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OPTIMUM PASSIVE SIGNAL PROCESSING
FOR ARRAY DELAY VECTOR ESTIMATION

* Prepared by:
W. R. Hahn

ABSTRACT: For the purpose of localizing a distant noisy target, or inversely,
calibrating the receiving array, the time delays defined by the propagation across
the array of the target-generated signal wavefronts are to be estimated in the
presence of array self-noise. The Cramer-Rao matrix bound is used to show that
either properly filtered beamformers or properly filtered systems of multiplier
correlators can be used to provide efficient estimates. The effect of suboptimally
filtering the array outputs is discussed.
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Chapter

Introduction

A

1.1 In many physical problems of interest, with sonar, radar, and seismology

as examples, the time records of the outputs of an array of sensors are observedI ~over some time interval and used to estimate the position of a distant noise i

I source. Inversely, the position of the distant noise source may be known, and the

I intent may be to estimate the positions of the sensors comprising the array.

H

Typically, the sensor outputs are amplitude scaled and delayed replicas of the

~ I waveform. from the distant noise source, corrupted by additive noises, usually

local in origin. If the amplitude gradient across the array of the waveforms from

I the distant source is negligible, essentially all of the geometric information is
1 encoded in the set of delays associated with the propagation across the array of

I}

the wavefronts from the distant source. This paper discusses the theoretical

bounds on the precision with which the set of delays can be measured, and shows

that either properly filtered beamformers or properly filtered systems of correla-

tors can be L~ed to obtain estimates that achieve the theoretical bound.

1.2 The theoretical bound discussed is the Cram~r-Rao matrix bound [1],

which is the appropriate bound to use when large numbers of samples, or

I-i
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1.4 The results of Chapters 2 and 3 are developed in greater detail in [2],

as is the first half of Chapter 4. The remainder of Chapter 4 and Chapter 5 have

not been reported elsewhere.

1.5 The following notation is used: If A is a matrix, A' is its inverse,

A is its conjugate, AT is its transpose, tr A is its trace, and det A is its

determinant. A square matrix whose elements off the main diagonal are all zero

may be written as diag (al, a2, ... , an), where ai is the i-th diagonal element.

Vectors are column vectors unless otherwise specified. 1 denotes a vector with

every element a one (1). 0 is a matrix of zeros, and I is the identity matrix.

<.> is the expectation operator, and grad f is the row vector which is the gradient

of the scalar f. The gradient of a vector is the matrix in which the i-th row is

the gradient of the i-th component of the vector. The Kronecker delta is denoted
ST/2 fd r rte s•fdi

in the usual way as 6ij" Integrals of the form I-T/2 f dt are written as IT f dt,

and integrals of the form f N f dw are written as fB f dw. The quantity wN is
-wN

defined as wN = Nwo, where N and wo are defined in Chapter 2.

1.6 The symbols MLE, FIM, CRMB, and HOT are abbreviations for Maximum

Likelihood Esti.ate, Fisher Information Matrix, Cram&r-Rao Matrix Bound, and Higher

Order Terms (as in series expansions), respectively. The symbols (CRMB) and (FIM)

represent the designated matrices themselves.

45
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Chapter 2

The Fisher Information Matrix

2.1 Assume that the signal wave fronts from a distant noise source propagate

across an M element array of sensors and that the signal amplitude gradient across

the array is negligible. The signal at the i-th sensor is s(t-di), where s(t) is

the signal at a reference point near the array, and di is the delay at the i-th

sensor. Without loss of generality, the reference point is assumed to be at the

location of the first element in the array. Thus, dI = 0. The output of the i-th

sensor is

xi(t) = s(t-di) i ni(t), (i)

where ni(t) is the additive sensor noise. The M sensors are observed for T seconds,

- T/2 : t : T/2, and the M time records are represented by Fourier coefficients,

SXi (wk) = f T Xi (t) exp{-Jkwot} dt, (2)

where wo = 27r/T, and wk = kwo" The following assumptions will determine the joint

density function for the random Fourier coefficients.

