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SUkMAK'x

PROBLEM

Develop a mathematical model to predict the scattering of a plane acoustic wave

from an elastic spherical shell with different fluid media inside aud out.

RESULTS

A mathematical model of the spherical shell was developed from the more conveni-
ent standpoint of elastic theory rather than from the accnstic point of view. The resulting
equations were solved in terms of known functions. Matrix ,tethods are used throughout.
A numerical method is presented that takes advantage of 'xrme peculiarities of the resulting
matrix and is appropriate to computer implementation. Somz results of a computer pro-
gram for the spherical shell are given. A few limiting cases of the exict solutions are com-
pared with previously repoted results.
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I . ~ INTRODUCTION

In this paper, a mathematical model is developed to predict the scattering of a plane
acoustic wave from an elastic spherical shell with different fluid media inside and out. The
model is developed from the more convenient standpoint of elastic theory rather than from
the acoustic point of view. The resulting equations are solved in terms of known functions.
Matrix methods are used throughout. A numerical method is presented that is appropriate
to computer implementation and takes advantage of some peculiarities of the resulting
matrix. Some results of z computer program for a spherical shell are given. A few limiting
cases of the exa'ct solutions are compared with prciously reported results.

The paper consists of two sections in addition to the Introduction. The first, A
Summary of Elastodynamics, summarizes the essential elements of elastodynamics needed
to provide a unified treatment of the scattering problems considered in this paper. The
second, Scattering from a Spherical Shell, develops the desired mathematical model.

SUMMARY OF LINEAR ELASTODYNAMICS

Problems in elastodynanlics are similar to boundary-initial value problems in other
areas of mathematical physics and are characterized by a fundamental system of field equa-
tions with corresponding initial and boundary conditions. Given a prescribed system of
forces and displacements over the surfac: of an elastic body, we may predict the deforma-

, tion of the body using a solution of the appropriate elastic problem. Solutions to the elastic

problems considered in this paper are constructed using scalar and vector potentials. The
basic laws of infinitesimal linear elasticity and the relevant elements of potential theory are
presented here for reference.

EQUATIONS OF MOTION

The law of motion in linear elasticity, usually referred to as Cauchy's law, is given by

divT = ph , (1)

where T is the stress tensor, u is the displacement vector, and body forces have been ne-
glected. In this paper we will assume infinitesimal displacement theory is valid so that the
strain tensor E is related to the displacement by

E (Vu + V•T). (2)

In addition. we will restrict our attention to homogenco!- "and isotropic materials where the
constitutive relation is given by

T = 2p1E+ + trE) , (3)



where X and p are the Lame constants and I the identity tensor. Using a few standard
identities, equations I to 3 may be manipulated to obtain Navier's equation of motion:

PV2u + OW + A) V(Wu) = Pi. (4)

This equation may also be written

CL2V(V u) CT2 curl curl u = U, (5)

where the longitudinal and transverse elastic wave velocities are given, respectively, by

CL2 = + 2  CT2 = (6)

P p

INITIAL AND BOUNDARY DATA

In the mixed problem of elastodynamics we must specify the following initial and
boundary data to ins,,re a unique solution:

Initial conditions

u(-,O) uoand u(-,O) = on B (7)

Displacement boundary condition

u = fion SI X (o,t) (8)

Traction condition

t =on S2 X (ot) (9)

where uo, vo, C, are specified data. and B is an open set in Euclidean space & which is the
"interior of a closed and bounded region B (the closure of B) whose boundary aB is the
union of surfaces aB = Si U S2.

POTENTIAL THEORY

Next, we will briefly outline the basic elements of potential theory.

Theorem A

Let 0) be a scalar field that is continuous on B and class CN on B. Then there exists
a scalar field -y such that

=V2. (10)

Proof, See Kellogg (reference 1)

The above theorem is easily extended to vector fields by applying the result to
each component.

(r2
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Theorem B - Helmholtz Theorem (reference 2)

Let u be a vector field which is continuous on B and class CN on B. Then there
exists a scalar field 0 and a vector field 41, both of class CN, st. h that

u V=V ++V X ;and div , =0. (11)

Proof: From Theorem A, there exists a vector field v on B such that

u = V2v . (12)

Using the standard identity curl curl v = Vdiv v - V2 v, we find

u = V div v - curl curl v

Therefore, if we let

4, = divvand i = - curly, (13)

the desired conclusion follows.

Theorem C - Lamd Solution (refercnce 2)

Let u = VO + V X 4, where 4 and 41 are class C3 fields on B that satisfy

V2 _-,1 l:0 = 0 (14)
CL-

V2 1 . (15)
cT 2

Then, u is an elastic motion which satisfies Navier's equation (equation 5).

