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INTENSITY INTERFEROMETRY IN THE SPATIAL DOMAIN

ALSTRACY

intensity interfeirometiry, 2s developed by Hanbury Brown and fwiss
for steliar observation, has showr relative inseusitivity to atmospheric
scintillation. However, with classical sources, the limitations placed
on this technigue by quantum noise and detector efficiency are somewhat
severe. This situatrion is vastly improved when laser illumination is
employed. Generalizing a methodology of Marchaud and Woll, the far-zonme
tehavior of the mutiual intensity fumction is derived foy an interandiate
time average. This result in used to reconstruct the irradisnce distri-
bution of &z spatially-incoherent souvrce. The Jar-{ield intensity dis-
tribution is recorded spatially for onz time-resclution umit of the de-
tector. The resulting spatial signal is cross correlated with itseif
and related o the intensity distribution over the source. Tiwus without
uveraging in the time demain, s spatial Fourier transform relation is
decived hetween the fur-field intensity correlation and the source
irradiance, similar to the -results of Hanbury Brown and Twiss.
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I. INTRODUCTION

The history of intensity interferometry is rooted in the work of
R. Hanbury Brown and R. Q. ™wiss. Their earliest investigationsl*dealt
with the praicm of resolving stellar radio sources by a technique in-
volving the correlation of the squared cutputs of two receivers. The
advantages accrued relate to the redaction of certain kinds of experi-
tental constraints as well as the comparative insensitivity of the
nethod to atmospneric snintillation.? A prelimirary coitclusion reached
at that time was that this technique of intensity <orrelatiom would not
be applicable at optical frequencies due to limitations imposed by
photon noise. However, ir later work,3 Hanbury Brown and Twiss showed
that meaningful intensity correlations could be made at optical frequen-
cies even with highly degenerate sources. The limitations placed on this
approach by quantum noise and detzactor efficiercy have been somewhat
severe, calling for highly refined experimentzi techmnique.

For laser iilumination, the situation is very different. The signal-
to-noise ratio can be typically increased by six orders of maguitude.4
However, the statistics of the source must be considered in the measure-
ment. The key to relating intensity correlations to some property in-
volving field correlations lies in the assumption of gaussian statistis,s
for which all higher moments are determined from the first and second.
Single mode lasers, though, are distinctly non-gauscian in their statis-
tics, and, therefore, cannot be described by theory framed for thermal
sources. PRut with the addition of only a few axial modes, the field

amplitude becomes nearly gaussian distributed.6

The prin:ip:l formula used by Hanbury Brown and ’Iwiss7 to infer the
diameter of a fistant source shows that the time-averaged correlation of
intensities at two points is equal to the product of a function involving

*Refenances may be found ¢n page 29.
7 Preceding page biank
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. with each other at the detector. Assuming the detector has sufficient

——

4

the temporal characteristics of the source with the square of the spatial
Fourier transform of the source intensity distribution. If the intent of
an intensity correlation experiment is to gain information concerning the
source intensity distribution, then the source temporal statistics may be
of little interest in themselves. Their consideration is necessary if
the product-output of the detectors is averaged in the time domain (as
it nearly always is) to overcome the limitations imposed by photon and

detector noise and possibly reduce scintillation effects produced by
transmission in the atmosphere.
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Intensity interferometry can be understood as a two-point corre-
lation of intensities following the squaring of the electric field at
the detector. If the source is quasi-monochromatic, each differential
element on the object emits a number of temporal modes which interfere 3

O S S S0 g b Rt 0

Y

speed8 to detect these beat frequencies, it is the amplitude and phase

of the incoming intensity envelope which is utilized. It is then commonly
argued that the random fluctuations in the temporal statistics from dif-
ferent points of the source cause the beat frequencies from each source
point to add on-the-average incoherently at the detector. The time-
averaged intensity correlation is then proportional tc the squared

spatial Fourier transform of the source intensity. This approach results

&t 4.‘(“.:.\,:."%:54‘. o

iy
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in essentially a squared version of the Van Cittert-Zernike theorem.g

