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AIRSTRACI

intensity interfe,--ewSry, as developed by Hanbury Brawn and Twiss

for stellar ob:iervatiort, has shown relativt: inseusitivity to amI~Sphezric

scintillation. However, with classical sources, the limitatiorp's placed 3
on this techinique bf quanviin noise and detector efficiency are someWhat

severe. This situ&ation is v&astly improved hben laser i11.uination is

employed. Generalizing a methodolo~gy of Maz-*dai~d and Wo-1, the far-Zone

L ehavior of the autual intensity function is derived for an interwo-diate

time average Thi:E result iA ur-ed to reccn ;-ruct th~e irradiance diitri--

bution of -a spatial ly-incoherent source. Mhe Zar-field intensity dis-

trh'ution is recorded spatially for on. time-resolution unit of the de-

tector. "she resulting spatial signal is cross correlated with itself

and related -.o thu intensity distribution ot-er the source. 71Thus without

avergingin thtu time deaairx, s spatial Fourier transformt relation is

derived betweeit the f;2r-field intenwity correlction and the source

ir.%adiance-, similar to the -results of Hanburj Brown and Twiss.
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iI
I. INTRODUCTION

The history of intensity interferometry is rooted in the work of

R. Hanbury Brown and R. Q. "iss. Their earliest investigationsldealt

with the priblcm of resolving stellar zadio sources by a technique in-

volving the correlation of the squared outputs of two receivers. The

advantages accrued relate to the zdaction of rertain kincs of experi-

,ental constraints as well as tte comparative insevitivity of the

. ethod to atmospneric s-intillation. 2 A preliminary co nclusion reached

at that time was that this technque of intensity corr,lation would not

be applicable at optical frequencies due to limitations imposed by

photon noise. However, in later work,5 Hanbury Brown and Twiss showed

that meaningful intensity correlationb co' ld be made at optical frequen-

cies even with highly degenerate sources. The limitations placed on this

approach by quantum noise and detector effitdecy have been somewhat

severe, c?,llin; for highly refined experimental technique.

44
Foc laser illumination, the situation is very different. The signal-

to-noise ratio can be typically increased by six oriers of magnitude. 4

However, the statistics of the source must be considered in the measure-

ment. The key to relating intensity correlations to some property in- i
volving field correlations lies in the assumption of gaussian statistics,

for which all higher moments are determined from the first and second.

Single mode lasers, though, are distinctly non-gaussian in their statis-

tics, and, therefore, cannot be described by theory framed for thermal!

sources. Put with the addition of only a few axial moles, the field

amplitude becomes nearly gaussian distributed.6

The prin ip-il formula used by Hanbury Brown and Twiss 7 to infer the

diameter of a listant source shows that the time-averaged correlation of

intensities at two points is equal to the product of a function involving

References ma efon npg 29.
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the temporal characteristics of the source with the square of the spatial

Fourier transform of the source intensity distribution. If the intent of

an intensity correlation experiment is to gain information concerning the

source intensity distribution, then the source temporal statistics may be

of little interest in themselves. Their consideration is necessary if

the product-output of the detectors is averaged in the time domain (as

it nearly always is) to overcome the limitations imposed by photon and

detector noise and possibly reduce scintillation effects produced by

transmission in the atmosphere.

Intensity interferometry can be understood as a two-point corre-

lation of intensities following the squaring of the electric field at

the detector. If the source is quasi-monochropacic, each differential

element on the object emits a number of temporal modes which interfere

with each other at the detector. Assuming the detector has sufficient
8speed to detect these beat frequencies, it is the amplitude and phase

of the incominz intensity envelope which is utilized. It is then commonly

argued that the random fluctuations in the temporal statistics from dif-

ferent points of the source cause the beat frequencies from each source

point to add on-the-average incoherently at the detector. The time-

averaged intensity correlation is then proportional to the squared

spatial Fourier transform of the source intensity. This approach results

in essentially a squared version of the Van Cittert-Zernike theorem. 9

We wish to argue that the requirement of surface roughness at the

source (to assure spatial incoherence) is sufficient to guarantee the

inccherent addition of beat frequencies at the intensity detectors.