Proof:

C L2 Vdiv u- CT 2 curl curl u- ii =V ICL 2 V 20 d] + curl

S-CT2 curl curl-•-- = V 2 2 + curl T22 p- 0

where curl(curl Lurt 0) - curl(v 2 4) by the previous identity.
The Lamni sol'ution can be shown to be complete, that is, any solution to Navier's

equation can be written as a scalar and vector potential. The completeness theorem and
proof are discussed in Sternberg (reference 2).

Notice that the potentials 4 and 4 are not unique. For example, let

0,' = , + constant V,' = 4, v'"y .

The displacement u is unclianged using either the primed or unprimied potentials.

3



FLUID MEDIA

In this paper a fluid wi!! be treated as an elastic material which supports no trans-
verse waves, CT =A = 0. In this case Navier's equation becomes

C2 V(V-u) = C2  (16)

Using the Lam6 solution (Theorem C, 4, 0)

u V=7, whereby equation 14, (17)

V 0. (18)
C-

The stress-displacement relation may be written

T = pC 2 (divu)I = p I . (19)

In many cases the time-dependent solution can be written as a superposition of

sinusoidal solutions, for exampke using Fourier Transforms. If we assume the solution is
smooth enough that we can interchange the differentiation and transform operations, we
may construct the time-dependent solution frequency by frequency. ThrougJhout this paper
we will assume the functions to be smooth and their time dependence to be Cek'i*. For
convenience we will summarize the basic equations discussed in this chapter removing the
time dependence.

SUMMARY OF SOLID MATERIAL EQUATIONS

Na.:xr's equation

.•- - u- -!curl curl u =u (20)
k L - k T -

Lamed solution

V0+V X4 (21)

V-2 +kL2 A 0 , kL(2 CL-

0, 2 W (23)

V O~kT kT CT 2

Stress displacement

T= V+vT] + X(div u.) 1 (24)

4



SUMMARY OF FLUID MATERIAL EQUATIONS

Navier's equation

v(v"u) = -k 2u k2 = _2.(25)

C2

Lamd solution

u! = V0 (26)

720+k2o = 0 (27)

Stress displacement

T = -po w2 0 I (28)

SCATTERING FROM A SPHERICAL SHELL

INTRODUCTION

A sphere is one of the few finite geometrical shapes in which the equations of linear

elasticity can be solved analytically in terms of known functions. Such a solution is useful
not only for direct sonar mathematical modeing applications, such as spherical baffles,
domes and acoustic lenses; but serves as a useful check on various approximate techniques.
For example, a comparison of resonant frequencies is made with various thin-shell theories
in reference 3. Because the solution is exact, experimental verifications may be obtained
for a large range of parameters. the limits being upon the experimental apparatus.

In this section, a solution suitable for digital computer implementation is developed
for plane wave scattering from an elastic spherical shell with different fluid media inside and
out. The problem for identical fluids inside and outside has been done by Goodman and
Stern (reference 4). In addition, numerical implementation details and a few limiting cases
are discussed.

THEORETICAL DEVELOPMENT

Consider a homogeneous plane wave impinging upon an elastic spherical shell of
outer radius a, inner radius b and thickness 6. Let the incident wave come in along the
polar axis (with no loss in generality) as shown in figure 1. The inside of the shell ontains
a fluid of density p1 and sound velocity C1. In general, the outer fluid will be different, and
is described by parameters p0o, Co. The elastic shell is a homogeneous, isotropic material of
density p and Lami constants X, p. The longitudinal and transverse elastic wave velocities
are

CjLT2 and C = -- respectively.
P P

55
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Figure 1. Geometry of an elastic spherical shell.



By symmetry of the incoming wave boundary condition, we need to consider only
the axisymmetric problem, i.e., no variables will depend upon the 0 coordinate of our
spherical coordinate system. We will further assume that there is no motion of the elastic
shell in the • direction

u= 0. (29)

Components of vectors and tensors in this chapter refer to the physical components
relative to the natural basis -issociated with the spherical coordinate system.

The displacement vector in the shell may be represented in ternis of potentials as

u =VO+VX . (30)

Next, we will demonstrate that one component of the vector potential 41 is sufficient to
construct a solution to the axisymmetric sphere problem. Since the pofential 1P is not
unique, we can choose many possible potentials that will give a solution to the elastic equa-
tion. Recall that from Theorem A in the Summary of Linear Elastodynamics, there exists
a vector v such that

u = V2v. (31)

We can see that a possible vector v that will satisfy the symmetry assumption us = 0 is
chosen by letting vo = 0. That is, writing out the Laplacian in spherical coordinates (refer-
ence 5. p. 116),

u¢ (V2v)'O = V2vO + vo
~ r2 sin 2O

we can see that v = 0 implies u = 0.