Sa. The random signal and each of the M additive sensor noises are all

stationary zero-mean Gaussian random processes.

b. All of the random processes are independent.c. T is large compared to the correlation times of the random processes,

and also to the time needed for the signal wave fronts to transverse the array.

2.2 If X is a vector containing the Fourier coefficients as elements, if S(W)

and Ni(w) are the signal and noise power spectra at the i-th sensor, and if only

2-1
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Fourier coefficients up to frequency Nwo are to be processed, the density for X

can be written as

p(X)= 1i det R(k)] 1  I XT(k)RM(k)X*(k)1, (3)
k=l k=l

where:

X(k) = (Xl(wk), X2 (wk), XM(wk))

V(k) = (1, ejwkd2... eJwkdM)T ()

N(k) = diag(Nl(wk), NZ(wk), ... , NM(k))

R(k) = N(k) + S(wk) V*(k) vT(k)

2.3 In what follows the frequency arguments of the functions discussed will

be generally suppressed. will indicate a sum over the positive Fourier
i+

frequencies being considered, while will be Lsed to denote the array sum
iil

When w appears following a sum , it will be understood to stand for kwo.
i i+

2.4 Since det R(k) = (0 + 1i S/Ni) det N(k), only the exponential part of

the density function will depend on the di. Let the signal delay vector D be

, defined as

( D =(d, d,.., dM)T (5)

2.5 The likelihood function for D is

L(D) =[14N det R]-l 4:xp{- xTR-IX*. (6)
B+

2-2 N'
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2.6 The CRMB for unbiased estimators of the vector argument of the likelihood

ii function is the inverse of the FIN, denoted by (FIN), where

T(FIN) = -< grad(grad In L(D)) >. (7)

The gradients in equation (7) are taken with respect to the components of the

vector D. If G is defined by

G = S/(l + • S/Ni), (8)

the inverse of the matrix R is

RP"ldh No t - GNO V VT N". (i)

Provided that only the elements of D depend on a and b, the typical element of the

FIN has the form
- -a In L(D) > G < X TN-I ( 10-,a- VTV)N'I

B+

S a(Dk-lm) a(Dk-Dm) (0:~ ~ .- 3+°2 X •• a ab -(o

B+ km k1m
2.7 From equation (10) it follows that the FIN pertinent to the estimation of

the vector D is

(FIN) = _ 2w2 S tr N-1) -1  N-111 ITN1] (1l)
++ l + p -p

"ii

In equation (1), N lis the N- matri with the first row and column partitioned

away. Because of the assumed smoothness of all of the spectra relative to the

frequency increment o= 2r/T, the FIN can also be written as

(FIN) = IB 2-S2 N pI t NpI
( T W82 S [(tr Nl) - p - 1 IT N- I dw. (12)

2-3
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Chapter 3

The Maximum Likelihood Estimate

3.1 It is well known that when the MLE is based on a large number of

independent samples, it is consistent, asymptotically normal, a,.d asymptotically

efficient [3]. Since the observation time T is large compared to the process

correlation times, there should be, in some seise, a large number of independent

samples. Ihe covariance matrix for the error in the MLE for D should be the CRMB,

at least to first order.

tti:3.2 The results that follow are independent of the true delay vector, and

the equations for the likelihood function and MLE are considerably simplified if

the true delay vector is assumed to be 0. The vector D of this chapter is the MLE

and is therefore the measurement error. The steering vector corresponding to the

error D is{, vT
V = (1, exp{jwd 2 }, ... , exp{jwdMI). (13)

The MLE vectors D and V satisfy

0 grad In L(D)

0;= grad G exp{jw(dn - di)) (14)

- grad(A + B D + I0TCD + HOT),

where by expanding exp{jw(dn - di)} as a power series, the vector B is seen to be

j~T -1x*T T*B= j N p - x*T -lp , (I5)
8+ p pB+

3-1
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while the matrix C is determined by

I XiXk2
D D b )2 X~ dk d) (16)

