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ABSTRACT
The UH~1H helicopter test bed program was accomplished at the U. S.
Army Aeronautical Depot Maintenance C:uter (ARADMAC), Corpus Christi,
Texas, during the perlod 4 October 1970 through 17 December 1971. The
program objective was to determine the capability of state-of-the-art
hardware to automatically accomplish inspection, diagnostic and prog-
nostic maintenance functions on selected subsystems of the UH-1H
helicopter. Northrop's hardware for the program is identified as a
Maintenance Reporting System (MRS). Helicopter components, both
serviceable and degraded, were run and monitored for malfunction dis-
crimination by the MRS in ARADMAC test cells and in two UH-1H aircraft.
Trending for prognosis was aitempted while accumulating £f1.zht time on
two additional UH-1H aircraft utilizing serviceable corzonents. The

test results demonstrated the objectives of the test ©u:d program.




FOREWORD

The UH-1 Helicopter Test Bed Program was conducted for the US Army Aviation
Systems Command under a contract (No. DAAJ01-70-C-0828(P3L) with the Northrop
Corporation Electronics Division. This program is a sub-element of the
Department of the Army RD&E project (1F164204DC3201) to develop an Automatic
Inspection, Diagnostic and Proguostic System (AIDAPS) for Army aircraft. The
overall program is in response to a Qualitative Materiel Requirement for an
AIDAPS which was approved by DA in October 1967,

GOVERNMENT ASSESSMENT OF PHASE E VEKIFICATION TEST

1 * Volume II of this report documents the accomplishments under Phase E of the
program., Phase E was a teat of the Accuracy and Repeatabiliity of the Northrop
equipment. Page 2-4 of the report summarizc. Northrop's diagnoses of the heli-
copter components (both serviceable or good and aegraded or bad) which were
implanted by the Government in the UH-1H aircraft. The table below lists the
actual conditions cf the test components implanted in the UH-1H aircraft moni-
tored by Northrop:

RN

Conditions Date Engine Transmission 90° Gear Box 42° Gear Box
1 19 Nov 71 Bad Bad Bad Bad*
1 2 24 Nov 71 Bad Bad Bad Bad
L 3 3 Dec 71 Good Bad Good Bad
4 7 Dec 71 Good Bad Good Bad
5 9 Dec 71 Good Good Good Bad
6 10 Dec 71 Good Good Good Bad
7 14 Dec 71 Good Good Bad* Good
8 16 Dec 71 Good Good Bad Good

*The component conditions noted with an asterick (above) were revealed to the
Contractor prior to his final analysis and are not included in the percentage
scores shown telow, The remaining compunent conditions had not previously
been identified to the Contractor.

Northrop was required by contract to determine "good" components from "bad"
] components as implanted in the aircraft. They chose to indicate that engine
conditions 2 thru 8 were "Bad" or "degraded." Engine condition 2 was so mar-
ginal as to constitute an extreme hazard to safe flight. Engine condiition
3 thru 8 was the same engine in each case. Tiis engine was carcfully . -ected
and assembled prior to the test and was disassembled and c.refully inspacc«d
afrer the test. There was nothing found during the pre-test or post-test
inspection to indicate that the eugine was degroded. It is therefore conciuded
1 from Thase ¥ that Northrop's diagnostic equipment did not demonstrate desired
capability to differentiate between "good" and "bad" engines. The overall
diagnosis of the transmission, 90° gear box and 42° gear box was 867 accurate.

Although the Northrop cquipment did achieve objectives of the Tast Bed Program
to demonstrate state-o<-the-art capability, the foregoing results are not
satisfactory for immediate hardware implementation,

The efforts expended b the Northrop Corporation and assigned personnel were
very commendable, The above efforts and the I'nowledge accummlated will be used
in subsequent cte) 3 during development of AILDAPS.
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1.0 SUMMARY AND INTRODUCTION

This section presents highlights, including accomplishments, of the UH-1H
Helicopter Test Bed Program for an Automatic Inspection, Diagnostic and Prog-
nostic System which was conducted at the U, S, Army Aeronautical Depot Main-
tenance Center (ARADMAC), Corpus Christi, Texas from 4 October 1970 through
13 September 1971. Readers desiring more detailed information on selected
phases of the test bed program are referred to subsequent sections of this

report.

The iest bed program was accomplished by the Electronics Division of
Northrop Corporation, Palos Verdes Peninsula, California for the U, S, Army
Aviation Systems Command (AVSCOM). The objective of the program was to
determine the capability of off-the-shelf-hardware to detect UH~lH helicopter
malfunctions, isolate faulty components, and by. the use of trending techniques,

predict the life remaining in serviceable components,

1.1 MAINTENANCE REPORTING SYSTEM

Northrop's equipment for the program is identified as a Maintenance
Reporting System (MRS). It is an adaptation of Narthrop's compliete flight
safety/maintenance sys+*em (Integrated Status Reporting System) successfully
applied to the F-104 aircraft for the West German Air Force, and smaller
systems applied to numerous helicopters over the past several years. Both

these programs cover a decade of development and testing,

The design philosophy for the MRS was to incorporate the experience from
tbe previous programs, and tailor a system keyed to the critical weight,
volume, cost, maintenance significant components, and Army operational and
environmental restraints associated with the UH~1H helicopter. In accommo-
dating these considerations, the MRS possesses the following capability and

flexibility,

1. Inflight distillation and computation of pertinent maintenance data

2. Recovery of recorded data subsequent to a mission in directly usable

format at plane-side

3. Accomplishment of MRS operation and maintenance using minimum skill levels
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4, Simultaneous recording of diagnostic events, quantitative data for
trending and prognostic analysis, and maintenance related observations

by the flight crew.

5. Maximum utilization of existing aircraft signal sources
6. “All maintenance events correlated to time (occurrence and length)

The results of the design philosophy outlined above was an MRS Electronic
Unit (".U) that measures 11"x7"x6" and weighs 11 pounds. The EU is mated with
a Continuous Inflight Performance Recorder (CIPR) which measures 4.3 inches
in diameter, 5.8 inches in length, and weighs 3.5 pounds (see Figure 1-1). The
CIPR is a type classified item in the Army inventory as part of the Army
Flight Safety System. The EU and CIPR are connected by cabling to sensors
located on selected UH-1H components., Weight of the cabling and sensors
totals approximately 36 pounds. A ground piece of equipment called a Data
Recovery Unit (DRU) completes the MRS system., The DRU used for the test bed
program is identical to the unit used for the programs previously mentioned,
and although several years old, is portable and usable at the flight line.

The DRU extracts information from the CIPR magnetic tape and produces, at
plane-side, a hard copy record of the aircraft status.

The selection of _arameters for monitoring by MRS entailed an exhaustive
analysis of UH-1H maintenance problems, The problems were defined using‘

Army technical manuals, down to the individual Line Replacement Unit

(LRU) authorized for replacement by the Maintenance Allocation Chart primarily
at the organizational level of maintenance. This approach will facilitate the
implementation of the Department of the Army Logistics Offensive Program
including Maintenance Support Positive and Direct Exchange procedures, Analysis

of maintenance problems indicated the bulk of UH-JH maintenance was
expended on the engine, rotors, main transmission, drive train, and 42 and

90 degree gear boxes. The sensor selection effort for MRS was concentrated
in these major component areas. Existing aircraft signals were used to the

maximum extent possible, thus requiring the addition of only 38 new sensors.

In describing the MRS from a system viewpoint, the approach toward
monitoring of the major UH-1H subsystems includes the mechanization of

techniques asscciated with vibration, temperature, pressure and fuel flow,

1-2
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The basic mainterance system operation starts with the monitoring of signals
and sensors. After each input signal has teen conditioned intc a usable fora,
it is then gated, summed, and compared with established norms. Signals that
match a normal parameter value would be ignored and no unrecessary data
recorded, Out-of-limit parameter values are observed by the MRS and reported
as maintenance codes. The system pruvides three levels of degradation or
exceedance, as illustrated in Figure 2-1. This information is stoced on the
maintenance recorder aleng with the time of occurrence and length of time the
condition remained out of limits. Since the MRS monitors all parameters
continuously, the observation of parameter exceedance is assured, thus
eiiminating one of the major limitations of human monitors or ground-based
systems. Conversely as previously mentioned, the MRS does not record any data
if the parameters monitored remain within normal limits. In addition, the MRS
has visual indicators on the front of the Electrounics Unit which display
cumulative engine over-temperature, over-speed, and runniang time, as well as
a GO/NO-GO flag reflecting items critical to aircraft system health, an

MRS failure flag, and a NO-GO reset button.

1.2 TEST BED PROGRAM CORDUCT

The test bed program was phased as follows

1. Phase A - Adaptation and Installation Engineering
2. Phase B - Test Cell Operation

3. Phase C - Preparation for the Flight Test

4, Phase D - Flight Test

Phase A activity encompassed engineering study and analysis which permitted
finalization of parameter and signal source selection. Masses of data from
the Northrop data bank, Army sources, and the prime UH-1H airframe and engine
manufacturer were reviewed, Coordination with combat experienced operational
and logistically oriented Army aviators was effected to ensure real world inputs
to the test bed program, Visits were made to ARADMAC where detailed measurements/
schematics were made of the engine, main transmissicn, 42/90 degree gear box
test cells, and UH-1H aircraft. These measurements/schematics permitted

prefabrication of MRS cabling, and selection of test cell points where

1-4




senscrs could be emplaced. In addition, trackets and mountircg fixtures were

designed and manufactured. The total package of installation plans and drawihgs
were then submitted to AVSCOM for approval. Upon approval, the total system
was assembled, calibrated, and bench tested. -

During Phase B, the engine, =ain tramsaission, and 42/9) cegree gear
box test cells were instrumented. Calibration checks were made of the MRS

and the test cell equipment to ensure their compatibility. Baseline data cno

LGS STl

. serviceable engines, transmissions arni gear boxes were secured with the odjective -

: of establishing normal signature data. Subsequently, discrepant parts were

LA ARGt A

implanted in these compontents; i.=2,, bad compressors, quill bearings, etc.,
and a series of abnormal signature data runs were accomplished. The same major

components, plus the discrejant parts, were set aside for utilization during
the flight test phase.

THIOTR RO TY STk

Y

: Phase C was devoted to installatior. of the MRS on two UH-1H aircraft.

The initial MRS installation was completed in four days using three persgonnel.
Ground run-ups ard hover checks were accomplished to verify the compatibility
of the aircraft and the MRS. After completion of these checks, flight tests

were acr~~olished on both aircraft, and they were released for the flight phase.

Phass D was the culmination of all the detailed planning and engineering
effort, The UH-1H helicopters were used in two modes. One helicopter was
used as a trend aircraft and flown on normal Army missions without implanting
any defective compouents. The other helicopter was flown with the same
implanted discrepant parts used in the test cells. A total of 236 hours was
accumulated on the trend aircraft, and 86 hours on the one with discrepant
parts. Upon the completion of Phase D, a verification test was conducted,
This test provided for the implanting of discrepant parts in the UH-1H without
the knowledge of the contractor. A summary of the results is presented below

with additional details presented in Section 8.0,

1.3 CONCLUSIONS AND RESULTS

The MRS successfully accomplished the overall test bed objectives of
detecting UH-1H malfunctions and fault isolating defective components.

However, the duration and conduct of the flight test effort provided

1-5
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insufficient data from which prognestication of remaining component life could
be made. As demonstrated in the verification portion of Phase D, the MRS
correctly identified a substantial number of the implanted discrepant parts.
This becomes even more significart when it is realized that the majority of
the parts selected were only marginally discrepant. This is emphasized by

the fact that only a small portion of all discrepant parts operated in the

ARADMAC test cells using production test equipment exceeded cell instrumenta-
tion limits.

The areas of maximum benefit from the MRS in effective diagnoses of
component condition are obtained from the vibration spectrum analyzer and the
engine Lzalth calculator. The data derived from accelerometers monitoring the
compressor, combustion and power turbine sections of the engine, as well as
that obtained fram the main transmicsion, 42 and 90 degree gear boxes,
illustrated that bad bearings, FOD, and engine drive shaft maintenance problems
can be identified and isolated to major components. Engine performance was
assessed with not only vibration data, but also from gas flow analysis and the
engine calculator. Gas flow analysis of engines with discrepant compressors
indicated a reduction in compressor pressure ratios, increased EGI, and a loss
in computed shaft horsepower. The engine calculator provides an airborne
mechanization of selected engine parameters/equations including compressor
pressure ratio, EGT, and fuel flow, normalized against Nl’ ambient air
temperature and pressure. A comparision of gas flcw analysis and engine
calculator outputs of engines with degraded compressors, where marked
degradation/increases in CPR and EGT were obvious, continually showed corre-
lation between degradation/increases in CPR and EGT from the gas flow, and

changes in the engine calculator parameter values.

In conclusion, the UH-1H test bed program conclusively proved that the
MRS is capable of detecting helicopter malfunctions and fault isolating
discrepant LRU's, thereby unquestionably illustrating the potential cost
savings inherent in such equipment application and the desirability of

imnediately pursuing a UH-1/AH-1 development program.
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2.0 PROGRAM APPROACH

Northrop's approach to the UH-iH Test Bed Program was selected with
consideration given tou the stated Army objective for exploratory development
prujects; that is, providing solutions to military hardware problem areas,

and tu the viiique operational and logistical problems encountered by the

Army on the battlefield.

These considerations introduced many of the procedures and techniques
into a test bed program, normally addressed only in a concurrent Engineering/
Service Test of Army equipment. The Maintenance Reporting System is a simple
syslem, which was substantiated by the fact that the MRS was operated numerous
Limes during the program by Army UH-1H crew chiefs with minimum skill levels.
Plannirg for data recovery was tailored so as to support Army operational and
logistical requirements, thus pemmitting data recovery in a usable format within
three minutes after landing, at planeside. Additional considerations keyed to

exploratory development objectives and Army operational and logistical proced-

ures are presented below.

2.1 MAINTENANCE PHILOSOPHY

The basic maintenance philcscphy adopted by Northrop for the test bed
program was derived by personal contact with Army aviation personne:, and
with one significant difference, as outlined in the Department of the Army
approved Qualitative Material Requirement for an Automatic Diagnostic and
inspection System for Army Aircraft, dated 11 October 1967. The one change
from the QMR approach is utilization of airborne equipment versus the pre-
Gominantly ground approach addressed in the QMR. In view of the tremendous
advances in the state-of-the-art since promulgation of the QMR (1967), and
the fact an airborne system tailored for Army helicopters was not available
in that vime frame, this change from the QMR approach is realistic based on

changes in technology.

2.1.1 DIAGNOSIS AND PROGNOSIS

The Maintenance Reporting System accommodates the dual requirements for
instant data readout of pertinent infermation on selected aircraft components,
for tlight line failure analysis (ulagnosis), and accumulation of relevant

statistical information for predictive fairlure analysis (prognosis).

2-1
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2.1.2 REAL TIME CALCULATIONS

A recurring problem for maintenance personnel is a malfunction of a heli-
cupter compunent in the air, which defies duplication during troubleshooting
operations subsequent (o the flight. The MRS continuously monitors selected
parameters in the air ou a real time basis to determine equipment performance

and condition.

2.1.2 RECORDING RELEVANT DATA

The trap that numerous maintenance systems have fallen into in the past
has been the genefation of reams of data which required expensive, sophisticated
equjpment and time for separation of irrelevant/relevant mainterance daca. The
Northop MRS records only relevant data based on the detection of multiple
levels of component limit exceedance. This data compression technique is
illustrated in Figure ?-1. Various levels of abnormality of operation are
establisned for monitored parameters. When the monitored signal changes to
a different limit level, this is considered an event and is recorded, along
wi.h the time of occurrence, on the maintenance recorder. As long as a para-
meter stays within this same level of abrormality, no additional data is recorded.
If a parameter continues to degrade, or improve, through additional threshold
levels, data is again recorded as these new events occur. Thus, airborme
distillation of data is automatically performed. These events (level changes)
are symptomatic of equipment jerformance and condition. They are recorded in
relation to time of occurrence and therefore relate to the degree and rate of
abnormalcy change. Levels of exceedance values for individual helicopter
components were taken from approved Army Technical Manuals for the UH-1H.
The Army aviator has not been forgotten, in that he may record observed
maintenance malfunctions on the MRS recorder by pushing the intercom button

on the cyclic stick.

2.1.4 SIMPLICITY

The point was previously made that the MRS s a simple system from a sk.ll
level viewpoint, It is equally simple from a standpoint of special tool require-
ments. The MRS can be instailed, removed, and disassembled using the tools
found in the standard Army mechanics' tool boux and/or the UH-IH Organizational

Maintenance Supplemental Set.
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At the 0S and D5 maintenance levels, a philosophy of remove and replace

as necessary will be incorporated to enable existing skill levels to continue
to operate and maintain the equipment.

2,1.5 RETROFIT

The application of Modification Work Orders (MWO) to the operational fleet
reduces aircraft availability and createe maintenance backlogs. The MRS makes ¢
maximum usage of existing sircraft signal sources, with additional sensors
added only to discriminate data and isolate the'ptoblem. Installation of the
MRS on the first UH-1H took only four days with a crew of three personnzl. h
No major modifications to the aircraft were required; only one hole had to be

drilled through the engine firewall, and three in the fuselage.

2.,1.6 COMPATIBILITY WITH MAINTENANCE CONCEPT

The MRS is compatible with the Army maintenance concept of Organizational,
Direct Support, General Support and Depot levels of maintenance. It will also
interface with the Maintenance Allocation Chart, and The Army Maintenance
Management System (TAMMS) (formerly TAERS). Two additional maintenance
functions need to be added to the Maintenance Allocation Charts; these are

diagnosis and prognosis,

Calibration requirements upon installation and periodically throughout
the life of the aircraft will be accomplished at regularly scheduled inspections
where necessary equipment and skills are available. As with the introduction
of all avionics systems into Army inventory, special test equipment will be
required at the depot level to verify system operation and facilitate fault

isolation within the MRS itself.