Now, referring to the proof of Theorem B, equation 13 says

S= - curl v.

In spherical coordinates, with vo = 0.

Oer + O + (rvo) -- J1 (32)

Therefore, a sufficient choice for the vector potential consistent with the symmetry of the
problem is lr = 0 0, retaining only 4,,. So

Equations 22 and 23 may be expanded in spherical coordinates to give

1720'r 'r+ SI I (sinO .,O),0 + kL2 T20 = 0

sin0 fo =

(r2i)r++o h + 2 (kT r 15) 0 .(33)

7
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Soutions to equution 33 may be obtained uing sepamtion of ryr,. 'esi The radial equation
ias a solution in terms of spherical Dessel functionsj (-), nz (-) and the annul equation

has a solution in terms of socipted Legendre polynomials of zero and ust order, PI (Z) and
Pei (-),repectvly.

# t QPf(cosO) Ue (kLr)-*, + ne (kVr) B~

Go (34)

I= t PC! (cos0) (if (kr) Ce + nie (k-r) Del

e=O

where Aof B, Ce, Dg are arbitrary constant- oto be determined from the boundary conditions
and -= i-i)x (2e + I ) is included for later convenience. In addition, for case of wrifing let

Qf (kry-Y = te Iie (k~r) At -+ ne (kLr) Be]

Re (k~r) = Qe lie (kTr) Ce + ne (kfr)D2 J . (35)

"Then,

Go

S= (-P(so)•s)Q,(kLr)

2=0
00 (36)

0 3p pI (cos0) Re (kTr)
12=0

Before going any further, we need some useful relations for derivatives of Legendre
Polynomials and spherical Bessel Functions.

P2,0 (Cos0) -" P2 3 (cos0) (37)

P2,0 0 + Cot0 P2,0  - (2 + 1) l' (38)

We; follow the sign convention of Magnus and' Oberhettinger (reference 6) for Legendre
polynomials.. The second relation follows directly from Legendre's differential equation.

jRr(kr) = k jQ (kr) (39)

r2j1rr(kr) + 2 rir(kr) + [k2r2- Q(R+i)lj(kr) = 0 (40)

The first equation is a standard identity and the second is Bessel's equatioa.

8



Writing out equation 30 in spherical coordinates, we find that

I 1 (41)

ksing the solutios shown in equation 34_ we find that

ur= P PQC + !&0- R +-PeI Re.

Using equations 37 and 38, we obtain the following expression:

Ur= Pe(cosO)[QPL(kLr)- Q(e+l) Re(kIr)].
e=0

For the radial functions let the prime indicate differentiation with respect to the entire
argument

=dx d l
rI(kr) 1M kII xdr dx ! (x) = k| (x)

ur = I Pe (cosO0) [kLQA(k Lr)- Q(rRe(kT-rl (42)
e=0

Similarly,
CO . QV (kLr)

u0 = I. pe(Coos 0) k-T Rj (kr) - Rj(kT,)] (43)

Expanding the stress-displacement relation. equation 24, in spherical coordinates, we find that

Trr (2! )u cotOu+ r,r + r + r U0.o0+ r 0_] (44)

=r PrUr,0 + Uo~r - .U (45)

Substituting equanons 42 and 43 into equation 44 and employing some algebra. one obtains
the following expression:

00

=r PQ1,A'oflhikt2-fPQfl+,-
Trr • •(cs0)kL(2PQ'Q'- X.Q•) 2(+ (kTR'-%-] (46)

rQ r
Q=0 9

:4



Simil~arly, equation 45 may be wuitten

> t; PQ(Cos9 r [k L~ (rekT-7 R; (2 0" 1e~))]

(47)

In the outer fluid medIia the incident place wave may be written as (referenceC 5,
p. 1466)

- t

00

=m tePe(cosO)if(kr). (48)

e=0

The scattered wave potertial is a solution to equation 27 for outgoingewaes:

CO

Ef F 0 ~QQPC(c-!,s0)bhe kf), (49)

C=O

w-here

h(-) = it(-) + in-) (50)

The total outsidz potential is

00 = O + s Pe(cosO) [jo(k.r) + FQohe(kor)] (51)
Q=C

Differentiating, we obtain the oaitside displacement:

00

~QP, (cosO) [k,, ijQ (kor) + F 0 k0 hj (kjr)] (52)
e=0

For the stress. equation 28 gives

h•(-o= [tk+}hQ NO (53)