C'UU 6 T LL WU(k - j
B+ ik k

In equation (15), Xp is the single frequency data vector with the first element

partitioned away. The terms XiX in equation (16) are elements of the sample

covariance matrix at a single frequency based on T seconds of data. These sample

covariance elements do not converge, even if T is arbitrarily long [4). However,

since T is large compared to the process correlation times, the spectra are

smooth enough so that the sample covariance can be averaged with samples from

nearby frequencies to provide statistical convergence. The I sumation in equa-
B+

tion (16) provides such an averaging of the XiXk. Thus, it is assvqned that XiXk

can be replaced by Rik =< XiXk > in equation (16), from which it follows that

C < C >, or

2 2 S2 _tr N - 1
Ns-) N1  N 1 IlI TNp

B+ +
1 (17)

)_-:•= - (FIN ).

3.3 From equation (15), it follows immediately that < B > = 0, and not so

imnediately that

< BTB* >= 2.2 S [(tr .- 1N -1 - 11TN-1]B+ l+ S p P

i 1 (18)

- (FIN).

3.4 Neglecting the HOT, and assuming C = < C >, the vector D is given by

D C >- , (19)

3-2
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so that-

<'D = > , (20)

and
T >-1 TB**

<DD > C < B < >

(FIM)'
1

.3T, =(CRMB)

3.5 Thus the MLE is unbiased, and in the limit of large T achieves the CRMB.'

The MLE processor can be readily implemented as indicated .in Figure 1. The MLE

Sprocessor is just a'steered and filiered beamformer fol lowed by a §quare-law

averager. The individual inputs are each steered and then filtered with filtersa

whosp frequency respon-e is the ir':erse 2f the additive eise '-pectrum for that

particular sensor. The beam sum is then formed and fed to a filter whose squared

.2magnitude response iý IF(j,)i = G(w). The MLE is determined as that set of

steering delays that gives the maximum deflection of the output meter.

I I
T T

SQUARER AVERAGER METER
XM(t) 0- NM

STEERING

DELAYS;

FIGURE 1: Beamformer Implementation of the MLE Processor

3-3
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Chapter 4

Correlator Delay Measurement Systems

4.1 fhe following scheme can be used to estimate the unknown delay vector D.

Let a system of correlators be used to form all the M(M-I)/2 correlograms corre-

spondingto processing all of the M input wave forms taken two at a time. The

individual correlators are assumed to have input filters for each channel, and the

position of the correlogram peak is used as a signal delay estimate for that
sensor pair. If each correlator is to provide an unbiased estimate of the corre-

sponding signal delay, the input filters must have the same phase response, and

"hence can be taken to be identical filters. A.typical correlator is shown in

Figure 2. The steering delay is adjusted to give the maximum deflection of the

meter, and this defines the delay estimate for the correlator.

.xi(t) o- Fjw

T' T tZ im (d ij)

x.(t) 1 AVERAGER METER
d

STEERING

DELAY

FIGURE 2: A Typical Multiplier Correlator

4-1
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4.2 Let d.. be the correlator estimate fo- the signal delay from the i-th

to the j-th sensor, based on the correlation of the Xi(t) and X.(t) time records.

Let e.. and F be, respectively, the error in the estimate dij, and the filter

used on the inputs to the correlator. Define the following scalars, vectors, and

matrices:

SG(ij;kl) = [(S+i6ik)(S+N a l) - (S+Ni6il)(S+Nj.jk)]

DEC e~gj~j,3 F3~,, (14-1 )M) (22)

121 3 d(Ml)MITI) E = (el2(,,el, K. , e M_l)M)T

!! F = diag ()F1212, 1312 ... , F.1M2

G = [G(ij;kl)]

4.3 The square matrix G has fzr its elements the scalars G(ij;kl) positioned

according to the scheme determined by the order of the subscripts in EET, where ij

is the row designation, and kl the column designation.

