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ABSTRACT

The primary objectives of this paper are fourfold: (1) to present

an improved formulation of the out-of-kilter algorithm; (2) to give the

results of an extensive computational comparison of a code based on this

formulation with three widely-used out-of-kilter production codes; (3) to

study the possible sensitivity of these programs to the type of problem

being solved; and (4) to investigate the effect of advance dual start pro-

cedures on overall solution time.

The study discloses that the new formulation does indeed provide the

most efficient solution procedure of those tested. The resulting method

has been found to be at least 100 times faster than the state of the art

large scale LP code, OPHELIE/LP. Further, this streamlined version of

out-of-kilter was found to be faster than thg other out-of-kilter codes

tested (SHARE, Boeing and Texas Water Development Board codes) by a factor

of 2-5 on small and medium size problems and by a factor of 4-15 on large

problems. The streanlined method's median solution time for 1500 node

networks on a CDC 6600 computer is 33 seconds with a range of 33 to 35.

seconds.

Some of the major characteristics of this study are (1) all of the

solution techniques are tested on the same machine and the same problems;

(2) a broad spectrum of problem sizes is examined, networks varying from

50 nodes to 1500 nodes and transportation problems varying from 10 x 10

to 150 x 150; (3) a broad profile of densities is examined ranging from

90% to 0.25%; (4) capacitated problems are examined in detail; and (5)

the effect of topological changes in the network structure are studied.



Included in our results are the findings that: (1) capacitation

of the arcs has an erratic effect on solution times; (2) advance dual

start methods are inconsistent in affording computational advantages; and

(3) changes in network topology have an erratic effect on the standard

codes, but not on the code based on the new formulation.
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1.0 INTRODUCTION AND SCOPE OF THE COMPUTATIONAL ANALYSIS

The major thrusts of this paper are: to present an improved form-

ulation of Fulkerson's out-of-kilter algorithm which leads to more ef-

ficient computer implementation; to perform an in-depth computational com-

parison of a code based on this formulation with three widely used out-of-

kilter production codes. The first of these thrusts is present in section

2.0 and the second in section 3.0.

Developing improved methods for solving network problems and cataloging

the relative efficiencies of alternative approaches is of considerable
practical importance. Evidence of this is provided both by the fact that a

sizeable proportion of the linear programming literature is devoted to

network problems, and by the fact that an even larger share of the many con-

crete industrial and military applications of linear programming deal with

such problems. Network problems often occur as subproblems in a larger

problem (e.g., the traveling salesman or the plant location problem). More-

over, industrial applications of network problems often contain thousands

of variables, and hence a streamlined algorithm is not only computationally

worthwhile but a practical necessity.

Our interest in studying computer implementations of the out-of-kilter

method was stimulated by the computational study of [15] which found that

the SHARE out-of-kilter code was 6 times slower for solving transportation

problems that a special purpose primal transportation code (embodying

recently developd-I methods for accelerating the determination of basis

trees and dual evaluators [17]). This finding which is contrary to network

folklore, leads to the question of whether it might be possible to improve

the out-of-kilter method. The study of this paper shows that such improve-
IA
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ment is indeed possible. It should be stressed that the techniques

underlying this improvementwhile oriented toward more efficient computer

implementation, are refinements in methodology and not refinements in

comp,,ter programming. They do not take advantage of any particular computer

configuration, and have been coded in a "manilla" Fortran IV to peniit

implementation on a wide range of machines. *

In testing the new method, we sought also to address several issues

of general interest. Our study also examines:

1. The computational efficiency provided by special purpose algorithms

for solving transportation and network problems (coded in FORTRAN) as opposed

to general purpose linear programming codes (coded in a machine language)

that use sophisticated procedures for exploiting sparse matrices.

2. The computational efficiency provided by different existing imple-

mentations of the out-of-kilter algorithm.

3. The effect of using advance dual procedures in conjunction with

out-of-kilter codes on total solution time.

4. The effect of problem density on solution time, where density is .

equal to the number of admissible arcs in the problem divided by the number

of total possible arcs. (This effect is of substantial practical relevance

since most large "real world" network problems are quite sparse.)

5. The effect of altered topological structure on solution time. (To

determine this effect, two network classes are examined and are callad Type I and

Type II networks. Type I networks have a path from each source to every

sink and, in addition, a direct path from each transhipment node to each

sink. Type II networks do not have paths between all source and sink com-

binations, but may have several complex paths between particular source

and sink pairs. Besides these network structures, the classical bipartite

'V¢
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network of the transportation problem is examined. Structural variants of

these networks are also examined which arise by varying the number of sources,

sinks, transhipment sources and sinks, and the total number oi nodes.)