2.2 ADAPTED '"OFF-THE-SHELF'" HARDWARE

The basic ground rule for the test bed program was that it was an
evaluation of existing state-of-the-art autoumatic monitoring systems, adapted

as necessary for the UH-1H helicopter,

Since 1965 the Northrop Curporation has been engaged in the design,
development, and manufacture of airborne monitoring systems, as a natural
extension of its decade of work in flight safety avionics including voice

warning for Army aircraft, The fallout from this effort was the Integrated
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Status Reporting System (ISRS), which is specially applicable to tactical
aircraft. The ISRS is the integration of three major subsystems -- inflight
safety subsystem, pus:-flight mairtenance data subsystem, and a post-accident
investigation data subeystem. Application of the maintenance portion of the
ISRS, without adaption, to the UH-1H helicopter would have been an "overkill"
in terms of capabiliry, Therefcore, the ISRS was tailored specifically to the
UH-1H, with consideration given to the UH-1H's complexity, maintenance signif-
icant components, size, and weight. The outcome of this tailoring action was
the Maintenance Reporting System (MRS), which is pictured in Figure 1-1, of the

Introduction and Summary $#.tion,

2.3 TEST BED PHASE DESCRIFiION

The test bed program wz: reduced to four phases to insure continuity of
effort and attainment of spe:lfic objectives in each phase. 'Thus, a building
block approach was utilized which provided visibility throughout the test,
and achievement of the broad t..st bed goals. The phases of the program are
outlined at this point, with i»-depth discussions provided in Sections
4,0 through 7.0,

2.3.1 ADAPTATION AND INSTALLAT1L™ ENGINEERING - PHASE A

The objectives of this phase included definization and finalization of‘all
hardware elements of the program for support of the main transmission, 42 and
90 degree gearbox, and engine test cell operations, plus the flight test portion
of the test bed program at ARADMAC, Inherent in these objectives was a require-
ment to study and analyze the UH-1H helicopter regarding parameter selection,
sensor selection, signal source analysis and general equipment functional

pe-formance requirements for diagnostic and prognostic component analysis.

2.3.2 ARADMAC TEST CELL(S) - PHASE B

Phase B objectives consisted of the development of a data base of good
and bad main transmission/gearbox/engine signatures that would enhance the
probability of successful intergration and operation of the Maintenance

Reporting System in the UH-1H test bed aircraft.
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‘degradation of bearings, engine compressors, nozzles, etc,, selected for implant

2.3.3 PREPARATION FOR FLIGHT TEST - PHASE C

The objective of this phase was to provide a safe and reliable MRS
installation in the two UH-1H test bed aircraft.

2.3.4 FLIGHT TEST AT ARADMAC - PHASE D

L)
The final phase had as one of its cbjectives verification of UH-1H/MRS
compatibility, in a realistic environment, throughout the flight envelope
of UH-1H aircraft operaticns. A major objective of phase D was to evaluate '

the system capability to effectively diagnese implanted degraded parts and
to prognose parts and LRU's.

2.4 IMPLANT SELECTION (DISCREPANT PARTS)

The selection of discrepant parts for the test bed program was carefully
controlled by personnel of the U, S. Army Aviation Systems Command, co-located
with ARADMAC, Control was exercised not only with regard to the degree of
’
but also in the area of physical control. Physical control of the parts by
serial number was instituted to insure that the same discrepant parts were
used in all phases of the test bed program, A detailed examination of implant

procedures used during the program is presented in Section 5.6.

2.5 TEST SAMPLES

4 total of 165 discrepant part runs were accomplished in the main trans-
mission, gear box, and engine tes. cells, The flight test phase included 61
discrepant part flights, most of which had multiple discrepants on the same
flight,

2.6 PROGRAM SCHEDULE

A recapitulation of the program schedule, by phase, is addressed in
Figure 2-2.

2,7 MONITORING REQUIREMENTS

The following presents an overview of monitoring requirements with

amplification contained in Section 3.3.
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2.7.1 PARAMETER/LRU SELECT ION

The selection of parameters to be monitored by Northrop's MRS, as well
as the selection of line replaceable units to be isolated/identified, was
a compromise among many factors., Both elements, the parameters and the
LRU's, have their own constraints and both are related to each other. The
complex crossflow of requirements and effectiveness is depicted in Figure 2-3,
The principal link between these two factors is the MRS mechanization. Final

selection of system design detail was accomplished by balancing the ratio of
requirements and effectiveness results,

2,7.2 INSPECTION REQUIREMENTS

in keeping with the simplicity of the MRS, inspection requirements as
identified in TM 55-1520-210-20 (Organizational Maintenance Manual) were
analyzed and accommodated by the MRS, Thus, Army personnel were able to quickly
understand and utilize MRS outputs based on their training and familiarization
with standard Army TM's,

2.7.3 DIAGNOSIS

‘The problem of limited diagnostic talent in aviation wechanics has long
been recognized by the Army. The technique of "trouble shooting with parts"
is fully documented based on return of faulty diagnosed components to depot
levels of maintenance, The monitoring approach selected for the MRS permits
automatic isolation of a malfunction down to the LRU level. This capability
facilitates remove and replace functions at the organizational level of main-
tenance, particularly in forward areas. This item is a key requirement of the

Maintenance Support Positive porcion of the Department of the Army Logistics

Offensive Program.

2,7.4 PROGNOSIS

Prognosis as applied to Army aircraft maintenance is the science of
predicting the remaining usable life of an item, Prediction of remaining life
starts with a new or overhauled component, such as an engine. A new or over-
havied engine has a predicted life which is usually the historically determined
average for a significant sample of components, In graphic form, idealistically,

historical health data will be a straight line until degradation starts, then
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the line will start to curve upward to a failure point. The objective is to
prognosticate or predict a point on the upward swing of the health line where
removal action on a comporent can be initiated prior to failure. The MRS

has the capability of ;roviding prognostic informaiion Fhrough its continuou;
monitoring of aircraft health, using the levels of exceedance approach presented
in Figure 2-1. This:is accomplished b} establishing the thresholds or levels
at points that correSpoﬂd to a typical time remaining .curve for a cémponent.
The method, in general, re11es on a s1m11ar1ty 1n wear out curves. Figure
2-1A may furtle r help to clarify this approach.

Time remaining (TR) as seen on the figure is direcgly related to selected
threshold limits and can be determined.by measuring the expended useful time
E ; (Te) and comparing with the expected time beiween overhaul (Tho). Conversely,
by sensoring the;thresholds relation to'its normal wear out curve, an exceedance
of limit implies remaining life. As data is céntinually gathered by operation

of the system, time remaining criteria (and corresponding thresholds) may be

VS T

ad justed to provide a more accurate indication. Thé number of thresholds
employed will also have an effect on the accuracy, of the timexremaining value.
F It should be pointed out that the levels selected may be based on more than

one parameter and may even represent a cumulative effect such as the time/

temperature life limiting relationship for some engines. ' ’

This data is available to the helicopter crew chief immediately after
landing at the flight line. MRS monitored components that have started to
degrade are immediately obvious to the crew chief by looking at the data

. |
printout which lists parameter exceedance values keyed to time. The main-

tenance officer may then initiate removal action on components prior to

failure in flight. 3 %
" 3 | : T

/ "
‘:"Typical Component
Life Expectancy Curve

1 Component , . ,
% Threshold 2 b
4 Level

(Hea}th _ T ¢

Indication) e
3 1
3

O™, TBO

T =

1 Component~Time

FIGURE 2-4 RELATIONSHIP OF THRESHOLD TO COMPONENT TIME REMAINING
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2.7.5 FAULT ISOLATION

This area was alluded to in paragraph 2.7.3, but, in view of its impact
on and interface with many aspects of Army aviation logistics, require»

additional emphasis.

. The Department of the Army Logistics Offensive Program (LOP) includes
two key elements which influenced the test bed fault isolation approacih.

These LOP elements are the Maintenance Support Positive (MS+) concept and the

expanded Direct Exchange (DX) procedure. MS+ places heavy emphasis on LRU

removal and replacement in forward areas, rapid retrograde of repairable

RV TEA PRSP S

components to the appropriate maintenance level, and quick repair by that

w

folatud

maintenance level. MS+ is to be supported by the DX program which must have

i a stock of serviceable components for over-the-counter exchange for the components

Ay et

removed in the forward areas. These programs obviously must be mutually self-

§ supporting. The key to achieving this self-support is positive isolation of a

iy

fiulty componeni. Positive fault isolation of an LRU will facilitate factual
removal and replacement actions in forward areas; assist in the maintenance

mavagement of repairables by providing information that permits retrograde of

a repairable to the maintenance level (DS, GS or Depot) that can effect the
quickest repair and turnaround; and will drastically reduce the troubleshooting
time currently expended on repairables by the various maintenance levels due
to unknown failure modes. Rapid repair of components will, in turn, ensure

a supply of serviceable components to support the DX program,

Apnalysis by Northrop of the real world Army logistical considerations
outlined above led to the conclusion that they should be accommodated in the
test bed program, if the results were to have maximum app'ication to normal
Army operations. Thus, the MRS was tailored to provide , ,s.tive fault isolation

| of selected LRU's normally removed and replaced in forward areas of a theater
| of operations. Additional details on fault isolation are provided in subsequent

sections of this report.
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3.0 MAINTENANCE REPORTING SYSTEM (MRS) FOR THE TEST BED PROGRAM

3 The MRS is a total system approach in that it accosmodates the objectives
of the test bed prograe reiative to laspectica, Diagnosis and Prognosis.

§ These objectives are satisfied by selection of an airborme, contiasous monit.ring
technique. Continuous moritoring of aircraft parameters is particularly
: significant for data gathering on maintenance malfunctions that occur in the

air but cannot be duplicated during troubleshooting operations on the ground

MACE D rad bl i ated 4o g

TRNE

- subsequent to a flight. For example, a compresscr surge that occurs briefly
in the air would be recorded by the MRS. This condition could not be detected
by a ground plug-in system that does not continuously monitor, nor by a system
that periodically samples aircraft parameter outputs. Detzils of the MRS

operation are described below.

Ly

3.1 SYSTEM OPERATION

The basic airborne system is composed of an Electroamics Unit(EU), a Contin-

uous Inflight Performance Recorder (CIPR), and both new and existing aircraft

LNy

sensors. Accumulated maintenance data is recovered from the airborne system
by use of the Data Recovery Unit' (DRU). Figure 3-! depicts in block form the

relationship of the major parts of the system.

; ATRCRAFT
‘ AIRBORNE
NO-GO
‘ FLAG
3 EXIST
A/c
SENSORS | o CIPR

CONTROLLER
MAGAZ INE

: SENSORS
GROUND
CIPR
MAGAZINE | > DRU ]

: FIGURE 3-1  SYSTEM BLOCK DIAGRAM
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Doring flight, signals from sensors which monicor sigmficant aircraft
parameters {see Table 3.1) are ccnditioned to make them compatible with the
processirg and computatior. circuits of the Eii. The processing circuits
convert conditioned signals to digital form, perform calculations, detect
exceedance of limits, establish logic relationstips of monitored parsmeters,
provide a status memory of maintenance conditions. and codify and a2dopt the
msintenance data for storage by the CIPR.

Table 3.1A lists the accuracies of the added sensors. The true accuracy
of a sensor is a function of many environment apnd employment factors. A
nominal accuracy for the sensors has been derived from the manufacturer's
data sheets. The accuracy of the overall MRS can only be expressed in terms
of a generalization of the accuracies of specific operations. An ummodified
parameter which is outputted directly will have an accuracy wkich is the
Root of the Sum of the Squares (RSS) of the accuracies of the sensor and the
electronic operations. A parameter which is the airthmetic result of two or
more data inputs will have an accuracy which is the RSS of the input factors.
As an example, corrected CPR is a function of ambient air pressure (Pamb),
Compressor Discharge Pressure (CDP), compressor speed (Nl) and Cutside Air
Temperature (OAT). These parameters are determined ¢c the fcllowing general

full scale accuracies including sensor and electronic accuracies.

Pamb = + 19
cDp = % 1%
Nl = 0.7%
OAT = 1%

The generalized accuracy fer the determination of Corrected Compressor

Pressure Ratio is qu + 12 + .72 +12 = + 1.85%. This can be exgrapolated

to an overall assessment of the MRS system accuracy as * 2.0%.

Digitized maintenance data transmitted from the EU is recorded on the
magnetic tape of the CIPR magazine by recording aad control circuits within

the CIBR controller. Maintenance conditions are recorded on the main channel,

key parameter quantitative data is recorded on the engineering channel, and time

pulses (generated within CIPR) are recorded on the time channel.
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At the completion of s-flight, 2ata stored by the CIPR can be recovered
by removing the CIPR magazine Zrom the aircraft and playing back the contents
of the magazine using the DRU. The DRU provides a printed record of main-
tenance items tha: have occurred during flight, inciuding a simultaneous print

A rw s W A g,

of elapsed flight time to aid maintenance action. Each maintenance item

P N Y

mechanized by the MRS is represented by an alphanumeric (maintenance) code and the
post-flight printout of the DRU displays this code. Maintenance action is
determined by the possible cause--corrective action information listed for

each code in the MRS Diagnostic Charts. Materiel conditions described in

the diagnostic charts are listed in Table 3.2. An example of data recovered

fron the maintenance (main) chamnel of the CIPR is showm below for a flight

: conducted 30 July 1971, A detailed explanation of the alpha-numeric code

r

printout is presented in Section 3.3.4.

b L)

rwr Sretaks S

End of K11-.659.6 End Coastdown Data
1 Flight ....5i-128 Coastdown Time
i K11+.$59.6 Start Coastdown Data

A53-.$39.5 Engine Overspeed Return to Nommal
AS3+.£39.5 Engine Overspeed
B61-.625.3 Engine CPR Calculator Return to Normal
B61+.625.1 Engine CPR Calculator 1st Level
B61-.$63.5 Engine CPR Return to Normal
B62-.083.5 Engine CPR Return to Normal
B62+.063.4 Engine CPR Calculator 2nd Level
B61+.603.4 Engine CPR Calculator lst Level

Start of H41A.002.5 AJC Liftoff

Flight FOl+.090.7 MRS Power On

B61 and BuZ printouts show that the first two levels of engine com-
pressor pressure ratio calculator have been exceeded, indicating that the
engine has a serious compressor malfunction. The basic engine should be

*

removed -and replaced.

A53 occurrence indicates that the engine was operated at greater than
6640 RPM with gas producer speed greater than 917 for longer than the allowable

3 seconds. Inspections should be performed as called out in TM's.

K11 printouts indicate start and endé of quantitative data, The only printout
of this sort on the main channel, between K1l prints, is a number indicating

relative coastdown time.

3-3




Data frow the engineering chamnel is recovered in the sase msoner as
the maintenance data from the main chkannel. These data were used as backup
dats for the test bed program to verify performance of the engine health
calculator and provide insight into data trends. It was collected under
three specific conditions: (a) vhern a malfunction occured, (p) when specific
aircraft flight conditions were satisfied, and (c) every 3.2 minutes of
flight time. Table 3.3 lists the quantitative outputs which were record:d
on the CIPR engineering chanpel. A few of the outputs listed were changed at
at various times during the test program to acquire specific data about
other parameters.
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TABLE 3.1 MRS/UE-1H MONITORED PARAMETERS

Parameter

Exhaust Gas Temperature (EGT)

Gas Producer Speed (RPM) ul

Rotor Speed (RPM)

Interstage Airbleed System (Bleed Band)

Torque Pressure

Air Induction System (Eagine Air Filter Operatiom)
Compressor Discharge Pressure

Ambieat Pressure

inlet Guide Vane Position

Engine Fuel Flow

Vibration Engine Compressor

Vibration Engine Combustor

Vibration Engine Turbine

Fuel Boost Pump On (Pilot's Switch)

R.H. Fuel Boost Pump (Flow Switch)

L.H. Fuel Boost Pump (Flow Switch)

Main Fuel Filter (Diff. Pressure Switch)
Engine Fuel Pressure

Starting Fucl Solenoid

Fuel Pressure

Engine Governor Switch Emergency Position
Engine Governor Manual Control

Engine 0il Pressure Low (Switch)

Engine Oil Pressure (Transmitter)

Engine Chips Detector (Acc. Gear Box)
Engine 0il Filter (Diff. Pressure Switch)
Engine 0Oil Temperature

Engine 01l Cooler In and Oht Temperature Operation
Engine #2 Bearing Scavenge 0il Temperature

Engine #3 & #4 Bearing Scavenge 0il Temperature
Engine Accessory Drive Gear Box Pressure
Transmission 0il Temperature Switch

Transmission Oil Pressure Low (Switch)
Transmission Oil Pressure (Transmitter)

Transmission External Filter (Diff, Pressure Switch)
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Table 3.1 (Continued)
Rarameter

Transmiszion Internal Filter (Diff. Pressure Switch)

Transmission 0i1 Cooler In & Out Temperature
Transmission Chips Detector

Transmission Lateral (Cover) Vibratiom
Transmission Normal (Mast) Vibration

90° Gear Box Chips Detector

42° Gear Box Chips Decec or

90° Gear Box Lateral Vibration

90° Gear Box Normal Vibration

42° Gear Box External Temperature

42° Gear Box Internal Temperature

90° Gear Box External Temperature

90° Gear Box Internal Temperature

Hydraulic Pressure Low (Switch)

Hydraulic Relief Valve Failure (Pressure Switch)
Hydraulic Fluid Temperature

Hydraulic Control Solenoid Power

Essential and Primary Bus Voltage

Main Inverter Operation (Switch & Volt)
Spare Inverter Operation (Switch & Volt)
Main Generator Operation (Switch & Vol:)
Standby Generator Voltage

28 Volt A.C. Transformer Voltage

Inverter Bus Voltage (Low ) (A.C. Failure Relay)
Standby Generator On Switch Position

Pilot's Area Normal Acceleration

Pilot's Area Lateral Acceleration

Ambient Air Temperature

Pilot's Voice

Transmission Acceleration Input Normal Vibration¥
Transmission Input Longitudinal Vibration*
Transmission Acceleration Output*
Transmission Output Longitudinal Vibration*
42° Longitudinal Acceleration*

42° Nomal Acceleration*

*Adlrcraft 67-17448 only.
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Type
Pressure Xducer
Pressure Xducer
Pressure Xducer

Accelerometer

Temperature

Temperature

Temperature
Temperature
Accelerometer

Position
Potentiometer

Flow itieter

Pressure Switch
Pressure Switch
Pressure Switch

Position Switch

TABLE 3.1A ADDED SENSOR ACCURACIES

Nominal

No. Accuracy

2 #0.757:C.01%

1 +0,75%2+0.01%/°F
1 +0,75%+0.01%/°F
13 (Note 1)

4 #0.1°C

4 +0.5%

1 +0.5%

1 1°C

2 *17

1 +0.25%

1 +0.57%

1 N/A

2 N.A

1 N/A

1 N/A

Manufacturer & Type

Typical Usage

Statham, PA208TC-( )
Statham, PA208TC-( )
Statham, PG132TC-50

Endevco, 6222M3

Rosemont, 118G

Lewis et al,
MS28034-3

Lewis, 56B32
Lewis, 54B
Statham, AJ-43
cic, 78

Foxboro, 1/2-2-81-200

Custom Component,
41D23

Custom Component,
42D254

Custom Component,
986191

Honeywell, 6HM1~-1

CDP & Pamb
GB 0il Pressure
Fuel Pressure

Engine & Power
Train Vibration

G.B. Temp,
Eng. 0il Temp.