TeTo'a =usd -powtentia Pq(OO.se(k)+F

Q=O

With the requirement that the inside potential be finite at the origin, we can write

00

SIV•-= FQF Pq(csO)jQ(kr) (54)

, •-0

Q=0

10



-'1 T-i7

The displcement is
* -!

u1r = = I t2P~o0)j-Ik0 (55)

and the normal strs

Ti= -Pw 2  te FerPe (csO)j (klr). (56)

At the boundaries of the shel. we require the normal displacement and stress to be
continuous and the tangential stress to vanish- Therefore we must satisfy the foMlowing
conditions: At the outer radius. r a.

Tr(rra) = Trr (r-a) (57)

jetra) = 0 (58)

ur (ra) = ur (rI=a)- (59)

at the inner radius. r = b.

Trr (rb) = Trr (r=b) (60)

'0 (r=b) (61)

ur (r-b) = Ulr (rTb). (62)

For algebraic orwenienc% jet

x = k0 a xL = kLa xT = kTa
(63)

Y = k1 b YL = kLb YT = kTb

From equations 46. 53. and 57 we obtain the following expiession for normal stress

continuity at the outer radius, where r = a:
00

Po (02 1 tq Pe (cos O) [j (x + FRO h2 (x)] =

Q=0

00 
1IU(+)R(T

2=PQCO Iv[uQ (xL) ?QQ (xL)] a a___kR~X~R(.]



Equating term by tarm, we find that

Pow~ [it WK + Ft0 he Wx] =kL2 [2uaQ (xL) -)LQt (xL)]

- 2pa I) [kTl (XT),- a__ )
aa

Dividing tiwrough by pw2 and using the relations

P - . kL2 P we finda ) XT L p;

Oo
p tf [if x) io hex =l [24"Qi (XL) - WeQ (xL)]

2Q(Q-+I)

XT- IXTRq (xT) - Re (xT)I-

Using the definition (,f Qe and Re, given by equation 35. we obtain the following

expression:

1-2 he(x)] Feo X+2pj12pj' (xL) - .jQ (x L)I Ae

+B- 22 (12 I (XL)-)ntx(xLiifB(X2) ( +!+ X- XPiT (xT) - jQ (xT)l CQ
XT-

2£ (Q+!) =.0,(64)
XT [TnQ (xT)- nQ,(xT)I -- Pj x)(4

N-fine the following matrix coefficients

p0
DSi I =7"-h• (x)

S1 2 =0

SO = j,+-"-12 j•pi (x L) - 'Xi (X L)]I

SI4 = ,+2p 12_Pn (xL) -nq (xL)]

Q = (Q+1 , IXT(XT)-jQ(XT)I

xT

12



-2t 2) xT nj (xT) - nIxT)IS16 = XT2

Continuity of normal stress at the inner boundary, wher r = b, is similar; this time
we use equation 56 for the fhld stress By inspection we obtain

PI I
"7)Qe (Y) Fel ).+2At

X+212Pne (YL)- kne (YL)I Be - 2 ( YTJ' (YT)- it (YT)! Ct
YT-

2e ( 1+_ ) lYTnj (yT)- ne (YT)! De 0. (65)
iYT -2

Define the matrix coefficients

S5 1 = 0

PIS52 = p je (Y)

S53 = i12j'e' (yL) - )f (yL)]I

S54 = X+~2pi-n" (yL) - Xne Y~
S54 -+, Q "YO

S5 5 = 2 IYTJ (YT) -J (YT)I
YT-

2 k ( W li ,j ( T q ( T56= - YT 2 [IYTn(T- ) .

- rT
From equations 47 and 58 we derive the following expression for the tangential

stress at the outer radius, where r = a:

SQ(X)] r R.e , R(xT): [kLQ'[kT-RXT (2- aQ+1Tj = 0,
a-

Using the expressions for Qq and Re. we find

13



2 IXLje (XL) - ji (xL)i A2 + 2 IxLni (XL) - nt (xL)I It

- [xT-7i;(xT)+(+2)(e-l;j.xT)]cf

- [xT2 n;(xT) + (e2) ( ) n(xT)] Df 0 (66)

The matrix elements are

s3 1 = 3 2 =o

S3 3 = 2 ILxLj (xL)- j(xL)I

34 =2 IxLnfl(xL) nL(XL)I

$35=- [xT' (XT)+(t+2 ),(f-Iit(Yr0]