6. The effect of problem size on solution time. (All codes were tested

on problems varying from 50 nodes to 1500 nodes.)

7. The effect of arc capacitation, as reflected in the influence on

computation time of the percentage of the arcs which are capacitated, and

of different capacity ranges.

To accomplish these purposes it has been necessary to obtain computer

codes that are representative of the "state of the art" (in addition to

developing the code based on the new formulation). The codes we obtained

represent what we understand to be the most efficient of those available,

and have been widely used in current industrial applications (in fact world-

wide) over the past 3-5 years.

The four out-of-kilter codes which we tested are those of SHARE, Boeing,

the Texas Water Development Board (TWB), and our own. The SHARE code was

written by R.J. Classen of the RAND Corporation and is available for general

distribution [3,26]. The Boeing code, which was obtained through Chris I

Witzgall, was developed at the Boeing research laboratories. The Texas

Water Development Board code (henceforth referred to as the TWB code) was I
developed by Paul Jensen at the University of Texas, drawing on the proposal

of [2]. This code was later modified slightly by the Texas Water Development

Board to enhance its computational efficiency on small problems. The fourth

code, which was developed by the authors, is referred to as SUPERK.

All of these codes are in-core codes; i.e., the program and all of the

problem data simultaneously reside in fast-access memory. They are all

S •x ~ w•-• ..... •.•-•.v.•- I iy
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coded in FORTRAN and none of them have been tuned (optimized) for a par-

ticular compiler. All of the problems were solved on the CDC 6600 (which

has a maximum memory of 130,000 words) at the University of Texas Computation

Center using the RUN compiler. 1 The computer jobs were executed during

periods when the machine load was approximately the same, and all solution

times are exclusive of input and output; i.e., the toal time spent solving

the problem was recorded by calling a Real Time Clock upon starting to solve

the problem and again when the solution was obtained.

The computational comparison involved 55 transportation and 160 network

problems which were randomly generated using three different generators. All

problems were restricted to less than 10,000 arcs and all the cost coeffi-

cients were restricted to lie between 1 and 100. The assignment of the

supply and demand quantities depended on the generator being used. The

transportation problems were all square (i.e., with the same number of

origins and destinations) and the total supply of each m x m transportation

problem was set equal to 1000 m. The supply and demand quantities for each

node were picked using a uniform probability distribution over the interval

from 0 to 2000. Both of the network generators set the total supply at

1000 times the number of nodes in the network. The generator used to create

the type I networks [23] distributed the total supply randomly among the
sources by dividing the total supply by the number of sources, then picking

supply amounts for each source using a uniform probability distribution

over the interval between 0 and twice this number. The demands were deter-
mined similarly. The generator used to create the type II networks [201

determined its supplies by assigning to each source node in sequence a

quantity between 0 and half the net (unassigned) total supply, using a

Suniform probability distribution. The total demand of a sink node was
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determined by accumulating randomly assigned amounts of the supply asso-

ciated with sources connected to the sink. Of the 160 networks solved,

65 were type I networks and 92 were type II networks, 72 of which were

capacitated. These last 72 networks were solved twice; once with and

once without the capacities. Additional parameter characteristics of the

networks are discussed in section 3.0.

2.0 REFORMULATIgJ OF OUT-OF-KILTER ALGORITHM.

The out-of-kilter algorithm [8,12] defines certain "kilter" condi-

tions which, taken together, constitute primal and dual feasibility criteria

for arcs in a network. The method brings each non-conformirng ("out-of-kilter")

arc into kilter by adjusting its flow or changing its node potentials. In

order to accomplish this,a labeling procedure is used which, after one or

more applications, identifies a loop containing the non-conforming arc.

In our reformulation all of the above processes are redesigned and the

network representation is altered to dlow more efficient processing. Never-

theless, the basic logic of the original method is mainta*,,d. The re-

formulation modifies the labeling procedure in a manner wh;. causes it

to process less information on the forward pass and more information on

the reverse pass. Net computational savings result because the reverse

pass typically involves only a portion of the nodes encountered on the for-

ward pass, and sometimes the reverse pass is not executed -t all.

In addition to the new labeling scheme, the reformulated algorithm

employs a special classification scheme for determining the "kilter status"

of each arc. This scheme permits the current net capacity and marginal

cost of the arc to be evaluated with increased efficiency, which in turn

expedites.±I& t I 0eetrmi*&t.J~r~t%-rA thow fl-ew augM1~nfir-Tti*9 Atn; fe- -



-6-

exists, and of the new marginal cost assignment (via implicitly modified

"node potentials") when the flow augmenting path does not exist or is

blocked.