Hydraulic Temp.

OAT

Pilot's Acceleration
IGV Position

Fuel Flow
AP, Eng 0il Filter

AP, Xmsn 0il Filter
Hydraulic Pressure

Airbleed Closure

(Note 1) Sensitivity [éc/g] *+5%; -5%/+10%, -100°F to 500°F; Nonlinearity, *1%
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TABLE 3.2 MAINTCNANCE CODES

Aircraft Condition

EGT > 760°C

EGT > 627°C for 30 minutes or longer
EGT »676°C. for 5 seconds

N1)> 101.5%

N2 > 7180 RPM

N2 ) 6640 RPM for 3 seconds and N1 >91%

N1 <91% and N2 >6750 RPM

EGT >760°C or EGT) 676°C for 5 seconds or longer

TORQUE > 61 psi
TORQUE > 54 psi
TORQUE ) 50 psi

IGV > 607 and N1 > 87% or
IGV ¢ 80% and N1 < 87%

MAIN ROTOR > 330 RPM
MAIN ROTOR > 356 RPM

N1> 877 and Tanterstrse Airbleed Switch
not closed for 7 seconds

Air Induction System Switch cloggrd filters

Transmission Vibration




TABLE 3.2 MAINTENANCE CODES (Continued)

Maintenance Code Aircraft Condition
B41
2
3 Engine Vibration
: B5)
2
3
} B61 CPR CALC < 185
2 CPR CALC < 180
3 CPR CALC < 175
871 EGT CALC < 15C
2 EGT CALC € 140
3 EGT CALC ) 185
B81
1 2
4 3 Spare
B91
| § Spare
BO1
2
3 Spare
c1l1
2
3 Elec. Fuel 3¢ast Pamp On and
Rt Fuel Boost Pump has no flow
c21
2
3 Left Fuel Boost Pump Switch
c31
2
1 3 Main Fuel Filter Clogged
: c4l
] 2
E 3 Main Fuel Press. Low and Fuel Press.
between 5 and 35 psi
51
3 2
] 3 Fuel Press.< 5 psi or Fuel Press >35 psi
C61
2
3 i roop > 50 RPM
3
b

3-9
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TABLE 3.2 MAINTENANCE CODES (Continued)

Maintensnce Code Aircraft Condition
c71
2
3 Elec Fuel Boost Pump Not On
c8l1l
2
3 Starting Fuel Solenoid Open
c91
2
3 Gov Switch in Emerg
co1l Fuel Flow CALC > 205
2 Fuel Flow CAIC >.210
3 Fuel Flow CALC > 215
D113
2
3 Eng 011 Press Low and Eng Oil Temp < 93°C
D21
2
3 Eng 0il Press > 100 psi
D31
2
3 Chips - Access Drive Gear Box
D41
2
3 Eng 0il Filter Clogged
D51
2
3 Eng 01l Temp > 93°C and Eng Oil Press Low
D61
2
3 Eng 0il Cooler & T Low and XMSN Oil Temp
Not Hot and Eng 0il Press Not lLow and Eng
0il Temp > 93°C
D71
2
3 No. 2 Bearing Differential Temp >122°C
D81
2
3 No. 3 & 4 Bearing pifferential Temp > 122°C

3-10
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TABLE 3,2 MAINTENANCE CODES (Continued)

Maintenance Code Aircraft Condition
D91
2
3 Spare
DO1
2
3 Accessory Gear Box Press > 3.5 psi
E1l1l
2
3 XMSN 0il Temp Hot
E21
2
3 XMSN 011 Temp Hot and Eng 0il Temp > 93°C
E31
2
3 XMSN 01l Press low and XMSN Oil Temp Not Hot
E4 1
2
3 XMSN 011 Press > 70 psi
ES51
2
3 XMSN Internal 0il Filter Clogged
E61
2
3 XMSN 0il Temp Hct and Eng 0il Temp < 93°C
and XMSN Oil Press Not Low and XMSN 0il
Cooler AT Low
E71
2
3 Chips in XMSN
E81
2
3 Spare
E91
2
3 Spare
EC1
2
3 XMSN 011 Press low and XMSN Oil Temp Hot

3-11




| TABLE 3,2 MAINTENANCE CODES (Continued)

Maintenance Code . Adrcraft Condition
Fl1 .
2 1]
3 Chips in 42° Gear Box
P21 '
2 L .
3 Chips in 90° Gear Box ]
F31
2 , ,
: 3 42° Gear Box Vib ,
i ’ ' .
; F41l
E 2 . i
H 3 42° Gearbox Differential Temp High
5 .
§ FPS1 . ,
¥ i 2
3& : 3 90° Gearbox Differential Temp High
: ‘ !
. F6l1 ' ’
: 2
3 Spare o . _ . I
é F71 1 ;
3 2 Spare
3
F81 ! ‘ ,
2 H
3 90° Gear Box Vib
: F91 ' ’
2 . ,
3 1 XMSN External 01l Filter Clogged
: FO1l MRS Power On : '
r 2 ’
1 3 '
G1l1
2
3 3 Essential Bus< 23V
z
' G21
2
3 Main Gen Fail
G331 ,
2 Standby Gen < 23,4V
3

Essential Bus < 15V

3-12
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TABLE 3.2 MAINTENANCE CODES (Continued)

Maintenance Codes Adrcraft Condition
G441

2

3 Essential Bus> 31y
G51

2

3 Instrument Bus <10 VAC and Inverter Not Failed
G661

2 Main Inverter Not On

3 Inverter Volt < 100V and Main Inverter On
G71

2

3 Inverter Volt >130V and Main Inverter On
G81

2

3 Inverter Volt <170V and Spare Inverter On
G91

2

3 Inverter Volt >130V and Spare Inverter On
GO 1l

2

3 Essential Bus<23V and STBY Rev Curr Relay-

Open and Main Gen Failed

H1l1l

2

3 HYDATemp >16.7°C and HYD Press Not Iow
H21

2

3 HYD Relief Valve Fail
H31

2

3 Hyd Cont Valve Not Closed and Hyd Press Low
HG 1 Aircraft Lift Off

2

3
HS51

2 Hyd Cont Valve Closeéd and Hyd Press Low
H61

2

3 Spare

3-13
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TABLE 3,2 MAINTENANCE CODES (Continued)

Haintenance Code Aircraft Condition
R71 Spare
2
3
H81 Spare
2
3
H9 1 Spare
2
3
RO1 Spare
2
3
E
3
3-14
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TABLE 3.3 ENCINEERING CHANNEL QUANTITATIVE DATA

NI RPM

KEGT

384 BrgAT

2 BrgAT
Eng 011 Temp
42°AT
90°AT

EGT

Torque

N2

Pamb

cop

OAT

XMSN 011 Temp

XMSN 011 Pressure

400 Hz

Gas Produce Speed

Engine CPR Calculator Qutput

Engine Fuel Flow Calculator Output
Engine EGT Calculator Output
Differential Temperature of #3&4 Bearings
Differential Temperature of #2 Bearing
Engine Cil Cvoler Output Temperature

42° Gear Box Differential Temperature
90° Gear Box Differential Temperature
Exhaust Gas Tail Pipe Temperature

Engine Output Torque

Engine Power Shaft RPM

Ambient Pressure

Compressor Discharge Pressure

Ambient Temperature

Transmission 0il Cooler Output Temperature
Transmission Oil Pressure

Autotransformer Output Voltage
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3.2 HARDWARE DESCRIPTION
3.2.1 AIRBORNE EQUIPMENT

The Electronics Unit (EU) (see Figure 3-2) contains the electronic circuits
for signal conditioning, processing, digitizing, coding, and outputiing of
maintenance data. Nineteen printed circuit cards contain the components nec-
essary for the various circuit functions performed by the EU and another printed
circuit board provides interconnections between circuit boards. The metal
housings provides the structural support for the printed circuit cards as well
as other components mounted to it, A metal wedge at tie rear and two curved
brackets in front provide a means of installing and lccking the EU in & mount-
ing base (see Figure 3-3), Two input connectors are located at the rear and a
test connector is on the front. Also on the front are an aircraft no-go
indicator which signals critical LRU impending or actual failure, an MRS
failure indicator (internal BIT signal), a pushbutton indicator reset
switch, an engine cumulative running time meter, an engine N1 cumulative
overspeed events counter, and an engine cumulative overtemp events counter.

The BU weighs approximately 11 pounds and its size is 11x7x6 inches.

The Continuous Inflight Performance Recorder (CIPR) (see Figure 3-4) is
comprised of two parts--a magazine and a controller which are essentially the
same as the AN/ASH-23., The magazine is a continuous reel-to-reel, 1/4-inch
magnetic recording tape transport 2nd recording head assembly. A cast aluminum
housing provides stability and a machined face for correctly aligning a coupling
to the controller. Four quick discounect fasteners facilitate rapid removal of

the magazine from the controller using a standard Army aviation screwdriver.

The controller also has a cast aluminum housing which supports 3 prirted
circuit bcards, a gear motor assembly train, and a connector which mates to the
magazine., Components mounted on the printed circuit boards provide motor drive
and control, digital and audio record circuits, line receiver circuits, and

voltage regulation.

When both parts of the CIPR are connected. they weigh approximately
3.5 pounds and the size (not including the mounting flange) is 4.3 inches in
diameter by 5.8 inches long. Figure 3-5 presents a view of the Maintenance

Reporting System installed in a UH-1H helicopter.

3-16
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MAINTENANCE RECORDER (CIPR)

URE 3-4
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Both the CIFR and the EU are mounted in the aircraft using the mount
shown in Figure 3-3, No special damping of the mount is required.

3.2.2 GROUND EQUIPMENT

M?S ground equipment consists of two items of hardware — the Deta Recovery
Unit (DRU) and the MRS Functional System Simulator (FSS). The DRU provides for
recovery of maintenance data from the CIPR tape magazine. The FSS is used in
conjunction with the DRU to provide complete check out of all MRS Electronics

Tmit and CIPR functions in a bench test enviromment.

The DRU (see Figure 3-6) is portable and capeble of recovering data at
planeside. ft is larger than necessary for the Ud-1H data recovery requirements,
but as previously mentioned, was used to demonstrate an off-the-shelf equipment
capability. The CIPR can be mounted directly to the control panel of the DRU
for ﬁlayback of stored maintenance data which is displayed on a printout from
a printer also mounted on the control panel. The unit contains the switches
and circuits necessary to provide a fast rewind capability and normal playback
speed in the CIPR, Circuits for decoding the digital playback data and for

controlling the printer are contained on circuit boards within the unit.

Aucdio information can also be recovered from the audio channel of the CIPR

and can be monitored by a headset or the speaker on the panel of the unit.

The MRS FSS provides signals that simulate the aircraft sensors when
testing the MRS. Controls for varying the signals and changing the condition
of EU inputs are mounted by functional group on the front panel (see Figure 3=7).
A power supply, signal oscillators, variable resistances, impedance simulating
circuits, and voltage scaling circuits necessary for simulating signals are
contained on subassemblies within the simulator. Cabling and switches on the
back panel provide the additional capability of using the simulator in “series"
with the EU to simulate any or all inputs received when the EU is installed

in an aircraft,




(N¥a) 1INN A¥ITAODTY viva - ddNDNIA

o B

ST
! \VW.M@%..%
ey

s Sl v, e attitli 2 .

2

s Bae il o
2

\ - " "
1o gy i3t v L P pooay d " o B >



WA i ¢ s b AR Rl e 7 030

(MIIA

INOUY4) 00581460 N/d = YOLVINWIS WILSAS TVNOILONNI S¥W

4. 3[ANON

Y

RALL LYY

IRERE T IRERE

.

»

&

® -

KO8 VIO

L3

o ami -

& -

reese [
‘3...!«‘

e
°

4

.N -

e paiae,

L7}

I, 1785

adde

NORT ?1.227

]

(TR A B




|
E
i

L L

T

L ads

3.3 MONITORING METHODS

3.3.1 VIBRATION MONITORING

Vibration mechanization in the early part of the test bed program utilized
a single frequency narrowband technique of é;nitoring which proved to be
inadequate for detecting faulty components, Subsequently, a method which
improved detection capability, particularly in the more complex reala of
flight environment, was incorporated into the MRS, This method is called

the ratio method of vibration monitoring,

Briefly, the ratio method gets its name from the manner in which the data
is analyzed. As shown in Figure 3-8, the wideband accelerometer data is fed

into a narrow bandwidth spectrum analyzer.

The peax eneryy occurring in Band “B" is divided by the peak energy occurring
in Band "&", resulting in a ratio., This ratio is dimensionless and is therefore
not effected by amplitude calibration errors. The ratio also tends to normalize
against changes in power levels transmitted through the machine. Results

occurring from the incorporation of this technique in the MRS are presented

in Section 7.9.

Mechanization of the vibration monitoring and detection method uses inputs
from four accelerometers. Each accelerometer is connected to the monitoring
circiits by a multiplexer and is sampled once every minute (see figure 3-9).
During each sample each accelerometer input is scanned at least twice (engine
and transmission accelerometers require more scans). During the first scan
the voltage controlled oscillator (VCO) sweeps through a predetermined fre-
quency band and stores the peak value obtained in the band. During the second
scan the VCO sweeps through a different predetermined frequency band and com-

pares the peak value of che szcond sweep with that stored for the first sweep.

LOG AMPLITUDE
ACCELEROMETER

NARROW SE—
BANDWIDTH
SPECTRUM A B
ANALYZER

FREQUENCY

FIGURE 3-8 BLOCK DIAGRAM OF RATIO METHOD

3-24
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If the ratio of péak values is greaier than a programmed value, .this. fact
is transferred into confirmatiqn logic which allows an output if 6 out of.8
samples indicate the ratio is greater than the programmed value. A confirmed
output is processed by otger eircu?fs of thé EU and an output is transmitted

to the CIPR for recording.

In Order for the output to change back to a state indicating the ratio is'
less than the programmed value, 6 out of 8 samples entered into confirmation

must again indicate the ratio is:less than the programmed value,

Present capability of tha Vibration Spectrum Analyzer (VSA) meéhaniiation
allows the decision making process described above to yield 16 outputs, only
4 of which are presently used in the MRS, Determination o{ the frequency bands
and levels used in ihe mecﬁanizaﬁion are the result of analysis of data obtained

during the test bcd program, particularly the early flight tests,

3.3.2 MRS ENGINE CALCULATOR . . o

The MRS engine calculator has been developed to provide a simple engine
performance monitoring technique. The galculator ui’lizes the following engine

t
parameters and engine air properties,

e Gas producer rotsi §peed (Nl)

e Exhaust gas temperature (EGT) Lo ;
e Engine fuel flow (WF)

o Compressor discharge pressure (CDP)

e Outside air temperature‘(OAT)

e Ambient air pressure (Pam)

| :
The enginc performance parameters are converted to normalized parametetrs to
account for temperature/density effects (temperature and pressure). The following

|
air correction factors are applied o normalize the engine parameters.

Ambient air pressure: 6 = Pam/14.7
T +
Outside air temperature: 0r Qé£§I§&§9

g5 _ (OAT + 460) ">

or 518

3-20
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Units for air pressure and temperature are in psia and °F, respectively,

+ The corrected engine parameters used by the engine calculator are as follows:

| AN A R TR P

Corrected engine speed, NIIVQ;

Corrected engine fuel flow, WF /6Ve

Corrected exhaust gas temperature, EGTS;946O - 460
Compressor pressure ratio, (CDP/Pam)

The mechanization of the MRS engine calculator is based on the relationship
of the three engine parameters (WF/&VQi CDP/Pam, and EGT/@) as a function of
corrected engine speed (Nlﬁfgs. The graphical plots of the engine parameters

will result in linear relationships over the corrected engine speed range
(85 percent to 100 percent) utilized by MRS engine calculator operation.

Equations for the engine parameters are:

TEEY

Nl/Vr-= Kl (CIR) + K2

N VB = R, (W /6v/o) + R,

gk e B

= +
N, Mo = K (EGT/0) + K,

where Kl’ K3, K5 = glopes of the applicable engine parameters
' Kz, K4, K5 = intercepts of the linear equations

MRS mechanized equations were derived from the preceding equations, The MRS

mechanized equations are the following.

