CS signals of interest whose TSR correlation matrices are not

only diagonal, but also constant. If we consider estimating one uf these

signals in additive white noise, then the solutions provided by the

preceding three theorems take the particularly simple form:
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M ARP
h (t, T) = )0 p (t-nT)#;(T-nT)

n=-- p=l N + APP

I1M N APP

ce C Ap 1 p 0 (4-63)
p=i N +

0 0

where M is infinite in Theorem (4-5), and may be finite in Theorems

(4-6), (4-7).

Noow if MI is infinite, then <e > can be difficult to evaluate to S~0

within a known accuracy. With this in view, we present the following

discrete version of Theorem (4-3): L

THEORBI(4-8): The time-averaged value of the minimum mean-squared 1

estimation-error which results from the optimum time-varying filter for

a CS signal in additive white noise is contained w-hin the ±!.S dB

. • bounds:

=••B/2 < <e > < B; B : (0) - (ApP ) (4-64)
0 xx Tp 0 0

p=l

provided that the correlation matrix of the TSR (with doubly orthonormal

basis functions) for the signal is a constant diagonal matrix whose

diagonal elements dominate the noise PSD for all indices less than some

integer Q, and vice-versa for all indices greater than Q:

> N, p <Q

oI-< No P > Q'-A~PI 2 P~Q

The proof of this theorem is simply a discrete version of that given

for Theorem (4-3). Recall that Theorem ,3-3) of Chapter III gives the

conditions under which the correl.,tion matrix A(f) for a CS process will

be constant and diagonal, and that several examples are given. We will

discuss these and other examples in th,, last section of this chapter.
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c) Solutions based on the harmonic series representation.

i) Estimation of cyclostationary processes on an infinite interval.

As broupht out in Section 3 of Chapter III, the harmonic series

representation (HSR) for CS processes results directly from a specific

TSR. Hence, the solution method of Theorem (4-5) must have a counterpart

which employs the HSR. The solution resulting from this counterpart is

stated in the following theorem:

THEOREM(4-9): The impulse-response function for the optimum time-varying

filter for the general LMS estimation problem where the transmitted and

received signals x,y are jointly T-CS and where y is composed of a

colored component w and an uncorrelated white component with PSD X has

the representation:

h (t,T) = J hpq (t-T)ej 2 (ptqT)/T V (-oc) (4-65)
p,q=-

where the matrix of Fourier transforms of the elements {h pq()}

is given by

SG(f)[D(f)+.NI]-l V f E [-1/2T,1/2T]
If(f) = (4-66)

-e0 of t [-1/2T,l/2T]

where D, G are the Fourier transforms of the bandlimited (to [-l/2T,l/2T])

matrices k, g whose elements are given by

d pq(T) = ff v(-r-a)v(y)kww(a,y)e-j21(pa-qy)/Tdady

-00

gpq(T) = ff v(T-a)v(y)kxw(ay)e-J2•(pa-qy)/Wdady
g pq 00 x

v(t) A sin(nt/T) (4-67)
vt irt
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U I

and are the correlation matricesicorresponding to thd HSR's, for x.,w:

.; .1

d (t-s) = E{d (t)d*(s)1
Pq p q

a IP

where .. at

p e

w(t) = d (t)ej 217pt/T. (4-68)

Furthermore, the time-averaged value of the minimum mean-squared

estimation-error is ,given.by the forpiula: , I
1/2T

<eo 0 > f trace[Kf)'- G(f)[D(f)+AIf]lG* (f)]df (4-69)
l/2T .

where K(f) is the Fourier transform of the HSR correlatiop matrix for

x (defined as in Eq. '(4-67) for w),.
0* I

The proof of this theorem followsi directly from Theore•i (4-5),

as indicated in Section 3e of Chapter III,, by using Eq. (3-88) which

relates the' correlation matrices for TSR's and HSR's.

As discussed in'Section 3e of Chapter III, a linear system whose

imvulse-response function has an Mth order HSR, as does h° in this,
¢0

theorem (with M = C) can be realized with the structure shown in Fig. (3-12)

and reproduded here as Fig. :(4-5). Although the ,number)(221l)1 of paths

in this optimum filter will, in general, be infinite there is an

interesting class of. pro6lems for which it is finite. As discussed in

Subsections 3c,d,e of Chapter III, T-dS processes which are bandlimited

to any interval, say [-B,'B] admit 1ISR's of order M B<B., Hence, the

R

II
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IiI
optimum filters for such processes will be finite HSR structures.

The HSR structure for optimum filters has the same interpretation

as the TSR structure of Fig. (4-4): The filter decomposes the received

Lisignal into jointly WSS bandlimited processes, subjects these to a

matrix of optimum time-invariant filters, and then reconstructs from

these filtered WSS processes the LMS estimate of the CS transmitted

I . signal x. Thus, by employing the HSR, we convert the problem of LMS

estimation of a scalar CS process into the problem of INS estimation of

SUa vector of jointly WSS (bandlimited) processes.

As already discussed in Section 3e of Chapter III, the matrix of

time-invariant filters employed in the HSR structure have transfer

U functions Hpq (f) which are bandlimited to [-I/2T,1/2T], and can therefore

be exactly realized with a matrix of sampled-data filters, with transfer

[K functions

tip(f) = [ H (f-n/T),

pq n=-. pq

I flanked at the input and output, respectively, by T-periodic impulse

samplers, and ideal low-pass filters (transfer functions V(f)).

There is, of course, an equivalent realization of this HSR structure

Swhich employs real sinusoidal multiplier functions rather than complex

exponentials (see, for example, Section 2c of Chapter III).

Paralleling the results obtained using TSR's, we have the following

simplification of the formulas in Theorem (4-8): If the channel consists

of nothing more than additive white noise with PSD N0 , then the matrix

solution of Eq. (4-66) reduces to
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H(f) = K(f)[K(f) + N I]-, (4-70)

which is the transfer function for a matrix Weiner filter for jointly

WSS processes in additive white noise. Also, the formula of Eq. (4-69)

for the time-averaged minimum mean-squared estimation-error reduces to

1/2T
<e > = N f trace[K(f)[K(f)+N I]-]df

1-/2T - -

= N h (0). (4-71)0o pp

and parallels the formula (from Eq. (4-27)) for the minimum time-averaged

error resulting from the optimum time-invariant filter;

go K pp(f-pIT)[
<e > = N f P df N h (0). (4-72)-•N K (f-q/T) O00

0 q qq

(where we have used Eq. (3-89) for ý .)

It is interesting to note that the optimum time-invariant filter

depends only on the autocorrelations of the HSR representors (the diagonal

elements of the correlation matrix), and is independent of the cross-

correlations. Thus, the difference between the optimum time-varying and

time-invariant filters can be interpreted in terms of the fact the latter

ignores the crosscorrelations, whereas the former takes full account of

them.

ii) Estimation of periodic processes on a finite interval. The HSR is

I particularly convenient for representation of periodic processes; i.e.

those whose realizations are periodic waveforms. Thus the solution of

the LMS estimation problem for these processes is particularly simple

when the 1HSR is employed. Although periodic processes are cyclostationary
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processes, we can not simply apply the results of Theorem (4-9) to'obtain

a LMS estimate for a periodic process since the original equation for

optimality (Eq. (4-12)), to which this theorem gives a solution, is not

well defined for periodic processes; i.e., the integral does not exist

(does not converge). This is a result of the fact that the optimum filter

L is not BIBO stable, and is not therefore a permissable filter (see

L Section 2 of this chapter). The difficulty can also be relegated to the

fact that the problem of estimation of a periodic process on an infinite

Li~ interval is a singular estimation problem and will result in zero mean-

squared estimation-error.

Now, a more meaningful problem is that of noncausal UIS estimation

of a periodic process on a finite interval. This estimation problem (the

fixed-interval smoothing problem) is non-singular and is characterized

I by the optimality condition:

Tf
h(ta)k (t,o)do k (Tt) 'V t,T e [TVT (4-73)

. T. yy yx if

which follows directly from Eq. (4-7) with Tm = Trm = ITi-Tfi < C.

For this problem, we have the following general solution:

THEOREM(4-10): The impulse-response function for the optimum fixed-

interval smoother for a periodic process in additive white noise with

PSD N has the representation:
0

h (t,T) = • h pj 2 r(pt-qT)/T e 't,£ [-NT/2,NT/21
p,q

where the matrix of harmonic coefficients is given by

II = K[NTK + N 1j- 1  (4-74)

where the elements of the matrix K are given by
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1 f t-W-27ztq)Tkpq = ;f2 kxx t•eJ•Ctq)Ttd-, (4-75)
T/2

so that K is the correlation matrix for the HSR representors:

k =E{apa*1
pq p q

where x(t) = a ej27rpt/T

pP

(see Sec. 3d of Chapter III). Furthermore, the time-averaged value of

the minimum mean-squared estimation-error is given by the formula

N N
<e 0> = -2 trace[K[K + - Ij-1]. (4-76)

TNT NT

The proof of this theorem can be obtained simply by substituting
the representations for h and k into the reduced version of Eq. (4-73):

0 XX'

NT/2f 2h(t'a)k (Ta)do + N h(t,T) = k (t,T), Aý t,T e [-NT/2,NT/2].

-N/ x0 XX

For comparison, we present the following general solution for the [.

optimum time-invariant fixed-interval smoother:

THEOREM(4-11): The impulse-response function for the optimum time-invariant

fixed-interval smoother for a periodic process in additive white noise

with PSD N has the representation:

(t- h ej21q~t-)/TV- t,T C [-NT/2,NT/2]
0q q

qq

where

k
h =(4-77)

q NTk + N-q 0
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and where {kq I are the Fourier series coefficients for the periodic

autocorrelation function for the stationarized version of the periodic

process, and are identical to the diagonal elements of the HSR

L_ correlation matrix:

L_ k =kq qq

L Furthermore, the minimum value of the time-averaged estimation error

is given by the formula:

S0

<e > - 1 (4-78)
NT q k- + No/NT-q o

The proof of this theorem, like that for the preceding theorem,

Scan be obtained simply by substituting Eq. (4-77) for io, and the Fourier

series representation for ý into the optimality condition:

NT/ 2~
fNh/2h (t-c) (r-)da+N 0h (t-T) = i (t-T) V t,'r e [-NT/2,NT/2]. (4-79)

S-NT/2 0 X 0X

Note that as the length of the observation interval approaches

infinity, the estimation errors of Theorems (4-10), (4-11) both approach

zero, as expected from the preliminary discussion.

The optimum smoothers of Theorems (4-10), (4-11) can be realized

with the structure shown in Fig. (4-6), where M is the highest non-zero

harmonic in the signal being smoothed. The numbers {G } at the outputsn

of the matrix of attenuators are the LMS linear estimates of the Fourier

series coefficients of the periodic signal x. For the time-invariant

smoother of Theorem (4-11), the matrix of attenuators is diagonal (hpp h)

so that the overall structure becomes a parallel connection of 2M+l paths.
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From this it can 1e seen that the difference between the optimum time-

varying and time-invariant smoothers is that the latter ignores the L

crosscorrelation between various harmonics.

d) Solutions based on the Fourier series representation for

correlation functions. We begin with a theorem: L
THEOREM(4-12): The impulse-response function for the optimum filter L
for the general LMS estimation problem where the transmitted and received

signals x, y are jointly T-CS and where y is composed of a colored component Li
w and an uncorrelated white component with PSD X has the representation:

h (t,T) = [ h (t-T)eJn T V- t,T C (-(o) (4-80)
0 nln=-o o

where the Fourier transforms {H n} of the time-invariant impulse-response

function {hn) are the solutions of the linear algebraic equations:

I C nm(f-(n+m)/2T)II (f-m/2T) + All n(f-n/2T) = G n(f-n/2T) V n (4-81)

where the {C n} and {G are the Fourier transforms of the coefficient-

functions for the FSR's for the correlation functions kww, kxw
(t) 1 T/2 .I

C n ()= 7- f kww (S+t/2,s-t/24)e- 2n/ds
= 1T/2 2n/d

(t) = T/2 k(S+t/2,s-t/2)e-J /T (4-82)
n T _-T/2 x

(see Section 4a of Chapter III).