Basic to both of these schemes is a simple change in arc representation

which reclassifies each arc into an "original" arc and a "mirror," at an

almost negligible increase in computer memory requirements. The reclass-

ification, which is only symbolic and does not introduce any structural

change in the network, causes each arc to become capea rated only from above,

rather than from both below and above. Special relationships between the

capacities, flows and marginal prices of an arc and its mirror are main-

tained by which the "mirror of the mirror" is identified as the original.

The effect of this scheme is to reduce markedly the number of mathematical

conditions which characterize the "kilter states" applicable to the arcs.

These states, which identify the degree to which the current arc flow con-

forms to or deviates from optimality, require repetitive mQnitoring in the

out.of-kilter method. Thus the ability of the "mirror arc" representation

to contract the range of conditions by which these states are recognized

leads to a convenient streamlining of the solution process.

Label-eligible nodes are also recognized with improved efficiency by

the reformulation, utilizing a "partitioned successor" technique. After

an initialization stage, the partitioned successor technique enables label-

eligibility to be ascertained with only a portion of the customary effort.

The modifications of the original out-of-kilter method embodied in
4(

the refomulated method are organized to permit advanced primal and dual

starts to be exploited to full advantage, thereby retaining flexibility to 7

accommodate standard postoptimality considerations.

--- ~.
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2.1 THE OUT-OF-KILTER ALGORITHM

In this section we present a brief review of Fulkerson's Out-of-Kilter

Algorithm (12) (or, as it is sometimes r.alled, the Ford and Fulkerson pri-

mal-dual algorithm [9]). This review is only meant to refresh the reader's

memory and to introduce our notation. (For a more complete presentation

the reader should refer to [8,10,28,29]. Our discussion largely follows

the lines of [29].)

For our purposes, a network will be defined to consist of m nodes or

junction pcints which are connected pairwise by a collection of n directed

arcs (links). Although not all pairs of nodes need to be joined, the graph

must be connected and each node in the network must have at least one arc

leading into it and at least one leading out. Therefore, the problem which

is solved by the out-of-kilter algorithm is that of finding the op-

timal flow in a circulatory network, and is defined as follows:

Minimize: E cjjxjj (1)
(i,j)cN

subject to: E (xij - xji) = 0, i 1,2,...,m (2)(i,j)eN

xij 1 Lij, (ij)OX (3)

Xij 1 Kij (i,j)cN (4)

where xtj is the flow from node i to node J, cjj is the cost associated with

sending one unit of flow from node I to node J, Lij and Kij are, respectively,

the lower and upper bounds on the amount of flow on arc (ij) and N is the

set of all arcs in the network. ((ij) denotes an arc from node i to node j.)

This problem encompasses all (non-weighted) single commodity network problems
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since any network (including those of transportation and' assignment problems!)

can easily be made circulatory using standard techniques.

For such a network, a feasible circulation, is defined as a set of- flows

satisfying relationships (2), (3), and (4Y. Anoptimal circulption satisfies

(1), (2), (3), and (4).

Associated with this problem is a dual problem which may be stated as

Maximize z (Liju'ij - Kiju"i?
(I ,j)eN

subject to: uI - uj + u'ij- J"ij -cij' (l,j)cN

u, - unrestricted, i =

U'li, U lj >__0, (i~j)cN,

The dual variables u, are called node "potentials" or ".uluipliers" and the

expression Elj = cZ j - Ui + uj is called the "marginal cost" or "updated cost"

assoc-Uted-wlth arc (i,j), By fundamental linear programming theory, a

feasible circulation is optimal if ard only if one of the following conditibns

is satisfied by each arc (i,j)qN:

L: Cii > 0 and Xij = Li 1 '
B: Eij z=o and 4Ij f._xij <f Kij , •

K: E < 0 and xij = Kij.

An arc which satisfies one of these conditions (called "in-kilter" conditions)

is said to be "in-kilter";.otherwise, the arc is said to be "out-of-kilter.'

An "out-of-kilter" arc must then satisfy one of the folloWing conditions

(called "out-of-kilter" conditions):

Ll: Clj > 0 and Xij < Li -

L2: cij > 0 and xij > LIj

III

: - . . ..... • ... ........-... .. ..... "* - -.... ... .. " .. .. •........ . . . ... .- L ,Y
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B1: CjjzO and xij < LIj

B2 : c1j-O and Xjj > K

KI: Cij < 0 and xij < Kij

K2: C i < 0 and xij , Kij.