We wish to argue that the requirement of surface roughness at the
source (to assure spatial incoherence) is sufficient to guarantee the
inccherent addition of beat frequencies at the intensity detectors.
Thus if temporal noise (photon noise, time-dependent detector noise) is
largely absent in a local spatial sense, as might be the case with a
multi-axial mode laser used with photographic detection, then the inten-
sity information might be gathered during one resolution time of the
detector over a plane section normal to the direction of light propa-
gation. Any noise arising in the process would be spatial in nature,
and might be averaged out by taking a sufficiently large area of spatial
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correlation. The reduction of atmospheric spatial noise would be similar
to a process known as aperture averaging.m Film-grain noise would be
ex{remely well averaged due to the relatively large area of averaging.

The relative insensitivity of intensity interferometry to turbulence
is due to the assumed dispersionless nature of the propagation medium.
' Since each tempora: Ffrequency sees the same refractive index, the dif-
ferential (beat) frequencies remain wchanged. However, the spatial
Fourier transform relation between the source and the far-field scales
as the average frequency, not the beat frequency, end thus tke resolurion
afforded by optical frequencies is maintained.

The concept of examining spatial beat frequencies of seccnd-order
correlation is, uf course, not new. Many classical fieid-correlation
interferometers, x5 well as holographic experiments, are built on this

principle involving a spatial or time lag between interfering beams of

4 gAY W P I bt M A LAl ot AN i ot £ Wb 4 NGNS L i

the same source. More difficult is the spatial recording of beats from
11

two independent sources as demonstrated by Magyar and Mandel.

We have examinec the problem of relating far-field spatial intensity

{fourth-order) correlations to the intensity distribution of the source, ;

without here considering the limitations due to noise. Our apprcach has

peen completely classical, drawing on a straightforward genmeralization

12 L
Jur notation is ;

of a methodology given recently by Marchand and Woif,

similar and we follow closely their development through their Eq. (35).

II. THE INTERMEDIATE-AVERAGE MUTUAL COHERENCE FUNCTION

For a stationary scalar wave field, the mutual coherence function

for the correlation of two space-time points is often written

T

= ._1. * - y

P(PI,PZ,T,T) = 2T f VT(Plst"'T) VT(pzst) dt, (1)
-T

vhere the limits for the time integration are allowed to approach infi-
nity. For this case, how2ver, we wish to keep the parameter T finite,

iy
"
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S
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and by the subscrupts indicate that we assume a knowledge of VT(Pl,t_ﬂ-)
and V;(l“z,t) only over the finite sample length 2T. We wish to call
P{?I,Pz,t,‘l‘) the intermediate-average mutual coherence function and
carefully stress that, for arbitrary T or shift of origin, it may bzar
little resemblance to the mutual coherence function defined by the
ensemble average.

Following Ref. 12, we represent V(P,t) as the temporal Fourier
transform of the complex analytic signal

Vo(P,t) = I Vp(P,0) exp(-iwt) dv, for 0< [t|<T (2a)
0
and
® T
VT(P,m) = I VT(P,t) exp(iot) dt. (2b)
-T

Substituting Eq. (2a) into Eq. (1), interchanging the order of integra-
tion and time sveraging and performing the time integration, we get

P(F).P,.1,T) = H Wp(P)Pys0p50,) exp(-iw 7} sincl (u)-0,)T] dujdu,, (3)
0

where

. sin x
sinc x z 32X

(4)

and the function

. *
"T(Pltpzsulamz) = VT(Pl’wl) VTCPZ’MZ)’




and the subscript T here and later implies a function based on the elec- -
tric field statistics only for the particular sample 2T in length about
the origin. The sinc function of Eq. (3) assumes the role of a low-pass
filter. It T is very small, the two frequency variables of Eq. (3) are
essentially independent and all cross terms are represented in the pro-
duct of Eq. {5). These cross terms form a high-frequency spectral con-
tent. However, as T tends to infinity, the sinc function assumes the
role of a delta function, constraining correlation to occur only between
identical frequencies in the transform product and forcing the integral
to a cne-dimensional form. In the limit uf large T, the filtered spec-
trum of Eq. (3) becomes the mean square value (dc) of each temporal
frequency component in the signal.