The proof of this theorem is outlined in terms of Eqs. (3-117.- (3-121)

in Section 4c of Chapter III. 11

There does not appear to be any way to obtain a general closed-form

solution to this infinite set of equations; however, if the functions
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{C 1, {G } satisfy certain bandlimiting constraints, then solutions
n n

are possible, as discussed in Section 4c of Chapter III. For example:

THEOREM(4-13): The impulse-response functions for the optimum filter

for a T-CS process x in additive white noise with PSD N has the

representation:

(tr) h (t-T)eJ' (tr/ (4-83)
L on=-

where the Fourier transforms {H n} of the functions {h n are given by
Ln n

the formulas:

C (fn )[1 - H0(f+n/2T)]H (f) =n
N , C0 (f-n/T)0 o
R(f)H 0 (f) = N ~)(4-84)

N + R(f)

w where Icn (f-n/2T) 12

R(f) =C 0(f) - , (4-85)
O N° + Co(f-n/T)

S{provided that

C n (f) =o, jfjl 1/4T, k n # O, (4-86)

.1 where {C } are the Fourier transforms of the FSR coefficient functions:n
1 T/2 j wn /

c(t) = k- T (s+t/2,s-t/ 2 )eJ2 nS/Tds. (4-87)n T -T/2 XX

Furthermore, the time-averaged value of the minimum mean-squared estimation-

error is given by the formula:

C N R(f)
<e >= f - df. (4-88)

o N + R(f)
0
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Proof: Using the condition of Eq. (4-86) in Eq. (4-81) of Theorem (4-12),

where G n Cn A N 0  yields the equations:

m0 C-m(f-m/2T)Hm(f-m/2T) + (C0 (f)+No)H0(f) = C0 (f), (4-89)

(C (f-n/T)+N )H (f-n/2T) + C (f-n/2T)H0(f) = C (f-n/2T) V n 0 0. (4-90)
0 o n n 0n L

Now, Eqs. (4-84), (4-85) follow directly from Eqs. (4-89), (4-90). U
Furthermore, the formula of Eq. (4-88) results from substituting

Eqs. (4-83), (4-84) into the formula of Eq. (4-32). Li
QED

Note that if k has an Mth order FSR satisfying the constraint of Li
Eq. (4-86), then so too does the solution h provided by Theorem (4-13).

As discussed in Section 4c of Chapter III, a linear system whose impulse-

response function has an Mth order FSR can be realized with the (2M+l)-path

structure shown in Fig. (3-14a), or with the simplified structure shown in

Fig. (3-14b) and reproduced here as Fig. (4-7), where the impulse- Ii
response functions for the path filters with transfer functions Gnl, Gn2

are related to the original coefficient-functions as follows:

gnl (t) 2Re{h n(t))cos(Trnt/T) - 21m{h(n4(t)sin()nt/T)-9

gn2(t) -2Re{h n(t))sin(int/T) - 21m{h n(t))cos(nnt/T). (4-91)

Note that, as mentioned in subsection 4c of Chapter III, the

solution method of Theorem (4-13) can be extended to the case where the

Fourier coefficient functions satisfy the less restrictive constraint

C n(f) = 0, Ifl > M/4T, V- n $ 0.
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However, the method then requires inversion of a (2M-l) x (2M-1) matrix

Lof functions, and does not appeai, to offer any advantage over the

solution method based on the HSR, which is considerably less cumbersome.

e) Solutions based on inverse-operator and feedback-system methods.

i) Introduction. The basic integral equation derived in the second

i, section of this chapter:

Li C

_0f h (t,s)k yy(s,T)ds = kxy (t,T) V- t,T C (-oo), (4-92), yy

which implicitly specifies the impulse-response function for the

optimum filter, can be interpreted as an operator equation. Specifically,

if we denote the linear integral transformations (operators) with

4 kernels k yy.,.) h .,), k xy(,) as K y, H, Kxy, then the operator

counterpart of this integral equation can be written as

H -K =K . (4-93)
-o -yy -xy

This equation has the formal solution

H =K K -1, (4-94)-o -xy -yy

where K-1 is the inverse operator corresponding to K
-yy -yy

K *K-1 = I, (4-95)

--yy -yy

where I is the identity operator.

Now, if we denote the kernel for this inverse operator as k'l(• .),
yy

then the impulse-response function for the optimum filter is formally
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given by I

h (t, T) = f k xy(t,a)k1 (a,T)d. (4-96)

Furth.rmore, this optimum filter can be realized, as shown in Fig. (4-8), U
as the cascade connection of the two linear systems which are characterized

by the operators K 1 y, KI, and have impulse-response functions
-yy -xy

k1l(*,*), k C,)
yy xy LI

There are a number of interesting LMS estimation problems for T-CS

processes where the kernels of the operators K , K can be decomposed
-y'-xy

in such a manner that the system diagram of Fig. (4-8) can be manipulated

into the feedback configuration shown in Fig. (4-9), where Ko is a known U

time-invariant system, p(') is a known T-periodic function, and KI, K

are known periodically (T) time-varying systems. Furthermore, there is a

non-tiivial set of circumstances under which the impulse-response function

h for this system can be obtained explicitly:

Namely,

K Cf) = 0, Ilfl- M/2TI > N/2T
0

Pn = 0, 1 nl- Nil < N, -n # 0 (4-97)

where N, NI are nonnegative integers, KO(.) is the transfer function for

K , and {p } are the Fourier coefficients for p(.).

For NI > 1, K is a bandpass filter, and for NI = 0, K is a lowpass-0 -0

filter. For N = 1, M1 = 0, p(.) is unconstrained, and for N > 1, M = 0,

p(.) contains only frequency-components wiiich are two high to be passed

by the filter K and for N = 1, NI 1, p(.) contains frequency components

k-
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which art too low to be passed by Ko. Now, when the conditions of

SjEq. (4-97) are satisfied, the system of Fig. (4-9) is unaffected by

the replacement of the periodic multiplier in the feedback path with a

constant attenuator whose attenuation is po0 the average value of p(-).

Thus, the entire feedback loop is time-invariant, and has transfer

function K3 given by

~(1/Po) Xo(f)

K3 (f) = K f , (4-98)
(1/po) + Ko(f)

K "so that the impulse-response function for the entire system of Fig. (4-9) is

ho(t,T) = ff k2 (ttr)k (a,s)kl(S,T)dsda, (4-99)

where k is the inverse Fourier transform of K

We refer to this method of solving for optimum time-varying filters

as the inverse-operator-feedback-system (IOFS) method. We now present

four classes of practical optimum-filtering problems for which the

general solution of Eqs. (4-98), (4-99) is valid. In the next section,

we illustrate these classes of problems with specific problems.

ii) Examples:

1) WSS signal subjected to time-invariant dispersion, periodic

attenuation, and additive WSS white noise: For the class of optimum-

filtering problems where a WSS signal is transmitted through a channel

consisting of a time-invariant dispersion with impulse-response function

g, T-periodic attenuation q, and additive WSS white noise with PSD N0,

the correlation fo'nctions in Eq. (4-92) take the form:
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:1 -

k (ts) = kf xx',r-y)g(t-o)g(s-y)dodyq(t)q(s) * No6(t-s)

k ..(ts) = f kx(t-o)g(s-o)doq(s), (4-100)1:17-"

so that the systems, with these functions as impulse responses, take the

forms sbfnn ir 'ig. (4-10). Now, using elewentary algebra for linear

Systems [36), it is easily shown that the systee of Fig. (4-8) is

e--iv2lent_ to that of Fig. (4-9), w-here the impulse-response functions

are gi-en by'

= q(t'6(t-s)

2)= r{./G(f•, (4-101)

wh imere p(t) = o2tt. ow :f ti cha•ne!l 4i.spersion or the signal

P" ar-- ba-dp..ss, and the veriodic fluctual ions ii attenuation are

reia-iie*!y !-au-frequeacy, or if the dispe'iPon or PSD are low-pass, and

the fl;ctiait ;:-s i.:. atter.uation are relatiiely high-frequency, (so that

the c.dit.-.iogs. *F E&s. (4-9?) ave •;isf-ed;. then the general solutions

_ eqs. "-95), :4-99), -or th t otimu fiIlter, .are valid.

. CS As signr.-- in addiii;ve WSS white rwise; For the class of optimum-

•-:ering problem !here z ;- sJgrsal, tvi-_ i, - product of a

deri,-air.;'stic T-periodiz functicai q. ai ; WSS p••-ecess .. 3 trarsmitted

thrvdgh a c-tanrn: c.;-is:.ting on!y of 36Oi-ive NS.' wi ,.it- 2ise -,ith PSD

"* ;he correlation functions in Eq !4-9" "-.,,e Zorzis•

IL., q(t)k (t-0s)q.) ÷ .

yy .Zo
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so that the systems, with these functions as impulse-responses, take

the forms shown in Fig. (4-11). Using the algebra for linear syste's,

it is easily shown that the system of Fig. (4-8) is equivalent to that

in Fig. (4-9), where the impulse-response functions are given by

kI(t,s) = q(t)6(t-s)

k 0 (T) = kzz(T)/N0

k2 (t,s) = q(t)6(t-s), (4-103)

and where p(t) = q2 (t).

Now if the "baseband" signal z is oypass and the periodic

fluctuations in the "carrier" are relatively high-frequency, or if the

process z is bandpass, and the multiplicative factor q is relatively

slow-va•ying (so that the conditions of Eq. (4-97) are satisfied), then

the general solution of Eqs. (4-98), (4-99) for the optimum filter, are

valid.

(5) WSS signal in additive CS white noise: For the class of optimum-

filtering problems where a WSS signal is transmitted through a channel

consisting of only additive CS white noise with autocorrelation function

q2 (r)6(t-s), the correlation functions in Eq. (4-92) take the forms:

k (t,s) = k .it-s) + q 2 (t)6(t-s)yXX

k xyt,s) = k XX(t-s), (4-104)

so that the systems, with these functions as impulse responses, take the

forms shown in Fig. (4-12). Using the algebra of linear systems, it is
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L
0 gx

avid where p(t) =q-2E-t).

Nw eily theneriodic the systeof in jhe $ inslit of thei a ddit i

or ae hgh-reqenc copard t th lopas sinal(so that Eq. (4-97)'

is Ftig. (-9), thren the genle-ralesplonse ,tEqs. (4-98), (4-99), for the

l(tperiodically time-scaled WSS process)in

addiiveWSSwhie nose:Fortheclass of opiimum-filtering problems

whee aCS ignl, hic isobtained from a .WSS process z via a periodic

o= t q(t) (as discussed in Sect"ion 2c o

ChaterII) istrasmitedthrou~gh a channel conisisting only of additive

WSSwhie nisewit PS N ,the correlation functions in Eq. (4-92)

k2(t,) = k(t -g(s)) +4l-s)

k he (t's) = (g(t)-g(s)). (4-106)

:y z
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so that the systems, with these functions as impulse responses, take

•1 the forms shown in Fig. (4-13). Using the algebra of linear systems,

it is easily shown that the system of Fig. (4-8) is equivalent to

S-that of Fig. (4-9), where the impulse-response functions are given by

kl(t,s) = S(t-g(s))

k (T) = k zz ()/No

k (t,.s) = 6(g(t)-s) (4-107)

and where p(t) = 1/g'(t), where the prime indicates differentiation,.

Now if the periodic fluctuations in the time-scale transformation

(i.e., in 1/(l+q'(t))) are either low-frequency compared LO theI bandpass IVSS process z, cr are high-frequency compared to the lowpass

* IVSS process z (so that Eq. (4-97) is satisfied), then the geueral

* :solution of Eqs. (4-89), (4-99) are valid.I
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I 6. Examples of Optimum Filters and Improvements in Performance

a) Introduction. In this section we present a number of specific Ll

examples of solutions for optimum filters for cyclostationary processes,

and of evaluations of the performance index I (defined in Eq. (4-28)),

which indicates the degree of improvement in the performance of the

optimum time-varying filter over that of the optimum time-invariant

filter. We classify the examples according to the method of solution L

employed, so that the examples in each of the subsections 6b-6e correspond 1

L
to the methods presented in each of the subsections Sb-Se.