S36 - - [xT2 n (XT, + ('-+2) (f- I ) n (xT),

Similarly. at tne inner boundary r = b. and

2 yLj' yL) - Jt (YO At + 2 1YLnQ ( - nQ (Y B

* - [yT 2i(yT)+(0+2;(0-,i•0iyTI ] c)

[,2T " (yT) + (0+2)(Q- I ) ne (yT)JD = 0. (67)

The matrix coefficients are

S41 =42 = 0

S43 = 2 1 YL4 (YL)- jt(yL)I

S4 4 = IYLnQ (yL'- n (yL)I

S4 5 =-[yT2g (YT, + 0+2) (Q- 0 ji (y-0]

S46 = _YT-n (5T)+(+2I Q -1nV (YT)]

!4



Using equations 42, 52 and 59 wc obtain the following expression for the contintity
of nonral dspace"."-:

f [kIoj' (x) + Fe0 kohe ()] =W (XL) - -R+ (xT)

Multiplying through by a, we obtain

te [xj'(x) + FXh' (xW] = XLQ' (xL)- e(0+1) Rf (xT) -

Expanding. we obtain

- Xh' (x) Fe° + xJ' (xL) At + xne'(xL) Be

- f (f+i) l) (xT) Ce + ne (xT) Del ug'(x), (68)

Define the matrix elements

$21 = - xhf'(x)

SVI = 0

S) 3 = XLJY (xL)

S2 4 = xLn" (xL)

S25 =- Q(Q+i)j(xT)

S26 W- (+I) n (xT)

•2 =xjQ(x).

Similarly. at the inner boundary r b. and

- Yj•' (Y) FC' + yLj' (yL) AQ + YLn" {yL) Be

-(Q+l) IJ' (YT) C + nQ (yT) Dq = 0. (69)

Define the matrix coefficients

$61 = 0

S62 = - yj'iY)

63 = YLj l

$64 -YLn•'(VL)-65
$(15  = - • (Q+1 ) . :•-i-}

15



S66 =- YT)

Fron= the boundary conditions, we mvy write the following matrix relation for the
unknownconstantsAt, e.C,., D FF. F0FI. ForQ f I,

Sll 0 S13 S14 S15  S16 F? ° !

S2l 0 S23 S24  S, 5  S26 Ffg 02

0 0 S3 3  S34 S35 S36 At 0
(70)

0 0 S4 3  S44 S45 S46 Be 0

0 S52 S53 S5 4  S55 S56 Ce 0

S0 62 S63 S64 S65 S66 D2

For 2 = 0, we have a special case since the associated Legendre polynomials P [ (Cosa)
which appear in the tangential stress must vanish. Therefore. the matrix becomes

Si1 0 S!3 S14 F0
0

$21 0 S13 S24 FoI
(71)

0 S52 S53 S54 Ao 0

0 S62 S63 064" .o 0

If we allow the inner and outer fluid media to be the same and rearrang the matrix.
we derive Goodman's matrix (reference 4) except for sign convention differences. The
coefficients Aq and Be differ by a mipus sign from those of Goodman.

NUMERICAL IMPLEMENTATION

In this section the details appropriate to computer implementation of the pre% iously
derived solution are considered. In particular. the matrix is further manipulated and a ,aeth-
cad of solution which takes advantage of some peculiarities in the matrix is discussed.

The standard recurrence relations fo- spherical Bessel functions wiUl be used and ,re
repeated here for convenience.

j x) i n (x')- in+I (x) -
n n-

1in6 in n) + X+Jn+l

16



( ~The matrix elements%- ACT. aft Me algebra. may be written in the following form:

s11 : 0-o t(x)

SF 3 2 [,4xLjk+ (xL) +(2e (2- ) - XT 2) it (xL)]XT

12 [4x t (xL)i- (2Q(2-l1) - xT2) ~x)
XT

S15 = 2 2 ýQ+l f( 1 X j + (x )

S16 =L 2:( 1 (Q1 )ne(xT xTfQ+ I (XT)I
XT

S2 eQh (xL)- xhQe~1 (xL)

SM3 kn Q(xL)- xLnf+i (xL)L S15 = 2(2+1)iQ~xT)

S-6 QIQ.+)nQ(xT) 
(72)

~2S33 =2 I(Q- I)j2 (xL)~ -xLj2+1 (xL)I

S34 = 2 I(Q-1) nq (xL) - xLný+, (xL)I

53 xT 2 - 2% (Q2- 1)] JQ (xT) - 2xTjg+I (xT)
S3 =IX -2(Q2-- 1) nQ (xT) - 2?xTfQI (xT-)

43 (- ) 2[~:J2(YL) -.YLj2QI (YL) I

S44 2 )n Y=Y " Y)

= yT2 -2Q (YT) -
2 T1~~

2-(Q2--1

S2 - jQ (y)
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S -=½ [4yLJQ+l (YL + (29 (2- 1) - YT 2) jR YO
S[4YLnQ+! 