Thus if temporal noise (photon noise, time-dependent detector noise) is

largely absent in a local spatial sense, as might be the case with a

multi-axial mode laser used with photographic detection, then the inten-

sity information might be gathered during one resolution time of the

detector over a plane section normal to the direction of light propa-

gation. Any noise arising in the process would be spatial in nature,

and might be averaged out by taking a sufficiently large area of spatial

8



correlation. The reduction of atmospheric spatial noise would be similar
13

to a process known as aperture averaging. Film-grain noise would be

extremely w'ell averaged due to the relatively large area of averaging.

The relative insensitivity of intensity interferometry to turbulence

is due to the assumed dispersionless nature of the prop3ge.tion medium.

Since each temporal frequency sees the same refractive index, the dif-

ferential (beat) frequencies r-nain unchanged. However, thr- spatial

Fourier transform relation between the source and the far-field scales

as the average frequency, not the beat frequency, and thus the resolution

afforded by optical frequencies is maintained.

The concept of examining spatial beat frequencits of seccnd-order

correlation is, of course, not new. Many classical fieid-correlation

interferometurs, a5 well a3 holographic experiments, are built on this

principle involving a spatial or time lag between interfering beams of

the same source. Mare difficult is the spatial recording of beats from

two independent sources as demonstrated by Magyar and Mandel.

We have examinee. the problem of relating faT-field spatial intensity

(fourth-order) correlations to the intensity distribution of the source,

without here considering the limitations due to noise. Our apprcach has

oeen completely classical, drawing on a straightforward generalization

of a methodology given recently by Marchand and Wolf. 12 Our notation is

similar and we follow closely their development through their Eq. (35).

II. THE INTERMEDIATI-AVERAGE MUTUAL COHERENCE FIUCTION
Por a stationary scalar wave field, the mutual coherence function

for the correlation of two space-time points is often written

T 1J~ *

1(V TT) VTCPI~t+T) vCt) dt, ""(1)

-T

where the limits for the time integration are allowed to approach infi- R

nity. For this case, hoieve7, we wish to keep the parameter T finite,

9



and by the subscrpts indicate that we assume a knowledge of VT(Plt+r)
and VT(r2 t) only over the finite sample length 2T. We wish to call

!,(Iv . 22,T ) the intermed-te-average mutual coherence function and

carefully stress that, for arbitrary T or shift of origin, it may b,.ar

F;o little resemblance to the mutual coherence function defined by the
ensemble average-

Following Ref. 12, we represent V(P,t) as the temporal Fourier

transform of the complex analytic signal

VT(Pt) = vT(P,w) exp(-iwt) dw, for 0 < It[ < T (2a)

0

and

~T

VTr,'W) VT(P,t) exp(i*wt) dt. (2b)ii

Substituting Eq. (2a) into Eq. (1), interchanging the order of integra-
tion and time averaging and performing the time integration, we get

r-'IPlIT) = oWTl,,a 2) exp(-iwlT) sinc[(wl-w2)T] dwi2' (3)