For simplicity, we consider only those estimation problems where L

the channel consists of nothing more than additive white noise with

PSD N (unless otherwise stated.) L

b) Examples employing translation series representations.

i) Frequency-shift-keyed signals. A* a specific example of a synchronous

M-ary signal, we consider the frequency-shift-keyed signal (Model (12)

of Chapter II) which takes the form

x(t) = • w(t-nT)cos(2iia f t), (4-108)n on=-co

where the frequency-factors fa I are statistically independent randomn

variables which take on each of the values in the M-ary alphabet

(1,2,... ,�) with probability /IM, and where w is a sinc-pulse:

w(t) = •• Bt) (4-109)

where the single-sided bandwidth B < f0o and %chere foT is some positive

integer..
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As shown in Secs. 2e, 2f of Chapter II, x admits an order TSR

U with the orthonormal basis functions

W pt) = w(t)cos(27lpfot) (4-110)

and correlation matrix (for the centered process x -m)
Lx

Apq(f) = 1 6 - -- 
(4-111)

6pq . M2

Now, from Theorem (4-6), the optimum (minimum error-variance)28time-

L varying filter for this FSK signal in white noise has impulse-response

-I function given by Eq. (4-56)., and has the realization shown in Fig. (4-4),

where the transfer function for the matrix of sampled-data filters is

given by Eq. (4-61a). The structure of this optimum filter has an

interesting interpretation. The bank of input filters are matched to

LI each of the M possible pulses that occur in the signal. The periodically

sampled putputs of these matched filters are passed through a discrete

matrix %Wiener filter, the outputs of which can be shown to be the 12.S

estimates of the a-posteriori probabilities; i.e., the p output at
L. th

time nT is the DIS estimate of the probability that the n synbol

S' pthtransmitted was thaz p letter of the M-ary alphabet, a = p, givenn

that y was received [62]. These probability estimates are used to

weight the pulses which are regenerated at the output of the filter.

See Fig. (4-14).

The time-averaged minimum estimation-error is given by Eq. (4-62a),

and reduces to the expression

28 See the last paragraph at the end of section 2 of this chapter for a
discussion of the relationship between minimuu-mean-squared-error and
ainimum-error-variance.
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N I
"<e > = traceo A +N IfI

0 T 1-6-0 0

N(.-l)
- T (4-112) L

TMN + 1

(using Theorem (3-4)). L
The optimum time-invariant filter has transfer function given by L

Eq. (4-59), and the resultant minimum time-averaged estimation-error

is given by Eq. (4-60a):
N L:

1<e CO 0 o p (f)1 2

7- 0 P df, (4-113) L
P=1  N + 1 Apo (f)12

o To0p
where we have used the fact that p(fYcq(f) = I' (f)126

p q p pq

Now, since the {0 L.are rectangular with height ii2VB and double-sided
p

bandwidth 2B, then

S~(M- 1) /2BTI
<e 0> M BIN 0 (4-114)o o ~(.-_)1)/2 BT144,,.No

0

Using an effective noise-bandwidth of 2BW. to obtain a noise variance of

2B14N0 , and using the time-averaged signal-variance (1.-1)/MTr we can

express the performance index of E'q. (4-28) in terms of the signal-to-
L

noise ratio (of variances) o:

A <e > 1 + p2B'f?.I/(M-l)(-1)

<e >
01 (4-115)

<e > I +÷p

The lowest practical bandwidth of the envelope w corresponds to

transmitting pulses at the Nyquist rate, and is B = l/T. This results in

a minimum improvement factor (vaitie of performance index) of 6 dF for

binary FSK (M4 = 2) in low noise. As the bandwidth is increased in order

to decrease intcrymbol interference, the low noise improvement factor
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increases in direct proportion, which means that the time-varying

r U filter becomes more attractive, relative to the time-invariant filter,

as the quality of transmission increases.

It is interesting to note that for signal-to-noise ratios as low

L' as unity., there can still be a substantial improvement:

i = 1/2 + BTN/ (M-1) for P = 1. (4-116)

ii) Time-division-multiplexed PAl signals. An interesting (and perhaps

more practical) alternative to the time-division-multiplexing schemes

TDW, TDM 2 discussed in Chapter II (Models (3), (5)) is the TDM of PAM!I

L scheme, which was briefly mentioned in Sec. 2f of Chapter III. For this

"scheme, we consider M mutually uncorrelated WSS component signals {xp]

with autocorrelation functions {k I and PSD's {K 1 which are bandlimited
p p

to the interval [-I/2T,I/2T), The signals are periodically sampled every

T seconds to amplitude-modulate orthonormal pulses {6(t-pT/M);p - 1,2,...

Sso that the composite TDM-PAM signal takes tVe form

£ x(t) = x ()x (nT)¢(t-pT/fl-nT). (4-117)
L_ p=l n=-w

Clearly x admits an M order TSR, and since the {x I are uncorrelated,
p

then the correlation matrix is diagonal with on-diagonal elements

-p(f) T 2T ! kp(nT)e-j2znTf I • K Kf~m/T). (4-118)

n M
New, from Theorem (4-6), the optimum time-varying filter for this

TDM signal in v:hite noise has impulse-response function given by Eq. (.1-56),

and has the realization shr.km in Fig. (4-4), where the transfer function

for the diagonal matrix of sampled-data filters is given by Eq. (4-61b).

L . ... . ..
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The structure of this optimum filter has an interesting interpretation.

-Since the matrix of sampled-data filters H is diagonal, then the overall

structure is simply the parallel connection of M independent paths as

shown in Fig. (4-4c). The pth path consists of a discrete Wiener filter,
th

for the p sequence of amplitudes, flanked at the input and output,

respectively, by a pulse-amplitude demodulator and a pulse-amplitude

modulator. Hence, the optimum time-varying filter demodulates the signal,

optimally filters it at "baseband", and then remodulates it. See Fig. (4-15).

The time-averaged minimum estimation-error is given by Eq. (4-62b)

which reduces to the expression

M 1/2T K (f)
< )> = N 0 f - P dr. (4-119)

0 p=l -1/2T MNo + K 4 [f)
The optimum time-invariant filter has transfer function given by

Eq. (4-59), and the resultant minimum time-averaged error is given by

Eq. (4-60b). If we assume that the pulse * is the interpolating sinc-

pulse whose Fourier transform is ideal low-pass with double-sided

bandwidth M/T and height vT/M then Eq. (4-60b) reduces to

1/2T p K Ci)(f
<e 0= N f dr. (4-120)

MN + K f)
0q

Now, if the M processes {x I are- identical, then the T"D! processp

degenerates to a WSS process, and I = 1: there is no improvement.

However, if the individual processes are different, there can be substantial

improvement. For example, if the processes have disjoint PSD's, then

Eq. ¢4-120) reduces to
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M l1/2T K (f)
<e > Nf df, (4-121)

p=l -1/2T MN +

and there is a low-noise improvement factor of I = M. Similarly, if

all but one (say the q th) of the MI baseband signals are zero, then the

formulas of Eqs. (4-119), (4-120) for estimation-error become

Sl/2T K (f)
<e 0> =N f q df (4-122)

Tl/2T MN + K (f)
oq

1/2T Kq(f) df, (4-123)
<e > =NO 1 - I

1 -I/2T MN 0+ K (f)

ILand there is again a low-noise improvement factor of I = M.

iii) Frequency-division-multiplexed signals. A multiplexing scheme

which 4s in some ways a frequency-time dual of TDM schemds is the

frequency-division-multiplexing (FDM) scheme discussed in Chapter II

(Model (4)). fie consider here FDM signals of the form

M

x(t) x (t)cos(w t + 2,,pt/T (4-124)
p=l p

"where w is an integer-multiple of 21./T, and T is an integer-multiple of

- of T0 , and Where the M component signals {x p) with correlation functions

{k pJ are assumed WSS, uncorrelated, and bandlimited to "[-1/2T,1/2T].

L From the sampling theorem (Theorem (2-2)), the comprnent signals admit

the representations

x (t) = xCnT) sinw Ct-nT) /T (4-125)
.n ;(t-nT)/T

so that the composite FDIM signal admits the M th order TSR

, x(t) = 0712 2 x (nT)O (t-nT), (4-126)
""I=l n---• P p
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where the basis functions are given by

p(t) = VT cos(wot + 2wpt/T 0 sin(w)iT) (4-127)
(irtT)

These basis functions are doubly orthonormal, and the TSR correlation Ui

matrix A(f) is diagonal with on-diagonal elements given by I

T-j2irnTf 1 K
A(f) knT)e = I2 K (f+m/T). (4-128)

pp n P 2 m .

The duality with the TDM-PAM scheme is now evident since the

correlation matrices are identical (except for a scale factor), and the L.

basis functions are time-frequency duals (if the pulse-shape used in the

TOM scheme is the interpolating sinc-pulse) in the sense that the M FD•4

basis functions are frequency-translated sinc-pulses, and the M TIM

basis functions are time-translated sinc-pulses.

Now, from Theorem (4-6), the optimum impulse-response function is

given by Eq. (4-56), and has the realization shown in Fig. (4-4c), where

the transfer functions for the diagonal matrix of sampled-data filters

are given by Eq. (4-61b). As expected, the structure of this optimum

filter parallels that for the Tl).I-'1!4 signal. As shown in Fig. (4-16),

th
it consists of M independent paths. The p path contains an ideal bandpass

th
input filter (which passes only the p component signal x p) folloued by

a periodic sampler, and a discrete Wiener filter, and an ideal bandpass

output filter, which reconstructs a smooth signal from the filtered samples.

The time-averaged minimum estimation-error is given by Eq. (4-62b)

whv'h reduces to
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M 12T K M
<e > = N -0 Pf df. (4-129)

p=l -1/2T 2N + K (f)

The optimum time-invariant filter has transfer function given by

Eq. (4-59), and the resultant minimum estimation-error is given by

Eq. (4-60b) which reduces to'

lu ] /2T K (f)

<e > = N I f K f df. (4-130)p=l -1/2T 2N + .- Kp(f)

From these last two formulas, it is clear that for low-noise conditions,U the optimumi time-varying filter provides a 3 dB improvement over the

f[ optimum time-invariant filter, regardless of the -specific shapes or

differences amongst the it PSD's, and regardless of the number (M) of

5iU signals multiplexed; i.e., there is an independent 3 dB improvement for

_.every component signal Xp.I eiWe will consider the FDM s:.,jnal again in the next section w. re we

employ the IISR to gain some additional insight into the structure of the
optimum filter.

iv) Pulse-amplitude modulated signals. The P.AA signal (Model (2) of

U' Chapter II),

x(t) = I • a•(t-nT) (4-131)
(0) n=-

is one of the simplest, and yet one of the richest examples of a CS

process. Every PAM process admits a first order TSR--in fact, as shown

in Sec. 2 of Chapter III, all T-CS processes (in IfCS) can be represented

in terms of T-CS P'AM processes with full duty-cycle rectangular pulses,

and such PAI processes have coxn Lant means -nd variances. Furthermore,

as shown in Sec. 3 of Chap:cr 111, all T-CS processes can also be

represented in terms of hSS PAN pro.esses with bandlinited (to[-1/2T,1/2T])
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I

pulses. We now, use these two types of PAM processes (those where

either the pulse * or its Fourier transform 0 are rectangular) to j
demonstrate three interesting results concerning optimum filtering

of CS processes. I
Before proceeding, however, we state here the simplified versions

of Eqs. (4-58), (4-60a) for estimation-errors of arbitrary PAN signals

in additive white noise:

1/2T 1 O'(f) 2A(f)
<e > = N T 1()Afdf

1-/2T N + I 10(f)12A(f) [
T I(f)I2A(f) I

<e >=N JdfL
-. N + I,(f)12A(f)

0.

where

A(f)= 1 Ean+ma me-j2wnTf

02(0) n

I1(f)12 = ( I$(f~n/T)12  (4-132)

n

(1) Intuition can sometimes be misleading. In particular, one might j
intuitively expect that a cyclostationary process with constant mean

and variance would be "almost" stationary, and that no substantial

improvement would result from using periodic filters for estimation 7i

of such processes. As a counterexample, consider PAM with full duty- -J

S1st
cycle unit-energy rectangular pulses. This process admits a I order

TSR, and has constant mean and variance. If the PSD K(f) of the WSS

process, whosc samples [a I are the pulst-amplitudes, is bandlimited

tc [-*'/2T,1/2TJ, then from Eq. (4-132), we obtain the estimation-errors:
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<e >= 1/2T N K(f)
j<e >= f 0 df

0 -1/2T N + K(f)

A. 1/2T N K(f)[sinw(Tf-n)/w(Tf-n)] 2

<e > = f df (4-133)
n=- -1/2T N + K(f)[sinw(Tf-n)/n(Tf-n)] 2

Now, for low noise, <e > = N /T, and for any number J there is an N0 0 0

small enough to guarantee that <e > >JN /T. For example, an improvement
factor I > J = 10 results with a signal-to-noise ratio of 02T/N° = 10,

where we have chosen K(f) = o2T, f e [-1/2T,1/2T].

