THE EFFECTS OF ELEVATED ATMOSPHERIC CO₂ ON ACID-BASE BALANCE AND RED-CELL ELECTROLYTES OF FBM SUBMARINE CREW MEMBERS

by

David A. Gortner, LT

and

A. A. Messier, E. Heyder, and K. E. Schaefer

SUBMARINE MEDICAL RESEARCH LABORATORY NAVAL SUBMARINE MEDICAL CENTER REPORT NO. 692

Bureau of Medicine and Surgery, Navy Department Research Work Unit MR011.01-5024.01

Transmitted by:

Kail [. hlunh

K. E. Schaefer, M.D. Chief, Biomedical Sciences Division

Reviewed and Approved:

Charles 7. Sell

Charles F. Gell, M.D., D.Sc.(Med) Scientific Director NavSubMedRschLab

Approved and Released by:

R. L. Sphar, CDR, MC, USN Officer-in-Charge, Acting NavSubMedRschLab

Approved for public release; distribution unlimited.

SUMMARY PAGE

THE PROBLEM

To determine the effects of slightly elevated atmospheric CO_2 during submarine patrol on plasma and red-cell pH, pCO_2 , and electrolytes.

FINDINGS

There is evidence suggesting the existence of a mild respiratory acidosis as indicated in the slight fall of red cell pH, decrease in plasma chloride, and increase in red-cell chloride after seven days of exposure. A cation shift consisting of an increase in redcell sodium and decrease in red-cell potassium was observed after forty-two days of exposure.

APPLICATION

The report will be of interest to those interested in submarine medicine, as well as all physicians, especially those concerned with acid-base changes in health and respiratory diseases.

ADMINISTRATIVE INFORMATION

This investigation was conducted as a part of the Bureau of Medicine and Surgery Research Work Unit MR011.01-5024 - The Effects of Chronically Elevated Carbon Dioxide Levels on Red Cell and Plasma Electrolytes of FBM Personnel. The present report is No. 1 on this Work Unit. The manuscript was approved for publication on 6 December 1971 and designated as Naval Submarine Medical Research Laboratory Report No. 692.

PUBLISHED BY THE NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY

ii

ABSTRACT

Blood from twelve volunteers serving on a submarine and breathing elevated levels of CO₂ was analyzed for electrolyte, pH, and pCO₂ levels in the plasma and in red-cell hemolysates. The method for measuring pH and pCO2 in frozen samples entails certain difficulties due to loss of CO_2 during storage. Empirically determined correction factors were used for pH and pCO2. After seven days of exposure to the submarine atmosphere, red cell pH was found to be statistically significantly lower, than control values while plasma pH showed only a tendency to decrease; plasma chloride was decreased and red cell chloride increased. These findings were considered as evidence suggesting existence of a mild respiratory acidosis. After forty-two days of exposure plasma chloride was still significantly reduced and red-cell chloride slightly elevated. Moreover, red-cell sodium was increased and red-cell potassium decreased, while pH values of plasma and red cells did not differ significantly from control levels. The electrolyte shifts observed after forty-two days have been interpreted as evidence suggestive of an existing acidosis.

THE EFFECTS OF ELEVATED ATMOSPHERIC CO₂ ON ACID-BASE BALANCE AND RED-CELL ELECTROLYTES OF FBM SUBMARINE CREW MEMBERS

INTRODUCTION

It is of interest to know whether submarine personnel breathing elevated levels of CO₂ during prolonged periods of submergence develop changes in blood electrolyte balance similar to those observed in man during prolonged exposure to a level of 1.5% CO₂⁴, in patients with respiratory insufficiency and hypercapnia^{3,6} and animals exposed to yet higher CO₂ levels². In order to detect changes in plasma and red-cell electrolytes, pH, and pCO₂, we examined twelve volunteers serving on board a nuclear submarine.

METHODS

Twelve subjects were studied before, during and after a submerged period of nine weeks, during which time they breathed air containing a mean concentration of 0.9% CO2 (time weighted average) Venous blood samples were drawn from each subject once before submerging, three times during the patrol (at 7, 21 and 42 days after submerging), and three days after surfacing. All samples were collected into heparinized glass vacuum tubes and centrifuged immediately. The plasma and red-cell portions were separated anaerobically and stored in capped plastic syringes at -15°C. Analysis was performed at a later date.