The general thrust of the algorithm is to bring each out-of-kilter arc

in-kilter by adjusting its flow or changing its node potentials. In order

to change the flow of an out-of-kilter arc (s,t), a suitable path (called a

flow augmenting path) must be found from node t to node s and flow adjusted

on each arc of the path by an equal amount, thus maintaining node conservation.

This path is found (or its nonexistence determined) by alternating use of

a labeling procedure and a potential change procedure.

The labeling procedure consists of generating from node t a tree of

arcs through which flow may be changed without violating their bounds and

without increasing the total cost unnecessarily. (Flow can be algebraically

increased from node i to node j either by increasing the flow in the arc

(i,j) or by decreasing the flow in the arc (j,i), if it exists. Total cost

may need to be increased in order that boundary conditions on a given arc be

met.) Arcs which qualify for inclusion in this tree at a given iteration are

designated as "label eligible." If an arc is label eligible this is indicated

. by labeling its unlabeled node with an ordered pair. The first entry of this

ordered pair indicates the node from which this node was labeled and the

second the amount of flow change which could occur in the path to this point.

More specifically, let us assume that flow is to be increased on arc

(s,t) (or else decreased on arc (t,s)). The steps of the procedure are then

as follows:

1. Label node t with (-,-).

2. For the arbitrary node i which is labeled with (h,ai), label with
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(i,aj) every unlabeled node j which satisfies one of the following.

label eligible conditions, using the associated •.

label eligible conditions

X: (i,j)eN cij > 0 and xij < LIj min [Ctj,Llj - xij]

P: (i,j)EN cij <_ 0 and xl1 < Kii min [acl,Kij-xij]

"V: (j,i)cN cj <L 0 and xji > Ljj min [alxji-Lji]

0: (j,i)cN cji < 0 and Xjl > Kji min [o.i,xji-lji].

3. If node s is labeled, a "breakthrough" has been accomplished by

identifying a flow augmenting path. The path is "recovered" by successively I

tracing backward through the predecessor nodes named in the labels along

the chain of arcs ending at node s. Thereupon the flow in this path from

node t to node s is increased by c*(the maximum permissible quantity) by

increasing or decreasing the flow in each member arc (1,j) depending on

whether this arc is directed from t towards s or from s towards t.

4. If node s cannot be labeled by this procedure, then it is not
j

possible with the present node potentials to find a path of label-eligible

arcs from node t to node s. At this point, the potential change procedure

is applied. 4

The potential chanqe procedure, like the labeling procedure, allows
,5

only those changes (in this case, of marginal costs) that will not cause any I

arc to be forced to be out-of-kilter or further out-of-kilter. By applying !!

these steps, either at least one new arc will become label eligible or the

problem will be found to be infeasible (i.e., have no feasible solution).

Let L and L be the sets of labeled and unlabeled nodes, respectively,

at step 4 of the labeling procedure and let I

J



S1 {O(,): iL, Jci, cij 0 0, xij < Kij}

S2= (,j): iL, JeL,c < 0, xij > Lij;

Set 0 = min{min(Zij), min(-Eij)} , if S1 U S2 # 0; otherwise,o =

S1 S2

If o is infinite, the algorithm terminates because the problem is

infeasible. If 0 is finite, a new potential set is found by adding o to

the ug's of each labeled node i and leaving the potential of the unlabeled

nodes unchanged.

As a result, the new marginal c-sts are:

Zj "ij - 0, (i,•) cS1  U R,

= zi" + e, (i,J) cS2 (i R2

ZU= c I'for all other (0,j)

where R, = ((i,j): icL, jcI. -S
R2 (i (lJ): id., J L }-S2

The algorithm now returns to step 2 in the labeling procedure, and the

search for a breakthrough is continued, unless (s,t) is now in-kilter.

The complete algorithm may now be concisely stated as follows:

1. Begin with any set of potential values u1 and with any set of flow

val'-s xtj that satisfy the node conservation equations (2). (A trivial start

sets all xij - 0 and ul - 0.)

2. Pick any out-of-kilter arc (ij). If none exists, stop: the

current flows and potential values are optimal.

3. Apply the labeling procedure letting s a i, and t - j if the arc

is in either state 11, B1 , or K1 ; otherwise, set s - j and t a i. If s

is labeled go to step 4; otherwise go to step 5.