(2) Another situation where intuition might lead one astray is in the

L case of high noise. One might expect that signal-to-noise ratios as low

as unity would degrade time-varying filter performance to the point whereimprovement over that of the optimum time-invariant filter would be

negligible. As a counterexample, we have the results for CSK. In addition,

we again consider PAM but this time with unit-energy ideal lowpass pulses

with bandwidth M/T. From Eq. (4-132), w" nSI) K(f) constant for

f e [-l/2T,l/2T1, these equations reduce
S22 0202

sn s n<e > - , <e> = , (4-134)0 02 + a 2 /M .'o 02 + 02
s n s n

where G2 is the time-averaged signal variance, and 02 = N M/T is the
s n o

noise variance. Notice that the effective noise variance for the time-

varying filter is reduced by the factor 1/M. If we fix the signal-to-

ncise ratio at unity (a2 = 02), then the improvement factor is I = (M+I)/2.

If M4 is substantially greater than unity (M = I means transmission at the

Nyquist rate and renders the AI'A1 signal WSS), then the time-varying filter

will provide substanti3l improvemcnt in per .ormance over that of the

time-intariant filter for this high noise situation.
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(3) In contrast to the two above results, the following result is very

much in agreement with intuition. By considering PAM with less than

full duty-cycle rectangular pulses, we find that improvement increases

as the signal becomes "more" cyclostationary. Specifically, consider a

unit-energy rectangular pulse of width T/M, and uncorrelated pulse-

amplitudes, so that the Fourier transform of the pulse is given by

O(f) = rT,, sin(wfT/M)

(7rfT/NI)

and the one-dimensional correlation matrix is given by

A(f) mT02s

where a2 is the time-averaged signal variance. Now, using Eq. " '32)
s

we obtain the estimation-errors:

Oa2N IT/,
<e 0 > = s +N/T (4-135)

0 0S=NNoO~ l4, f)12
<e > I -- df

.~ N0 + o2jV(f)j2

m NO 0210c f)12

> f - s - dL
S-W N + o2 -T/

0 s

02 N /.I.
= 0 (4-136)

02/% + N /T
s 0

Hence, for low noise, we have an improvement factor of I > M. Clearly,

as M is increased, the rectangular pulses become narrower so that the

cyclostat ionarity is enhanced, and improvement is increased.
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v), PAM signals through random channels. We now consider the transmission

I• of PAM signals through random channels consisting of either a constant,

but random attenuation. and additive white noise, or of a constant, but

random, delay and add.•tive white noise. We assume that the pulse-

SUtranslates {f(t-nT)) are orthonormal.

(1) Random delay: We assume that the channel consists of a constant,

but random, delay 0 with PDP p0(e), and additive white noise with PSD No,

Sfland we assume that the phase of the received signal has been determined by

a "tra'king receiver" (see Subsection 7b of Chapter II and [40]), We

consider the problem of estimating the transmitted signal x with its

original phase, assuming this phase information to be of some importance.

For this LIS estimation problem, we have the correlation functions

kyy(t,s) kxx (t,s) + N 6(t-s)

= Anm(t-nT)4(s-mT) + N 6(t-s)
n-M 01n ,Iin

k xy(ts) = f kXX(t+Us)p0(c)do

A = n-m T(t-n'r)ý(s-m'r)
U; n ,n

where

S(t) = f 4Ct+o)p 0 (o)dou. (4-137)

By employing the solution method of Theorems (4-5), (4-6), (4-7) we easily

obtain the solution for the impulse-response function for the optimum

filter:

11 (t,t) = II 1(t-nrTWII-mT) (4-138)-0 n-If
•" InI,tnI
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where the z-transform of {Hr I is given by Eq. (4-61). Thus, the only

difference between this optimum filter and that for the case where there

is no random delay in the channel, is that this optimum filter uses the

average pulse T to regenerate the signal rather than using the exact

pulse *. The weighting factors used as amplitudes for the regenerated

signal are the same for both filters. Hence, linear estimators do not

appear to be very useful for obtaining phase infornmtion.

(2) Random attenuation: We assume that the chaunel consists of a

constant, but random, attenuation G and additive white noise with PSD0

N 0o, and we consider the problem of estimating the transmitted signal x.

For this problem, the correlation functions are

k (ts) = • 7 k (ts) + N 6(t-s)
yy 0 xx 0

k (ts) = r kx (ts), (4-139)

so that, from Theorem (4-7), we have the following solution for the

optimum impulse-response function:

h (t,T) = 1 Inn(t- nT)1(T-nTJ (4-140)

where the z-transform of (l. is given by the formula

11(f) rA(f)/4GZ A(f) 4 N

=GO A(f)/(G 0ACf) + N~ff) (4-141)

where

N (f) - - F ')A(f) + No (4-142)
0 00
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From this second expression, we can interpret our solution as the

I Isolution to the problem where the channel attenuation is deterministic

and equal to the mean. attenuation G , and where the additive noise is
0

the sum of the original white noise and the signal weighted by the

variance of the channel attenuation (_o7 - U- 2). This result parallels
that of Maurer and Franks for optimum filtering of WSS signals through

jjrandom channels [63].

Note that these results for PAM signals through.random channels are

valid for arbitrary CS processes if A(f) is interpreted as the correlation

matrix for the TSR of the CS signal.

vi) The video signal. An interesting example of a CS process that results

Li from scanning is the video signal (Model (9) of Chapter II) whose

Karhinen-Loeve TSR is discussed at length in Subsection 2d,2f of Chapter III.

If we ignore the frame-to-friime correlation in the video signal, because

of its relatively low-frequency nature, then the TSR correlation matrix

is diagonal

LA (f) = qX a (4-143)
Pq Pq p (1-a)2 + 4asinO(I'f)

L where {Np } are the eigenvalues, and where the basis function {p iare

I the eigenfunctions (Eq. (3-27)):

tZP' 1 +.2

! cos(if Y t), t) odd
t)= , t c [-T/2,T/2]

sin(f oypt), p even
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where

tan(nfY PT) f/y , p odd (4-144)
oyp p even

In these expressions, a is the line-to-line correlation factor, and

fo is the inverse-time-constant of the exponenti I correlation within

a line.

Now, from Theorem (4-5), the optimum time-varying filter for the

video signal in white noise has impulse-response function given by jj
Eq. (4-S6), (4-61b), and results in an average value for the periodically-

varying minimum estimation-error given by Eq. (4-62b): II
! 1/21' N A (f)

<C > = I I ofo p= 1 -1/21T N 0+ A {I F
o pp.

N oNo 0 P (4-14S)
11 l+Q 1I/2, 'i-a 1T2

p=l [Xp+ N -;-a ] p + No6-]

As a specific example, we consider a square picture format with

500 lines and identical picture correlation along the horizontal and

vertical:

Oa = e-2.f0 /0 (4-146)

where, for typical picture material, 0.7 < a < 0.99. We assume an

effective single-sided bandwidth of: 500/2'r thereby obtaining a ratio T1
Li

of the time-averaged-signal-variance to the noise-variance equal

P T/SOON . (4-147)0
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U
Now, since we are assuming that the receiver bandlimits the signal

SLto the effective bandwidth of 500/2T, then only the first 500 terms in

LOthe Karhunen-Loeve expansion will be significant [2], so that the infinitb

sum in Eq. (4-145) can be replaced with the first 500 terms. Using this

truncated sum, we obtain (from digital-computer evaluation) the plots

of minimum estimation-error vs. signal-to-noise ratio for various values

U of line-to-line correlation a shown in Fig. (4-17). The horizontal lines

U in this figure can be interpreted as the error which results from an ideal

low-pass filter-with cutoff frequency SOO/2T. Relative to this, the

optilaum time-varying filter provides a 10 dB improvement at low signal-

to-noise ratio (p=10 dB) and high line-to-line correlation (a = .98).

As the signal-to-noise ratio increases and the correlation decreases, the

improvement eventually becomes negligible. Furthermore, for all practical

values of signal-to-noise ratio and line-to-line correlation, the improvement

Sover the optimum time-invariant filter (not shown here) is negligible.

This absence of significant improvement can be predicted in advance since

II the constraint of E!q. (0-146) on correlation renders the CS video signal

"almost stationary". This low "degree of cyclostationarity" becomes

obvious with the aid of Figures (1-3), (1-6) of Chapter I. The

autocorrelation function for the video signal is the product of the

functions shown in these two figures, and when I.q. (4-146) is satisfied

with the order-of-magnitude-of-a = 1, then the cyclic variations (along

the lines parallel to the t = s axis) of the blocks in the factor shown

in F:ig. (1-3) are almost totally' attenuated by the narrow fences in the

factor shown in Fig. (1-6). The cyclic character of this CS process will

only he significmnt when the width of these fences becomes comparable



to (or greater than) the width of the blocks; i.e., when f0T and a are

both much less than unity, which signifies a video picture composed of

nothing more than slightly correlated horizontal lines; i.e., a PAM-like

signal with square pulses of one line-width. These results have been

confirmed by digital-computer evaluation of %> and comparison with

<e >, where <e > is given by Eq. (4-60b), with M = SOO.0 0

vii) Time-division-multiplexed signals. Wc consider hers, the TDM1

scheme (Model (3) of Chapter II) for time.-division-multiplexing various

(say M) signals (x p together: L_
x(t) = X(t)wpCt-nT) (4-148)

n=-w p p

where {wp) are the gate functions [1
p I r t C [(p-A)'/M,pT/M] T4

w (t) -(4-149)L

p 0 t V t P

The Karhunen-Loeve TSR for this TDM I signal is discussed at length in

Subsections 2d,2f of Chapter 11!. 1 f we assume that the component

processes fx are uncorrelated and each have autocorrelation functions
P)

which satisfy the condition

k (t+rT-'r) = ark p(t-T) k* tr [0,'/M] (4-150)

then, as shown in Subsection 2f, the TSR correlation matrix is diagonal,

and if P = 6 then, from a simple extension of Theorem (4-5) and

Fq. (4-63), the optimum filter has imptlIse-response function

hi (t,T) V
0pl(1=1 n=-' N tAI)q0 (1
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V
and results in minimum estimation-error

I M N AP

<e0 > = 7 1 0 2 q(4-152)
p=l q=l N +II)0 q

where (ýP; q l,2,...l and (AP; p = 1,2,...) are the eigenfunctions and
q q'

eigenvalues for the kernel k C.,.) on the interval (O,T/4].
P

Now, if we choose triangular autocorrelation functions (k ) vith

widths {2Tp} then, as shown in Subsection 2d, the eigenfunctions and

eiganvalues are given by the formulas

= cos(WPt)

qq

X 2k (O)/C (,qP)2 (4-153)

4 pq4

where
NI 2MT 1]/2

L tan (wPT/2M) -.I'- - -- P[(2M/wPT)2 + 1] (4-154)
q wPT T q

q

provided that T/23 < " < 'rl-l/M).-- p -

Also, using a simple extension of Eq. (4-60b) results in the

following formula for the minimum estimation-error resulting from the

optimum time-invariant filter:

7F 0o 1 1 ¢ (f) 1aXP

<0 1% >q- 
q

<e> 0 fq q - df. (4-155)

p=l q=l q q

Eivaluation of the performance index I for this TDhMI signal requires

numerical evaluation of Itqs. (4-152)-(4-155), and has not been carried

out. However, judging from the TIM-of-PAIM results of example ii), it
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is expected that significant low-noise improvements will result if the

individual variances and/or correlation-widths of the component Lj
processes {xp}I differ significantly.

c) Examples employing the harmonic series representation.

i) Frequency-division-multiplexed signals. It was shown in the third

example in the previous subsection that low-noise improvements of 3 dB

can be obtained if optimum time-varying filters, rather than optimum

time-invariant filters, are used for FDM signals. This result can be fl
rederived using the HiSR instead of the TSR previously used. Hlowever,

we will employ the HSR here to study only the structure of the optimum Fl
4 time-varying filter.