Van Slyke⁷ has pointed out the necessity of correcting plasma pH for an alkaline error of 0.03 pH units resulting from centrifugation of the samples at room temperature. All pH units have been corrected in this manner.

It became apparent that frozen venous blood samples stored in capped plastic syringes will decrease in pCO_2 and increase in pH levels, while bicarbonate levels remain unchanged. In a control study, six of the 12 subjects were sampled for venous plasma, pH and pCO_2 levels: Test samples were made (a) immediately after centrifugation, (b) after 17 days' storage at -15° C, and (c) after 120 days at -15°. From the plot of the data it was found that pH increased and that log pCO_2 decreased linearly. The following correction factors were derived from the data:

(a) correction for pH = -0.003 pHunits per day frozen

(b) correction for $pCO_2 = +\log 0.3$ mm Hg pCO_2 per day frozen

During submergence, the ship's atmosphere was monitored at four hour intervals with installed and portable analyzing devices. CO₂ levels varied between 0.65% and 1.2% with a mean of 0.9%. Oxygen levels varied between 19 and 21%. Other gases present in measurable quantities included freon-12 (maximum 25 ppm) and carbon monoxide (maximum 30 ppm).

Students \underline{t} test was employed for statistical analysis of the data.

1

RESULTS

Acid-base values for plasma and hemolyzed red cells are given in Table I. There was a tendency for plasma pH to decrease and a statistically significant decrease in red-cell pH after 7 days. An increase in red-cell pCO_2 was noted after 21 and 42 days.

		pH	PLASMA P _{CO2} mm Hg	HCO3 mEq/1	рН	RED CELL P _{CO2} mm Hg
Control	Mean S.E. N	7.346 .008 12	52.9 .8 12	27.8 .5 12	7.173 .004 12	55.8 1.5 12
PATROL 0.9% CO ₂						
7 days	Mean S.E. N	7.329 .009 12	55.6 1.3 12	28.0 .9 12	7.144* .008 12	54.0 4.6 12
21 days	Mean S.E. N	7.359 .010 11	48.6 1.0 11	26.4 .5 11	7.160 .007 11	62.8* 1.9 11
42 days	Mean S.E. N	7.364 .009 12	47.6* 1.0 12	26.3 .6 12	7.144 .008 12	59.7 5.9 12
Recovery 3 days	Mean S.E. N	7.405 .006 11	44.0* 1.0 11	26.9 .6 11	7.182 .007 11	53,0 1.8 11
Recovery 17 days	Mean S.E. N	7.332 .013 6	54.8 .6 6	28.0 .4 6	7.134 .008 6	61.5 1.7 6

Table I.	Effect of Prolonged Exposure to 0.9% CO ₂ During Patrol	,
on	Plasma and Red Cell pH, PCO ₂ and Bicarbonate	

*Statistically significant difference from controls at the 5% level and better are given in Table II. Plasma sodium, potassium, and chloride values decreased during CO_2 exposure. In red cells there was a statistically significant rise in

Plasma and red-cell electrolyte values sodium and chloride, and a fall in potassium during CO2 exposure. For comparison, data on plasma chloride and bicarbonate obtained by Mendelson, on an FBM patrol are included in Table III.

		Na mEq/1	PLASMA K mEq/1	C1 mEq/1	Na mEq/1	RED CELL K mEq/1	C1 mEq/1
Control	Mean	140.7	3.9	103.2	16.0	89.2	63.3
	S.E.	.78	.07	1.17	.7	1.4	1.1
PATROL 0.9% CO ₂							
7 Days	Mean	138.2	3.6*	100.1 *	17.5	95.1	68.8*
	S.E.	1.02	.12	.88	1.6	2.5	1.0
21 Days	Mean	138.6	3.8	102.9	17.9	84.3*	63.5
	S.E.	1.15	.16	.81	.8	.8	1.9
42 Days	Mean	136.7*	3.8	100.8*	21.8*	84.3*	67.1
	S.E.	1.24	.17	1.33	1.0	1.3	.7
63 Days plus 3 days re- covery on air	Mean S.E.	140.4 1.28	3.9 .24	103.1 .87	20.8* .7	86.2 2.9	60.5 1.9