( (22(2-i- 
YT2) n£(YL)]

S54 = 1T2 +1 1 (2- 1)T - YT

-- 22(2+1)

S56 =-- T2k [(2+)1- I ) nq (yT) - YTnq+lI (yT)]

S6 2 = - JR (Y) + YjQ+I (Y)

S63 = RJi (YL) YLJ£+l (YL) (72 contd)

S64 = n2 (yL)- YLnQ+l (yL)

S6 5 = -2£+!) j£ (YT)

S66 = - (2+!)n£(yT)

Po.

P2 =•jR (x)- xJQ+ (x).

Notice 'hat only two matrix elements are complex,, S I I and S, 1. Rather than use a
complex matrix. solution routine, a solution algorithm is di.cilsstd which will allow one to
construct the solution of the con-ulex matrix by solving a real matrix with two different
right-hand vectors.

Divide the first column of the Sij matrix, equation 70, by S2 1.

SHlI1/21 0 S13  S14 S15 S16 FO $S2 1  1

1 0 S23  S24  S2 5  S26 FQI 02

0 0 S33 $34 835  S36 Aq 0
BQ 0 (73)

0 0 S43 S44 S4 5  S46 0

S0 52 S53 S54 S55 S56 C

i 62 S63 S6•4 S65 S66 D 0-
L• J0

I1



Written in vector form,

Sz = j3" (74)

Expanding in terms of real and imaginary parts, we find that

(SR + iS) (ZR + iz1) = j

or
SRzR - SlzI =• (75)

SRZI+SIzR = 0. (76)

Let
S= R /S ll)\ SI I

S2,Re = Im S21 (77)

Then, the real and imaginary parts of the matrix S are

-R 0 S13 S14 S15 S16

1 0 S23 S24 S25 S26

0 0 S3 3  S3 4  S3 5  S36 (78)

0 0 S4 3  S4 4  S4 5  S46

0 S52 S53  S54  S55 S56

L0 S62 S63 S64 S65 S66

The imaginary part has only one element:

SSI = 01le0 -,1 - (79)

Using this fact, equation 76 may be written

SR Z = -SIZR = -aZIRlel - (80)

Suppose we solve the following equation for a vector x.

S R x = eI . (8 1)

Ihen, it is clear that zI is some scalar multiple of x, so we write

I= -x, (82)

where thew constant -y is to be determined.
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aR 0 S13  S14  S15  S16 Fl PI

0 0 $23 S24  S25  $26 FR'

0 0 S3 3  S3 4  S35 S3 6  At 0
(89)

o o S43 S44 S4 5  S46 B

SS52 S53 S54 S555 S6 CR 0

6 S62 S63  S64 %65 S66 DR 0

where

S23 = S3 S23clR S25 = S15- S2 5aR

S24 = S14- S240'R S26 = S16- S260'R

SRo = FROsISII

V 02~2~R(91)ý2 = 101 - 02 cR• (9

Eliminate the first row and column of equation 89.

0 S23  ý24 ý25 ý26 FFQ
0 S33 S3 4  335 336 A£ 0

0 S43  S44 S45 S46 B = 0 (92)

S52 S53 554 S55 S5 6  CQ 0

S6 2 S63 S64 S65 $66 D_ 0

and

c'R FRO + S13 AQ+S1 4 B+SlS5CQ+Si 6 DR = 013  (93)

Similarly, multiply the sixth row of equation 92 by - $52/$62 and add to the fifth
row.

I
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6 f.! -o •23 _4 -_ -, •- •

S33 S0 S3s S [ AS 0

o S43  S44  S45  S46 e36 0
S52 553 S54 55s S56  CO 0

0 o S63 S6 S65 s6 L0De o

- (S5N• (s!,52
S6 3 =S 5 3 - S6 3 I ( 2 "165 = -55 - S65  )

S- /~~~Ss2 - -\S
3~62/ S6  5  6\62J$64 = 54- $64 Q $2 ] 66 56T S 66 Q $2 /(94)

Then, eliminate the first column and fifth row.

