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SUMMAKY

. PROBLEM

Develop a mathematical model to predict the scattering of a plane acoustic wave

PR T S L

from an elastic spherical shell with different fluid media inside and out.
RESULTS

A mathematical model of the spherical shell was developed from the more conveni-
ent standpoint of elastic theory rather than from the accustic point of view. The resulting
equations were solved in terms of known functions. Matrix ruethods are used throughout.
A numerical method is presented that takes advantage of <ume peculiarities of the resulting
matrix and is appropriate to computer implementation. Som? results of a computer pro-
gram for the spherical shell are given. A few limiting cases of the exact solutions are com-
pared with previously repo.ted results.
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INTRODUCTION

In this paper, a mathematical model is developed to predict the scattering of a plane
acoustic wave from an elastic spherical shell with different fluid media inside and out. The
mode! is develop-<d from the more convenient standpoiit of elastic theory rather than from
the acoustic point of view. The resulting equations are solved in terms of known functions.
Matrix methods are used throughout. A numerical method is presented that is appropriate
to computer implementation and takes advantage of some peculiarities of the resulting
matrix. Somne results of 2 computer program fer a spherical shell are given. A few limiting
cases of the exa~t solutions are compared with previously reported results.

The paper consists of two sections in addition to the Introduction. The first, A
Summary of Llastodynamics, summarizes the essential elements of elastodynamics needed
to provide a unified treatment of the scattering problems considered in this paper. The
second, Scattering from a Spherical Shell, develops the desired mathematical model.

SUMMARY OF LINEAR ELASTODYNAMICS

Problems in elastodynamics are similar to boundary—initial value problems in other
areas of mathematical physics and are characterized by a fundamental system of field equa-
tions with corresponding initial and boundary conditions. Given a prescribed system of
forces and displacements over the surfac: of an elastic body, we may predict the deforma-
tion of the body using a solution of the appropriate elastic problem. Solutions to the elastic
problems considered in this paper are constructed using scalar and vector potentials. The
basic laws of infinitesimal linear elasticity and the relevant elements of potential theory are

presented here for reference.

EQUATIONS OF MOTION

The law of motion in linear elasticity, usually referred to as Cauchy’s law, is given by

divT = pii , (1)

where T s the stress tensor, u is the displacement vector, and body forces have been ne-
glected. In this paper we will assume infinitesimal displacement theory is valid so that the
strain tensor E is related to the displacement by

E = -l;(vli+ VQT). (2)

In additior. we will restrict our attention to homogencone and isotropic materials where the
constitutive relation is given by

T = 2uE + MtrE) 1, Q)
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where A and p are the Lame constants and I the identity tensor. Using a few standard
identities, equations 1 to 3 may be manipulated to obtain Navier’s equation of motion:

uvzg +A+p)V(y-y) = pil . )

This equation may also be written .
5)

Csz(v ‘u) -~ CT2 curlcurlu = i,

where the longitudinal and transverse elastic wave velocities are given, icspectively, by

2 - At2u 2 _
L - (6)

INITIAL AND BOUMDARY DATA

In the mixed problem of elastodynamics we must specify the following initial and
boundary data to insvre a unique solution:

Initial conditions

u(-,0) = u and u(-,0) = y,onB )

Displacement boundary condition

u = @onS; X(o,t) 8)
‘g Traction condition
{ t= ion Sy X (o.t) )
é where ug, ¥o. €, f_are specified data. and B is an open set in Euclidean space & which is the

interior of a closed and bounded region B (the closure of B) whose boundary 3B is the
union of surfaces @B = Sy U S».

POTENTIAL THEORY

Next, we will briefly outline the basic elements of potential theory.

Theorem A
Let ¢ be a scalar field that is continuous on B and class C N on B. Then there exists
a scalar field vy such that

6 =92y, (10) ’

3 Proof- Sece Kellogg (reference 1) f
The abnve theorem is casily extended to vector fields by applying the result to ;

PRIy

cach component.
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Theorem B — Helmholtz Theorem (reference 2)

Let u be a vector field which is continuous or B and class CN on B. Then there
exists a scalar field ¢ and a vector field ¢, both of class CN, s._h that

4 =vVe+vy X yanddivy = 0. (1)
Proof: From Theorem A, there exists a vector field v on B such that
u=v. (12)
Using the standard identity curl curl v =Vdiv v - \721 , we find
u =gdivv-curlcurly .
Therefore, if we let
¢ =divvandy = -curly, (13)

the desired conclusion follows.
Theorem C — Lamé Solut.on (refercnce 2)

Letu=v¢ +V X g, where ¢ and i/ are class C3 fields on B that satisfy

v2-—55=0 (14)
CL"
1 -
vVy-—§=0. (15)
2!