As shown in Section 3d of Chapter III, the FMI signal

x(t) = x (t)cos(W0 t + 2rpt/T) (4-156) 14

w0= N2v/1'L

admits an H|SR with correlation matrix

KM 11)l IqI =r N
K f) M (4-157)
pq0 otherwise

Thus, from Theorem (4-9), the impulse-response function for the optimum l
time-varying filter for the FDMN signal in additive white noise is given

by Eq. '4-65), where the matrix of transfer functions 11(f) is given by

1.q. (4-70), which reduces to the formuila

2I, Ipl j Ilc r + N
K (f) + 2N

11 (f) r o (4-158)
pq

0 otherwise
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as shown in Section 3e of Chapter III. This optimum filter has the

igenera realizat'ion show in Fig. (4-5)., But due to the fact that the

S ~matrix 11 displays the srmmetrk:,

the structure of the filter can be reduced to that shown in Fig. (4-18),

by combining paths. This s~tructure has an obvious interpretation.

The. bank of input modulators demultiplex the FDM signal into its

component signals, which hre then optimally filtertd at baseband'. The

S', 'filtered signals-,are' then remultipleked together by the output bank of

Imodulutors. This is the' sam6 sequence of operations performed by thle

jL. optimun time-varling filter for the,TDM'-PAM signal, and emphasizes the

duality.referred to in the last subsection.

ii) Amplitude modulated signals: Amplitude modulation is oneiof the

S f .most frequently used s'ignal formats for communication.' In fact, the

I ,' I�M signal considered in 'the previous example is nothihg more thlan the

sum 3f M AN signals. Hence, the .esults for FPID with M = 1 are valid

f9r AM s:ignals. That is, for the AM' ,;ignal (Model (1) of Chapter II)

x(t) = xo(t)cos(2nt/T), (4-159)
0

where the PSD of x is, bandlimit~d 'Co [-1/2T,l/2T], the optimum time-

varying filter has the structure of a single path of the Ni-path'filter

for FDM shown in Fig. (4-18), and provides a 3 dlB improvem'ent in perforl

mnance over that of the optimumit'ime-invariant filter. Paralleling the

operatioils performed by the' optimum filter,,; for fl)M and TULM-PAM, this

opt imtnt t ire- var'ying filter demodul ates the AM . igna L,, optimally
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filters it at baseband, and then remodulates the filtered signaL

iii) Sinusoid with random amplitude and phase. As an example of the
general results obtained in Section Sc for LMS smoothing of random

periodic signals in noise, we consider here the random sinusoid L11

x(t) = asin(2nt/T) + bccs(2zt/T), (4-160) iJ
where a, b are zero-mean random variables with variances o2 02 and

a' b
crosscovariance v2 . This process admits a first order HSR withab

correlation matrix elements 1-i
K.I =K =2/4 0-/4 + j0 2

a- bi a

K_1  K =a2/4 02/4 i
Ko 0±1 _+0 =K 0 0 = 0. (4-161)

Now, from Theorem (4-10) the optimum time-varying smoother for

this signal in additive white noise has impulse-response function given

by Eq. (4-74), and results in the time.-averaged minimum estimation-error lj
given by Eq. (4-76), which reduces to

<e > (2No/NT) -- A +4B/-TA + 2B + 4No0/NT

where

A N'' (.2o2 - 4
N a b ab)

0 (4-162)

B a2 + o .2
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From Theorem (4-11), the optimum time-invariant smoother has

Simpulse response function given by Eq. (4-77), and results in the

estimation error given by Eq. (4-78), which reduces to

<0>= (2No/NT) B (4-163)
0o B+4,No/NT

From these last two formulas, it is clear that for low-noise conditions,

L• the performance index becomes

SA + 2B
1 A+BI=A +----Bf

and is a maximum of 3 dB when A =O. gut A 0 iff aba °2

iff a and b are proportional iff the phase of the random sinusoid is

SL deterministic. This result is exactly what one would expect: The time-

varying filter outperforms the time-invariant filter by the greatest

~ •margin when the sinusoid displays its highest degree of cyclostationarity;

i.e., when its phase is completely known.

d) Examples _?mploying the Fourier series representatton.

i) Amplitude-modulated signals. in the previous two subsections we

employed the TSIR and IISR to derive the structure of the optimum time--

varying filter for AM signals, and to show that the performance index is

a ,aaximain of 3 dB for low-noise conditions. These results can also be

derived using the FSR as briefly outlined here: The autocorrelation

function for the AM signal

x(t) = X (t)cos(2nt/'T)

where x° is bandlillited to [- /4T,/1"i'J admi ts a second order FSR with

coefficient functio'ns



C If) =1 K (f+l/T)0 4 o 4-1/o

C (f) - C(f) = 0

1 (of 4-164)
C2 (f) C_2(f) - K" (f(

where Ko is the PSD for x.

Now, from Theorem (4-13), the optimum time-varying filter admits

the second order FSR of Eqs. (4-83)-(4-85). Substituting Eq. (4-164)

into these formulas yields formulas for the transfer functions for the

time-invariant filters in the optimum time-varyig filter structure of

Fig. (3-14a). With these formulas, this structure can be

reduced to the simple demodulator-filter-modulator structure identified

in example ii) of the last subsection.

Also, this optimum time-varying filter results in the minimum

estimation-error given by Eq. (4-88) of Theorem (4-13). Substitution

of Eq. C1-164) into this fortar.la ),ields the following expected formula:

1/2T N 0K 0(f')
<Co0 0o d .(4-165)

0

Note that the above result is valid as Iong as x i5 bandlimited0

to 1-l/2T,l/21'], but the solution menthod of Theore ('4-13) is only valid

for x bandlimited to [-i/4T,l/4TJ.

ii) Bandpass PA1. Consider the following bandpass PAM signal

x~t) M /f a n(t-n'l'),
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where

*(t) = �l/2T cos(w t) sin(wt/4T), (4-166)0 (ut/4T)

L where w is an integer-multiple of 2w/T. Now, if we consider the (an)

to be the sample values {xo(nT)) of a process which is bandlimited to

L [-l/4T,1/4T], then Eq. (4-166) can be reexpressed, using the sampling

theorem (Theorem (2-2)), as

x(t) = 2xo(t)cos(w 0t)

and is therefore equivalent to the AMI signal of the previous example.

SHence, the optimum filter and estimation-error derived there are valid

here. However, the most meaningful filter structure results from using

L the TSR $this structure consists of one path of the M-path structure of

IjFigure (4-16)) rather than the FSR (or the IISR). In fact, the solution

obtained using the TSR is valid even if the an are not the sample values

Jof a process which is baildlimited.

iii) Improvement for general PAN. In subsection 6b, we presented the

Ii general formulas of Eq. (4-132) for estimation-errors for arbitrary

PANh signals in additive white noise. lie will now reexpross these formulas

in terms of FSR coefficient functions in order to gain insight into the

relationship between improved performance and the FSR coefficient functions.

Substituting the TSR of lq. (3-2) for the autocorrelation function

thfor the PAN\ process into the formula of Eq. (3-101) for the p FSR

coefficient function yields the formula

S(t) A (t-rT
Ir
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where

e(t) . f *(t+'rf,(t)dt.

Thus, the Fourier transform C of c takes the form

C (f) = )4-(f+p/2T)¢*C-p/2T). (4-167)

Now, from this formula, we obtain the relation

;T A(f)I$(f+p/T)I2 = C0 (f+p/T) = ICp(f+p/T)I 2/C0 (f) . (4-168)

Substituting this into the formulas of Eq. (4-132) yields the new formulas

<L 0 > 1/2T NC 0(f+p/'') df
p -1/2T N + J (f)C0 (f+p/T)

o p

1/2T1 NoC0 (f+p/T)Io = f -df
p 1/21' NO+ CO (f+p/T)

ICq (f+q/T)1 2

-f (4-169)
q CO(f)CO(f+p/T)

Now, from these formulas, it is clear that for every value of the

index p for which Jp (f) > 1, %1 f c [-1/.,l2TJ, there is a contribution1 ]

to the overall improvement-in-performaince (or- the optimum time-varying

filter over the optimum time-invariant filter). Furthermore, J (f) is

a measure of the relative magnitudes of the zeroth and pth order

PSR coefficient functions. Thus, we have here

a positive relationship between large higher order PISR coefficient functions,

and large improvements.

e) lExamples employinl tihc i lver.c-operator-feedback - sys tern method.

III silbscc. Se we pjrsCentcd four .la s4.es or optimum fi ltecring problems to

which thy inverse-operdtor-fecdak-system (IOF:S) method of solution
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applies. We now illustrate these with solutions for specific problems.

i) Periodically attenuated WSS signal in WSS noise. Consider the

problem of optimally filtering a bandpass WSS signal with PSD

0x2T/2, lfl - foI <1/2T

KXx(f) = = (4-170)
L0 , otherwise

which has been transmitted through a channel with slowly-varying periodic

attenuation, I + acos(21rt/T),.and additive ,WSS white noise with PSD N
0

This problem belongs to class (1) of Subsec. Se with M = 2Tf >> I
H 0

(assumed to be an integer), and N 1 in Eq. (4-97). Thus, the impulse-

response function for the optimum time-varying filter is, from Eqs. (4-98),

(4-99), (4-101),

1 1 + acos(2nT/T)
"h (t,T) = - k (t-u (4-171)o + a20T(l+a/2)/2 XX

4 and has the realization shomn in Fig. (4-19). Furthermore, the time-averaged

value of the minimum estima.tion-error is, from E"q. (4-29)

<e > 02  - f_/2- Cl+acos21rs/'r)) 2 k2 (t-s)dsdt
0 x N + a,,1(1+a2/2)/2 'r_. r12 -d

0 X
r~CX2

x (4-172)

I + P(I+a2 /2)

where p is the signal-to-noise ratio (p = o2'r/2No).
x 0

The estinmation-error which results from the optimum time-invariant

filter (i.e., that for the problem where the periodic attenuation is

repl-ced with its average value) is, from Eq. (4-27)

x
- - (4-173)

l +0
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Hence, there is a low-noise improvement factor of I = (1+a 2/2),

and I < 3/2, assuming jal < 1.

It is interesting to note that the optimum filter, Fig. (4-19)

decomposes into the cascade connection of a periodic multiplier, which

attempts to equalize the periodic attenuation, and a Weiner filter

which optimally filters the equalized signal. It should be emphasized,

however, that the multiplier is not an equalizer in the true sense, and

the use of an exact equalizer would result in inferior performance.

ii) AM-type CS signal in WSS noise. For the class of optimum-filtering

problems where a CS signal, which is the product of a deterministic T-

periodic signal q and a WSS process z with PSD

02-o If I I l/ 2T
KZZ(f) = 0 , otherwise, (4-174)

is transmitted through a channel with additive WSS white noise with

PSI) N0 (class (2) of Subsection Se), the optimum time-varying filter is

easily shown (using 1Eqs. (4-98), (4-99), (4-103)) to have impulse-response

function

h Ct,'r) = q(t)q(T)k (f .T)/(Qo 2 T + N). (4--175)
0 XX x 0

Thus, the minimum estimation-error is, from Eq. (4-32),

Qo2N /T
<e 0> 2

Z 0
o Qo 2 +No/'T

where

SQ . q I 12 (4-176)

where {qn} are the Fourier coefficients for the T-periodic function q.
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Also, from Eq. (4-*27), the-optimum time-invariant filter results

in the estimation-error

02I1%12No/T
Sn 021ql + No/T

L• (where we have used

V xxCf) = I k 12 K xx(f+n/T).) (4-177)
n

Now, for low-noise conditions, we have

<e 0 > = No0/T.

<e 0> > N 02N/T (4-178)

where N0 << o•In 121 for I1l N, so, that there is a kItv-noise improvement

factor of I > 2N. Hence, there can be significant improvement if the

periodic factor q has high harmonic content as, for example, in a

I rectangular gating function.