Eable II.	Effect of	Prolonge	ed Exposure	to 0.9%	$5 CO_2$	During	Patrol
0	n Plasma	and Red	Cell Electro	olytes (1	12 Sub	jects)	

*Statistically significant difference from controls at the 5% level or better

· · · · · · · · · · · · · · · · · · ·		PLASMA				
		HCO3 mEq/L	C1 mEq/L			
Control	Mean S.E.	24.3 .5	109.2 .6			
Patrol 0.9% CO ₂ 40 Days	Mean S.E.	23.4 .3	99.1* .9			
60 Days + 2 Days Recovery on Air	Mean S.E.	25.0 .6	99.4* 1.7			

Table III. Effect of Prolonged Exposure to 0.9% CO₂ During Patrol¹ on Plasma Bicarbonate and Plasma Chloride (8 Subjects)

¹Data from Mendelson *Statistically significant difference from CO_2 controls (P<.001)

Before interpreting the results obtained, it is necessary to evaluate the weaknesses associated with the method of obtaining blood-samples during an FBM patrol, freezing the samples and analyzing them several week's later.

Mendelson's blood samples were, during the centrifugation period, directly exposed to the submarine atmosphere. Under these circumstances gaseous carbon dioxide diffuses out of the blood into the surrounding air resulting in a decrease in pCO₂ and H⁺ concentrations which probably existed in the blood samples obtained during patrol. The bicarbonate levels of Mendelson's samples (Table III) are probably for this reason unchanged. In this study, the blood samples were obtained under anaerobic conditions and centrifuged under anaerobic conditions.

In spite of these precautions, proper venous blood samples will still lose some CO_2 during storage as pointed out above.

There was a trend towards a decrease in plasma pH and a definite fall of redcell pH after seven days of exposure. After three and six weeks, the pH in plasma and red cells was again higher and they neared initial levels. These findings suggest that respiratory acidosis produced by prolonged exposure to an average CO_2 concentration of 0.9% CO₂ is most pronounced during the first week.

Studies of chronic hypercapnia in animals² and patients with chronic respiratory $acidosis^3$ have shown that the rise in bicarbonate regularly found in chronic hypercapnia is associated with a reciprocal fall in plasma chloride. The decrease in plasma chloride can therefore provide an indicator of an existing respiratory acidosis when the accuracy of the bicarbonate values is in question. Plasma chloride concentrations were lower than control levels in all exposure periods and this decrease was statistically significant after 7 days and 42 days of 0.9% CO₂ exposure. This finding is in line with that of Mendelson¹, who noted a significant decrease in plasma chloride levels in submarine personnel after 40 days of exposure to 0.9% CO2.

In Mendelson's study, serum chloride was still significantly below control levels after 2 days recovery following 60 days of exposure to 0.9% CO₂.

In this study, plasma chloride levels were found to have returned to the control value after 3 days of recovery following 63 days of exposure to 0.9% CO₂. In the 42 day study of exposure to 1.5%CO₂, Schaefer, et al⁴ observed that more than 9 days of recovery are needed for acid-base parameters to return to control values.

It would be important to obtain more data in order to establish more accurately the time course of recovery of acid-base parameters and particularly plasma chloride. The finding of an increase in red-cell sodium and chloride and a decrease in red-cell potassium is in line with the findings of Schaefer et al^4 in subjects exposed to 1.5% CO₂ levels. This "cation shift" observed in both men and animals has been attributed to changes in red-cell cation permeability. Under higher concentrations of CO₂ cation shifts were found to be caused by inhibition of active transport due to reduction of red-cell glycolysis⁵. During exposure to 1% CO₂ changes in red cell permeability could be caused by increased levels of calcium ions (unpublished observations).

REFERENCES

- Mendelson, P. "The effects of chronically elevated atmospheric carbon dioxide levels on serum chloride of FBM personnel during patrol." Submarine Medical Officer Qualification Thesis, Sch. Sub. Med., 1970.
- Polak, A., Haynie, Gordon D., Hayes, R.M., and Schwartz, W.B. "Effects of chronic hypercapnia on electrolyte and acid-base equilibrium. I. Adaptation." <u>J. Clin.</u> Invest., 40: 1223-37, 1961.
- Robin, E.D. "Abnormalities of acid-base regulation in chronic pulmonary disease, with specific reference to hypercapnia and extracellular alkalosis." <u>New</u> <u>Eng. J. Med.</u>, 268: 917-22, <u>1963.</u>
- 4. Schaefer, K.E., Nichols, G. Jr., and Carey, C.R. "Acid-base balance and blood and urine electrolytes of man during acclimitization to CO₂" J. Appl. Physiol., 19: 48-58, 1964.