Then, u is an clastic motion which satisfies Navier’s equation (equation 5).

Proof:

CLZ Vvdivu- CTZ curlcurlu- i =v [CL2V2 ¢- ¢] + curl

[— CT2 curl curl y{— }_l'/] =V [CL2V2¢— $]+curl [CT2V2 gl— ‘k]= 0

where curl(curl curi ) =~ curl(v2 J/) by the previous identity.

The Lamé solution can be shown to be complete, that is, any solution to Navier’s
equation can be written as a scalar and vector potential. The completencss theorem and
proof arc discussed in Sternberg (reference 2).

Notice that the potentials ¢ and ¥ are not unique. For examplc, let

¢ = ¢+ constant ,“.V = y+vr.

The displacement u is unchanged using cither the primed or unprimed potentials.
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FLUID MEDIA

In this paper a fluid wil! be treated as an elastic material whicn supports no trans-
verse waves, C = u = 0. In this case Navier’s equation becomes

Cv(veu) = @ c? =% . (16)

Using the Lameé solution (Theorem C, ¢ = 0)
u = V¢, whereby equation 14, a7

.o

v2¢-Ld=o0. (18)

The stress-displacement relation may be written

T=pClWivw)l = p§ 1. (19)

In many cases the time-dependent solution can be written as a superposition of
sinusoidal solutions, for examplc using Fourier Transforms. If we assume the solution is
smooth enough that we can interchange the differentiation and transform operations, we
may construct the time-dependent solution frequency by frequency. Throughout this paper
we will assume the functions to be smooth and their time dependence to be ¢ 1@¢, For
convenience we wili summarize the basic equations discussed in this chapter removing the
time dependence.

SUMMARY OF SOLID MATERIAL EQUATIONS

Na-...r’s equation

—l;vz u- —l—,,-curl curlu = -u (20)
kL" k'r"
Lamé solution
u=9Ve+vX 1[’1 21
" 9 )
v-¢,+kL-¢ =0, kL“ = = 22)
CL"
h) o 2 w2
9~ l!/ +kT-— \b = 0’ kT- = --——2- (23)
~ ~ CT

Stress displacement

T = /.z[Vg + ng] FA(divy) 1 (24)




SUMMARY OF FLUID MATERIAL EQUATIONS

Navier’s equation

2
(vu) = ~k2u k2 = %-
~ ~ C

Lamé solution
u= v
v2g+k2¢ =0
Stress displacement

T =—pw2¢l

SCATTERING FROM A SPHERICAL SHELL
INTRODUCTION

A sphere is one of the few finite geometrical shapes in which the equations of linear
elasticity can be solved analytically in terms of known functions. Such a solution is useful
not only for direct sonar mathematical modeling applications, such as spherical baffles,
domes and acoustic lenses; but serves as a useful check on various approximate techniques.
For example, a comparison of resonant frequencies is made with various thin-shell theories
in reference 3. Because the solution is exact, experimental verifications may be obtained
for a large range of parameters. the limits being upon the experimental apparatus,

In this section, a solution suitable for digital computer implementation is developed
for plane wave scattering from an elastic spherical shell with different fluid media inside and
out, The problem for identical fluids inside and outside has been done by Goodman and
Stern (reference 4). In addition, numerical implementation details and a few limiting cases
are discussed.

THEORETICAL DEVELOPMENT

] Consider a homogeneous plane wave impinging upon an elastic spherical shell of

: outer radius a, inner radius b and thickness 6. Let the incident wave come in along the
polar axis (with no loss in generality) as shown in figure 1. The inside of the shell .ontains
a fluid of density py and sound velocity Cy. In general, the outer fluid will be different, and
1s described by parameters pg, Cy. The clastic shell is a homogeneous, isotropic material of
density p and Lamé constants \, . The longitudinal and transverse elastic wave velocities
are

p)
CLE = %E and C'I‘2 = % , respectively.
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Figure 1. Geometry of an elastic sphencal shell,




By symmetry of the incoming wave boundary condition, we need to consider only
the axisymmetric problem, i.e., no variables will depend upon the ¢ coordinate of our
spherical coordinate system. We will further assume that there is no motion of the elastic
shell in the ¢ direction

U¢ =0. (29)

Components of vectors and tensors in this chapter refer to the physical components
relative to the natural basis 1ssociated with the spherical coordinate system.
The displacement vector in the shell may be represented in ternis of potentials as

u=Vep+v Xy. (30)