0

where

~~~sinc x - i (4)

and the function

) WT(I'P2,')", 2) --VT(P I VT( 2z 2),(?

10
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and the subscript T here and later implies a function based on the elec-

tric field statistics only for the partintlar sample Zr in length about

the origin. The sinc function of Eq. (3) assumes the role of a low-pass

filter. It T is very small, the two frequency variables of Eq. (3) are

essentially independent and all cross terms are represented in the pro-

duct of Eq. (S). These cross terms form a high-frequency spectral con-

tent. However, as T tends to infinity, the sinc function assumes the

role of a delta function, constraining correlation to occur only between

identical frequencies in the transform product and forcing the integral

to a cne-dimensional form. In the limit Af large T, the filtered spec-

trum of Eq. (3) becomes the mean square value (de) of each temporal

frequency component in the signal.

Following Marchand and Wolf 2 and the earlier lead of Walther, 1 3

vT(P,w) is represented in the form of an angular (spatial) spectrum of

plane waves in Cartesian coordinates where

VT(P,V ) = RM aT(p,q,w) exp[ik(px+qy+uz) dpdq, (6)

m (-p 2  q2 ) 1 / 2  if p2 + q2 < 1 (7a)

= i(p q2  1)1/2 if p2 + q2 > i, (7b)

and

k = w/c, (8)

where c is the vacuum velocity of light. Equation (6) indicates that

VT(P,W) is formed by a superposition of homogeneous spatial waves propa-
gating in the half space z > 0 for the criterion expressed by Eq. (7a)

and a set of evanescent waves propagatisg parallel to the plane z = 0

for the case described by Eq. (To).

II
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Expressing Eq. (5) in the form of the angular spectrum of plane

waves defined by Eq. (6) we get

-0

x exp[-ikpx + qy 2 1) 9

ex(i 2 (P2 x2  + ~y m2z2)J dPldq~dP2 dq2 ,

where

AT~pl~ql q a.T(p 1 .ql;wl;22;l'2) 4(P 2,q 2 ;W2  (10)

Using Eq. (9), therefore, the intermediate-average mutual coherence

function of Eq. (3) can be written

r(P1,P2,r,T) f f exp(-iWT) inw 1 -ti)T] dw~dw2

0

f~jJA~(1)q;P2I 2;w1I'w2) (1

x exp~ik,(plx1  qlyl + l~z,)]

x exp(-ik2 ~ + q2y2  SAMZ~J

If T is allowed to approach infinity, the limiting form of the sinc

function forces w 1 2 2 and the intermediate-average mutual coherence

function clearly reduces to the form of Eq. (13) of Ref. 12 by the

A elimination of one of the time-frequency integrals.

12



III. THE ANGULAR CORRELATION FUNCTION AND OTHER SPATIAL CORRELATION
FUNCTIONS

The cross-spectral density function TP12;"I,'2) is now expressed

as a four-dimensional spatial Fourier integral as

WT(xl"YIZl;X2'Y 2 'Z 2 ;W AW2 ) = fJrJ T(fl'gl;zl;f 2 "g2 ;z 2 ;wl"t42 )

(12)

x exp[i(flx1  gly1 + f 2 x2 + g2 y2 )] dfldgldf2dg2.

Equation (9) with Eq. (12) therefore implies

A,(1;P2q2;w't2) = 12 k 2 1T~lPl'klqlDZl;-k2 P2 "-k2 q2 ;z 2 ;wl 1 w2 )

(13)
x exp[-i(klmlZ1 - k2 m2 z2 )]

and specifically if z I =z 2 = 0, Eq. (13) becomes

AT(Pl~ql; q= k 2 k 2 WT(klpl,klql;O;k 2 p2 ,-k 2 q2 ;;lO 2 ). (14)

Equation (141 indicates that the angular correlation function

T(pl,ql ;P2,q 2;l,2) and the four-dimensional spatial Fourier transform

of the cross-spectral density function are related at the plane z = 0 if

:1 = k1pl, g, = klql, f 2 = -k 2 P2 " and g2 = -k 2 q2 "

Further, the spatial transform of the time spectrum of the field

can be represented by

OD

VT(X'Y'Z;)= f.VT(f'g;z;W) exp[i(fx+gy)] dfdg. (IS)

13



Comparism of Eqs, (15) and (6) indicates

aT(p,q;w) k VT(kpkq,z,w) exp(-ikmz). (16)

Using Eq. (16) in Eq. (1)) gives

AT(pl,ql;P2,q2;wlw 2) = k1
2k2

2 VT(kpll,klql,zl;w1)

x 4 (k2P2 ,k2q2 , z2 ;'2) (17)

x exp[-i(k1mZ - k m2z2)].

The inter ediate-average spatial correlation function is defined

vT(klp!klql3z!;1 ) vc 2P2,k2q2,z2;w2 )

-VT(klPlklql;zl;k 2P2 ,k2 q2 ;z2 ;w1 ,w2) (18a)

=VT(klp)klq1 ;0o;k 2P2 ,k 2q2 ;02 ;1 ' 2)

(18b)

: exp[i(kI~mlZ - k2 2z2)]

where the product form of Eq. (lb) is implied by the independence of

the left side of Eq. (17) on z and z2 . If we set z1 = z 2 = O, Eqs. (17)

and (18) inply

(pq q= k1
2k2

2 VT(klPl,klql;o;k2p2,k2 q2,0;wlO 2). (19)