4. Breakthrough: Increase (or decrease) the flow in the labeled path

p-K
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from node s to node t and the arc (s,t) by the amount

= min[ci 5,Lst - xst] if (s,t) is in state Ll or B1

= min[Q5,Kst - xst] if (s,t) is in state K1

a min[mixst - Lst] if (s,t) is in state L2

a min[as,xst - Kst] if (s,t) is in state K2 or B2.

If (s,t) is In-kilter after this flow change, go to step 2. Other-

wise, erase all labels and go to step 3.

5. Non-breakthrough: Apply the potential change procedure. If 0 -

stop, the problem has no feasible solution. If 0 is finite, update the

marginal costs.

If (s,t) is now in-kilter go to step 2; otherwise, go to step 3 and

continue the labeling procedure using the old labels and the current mar-

ginal costs.

2.2 NEW FORMULATION OF THE OUT-OF-KILTER ALGORIThI

The typical verbatim implementation of the out-of-kilter algorithm is

subject to several types of computational improvement. To obtain an in-

tuitive idea of where some of these potential improvements are likely to

reside, it iý 4seful to take note of portions of the method where computation

is likely to be substantial. For example, set determination involves a con-

siderable amount of search time due to the large number of rules through

which arcs must be filtered. This occurs not only in checking the label-

eligibility conditions, but also in the determination of sets S1, S2, R1 ,

and R2 in the potential change procedure. Six out-of-kilter conditions must

be checked for each arc, not only during the initial examination but following

each potential change and breakthrough, raising the question of whether

some abbreviated set of conditions may be found to exist that will accomplish ii
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the same purpose and thus provide a less expensive filter from a com-

putational standpoint.

Opportunity for improvement may also, or alternatively, be suspected

to reside in repetitive use of certain data, not all of which changes at

each step. For example, if more than one potential change must be per-

formed during a given breakthrough attempt, the sets Si, S2 , R1 , and R

must be regenerated each time, therefore requiri,3 reinspection of arcs

touching nodes which were previously labeled. Other repeated computations

include the amount of "slack" in an arc, or the deviation of flow from

one of the arc's stated bounds (e.g., see the definition of S1 , S2, a, out-

of-kilter conditions, and label-eligibility conditions), as well as the

relative cost for arcs under inspection. Of course, the fact that these

calculations involve substantial effort or even redundancy does not mean

thay can be advantageously circumvented. Our goal in this section is to

identify ways in which this can,in fact, be accomplished.

Reformulation of the Circulatory Network

Let us now refine our focus further. One of the most time consuming

tasks in the labeling procedure and in the determination of the sets S

S2, R1, and R2 is determining the direction of the arc each time label and

membership eligibility is determined. For instance, in the labeling pro-

cedure if the arc is directed out of node i then A and v states are tested,

whereas if the arc is directed into node i then v and p states are examined.

Reducing the effort involved in this testing would have direct implications

for many of the calculations previously discussed. As a first step toward

accomplishing this, we propose a reformulation of the circulatory network

that allows us to look only at "pseudo-arcs" leading out of a node. On

"\~
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the basis of this network reformulation, we will subsequently show how to

reorganize the out-of-kilter method to permit a net improvement in these

and other calculations.

The reformulation of the network proceeds quite simply as follows.

Each arc (i,j) of the original network N is split into two interdependent

pseudo-arcs. The first pseudo-arc is directed from node i to node j and

has the same cost c ij and upper bound Kij as the original arc (i,j), but T

no lower bound. The other pseudo-arc is directed from node j to node i

with its cost equal to the negative of the cost cij, and its upper bound

equal to the negative of the lower bound Lij of the original arc. This

pseudo-arc, like the first, has no lower bound. The flows on the two '1
pseudo-arcs are respectively equal to the flow of the original arc xij

and the negative of this flow. If we denote the flow variables of the

pseudo-arcs by x'tj and x"tj, respectively, we thus have

X1j (5)'ii a xijI)

and X"jj = -Xij. (6)

which further implies

Xlj = I/2(x'lj - X"1 j). (7)

Replacing Xij In the objective function (1) and the node conservation

constraint (2) by (7), Xjj in (3) by (6), and Xjj in (4) by (5), we obtain

(discarding the one-half multiple in the objective function) the equivalent

network problem N:

Minimize C Cjlj - Xlij) (8)
(i,j)cN

subject to: Z [(Xalj - x"ij) - (xlji- x"jj)] = 0 , i=l,2,...,m (9)(I,,)lcN

X"lj <_ -Ij, (iJ) N (10)

xj - Kij, (i,j)cN (11)