[ -
KCIR = —>— xl\/e (CPR) + Kz/él

KW, = —— bK3 W/ + K4\/5]

KEGT = —— KS(EGT)/\/E+ 1(6\/5]

The constan*s for the above equations were determined from the T53-L-13

specification engine values,

' Normal or abnormal engine operation can be determined from the MRS engine
calculator output. A normal operating engine will present an MRS calculator
output which will vary over a narrow range due to minor deviations in engine

parameters {rom the specification values and also errors due to the sensor

3-27
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circuit and electronic resolution. It will be consistent with the baseline
signature data for the specific engine. Abnormal engine performance will be
indicated by the deviations in the engine calculator depending on the defective

part in the engine. The following examples illustrate possible MRS calculator

diagnosis of an abnormal engine.

e Damaged compressor will be noted by low CPR and high EGT counts

e Degraded gas producer turbine nozzles will be indicated by low or high
CPR counts and low or high EGT counts depending on the nozzle damage mode

(increase or decrease in nozzle area)

e Discrepant power turbine will be indicated by high fuel flow counts and
irregular EGT cournts
Predetermined levels of calculator abnormal are incorporated in EU limit
detection circuits, Occurrence of abnormals (level exceedance) causes outputs
to be transmitted to the CIPR, OQutputs of calculator abnormals are, however,
transmitted only if certain stability conditions exist which insure the validity

of the calculation,

The mechaniztion of the calculator is quite straight forward. Basic
mathematical functions are used to form the factors in the equations for KCIR,
KWF, and KEGT stated previously, These functions are multipliers, dividers,
adders, and scalers which are mechanized by digital to analog converters, analog
to digital converters, and operational amplifiers. In order to minimize the
hardware impact, linear approximations are used where appropriate. As an
example, Figure 3=10 illustrates a KCPR calculator output function. The term

"to" is the standard day temperature in degrees absolute,

Other Monitoring

Many other monitoring functions are mechanized by the MRS (see Table 3.1).

Figures 3-11 and 3-12 present examples. They are typical moiitoring examples
of aircraft parameters other than vibration and engine health, In each case,
one or more inputs are sampled and processed by decision making circuits of the

EU. Before EU status memory is allowed to change or outputs be transmitted to

3-2°
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SAMPLE SAMPLE SAMPLE SAMPLE
COMPRESSOR ENGINE INLET GAS PRODUCER ENGINE INLET
DISCHARGE PRESS PRESS SPEED TEMP
(cDP) (Pry) (N)) (T71)
r T., - T. =AT
DIVIDE CDR 1 10
BY Py, = CPR J
J AT v
1+5— =26
2
T, T
K. VO. x CPR i
17T l l
i p-
K1 X eT K2 X
vVa- K Ve
K, ST(CPR) K, 0
DIVIDE K8, o(CPR)
ey 6 BY | STABILITY
N, = KCPR
1
<KCPR YES CONF IRM STORE
1 —> (n)
B61
samples
NO
RESET
CONDITION

FIGURE 3-10 KCPR CALCULATIONS
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SAMPLE SAMPLE ENG
ENG GAS PWR TURBINE
PRODUCER SPEED SPEED

READ TIME
IN CCNDITION

L4

RESET
CONDIT ION

YES
L C=B FOR>3 SE

A AND C = ENG
OVERSPEED
CONDITION

,l

CONF IRM
(n)
SAMPLES

OUTPUT
CHANGE
A53 STATUS

FICURE 3-11 ENGINE OVERSPEED
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SAMPLE ELS SAMPLE #2 BRD
OIL TEMP OIL SCAVANGE
TEMP

l

AT = SCAVANGE OIL TEMP

NO
>122°C -
RESET
YES CONDITION
¢~ Y

CONFIRM

(n)
SAMPLES
STORE

D73

FIGURE 3-12 NG. 2 BEARING OIL DIFFERENTIAL TEMPERATURE

3-31




Lt

il gl d

T

T YA

the CIPR for storage, a confirmation process must be satisfied.

process minimizes changes in output status and reduces the transient effects of

parameters.

3.3.3 MAINTENANCE DATA STORAGE

The Continuous Inflight Performance Recorder (CIPR) provides the airborne data

storage capability for the MRS, CIMR is composed of two subassemblies, a

controller and a magazine, which have the capability of four data channels.
The four channels, as used on the test bed program, are
Maintenance data
® Engineering quantitative data
® Audio

® Time

The controller accepts codified data from the EU and in conjunction with
control signals, records the data on the magnetic tape of the magazine (see
Figure 3-13)., Circuits of the controller provide drive power for the tape
mechanism, sensing circuits for direction control, magnetic head selection
circuits, data conditioners, and record circuits. In addition, circuits within

the controller detect circuit and drive failures.

When a maintenance condition has been detected by the EU, a control signal
commands the controller to drive, After outputs from speed sensing circuits
in the controller are satisfactory, the EU transmits the codified maintenance .
data to the controller. Level adjustments are then made by the controller and

the data is recorded directly on the magnetic tape of the magazine.

The magazine is esgsentially a gear-driven type of magnetic tape cartridge
which has self-contained magnetic heads. Storage capacity is maximized by eight
data tracks on the 1l/4-inch tape. Automatic reversing uses four tracks in one

direction and four tracks in the opposite direction,

3.3.4 MAINTENANCE DATA RECOVERY

At the completion of a flight, the CIPR magazine is removed from the aircraft

and connected to the DRU. Placing DRU switches and controls to the correct
position inttiates a rapid rewind and allows data stored to be recovered by

playing the magazine at normal speed,

3-32
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When data from the main channel (alpha numeric maintenance data) is selected
for playback, data from the magnetic tape enters the DRU, as shown in the block
diagrams of Figure 3-14. Synchronization is obtained by recognizing a definite
structure of the input code words and errors are detected by checking parity
codes, bit positions, and the absence of pulses. The data is decoded and

converted to BCD for each of the assigned columns of the printer. Maintenance

data is printed cn the first three columns. Time, which is counted concurrent

with the playback, is printed on the last four columns (see example in Section 3.1).
A plus sign is printed in the fourth column when a code occurs and a minus sign
wien the condition returns to norwal. A period is normally printed in the

fifth column except when an error is detected and an "A" is printed.

When data from the engineering channel is selected, data is handled in the
same manner as the main channel except that a special code (Kll), which precedes
the engineering data, is decoded and conversion to a binary count representing
analog, values is printed ir the last three columns (see example in Section 3.1).
The first four columns priut periods and columns five and six identify the data
channel (0l through 19) and column seven prints a dash. K1l + and time is printed
at the start of the engineering data and K11 - and time is printed at the end.
Pre-established correlation of the binary count of columns eight, nine, and ten
to the analog value of the parameter assigned to a particular data channel

determines the value of the parameter at the time of the sample.
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4.0 PREPARATION FOR TEST CELL PHASE

4.1 GENERAL

The test cell preparation phase encompassed all the planning, hardware
definition, parameter selection, and Ammy approval actions incident to instre-
mentation of UH-1 engine, main transmiscion, 42 and 90 degree gear box test
cells, located at ARADMAC. A significant ground rule imposed by the Army was
that instrumentation of the cells would be accomplished on a noninterference
(ARADMAC production schedule) basis., This constraint dictated the accomplish-

ment of cell instrumentation at night, and during weekends.

4.2 OBJECTIVES
The two primary objectives of this phase were:

1. To define and finalize all MRS hardware elements required to support
the test cell operation, and insure compatibility with the follecw-on

flight test phase,

2. To prepare and secure Armmy approval of MRS installation data and in-

structicns for instrumentation of the test cells and aircrafe.

4.3 HARDWAKE DETERMINATION

The process of hardware determination for the test cells was accomplished
with constant consideration to the required interface with th. <light test
phase, This approach obviated potential compatibility (cell vs aircraft)

problems downstream in the test bed program,

4,3,1 ANCILLARY TASKS

In arriving at the final hardware configuration, several related tasks

were accomplished and are summarized below.

4,3,1,1 Data Review

A comprehensive review of Army helicopter operational and logistical
data, available in the Northrop data bank, and augmented from Army sources,

was accomplished, These data were synthesized and used in finalizing
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parameter lists, sensor selection, signal source amalysis and' general equipment
functional performance requirements fei diagnostic and prognostic component
analysis. Poring the parameter and sensor selection activity, esphasis was
placed on the relationship between the parameters and their relarive value in
performing ccmponent inspection and/or malfunction diagaosis and prognosis.
Included withiz the diagnostic «nd prognostic aspects of the problem was che
requ.rement to isolate critical items: those requiring frequent maintenance,
these requiring extensive time to isolate, those of high 2¢llar value, and

those critical to mission accomplishment,

4.3.1.2 Test Cell Survey

The second task ia the test cell preparation phase entailed an on-site
survey at ARADMAC of cagine, main transmission, 42 and 90 degree gear box test
cells. Rorthrop was assigned specific cells for the entirxe test phase.
Detailed measurements and interface requir. ments between the MRS and test cell
equipment were obtained/detemined during the survry. A significent f£izding
from the survey was that viring, mounts, harness, etc., could be prefabricated

vith wire bundle lengtks precut and ready for quick installation in the cells.

4.3.1.3 Adaptation Requirements

Analysis of the du:2 previously discussed, coupled with the test cell in-
stallation factors fro~ the field survey, facilitated adaptaticn requirements
for the MRS. Thus it was possible to prefakricate MBS and sensor bracketry,
precut and bundle wiring and harness, 2nd finalize the overall MRS configura-
tion prior to enteripg the test cell ianstrumentation ph2s2 of the test bed
DIOgram.

4.4 SENSOR CALIBRETION

Tbe pizoning phase for seasor calibratica z2ddvessed three specific arez<,
First, Horthrop selected sensors from vendors recogmized in their individeal
fields for geality carponents; i.e., Exde.co Sccelercmeters zad Foxdoio Feeld
Fiox Meters. These sensors were thea furmashed by the wuadors with certifies
c2lipration standands. SFzeondly, Ay calibratizs stenderds 233 (30-<z5)
calibraticn raives wece odrained from ARATMAC for he test . elis assigaed to

-«



Northrop for the test bed program. Thirdly, arrangements were concluded with
ARADMAC to accomplish a verification calibration subsequent to instrumentation

of the test cells,

In view of the importance of calibration in ensuring the validity of the
MRS test bed results, planning and coordination was accomplished witk ARADMAC
to obtain a waiver on the Standard Operating Procedure (SOP) 30-day calibra-

tion cycle, and additiomal calibration checks were accomplished during the

test phase,

4,5 ACCOMPLISHMENIS

In summary, the objectives outlined for the Preparation for Test Cell
Phase were accomplished. Specifically, MRS definition and firalization,
including system testing, was completed to the level that pemitted instru-
mentation of the test cells without major impact on ARADMAC operations.
Details of the instrumentation phase are addressed in Section 5.0. Secondly,
the total MRS installation package, as submitted by Northrop, was subsequently

approved without change by the proponent Ammy agency (Aviation Systems
Comsand) .
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5.0 TEST CELL PHASE

. 5.1 OBJECTIVES
The basic objectives of the test cell phase of the program were to:

1) Develop a data base of UH~lH serviceabie and degraded component perfor-

mance and parameter signatures,

2) " Ensure the successful integration and operation of the Maintenance

Reporting System (MRS) in the UH-1H test bed aircraft.

5.2 TEST CONDUCT

The test cell phase was accomplished during the period 23 October 1970 through

: 2 December 1971. Three separate test cells were utilized including an engine cell,

a main transmission cell, and a combined 42/90 degree gearbox cell.

5.2.1 ENGINE TEST CELL

Test conducted in the engine cell included baseline runs of no defe.t engines,
runs with implanted discrepant parts, and baseline reruns of noc defect engines.

Details of the operation are presented in paragraph 5.3.

5.2.2 MAIN TRANSMISSION TEST CELL

Tests of main transmissicns included baseline no-defect runs, discrepant
parts ioplant, high time trsnsmissions removed per TBO criteria, and rerun no-

defect baseline runs.

5.2.3 42/90 DEGREE GEARBOX TEST CELL

Testing of UH-1H gearboxes at ARADMAC is accomplished in 3 common test cell
which simulates the drive trzin of the aircraft. Tests of gearboxes foilocwed
the szme general sequence as ma2in transmissions, thet is, baseline mo-dafect,
high time boxes removed per TB) criteria, discrepant parts implane, and rerun

no-defect ~uns.
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5.3 INSTRUMENTATION

5.3.1 ENGINE TEST CELL

Figure 5~1 contains a block diagram of the Northrop Engine.test cell instru-
mentation. Table 5.1 itemizes each parameter and its associated sensor. All
engine instrumentation in the test cell was planned to duplicate the subsequent
aircraft installation as much as possible. 1In order to duplicate the aircraft
instrumentation, a UH~1H aircraft torque and oil pressure meter was installed in
the test cell to properly load the corresponding transmitter on the engine. How~
ever, due to the engine configuration peculiar to éhe test cell not all signals
or sensors were available. For instance, special test cell fuel and oil

supply systems existed and most of the aircraft fuel and oil system sensors and
signals were not available,

Since many of the engine sensors were also being monitored by ARADMAC, tests
were made to verify that ARADMAC readouts were not being degraded by Northrop's
instrumentation. In addition, the added precaution was taken arfter each Northrop
engine run to disconnect 211 Northrop instrumentation from the basic test cell
wiring.

The conditioning of the engine tramnsducer signals was done in the MRS. In
addition, three frequency signals, i.e., Nj speed, N7 speed, and fuel flow, were

converted to D.C. before being recorded on an oscillograph.

5.3.2 TRANSMISSION TEST CELL

Figure 5-2 presents a block diagram of the Northrop transmission test cell
instrunentation. Vibrztion signals were the only paraneter irmstrumented by
Rorthrop. Trans=mission oil temperzture was recorded off the existing cell in-
strunent. Four piezoelectric accelerometers were used. The location and
brackets were identjcal to the subs:guerZ aircraft installation. Two acceler-
ozeters were pernanently located (lzterz]l case and norizal mast), ard two were
designated as roving acceleruvneters. Their locztioan was deterzmined by the
closest prozimity to the particular dis-~epant part under test. For instance,
if the discrepant was 2n igput guill, tke two roving accelercmeters were placed
pear the ioput guiil in the normal zoé longitudinal divections. The wibratiexn
signals were conditiocoed by cbarge cooverters. Figure 5-3 illustrates tde in-
stallaticn of the acceleroneters in the traaosmission test c€il.

5-2
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5.3.3 GEARBOX TEST CELL

Figure 5-4 contains the gearbox test cell instrumentation block diagram.
Two piezoelectric accelerometers were mounted on each gearbox in the same manner

as in the subsequent aircraft installation, On the 90° gearbox the accelerometers
sensed lateral and normal vibrations. The two on the 42° gearbox sensed longi-

tudinal and normal vibrations. The vibration signal from the piezoelectric
accelerometers was conditioned by charge amplifiers. In addition, two tempera-
ture sensors were employed for each gearbox, one for the internal oil tempera-
ture and another for the external gearbox temperature. Illustrations of the
accelerometer and temperature sensor installations in the gearbox test cell
appear in Figure 5-5.

5.4 DATA ACQUISITION

5.4.1 ENGINE TEST CELL

Engine performance data was recorded in the engine test cell from Northrop
instrumentation on a magnetic tape recorder, oscillograph, and MRS recorder
(CIPR). 1In addition, data was also recorded manually from ARADMAC test cell
instruments both by Northrop and ARADMAC personmel. All Northrop installed
vibration sensor signals were recorded on an Ampex CP100 FM instrumentation tape
recorder. Continued traces of basic engine parameters were reccrded on a CEC
5-124 oscillograph. Data collection assignments are shown in Table 5.2. The
MRS recorded that data applicable to the engine test stand operation in addition
to exceedance of limit signals. Parameters recorded by the MRS recorder were N;
speed, Nz speed, EGT, torque pressure, compressor pressure, ambient temperature,
and ambient temperature. A copy of the ARADMAC run sheet was retained for each
engine test. In addition, Northrop manually recorded on its data sheet the
values of Nl speed, NZ speed, IGV position, torque pressurz, and engine oil

filter input and output pressures from test cell instrwments.

5.4.2 TRANSHISSION AKD GEARBOX TEST CELL

Data acquisition in both the transzmission and gearbox test cells were similar.
Vibration signals from Northrop acceleroxeters were recorded on a Leach MiR3200 ©M

instruzentation tape recorder. In azddition, temperature data was recorded

F
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TABLE 5.2 ENGINE DATA RECORDINGS
(TAPE RECORDER AND OSCILLOGRAPH)
3 RUN DATA
; NG, REQUIRED* RUN CONDITION
E"vg“ 1 0,T ENGINE OFF
§ 2 0 START TO IDLE
= 3 O,R,M GROUND IDLE (G.I.)
% 4 O,R,M FLIGHT AUTOROTATION (F.A.)
E} 5 R INLET GUIDE VANE CHECK (IGV)
6 R BLEED BAND CHECK
% 7 R VIBRATION N, - 65%, N, - 50%
E’% 8 R VIBRATION 70 60
% 9 T,R VIBRATION 75
é 10 R VIBRATION 80 80
= 11 T,R VIBRATION 85 97.3
% F 12 T,R VIBRATION 90 94.8
13 T,R VIBRATION 90 97.3
14 T,R VIBRATION 90 100.4
15 T,R VIBRATION 95 97.3
16 R FUEL FLOW VS, MANIFOLD PRESSUPE CHECK
17 R OVERSPEED GOVERNOR CHECK (0SG)
, 18 O,R,M F.A.
‘ 19 ¢,0,T,R,M MILITARY RATED POWER (MRP)
20 C,0,T,R,M 75% NORMAL RATED POWER (NRP), N, - 97% TO 100%
21 C,0,T,R,M NR?, N, - 97% TG 100%
22 C,0,T,R,M FLIGHT IDLE, N, - 70% TO 72%, N, - 62% APPROX.
23 0 FLIGHT IDLE TO NRP SLOW ACCEL.
24 o NRP TO FLIGHT IDLE SLOW DECEL,
25 o,R NRP, N, - 977 TO 100%
26 0 FLIGHT IDLE, N, - 70% TO 72%, N, - 65% APPROX.
27 C.0 COAST DOWN (FROM FLIGHT IDLE)
28 o,T ENGINE OFF
*0 Oscillograph
T Tape Recorder
R Run Sheet (ARADMAC)
C CIFRR (I8S Recorder)
¥  Manual Recordings (Northrop)
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manually on Northrop data sheets. In the transmission test cell, oil temperature
was recorded from the ARADMAC test ceil meter. In the gearbox test cell, internal
oil temperature and external case temperatires were recorded from Northrop tem-

perature meters., In addition, internal gearbox oil temperatures were
recorded. from ARADMAC test cell meters. '

5.5 TEST CONDITIONS

5.5.1 ENGINE TEST CELL

Engine run conditions are also stated in Table 5.2. In addition, this table
specifies the data modes at each step. The method of testing engihes was basically
the same as that which was called out in ARADMAC Work Requirement Manual
WR 55-2840-~113. After a ground and flight idle check, an IGV and bleed band
check and a vibration check, steady state data points were recorded. A steady

state point was set as follows:
1) A power lever position (PLP) was selected.