Following Marchand and Wolf1 2 and the earlier lead of Walther,lz

VT(P,w) is represented in the form of an angular (spatial) spectrum of

R LI O T TR

e

plane waves in Cartesian coordinates where

TR Y S

Vo (P,w) = H a,.(p,q,w) explik(px+qy+mz) dpdq, (6)
m=1-p2-AHY? irpleql< (7a)

=i+ q?- Y% iep? e, (7)

and 3
k = w/c, (8)

where ¢ is the vacuum velocity of light. Equation (6) indicates that
VT(P,w) is formed by a superposition of homogeneous spatial waves propa- . o=
gating in the half space 2z > 0 for the criterion expressed by Eq. (7a) EOE
and a set of evanescent wzaves propagating parallel to the plane z = 0 :
for the case described by Eq. (7b).

11 E




Expressing Eq. (5) in the form of the angular spectrum of plane
waves defined by Eq. (6) we get

x exp[ik, (@,x; + q;y; + m,;2,)] ©

x exp['ikz(pzxz + quZ + .222)] dpl‘lldPZ&IZ’

(P;943P,50,50,,0,) = 2 (Py,q,30,) an(P,,q,5w,). (10)
1°91°P2299301505) = 3,(Py.q,30,) a.(P,.q,59,

Using Eq. (9), therefore, the intermediate-average mutual coherence
function of Eq. (3) can be written

I‘(Pl,Pz,r,T) = exp(-iml'r) sinc[m1 - wz)'l‘] dmldmz

i I ” Ap(Py,9;35P550y50150,)

* explik, (%) + a7y * myz))]

* exp[-ik; (pyx, + 4575 * By7pi] dpyda;dp,day.

If T is allowed to approach infinity, the limiting form of the sinc
function forces W) = 0, and the intermediate-average mutual coherence
function clearly reduces to the form of Eq. (13) of Ref. 12 by the
elimination of one of the time-frequency integrals.

12




III. THE ANGULAR CORRELATION FUNCTION AND OTHER SPATIAL CORRELATION
FUNCTIONS

The cross-spectral density function KT{PI,PZ;wl,mz) is now expressed
as a four-dimensional spatial Fourier integral as

Wo(X15Y 15293%,)5Y552550)5u,) = IJI! Ro(£).8,32,555,8,37,50,,0,)

(12)
x exp[i(flx1 *gpyy fzx2 + gzyz)] dfldgldfzdgz.
Equation (9) with Eq. (12) therefore implies
Py s Q3P sl 5050 = ¥12Ko2 W (K Py 5K Q2 3-KoPos-KoQs3Z, 50y »00,)
Ap(Py»0y5Pps0p50g50p) = ¥y Ky Wyl Py ok a)525-koPys-ky0p325 50y 50y
(13)

x exp[-i(km 2z, - k,myz,)],

]

and specifically if z z, = 0, .Eq. (13) becomes

1

b LR

5
ch

. . k%% .0:< - .0:
Ap(P12a15Po50z30105) = Ky Ky WplkyPy kg4, 505-koPys-k2p3050;05) - (14)

S

Equation (14) indicates that the angular correlation function
A.r(pl,ql;pz,qz ;“’1""2) and the four-dimensional spatial Fourier transform
of the cross-spectral density function are related at the plane z = 0 if
£ =k 8 = kqp, £ = -kpy, and gy = -kyq,.