X'1j + X"1j = 0, (i,j)cN (12)
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The new network disposes of lower bounds in the original network at the

expense of doubling the number of arc variables and introducing the extra

constraints (12). Although this appears to be a tradeoff in the wrong

direction, we will now show how to reverse this seeming disadvantage. To

begin, observe the following structural properties of this network:

1. For each arc into a node there exists a "mirror" arc out of the

node.

to define a net capacity for each pseudo-arc as follows:

nc'ij = Kij- x'ij

Mc"ij =-Lj - x"ij

That is, net capacity corresponds to the capacity of a pseudo-arc to accept

a flow increase without exceeding its upper bound. Fromi constraint (12)

a change of flow on a pseudo-arc induces the negative of this change in

the flow on its mirror, and thus correspondingly changes the net capacities

of these arcs by equal but opposite amounts.

3. The marginal cost c'tj of the pseudo-arc associated with x' is

equal to the marginal cost of the original arc (ij); namely, c On the

other hand, the marginal cost c" j of the mirror pseudo-arc is equal to
-cii. Thus a change in the marginal cost of a pseudo-arc produces an equal
but opposite change in the marginal cost of its mirror.

A foundation for exploiting these properties is given by the following

scheme for data organization.

With each main arc associate a unique integer atj which is a number

between 1 and n; and with its mirror arc, associate the number (atj + n).

These integers will be called arc numbers. Also associate with each node

i the set Bi of all arc numbers associated with pseudo-arcs directed out-of

N, -A ...... •....... .... .. •....- .. .. . .... i: " ...• . ... , .. ..- .. ..-+:
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node i. Thus B= (b: b aij if (i,j)cN or b =(ai + n) if (j,i)t-Ni.

In addition, let Z(b), nc(b) and m(b) denote functions whose values

correspond to the margin cost, net capacity, and mirror arc number, res-

pectively, associated with arc number b; i.e.,

b Cij if b = aij

I ij if b = aij + n; 4

nc(b) _{nc'-- if b = a

nc ij if b = aij + n;

and m(b) = b + n if b = a-.b - n if b =al + n

Finally, let y(b) denote a function such that for each arc number b, its

value is the "to-node" index j corresponding to the direction of the pseudo-

arc; i.e.,

y jb *4 if b = aijy(b) =:/

[j, if b =(aji+ n).

This data organization allows us (1) to associate a unique number

with each pseudo-arc in a reformulated network, (2) to quickly determine

the mirror's arc number, given the main's number and vice versa, (3) to

identify the set of outward-directed pseudo-arcs for a given node, and

(4) to determine the marginal cost and net capacity associated with an

arc number. Ways of restructuring the out-of-kilter method to afford more

significant advantages will now be considered.

New Labeling Procedure

To provide a point of reference, suppose the labEl process of Section

2.1 is to be applied at node i, which is currently labeled. Let L denote

the set of unlabeled nodes. Then, using c(b), nc(b), m(b), and y(b) as

defined above, if arc (i,j)EN (implying that the arc number aijeBi), the
, 1
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x and v label eligibility conditions may be stated as:

.: E(b) > 0, nc(m(b)) < 0, y(b)e L
E:•(b) > 0, nc(b) < 0, y(b)el•

Similarly if arc (J,i)N (implying that the arc number b = (aji + n)eBl),

then the v and p label eligible conditions may be stated as:

v: E(b) < 0, nc(b) > 0, y(b)hL

p: E(b) > 0, nc(m(b)) < 0, y(b)e ;

Thus, using the new data structure, the V and v conditions become identical

(as a consequence of the relationship between marginal costs for a pseudo-

arc and its mirror). Similarly the x and p conditions become identical. Thus

our restructuring has reduced the label eligibility conditions from four to

two, and the standard labeling procedure can be simplified to examining each

arc number in Bi one at a time, checking the new label eligibility states x

and uA(= , and p). However, we can in fact improve the calculations some-

what more than this.

Partitioning_

The labeling process can be facilitated by partitioning the set B1 into

those arc numbers whose associated arcs are label-eligible and those which ii
are not. We denote the set of label eligible arc numbers by Pi and the re-
maining arc numbers by Qi = Bi 1  Pi.

Once the sets Pi and Qi of the partition have been identified, the

forward tree generation of the labeling process is accelerated since check-

ing of net capacity, marginal cost, and direction of each arc is eliminated.

Further, once the partition is determined it requires minimum maintenance.