Next, we will demonstrate that one component of tiie vector potential ¥ is sufficient to
construct a solution to the axisymmetric sphere problem. Since the potential  is not
unique, we can choose many possible potentials that will give a solution to the elastic equa-
tion. Recall that from Theorem A in the Summary of Linear Elastodynamics, there exists
a vector v such that

u = V2\~r . 31)

We can see that a possible vector v that will satisfy the symmetry assumption up=0is
chosen by letting v = (. That is, writing out the Laplacian in spherical coordinates (refer-
ence 5. p. 116),

O, S, R I
u, = (Vev), = Vv, + -
¢ ~'$ ¢ 2sin2o

we can see that v, = 0 impliesu, =0,
Now, referring to the proof of Theorem B, equation 13 says

v =-~curly .
In spherical coordinates, with vy = 0.
e+l av
< =l d T
W-Ogr'f'ogo'f‘—r—':a—r(rVo)-W] . (32)

~

Therefore, a sufficient choice for the vector potential consistent with the symmetry of the
problem is ¥ = Yg = 0, retaining only d/¢,. So

V= ¥gtp -

Equations 22 and 23 may be expanded in spherical coordinates to give

(rz(p‘r)’r + 5111_10 (sin0 ¢\o),0 + kL:2 r2¢ = Q

(33)

9 1 : 2.2 1 _
(r~w¢,r)’r + W(SIHO l[/¢'0)‘0 + <kT r- - 3 )\,’J¢ =0.

sin=8
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" Solutions tn equation 33 may be cbtained usirtg scparation of var.. "es; The radial equation

has a solution in terms of spherical Bessel functions jg (), ng (), and the angular equation
hzs a solution in terms of associzted Legendre polynmkofzemand first osder, Pg{°) and
Pgl( ), reSpectively. . i

6= foPytcasd) ligikyr)Ag + ng (kI By) -

34)

where Ag, Cg, Dg are arb:tmy constants to be determined from the boundary conditions
and L=+ 1)is mduded for later convenience. In addition, for ease of writing let

Qg (kpr) = g lig (kyr) Ap + ng (kpr) Be)
Rg (kyo) = £ lig (y) Cg * ng (g Dgl .~ - @)

Then,

=) Pyl Qqekyn)
P

(36)

¢¢ = z PQl (cos8) Rg (kr) -,
=0

Before going any further, we need some useful relations for derivatives of Legendre
Polynomials and spherical Bgssel Functions.

Pg g (c0s0) = Po! (cosO) _ ~an
Pg’oo + cotf Pg’e = -Q(Q+ I)PQ (38)

We:follow the sign convention ol; Mégnus and Oberhettinger (reference 6) for Legendre
polynomials. The second relation follows directly from Legendre’s differential equation.

jgr(kr) = kjo (kr) . 439)

r2ig rr (kr) + 2rig (k) + (k1% - RE+1))jg (k) = 0 (40)

The first equation is a standard identity and the second is Besscl’s equation.
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Writing out equation 30 in spherical coordinates, we find that

_ | cotf
U SOyt Ves YTV

a
0]

_1 41)
Ug = ?0'0- "’0,1’ r é¢

Using the solutions shown in equation 34. we find that

©0
- cotO |
b= POy + LRy + pip
=0
Using equations 37 and 38, we obtain the following expression:

Q(QH)

u = i Pg(cosﬂ)[Qg'r (kpr)- Rg (kqr )]
=0

For the radial functions let the prime indicate differentiation with respect to the entire
argument

0,k =2 L6 = ki1
u = ) Pylcost) [kLQ'Q kp)- LDk, (kp—)] . @2)
¢=0
Similsrly,

) . 1 ]
ug - kT RQ (k}f)'?Rg(ka) . 43)

= Qg (kyr
S B tcos 0] 2L
¢=0

Expanding the stress-displacement relation. equation 24, in spherical coordinates, we find that

e }
TIT = (2}1+R) ur’r + )\[? Ur I lleo + Q!-o_uo] (44)

u
Tro = Il[;l,' ur,o + g - To] . (45)

Substituting equations 42 and 43 into cquation 44 and employing some algebra. one obtains
the following expression:

=%
\ R
= z PQ {cos() [kL:: (2HQ'Q" AQQ) - me—.‘l’)' (RTR'Q - TQ)]. (46)
=0
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Similarly. equation 45 may be written

T = grg! (cosO){ [kLQ',-—] [ 2- 2(2+1) ]}

47)

In the ovter fluid media the incident plare wave may be written as (reference 5,
p. 1466)