Further, the spatial transform of the time spectrum of the field
can be represented by

Vo (X,¥,250) = !f .GT(f,g;z;w) exp[i(fx+gy)] dfdg. (15)

13 . 3
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Comparison of Eqs. (15) and (6) indicates

ar(@,q;0) = k2 Vo (kp,kq,z,0) exp(-iknz). (16)

Using Eq. (16) in Eq. (1)) gives

2 -~
Ap(P):943Py,9505u,) = klzkz vp(kypy ok 84,2550))

R N i e Sk

=

iz S5

X

A .
VT (kzpz ’kzqz ’ 22 xwz) an

E xexpl-i(km 2, - kymyz,)].
£ The inter =diate-average spatial correlation function is defined

oo
R

- . Ak
vp(kpy-kyay,24500) volkopysk,q,,2)50,)

[Fre——— T

Bt

i

Vp(kyPyokqay305k,9p,,K,0530, 50, ,0,)

febdids

(18b)

A0

0 bt i LR
g3; sttt A

~

exp[i(klmlz1 - kzmzzz)} s

s

where the product form of Eq. (18} is implied by the independence of

the left side of Eq. (17) on 2, and 2 If we set z, =z, =0, Egs. (17)

W bbb b g
il A s

=
=

>=
==
ey

=

5 2 1 %2
3 and (18) imply

: . 0. .w.) = 2 0 . \
Ap(Ryay3Pysdinpsay) = ky'ky" Vplkypyokjayi0ikyy k 0y, 050y, (19)

itk e
R

Finally using Eqs. (14) and (19), we find

VT(fl’gi,;O;fZ’gz;();ml""z) = ﬁT(f1:21;°;°f2:‘gz;o;ul;wz) . (20)
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Thus the relationshivs between the angular corrslation function and the
cross-spectral density function are established by Eq. (14) and the
angular correlation function and the spatial frequency correlation
function by Eq. (19) for the case of intermediate time averaging.

IV, THE INTERMEDIATE-AVERAGE CORRELATION FUNCTION IN THE FAR FIELD

Now the form of the cross-spectral density function is examined in

the far field. Defining r, = (x FZ + yn2 +z nz) 1/ 2, we seek the asymp-

totic forms for the case of Pl and P2 terding to infinity in the paths

indicated by the direction cosines

L Y, 4 nd X N0y
2 b » b .
l'2 1‘2 1'2 Y 1 rl rl

Rewriting Eq. (9) using the definition of Eq. (10), we have

0

Wo(P)oPys5u,,0,) = ff ap(py,qy50;) expliky (pyx; + q;y; + myz,)] dp,dq

(21)

[

* - -
x [J ap(Py,0y50,) expl-ik, (pyx, + q,y, + m,z,) dp,dg, .

As klrl + = and k?r2 + o, the asymptotic form cf the two-dimensirnal
integrals is given by Miyamoto and !\’olfl4 as

2 e v X y
) L (2n 1 71,72 ‘2
Wp(PyoPosog,0)) = {;Ei“ costy costy Ay 50T, 30y,0,)
oo (22)
§ exp(i (}clr1 kzrz) ].
2
rlrz
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where

z, z,
— = cose]L ? == cosa2 (23)
1 2

and use of Eq. (10) has been made. Finally if Eq. (22) is substituted
into Eq. (3), we get for the intermediate-average mutual coherence

b ,“,,\M al :v&y:}# AT m"fw ik W

function
_ P(PI,PZ,T,T) = [! e@(-lwlr) SIHC[ (w]. - UZ)T] dwldwz
2 exp[i(k,r, - k,r.)]
x cos0, cosé (24)
klkz ! ? rlrz
A
5 . x y X, y
= 1 1 2 2
= b ., =, =, = w,w).
- TR R

In addition, because of the relationship given earlier relating the angu-
lai cosrelaticn function to the cross-spectral density and the spatial-

frequency functions (Eqs. (14) and (19)), Eq. (22) can be written in the
fellowing forms:

="
>
>
*
%
£
¥
&

k. 2 expli(k;r, - k,1,)]
3 ; WT(PI,PZ,wl,mz) N 4n cose1 cose2 klk2 T,
] (25a)
k.x k.y k,x k,y
~ 171 171 272 2’2
x W.( s —— ;0 ; - > = 3 05 wy,w,)
T r1 rl rz 1'2 1272
expfik,r, - k,1,)]
2 171 2°2
= 4x% cose1 <:ose2 klkz rlrz
‘ {25b)
x y x, y
1 ) . 2 2.
"%“‘1’1’{"‘1?1" 05k T, » ky Z 305 wyuy).
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Equations (25a) and (25b) caa also be used in Eq. (3) to provide alter-
nate forms of Eq. (24). Equations (24) and (25) form the modified
version of the forms given in Ref. 12, Eqs. (33) through (35). Using
these results, we are now in a position to form the self-intensity

function in the far field. ’