Finally using Eqs. (14) and (19), we find

VT(fl. 'F;0;fz'2;0;LOi2 WT(flgl;O;-f 2I-g 2 0;&w1 ;0-2 ). (20)

14



Thus the relationships between the angular correlation function and the

cross-spectral density function are established by Eq. (14) and the

angular correlationi function and the spatial frequency correlation

function by Eq. (19) for the case of intermediate time averaging.

IV. THE INTERMEDIATE-AVERAGE CORRELATION FUNCiON IN THE FAR FIELD

I Now the form of the cross-spectral density function is examiined in

the far field. Defining = 2rn =(xr we seek the asymp-

totic forms for the case of P 1 and P 2 tending to infinity in the paths

indicated by the direction cosines

V z
x2  y2  ' 2  x 1 '1 1
r2  r2  r2  I1 I1  r

'IRewriting Eq. (9) using the definition of Eq. (10), we have

WT(PP2 LJIW 2)= &(pl,ql;wl) exp[ik1(plxl qly1 'MIZ 1)] pldql

x '4 4( 2 q ;w2) exp[-ik2(, x + qy2 +mz) pd.
-Cc

1 14
integrals is given by Miyamoto aind Wolf1 as

I2
(2wr) cs l '1 '2  y2i-'-cos81  2 co 'r

12k 1 1 ATr 2 '2

exp ifK r1  kr)](2

I 2rd]
r V

-- - -- .- ~ -~-~----- 2

-~ -~ - -~ ~ --- 4



I

where

I _z2 Co 0 _1=cosO " ' -_ = cos2 (23)

and use of Eq. (10) has been made. Finally if Eq. (22). is substituted

into Eq. (3), we get for tht intermediate-average mutual coherence

function

r(P 1 P 2 1 ,T) Jexp(-iw ) sinc[(w - w2 )T] dw1 dw2

0

42 exp[i(klr 1 - k (24)
Pcos1 cos 2  (24)

k2 rr
Xl Yl x2  Y2

Tr r A1 2

li addition, because of the relationship given earlier relating the angu-

la. coi-relatiuii function to the cross-spectral density and the spatial-

frequency functions (Eqs. (14) and (19)), Eq. (22) can be written in the

following forms:

2 exp~i(k r1 - k~r)WT(PlP 2 ;uIw2 ) 1 4 cos 2 k1 2  r2lr2 (25a)

x 1  1 1O ; - k2x2  k2Y2 0 ;

WT T r 2  0 2IW2

4 c 2 klk exp[i(klr1 - k2 r2 )]

1 2r

16
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Equations (25a) and (25b) can also be used in Eq. (3) to provide alter-

nate forms of Eq. (24). Equations (24) and (25) form the modified

version of the forms given in Ref. 12, Eqs. (33) through (35). Using

these results, we are now in a position to form the self-intensity

function in the far field.

V. THE SELF-INTENSITY FUNCTON IN THE FAR FIELD

We now examine the form of the self-intensity in the far field by

letting points P = P = P and then letting the time delay, T, be zero.1 2
Under these conditions, the mutual coherence function reduces to the

15self-intensity, and, using Eq. (25b) in Eq. (3) and the definition

given in Eq. (18a), we have

- 2 (H lW2 exp[i(kl - k2 )r]

I(P,T) 4n cose d 2 2 2 sinc[(wI w2)T
]

c r0 r
~(26)

v (i'Ckl k 1  0 ;w1) 'vCk2 - , k 2 Y-;0 )

where, as indicated earlier, the sinc function acts to suppress tesporal

fiequencies in the cross spectrum higher than u 1/(2T) Hz. We now uti-

lize the linear transformation of the time frequency variables (for

which the Jacobian is unity) defined by

£31 +

W1 - 2 - p  and 1 + w (27)

Writing the w variables in terms of these center-of-mass coordinates

we get

2o+p and 2a - p(28)
-1 2 2 (28)

17
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which when substituted into Eq. (26) gives

2
I(P,T) (z4 Coso f dcya ~J sinc(pT) exp(ipr/c) dp

a=O

x r ap/2 x ap2~*
XV, c1-8 Y- 0 r p/2 (29)

x aP/2x ao/ y 0c-p/2 )xvT( c r c r, P/)

where the dependence of the amplitude on the difference-frequnncy co-
ordinate, p, has been dropped since for quasimcnochromatic radiation

02>>J2 /41.

Now using the defining transform relation of Eq. (15), we write the
spatial correlation function at the source (z=O) where

a/2x a+p12 y a-1 x orp/2) *Y__ ; ap2
0T c r ' c VTFL c r ' c

(2w) 2 ffff VT(r)TI; 0 ; a+P/2) vT(g 2 sn2 ; G ; -p12) (0

xexp[ i(~. (C * )] exp ic fl rE dE d2 r)dl2 n]

Now the intermediate-average spatial-correlation function,

VTEll;0 ;a+P /2) vJ( 2 ,n2 ; 0 ;c.r-pf2)

when considered with the filtering action of the sinc: function of Eq. (29)I

will have an effective contribution only for the low frequency components
formed by the difference-frequency termsu 1~ /(2T) Hz or less.

18



In addition, we assume the .ode population to be a slowly-varying