2) No RPM was set to the optimum value based on power required and ambient

temperature.
3) Engine was allowed to stabilize at the power setting until all parameters
were steady. Data was then recorded.
5.5.2 TRANSMISSION AND GEARBOX TES S

Abbreviated ARADMAC test cell run .. .cedures were adapted as a basis of the
tests in the transmission and gearbox test cells. Six test conditions were
established in the transmission test cell and nine in the gearbox test cell.

Table 5.3 details the operation in each cell.

5.6 TEST SPECIMENS

5.6.1 ENGINE

Table 5.4 summarizes the engina test schedule and engine configuration. ' Ten
ARADMAC overhauled enginmes were run through test cell #13, After production engine
signature data was coliected, a group of four engines, designated as the disgnostic

engines, were implanted with a series of defective parts and retested ia order to
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TABLE 5.3

TRANSMISSION TEST CELL - TEST CONDITIONS

INPUT MAST L0AD T/R GEN
STEP RPM * LOAD AMPS
1 5800 . 17 Low 150
2 6200 58 Low 150
3 6600 74 Low 150
4 7040 . 90 - Low 150
5 660 138 '+ Low 200
6 6600 128 High 200
*100% = 150,000 in lbs.
GEARBOX TEST CELL - TEST CONDITIONS
:
90° SHAFT FQUIVALENT 90° OUTRUT
STEP OUTPUT RPM ENGINE RPM TORQUE IN-LBS
1 0 0 0
2 1100 4381 1430
3 1300 5176 1170
4 1454 5791 1835
5 1454 ' 5791 2470
6 1604 6389 12210
7 1765 7520 2210
8 1605 638y 3640
9 1604 6389 1170




TABLE 5-4

PARTS OPERATED IN TEST CELL
T53-L~13A ENGINE RUN SUMMARY

ENGINE DATE DESCRIPTION
NUMBER RUN OF ENGINE COMMENTS
LE14400 10-12 { ARADMAC Vib. Engiue Special ARADMAC Vib. Engine
LE20998 10-14 | Production Rerun on 10-16
LE17865 10-15 { Productior
LE20998 10-16 § Production Rerun
1E16614 10-16 | Production
LE16746 10-19 { Production Rejected for high No. 3 vibration
LE14255 10-20 | Producti on
LE15165 10-21 { #1 Diagnostic Baseline
LE20727 10-22 { #2 Diagnostic Baseline
LE15351 10-23 { #3 Diagnostic Baseline
LE15165 10-26 § Bad #2 Bearing ! Cell instrumentation limits
{ not exceeded
LE20767 10-27 | Bad #3 Bearing Cell instrumentation limits
i not exceeded
LE15351 10-28 | Bad #4 Bearing Indication on cell inst umentation
that No. 4 Bearing was bad only
at low speed
LE15165 10-30 | Bad #2 Beariug No inmdication on cell instrumentation
that No, 3 Bearing 7as bad
LE20727 11-2 Bad #3 Bearing MRS in syscem, all data uncalibrated
minor FOD to engine compressor,
2 nicks first stage, 1 nick second
stage
LE15351 11-3 Bad #4 Bearing
LE18993 11-4 Bad N1 Nozzles
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TABLE 5-4 {(Comntinued)
PARTS OPERATED IN TEST CELL
T53-L-13A ENGINt RUN SUMMARY

ENGINE DATE DESCRIPTION
NUMBER RUN OF ENGINE COMMENTS
LE15665 11-5 Pad #2 Bearing
LE20727 11-6 Bad #3 Bearing
1E15351 11-9 Bad #4 Bearing
LE18993 11-10 Bad N, Nozzles Nozzles burned, warped, minor FOD
4 LE15165 11-12 Bad #2 Bearing
LE15251 11-13 No Defects Fuel Control misrigged,
: IGV's misrigged
I LE18993 11-16 | Bad Ny Nozzles
i LE20727 11-17 Bad Power Turbine
: LE18593 11-18 | Bad N, Nozzles
% LE15165 11-19 Degraded Compressor Noisy (audio) engine
3 LE20727 11-20 Bad Power Turbine
t LE15351 11-2¢ #3 Diagnostic Data shows overlimit vibs at
Baseline power turbine at 80% N;
; 1LE18993 11-23 #4 Diagnostic
; Baseline
f LE20727 11-24 #2 Diagnostic
: Baseline
} LE15615 11-24 Bad Compressor
¢
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establish unique signatures of selected defective parts, Subsequently, the

diagnostic engines were restored to their original condition and again run
through the test cell. A total of 32 engine runs were made.

Defective engine parts were limited to the following items:
a) #2 bearings (4)
b) #3 bearings (3)
c) # bearings (3)
d) Nj nozzles (2)
e) N, nozzles (2)
f) Compressors (2)

g) Power turbines (2)

Figure 5~6 illustrates a discrepant compressor,

5.6.2 TRANSMISSIONS AND GEARBOXES

Tables 5,5 and 5.6 summarize the test cell transmission and gearbox testing,
respectively. Test sequence and discrepant serialization and qualitative des-
criptions are included. A group of four overhauled units of each type were used
throughonut these tests. Initially, each unit was tested with no known defects
(out of overhaul)., Then a series of runs were made with a defective component
implanted. Final tests in the test cells were conducted with the units back in
their original overhauled condition. 1In addition, four high time units were run
in the cells, once at the beginning and after being overhauled, prior to the
conclusion of the test cell phase, The defective parts used in the transmission
test cell are listed below.

* @) Main mast bearings (6)

b) Input quill bearings (tryplex) (10)

¢) Tail rotor output bearings (ball and roller) (11)
d) Upper sun gear (3)

e) Upper and lower planetary gears (5)

f) Accessory drive gears (4)
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In the gearbox tebting éhe defective parts used were as follows:
.a) Input bearings (21)
b) Output bearings (19)
¢) Input gears (18)

d) Output gears (18)

5.7 DATA EVALUATION
5.7.1 DATA REDUCTION

As previously discussed, data from the test cells was recovered in several
forms, These were magnetic tape data, MRS data, nscillograph data, and manual
recordings, All data were analyzed at NED in Palos Verdes, California, Follow-
ing each day's testing a data package was shipped by air carrier to Palos Verdes.
Before data transmittal, however, msgnetic tape data was screened at ARADMAC for
valid information content. In addition, MRS C(PR data was transferred by the MRS

Data Recovery Unit (DRU) to a coded strip paper display,

After receipt of the data package, the magnetic tape data, which consisted
of vibration signals, was machine reduced to power spectral density plots.

Engine performance parameters contained in the oscillograph data were manually
reduced and normalized, DRU printout data were inserted into a computer program

which converted the coded engine parameter values to physical units and performed
normalization and operational functions on the parameters,

5.7.2 VIBRATION

5.7.2.1 Data Analysis Procedures
a) Wideband Root Mean Square (RMS) Threshold Detection

This technique was investigated to possibly provide an easy indication
of good or bad csondition for the machines under test,. It was hoped that
with the onset of failure, the overall (RMS) vibration level would rise
sufficiently above its normal level so that a simple threshold circuit
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b)

c)

could detemmine good from bad, Unfortunately, this scheme did not
facilitate the zest bed goal of fault detection. The vibration level
was a function of power setting, accelerometer location, and machine
serial number, Changes occurring in the vibration signals due to the
implanting of discrepant parts were uncorrelated by the wideband RMS
threshold detection techniques.

"

Werrowband RMS Threshold Detection

It was felt from the outset that certain naxrow bands of frequencies

might be sengitive to component degradation, Jarious bands were examined
with mixed results. ‘By obtaining basic signe.ure data for a given serial
number machine, and observing deviations fror normal, a satisfactory

degree of success was cbtained,

The band pasg filters were placed at variour frequencies; the most predominant
used were 100 and 180 Hz, The main drawbacl to this acheme was that the
thresholds varied as a function of both serial number and power level of the
machine. This method was not considered sufficiently reliable for continued
implementation,

Spectral Vector and Ratio Method

The Spectral Vector and the Ratio Method which do not have the limitations
of the previously mentioned schemes were fully developed. The results of
these analysis techniques follow.

5.7.2.2 Results of Vibration Analysis Techniques

The machines studied in the MRS program were analyzed as if they were black

boxes., No attempt was made to correlate the noise emission from the machine

with 1ts internal components. This should not be construed to m=an that a

correlation cannot be made between the noise emission and the faulty part

causing that emission, but it means that there is no way of (precisely)

predicting ahead of time whst that noise spectra will be for various faulty
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components--especially the secondary effects of these components. These
"black box" machines were analyzed totally by their emitted spectra as
obtained by experimencation. The engine was characterized by the Spectral
Vector Concept, while the gear boxes and transmissions were analyzed by the
Ratio Method (the ratio method is a special case of the Spectral

Vector - reference Sections 3.3.1 and 7.9)

5.7.2.3 Kesults of MRS Data Reduction

Figure 5-7 illustrates a typical power spectral density plot for a
serviceable 90° gear box, Band number 1 and band number 2, as marked
on the figure, are the frequency bands of interest. Notice how the peak
in the lower frequency band is considerably higher than the peak 1in the
higher frequency band. The ratio of the peak in the higher frequency
band to the peak in the lower frequency band is .015:1. Contrast Figure 5-8
with Figure 5-7. Figure 5-8 iiiustrates the PSD of a 90-degree gear box
with a defective output roller bearing. Notice that the peak in the higher

frequency band is ten times greater than the peak in the lower frequency
band.

Figure 5-9 is a summary of the 90-degree gear box test cell analysis.
Notice the exncellent separation of '"good" from "bad". The dots are data
points for each unit analyzed, The High Time units (gear boxes in for
routine overhaul after prescribed service time) have ratios thar fall far
to the left in the "good" column which seem to indicate that these units

have a congiderable amount of service left before they should be overhauled.

Figuge 5-10 summarizes the 42-degree gear box test cell amalysis. The
frequency bands used for this analysis were those determined from the flight
data, and as a result, the detection of scuffed gears did not occur. This
test cell analysis was done in retrospect to See wnat kind of correlation
could be made between flight data and test cell data. It appears that if
defective gears are to be detected in the test cell, then the bands should

be adjusted similarly to those of the 90-degree gear box.
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Figure 5-11 sumarizes the results of the transmission test cell data,
Despite the fact that the transmission is a considerably more complex |

component than the 90-degree gear box, the separation of 'good" from ''bad"
by the ratio method is excellent,

*As mentjioned previously, the engine was characterized by a spectral vector,
Figure 5-12 illustrates the normalized five-place spectral vector with the

first place normalized to level 2.

FPigure 5-13 presents a summary of the test cell data analyzed using the
spectral vector, as defined in Figure 5-12. The transducer location used
was at the aft end of the compressor section. Perfect nepatation‘of good
from bad did not occur; however, the results are extremely promising. By

shifting the frequency bands, various degrees of separation result. _

The four-place error code gives rise to 256 possible combinations of four-
digit codes. 1In reducink the test cell data, only 26 unambiguous codes
were found for the engine and 1l of these were codes for good engines.
Thérefore, of the total of 256 possible codes, 230 were not defined;
i.e., 88 percent of the codes were undefined. Because of the complexity of .
analyzing a four-dimensional problem by hand, no reliable method of determining
the undefined codes was found. In view of this fact and the level of com-
plexity needed to implement the four-place spectral vector in hardware,
this method was not pursued further than the test cell analysis,

5.7.3 ENGINE GAS FLOW ANALYSIS

This section covers the evaluation of the test data on the T53-L-13 engine,
conducted during the ARADMAC test cell phase of the MRS program. The preceding
Table 5.4 presented the engine and discrepant parts selected for this phase,

5.7.3.1 Baseline Evaluation

The test cell data from the ten T53-L-13 engines have been evaluated to
determine if a common baseline engine performance value can be established by
using the averaged values. Direct comparison of the corrected engine performance
parameters for ambient conditions are presented in figures 5-14 through 5-18

for the following normalized engine performance relationships.

-~
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Compressor pressure ratio (CRR) versus corrected engine speed (llllg/e_)
Corrected shaft horsepower (SHPAn/0) wversus cocrected engine speed (nllJO)
Corrected exhaust gas temperature ECTANQ versus corrected engine speed (llll\[o)
Corrected engine fuel flow (Il!b.{a versus corrected engine speed (8, Af0)
Corrected shaft horsepower (SHPA\/Q) versus engine fuel flow (HFA,"o)

The selected performance parameter rela2tiomships provide adequate informa-
tion to effectively diagnose the engine component faults. An evaluation of
Figures 5-14 through 5-18 which preseat the composite of eleven nondefective

engines, show the significant engine-to-engine perfoimance variations. It
3 ? clearly indicates that each engine has unique performance characteristics. Due
to the gross per{ormance varia tion and the mino: nature of the discrepancies,

the specific baseline engine signature data were used to identify the discrepant
engine part rather than the average operating lines.

4oy
Pt ol Datananda L L

5.7.3.2 Baseline-Discrepant Correlation

The results of the baseline engine and discrepant parts data obtained during
the test cell phase are covered in this section. Table 5.4 summarized the
T53-L~13 engine tests during the period 12 October 1970 to 24 November 1970.
Direct performance comparisons of the baseline and discrepant part embedded

; engines are prezerted in figures 5-19 through 5-43 and discussed in the
k following paragraphs.

e e

F The effects of discrepant main shaft bearings (number 4) and misrigged fuel
control unit on the engine performince were determined using engine LE15351.

Three engine runs had been conducted on an engine with degraded numbuzr 4

bearings. Specific baseline engine signature data were obtained beiore and

- after the three discrepant number 4 bearing engine runs, The following

conclusions were established from a direct comparison of the discrepant
number & bearing and baseline engine performance presented in figures 5-19
through 5-23.

T TV YL

1) As ant.cipated, the defective main shaft bearings bave little effect

or 1ne compressor performance. The resultant compressor pressure

TUYrE I T

ratios of the discrepant engines are within the baseline values,

Eon W A A
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Fuel Control Power N./ CPR SHP/6VQ; WF/&JQ; EGT/®8
% % %o

Condition Setting % % %

1 MRP +3 +5.5 +15 +9 +39

2 MRP +1 -1 -1 -1 +5
3 MRP 1.5 =4.5 -7 -4,5 -24

. 4 MRP +1 -9.5 -12 ~2.5 +39
5 MRP +1 +2 4 +4 +15

5 NRP +2 +4 +5 +3 +7

6 MRP +1 +1 +5 +4 +25

7 MRP +1 +1 +6 +4 +14

7 NRP +2 +4 +6.5 +5 +14

An engine LEL8993 was used to test the discrepant gas producer turbine (Nl)
and power turbine (NZ) nozzles, Two levels of nozzle degradation were evaluated
for each turbine assembly. Specific baseline engine performance characteristics
were established upon completion of the discrepant turbine nozzle engine runs,

Fignres 5-29 through 5-33 show the performance values of the five engine runs,
Significant results are:

a) Engine performance deficiency generally encountered with a damaged N1 nozzle
engine (increased nozzle area) was noted on the first degraded Nl nozzle
engine test (4 November 1270)., Decreased compressor pressure ratio is a
common symptom for this type of engine damage. Lower shaft horsepower and
exhaust gas temperatures are caused by lower engine air pressure and fuel

flow.

b) Subsequent degraded Nl nozzle engine runs (10 November 1970) showed slight
nozzle damage, Essentially, no deficiency in compressor performance was
indicated at MRP and NRP gettings. Slight increase in compresscr pressure
ratio at 75 percent NRP indicates slight decrease in Nl nozzle area.
Similar shaft horsepower deficiency was encountered as the previous N

1
nozzle engine test,

¢) Two degraded N2 nozzle engine runs showed an effect on the compressor

performance. The exhaust gas temperature (EGT), engine fuel flow, and shaft
horsepower are the engine performance parameters usually affected by

degraded NZ nozzles. Irregular EGT values were obtained on both degradea
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Direct comparison of the baseline and discrepant engine performance show the

following.

4) Selected discrepant.number 3 bearings were nrot damaged envugh rc affect }he
engine performance. Only noticeable performance changes from the baseline
values were indicated on the second degraded number 3 bearing engine run
(2 November 1970). Lower shaft horsepower and EGT achieved ¢n this test may
have been caused by:an engine adjustment which modified the engine fuel

flow schedule. -

-

b) Of the-two defective power turbine engine runs, the second engine test
(20 November 1970) provided the typical problems encountered on the
defective power turbine engine.: Apparent performance indicators are the
engine shaft horsepower deficiency and irregular exﬂaust gas temperatures
as a function of -engine speed (figures-S-ho and 5-%1), no eifect on
compressor performance (Figure 5-39), and reduced shaft horsepower per
engine fuel flow (Figure 5-43). o

Table 5.7 has been prepared to completely summarize the results of the éngine

analysis performed during the test cell phase.