V. THE SELF-INTENSITY FUNCTION IN THE FAR FIELD

We now examine the form of the self-intensity in the far field by
letting points P1 = P2 = P and then letting the time delay, t, be zero.
Under these conditions, the mutual coherence function reduces to the
.«seli"-intens:'n:y,15 and, using Eq. (25b) in Eq. (3) and the definition

given in Eq. (18a), we have

m w,w, explik, - k,)r]
I(P,T) = 4r° cos®e || du du, —=> L 2" Sinc[(u, - w)T]
172 2 2 1 2
c T
0
(26)
v (. X X.o: "yl X Y.o - =
xvplly 3o ¥y 73 050p) vplky T Ry 75 0 5wp) 3
where, as indicated earlier, the sinc function acts to suppress temporal %
firequencies in the cross spectrum higher than ~ 1/(2T) Hz. We now uti- 2
lize the linear transformation of the time frequency veriables (for 5
which the Jacobian is wmity) defined by
w, -w, =p and i]5-'.’“)2=t;. 27 ;
p 7oy 7 = E
= Writing the w variables in terms of these center-of-mass coordinates :
we get
20 + 20 - z
1 =5 F amd e, =FHE, (28)
- u;g
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which when substituted into Eq. (26) gives

2 -] o
(-z—“ cosze [ do 02 [ sinc(pT) exp{ipr/c) dp

o=0 = w0

I(P,T)

f

x

s (O*pf2 x o+pf2y . . |
Vo 3 T 550 c*e/2) (29)

ex 0-p/2 X ©0-p/2y . . __
VT( c r’ c r’olop/Z))

X

where the dependence of the amplitude on the difference-frequency co-
ordinate, p, has been dropped since for quasimcnochromatic radiation

o >> |p2/4| .

Now using the defining transform reiation of Eq. (15), we write the
spatial correlation function at the source (z=0) where

s O/2 x o+p/2y . . . 2e 0-p/2 x O-pf2y | . .
VT( P r°? P r’ 0; G*p/Z) VT( c T ° c T’ 0 0'-()/2)

1 H” vT(El,nl; 0 ; o+p/2) v;(sz,nz; G ; o-p/2) (20)

" 2m)?

. 2 . 0-5/2
«em[-1E2 ¢ X n b)) em[i@ 2, £+ 0, D] asyae,0n dn,.
Now the intermediate-average spatiai-correlation function,

*
vp(Eyanys 0 5 040/2) vo(E,0m,y5 0 5 0-p/2)

when considered with the filtering action of the sinc function of Eq.(29)
will have an effective contribution only for the low frequency components

formed by the difference-frequency terms ~ 1/(2T) Hz or less.
18
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In addition, we assume the mode popuiation to be a slowliy-varying
function of g, since o >> pf2 and thus we write

*
[VT(EI.nl,O;O"D/z) vT(EZ’n2‘Q;°-p/2)]IO’W freq.

= A(E,.nl;o*p/«?) A(Ez.n2;0-a/2) e:tp§i¢(€1 =550 ~Nyip)

A(g;,0) A(E,,0) Hp) expli¢iz, -£,i0)],

1 for A(E;o%p/2) # 0
k(p) = :
 othervise.

Equation (31) acknowledges the loss of the cptical-frequency phase,
while maintaining the phase of the intensity envelope formed Ly temvoral
beat modes. The degree to which the phase of this envelope is detected
depends on the bandwidth of tho source and the detector res¢lution, 2T.