One should be careful in interpreting this result. For example, if

q is the rectaigular gating function shown in Fig. (4-20a), then one
n might reason that the optimum time-varying filter obviously performs much

better than the optimum time-invariant filter since the former passes zero

nol-.,e to the output during the majority of every '-second interval (when

the signal x is itself :s.ro), whereas the latter can not behave in such a

time-varying faahion. That this reasoning is invalid is clear when we

consider the new gating function shown in Fig. (4-20b). The improvement

factor is the same for this gating function as it is for that in Fig. (4-20a),

yet the above argument obviously does not apply, since the optimum time-
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varying filter now passes zero noise to the output only during a very

small portion of every T-second interval. Hence, it must be concluded u
that the improvement is simply due to the fact that the time-invariant

filter can not reproduce the sharp features in the gated signal without

passing high-frequency noise, whereas the time-varying filter easily L
reproduces the sharp features by employing a gate of its own.

iii) WSS signal in white CS noise. Consider the class of optimum- |<

filtering problems where a WSS signal with PSD
a 2.r, Ijl< 1/2T

Kxx (f)= X (4-179)
0, otherwise

is transmitted through a channel with additive white CS noise with

autocorrelation function

knn (t,s) = q 2 (t)6(t-s). (4-180) ji

These problems belong to class (3) of Subsection Se. Thus, the impulse-

response function for the optimum time-varying filter is given by

E'qs. (4-98), (4-99), (4-105): 1'
h (t,T) = q' 2 (T) k xx(t-T), (4-181)1 4 Po 2T (4

and the resultant estimation-error is, from Eq. (4-29),

<e 0 >=02 -> j1 f f (1 2 (s)k 2 (t-s)dsdt
0 x r/2-- - XX

2o

(412
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where

L Al T/2
S f qq'2(t)dt.

f -T/2

The estimation-error which results from the optimum time-inw.riant

Iifilter is, from Eq. (4-25),
"02

< <o> = (4-?183)I+ p xT!

where ST/2

"Q f-f q2 (t)dt.

Hence, the low-noise improvement factor is I QP. For example,

if the noise intensity q2 (t).switches back and forth every T/2 seconds

from N to aN (a < 1), then

QP (1 + a)(1 + I/a), (4-184)

and the improvement exceeds 3 dB for a < I/S.

iv) Doppler-shifted Poisson pulse-train. We consider here the problem

of optimally filtering a Doppler-shifted Poisson pulse-train in additive

white noise. Wle model the signal x as an asynchronous PAN signal which

has been subjected to a periodic time-scale transformation t' = t + q(t)

(Model (8) of Chapter II):

x(t) = a(t+q(t)-tn), (4-185)
n=- .1

where the original (before Doppler) pulse-occurrence-times (t ) form an

order sequence distributed according to the Poisson counting process with

constant rate parameter p and where fa I is a zero-mean IWSS sequence.
0
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The PSD for the otigintal process without 'Doppler (q(t) 0) is

K f =00210 (foa 12*(4-186)B

so that if the pulse 0 is a sinc pulse with Fourier transform

IT, jfJ < l/2T (4-187)

0, otherwise,

then this optimum-filtering problem belongs to class (4) of Subsec. Se U
where g(t) - t + q(t). Thus, the impulse-response function for the

optimum time-varying filter is, from Eq. (4-98), (4-99), (4-107): ii
S(tT)= 1 k (g(t)-g(T)), (4-188)

SP a2T2 + N°

where Li
ST1 iI/2T"p -1/2T 1/gl (t)dtIL

1l/2T

and has the realization shown in ,:ig. (4-21). The structure of this I

optimum filter has the interesting configuration consisting of an inverse

time-scale transformation, followed by a time-invariant Weiner filter Li
and a time-scale transformation at the output. Thus, the filter removes

the periodic fluctuations from the CS signal, optimally filters the II
resultant WVSS signal, and then re-inserts the periodic fluctuations. This

sequence of signal processing operations parallels the demodulator-filter-

modulator, and demultiplexor-filter-inultiplexor sequences derived in many

of the previous examples.

The time averaged value of the minimum estimation-error which results

from the optimum time-varying filter is, from Eiq. (41-32),
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'fl No 11/2T

<e 0 f k (g(t)-g(t))dt-
PPa+2 T2 +N -1/ 2T
o a o
P o02T2No/P
0 1'a o (4-189)

,i 02 T2 + N /P
0oa o

v) Time-division-multiplexed signals. In Chapter II we introduced the
information lossless TDM2 scheme (Model (5)) as an alternative to the
information lossy TD scheme ((Model (3)) for time-division-multiplexing

Sivarious signals together. The TD,%12 signal is formed by periodically

Ii time-compressing the component processes into non-overlapping time-slots,

so that when the components are added they will not interfere with each

other (See .:ig. (2-7) of Chapter II). If the M component processes are

statistically independent, then it can be shown that the optimum time-

varying filter for the TDM2 signal in additive white noise is a parallel

connection of M independent filters, the pth of which is the optimum time-

varying filter for the p time-compressed component process. These M

th
filters include periodic gates at their inputs so that the p filter

i ~admits only the pt component signal (in white noise).

th

Now, the impulse-response foiction for the p optimum filter must

satisfy the orthogonality condition

f kx x (T,O)h 1 (t,o)do + No h1) (t,r) kx x (t,T)
- ) pP p p

where

kx x (t,s) = z z (t+q(t+C(M-p)T/M) - s - q(s+(M-p)T/M)*
P P P P

w (t- (p- I )'r/N)w (s- (p- 1 )'l/N~)
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where z is the originat component process from which the time-compressed

version x is obtained, and where w is the periodic gate function

wet)- I 0 < It-nTI < T/M, V n

0, otherwise

and where q is the periodic time-scale compression function shown
U

(as p) in Fig. (2-6) of Chapter I1.

This optimum-filtering problem is a combination of the types of

problems in classes (2) and (4) of Subsection Se, and can therefore

be solved in some cases using the IOFS method of that subsection. hi
f) Summary and ..onclusions. In concluding this chapter on i

optimum filtering of cyclostationary processes, we emphasize the intuitively

pleasing result that optimum time-varying filters for cyclostationary

processes can always be decomposed into a sequence of three signal V
processing operations; 1. The cyclostationary process is decomposed into

one or more (jointly) stationary processes. 2. The stationary component- '9
processcs are passed through time-invariant filters (often Wiener filters).

3. 'hc filtered components are recombined to form the optimally filtered

cyclostationary process. In most of the examples presented, this sequence

of signal processing operations takos one of the following specific

forms: ,lcmodulator-fiter-inodula tar, denultiplexor-filter-multiplexor,

inverse time-scale transformation--filter--time-scale transformation.

For those particular cyclostationary processes which dkcompose into a

single stationary process, the three operations are more accurately

described as: I. Removal of periodic fluctuations. 2. Time-invariant

filtering. 3. Re-insertion of periodic fluctuations.

, I
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In fact, the optimwm tibue-varying filters derived for, FSK, PAM,

TDH-PMI, AN, and FDh1 signals in additivýe white noise all consist oýf

demultiplexor-demodulatoi--time-iivariant Wiener filter--modulato~r-

multiplexor structures.

Now, if the opt•imum filter is to be employed in a recpiver, thon it

will be -followed by a demultiplexor-demodulator. But the same "baseband"

signal can be obtained more directly by si~mply eliminating the third

operation of modulation and multiplexing from the optimum time-varying

L- filter, thereby significantly reducing the complexity of the overall receiver.
.I

'.Hence, the optimum linear receiver is a demultiplexgr-demodulator

followed by a time-invwiriant filter(s). It is interesting to note that

V • this optimum linear receiver emplois the same two types qf operhtions as

the suboptimum receiver which ignores the cyclic character of the

cyclostationa~y signals, but in reverse'order; i.e., the suboptimum receiver

consists of an optimum ,time-invariant filter followed by a'

demultiolexor-demodulator.

W' We state ihis very: practical result here as a theorem to be referred
I 'i ! I

to as the Optimum Linear Receiver Theorem:

TtIEORE(,(4-14): Consider the class of signals which are obtained by

linear moIdulation and multi)lexing of WSS waveforms and data sequences.

If the additive noise to which these signal's are subjected during transmission

ig equivalent 2 9to WSS white noise after demultiplexing.and demodulating,

then the optimum (LNIS) linear receiver consists of the demultiplexor-

demodulator followed by' time-invariant (continhlous- or discrete-time)

Wiener filters.

29 Irk tuis theorem, two no'ises are "equivalent" if, they resul. iin the same
orthogonali, ty condition fox LIS estimiation.



The proof of this theorem is straightfbrward provided that the

linear modulation-multiplexing transformation is invertible--s il
requirement which must be satisfied in practice.

The essence of this theorem is, as discussed above, the fact that

the time-invariant filtering must follow--not precede--the demultiplexing fl
and demodulation.

Anot'her result worth emphasizing is that cyclostationary processes

whose mean and variance are constant can still possess a high degree of

cyclostationarity in the sense that optimum time-varying filtering can 1
yield substantially lower mean-squared error than optimum time-invariant

filtering.

A third interesting result is that optimum time-varying filters

for cyclostationary processes appear to yield the greatest reduction in

mean-squared error (balow that resulting from optimum time-invariant L

filters) when the signai-to-noise ratio is high, but can yield

substantial reductions even at signal-to-noise ratios ;.s low as unity.

I.i

I'

UJ

SIl
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Pigure(4-3) Structure of an M-dimensional optimum fi lter

where (h. are chosen a-priori, ant (a are optimized.
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FigRIM(4-9) Feedback configuration for optimum filter. is a

Iime-invariant linear system, p(,) is a T-periodic function, and

EVE._2 arc T-periodic linear systems.)
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L
L

[j Wiener

j q (t) fi lter

I Figure(4-19) Optimum time-varying, filter for periodically

attenuated signal in additive white noise; q(t) -lacos(2int/T),
2

11(f) " (f)/(No*(l+2--)Kxx(f)).
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inverse Ifiener time-scalingL time-scaling filter

Figure(4-21) Structure of optimum time-varying filter for

periodically time-scaled processes; 11(f) = KZZ(f)/CPoK zz(f)+No).
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C IfA P TE R V .j

SUMMARY

In this final chapter we give a detailed outline and summary

of the contents of Chapters II, III, IV which comprise the body of

this dissertation. It is hoped that this combination index, outline,

and summary will help to offset the length of Chapters II, III, IV.

Following this summary, we suggest several topics for further research.

IjIiL
Ii
LI
Li
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'U
1. Summary of Chapters 11, 111, IV.

a) Chapter II: Transformation, Generation, and Modeling of

Cyclostationary Processes. The second chapter of this dissertation

provides a foundation upon which many of the developments in this

dissertation are based, and upon which subsequent studies dealing with

Ucyclostationary processes can be based. Specifically, Chapter 11 is

devoted to the topics of generation of cyclostationary processes, and

transforrmations on them. CharacterizationSof the various classes of

L transformations outlined below are developed and illustrated with

numerous models for cyclostationary processes. These models, also

listed below, are used throughout this dissertation for illustrating

various theoretical results. Most of these models are of cyclostationary

Stsignals commonly used in communication and control systems.

Section 1 of Chapter II is introductory. In Section 2 we consider
transformations which arc linear. After aeriving general input-output

relations, we individually discuss, ini some detail, the three subclasses9 of linear transformnwtions referred to as time-invariant filters, periodically

time-varying systems, and time-scale transformations. The impulse-response

function and Zadeh's system function are introduced as means for

characterizing linear systems, and are uscd throughout this section.
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In Section 3, we briefly discuss multi-dimensional linear

transformations as a means for characterizing scanning operations. Li
In the fourth section, we introduce a generalization of Wiener's U

Volterra series representation for characterizing input-output relations

for periodic nonlinear systems. L
Section 5 on random linear transformations parallels Section 2 on

deterministic linear transformations. After deriving general input-output tJ

relations in terms of a generalization of Zadeh's system correlation h
function, we individually discuss, in some detail, the three subclassesIU

of random linear transformations referred to as wide-sense stationary L
systems, cyclostat ionary systems, and random time-scale transformations.

Section 6 on random multidimensional linear transformations parallels

Section 3. The major application of the theory in this section is to

random scanning.

The final section on random nonlinear transformations is an
extension of Section 4 on deterministic nonlinear transformations. The

major issue in this section is jittcr. This random disturbance is

characterized in general terms, and shown to preserve cyclostationarity

under fairly liberal conditions.