5

- Schaefer, K.E., Messier, A.A., and Morgan, C.C. "Displacement of oxygen dissociation curves and red cell cation exchange in chronic hypercapnia." Resp. Physiol., 10: 299-312, 1970.
- 6. Schwartz, W.B., Brackett, Newton C. Jr., and Cohen, Jordan J.,
 "The response of extracellular hydrogen ion concentration to graded degree of chronic hypercapnia: the physiologic limits of the defense of pH." J. Clin. Invest., 44: 291-301, 1965.
- Van Slyke, D. D., Hankes, L.V., and Vitols, J.J. "Photometric determination of pH with a single standard and calculation by nomogram. Application to human plasma pH." <u>Clin. Chem.</u>, V. 12, No. 12, 849-870, 1966.

UNCLA	SS	ΙF	II	ED
-------	----	----	----	----

		_
Security	Classification	

Security Classification	
	ROL DATA - R & D
I. ORIGINATING ACTIVITY (Corporate author)	28. REPORT SECURITY CLASSIFICATION
NAVAL SUBMARINE MEDICAL CENTER	UNCLASSIFIED
Naval Submarine Medical Research La	boratory 26. GROUP
3. REPORT TITLE	
The Effects of Elevated Atmospheric	CO2 on Acid-Base Balance and
Plasma and Red-Cell Electrolytes of	FBM Submarine Crew Members
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)	
Report on independent work unit	
5. AUTHOR(\$) (First name, middle initial, last name)	
David A. Gortner, A. A. Messier, E.	Heyder and K. E. Schaefer
6. REPORT DATE	78. TOTAL NO. OF PAGES 75. NO. OF REFS
6 December 1971	6 7
89. CONTRACT OR GRANT NO.	98. ORIGINATOR'S REPORT NUMBER(5)
D, PROJECT NO,	NSMRL Report Number 692
MR011.01-5024	
с.	this report)
đ	
Approved for nublic veloce, distr	ibution unlimited
Approved for public release; distr	
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
	Naval Submarine Medical Center
	Box 600, Naval Submarine Base
	Groton, Connecticut 06340
13. ABSTRACT	wying on a submaning and bugathing
Blood from twelve volunteers se	for a submarine and preatning
elevated levels of tu2 was allalyzed	The method few meanuring pu
in the plasma and in red-cell nemoly	sales. The method for measuring pr
and plug in rrozen samples entails of	certain difficulties due to loss of
LU2 during storage. Empirically det	termined correction factors were used
The phane plug. After seven days the phane (0.0% COR) and coll plugs the	tictically cignificantly lowon than
phere (0.9% CO2) red cell pH was sta	ind only a tondoncy to decrease
control values, while plasma phishow	d coll chlorido increased Those
findings were considered as evidence	suggesting existence of a mild
respiratory acidosis After forty-t	wo days of exposure plasma chloride
was still significantly reduced and	red cell chloride slightly elevated
Moreoven red cell sodium was increa	ased and red cell notassium decreased
while nH values of nlasma and wed re	alls did not differ significantly
from control levels. The electrolyt	e shifts observed after forty-two
days have been internreted as eviden	ice suggestive of an existing
acidosis	at the gala of the of an anisothy
DD FORM 1472 (DACE 1)	
UU 1 NOV 65 14/5 (PAGE 1)	UNCLASSIFIED
S/N 0102-014-6600	Security Classification

.

UNCLASSIFIED

14.	KEY WORDS	LIN	KA	LIN	КВ	LIN	кс
		ROLE	wт	ROLE	wт	ROLE	wт
Acid-Base Balance				1			
Plasma Electrolytes							
Red-Cell Electrolytes							
Submarine Atmospher	e						
CO ₂ Effects							
						Б	
J			82				
D FORM 1 4 70			1007				
)	UNCI	ASSI	FIED			