In particular, this maintenance involves checking the arcs in the flow

augmentation cycle during breakthrough and checking those arcs affected by

a change of node potentials. (Details of such a procedure will be discussed



-18-

in the breakthrough and potential change parts of this section.) Another

benefit of the partition is that knowledge of the set Qi shortcuts the

determination of the sets used to determine node potential changes.

To implement the labeling process, the label for a given node j is

simplified to consist only of the predecessor arc number b corresponding

to pseudo-arc (i,j) across which node j is labeled. This change coupled

with the partitioning of Bi has the following theoretical and computational

advantages:

1. The use of predecessor arc numbers instead of a node index label

avoids possible ambiguity in the reverse pass when a netvaik contains mul-

tiple arcs between a given pair of nodes. (This situation can arise, for

example, when a concave objective function is replaced by a piecewise linear

approximation.)

2. By eliminating the aj values in the label, less information is

processed on the forward tree generation and more information is processed

on the reverse pass; however, the flow augmentation pass typically involves

only a portion of the nodes labeled on the forward pass, and sometimes the

reverse pass is not executed at all. (This latter is the case when the

out-of-k!iter arc (s,t) becomes in-kilter by a potential change.)

3. Due to the network reformulation the direction of each arc in P is

out-of-node i; thus, node labeling can be carried out quite rapidly using

the function y. That is, each arc number b e P1 is checked to determine
whether node y(b) is labeled. If it isn't, y(b) is labeled with b; other-

wise, the next arc number in P1 is examined.

A concise statement of the new labeling procedure (for the objective

of increasing flow on pseudo-arc (s,t) or decreasing flow on pseudo-arc

(t,s)) is as follows:

--- '
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1. Label node t with the arc number of pseudo-arc (s,t).

2. For any arbitrary labeled node i (i.e., i, L), label each un-

labeled node j (where j = y(b), bcPi) with b.

3. If node s is labeled, go to breakthrough. If s cannot te labeled,

go to the potential change procedure before returning to step 2.

Specialized Computer Results Pertaining to the New Labeling and Partitioning

Procedures

We have conducted "localized" computer tests of the out-of-kilter

algorithm to provide insight into the specific computational effects of

the new labeling and partitioning procedures. A later section is devoted

to "global" computational testing and analysis of a wide variety of problems i

with different out-of-kilter codes.

For the purose of our present concern, special statistics have been

collected on five, 500 node, type I networks and on five, 500 node, type II

networks. Each time l~beling was performed at a node i, a count was made

of the number of arc numbers currently in Pi and in Bi; these -ounts were

accumulated and are shown in Table 1 under columns "ZPi" and "zBi".

Further accumulated totals of the number of cycle elements and the number

of labels generated are also shown in Table 1. (Other statistics in Table

1 will be discussed subsequently.)

The column "Total Labels Generated" shows that the median number of

labels generated is 7961 for the type I networks and 15531 for the type II

networks. Comparing this with the "Cycle Elements/Labels" column of

Table I confirms the expectation that net computational savings must result

by not generating ctjvalues on the forward labeling pass. In particular, on

the reverse pass (which identifies the flow augmenting path) the percentage

of "total" (i.e., "forward pass") aj values required was only 9.7% (median)

4 .- -. ,. ~- -lk-
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for type I networks and 5% (median) for type I networks. (See the column

"Cycle Elements/Labels" of Table 1.) The value of the partitioning schane

is also illustrated by the table. T,. column entitled );Pi/ );Bi shows that

the median percentage of arcs which are label eligible from a given node is

10.6% for type I and 9.9% for type II networks. Consequently, the partition

makes it possible to avoid checking a substantial percentage of arcs on

the forward labeling pass.

Offsetting this, the column "Average Cycle Length" discloses that

median average cycle lengtn is 10.118 arcs for type I networks and 10.871

arcs for type II networks. Thus, to maintain the partition, the label

eligibility of each of these arcs and their mirrors must be examined. How-

ever, this involves only a fraction of the effort avoided on the forward

pass (as will be deomonstrated subsequently).

A good deal of checking is also saved by the unidirectional nature of

the arcs in Pi as shown by the column entitled r'•i in Table 1. For instance,

the median number of such checks on type T .nd type II networks would have

been 9812 and 18084, respectively.

In combination, these statistics generally confirm the hypothesis

that it is better to process less information on the forward pass and more

information on the reverse pass.

Breakthrough

In determining the flow change a, the new network representation once

again contributes to decreased computational effort in this case by using

net capacity ncj to eliminate a subtraction operation and by using mar-

ginal costs to distinguish states.