Essenticlly, thzze arguments ware made by Hanbury Brown and '!‘t:iss16
except fur the defining of the H function. Its introdaction is bxcught
about hy the description of narrcw-band sources by terms in A{g,q). For
a thermal source of relatively large bandwidth, the maximm difference
p xiil extond far beyond the temyoral-frequency izsponse of the system
(here reflectsd in the sinc lemm of E3. (24)) and be continuous as well.
But for 2 lasor source exxibiting a series of axial medes, the complete
differvnce~frequency Jdoma:n might lie entirely within the system response
bt be pirce-wise coatinwus in its extent.

Relative to the representatiuvn of the intermediate-averags by the
form cf Eq. (31), we wish t0 reiterate a stztement made following Eq.(1)
that the intermediate-averaging process may tear little n.semblance to
the infin:.te tiwe averagz, evel. so far as ihe deteil ¢l the amjitude
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texwe, A(£,0). This situation would be serious if our intent were to
infer, for example, the time-frequency statistics of the source. But in.
the present concept, we desire only to infer the spatial properties of
the source. If we consider a multi-axial-mode laser beam scattered from
a spatially-rough surface, the lack of correspondence between the two
average is unimportant, for 21l such mode history is integrate< sut; ail
areas of the scatterer see the same mode characteristics. Any mode
fluctuation would be seen simply as a variation in total received power
from one sample to the next. Here, we simply require for one detector-
resolution time over a spatial domain that the process of Eq. (31) ex-
hibit a minimum of two temporal modes (to maintain the phase term

¢(§1 - 5_2,;)) with sufficient mode population (reflected in the amplitude
terms A(E,0)) such that quantum noise in both the carrier wave and the
detector cax be ignored.

Using the results of Eq. (31) in Eq. (29) and taking o << 1, we
write

2 o0 o0
1(P,T) = (-cl' f o do f dp exp(iox/c) sinc(pT) H(p)
0 -0
< [[[] ey ngp) emntg, - g, 2 L@

-0

x orp [ @2 i

We now have the self intensity in the far field expressed as a double
jntegral >ver sum- and difference-frequency components as well as two,
txo-dimensional spatiai Fourier transforms over the source. We will
next use it to form the fourth-order correlation function.

Xy Y] exoli G242 6. X :'_]
A T + "1 r)] ex? 1( c )(Ez T 4 712 r} dgldEZdnldnz'
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VI. FOURTH-ORDER INTENSITY (ORRELATION IN THE FAR FIELD

Ysing Eq. (32), the iatemsity correlation between points P1 and P2
in the far field can be written

R

[

1 (PI;T)_ Pe I (PZ;T)

=t y I o2 doj at? gt J dp f do' sinc(pT) sinc(p'T) H(p)H(p")
0 0 - e

X

MTI1] 7 Aty At acg ot

x y
{cos [¢(§1—£2;p) + $(5"-E,"30") + (9=£L2. 912) (s, ?1_.-. n, rl)

x

+

- y X y
@22y e 2y 2y L @ Lan 4+ X )
(33)

c+p '/2 x2 . Y2
- e Sy -;)]

- X y
+ COS[(b@l—éz;p) $L€1 ‘_§_ ‘ip') ¥ (9‘%&) (52 r_l +n, ?1')

o'-p'/2. b4 y
LRy (g 2 B - @2 Ll Y

r o'+p'/2 X 73  van
s £ Gmpy « B LY (g 2 enp B} g de ragyde, tandn tdnyday !

where use has been made of the trigonometric identity

2 cos{a)cos b} = cos{ath) + cos(a-b).
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We now investigate the phase variation in the above terms. In order
to develop the condition of spatial incoherence, we demand that the source
surface be spatially rough, specifically that phase changes of 7 occur
n 10'6 m across its extent. Next we make an order of magnitude calcula-
tion of the size of the term g.'_‘::/l (%) £ oxg Choosing some approx-

cr
imate valués, %= %1 ~ 107 m"l, X% Im, T 10* m, we find
%’-;-'b 103 m-l. Letting n = 103 £ implies £ must move through m x 10'3 m
to get w change.
Thus the phase terms of Eq. (33) describing the source spatial
roughness have a spatial rate of oscillation of about 103 greater than

the remaining terms. On the basis of a somewhat heuristic argument
given in the Appendix, we assert that the dominant terms of Eq. (33) are
those for which the phase variation is a minimum.