Ginc = . by Pg(cos0) g (ko) - 8)
=0

The scattered wave poter:tial is a solution to equation 27 for outgoing waves:

65 = Z £o Fo® Po(c2s0) hy (k1) , 49)
=0
where
he(+) = jA=) + img(-) . (50)
The total outsidz potential is
% = %inc t 9% = Z £ Pg (cos®) [jg(kor) + FQOhQ(kor)] . 51)
¢=C

Differentiating, we obtain the outside displacement:

3.
0! = 50 = D, o Poleosd) [ky iy kop) + FPkohipkgn)] - 52
2=0

For the stress. equation 28 gives

oo
Ty = -pow2 z ko Potcos0) [jgikyr) + Fehp (ko] . (53)
=0
With the requirement that the inside potential be finite at the origin. we can write
[= <]
= N I -
q‘»l 2, EQ FQ PQ (COSO)]Q (klr) . (54)
=0
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The displacement &
% z Egrgll’g (cosf) k; j‘g kyr). 55)
=0
and the normal stress
T =- P|w2 2 EQFQIPQ (c0s8) jo (kyr) . (56)
=0

At the boundarices of the shell. we require the normal displacement and stress to be
contintuous and the tangential siress to vanish. Therefore we must satisfy the following
conditions: At the outer radius. r = a.

T {r=a) = T, (r=a) (57)
10— = 0 (58)
u'(=a) = u,T(=a): (59)

at the mner radius.r=b.

TT(=b) = T (r=b) (60)
T (=b) = = 1)
u’ (=b) = uy (=b). (62)

For algebraic convenienc. set
x = ks xp = kpa xt = kra
(63)
y = klb YL = kLb ¥t = ka .

From equations 46. 33. and 57 we obtain the following expiession for normal stress
continuity at the outer radius. where r = a:

-powz z EQ PQ(COSO)[_iQ(X)*‘FQOhQ(X)] =
=0

= Ro(x1)
" 2 + ¢AT
3 Po(cosl) [kL: [2;10 ¢(xp) - )\QQ(xL)] - ﬂ;ﬁ_}) [RTR (xp) - :”
=0

11




Equating term by term, we find that
- pow’tp [ig () +FPho (0] = ki [26Q5 (xp)-2Qg (x )]
(xy)
M(Qﬂ) [x Ry (xy R! T ]

Dividing through by pw? and using the relations

2 2

. we find

p ) 1 ,
-t [0+ F g (0] = 555, [260f (x))- 2Qp (xp))

2@y
xp- TR ()~ Roxpl -

Using the definition cf Qg and Rg. given by equation 35. we obtain the following
expression:

Po 1 e .
[7 he ("’] Fe® + Saap 1245 (xp) - Mg (I Ag

20(0+ v .
QX(QZI J IX‘]‘JQ (XT) ~Jg (XT)I CQ
T

+ﬁ IZJIIJ'Q' (XL) - Xng (XL)] BQ -

J2eeH)
X~

[xpng (xp) - ng (xp)] = '—JQ x) (64)
B¥efine the following matrix coefficicnts
P
Si1 = g (0
Sl +=0

l -1 -
13 = Y33 [2Hig (xp) - Mg (xp)]

Si4 = )\+_l2u [2ung (xp ) - Ang (x5 )]

_ -2Q0(e+1
515 = ==
T

[x1ig (xp) - jg (xp)}



Loid

Si6 = ;Z%Q;—let"'!“r)' ng xpl
T

Y
By = - g x).

Continuity of aormal stress at the inner boundary, where 1 = b, is similar; this time
we use equation 56 for the fluid stress. By inspection we obtain

pl - 1 1 -39 -
7 R W Fe 3557 2ujp (yp) - Ng (y)] Ag

” 20 (2+1) - -
i [2ung (yy )~ Ang (yp )] Bp- —;(]'2— lypig (yp - Jg P Cg

2
- B @)y ng (vp)- ng I Dg = 0. 65)
yro

Define the matrix coefficients
SSl =0
Py .
S5y = L UL

S53 = Xeag 124 (YD) - Ng (vl

1 ”
S54 = J33g (2eng (vp) - Anglyp )]

"22 ' - -
S55 = __(Sj'_ll Iyrig (vy) - jp (yp)]
YT~
20 (2+1 '
Ss6 = - Y‘Tz )IYT ng (y1) - ng (¥l -

From equations 47 and 58 we derive the foliowing expression for the tangential
stress at the outer radius, where r = a:

Qg (x5) ro, ., Ro (x7)
[kLQ'Q(xL)~ QaL]- [k Rg xps - Qa:T (Z-Q(QH)] = 0.