S23 S24 S25 "Sý6 Ae 2

$33 S3 4  S35 S36 B ' 0
= (95)

S43 S44 S45 S46 C j 0

LS6 3  "64 g65 "§66 j D'2 J OJ

$52FI + $53A+ $54B+$55C£+$56D£ 0 (96)

The real matrix solution is therefore reduced to the solution of a 4X4 matrix and
the appropriate multiplications to find F9I and F2

0 from equations 96 and "93, respectively.
As we saw before, the 2=0 matl;,:: is a special case of equation 71. We can follow

the same procedure outlined above to solve the full matrix. The real matrix becomes

1R 0 S13 S14

1 0 S2 3  $24
SR 0 (97)

S S5 2  S5 3  S54

L 0 $62 S63 S64

We may also follow a similar Gaussian elimination procedure to take advantage ofi

the zeroes. Following the same steps as before we must solve a 2X2 m~atrix.- -11
S23  S24 A0  = 2

S 6 3  S64 B0[]
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when-

S23 = 1s-3 - *023 - = S53- S63 S 299 )

S_4  S I4 - G 2Rs-64.• S 54 - S6 S2

and

aRFo° + S 3 Ao + Sl 4 Bo 0  (100)

S-$52Fo! + $53Ao B -54Bo -0 (101)

In conclusion, the ;ime-!aving methods described in this section have been incorpo-
rated into the spherical shell computer program. Comparison of a previous version of the
program using a standard LU decomposition of the original 6X6 matrix and the modified
version shows a 60-percent savings of the actual inversion time. resulting in an overall
computer program time savings of 35 percent-

i • UMITONG CASES

We will now consider several limiting cases of the elastic shell solution. In the limit

of vanishing shell thickness. the solution is shown to reduce to scattering from two dissimi-
lar fluid media. In _articular. when the wavelength is much greater than the size of the fluid
sphere. we obtain a solution applicable to such !Jxies as air bubbles. If the shell thic&.-.css
is non-zero but sufficiently thin. a first order app;oximation to the solution is obt*.;((.4I
using a Taylor series expansion of the matrix elements. This sohit, si is useful to aod

linear dependence problems in the &i matix for sufficientl:, thin shells.
Suppose we let the thickness of the !iiell &e zero. a b.. I hen. by inspection of the

matrix elements, equation 72.

Slj =Sj 5 = 3.4.5.6

S2j = S6j (102)

S3j S4j

Subtracting the fifth row of the shell matrix, equation 70. from the first row and the sixth
row from the second. we obtain a relation wi,'ch d. termines the coefficients for the inner
and outer fluid potentials:

S s S511 s, t:•' V: 0 A
(103)
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FRm the defitim of the monkux elkmct this kum

'1CO
k 0 C 1

The invam of tioc .mtfi is casil! obtained:

[Ff10),4 (ax) +p-gjt (0p) [ Poit (xi]105

"Ft( x,,(X) P-,if()I

The coefficient for the outer pot-nti~li is easily obtained:

or

Fe1. ,§ffUuie7 J (106)

S• =~~~ W +o' irt h• { (X)- ' ' x ,

[=- (x)+irh(x)

PI ___0

This result is identical with Morse and Ingard (reference 8) except for sgn convention.
When the wavelength is much greater than the size of the sphere. we may use a

small-argument liniting form of spherical Bcssel Functions (reference 9)

xeje (x)- 1.3 ... (22•+ 5)

x-*O
n Wx - 1- 1.3 - (2Q- l).

In particular.
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3 - K

bo (N) = ~ hi (z)

S1w Iome order umr for 11w txamsim we ITKxsms equmms 106. becogam

o1p ppo

Io P' wr I64) P

o )+tT0h 4x()I

X3 p

Ij -NPO~ Lo [2In)1 j )2
F 1 iIxJ x<1  (108)~nx

ipo
Pj x

rI
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Flo_ _ __ _ I ft Y~ j o( 0I

I I

I :i r a

+I

--~ ( X I -• _X\_±i• __

[ I * i(1. &L

U +i rL s )J1

Po
-• x3 [ i -4PiP A

Dropping higir order terms in denominator. e find

IO

(109)i x~~~3 [,,,-"o ] "•

The higher order coefficients are proportional to x2c+ and are therefore negligible.
At the surface of the sphere we can obtain an expression for the total potential

using the first two terms of equation 5 1.
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#0 IF 0 "h0 (1) t Cos# [ii (Z) FIN 1 (xq)

Ir' L4[ IP ix (2AO

(331

lIE ix ost 30

- _ xtP

00 r=30 1-ix ___ o(se2 I'x 3  (110)

Notice that for o light- compressible sphere like an air bubble. where pl < «p 0 the linear

term in x is nc-gigibik. Therefore.