fumction of o, skice a >> P/2 and thus we write

(VTQl1,nsO;a+p/2) vT ,j2,0 ;a-p/2)]low

VT 2'2lo freq.

= A(9 ,nl;G+p/2) A(g2,n2 ;o-p/2) e:p!i¢(g1 -C2,Tl -n2;o )  (31)

SA(J.,a) A(_2,a) H(p) exp[i¢( 1 -%1,

where

1 for A(j;±p/2) 0

0 otherwise.

Equatioi (31) acknowledges the loss of the optical-frequency phase,

while maintaining the phase of the intensity envelope formed by temporal

beat mades. The dagree to which the phase of this envelope is detected

depends on the bwdwidtl of the. sour.ce and the detector resulution, 2T.
.16 -

Essentially, the.7e arguments ware made by Hanbury Brown and Tviss

except for tht defining of the H func-ion. Its introdaction is brcught I
about by the description of narrow-band sources b) term5 in A(j,o). For

a ther~ml source of relatively large beidwidth, the maximtm difference

p icil exn-tod far beyond the tenoral-frequency vsponse of the system

(here rcfle't-.d in tha sinc term of Eq. (24)) 3nd be continuois as well.

But for a lIsior source e),i;iting a series of axial mod.s, the complete

difference- freqincy 1)an might lie entirely within the system response

br be piz-ce-wise tuxtii izus in its extent.

Poelat).ve to the representatin of the intemediate-averag- by the I
form co Eq. (31), we wish to re..tte a stti.aent made followL-ig Eq.(1)

that the iutermediate-averaging process may bear little r.seblance to

the infin.te time averagz, eveis so fu ss ;.ha- d-t-i c-. the su'itud-

19
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teiw, A(ja). This situation would be serious if our intent were to

infer, ftr exawksle, the time-frequency statistics of the source. But in.

the present concept, we desire only to infer the spatial properties of

the source. If we consider a multi-axial-mode laser beam scattered from

a spatially-rough surface, the lack of correspondence between the two

average is unimportant, for all such mode history is integrated out; all

areas of the scatterer see the same mode characteristics. Any mode

fluctuation would be seen simply as a variation in total received power

from one sample to the next. Here, we simply require for one detector-

resolution time over a spatial domain that the process of Eq. (31) ex-

hibit a minimu= of two temporal modes (to maintain the phase term

- -2 p) with sufficient mode population (reflected in the amplitude

terms A(&,o) such that quantum noise in both the carrier wave and the

detector ca. be ignored.

Using the results of Eq. (31) in Eq. (29) and taking e << 1, we

write:CO
I(PT) a ' cd dp exp(ipr/c) sinc(pT) H(p)

r f

_1 12-

/2 x eJl r- -2 ( x 2 d l dld2- ix i ex'p 1n + E CIE xnf f Qk " c -
4

c 2 r 1 2)12

We now have the self intensity in the far field expreszed as - double
integral aver sum- and difference-freqiency components as well as two,

two-dimensional spatial Fourier transfoms over the source. We will

next use it to form the fourth-order correlation function.
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VT. FOURTH-ORDER INTENSMi LORRELATION IN THE FAR FIELD

UJsing Eq. (32), the iaitensity correlation between points P 1 and P 2
in the far field can be written

Re I(P ;T) Pe~ I(P2;T)

1 2 r 2 r r

a do 02d o p dp' sinc(pT) sinc(p'Tr) H(p)H(p )
2(cr 4 f J

2(r) 0 C) -CO -

x co~(g-L;)+ F(1 -~pt  (t*P 2  r 1 1 2

2~ + ~ lT

c r I

(33 Co U1 9

c 1 r 1r' 1 )

+ cooscs;'b co~+) + m~-)
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We now investigate the phase variation in the above terms.' In order

to develop the condition of spatial incoherence, we demand that the source

surface be spatially rough, specifically that phase changes of 7r occur

U 106 m across its extent. Next we make an order of magnitude calcula-

tion of the size of the term E-p/2 x Cx hoosing some approx-c r cr
2wr q 1071 4-

imate values, m " , x lm, r 10 m,we find

'x A 103 m-1. Letting w= 103 implies E must move through w x 10- 3 mcr

to get w change.

Thus the phase terms of Eq. (33) describing the source spatial

roughness have a spatial rate of oscillation of about 10 greater than

the remaining terms. On the basis of a somewhat heuristic argument