The specific contents of this chapter are outlined bel1l,:

Section 1: Introduction

Section 2: Linear Transfor-mations.

-a) Timeo-invariant filters.

Theoriem (2-1): I'reseV rtion of' cycloa Litonariti' by time-invariant

I'i i ter,..

I
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Theorem (2-2): Sampling theorem for nonbtationary processes.
Theorem (2-3): Rediction of cyclostationary prccesses to

stationary processes Via bandlimiting filters.

b) Periodically time-varying systems.

Theorem (2-4): Generation of cyclostationary processes from

stationary processes via periodic systems.

Model (1): Amplitude-modulated signals.

Model, (2): Pulse-amplitude-modulated sighals.

Model (3):, Time-division-multiplexed signals.

Model (4): I:requency-division-multiplexed signals.

c) Time-scale transformations.

Theorem (2-5): Generation :of cyclostationary processes from

stationary processes via periodic time-scale

-t ransfto rmat ion,.,.

Model (5): "ime-divi.ioai-mtltiplexe4 signals.

Model (6): Doppler-shifted processes.

Mode 1 (71): :Randoin 'a, simile signal.

Model (8): Asynchrouious PU lI c-diihplitutde-,nodulated signals.,

Section 3: Multi-dimen.sional linear triansformations (scanning)

Ihcorem (2-6): GCIcrIttL;II of one-dimensional cyclostationary

proce,'ses from multi-dimensional stationary

proce~scs via d multi-dimensional periodic systems.

Model Iý1): I he t'deo i gna I (Iline syant 1i1ng)

M\lodel iU): Ith ,.i . l I ' rLdar :,ignal (i-i'Lul r "Cii)III11g).



Section 4: Nonlinear Transformations.

Theorem (2-7): Generat-on of -cyclostationary processes from [3
stationary processes via periodic nonlinear

Volterra systems. I
Model (11): Parametrically amplified signals.

a) Zero-memory nonlinearities.

Theorem (2-8): Generation of cyclostationary processes from L
stationary processes via periodic zero-memory

nonlineari ties.

b) Nonlinear modulation of synchronous pulse-trains.

M1odel (12): Frequcni)y-shi ft-keyed signals (FSK).

Model (13): Phase-shift-keyed signals (PSK).

Model (1,4) : Pulse-width-modulated signals (P)G1).

Model (IS): Pulse-position-modulated signals (PPM).

Model (16): Digital lulse-frcquency-nmodulated signals (DIP) ).

Model (17): Synchronous M-ary signals.

Theorem (2-9): Cyclostationarity of synchronous pulse-trains

nonlinearly modusatcd with stationary sequences.

Section 5: Random linear Transformations.

a) iidc-sense stationa"ry .systemis.

Theorem (2-10) : l'reservation of wide-sense stationarity by

random trans formations.

Model (18): Random periodic signals.

Theorem (2-11): Conversion of deterministic periodic systems into

%1ide-sense-sta Lionary .ysteins via 1)hase-randofinzation.
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Theorem (2-12): Preservation of cyclostationarity by random

b Ccsa nr transformations.

Lb) Cyclostationary systems.

Theorems (2-13): Generation of cyclostationary processes from
(2-14)

stationary processes via random transformations.

Molodel (19): Random periodic attenuation of stationary processes.

' •lModel (20): Mlultiplication of a stationary process by a

j • cyclostationary process.

c) Random time-scale transformations.

i) Phase-randomization.

L Theorem (2-15): Reduction of cyclestationary processes. to

statiorary processes via phase-randomization

Theorem (2-16): Equivalence between phase-randomizing and time-

averaging of random processes.

Theorem (2-17): Preservation of system cyclostationarity by

p)hase- randomi zat ion.

Theorem (2-18): Reduction oF cyclostationary systems to wide-

sense stationary systems via phase-randomization.

Theorem (2-19): Equivalence between phase-randomizing and time-

averaging random systems.

ii) (;eneraliz' i angle modulation.

Theorem (2-20): Preservation of cyclostationarity by a stationary

time- scale trans formation.



Theorem (2-21): Generatton of cyclostationary processes from

periodic signals via stationary time-scale

trans formations.

Model (21): Phase-modulated signals. L

Model (22): Frequency-modulated signals. I

Theorem (2-22): Generation of cyclostationary processes from

PAM time-scale transformations. LI

Mqdel (23): Digital phase-modulated signals.

Model (24): Digital frequency-modulat6d signals. .i

Theorem (2-23): Generation of cyclostationary processes from

stationary processes via cyclostationary time-

scale trasipformations.

Section 6: Random Multi-dimensional Linear Transformations.

Theorem ( 2 -2.1): Generat ion of' one-dimensional cyclostationary

l)prucesies from mul ti-dimensional stationary

Sprocessus via random multi-dimensional

c vostationary systems.

Sect ion 7: Nonl inmear Random Transformations.

a) Zero-memory random nonlinearities.

Theorem (2-25): Guneration of cyclostationary processes from

L.tat ionary processes via zero-memory ianmlvu

cyclos Lationary nonl ineari ties.

Sb) 1itter.

Theorem (2-26): Preservation of cyclostationarity of' random

in'oces .es by random ji tter.
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Theorem (2-27): Preservation of cyclostationarity of random

systems by random jitter.

LIn concluding this summary of Chapter II, we mention two interesting

facts which arise throughout the chapter: 1. There need be no -exact

.' Iperiodicity in, the realizations of a cyclostationary process: Th6

occurrence of pulses in jittered PAM, for example, is not periodic, nor

are the pulse-occurrences in a Poisson pulse-process with periodic rate

Liparameter. The periodicity need only be present in the first and second

order ensemble averages. 2. The mean and variance for a cyclostationary

Ii process can be constant so that the periodicity in these quantities is

degenerate, and still such processes can exhibit strong periodic

L fluctuations in correlation, as exemplified by some time-division-

multiplexed signals, pulse-amplitude-modulated signals, and others.

1)) Chapter 11I: Series Reepresentations for Cyclostationary

Processes (and Their Autocorrelation Functions). The third chapter of

this dissertation is an in-depth treatment of series representations

for cyclo:,tationary (and stationary) processes and their autocorrelation

functions, and other periodic kerne:i; and includes discussions of their

application to the solution of linear ittegral equations with periodic

kernels, and to the v:ealization of periodically time-varying linear

systems, and to the definition of a generalized Fourier transform for

cyc'ostationary processes.

"Thwee t-pes of series rel)resentations are treated:
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1. Translation series representations of the form

x(t) = ( a t-nT) & t c
p=l n=-w

ts r Pqmpt-T
kxxt,s) = A (tAnT)*.(s-mT) 4 ts e (--,L),p,q=l n,m=- q

where {0 p are deterministic basis functions, and ((anp; p = 1,2,..,M)

are jointly stationary random sequences with crosscorrelations

E-{anpaq = APqn-'
np mq n-niIi

T is the period of cyclostationarity).1

If the basis functions arc doubly orthonormcml in the sense that

.hen time , (t..n'l'•t-T)dr-- 6pq6nm,

then the represwitors are given 1)) the formulas: L

an f x(t+nl'r},+(t)dt

A pq,., = ff Lx t,"., ,,1.,• (t)'q)dtdit.D

2. Harmonic series representations of the form: f
to

x(t) ( c j(t)c2 np)t/T V t c (

k xx(ts) "- k x Ct s)e J 2f c's)/T V ts ( C-oS, ),C

where the 6a } are jointly statioinary processes bandlimited to U
[- l/2"r,1/2"r and with crosscorrclatiooins

'I



L E(a (t)a(s) = kpq(t-s).

The representors are given by the formulas:

a pCt) f W(t-T)x(T)e'j2up0/T d

kpq (t-s) ff w(t-')w(s-y)kxx(T,-f)e- P )/Tdxdy

K where

w(t) Asintiit/T)
Ut

Sj S. Fourier series representations (for autocorrelation functions)

of the form

k xx(ts) n Vn(t-s)eJ-l(ts)*I' V ts c

Iwhere the coefficient functions arc defined to be

Ii ir//2 nil -2•t/*'rd
C (T) f k (t+T/2,t-"/2)

These three types of rcpreic;iuations are developed in detail, and

the relationships existing amongst themn are brought to light. The most

general representation is the translation series representation, since

many different translation series representations for a given cyclostationary

process can be obtained by making different choices for the basis

Sfunctions. In fact, a generalization of the Karhunen-Loeve representation

is shown to be one special case of a translation series representation,

and the Sampling Theorem provides another. It should be emphasized

that these translation-series representations are countable discrete

representations, and are valid on the entire real line (-'%.)
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The specific contents of this chapter are outlined below:

Section 1: Introduction

Section 2: Translation Sorivs Representations. u
a) Definition

Theorem (3-1): Existence and identification of translation I)
series representations.

b) Representation in terms of PAM! processes.

c) Implementation of the process-resolution operation. i

d) Examples.

i) Hlarmonic translation series representation. ji
ii) Walsh translation series representation.

iii) Karhunen-Looeve translation series representat-on. Ll

e) Finite-order translation series representations.
U

i) Bandlimitcd cyclostationary processes.L

ii) Degenerate cyclo.tationary processes. V
f) Correlation matrix decomposition and solution of integral equations.

i) Integral Equations.

Theorem (3-2): Explicit solution of general linear integral

equation with periodic kernels.

ii) Correlation matrix decomposition.

(1) Infinite-dimensionul diagonal matrices.

TFheorem (3-3): lExi.stenc ind identification of infinite-

dimensioijal diagonal co arr lat ion matrices for

trwals attiol| seal iterepitsn tat ions.
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(1a) Random video signal.

"I (lb) Time-division-multiplexed signal.

(2) Infinite-dimensional diagonal-plus-finite-rank matrices.

Theorem (3-4): Matrix inversion formula.

(2a) Cyclostationary processes which are the outputs of

periodically time-varying finite-dimensional linear

dynamical systems driven by white noise.

Theorem (3-5): Existence and identification of diagonal-plus-

Ii finite-rank correlation matiuix for translation

series representation.

(2b) Timc-division-multiplexed process with component signals

U which have been generated by finite-dimensional time-invariant

systems.

L (3) Finite-dimensional diagonal and diagonal-plus-rank-l matrices.

(3a) Time-division-multiplexed PAM signals.

(3b) Synchronous M-ary signals.

I g) Implementation of periodically time-varying linear systems.

h) Generalized Fourier transform for cclostationar, processes.

Theorem (3-6): Equivalence between generalized Fourier transforms

under statistical expectation (extension of

li ly 's Theorem).

Section 3: Harmonic Series Representation.

a) Definition.

Theorem (3-7): Existence and identification of harmonic series

representa t ion.

b) Resolution and reconstruction.
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c) Properties of the harmonic series representations.

(1) Stationarity. [I
(2) Phase-randomization.

(3) Bandlimitedness.

(4) Time-invariant filtering.

d) Examples.

(1) Amplitude-modulated signals. j
(2) Frequency-division-mu ltiplexed signals.

(3) Random periodic signals.

e) Solution of integral equations and realization of periodically

Time-varying systems.

Section 4: Fourier Series Representation for Autocorrelation Functions.

a) Definition.

Thcoxem (3-8): Identification of Fourier series coefficient L
functions a.. crosscorrelation functions for

j-ýi n t ly s ta 1. i onary phase-randomized processes.

b) Properties of the Fourier series representation. H
i) I)hase- randomi za Li on and stati.1natrity.

ii) Filtering and bandlimiting. {J
iii) Constraintls o coefi icC nL rUnllctionlS.

C) Soluttioll o inoefralejuations and realization of periodically

tim,-,varylg s ystemos. LI
We conclude this. summa,'y of C:hapter III by pointing out the fact

that the essence of the represe'n taNI ionS presented hlire is that they LI
effect a olecoIpofttlon of i ingle c clostati onary process into a mntiltiplicity

{
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of jointly stationary components. Such representations enable one to

Uf convert many single-variable problems (involving cyclostationary processes)

with periodically varying parameters to multi-variable problems with

constant parameters. This is the case for optimum linear filtering

problems as illustrated in Chapter IV.