Upon examining Eq. (33), we note that in the first cosine argument,
the random phase terms add and thus there is no choice of £ or p terms
which will slocw the phase. Turning to the second cosine expression, we
see that there are two general cases for which the phase variation is a
minimum. The first is the familiar one for which the parameter p is
equal to zero. This corresponds to the normal "nfinite-time average
situation. For this case we set § =5 and g'= g’ with the
result that all the source-spatial information collapses in the cosine
argument. This is the nrormal dc-intensity term in the far field. For
convenience, we will suppress this term in following expressions. For
p # 0, the minimum phase can be achieved by removing the primes of
Eq. (33), halving the number of integrals to give

@« [ J

1
(cr)

Re I(PI;T) Re I(PZ;T) =

n ! ot do [ dp sincZ(eT) H(p>
o=0 p=0+

=
3
)
3
%
£
%
E
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A (51:6) A (_2’0) cosg( ) [Ez(x 'xz) + nz(yl Y2)] (34)

« €2 (g, (x,7x,) + nl()'l-)'zll§ dE At dn dn,y -
The cosine expression of Eq. (34) can be written
cos;(o 0/2) [, (x;-%,) + n, ;7)) - E2 [ (x-x,) + ny(7,7,)]
T i?:% [(5,-8)) (x=x;) + (nymng) 0)Y))] (35)

= E;Lr [(El+€2) (xl’xz) + (nz*nl) (yl-yz)] >

which is in the form of the identity
cos (a-b)} = cos a cos b + sin asin b. 4 (36)

If the angular size of the source is small, b is much less than unity,

ensuring that we can write, as did Hanbury Brown and 'I\v:iss,16

cos (a-b) = cos (a) . (37N

Using Eq. (37), we write finally Eq. (34), expressing the two-point
intensity correlation in the far field of a spatially incoherent source,

as: . © @
IP;T) I@,T) = —i [ of do [ H(p) sinc’(eT) do
(cr) w=0 =0+
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II I(_E_z:m) exP{‘i% [62 (xl"xz) + nz (}'1')'2)] } dgzdnz (383)

X

o
*

” I(g,,0) exp{-'% [é:lfxl-xz) + “1("1"'2)]} dg,dn,

X

(c1) p=0+ =0 (38b)

. @

| ” I(g,0) exp {i% [z(xl-xz) + n(yl-yz)]}dsdn

X

b4

where the mean intensity has been suppressed.

If the source time-frequency characteristics of the source are such
that p is continuous over the domain for which si.nc2 (oT) is essentially
nonzero, then H(p) = 1 for all p and then the difference-frequency term

can be integrated easily to give

I sinc?(oT) dp = n/(2T). (39)
p=0+

It is evident from Eq. (38b) that the two-point intensity corre-
lation in the far field is proportional to the modulus of the spatial
Fourier transform across a spatially-rough source. Only for the case
that the intensity distribution on the source is pure even can the phase
of the spatial transform be inferred and used to invert uniquely Eq. (38)
to get the intensity distribution on the source, I({,u).
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VII. SPATIAL AVERAGING

Let us rewrite Eq. (38) in a position-vector notation for the
spatial coordinates so that

ST T PN NN PR

o« o

I(,.T} 1@,,T) = —— [ H(p) sinc?(oT) I ot du

() <

«©

2
x I I(g,u) exp(-i & £-d) d_s_{ , E

A A AR Sk £ 20 BB Yt O30 s LA

where

Tk Dol 1

"
5

d= (xx) i+ Oy, 3, (41

and

g£=¢gl+nj . (42)
By observing Eq. (40) one can define
I(2;5T) I(B,5T) = C(2y,Py5T) = C(&T) . (43)