5.7.4 ENGINE BEARING TEMPERATURE

Figures 5-44, 5-45, and 5-46 illustrate the engine number 2 bearing énd
number 3 and number 4 bearing Sscavenge oil temperature rise over the engine
oil inpul temperature. Standard test cell instrumentation was used to obtain
this data, It was verified that test cell readings were lower than Northrup
readings due to the physical differences in the sensor installations. However,
test cell temperatures were chosen for evaluation since they provide a broader

data base for comparison,

Correlation between dfscrepant bearings and temperature ri: : was
not fully conclusive, The primary observation is that distinct data
shifts result from engine teardown, This shift was observed in the
numbzr 2 bearing differential temperaturé on engine 18993, which had the
same number 2 bearing installed in all test cell runs, In the case of
engine 20727 on 2 November 1971, a distinct temperature rise was observed
when a discrepant number 3 bearing was implanted, However, in subsequgnt
tests the number 3 and number 4 bearing differential temperature remained
at essentiallv the same levels in spite of the restoration of the

original bearing,
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TARZ 5.7 SMUXY OF DESCYTTANY

DCEE S/¥ PATE OF TZ5T DISCIFPANT BAIT CZ vs X, A6
20727 16-27-70 Xo. 3 Bearisg Slighrly Lower (ZZ) &
| Skizkerly Eigher (<ZZ)
g | 11-2-70 Xo. 3 Bearinzg Siigerly Lower (<Z%)
; 11-6-70 Bo. 3 Bearisg Siighely Lower (<2%) &
Slightly Eigher (<2Z)
’ 11-17-70 Power Torbire Eigher (02Z, <10%)
11-20-70 Power Torbine Slightly Lower K2Z) &
Slightly Higher K27Z)
18593 11-4-70 S‘l Kozzles Slightly Lower («2%)
11-10-30 51 Hozzles Eo Zffect
11-16-70 Ez Rozzles Slizhtiy BRigker (<2%)
11-18-70 5, Nozzles Sligh:1y Higher (<2%)
15615 10-2€-70 No. 2 Bearing ¥uch Lower (<10%)
10-30-70 Ro. 2 Bearing Lower 027, <07)
11-5-70 No. 2 Bearing Lower (>2%, <10%)
11-12-70 No. 2 Bearing Yo Effect
11-19-70 Compressor Lower (027, <107)
11-24-70 Compressor Slightly Lower (<27)
15351 10-28-70 No. 4 Bearing Lower (>27%, <10%)
11-3-70 No. 4 Bearing Lower (>2%, <107)
11-9-70 No. 4 Bearing Slightly Lower (-.2%)
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1‘
i

ZLTIe vs FEM

wsjaiawssll\ié

SRS vs Ell‘fﬁ

E?Mwsﬂ?lﬁlﬁ

Lower OZZ, <W0Z)

Sifghtly Eigher (K22)
Slighriy Lower (<2%)

Siightly Bigher (2%)

Siightly Eigher (K2%Z)

Lower (2%, <107)
Lower G2%, <167)
Much Lower (<10Z)

Slightly Higher (<2%)

Lower (>2%, <10%)
Lower (>2%, <10%)
Slightly Lower (<2%7)
Lower (>27, <107)
Lower (2%, <107)

Lower (2%, <107)

Higher (27, <107)
No Effect

Higher (>27%, 10%)

5-72 ( onTs)

Ko Effect

Lower ©2Z, <10%)

Bo Effect

Sligktly Eigher (<27%)

Slighrly Lower (<2%) &
Bigher (2%, <i0X)

Lower (>2Z, <10%)
Ko Effect
Xo Effect

Xo Effect

Yuck Lower (<107%)

¥uch Lower (K10%Z)

Lower (>27, <107) s

Lower (027, <107)
Much Lower (K10%)

Much Lower (<107)

Slightly Lower (<2%)
Much Lower (<107%)

Slightly Lower (<2%)

Skightly Lower (<2%)

Lower O2%, <26%)

Skightly Lower (C2Z)

No Effect

Lower 02Z, <i02)

Lower O2%Z, <100
Lower (2%, <107)
Siightly Lower (27)

Lower >2,, <i07)

¥uch Lower (K107)
Huch Lower (<107)
“duck Lower (<107)
Much Lower {<10%)
Much lLower (<107)

Much Lower (<10%)

No Effect

Lower (>2%, <10%)

Slightly Lower (<2%) &

Slightly Higher (<27%)

-
-

”

Lower OZZ. <IOX)

Slighrly Lower (KZZ)
Slightiy Lower (<2%)

Lower (2%, <16%)

Lower (O2Z, <i0%)

Silightiy Lower (<2%)
Lower $22, <i0%)
Slightly Lower (<2%)

Lower (2%, <10%)

Lower (327, <10%)
Slightly Lower (<2%7)
Slightly Lower (<Z%Z)
Slightly Lower (<2%)
Lower (2%, <10%)

Slightly Righer (<27,

No Effecr
No Effect

No Effect




3.7.5 CEIX30E TRMIERITERES

Figewe 3-47 illcsirates the 42-degree grartox differectizl temperatev—e rise
for Peselime, discrepami, a0d hizgh vime ocoits. Figowre 3-48 comrzics the same
irformetion for the 90-degree gearbox. Owzrall, the resolits show some
correletioe of discrepeni parts with respect to beselime dzre. Of the €2
discrepent condiricos imposed, 2% of them exibit z remperatuvre rise zbove the
taszline spread. Eigh time coits coosistently exbibic 2 lower temperaszuore rise
2fter cthey beve been overbanmled, and in zidiricn, definiee’y trend toward the
iow end of the baselime temperature raoze. Yoce of the hizk time wairs exceeded
the tlemperature ramge estadlished by the bDaselice vmizs, In fzcr, 2 few were
cuize low, motably 42-degree gearbox Bl3-85%. This implies that some of the
high _ime vaits bave wsefvl service life remzinirg,

5.8 COECLUSIONS

Both objectives of the test cell phzase were met. First, 2 dzta base wes
developed of serviceazble zed degrzded compoment periormznce znd parzzeter
varizticns in the zest cell eavirozmment. Secozdly, the se-cessful integrztiosn

2nd operation of the MRS system with the UH-1H test beé aircrzit was zssured,
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6.0 PREPARATION FOR FLIGHT TEST PHASE

6.1 OBJECTIVE

The objective was to imstrument two UH-1H helicopters for flight test of

the Maintenance Reporting System (MRS). One helicopter was used for instal-

lation of LRU's which had implanted discrepant parts. The other was used as a

“trend" aircraft which flew typical Army missions and accumuiated as many

flight hours as practical during the prcogram.

6.2 SYSTEM INSTALLATION

Installation in the two helicopters was essentially identical except that
the trend aircraft 66-17138 did not have prcvisions for using the Leach instru-
mentation recorder (provisions were added at the start of verification testing).
Certain accelerometers were also not installed in 66-~17138 because they were in-

tended for analysis support data and were not used by MRS mechanization,
These accelerometers (five) are listed in Table 6.1.

Figure 6-1 illustrates the location where new sen,ors were added to the
helicoprer. Reference numbers are explained in Table 6.1. The majority of
the sensor mounting brackets came from the test cell instrumentation. Others
which were peculiar to this installation, or were determined to be required
for the flight phase, were manufactured in the ARADMAC machine shop. 1In
addition, hardware required for new pressure lines was obtained from the ARADMAC
standard parts inventory. Added pressure tubing on engine, transmission and
hydraulic systems were made from stainless steel, braided, flexible tubing
with a service rating of at least 2-1/3 times the maximum system pressure.
Pressure sensing lines were provided with a 0 040-inch-diameter flow restrictor

at the tie-in point to critical aircraft subsystems.

Figure 6-2 illustrates the UH-1H instrumentation cable routing, A large
portior of thc wiring was manufactured into cable assemblies prior to the in-

stallation, This procedure reduced the time and effort expended,

In the selection of signal so rces, indicator circuits were utilized to
assure greater flight safety. However, whenever critical control circuits

had to be monitored, an eucapsulatcd protective resistor or a suitable fuse

6-1




T TTTPTTRpTIT—T Swe—y——
TN O BREE N A e LA A

P
!:.« A8
bt
2
3

A R e
- Syt

{§

at the interface junction was used to protect the aircraft circuit from a

possible short circuit in the MRS wiring.

Figures 6-3, 6-4, 6-5, and 6-6 show typical sensor installations in
the transmission, engine, and gearbox areas. Reference numbers are explained

in Table 6.1,

6.3 PREFLIGHT CHECKOUT

After the aircraft installation was completed; a system checkout was ini-
tiated, First, the instrumentation wiring was verified for accuracy against
the schematics., Next, the transfer function from the sensor through the signal
conditioning was established. This procedure involved sensor simulation, as
in the case of the temperature probes, or direct physical sensor excitation,
as in the case of the pressure transducers and EGT probes, The final phase
of the preflight checkout included engine ground runs which verified the

mechanical integrity of the helicopter rework,
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FIGURE 6-1 LOCATION OF ADDED MRS SENSORS
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7.0 FLIGHT TEST PHASE

This portion of the test bed program incorporated all the planning and

e e s S S A ot S~ e

"jessons learned” from previcus phases, with emphasis on correlation of the

-

dat2 from the test cell operation. The flight program was implemented in

two helicopters assigned to Northrop. Both aircraft were coutinuousiy flown
at maximum gross weight; a standard flight profile which parallels Army test
flight requircments was utilized; Army mechanics accomplished the bulk of the

aircraft maintenance functions; and Army Aviators with extensive, recent combat

operational and logistical experience did all the flying. As detailed in
Paragraph 7.2, the flight phase scope included baseline, discrepant parts

implant, trending and verification flights.

7.1 OBJECTIVES
The objectives of the flight test phase were to:

a) Provide signature data for MRS parameters under varying flight conditions,
b) Verify UH-1H/MRS compatibility under operational conditions,

¢) Demonstrate MRS performance throughout the normal range of UH-1H aircraft

operations,

d) Accumulate the data necessary for the Army to project the logistical

impact provided by the MRS on the aviation fleet,
7.2 TEST CONDUCT

The flight test phase used two UH-1H aircraft with T53-L-13 engines for data
acquisition, Aircraft 67-17448 was used primarily for discrepant parts and
baseline flights; aircraft 66-17138 was used primarily for obtaining trend

data while accumulating as many hours as possible. Except during the incidents
and verirfication flight tests, the trend aircraft flew a wide range of Army

aviation missions. During the program, aircraft 66-17138 logged 236 hours,

while aircraft 67-17448 accumulated 86 hours.

7-1




7.2.1 TEST SAMPLES

Parts used for discrepant implants were prirarily taken froo the original
group selected for the test bed progre= snd included cany parts used in the
test cell, The bulk of the parts were ckosgen by qualitative assessment based
upon the experience of ARADMAC personnel in the overhaul and remanufacture of
engines, transmissions, and gear boxes, Parts used as discrepant implants are
listed in table 7.1.

7.2,2 PROCEDURE FOR DISCREPANTS

The sequence of installation and removal of discrepant parts is shown in the
Engine and Transmission Box Test Cycle diagram of figure 7-1. Essentially, the
same sequeance wag used during discrepant baseline tests. Engines, transmis-
sions, 42° gear boxes, and 90° gear boxes were built-up by ARADMAC personnel
with the selected parts implanted during build-up. Army crew chiefs assigned

to the program installed the discrepant components on the test aircraft.

NED personnel werc responsible for removing and installing the new test
bed sensors which were affected by the removal and installatioa of each dis-
crepant component. Integrity of installations was confirmed by a ground
run-up of the aircraft with the complete MRS operating (including the Leach

instrumentation recorder),

Inasmuch as flight time for each discrepant was limited to 2-1/2 hours,
every effort was made to assure successful data acquisition, The NED dis-
crepant flight profile requived approximately 50 minutes per flight, which
allowed 2 flights per discrepant, At the end of the first flight, data was
checked and verified before the second flight was allowed to start, The
second flight was primarily a back-up, but did provide special data on some
flights, particularly after the vibration spectrum analyzer (VSA) method of

monitoring was incorporated in the MRS (reference Section 3.3.1).

At the completion of the second flight, data was again checked before the

discrepant components were allowed to be removed from the aircraft,

7-2
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7.2,3 DATA REDUCTION

2educing the data acquired from the test aircraft was accomplished at both
Corpus Christi and at Northrop's Palos Verdes facility (the Corpus Christi

activity was accomplished in a house trailer adjaceat to ARADMAC).

At Corpus Christi, the CIPR cartridge was removed from the aircraft after
a flight and the data accumulated was recovered by using the Data Recovery Unit
(DRU) to play back the magnetically stored data. Both the maintenance and engi-
neering channels were printed out and used to evaluate system performance and to
verify the cccurrences of maintenance outputs, Copies of both maintenance and
engineering chammel data of each flight were sent to Palos Verdes for detailed

evaluation,

Reduction of data at Palos Verdes vas concerned with supplying data for
three primary types of evaluation efforts. Reels of magnetic tape containing
broadband vibration data, recorded by the Leach airborne recorder, were received
from Corpus Christi and nlayed back on an Ampex instrumentation playback machine
and an SD301B real time analyzer. This analyzer was set up to record power
spectrum density (PSD) outputs directly on an X-Y plotter, The PSD plots were
used for detailed evaluavion of acceleration information sensed at various

points on aircraft components,

Copies of the engineering channel data for each flight received from Corpus
Christi were transcribed for use in a computer prcgram which converted pertinent
data to a form suitable for evaluation of engine gas dynamics. Data from the
computer program was organized into various forms for comparing health and

trend relationships, examples of which are contained in this report,

Other data from the engineering channel and maintenance channel was compiled
and plotted for observing changes from established baseline conditions and for

evaluating system mechanization.

7.3 SHAKEDOWN FLIGHTS

Prior to the start of actual flight tests, several flights were made to

assure operation of the complete system, Verifying that the installation was

7-5
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correct and flightworthy was the primary purpose, In conjunction with these
installation integrity checks, evaluation of data proved the outputting capa-

bility of the system during various flight conditions, A correlation of MRS

calibration te cockpit instrumentation was also obtained for a better under-
standing of flight data,

0f lesser importance but significant to the conduct of flight tests was the
information gained from the shakedown flights which aided in establishing pro-

cedures for conducting flights and handling data in support of flights.

7.4 INCIDENT FLIGHTS

Incident flights were devised to demonstrate the performance of the MRS
by establishing conditions which would cause the system to output correctly
without creating hazardous conditions, With the MRS hardware installed for
normal monitoring, a special test box was connected tc the EU test connector
during the incident flights., This special test box was capable of substituting
a different detection level (value determined by operator) for any of the pre-
established detection levels contained in the EU mechanization, Detection
levels in the upper ends of the "normal" range of selected parameters were
substituted for abnormal limits by programming the special test box and then

varying the flight conditions of the aircraft to obtain the desired upper range

conditions,

On 3 flights of aircraft 67-17448, the following conditions were demonstrated

by substituting detection levels:

Coundition Normal Limit Demonstration Limit
Overtorque 50 pst 48 psi

N1 Overspeed 101.5% 98%

N2 Overspeed 6640 RPM (N1 91%) 6400 RPM
Rotor Overspeed 339 RPM 320 RPM

Engine 0il Overtemp 93°C 85°C

EGT Abnormai 625 °C 600 °C

Engine oil overtemperature and EGT abnormal were not accomplished on all

flights because of the inability to create the upper limit condition each time,

7-6
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In addition to the detection level substitution tests, several aircraft switch

type parameters were tested,-

7.5 ROTOR FLIGHTS

Several flights were made to obtazin vibration reference data during known
out-of-tolerance conditions of main and tail rotors. This data, recorded by
the Leach instrumentzation recorder, was to be used for evaluatiocn of detection

mecnanizations.

_Spaunwise and chordwise unbalance as well as low speed aad high speed out-
of -track tests were devised and used for main rotor tests. Out-of-track and B
out-of-balance tests were also used for the tail rotor. All tests, except tail
rotor unbalance, were flown only once because of poor flying weather, and due

to AVSCOM's desire to begin other tests.

After a baseline (in tolerance) data flight, the following test conditions

were created using aircraft 17448:

Condition ¥e.chod Usad
Main rotor spanwise unbalance 5 wrap weight added
Main rotor chordwise unbalance Shorten drag link 1 turn
Main rotor low speed out-of-track Lengthen drag link
Main rotor high . jeed out-of-track Adjust trim tabs
Tail rotor out-of-balance 2 wraps 2 inch tape
Tail rotor out-or-track Adjust pitch iink

Ko significant correlation of abnormal conditions was obsevved from the
limited amount of data obtained. Further testing with a more flexible instru-
wentation scheme, which can be adjusted to accumulated resuits, would be of

value in determining monitoring requirements for rotor type probleams.

7.6 BASELINE FLIGITS

The purpose of baseline flights was to accumulate data which would provide

- . . < ) ~ _ ,

the data base necessary for diagnostic amalysis of discrepant implants. Esteb .
11shing the necessary data base reruired data to be acquired froz "no defect”

fiights of each S/N coopraent used for icplants (see table 7.2) as well as data
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TABLE 7.2 BASELINE (NO DETECT) FLIGHTS

DATE

.COMPONENTS

5-3-71

5-12-71

5-17-71

5-24-71

Engine S/N 20727

42° Gear Box S/N ABB-Z89
90° Gear Box S/N A13-2772
Transmission

Mast Bearing S/N 833E
Input Quill Bearing S/N Q12-520
42ail Rotor Quill Bearing S/N F12-6215

Engine S/N 15615

42° Gear Box S/N B13-2925
90° Gear Box S/N A13-2065
Transmission

Mast Bearing S/N 198K
Input Quill Bearing S/N G12-1341
Tail Rotor Quill Bearing S/N F12-6277

Engine S/N 18993

42° Gear Box S/N B13-8304
90° Gear Box ABC-142
Transmission

Mast Bearing S/N 67
Input Quill Bearing S/N CP12-4268
Tail Rotor Quill Bearing S/N 312-55524

Engine S/N 15351

42° Gear Box S/N B13-5199
90° Gear Box S/N B13-6624
Transmission

Mast Bearing S/N 6123
Input Quill Bearing S/N CP12-7105
Tail Rotor Quill Bearing S/N B12-18628

#




«

from flights with different gross weights using the normal service componencs
of aircraft 67-17448 during January 1971. '

7.6.1 BASELINE ‘FLIGHT PROFILE '

A flight profile which woula provide a flexible basis for evaluating data
was used for baseline flights (seg figuée 7-2). This ~:ofile was also useé
for all discrepant parts flights except that ﬁhe maximum altitude of 10,000
feet ased on early baseline flights was changed to 4,000 feet to better ¢ccom-~

modate the flying conditions at Corpus Christi (usually IFR abovela,OOO' MSL).

Data was recorded on the CIPR and on the Leach instrumentation recorder
for each step of -the profile, Accumulation of the data obtained from these
steps covered a variety of power and trim conditions which allowed comparison

of data within a flight as well as comparison of flight to'flight.

7.6.2 BASEL.NE EVALUATION

Since baseline data is presented and used in other sections of this report,
discussion here is limited to factors which influence primarily the interpreta-

tion of the baseline data. ! ' ‘ :

The first baseline flights were flown in January w?th different "onboard"
weights and used the normal service engines assigned té each aircraft. Data
was accumulaied to provide a basis for evaluating discrepaat parts, to determine
the effect of gross weight, to establish preliminary detection limits for param-
eters which had no availabl: data, and to compare the character and value of

parameters to the test cell, pa-ticularly vibration data.