Similarly, the autocorrelation-function representations presented

here, when applied to the representation of impulse-response functions,

effect a decomposition of a single periodically time-varying linear

system into a multiplicity of time-invariant filters and periodic moduiatoý'v.

c) Chapter IV: Least-Mean-Squared-Iirror Linear Estimation of

Cyclostationary Processes. In this fourth chapter we consider a

particular application of the theory developed in .l'e !,receding two

chapters. These earlier chapters serve mainly as a theoretical base upon

which various problems dealing with random periodic phenomena can be

forualated and solved. Chapter 1I provides a base for obtaining

mathematical models for physical systems and signals, so that physical

problems can be formulated mathematically, and Chapter III provides a

base for simplifying the mathicmatical models so that analyses can be

simplified, and solutions obtained.

Alithough the application in this fourth chapter is but one of many

possibilities, it has special signitficancc in that it has been the

primary motivation for developing the theory. I:urthermore, the problem

considered in this application is of significant practical (as well as

thcoretical) value in that its solution provides means for impre'v-ing the
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quality of present communication systems (and other signal processing

systems), and a means for evaluating certain performance measures for

newly proposed (as well as .xisting) communication systems, and it leads

to useful insight into the nature of optimum signal processing.
Specifically, the problem considered is that of least-mean-squared- L

error linear estimation of imperfectly observed cyclostationary processes-- L
or, in communications jargon, optimum filtering of noisy distorted

cyclostationary signals. The particular aspects of the optimum filtering U
problem that are investigated in this chapter are the structure and the

performance of optimum linear filters for cyclostationary signals. In L
fact, we prove (and demonstrate with numerous examples) the proposition

that optimum filters for cyclostationary signals are periodically time-

varying systems which can yield significantly improved performance over

optimum filters which are constrained to be time-invariant and which thereby

ignore the cyclic character of the cyclostationary signals. We also show

that optimum linear receivers consist of demultiplexor-demodulators

followed by optimum time-invariant filters--the order of these two

operations being the reverse of that sometimes encountered ini

communication systems. These results are of considerable importance in

view of the great preponderance of -yclostationary signals in communication

systems (as emphasized throughout Chapter I1). Specific examples which are

worked out in detail are included in the outline below:

Section 1: Introduction

Section 2: The Orthogonal ity Condition.
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Theorem (4-1): Lemma for the application of the Projection

fTheorem to the optimum filtering problem.

Theorem (4-2): Statement of the orthogonality condition as

L it applies to the optimum filtering problem.

(1) "Infinite-dimensional" filters.

(2) "Finite-dimensional" filters.

Section 3: Optimum Time-Invariant Filters for Stationary 'Processes.

Theorem (4-3): Bounds on mean-squared estimation-error.

Section 4: Optimui,; Time-Invariant Filters for Cyclostationary Processes.

Theorem (4-4): Equivalence between the optimum filters which

minimize the time-averaged error for cyclostationary

r processes, and those which minimize the constant

error for the phase-randomized versions of the

cyclostationary processes.

Section 5: Optimum Time-Varying Filters for Cyclostationary Processes.

a) Introduction.

b) Solutions based on translation series representations.

Theorem (4-5): General solution for the impulse-response function

for the optimum timne-varying filter for cyclo-

stationary processes, and solution for the

minimum estimation-error.

Theorem (4-6): Extension of T'heorem (4-5).

Theorem (4-7): Special case of Theorems (4-5), (4-6).

Theorem (4-8): Bounds on mean-squared estimation-error.



1] ~340 E
c) Solutions based on- the harmonic series representation.

i) Estimation of cyclostationary processes on an infinite -interval. I

Theorem (4-9): General solution for the impulse-response

function for the optimum time-varying filter

for cyclostationary processes, and solution for

the mi"imum estimation-error.

ii) Estimation of periodic processes on a finite interval.

Theorem (4-10): Solution for the impulse-response function for

the optimum time-varying smoother for periodic L
processes in additive white noise, and solution L

for the mini mum estimation-error.

Theorem (4-11): Counterpart of Theorem (4-10) for the optimum L
tine- invaritat smoother.

d) Solutions based on the Fourier series representation for

correlation Nioctions.

Theorem (4-12): Conversion of integral equation for the impulse-

response function for the optimum time-varying

filter to an infinite set of linear algebraic

equat ions. L

Theorem (.1-13): Specific vase of-' Theorem (4-12) which yields an

explicit solution. L! "

e) Solutions based on inverse-operator and feedback-system methods.
IJ

i) Introduction.

ii) E'xamples.

(1) IWSS signal subjected to time-invariant dispersion and

periodic attenuation, and additive white noise.
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(2) CS AM signal in additive WSS white noise.

L t(3) WSS signal in additive CS white noise.

(4) CS signal (obtained from periodically time-s~aled WSS

i- iprocess) in addi-tipe WSS white noise.

S-ction 6:, ExaMples of Optimum F:ilters and Improvements in Performance.

a) Examples' emp~loy'ing translation series representations.

i) Frequency-shift-keyed signals.! ,

ii) Time-division-multiplexed PM1 signals.

iii) Frequency-division-multiplexed signals.

iv) Pulse-ampli,,tude-modulated signals. ,

v) PAitl signals through random channels.
vi) The video signal. I
"-Vii) Tim6-division-multiplexed signals.!

b) Examp!es employing the harmonic series representation.

i) Freqtaency-division-multip'lexod signals.

ii) Amplitude-modulatdd signals.

iii) The random sinu;oid.

c) E-xamples eiploying the Fouri-er series representativn.

I) Atipl itude-modulated signals.

ii) Bandpags PAM signals.

iii) I tip rovement for general PAM.

d) Examples employing the inverse-operator-feedback-system method.

i) Periodically attenuated WSS signal ill 'SS noise.

i i) AM-type signal in W$5 noise.

iii) IWSS signal in white CS noise.

iv) IDoppler-shifted Poisson pulse-trVai i.

v) signals.
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f) Summary.

Theorem (4-14): Demultiplexing and demodulation precedes time- I
invariant filtering in optimum linear receiver. 'Jr

We conclude this summary of Chapter IV by mentioning the intuitively

pleasing result that optimum time-varying filters for cyclostationary

processes can always be decomposed into a sequence of three signal u
processing operations: 1. The received cyclostationary process is

decomposed into one or more (jointly) stationary processes. 2. The U
stationary component-processes are passed through time-invariant filters

(often Wiener filters). 3. The filtered components are recombined to L

form the optimally filtered cyclostationary process. In most of the

examples presented, this sequence of operations takes one of the

following specific forms: demodulator-filter-modulator, demultiplexor- H
filter-multiplexor, inverse time-scale transformation--filter- -time-scale

trants formation. For those part icular cyclostationary processes which jj

decompose into a single stationary p-rocess, the three signal processing

operations are more accurately described as: 1. Removal of periodic

fluctuations. 2. Time-invariant filtering. 3. Re-insertioni of periodic

f I luctuati ons.

Another result worth empha,;izhi g is ,hat cyclostatiomiary processes

whose mean and variance tire constant can still possess a high degree of

cyclostationarity in thisesense that optium, time-varying filtering can

yield substantially lo%,er mneam-.qua ed error than optimum time-invariant

N I tering.
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Finally, we mention that optimum time-varying filters for

cyclostationary processes appear to yield the greatest reduction in

mean-squared error (below that resulting from optimum time-invariant

L fiilters) when the signal-to-noise ratio is high, but can yield

substantial reductions even at signal-to-noise ratios as low as unity.

L

Li
L

Li

L
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2. Suggested Topics for Further Research

There are various topics dealing with cyclostationary processes

which deserve fui'ther research. We outline below several such areas of

investigation.

a) Degree of cyclostationarity. The only effective means we LI
have for determining the filtering advantage to be gained from a periodically

time-varying filter operated in synchronism with the received cyclo-

stationary signal is to carry out the complete solutions for the optimum

time-varying and time-invariant filters, and to evaluate the performanceH functionals. It would therefore be desirable to devise a functional

which will indicate the "degree of cyclostationarity" of a process with

regard to filtering-performance improvement that inherently can be

attained. Obviously, a "highly cyclostationary" process will exhibit

the largest improvement. One might expect that a constant-variance

cyclostationary process must have a limited degree of cyclostationarity

The video signal, for example has constant variance and for typical

parameter values the performance improvement factor is essentially

negligible. However, the PAM signal with fuil duty-eyele rectangular

pulses has constant variance, )ct has an unlimited improvement factor

for low-noise conditions. ,Ne possilblc candidate for measuring the degree

of cyclostationarity is the relativi size of the cff-diagonal terms in the

IISR correlation matrix. For example, if the off-diagonal terms vanish

then the process is stationary, and by definition there is no improvement.

A relativel:. simple functional for indicating degree of cyclostationarity

or obtaining bounds on improveiment houtld find extensive application in
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:Kl
further studies since certain aspects of performance can be determined

J without having to carry out a complete solution to the estimation problem.

b) Implementation of periodically time-varying filters. Although

imost of the examples of optimum filters presented in Chapter IV were

finite structures, the general solutions provided in Theorems (4-5,6,7,9)

tare based on infinite series representations, and result in infinite

structures (infinite number of parallel paths.) As discussed in Chapter i1l,

truncated versions of the representations may provide satisfactory

r approximations and finite structures, and the implementation of such

structures can be enhanced by the use of convenient basis functions which

result in the replacement of modulators by switches, and by the use of

digital filters to implement sampled-data filters. However, these filters

probably do not have the minimum complexity for a given degree of

approximationl to the optimum filter. Less complex filter structures

might Miaely result from an a-priori choice of bas -s filters, and

solutiou for the corresponding optimum "finite-dimensional filter" as

disc'assed in Section 2 of Chapter IV. In fact, the basis filters can

be chosen for adjustability so that changes in signal and noise parameters

can he conveniently accomodated. An investigation into the trade-off's

available between conivenienceof-iml)lementation and performance could

produce some useful results.

c Sýynchronizing and trackia. A random signal can be cyclostationary

evvn though there may be no strict periodicity in the occurrence of the

random events comprising the signal. ror example, in direct contrast to
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the periodic occurrence of pulses in a synchronous PAN signal, tile pulse-

occurrences in a Poisson pulse-train process with periodic rate parameter

are random--only the average rate-of-occurrences is periodic. In fact

some signal processes exhibit cyclic fluctuations but are only "quasi- [V
cyclostationary" since the period of the cyclic fluctuations varies .lowly

with time. Obtaining knowledge of the phase of such non-synchronous

cyclostationary (and quasi-cyclostationary) signals is not as straight-

forward as it is for highly structured synchronous cyclostationary signals

such as iPAM. Thus it would be desirable to develop methods for tracking

cyclostationary signals in order to extract useful timing inform-tion for

optimum filtering, and other signal processing operations. The phase

lock loop and some of its variations such as the Costas filter loop and L
the squaring loop have found m|tch appI ication for symbol synchronization

for synchronous pulse-trains, and Ifor carrier synchronization (40]. One

approach to tile timing recovery problem for more general cyclostationary

signals then would be to ext.end thvLsc and related ideas which have been L

.succesful olr the snort st rsc tttd -.| gn.ls I 1,4,0]. Future investigations

the tllme-var)ying filtetr allnd the tr::cki ng loop structures oil overall

pertformance.

d) Modelling. A continiutd study of appropriate models for random

processes re.u ilting from va riutas t|pes of. sampling, scanning, and multi-

plexing op.erit ons i.s essenti..i! in order to take Rill advantage of tile

reslts tInll LIt a thc.sih. Ill pj,'t:,Ctla| , one assight concentrate on operation"
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LI
involving random parameters, such as scanning speed or clocking rate,

U which produce non-synchronous signals. The resulting processes may be

eitther cyclostationary or "quasi-cyclostationary", as mentioned previously,

depending on the models chosen. See, for example, Section 7 of Chapter I1

[ on jitter.

L e) Signal Design. Related to the modelling problem above are

questions concerning the design of the sampling, scanning, and multiplexing

operations with regard to introducing a sufficient degree of cyclostationarity

for satisfactory receiver operation, with respect to both timing

extraction and ftilter performance. An investigation of such ideas could

provide the basis for the joint optimum design of transmitter and receiver.

"L Previous studieb have treated an aspect of this known as the power

Sl location problem [40OJ ]wherein the trade-off between power in

synchronizing signals and in information-bearing signals is examined. A

new approach to thiL problem miI~ght be based on degree of cyclostationarity.
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