o it

Using the expressions for Qg and Rg. we find
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2 Ixq g (x) - Jp(x)) Ag +2 Ixy ng(xp)- ng (x)] By
- ["Tzi'é () +(€£2) (- Djg (x-r)] Ce
- [x-!-zn’i(x-l—)+(9+2)(2-l)ng(x-l-)] Df =0. (66)

The matrix elements are

S31 =S32=0

=2 {ij'g (KL)' jﬁ(‘l_)]

I
w
|

=2 IXLH'Q(XL)‘ np (KL)]

&
|

1
535 = - [x.:.-’-j'g' (x) +(8+2) (E-l)jg(xr)_l

2 g

S36 = - ["T’“ﬁ (xp) +(£+2) (- 1) ng (xT)]_
Similarly. at tne inner boundary r = b. and

2 fy ' (yp) - de(yp) Ag+ 2 Iy ng (¥ ) - mg (¥p)] By

- [Ysz'Q' (YT) +(2+2; (L~ 1 )jg |)’T)] CQ

- [yT:n'Q'(yTH(ﬂ:)(e-lmg(yT)] D= 0. (67)
The matrix coefficients are

S41 =542 =0

Sq3 = 2lypig(yp) - ig (¥

Saq = 2lypngtyp'- ng(yp)l
S45 = - [y-rzj'é (yp) H(R£2) (- D) jg (Y‘[')]
: Sap = - [YTZ"IQI ()-T)+(Q+2)(Q-l)n9(y"r)] .

T
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Using equations 42, 52 anc 59 we obtain the following expression for the continuity
of normal disphhcement: . -

o [Koig (%3 + FePkghy (] = keQy' (xp)- 2 Ry (xp) .
Multiplying through by a, we obtain

tp [xiy (x)+FPxh’ ()] = x; Q' (xp)- 2 (2+1) R (x) -
Expanding. we obtain

- xhy’ (x) Fg® + xpjg’ (x) Ag + xng’ (x1 ) B

- %(2+1) [jg (x7) Cg + ng (x) Dgl = xig" (x). (68)
Define the matrix elements

Say = - xhg'(x)

S+ = 0

Sa3 = xjg (xp)

Saq = xpng’ (x)

S>g = - €(R+1) jo (xp)

Shg = - € (e+1) ng (xp)
Br = xjg'(x) .

Similarly. at the inner boundary r = b. and
- yig ) Fel +yig’ (yD) Ag + vy ng (v ) By
- 2+ 1jg' (yp) Co +ng (yp) Dgl = 0. (69)
Define the matrix coefficients
S61 = 0

S()‘i = - YjQ'()')

Se3 = ¥pig ()

Seq = ¥YLNQ (YD)

Ses = - LD jg iy
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For € =0, we have a special case since the associated Legendre polynomials Po
which appear in the tangential stress must vanish. Thercfore. the matrix becomes

F'poo

-
Sy O
Sy; O
0 S5

L0 Se2

Sge = - (e, (yp).

From the boundary conditions, we may write the following matrix relation for the
unknown constants Ag, Bg, Co. Dyg. Fg©, Fgl. Fore>1,

S14
S24

Sis

S5

Ao

A

F,!

| Bo

B

0
0
0
0

e  oad

(70)

{cosf)

am)

If we allow the inner and outer fluid media to be the same and rearrang:. the matrix,
we derive Goodman’s matrix (reference 4) except for sign convention differences. The
coefficients Ag and By differ by a minus sign from those of Goodman.

NUMERICAL IMPLEMENTATION

In this section the details appropriate to computer implementation of the previously
derived solution are considered. In particular. the matrix is further manipulated and a :nheth-

od of solution which takes advantage of some peculiarities in the matrix is discussed.

The standard recurrence relations fo- spherical Bessel functions will be used and ..re

repeated here for convenicnce.