During conduct of the discrepant implant tests, it became obvious that
cvaluation of the discrepant parcs data base would be considerably improved if
"a0 defect"” baseline flights were conducted for each of the (same) components
used for discrepant parts implant tests. These flights were conducted after
the first portion of discrepant testing on the 3rd, 12th, 17th and 24th of
May i971. Because the transmission is a very time consuming component to

replace 1n the aircraft, only one baseline transmission was tested with a set

of "good" bearings.
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10,000 ft -

1,000 ft -
500 ft -
GROUND

1

STEF 1  GROUND EFFECT HOVER
2 500 FOOT CRUISE AT 70 KTS
3 1000 FT CRUISE AT 115 KTS

4 CLIMB TO 10,000 FT (4,000 FT AFTER 2-10-71)
AT MAXIMIM RATE

10,000 FT (4,000 FT) CRUISE AT 80 KTS

10,000 FT (4,000 FT) CRUISE AT MAX SPEED
HOVER AT 10,000 FT (4,000 FT)

DESCEND TO 500 FT AT 500 FT PER MIN AT 80 KTS
N, AT 6600 ON THE GROUND

2
10 FLIGHT IDLE ON THE GROUND (N1=70 TO 727)

O Ny O W

FIGURE 7-2 BASELINE FLIGHT PRCFILE

7-10




Engine data as acquired in the test cell was obtained at 75 percent normal
rated power, normal rated power, and at maximum rated power. These power
levels, with the exception ¢f 75 percent normal rated power, were seldom

encountered during flight tess (see figure 7-3). 1In addition, the oil

-

coolers in the test cell were a special part of the test cell and performed
differently than that in thc aircraft. These factors made correlation of

engine parameters other than gas dynamics perforﬁance more difficult but not

infeasible,

Early flight vibration data indicated the more complex nature of spectral
energy when compared to the test cell. Since the ratio method of monitoring
was being implemented based upon test cell data, modifications had to be made
in order to account for the more complex spectrum, These changes were easily

incorporated into the MRS mechanization.

Evaluation of engine gas dynamics performance was basically unchanged from
the test cell, Correlation wa~ good even though the power range was higher in
the test cell, It is unfortunate, however, that the baseline accumulated for
the four engines used for discrepant parts testing includes only the one series
flown in May. The tear-down build-up cycle apparently has an effect on engine
performance due to torque tolerances, etc, Consequently, additional baseline
flights would have provided a better picture when considering the monitoring
requirements of a normal service engine and would have improved the determi-

nation of baseline :pread.

7.7 DISCREPANT '"ARTS IMPLANT TESTS

The flight test data base is not as extensive as that of the test cell.
Because of the amou.t of time involved in implanting discrepant parts in the
aircraft's components, fewer test runs were made and degraded gears were not
used. In addition to the normal service components of aircrait 67-17448, the
data base contains results from the monitoring of four engines, four 90° gear-
boxes, and two 42° gearboses. Part numbers of the components used for flight

tests are shown in Table 7.3.
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1 enemE LE 15351
A NONDISCREFANT - 11/20/70 - MRS
TEST CELL
1300 4 ) NONDISCREPANT - 11/20/70 - TEST oA
CELL DATA
A BASELINE FLIGHT - 5/24/71
1200 4
A
g A
1100 4
1000 -
P
jo o]
wn
]
© 900 -
© A
£ 0 .A
2 4A
800 -
4
700 - A
600 - A
A
A
500 - A
400 T | T T 1
75 80 85 90 95 100
N,/VE - % '

FIGURE 7-3 CORRECTED SHAFT HORSEPOWER VS CORRECTED N1 SPEED
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TABLE 7.3 COMPONENT PART NUMBERS

Engine T53-L-13A
42° Gear Box 204-040-003-37
90° Gear Box 204-040-012-13
% Transmission 204-040-016-1 & -5

Table 7.3 lists the flights and the serial number of parts which were dis-

crepant and table 7.4 summarizes the types of discrepants. As in the case of

baseline flights, data was recorded on the CIFR and on the Leach instrumentation

recorder for direct and ccmparative evaluation,
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7.7.1 VIBRATION

Vibration monitoring during discrepant parts testing was corcerned with
correlating the discrepant implant to the established ratio detection method
mechanized in the EU., Correlation involved analysis of power spectral density
plots (PSD's) obtained during discrepant parts flights, Both the ratios mech-
anized in the EU and othér ratios established for accelerometer data, recorded
on the Leach instrumentation recorder, were used for the analysis. In addition,
the effectiveness of the ratio method was evaluated and the effect of the flight
mode was investigated. Analysis of data from early flight tests (primarily
baseline) indicated the more complex spectra of the monitored coﬁponents than
observed in the test cell. Coupling between components (drive couplings),
different mountings, and different dynamic loadings account for the differences.
As a result of the differences, the filter bands used in the test cell were
changed for monitoring circuits used in the flight tests. These changes were
incorporated into the VSA circuits which replaced the single frequency narrow-

band circuits used in the test cell and early flight tests,

7.7.1.1 Flight Data F!lter Bands

Table 7.5 liscs the band used for detection of abnormal gear boxes and

transmissions.

TABLE 7.5 FREQUENCY BANDS FOR GEAR BOXES AND TRANSMISSION

Component Band 1 (Hz) Band 2 (Hz) Accelerometer
90° Gear Box 3415 - 4000 4430 —~ 5000 Lateral
42° Gear Box 2750 — 3050 4250 — 4600 Longitudinal
Transmission 2630 — 3530 3560 — 5000 Normal Mast

Bands used for the spectral vector technique of eagine monitoring used

with the original VSA are listed In table 7,6,

TABLE 7.6 SPECTRAL VECTOR FREQUENCY BANDS FOR ENGINE COMPRESSOR ACCELEROMETER

Reference Band (Hz) Baud 1 (Hz) Band 2 (Hz)

77 to 126 2095 to 3350 3540 to 5007
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Even though the MRS hardware was being flown with a fixed relationship of
bands and ratios, analysis of flight data using PSD's allowed a constant back-up
and evaluation of the mechanizatim. As the data base increased during the pro-
gram and baseline data of discrepant components was acquired during May, results

of analysis were less consistent when the wider (more divergent) baselines were
considered.

In June 1971, the engine vibration data base was reviewed in order to better
accommodate a more divergent baseline of engines. "It was found that the combus-
tor accelerometer gave more consistent results than either the turkine or prev-
viously used compressor accelerometer. Table 7,7 iists the frequency bands

used in the analysis of the engine combustor accelerometer.

TABLE 7.7 FENGINE COMBUSTOR FILTER BANDS

(Hz) BAND A BAND B BAND C BAND D BAND E BAND F
From 605 755 955 1670 2070 2270, 2340%
To 695 875 1270 1820 2180 2660

*; REVISED LOWER LIMIT

Various combinations of ratios were utilized to provide fault isolation;
e.g., Band "B" divided by Band "A'" was sensitive to nozzles while Rand 'F"
divided by Band '"D" was sensiti‘e to bearings and compressors. The (more
general) spectral vector metho! did not satisfy monitoring requirements as
expected, so the ratio method was incorporated instead of the spectral
vector (a ratio is a special case of the spectral vector)., Present wechaniza~

tion limitations allowed only Bands F and D to be mechanized.

7.7.1.2 Effectiveness of Ratio Method

Because of the previously mentioned change in the spectra of flight data
relative to that of the test cell, evaluation of the effectivenegs of the ratio
method was a basic consideration, particularly when compared to the previously
implemented single frequency narrow band technique of wonitoring. The effective-
ness of the ratio method is demonstrated by comnsideration of its sensitivity to
a discrepant (abnormal) condition and how the sensitivity varles relative to

flight condition,
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Figure 7-4 illustrates the measured ratios for the Engine Combustor Accel-
erometer for all 10 steps of the flight envelope (see section 7.6 for flight
profile) . Note that the ratios for very lcw power levels (steps 9 and 10) do
not differ appreciably from the high power levels., Figure 7-5 illustrates the
anomalies results cbtained from the same data, The vertical scale in figure 7-5
has been adjusted so that step 2 has the same vclue as the step 2 in figure 7-4.
Note hor unnormaiized data follows the power settings of the aircraft, while the
ratio method remains relatively indifferent, The ratio of the minimum vaiue to
the maximum value for figure 7-4 is only 3:1 while figure 7-5 is almost 25:1,
The mean level in figure 7-4 is 3,0, with a peak-to-peak 'ariance of 3. The
mean level of figure 7-5 is 2.6, with a peak-to-peak variance of 5,75, Figure
7-6 graphically -illustrates this point,

Figures 7-7 and 7-8 illustrate a grossly dzgraded FOD compressor (note the
change in vertical scale), The average value is 16 for the ratio method compared
to 11 for the unnormalized method, The unnormalized method is capable of de-
tecting this discrepant compressor, but not as well as the ratio method -- had it

not been for step 1, the unnormalized method may not have been ahle to detect the

compressor,

A natural question arises from the comparison of figure 7-7 with figure 7-8
- why shculd a ratio be more sensitive to failures than simple threshold

detection? The exact mechanics of the "why" are not well understood, but the

general feelings is that the bands in the ratio method are not statis-
tically independent. The two bands .oupled to each other through the

complex (non-linear) dynamics of the machine. The effect is much like a
teeter~totter -- as the machine starts to fail, the upper band increases

while the lower baud decreases.

The ratio of the two frequency bands can be considered to be a dimensional
transformation; i.e., the two frequeuncy dimensions are transformed into one
ratio dimension. The individual statistics (the mean and the variance) of
the frequency bands may be identical, while the statistics of the ratio muy
differ considerably. Figure 7-9 helps illustrate this point. It shows the
dependence of the two bands and why the ratio variances tend to be lower.

As power level changes, the absolute value in each band tends to move in the
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VIBRATION LEVELS AS A FUNCTION OF FLIGHT PROFILE

RATIO | F/D
6‘ 1]
) | . ‘ ON GROUND
54 | ' :
1000' - 115 KIS 4000 Hovgn
44 GROUND
HOVER
FLIGHT IDLE
16 et S _ _ _ AVERAGE
500' - 70 KTS' \ 4000 3.0
- 95 KTS
21 DESCENT
N, @ 6600
400" - 80 KIS
14 , . I
GOOD ENGINE : |
| STEP
LS T T e L] | ™ Y v —
I 2 3 4 5 6 71 8| 9 1o NMR

FIGURE 7-4 RATIO F/D AS A FUNCTION OF FLIGHT PROFILE

' |
RATIO F/CONSTANT . ,

+ ‘ \

6
ON GROUND
5 : .
4
GROUND
3] HOVER
500' - 70 KTS AVERAGE
-t - - - - T - T T T T\ T 1= 7 7 (2.6
2
N, ©@.6600
. DESCENT
GOOD ENGINE 4000' - 95 KTS Pl
| STEP
T T L T ¥ T A T ¥ ¥
1 2 3 4 5 6 7 8 9 1o NUMBER

v GURE 7-5 UN-NORMALIZED VALUES OF BAND "F"
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VARIANCE
]- 5.75
VARIANCE
3 [ = MEAN - MEAN
3.0 2.6
4
RATIO UN-NORMAL1ZED
METHOD METHOD

FIGURE 7-6 COMPARISON OF THE MEAN AND VARIANCE FOR THE
RATIO METHOD VERSUS THE UN-NORMALIZED
METHOD - GOOD ENGINE
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RATIO F/D

GROUND
Q HOVER
80 o I
50 =~ ON GROUND
- DEFECTIVE COMPRESSOR —
40 -
4000' - 95 KTS
30 4000°
1000' - 115 KTS HOVER
20 AVERAGE
T — T 16
10 = ! FLIGHT
N
500" 4000" 6g0§ IDLE
70 KTS 80 kTS DESCENT
STEP
LS L 1) 1 ¥ | Y L
1 2 3 4 5 6 7 8 9 10  NUMBER
FIGURE 7-7 VIBRATION LEVELS FOR DEFECTIVE COMPRESSOR
RATIO F/CONSTANT
60 = ON GROUND
50 = GROUND HOVER
40 — DEFECTIVE COMPRESSOR
30
20 -~
1000' - 115 KTS AVERAGE
4000' - 95 KTS 4000 N, @6600_ ___ 11
s I 0 HOVER | FLIGHT
500' - 70 KTS 400 .
STEP
1 a1 k4 T 1 4 13 1 § A | } §
1 2 3 4 5 6 7 8 9 10 UMBER

FIGURE 7-8 UN-NORMALIZED VIBRATION LEVELS FOR DEFECTIVE COMPRESSOR
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same direction (i.e., there is correlation). Hence. the variation of the
ratio tends to be lower than the individual variations and more indicative

of actual comgoaent condition,

The top ‘liustration in figure 7-9 shows how bands 4 cnd B might be coupied
in a baseline unit. When the statistics of Band A of a baseline machine are
compsred with the statistics of Band A of a defective machine, there appears
to be little correlation. The same is true for Band B. Threshold detection
is of limited use here necause the variances overiap excessively. However,
if the ratio is taken before the statistics are compared, 2 significant
difference between the means exists and the variances do not overlap appreciably,
The purely statistically approach fails because the bands are not statistically
independent. The ratio method works because the ratio transforms the statis-
tically interrelated bands into a statistically determinant form., This is
verified throughout the course of the program where the ratios selected are
invariably a high frequency band over a low frequency band. As the number
(ratio) gets larger, the energy is being transferred from the lower band to
the higher band, thus indicating a degradation in component health. When one
examines the individual bands, it is seen that their energy is frequently

randow and at best a less sensitive indicator of component health,

7.7.1.3 PSD Analysis

During the conduct of the flight test, many reccrdings were made of
discrepant and nd defect components, Typical PSD's which exemplify the tests
conducted and show the consideration involved in utilizing the accumulated
data have been included. Both baseline and discrepant parts PSD examples

are summarized in table 7.8 and in figures 7-10 through 7-31,

The ability to establish detection criteria is shown in figures 7-32 through
7-36. Bands and vatios used in each figure are the same as that mechanized
in the MRS, except Figure 7-33, which represents the B/A ratio used for
analysis only, For the sake of clarity, dats acquired from only one step

of the discrepant profile is presented in the figures,

Separation of the discrepant implants from the o defect taseline was ex-
cellent and the utility of the mechanizatiocn criteria is .quite evident. The
ability to discriminate 42° gearbox faults is, however, not as good as depicted

in figure 7-33. During the latter part of discrepant implant flight tests,
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TABLE 7.8 PSD PLOT INDEX

VIBRATION FAULT FLIGHT MODE COMMENTS FIGURE

PICKUP

90° G.B. No Discrepancy Ground Hover Light Weight 7-10

Lateral Input Roller Ground Hover | $/N Al3-2065 7-11 »
Output Roller Climb S/N B13-6624 7-12
Input Ball Hover S/N Al13-2772 7-13
Output Ball Climb S/N B13-6624 7-14 "
Mounted Wrong Climb S/N A13-2065 - 7-15

42° G.B, No Discrepancy Ground Hover S/N ABB-027 7-16

Longitudinal Inéut Roller Ground Hover S/N B13-5199 7-17
Input Ball Ground Hover S/N B13-2925 7-18
90° G.B, Mounted Ground Hover S/N B13-2925 7-19
Wrorng

Transmission|No Discrepancy Ground Hover Light Weight 7-20

Normal Mast |No Discrepancy Ground Hover Medium Woight 7-21
No Discrepancy Ground Hover Maximum Weight 7-22
Tail Rotor Output Climb S/N 11850 . 7-23
Quill Bearing
Mast Bearing Ground Hover S/N 6739 7-24
Input Quill Ground Hover S/N K-717 7-25
Triplex Beariug

Engine No Discrepancy Ground Hover S/N 148.9 7-26

Combustor #2 Bearing Ground Hover S/N 15613 727
#3 Bearing Ground Hover S/N 20727 7-28
##4 Bearing Ground Hover S/N 15351 7-29
Nl Nozzle Ground Hover S/N 18993 7-30
N2 Nozzle Ground Hover S/N 18993 7-31
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it was discovered that a mix-up had occurred duving calibration of accelero-
meters and the lateral and longitudiral counections had bean reversed. The
baseline flights, therefore, had no logitudipal data (lareral kzd shown no
correlation early in the program and was not recorded). The criteria estab-
lished, and subsequently used in verification tests, had only the data from
the original gearbox of A/C 174468, {&s 2 result of discrepantc and baselines

flown dering verification, the criteria had to be readjusted. See Sectioa 7.9.)

"

Engine F/D ratio of 4.5 was icplerented in the VSA to detect difference
between good and bad. This value lies within the transition region and was
chosen so that even marginal probleas woyld cause cthe VSA to output a maintanence
code. Data points above 4.0 on Baseline 18918 occurred after the engine had
been reinstalled after a period of storage (while discrepant parts were being

run). This step-like increase in ratios is attributed to mounting pecularities.
7.7.2 ENGINE CALCULATOR AND GAS FLOW ANALYSIS CALCULATORS

7.7.2.1 Engine Calculators

Performance of the engine calculators during flight test proved the validity
of the monitoring approach. This result ig¢ evident even though actual engines
performed somewhat differently than the specificatior engines upon which the

calculator design is based.

Evaluation of engine calculator data from the baseline and early discrepant
flight tests indicated that response to abnormal conditions was less than
anticipated. The results were similar to those of the test cell, which had
only three data points per engine, and confirmed a need for greater semsitivity
in the calculator. An analysis of methods of implementing sensitivity changes
indicated that an optimum mechanization required significant change to existing
hardvare. A limited modification was made to the hardware during April, to
amplify changes in the output of the engine calculator. This change also
increased the magnitude of other changes such as the least significant bit
(LSB} changes which occur in the digital circuits of the engine calculator.
This effect made small changes in engine performance slightly more difficult
to perceive even though detection of "abnormal" performance resulting from the

implant of discrepant parts was much easier to detect,

Analysis of data acquired after the change showed that the calculatoer
rerformance as a tunction of N1 was not a constant output, A negative rather
than a zero slope is evident (see figure 7-37) and, as a result, essentially
forced detection of "abnormal" conditions to the higher power (NI) levels,

The net effect made the band of baseline data wider than really exists,
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Unforrunately, the opporteaity of the MIS engine calcuvlator to directly
derect aboormsl conditioms 2fter the chanzes were incorporated was limited
to the remeining flighr tests. As a2 result, increased emphasis was placed
uvpon analysis of eogine performzmce. BData pormally acquired for checking
calculator operation was uvsed for the acalysis and comparative plocs of emngime
performence are used to evalvate performance, 2s well as to predict anticipated

performance of an vpzraded engine calculator.