It is thus obvious that the two-point intensity correlation for the
ideal case of noiseless imaging is spatially dependent only on the co-
ordinate difference in the far field. This property of Eq. (40) reflects
its intrinsic spatial stationarity, indicating that the global dependence
is absent. If noise introduced in the imaging process is independent of
the source character, then it will be spatial ia character and related to
atmospheric turbulence or detector limitations. Averaging the function
of Eq. (40) over an area woul® increase the signal-to-noise ratio, the
area of sufficient size being determined by the correlation interval of
the ncise statistics.
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Averaging Eq. (40) over an area Ao simply, then, multiplies the
two-point correlation by a factor Ao giving

< 1@1;1‘) IQZ;T) > spatial average < C&m > A,

Ao 2 4 k
) J H(p)sinc” (pT) dpf w dw I I(E,w) exp(-i;_g_-g_) d

(cn)” Lo w0 - (44)

2

VIII. SUMMARY AND CONCLUSIONS

Using a methodology of Marchand and Wolf as a starting point, we
have developed an expression for the two-point intensity correlation in
the far field, independent of time averaging except for the temporal

resolution of the detector. This result is derived for narrow-band, high-

intensity light scattered from a spatially-rough surface.

To illustrate the above ideas, we wish to describe a simple experi-
ment which embodies these mathematical ideas. Using a helium-neon laser
in a single-axial-mode configuration, a symmetrical source is transil-
luminated. The source has a random-phase character to obtain spatial
incoherence. The far-zone intensity pattern is then recorded by film
using an exposure time less than the reciprocal of the source
bandwidth.l? This insures that the phase of the beat frequency is
recorded.

Next, the film is developed so that it is linear in intensity and
used to make two identical positive transparencies. The positives are
then placed in a coilimatec beam, forming the correlated intensity over
an averaging area, Ao. The signal transmitted by the transparency pair
is optically Fourier transformed, a dc block inserted to remove the un-
wanted average term, and the total remaininy irradiance measured. This
signal represents the mathematical expression given by Eq. (44) for the

26
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transparency spatial lag, d. Since the source is known, a priori, to be
symmetrical, the transform of Eq. (44) is pure real. The square root of
the correlation zignal is proportional to the spectrum which is then
known as a finction of spatial lag d. Finally, this one dimensional
signal is Fourier transformed by machine to give the scaled source
irradiance.

We have therefore shown that, given a symmetrical, spatially
incoherent source illuminated by high-intensity light, the far-zone
intensity pattern can be used to form the optical image of the source if
the signal is recorded with sufficiently-short time resolution.

APPENDIX

We argue heuristically that the form of Eq. (33) for arbitrary
$(g, - &, ;p) approaches a condition expressed by one form of the

Riemann-Lebesgue theoremls which asserts that )
b
lim I F{x) cos(kx) dx = 0 . (A1)
k+o

Here, the terms on the right-hand side of Eq. (33), independent of
#(E; - §,ip), assume the role of F(x), while cos(kx) is represented by
terms dependent on ¢(§1 - gz;p). Taking the limit in Eq. (Al) in this
context implies a surface roughness of arbitrarily small scale and that
the energy will be radiated at these very small spatial frequencies.
These waves, though, are evanescent and do not transfer any energy.
This kind of contradiction is discussed by Beran and Parrentlg and can
arise similarly when the constraint of extreme spatial incoherence is
expressed ia the form of a delta function of coordinate differences and
interpreted in a strict sense. On the basis of the limit implied by
Eq. (A1), we infer that the dominant terms of Eq. (33) are those for
which the phase variation is a minimum.
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This similarity to second-order spatial incoherence can be realized
by a physical argument. If we consider the imaging of 3 spatially-rough
surface illuminate ! »y perfectly monochromatic light under the condition
that the surface 5 ,ufficiently large to be composed of many independent
scatterers, we . - see that the light waves from each scatterer will be
uncorrelated at a point at the receiver by virtue of the random phase
introduced at the source. Further, the intensity at this detector point
will simply be the sum of the squares of the individual field contribu-
tions at that point. It should then seem reasonable “that if we set up
a similar situation of random-phase addition in difference-frequency
space, the incoherent addition of intensities should hold as well, without

appealing to the approach of extending an average over a time history of
teaporal fluctuations.
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