given in the Appendix, we assert that the dbminant terms of Eq. (33) are

those for which the phase variation is a minimum.

Upon examining Eq. (33), we note that in the first cosine argument,

the random phase terms add and thus there is no choice of I or p terms

which will slow the phase. Turning to the second cosine expression, we

see that there are two general cases for which the phase variation is a

minimum. The first is the familiar one for which the parameter p is

equal to zero. This corresponds to the normal nfinite-time average

situation. For this case we set j1 = E2 and Ll = L21 with the

result that all the source-spatial information collapses in the cosine

argument. This is the normal dc-intensity term in the far field. For

convenience, we will suppress this term in following expressions. For

p 0, the minimum phase can be achieved by removing the primes of

Eq. (33), halving the number of integrals to give

wA

Re I(P1;T) Re I(P2 ;T)= a 4 a da dp sinc2 (pT)H(p
(cr) 4

2O P=O+
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0)-/2 A z 2 0-YCo] (34)x -C2 A2(21 )c) A 2 ,a) [2(x1-x2) + 2(yl-y2))

+ " ) [El(Xl-X2) + nl(Yl-Y2)] dId241lddni

The cosine expression of Eq. (34) can be written

cosj(CI) [ 2 (x1-x2) + n2 (YlY 2)] - fcr ) [1Xl-x2) + il(Y-Y 2 )] 1

= m -E(2) (X + (in 2-nl y-Y2) (5)

2cr [ 2 (+ l2) (Xl-x2 ) + (n2+n1 ) (Yl-Y2)

which is in the form of the identity

cos (a-b = cos a cos b + sin a sin b. (36)

If the angular size of the source is small, b is much less than unity',
16ensuring that we cam write, as did Hanbury Brown and TWi.ss,

cos (a-b) cos (a) . (37)

Using Eq. (37), we write finally Eq. (34), expressing the two-point

intensity correlation in the far field of a spatially incoherent source, -

as:

I(P ;T) I(P ;T) = JW4 dw JH(p) sinc 2 (PT) dp1c2 4  
-1

p=O+
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* -. r-. r (-r " ) x {
- k I

l
r

l  '  + n (Y -Y2 1 I 
* d l

Ac ) p=O+, x2 =0 (38 aV

if 1(,9,w) exp{-14 (Y
as W

x if I(,.w) exp [(X 1-X 2 ) + d(y-Y2 ddi, I

where the ean intensity has been suppressed.

If the source time-frequency characteristics of the souce are such
that p is ontinuous over the domain or which sinc(pT) is essentially

nonzero, then H(p) = 1 for all p and theu~ the difference-frequency term

can be integrated easily to give

4 sinc2 ( pT)  dp= /(2T). (39) 1

It iS evident rom Eq. (38b) that the two-point intensity corre-b

lation in the far ield is proportional to the mdulus of the spatial

Fourier transform across a spatially-rough source. Only for the case
that the intensity distribution the source is pure even can the phase

of the spatial transform be inferred and used to invert uniquely Eq. (38)

to get the intensity distribution on the source, I,).

2 4

,i c ) -.p w . (39):-' -: -- -

IP= - -



VII. SPATIAL AVERAGING

Let us rewrite Eq. (38) in a position-vector notation for the

spatial coordinates so that

4. 00

I(P-T) I( 2 ,T) = - "  Hp c) w
(cr' 4P=0+ W-O=C0

(40)1if k
x ICEw) expC-i 7 E-d dE

where

d Cxl-x 2 ) ( x (y1 -Y2 ) j , (41)

and

= + (42)

By observing Eq. (40) one can define

I(P1 ;T) I(P2 ;T) C(PIP 2 ;T) = Cd;T) . (43)

It is thus obvious that the two-point intensity correlation for the

ideal case of noiseless imaging is spatially dependent only on the co-

ordinate difference in the far field. This property of Eq. (40) reflects

its intrinsic spatial stationarity, indicating that the global dependence

is absent. If noise introduced in the imaging process is independent of

the source character, then it will be spatial in character and related to

atmospheric turbulence or detector limitations. Averaging the function

of Eq. (40) over an area woulA increase the signal-to-noise ratio, the

area of sufficient size being determined by the correlation interval of

the noise statistics. I25
a-I



iili I
Averaging Eq. (40) over an area A simply, then, multiplies the

two-point correlation by a factor Ao giving

4 I

I i;T) IC 2;T) > spatial average = < C(d;T) > A

A0

i

- I 1(p)sinc2 (pT) dpo 4 dw f I(_,w) exp(-ik  -dd 2I
4 -

• - ~(cr) 4