.1 n s
JAX)Y = Tjg (0= jgq (X).

jnn (X) = [ﬂ (ﬂ; 1)
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The matrix clements Sij after some algebra, may be written in the following form:

P,

S11 =25 by (x)

i3 = 1 4"Ljﬁ+l (xL) + (22 (e-1)- xTZ) g (XL)]
XTZ

heT x-rL2 loswnger s+ (-1~ x2) npxp)]

Sy = ;Zﬂ%”—') 1®-1) jp (x1) - xpiges I
X7

St6 = %ﬂl (@ 1y ng (xp) - xpngy; (xp)]

Sy = -QhQ (x)+xh2+l (x)
$23 = Y (xq)- XLig+] (x)
S24 = Ang (xp)~ xp ngyy (xy)
S5 = -2(e+1) jg txp)

$26 = ~22+1) ng (xp) (72)
§33 = 210 1)jg (x) - X igs; (xpJ1

534 = 21@ D ng (xp) ~ xp rgsy (xp]

S35 = [ar?- 2% 1) | ig 6xp) - 2xgigy; xp)

S36 = [XT:!' 2 (Qz'l)] I'IQ (XT)- 2XTnQ+] (XT)
S43 = 2@ 1)) (yp)- YLig+; (V)]

S44 = 2@ ) ng (yy)- Yisgs (YD)
Sys = [yTz_ 2(22-1)] Jo (7) = 2yTigs) ()
S46 = [YTZ' -’-‘92“”] ng (Y1) - 2yng4y (vp)

S = 4,
52 = 5 0 (y)

17
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Sg3 = ;ii [4YLjQ+] yp+ (2!2 (e-1)- )’Tz)jg (yL)] h |
Ss4 =;§ [4YL“Q+I )+ (29 &-1n- VTZ) ng (YL)] &
Sss = i’;f:—;ﬂ [(®- Dig(y)- Yyigs] O]

S5 = -_2%?211.1[(2_,)% (yp) - yTng41 (y))

Se2 = ~Rig (V) +¥ig+) (V)
Se3 = %ig (Y1) - YpLig+1 (YD) (72 contd)
Sea = g (i) - ypng4) (YD)

Ses = R (&+D) jg (yT)

866 = -g(2+1) ng (yT)

)
B = g ()
By = Hig(x) - xJgyy (x).

Notice *hat only two matrix elements are complex. S and S~y. Rather than use a
complex matri'; solution routine, a solution algorithm is discoissed which wiil allow one to }
construct the solution of the con:vle'< matrix by solving a real matrix with two different
right-hand vectors.

Divide the first column of the Sj; matrix, equation 70, by S»;.

Cs,1/s 0 S S MEes, ] [ ]
11/82; 13 S14 S15 Si6|| Fo Sai B
I 0 Sy3 Sy4 S5 Sy Fy! By
0 0 S33 S35 S35 S Ag 0
3 3 5 36 - 73)
0 0 S43 S4q4 Sa5 Sss|| By 0
0 Ssp 3853 Ss4 Sss Ssef|  Co 0 |
0 Se2  S63  Se4  S65  Seo Dy 0
S — L— wnad e -l

18




Written in vector form,

Sz=8.
Expanding in terms of real and imaginary parts, we find that

(SR +iS) (2R +izp) = 6.

or

|
=

SRZR- S121 =

i}
=]

Sp21* 81 2R
Let
- S11 . S11
aR = Re (-S-—z-i) o = Im (§2—l> .
Then, the real and imaginary parts of the matrix S are
[~ 7
ag 0 S13 S14 S15 Sy

1 0 S33 Sp4 S5 Sy

0 Ssp  S53  Ss4  Ss5 Ssq

| 0 Se2 Sex Sea Ses Seo
The imaginary part has only one element:
;=g ®z -
Using this fact, equation 76 may be written
SRZI =~ S1ZR = - 7R) €] -
Suppose we solve the following equation for a vector x.
SRX = ¢ -
Then, it is clear that zj is some scalar multiple of X, so we write
=%

where the constant v is to be determined.

(74)

(73)
(76)

an

(78)

(79)

(80)

(81)

19
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where
$)3 = 813~ Sp30p )5 = S15- Sy50R
Sy4 = S14- Spa0R S26 = 516~ S26°R
Fo® = F¥Isy
f By = B)-Brog -
E Eliminate the first row and column of equation 89.
: -~ — - =M O
E 0 833 Sy4 825 S| | Fe B>
E* 0 533 S3¢ 335 S36| jAe 0
0 S43 Sq4 Sas Sap ) | Bp | =] O
E 852 853 Ss4 Sss Ss6 | | Cp 0
EA | 562 563 Sea  Ses Seef [ Do | | O]
¥ and
; ap F® +S13Ag+S 4By +5;5Co+8,cDp = B . (93)
1 Similarly, multiply the sixth row of equation 92 by - S54/S¢- and add to the fifth
TOW.