4.4 Using equations (22), the covariance matrix for the correlator scheme

measurement error vector can be conpactly written [2]:

P = < EET >

2w KiKl(IB w'.FGFdw) K-1. (23)

4.5 The correlator delay measurement vector is related to the vector to be

estimted ,D, by the equation

Dc A AD + E, (24)

4-2
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where the matrix A, with its rows and columns labeled with the same sets of ordered

subscripts used for the elements of Dc (for the rows) and D (for the columns), has

for its element in the ij,k position

A(ij;k) %jk " 6ik (25)

4.6 Since < E > = 0, the Gauss-Markov estimate [5] for the vector D based on

the correlator measurements is

D = [ATPE lAJC, (26)

and the covariance matrix for the Gauss-Narkcv estimate is

(D-D)(D-D)T >= EATPE1A]'I. (27)

4.7 In [2] it is demonstrated that if M = 2 or M = 3, the Gauss-Narkov

estimdte for D achieves the CRMB provided that the filters satisfy

IF1 12 2 NN (28)
1+

Nkkk

It was conjectured in [2] that the choice of filters given by equation (28) was

optimum for M > 3. The conjecture is in fact valid, and the Gauss-Markov estimate

so obtained is in fact efficient, that is, achieves the CRliB. This is demonstrated

_in what follows.

4.8 From the definitions in equations (22), and with the filters defined by

1 •equation (28), the FIN of equation (11) is

(FIN) A ~ KA. 129)

which suggests investigating the possibility that

ATP- ? T (30)

AE A 27AA

4-3
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With the filters given by equation (28), the matrix FGF can be written as

FGF - 2 diag (u1u1. 1
l<c 4  (1 , 52s Ucz y Biy,

where U BYis a column vector whose rows are labeled with the same scheme as is

used for the elements of DC, and whose element in the ij row is

Then the matrix2 f= - i u T (33)

2 S3/N N

=XTf d• (34)

IaOY4 (I + S .)2 ya

(1

'• 4.9 Recursively applying the matrix inverse 1emmna [6) to the right side of

equation (33), the inverse can be written as

(Je 2 FGF d,,,) 1 = K'+ I•<<.NK-IU~ M= 35

where for the purposes of this paper it is not necessary to specify further the

matrix ?I .y Froim the relations defining the matrix A and the vector UB y, it

follows that
AT Uc y = 0.K.O (33)

a ~ y -BY w (36)

4-S
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4.10 Thus, the inverse of the covariance matrix for the Gauss-Markov

estimate for D, with the correlator inputs filtered acLording to equation (28), is

AT p1' A = AT K (r B w2 FGF d.) KAE T7rAT~B

T T AT KA (37)

= (FIN).

4.11 Thus, the correlator system optimally filtered according to equation

(28) provides an efficient estimate.

4V.
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Chapter 5

Suboptimally Filtered Correlator Systems

5.1 For diverse reasons the decision not to use the optimal filters of

equation (28) at the input to a correlator delay measurement may be made. It is

then relevant to investigate the degree to which the delay estimate is degraded.

The question can be answered in a simple way under the following hypothesis:

a. The ratio S/Ni is the same at each sensor.

b. Identical filters, F, are used on each input channel.

c. The suboptimally filtered Gauss-Markov delay estimate is used.

Under these hypotheses, the matrix FGF becomes

FGF- IFI4 (N2+ +MNS) I

-y IFI4 SU T
N U T U (38)

where I is the identity matrix and U is defined in the same way as in theGOY

preceding chapter. If the Gauss-4Nrkov estimate is formed from the suboptimally

filtered delay estimates, the inverse of the covariance matrix for the Gauss-Markov

estimate is

AT PFE A ATK 2 FGF dw)- 1 KA

T= (1f 2 1F14 (N 2 +mS) dw)- ATA (3A)

.-_• (-1,,2 S IF12 dw) 2

JB w IF (N + NS) dw

5-1
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The FIM for this case is

(FIN) r (B W S2/N2 dw) AT A. (40)

5.2 Thus, the covariance matrices for the optimally and suboptimally

filtered estimates differ by a constant factor, and it is easy to take account of

the effects of suboptimally filtering the inputs. Equations (39) and (40) can

also be used to determine the degradation of the delay estimate due to an

imprecise knowledge of either S(w) or N(w).

-I
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