p=O+ W=0 - (44)

VIII. SUWMARY AND CONCLUSIONS

Using a methodology of Marchand and Wolf as a starting point, we

have developed an expression for the two-point intensity correlation in

* the far field, independent of time averaging except for the temporal

resolution of the detector. This result is derived for narrow-band, high-

intensity light scattered from a spatially-rough surface.

To illustrate the above ideas, we wish to de. cribe a simple experi-

ment which embodies these mathematical ideas. Using a helium-neon laser

in a single-axial-mode configuration, a symmetrical source is transil-

iX luminated. The source has a random-phase character to obtain spatial

incoherence. The far-zone intensity pattern is then recorded by film

using an exposure time less than the reciprocal of the source

bandwidth. 1 7 This insures that the phase of the beat frequency is

recorded.

Next, the film is developed so that it is linear in intensity and 9

used to make two identical positive transparencies. The positives are

then placed in a coilimatee. beam, forming the correlated intensity over

an averaging area, A . The signal transmitted by the transparency pair
0is optically Fourier transformed, a dc block inserted to remove the un-

wanted average term, and the total remaining irradiance measured. This j
signal represents the mathematical expression given by Eq. (44) for the

26
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transparency spatial lag, d. Since the source is known, a priori, to be

symmetrical, the transform of Eq. (44) is pure real. The square root of
I

the correlation .ignal is proportional to the spectrum which is then

known as a function of spatial lag d. Finally, this one dimensional

signal is Fourier transformed by machine to give the scaled source

irradiance,

We have therefore shown that, kiven a symmetrical, spatially

incoherent source illuminated by high-intensity light, the far-zone

intensity pattern can be used to form the optical image of the source if

the signal is recorded with suffj ciently-short time resolution.

APPENDIX

We argue heuristically that the form of Eq. (33) for arbitrary S

% - ;P) approaches a condition expressed by one form of the

Riemann-Lebesgue theorem which asserts that

b

lim F(x) cos(kx) dx =0. (Al)

a 4

Here, the terms on the right-hand side of Eq. (33), independent of 4
- 2 ;p), assume the role of F(x), while cos (kx) is represented by _

terms dependent on - -2 ;p). Taking the limit in Eq. (AI) in this 3

context implies a surface roughness of arbitrarily small scale and that

the energy will be radiated at these very small spatial frequencies.

These waves, though, are evanescent and do not transfer any energy. N
19This kind of contradiction is discussed by Beran and Parrent and can

arise similarly when the constraint of extreme spatial incoherence is

expressed in the form of a delta function of coordinate differences and

interpreted in a strict sense. On the basis of the limit implied by

Eq. (Al), we infer that the dominant terms of Eq. (33) are those for

which the phase variation is a minimm.
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This similarity to second-order spatial incoherence can be realized j
by a physical argument. If we consider the imaging of a spatially-rough

surface illminatf 4 1y perfectly monochromatic light under the condition

that the surface s ,ufficiently large to be composed of many independent

scatterers, we - see that the light waves from each scatterer will be

ncorrelated at a point at the receiver by virtue of the random phase

introduced at the source. Further, the intensity at this detector point E

will simply be tfhe sum of the squares of the individual field contribu- I
tions at that point. It should then seem reasonable that if we set up j
a similar situation of random-phase addition in difference-frequency i
space, the incoherent addition of intensities should hold as well, without

appealing to the approach of extending an average over a time history of

temporal fluctuations.
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