21 b
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p— _ . — — -— 2 ﬂ Pt - lﬂ -— -
0 Sy;3 S4 S S| |Fe 5,
0 S33 'S3q4 S35 Szg || Ae o
O Sq3 S44 S45 Seg || Be =y 0 :
Ss2 Ss3 Ss4 Sss 356 | | Ce 0
L 0- ) 563 864 565 366_ ‘L.DQ .J » 0- H
s o s
= _ . 52 - 52
Ss3 = 1553 - S¢3 (35) S65 = Ss5~ Ses (—63)
- £S5 \ — g S5o
Sca = Sca- 2= Sc = Serr Secf=2=) . 94)
64 = Ss4 564(562) 66 =~ 5567 66( :62) ,
Then, eliminate the first column and ﬁfth oW
5,0 Sy Ss Sx A [5]
23 S24 S5 Sy {| Ae b)
S33 S34 S35 Sz ||Be| | © : ‘
] - _ 09
S43  S44  Sa5  Sa6 || Ce 0 - '
B S S S D 0
| 563 Se4  Se5  Se6_|| Do | L ]
S52Fp! +S53Ag * S54By + S55Cy + S5 Dy = 0 ' (96)

The real matrix solution is therefore reduced to the solution of a 4X4 matrix and
the appropriate multiplications to find FQland Fg® from equations 96 and 93, respectively.

As we saw before, tl.e =0 mat:.x is a special case of equation 71. We can follow
the same procedure outlined above to solve thelfull matrix. The real matrix becomes

g 0  Si3 S . ’

! 0 83 S

SR = § ‘I ! (97)
0 S5 Ss3 S5y

| 0 Se2 Se3  Ses].

We may also follow a similar Gaus§ian climination procedure to take advantage of
the zeroes. Following the same steps as before we must solve a 2X2 1aatrix.

i

-S-23 S"’

-

A0 32 :
_ _ = (98)
S63  Sea B, 0

»
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where

- < Ss2
$23 = S33- apS»3.5¢3 = S53- S¢3 (g‘;)
i (29)
— _ — _ SSZ
S5 = S14- aRS24-Seq4 = S54- Sea v
and
agF,® +S13A,+S 4B, = B (100)
Sstol +SS3A0+SS480 =0. (101)

In conclusion. the :ime-sz2ving methods described in this section have been incorpo-
rated into the spherical shell computer program. Comparison of a previous version of the
program using a standard LU decomposition of the original 6X6 matrix and the modified
version shows a 60-percent savings of the actual inversion time. resulting in an overall
computer program time savings of 33 percent.

LIMITING CASES

We will now consider several limiting cascs of the elastic shell solution. In the Emit
of vanishing shell thickness. the solution is shown to reduce to scattering from two dissimi-
lar fluid media. In particular. when the wavelength is much greater than the size of the flaid
sphere. we obtain a solution applicable to such hodies as air bubbles. If the shell thick:ess
is non-zero but sufficiently thin. a first order apy;oximation to the solution is obtxiv.d
using a Tavlor series expansion of the matrix elements. This solutio is useful to avend
linear depzndence problems in the Sij mat;x for sufficientiy thin shells.

Suppose we let the thickness of the shell e zero. a = b. Then. by inspection of the
matrix clemerts, equation 72,

S‘J = SSJ 1 = 3.4.5.6
83j = S4i

Subtracting the fifth row of the shell matrix. equation 70. from the first row and the sixth

row from the second. we obtain a relation wb'ch determines the coefficients for the inner
and outer fluid potentials:

sip -ssa] [E°] [ 8

(103)
o Seaf |FE lﬁ’ :

E:
3
3
5
F
3
i
k4
2
E
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From the defmition of the matrix chements this beoomes

Polig(x! - ppis(ux)] |F¢° - pyig ix)

(109)
- xhe(x) +msjgtacyf |F¢! xjg (x)

The inverse of tix matrix s casily oblained:
Fg“’) + nxjp (nx)  + pyjg (A%) - Poig (x)

{105)

Bl

F!(“ xhg (x) Pohg (x) xia (%)
where A =+ pxie (x) jg (%) - pyxh (x) jg {zx) -

The coeflicient for the outer potential is easily obtaired:

£ = JPoMe (M) ip(nx) ¥ pyip (x)ig (ax)
€ 7 Fp nhg (x)Jg (%) - pylg X)ig (1x)

£ = 5g (x) + ilgjp (x) o
¢ gy +iTghg () | - (106)

where
ipg7 [i& (%x)
I‘Q = —14"= -
py Lig(m)
This result is identical with Morse and Ingard (reference 8) except for sign convention.