3p,' ~3p,

There ;a resonance at x- = -,

Lciting-i2- =-, = 3 1C 1-

00(r=j) + 11
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This Iwt ares vnbk dtt obtaindl fkw acoustic scatteig &mai bu• s i in wate (04-
toc-s 10 ).1

When the tihiess of te hell is mal. but n•--zero. a firt order aM dmatim to
the AhMl matnk ma. 1b tuened usg a Taylo seis tzpammo of the maix denawnts-
Thec prxedoure doesm provik~~ much anabytical -in1plification, of the imatrix. but aroids
nmurseicaI diffiulties in s-iitiorn. When the *a ic s thin, two rows off the shell matrix we
zM"xintdy equal. creawisg a flnmly dcpcn&nt matrix.

In iad to complement the numerical shutau method des•rlied in the preius
section for thin sbials. we will work with the reduced, real mnatix, equation 954.

973 s4 S25 sý6 A
S33 S3 S6 36 Bt 0Ss43 44 ss s•(112)

S4 3  S44 S45 S4 6  0t[36 S65 S6 0
SwlherI the barred wnatrix elements ae defined by equations 90 and 94.

N•otice tirst for a thin shell, the second row is approximately equal to the third row of
the matrix eqi.stion I I I- Expanding the elements in the third row in a Taylor's series about

-_.c obtain- to firt order in the th-ickness 3. the•s -xpresons for the matrix dements:

S43 (YL) = 533 (XL) - k L6S'33 (xL)

S44(YL) = S3 4 (XL)- kL6S34 (xL)
(113)

S4 5 (YT) = S35 (xT) - kT6S'35 (xT)

S46 (T) = S.6 (xT)- kT S•6 (XT)"

Subtracting row 3 from row 4. we find that the matrix equation 112 becomes

-s3  )24  S15  S2 6 13

S33 S34  S35 S36 Be 0[. = (il4)

"-kL6S 33  -kL6S 34  -klT 6 S5 -kTSSý 6  CR 0

S63  $64 S65 $66 Dj 0

The matrix is valid to first order in the thickness 6 and eliminates the li-ear dependence
problem when the sheIl is sufficiently thin.
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CUN11UTED RESL1S

In this section tyical cmpu~ted rcslths awe prtseated for scattanug frxon an am-r4Ded,
aluiniinwa spbauicaIl shed. The vesults shuu2 in figues 2 and 3 were obtained using the fell-
lmoig input data-. MKS units are used threughouL-

PI1-21 C1 343

PO I 1W6X10 3  C0 = 15X103

,p = 2-7Xl1O 3  CL =6-412X103  CT = 3..043X 103

The totall prssureas, a funcion of k0 a at the surface of the ellastic shell is shown for
anone fromn the incoming wave of 0 and 180 degrees, riespectively. Ile complciity of the
-muffred field is due to the vibrationall characeistics of thc elastic sphere..

29 5



'IV

Go-

300



tel

7~p -7 %

a' 001 00 001- 'OZ-D*K

ieq~~ ifIo jiq
'-133-1 unS3Hd ~nO 30V1un

31



REFERENCES

1, O.D. Kellogg. Foundations of Potential Theory. Dover Publications, New York,
1953, p. 156.

2. E. Sternberg. On the Integrations of the Equations of Motion in the Classical Theo-
ry of Elasticity. Archives of Rational Mechanics and A nalysis, vol. 6, p. 34, 1969.

3. A. H. Shah, C. V, Ramkrishnan, and S. K. Dattan. Three-Dimensional and Shell-
Theory Analysis of Elastic Waves in a Hollow Sphere. Part I. Analytical Formula-
tion. Journal of Applied Mechanics, vol. 36, p. 431, 1969.

4. R. Goodman and R. Stern. Reflection and Transmission of Sound by Elastic Spheri-
cal Shells. Acoustical Society of America, Journal. vol. 34, p. 338, 1962.

5. P. M. Morse and H. Feshbach., Methods of Theoretical Physics. McGraw Hill Book
Co., New York, 1953.

6. W. Magnus and F. Oberhettinger. Formulas and Theorems for the Special Functions
of Mathematical Physics. Springer Verlag, New York, 1966.

7. J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965,
p. 201.

8. Po, M, Morse and I. Ingard. Theoretical Acoustics. McGraw Hill Book Co.. New
York, 1968, p. 425.

9. M. Abramowitz. Handbook of lathemnatical Functions. Dover Publications, New
York, 1965, p, 437.

10. National Defense Research Committee. Physics of Sound in the Sea Naval Material
Command, Washington, D. C., 1969. Vol. 8, p. 460,

I1. S. N. Rzhevkin. The TheorY of Sound. MacMillan Co., New York, 1963, p. 375.

32