Correlation of calculator opsration to erginme performance ampalysis is
exemplified by data from a badly damaged (FOD) compressor flcwa on 10 June.
Figure 7-38 shows the FOD compressorx pressure ratio calculator (KCRR) output
cozpared to baselime. As indicated im figure 7-38, the output levels were
sufficient for all three of the maintemance cede }ezvels mechanized in the MBS,
Oaly the first two levels were outprt because sfability criterias was not

satisfied and the low XCPR occurred for only a brief time.

By applying a=plification factors to the “prechange" data, amalysis of
arother less severely damaged compressor flown on 1! March indicated that the

first KCER level would have been outputted.

Correlations were good but not as successful for bearings, nozzles, and

power turbine discrepant parts because slight performance changes were less

than the effect of amplified digital LSB changes. Gas flow analysis confirmed

the difficulty ¢ correlation tecause it only showed significant changes from

normal performance in the case of NZ nozzles.

7.7.2.2 Gas Flow Analysis

Data from approximately 55 flights formed the flight test :ata base. Using
five T53-L-13 engines, Table 7.4 presented the engine modei numbers, discrepant
parts, and flight dates of this flight test effort. The same engine performance
relationships evaluated during the test cell phase were also used for the
discrepant parts flight tests. The following parameters were nseasured for
the gas flow analysis so that the engine thermodynamic performance could be

evaluated for the MRS engine monitoring application.

e Engine gas producer rotor speed (Nl)

e Power turbine speed (NZ)

e Exhaust gas temperature (EGT) -
« Torque pressure (Q)

e Engine fuel flow (WF)
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e Compressor discharge pressure (CDP)
e Outside air tomperature (OAT)

e Ambient pressuy: (Pam)

Tne equations uiedl o convert the MRS engine output data counts to engineering
units and to norw:lize the selected engine performance parameters for the engine

inlet air conditions are presented in Table 7.9 (next page).

Engine performance characteristics were determined for the ten-step flight
profiles discussed in grragraph 7.6.1. Table 7.l10 shows the appropriate corrected

engine speed for the tg :-step profiles,

TAMLE 7.10 CORRECTED ENGINE SPEED

CORRECTED ENGINE
STEPS F.IGHT CONDITION SPEED, %
1 Ground Hover 92.60
2 500 Feet Altitude ‘ruise (Speed - 70 knots) 89.70
3 1,000 Fect Altitud. Cruise (Speed - 115 knots) 94,00
4 Climb to 10,000 Fee: Altitude 98.10
S 10,000 Feet Altitudc Cruise (Speed - 80 knots) 91.20
6 10,000 Feet Altitude “ruise (Speed - Max. Safe 93.00
Speed)
7 10,000 Feet Altitude Hover 95.30
8 Descent to 500 Feet Altitude 84.90
9 Landing 85.10
10 Flight Idle 68.50

Typical engine performance characteristics covering the ten-step flight
profiles are shown in figures 7-39 through 7-46 for the engine S/N 14819 and
18993, Figures 7-39 through 7-41 present the comparison of the non-defective
and discrepant compressor engine S/N 14819 performsnce data. The figures
show that for the purpose of determining engine health condition, a corrected
engine speed of greater than 90 percent is desirable from the engine performance
considerations. Preferred engine speed for monitoring engine performance,
with the inlet guide vanes completely open, is 92 to $3 percent depending

on ambrent temperature, because the engine performance values will be more

7-58

-




xamodasaoy

anoy/sqT

Jd s9sa8sq
Juaoasyg

Juad I9g

urw/1ed
3 s99a8a(q

Yyour axenbs/sqg
SH ssyoug
Jusoasg

youyr axenbs/sqq
d seoda8e(q

jusoaag

SLINQ

[¢615/09%+avo )
(26" 6z/qwed) 096 | /206" 02z

_Q.G\ASES A)

(26°6z/awed) | /3m 98¢

094~

“mHm\Aoo¢+a¢ov\oo¢+ameM

615/(09+IVO)/A /1IN

N9 /dHs

N o/3M
8/193
e /In

qQued Z16%°0/ddD = ¥dD

1IC€6200°0 = 3IM
§9-0105/08°0
qued Ziuy°'0-
(8°T+605L2%°0) = 4aD
9°0-8r921°'0 = qued
(96e+Lr) /9145€ = N
§'Z+9rs9.°0 = d
TIHSIST € = 193
(9S2+¥0)/ 1459€ = IN

8ETLT O/V

SNOILVNOA NOISYHANOD

11L€6200°0 = 3M

IVO $°79-011878°0 = IVO

qued Zi6%°0-

(0" 1+6051E%°0) = dad
S%"0+8rLIT°0 = queg
(9Sz+Lr)/91L5¢ = N

2°S+LESL 0 = D
T99+5£G1°¢ = 193
(9ST+%r)/°1169¢ = IN

8%%L1 O/V

19M0dasI0 3Jeys pe3oealo)

MOTJd Tong pa3oaalo) .

@an3easdus] sen 3Isneyxy pa3oaiio]
paadg surSuy pa3loeiio)

oT3eyaanssaig xossaadwo)n

4
€
4
1

‘suorjenby oStazswexeg pazifeuaoy

93®y MmOTd ang

saniyexadus], aTy 9prsIng

danssaad 93aryosiq z0ssaadwon
9aInssaad juaIquy

ps3ds auiqany .1amog

anbaog,

sanjeasdwel se) 3Isneyxy

paadg aurSuy

ILINVEVA

NOISYIANOD SIINA TVOISAHd ¥ALINVHVe 6°L ITEVL

~

NN MO ¢ 0

‘ON

7-59




CPR

3.5,

s.o -4

4,5 -

a.o -4

3.5 -

3.0 -

2,54

2,04

1.54

1,0

ENGINE S/N 14819

CODE:

A BASELINE
©® VERIFICATION

3 L 1 ¥ 1

70 75, 80 85 90
Nl/‘ Vo~

FIGURE 7-39 COMPRESSOR PRESSURE RATIO VS CORRECTED N

7-60

1 SPEED

-l




ENGINE S/N 14819
1100~ O BASELINE

@ VERIFICATION
. A
1050
° "..
[ ]
] A
1000 - o A
A
Aa
« A
[ ]
u.
© 950- a
@ A
>
0
w A
900
'. [ ]
e A
™ Aé
gso04 da°®
800 T T L} ¥ 1 U
70 75 80 85 90 95
N, A6 ~%

FIGURE 7-40 CORRECTED EXHAUST GAS TEMPERATURE VS CORRECTED N, SPEED

7-61




ENGINE S/N 14819
800 o A BASELINE

@ VERIFICATION A r'y
| s
] A
; a®
- 700
& Ao
{ &
o AP
: A
§ “ 600 1 ‘0
g ;
e T ' X
c}q A
(2 500 1
-~
<
Ky &
400 -
300 7
o®
L0
200 T T Y T T T -
70 75 80 85 90 95 100

N‘ //\/é- ~ %

FIGURE 7-41 CORRECTED FUEL FLOW VS CORRECTED Nl SPEED

7-62




— O
- o
—
. a -
[}
. 8
® » n
®
® o - @
[ ] 'Y Nl
* a
. ) - &
[ -
A vy
- O

7-63

|
80
‘ NI/ Ve -~9
FIGURE 7-42 COMPRESSOR PRESSURE RATIO VS CORRECT

ENCINE S/N 18993
FLIGHT DATE 6/10/71
FOD COMPRESSOR

i

®

f ] ¥ L L ¥ M T 1
[ 4] o vy (=] vy o g} (=] vy o
L ] L ] L] - * L3 [ . L] L3
wy vy X 4 ~r (e o o~ o~ - —

k. % to)
Al
& >

2 Vi e

bt 4 8,3 0 . 5 1A o . £ 5
Fritial e v.,»s.v_v« ML) AN L I S R



EGT/0 ~°F

1100 o

1050 J

1000 -

950

(o)
(4]
(]
L

850 4

800

ENGINE S/N 18993
FLIGHT DATE 6/10/71
FOD COMPRESSOR

T 1 L T L] ¥

70 75 80 85 90 95
N.l/ Vo ~9

FIGURE 7-43 CORRECTED EXHAUST GAS TEMPERATURE VS CORRECTED N, SPEED

7-64

100




CPR

5.5

5.0-1

4.5

4.0

305"

3.0

2,54

2,04

1,51

1.0

DICTNE S/X 18993
YLICHT DATE 4/15/71
DISCREPANT M, BOZZLES

R L 4 L4 v L

A
70 75 80 85 90 95
NI/V 8 ~%

FIGURE 7-44 COMPRESSOR PRESSURE RATIO VS CORRECTED N, SPEED

{

7-65

100




°F

EGT/ 6 ~

1160

1050

1000

950

900

850

800

EXGINE S/ 18993
FLIGHT DATE 4/15/71
DISCREPANT N, NOZZLES

-,

L{ L] ¥ T

| L
70 75 80 85 90 95
N, [VE-%

FIGURE 7-45 CORRECTED EXHAUST GAS TEMPERATURE VS CORRECTED Nj SPEED

7-66




809 - ENGIXE S/% 18993 .
FLIGHT DATE 4/15/71
DISCREPAMT K, NOZZLES
700
L 4
]
[ J

600 4 o®
£ .
{
le

5004
“©
~

s
pe 4
@
®
400 -
300+
®
200 T T | RS ¥ ot
70 75 80 85 90 95 100

N Ve ~%

FIGURE 7-46 CORRECTED FUEL FLOW VS CORRECTED Nl SPEED

7-67




el 4

‘-_.u Y

: copsisient and follow the performamce relat:cmship implemenied in the engine

E czlculator. Also, the performance deviationm for discrepanmt emgine is more
13 prostounced at high engioe speed. Flighe idle cenditions, step 10, provides
Z the least performance informztionm becavse of the following:
; 2) UlNoa-linearity of engine performance parameter relationships; therefore, not
3 applicable for calculator use.
X b) Difficult to determine performance deviations and performance paraseters
4 at low valees,
ps - - - -
5 c) [Interstage zir bleed operation could produce inconsistent perfor=ance data.
'? Based on the above consideraticns, the step 10 flight mode was not used to
H diagnose engine status during discrepant part and verification flight test
> phases. '
The engine-to-engine perforcance variations for the five non-defective
9 engines are shown in figures 7-47 through 7-51. These figures show significant

performance spreads between engines occur on two parameters -- exhaust gas

temperature and shaft horsepower. The scatter on compressor pressure ratio

datua is moderate. Unfortunately, the engine fuel flow was not recorded on

three engine flight tests.

A SSa
A ST

Therefore, figure 7-50 shows the engine fuel flow

AL

data for the two engines. These performance engines of the averaged value or

g the band of distribution is used for common baseline. 1In order to effectively

monitor engine performance, the individual engine signature was used to evaluate

the effect of discrepant parts on a specific engine rather than the averaged
values.

WitE

e B TALE R

The effects of discrepant main shaft (No. 3) bearings, power turbine (NZ)

norzles, and power turbine on engine S/N 20727 performance are presented in

?ﬁf figures 7-52 through 7-63. Baseline engine performance data was determined

. E from the flight conducted on 3 May. The results of the gas flow analysis

.{ revealed the following:
% a) Both flight tests (19 February 1971 and 3 June 1971) conducted with discrepant
% No. 3 bearings implanied showed no performance change from baseline values

°g (see figures 7-52 through 7-57)., The selected discrepant bearing specimens

bt
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do not appear to be sufficiently damaged to cause changes in the thermo-

dynamics performance of the engine.

b) Discrepant N2 nozzle engine flight test (21 June 1971) also showed no

performance change from the baseline values (see figures 7-58 through 7-60).

c) 1t appears that the selected degraded No. 3 bearings and N, nozzles would

2
provide considerable engine running time before the implanted engine could

be rejected due to poor engine performance.

d) Direct performance comparison of a baseline and discrepant power turbine
engines show slight increase in exhaust gas temperature and shaft horsepower
(see figures- 7<61i-thirough 7-63). Both parameters are higher than the baseline
values. Higher EGT can be attributed to the defective power turbine; however,
lower shaft horsepower would have been expected, These are the typical
indications of a problem in the power turbine assembly section, It is
difficult to accurately assess the data because the baseline data was
obtained over a month after the discrepant power turbine engine flight
test. During this period, there may have been some adjustments made on

the engine which could have modified the engine power output,

Discrepant parts implanted in engine S/N 15615 consisted of compressor, No, 2
bearings, and gas producer turbine (Nl) nozzles, Baseline performance values
were obtarned from the flight conducted on 12 May 1971, The foll¢ results

were determined from the engine gas flow analysis:

a) Figures 7-64 through 7-66 show the effect of degraded compressor on engine
performance. Direct comparison of the baseline and discrepant engine
performance characteristics indicate that only the compressor pressure
rat1o and EGT were affected by the damaged compressor, The compressor
pressure ratio decreased slightly and the EGT was slightly higher. No
change 1n engine shaft horsepower indicates that the compressor damage is
minor, Otherwise, the compressor would have reduced the engine air flow
and air pressure enough to affect the engine shaft horsepower, The engine
fuel flow rate could not be compared because it was not recorded during the
vaseline flight. However, it appears that the engine fuel flow rate was

not affected based on the data of other performance parameters; no change
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in SHP and slightly higher EGT, Typically, increase in EGT results from

the reduced engine air flow which increases the fuel-air mixture in the

engine combusion process.

b) Figures 7-67 through 7-69 show that the implanted No. 2 bearings were not

sufficiently damaged to degrade the engine performance.

c¢) Figures 7-70 through 7-72 indicated that the degree of N, nozzle damage is

1
in the same category as the previous bearing damage. The discrepant Nl

nozzles had no significant effect on engine performance characteristics.

Engine S/N 15351 was used to implant the defective power turbine (No. &)
bearing specimens and power turbine. Five flight tests were performed consisting
of three flights with discrepant No. 4 bearings, one flight with a degraded
power turbine, and one baseline flight. The engine performance data of these
flights are presented in figures 7-73 through 7-84. Significant results of

these flight tests are as follows:

a) The same bearing specimen was used for two flights, 24 February 1971 and
3 March 1971. Direct comparison of the two flight tests and baseline flight
performance data showed a slight decrease in exhaust gas temperature, and
no change in compressor performance or engine shaft horsepower (see figures
7-73 through 7-78). The other degraded bearing sample (26 April 1971) had

no effect on normal engine performance values (see figures 7-79 chrough 7-81).

b) No significant performance degradation was observed on the discrepant power

turbine (see figures 7-8Z through 7-84).

Three discrepant parts were tested using engine S/N 18993; gas producer
turbine (Nl) nozzles, power turbine (N2) nozzles and compressor., Figures 7-85
through 7-93 present the comparison of the degraded parts ar¢ baseline engire

performance. Significant effects of the discrepant par'.s are the follcwing:

a) The data from the damaged N, nozzle implants, figures 7-85 through 7-87,

show thai the primary perfoimance indicators (compressor pressure ratio
and EGT) were not affected. The slight increase in indicated shaft horse-
power of the discrepant engine is questionable because the flight test

was conducted during the period of 17 February to 1l March, when a problem

was encountered in the calibration of the engine torque data.
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FIGURE 7-69 CORRECTED SHAFT HORSEPOWER VS CORRECTED N1 SPEED
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b) Figures 7-88 through 7-90 show the expécted performance degradation for the
discrepant Nz nozzles; normal compressor performance, higher EGT, and
increased shaft horsepower. These results indicate that the N2 nozzle
area was larger than normal and caused an increase in the engine mass flow.
Higher EGT values probably resulted from higher engire fuel flow, Unfor-
tunately, the engine fuel flow was not recorded during the baseline flight

to verify the possible increase in engine fuel flow. However, an evaluation

w

of the engine calculator outputs (KFF) verifies that the fuel flow was higher ¢

for the discrepant engine compared to the baseline value,

c) A classic example of a damaged compressor section was observed.on the
discrepant engine flight test of 10 June. A discrepant compressor was
substantiated by excessive reduction in compressor pressure ratio, increased
EGT, and loss in engine shaft horsepower (see figures 7-91 through 7-93).
Higher EGT is caused by reduced engine air flow, which increased the fuel-

air mixture in the combustion process. An engine power output deficiency

resulted from lower engine air flow and pressure.

A test was conducted to determine the effects of a simulated misrigged fuel
control unit on engine S/N 18918 performance. During this test, the helicopter
was tied down and engine parameters were recorded at two power settings (corrected

engine speed of approximately 91.5 ard 85 percent). The following fuel control
adjustments were made for the test:

e No adjustment
e Half—tuéh lean
e Ope-tuzn lean -
o Half-turn rich

Ope-turn rich

Figures 7-94 through 7-96 present the effect of the various fuel control
adjustments on the engine compressor perforaance, exhaust gas temperature, and
shaft horsepower. 3Because of technical difficuities encountered during the
test, recorded engine fuel fiow could mot be correlated with the warious adjusz-
mects mede on the frel coatrol mit and 25 a result makes it difficult to clearly
assess the effect of tke fuel control adjsstments. However, the followicg
comme=1s can.be macde from the availadle engine perfcrimance datac
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TABLE 7.9A SUMMARY OF DISCREPANT PARTS TESTS, ENGINES

GRS/ DATE OF FLIGHT | DISCREPANT PART CPR vs zi,\ol EGT/0 va N,/ VB | W,/ V6 ve N MG} sH2/ VF ve W MG |SHR/ VB ve wp! &A /8 va uy/ ) fnio vs SHP/ V&
} 20727 2-19-71 No. 3 Bearing o Bffect No Effect No tﬂ Takea No Effect No :w Taken No tm Taken Lower (72%,< 10%)
:
t
\ 3-19-71 Power 