When the wavelength is much greater than the size of the sphere. we may use a
small-argument Emiting form of spherical Besscl Functions (reference 9)

- xQ
>3 Gen

ng (x) > 1132 Q1)

Nz

x>0

In particular.
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jotx) = 1 Jptx) = §

ot = -2+ oo = 5 ao;.
- x*

By ix) = lfi(;--% i|(x)=—’—-
2 x2

The lowest order icim for the expansion cocflicients. equation 106, becoesss

© p pt3x)” p " 3

FO=. ['il (x,'ﬁroio“)]

o -hl (x)+ il‘oho (x)

i [P 25) ( +E__'.) 5
25 T3\
x_-?’ (!-29.72)
FLo = 2l x<<1. (108)
P~ 3
- iXT - 1X7)
3‘1'

o, | i1 () w, {lo(®x) >
=5 7 5| Ty TG e

=
»”
Y
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The higher order coefficients are proportional to x~€*1 304 are therefore negligible.
At the surface of the sphere we can obtain an expression for the total potential

uasing the first two terms of equation 31.

(109
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0o () = 1 +F %l (x)+ &} cos? [ (x)+ F;Ohy (x)]

o ot e [1oe (2]

9 30,
1+F.° [-i —“w(——zﬁl*to)

"

3i

: 3p

1+ A -4 -ista(,——;'—-)

poq- > 3 x -’l po
]1- {ix~ - ix”)

30y

= (l-i‘lzzr2

1}

1o

_ 3
9o 71y = 1- ix cosf ot p 5
l o, l Poﬂ" > " 3

- —= (x~ - iX
3py )

Notice that for a light. compressiblke sphere like an air bubble. where py << . the linear
term in X is negligible. Thercfore.

po y " 3 Pon' 2
7= (X~ +ix 1+2i x>
30, " ) E7D
0o rma)= 1+ 35 = 3
PN L/ I
l-i—(x--ixsb - —— (x~ - ix))
3ey 3
) 5 3py
There i a resorance at x~- = 5.
S, |
a3
Letting X~ = 5 = — .
3% Y 3N
= 403
0y (rFa) = ——=X ()
X~ -(x"- i)

(el
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Thas result agrees with that obtaised for acoustic scatiering from air bubbles in water (refer-
eaces 10.11).

Whea the thickncss of the shell is saall, but noe-2¢10. a first order approximation to
the shell matrix may I ob2simed wsing 2 Taylor scries expansion of the matrix ckkments.
The procedure does noi provide much amalyrical ssmplification of the matrin, but avods
nusssical difficultics in @olution. Whea the shell s thin, two rows of the shell matrix are
zpproximately equal. creating 2 lincarly dependeat matrix.

In onder to corzplement the numerical solution method described in the previcos
section for thin sbells. we will work with the reduced. real matrix, equation 95,

513 S S5 S| [ae] [3]
533 S34 S36 S36| |Be 0

= (112)
S43 Ss4 S5 Sae| | Ce 0
1Se3 Se2 Ses Ses) |Pe] LO).

where the barred matrix elements are defined by equations 90 and 94.

Notice that for a thin shell. the sccond row is appreximately eqral to the third row of
the matnix eqration 111, Expanding thz elements in the third row in a Taylor’s series about
=2 we obtain. to first order in the thickacss 3. these oxprescions for the matrix elements:

543 (YL) = 533 (XL) - kl 85’33 (XL)
544 (YL) = 534 (KL) - kL8S'34 (XL)
(113)
545 (YT) = 535 (xy)- k—l-6$'35 (xy)
546 (YT) = 536 (XT) - kT6536 (X‘r) .
Subtracting row 3 from row 4. we find that the matrix cquation 112 becomes
P~_ _ _ _ T = T - -1
S>3 Sa4 Sas Sa6 Ag B>
833 S34 S35 S36 Be 0
= (114)
;' 'RL6533 'I\L6534 'kT653S -kT5536 CQ 0
‘ | So3 S64 S65 Se6  _ji P | ¢ .

The matrix is valid to first order in the thickness 8 and climinates the linear dependence
problem when the shell is sufficiently thin.

TR

LML L O
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é COMPUTED RESULTS

3 in this section typical computed resehis are presented for scatiering from an 2ir-filled,
3 aluminum spherical shell. The results showa in figures 2 and 3 were obtained using the fol-
’ lowing input datz. MKS uaits are used throughout.

by R
o ﬁl‘ o

oy =121 C; =343
p, = 1.026X103 Co = 1.5x10°
p = 27X10 Cy = 6412x103 Cr = 3043x103
M dfa = 05 s =1

The total pressure as 2 function of k2 at the surface of the elastic shell is shown for
angles from the incoming wave of 0 and 180 degrees, respectively. The complexity of the
scattered field is due to the vibrational characteristics of the clastic sphere.
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