The exact calculations performed in updating the flows are as follows:
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1. Let C denote the node labels in.the flow augm•nting path which
are in label-eligible state i(xv); similarly,, let CX denote the node labels,

in this path which are in the label-ineligible state A(=p). (Note these

states cah be distinguished.by inspection of the marginal cost.) Then

a-mtn[min nc(b),'min nc(m(b))]

bICII bIC I

2. Retrace the flow augmenting path to~update the net capacity of

each pseudo-arc and its mirror by setting:

nc(b) * nc(b) - a

nc(m(b)) a nc(m(b)) +a for all bEC, U Cx

3. Simultaneously update the sets P4 and , for each node i on the

flow augmenting path as follows:

a. Move the arc number from'Qi to Pi for the pseudo-arc 4if it

exists) whose mirror lies in the flow augmenting patiN, provided the arc's het

capacity becomes positive during the flow change and its margin~l dost

equals zero. (Only such arcs can change from label ineligibility to.label

eligibility.) I -

b. Move the arc number from Pi to Qi for the pseudo-arc (if it

exists) that lies in the flow augmenting path', provided either:

1) its marginal cost is non-positive and its new'net capacity

is zero;

or 2) its marginal cost is positive and its new mirror capacity

is zero.

New Potential ChangeProcedure

By keeping a list of the labeled nodes L and using 'the sets Bi, the -

membership conditions of S1, S2, RI, and R2 can be halved., The arcs con-

tained in S1 S 2, R1, and R2 can then be found simply by examining the
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arcs in the sets Q associated with labeled nodes. To see this, note that

both nodes of any arc bcPi will be labeled if node i itself is labeled.

Thus, attention may be restricted to arcs bcQi to find all labeled - un-

labeled (and unlabeled-labeled) arcs. An additional simplification facil-

itates the determination of arcs in S1 and S2, by means of the following

observation.

Remark: If tcL and bcQi, then arc b (or its mirror) is in S1 or S2

if and only if Y(b)eL, Z(b) > 0, and nc(b) > 0.

Proof: Suppose trL and b - aijcQt. Then by assumption y(b)

jcL, c(b) - ctU > 0, and nc(b) - nc'tj > 0. Thus, arc (0,J)3N belongs

to set S1. On the other hand, suppose tcL and b = (aj 1 + n) £Qi. Then

y(b) - j•, Z(b) * -Z > 0, and nc(b) - nc"ij 0 0. Thus, arc (0,i)0

belongs to set S2* The "only if" part of the remark follows similarly,

completing the proof.

To take advantage of this observation in updating the current mar-

ginal costs let Si denote the set of all arc numbers bcQi such that arc b

(or its mirror) is in S1 or S2. Also let Ri denote the set of all arc

numbers bcQi such that arc b is a labeled-unlabeled arc and I•Si; i.e.,
R W - {b: y(b)cL, 5t . Finally let S =uS and R = Ui, where these unions

1 i
are taken over the index set of labeled nodes. Then we identify the

marginal cost increment e by

.min Z(b)j
beS

(If this calculation cannot be performed because S is empty, the problem

has no feasible solution.) The new marginal costs may accordingly be

found by updating the current marginal costs as follows:
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c(b) E c(b) - O beStjR

c(m(b)) = E(m(b)) + e I bSUR.

c(b) = c(b), for all other arc numbers.

In order to maintain the partition efficiently, arc numbers are checked

for movement from set P1 to Q or from Q to P1 at the same time the mar-

ginal costs are updated. :

The checks required are the following:

1. If beSt, nc(b) > 0 and the updated marginal cost c(b) = 0, then

arc b has entered v state and should be moved from Qj to Pi. I
2. If bcRt, nc(b) = 0, the old marginal cost c(b) > 0, and the new

marginal cost c(b) < 0, then arc m(b) becomes label-ineligible and should

be moved from P1 to Q1.

To minimize effort in the determination of sets S and R where more

than one change of potential must be effected to bring a given arc in-kilter,

the previous sets S and R are purged of currently nonconforming arcs and

then augmented by appropriate elements of the sets Qi (where node i has

been labeled since the previous potential change). Specifically, let L'

denote the set of nodes which have been labeled since the last potential

change, and let L and L denote all currently labeled and unlabeled nodes,
respectively (i.e., L' c L). Then we can define the updated form of sets

S and R as follows:

S' = {(bS: y(b)t, c(b) > 01 11 {b: y(m(b))L', y(b)L, c(b) > 0,

nc(b) > 0) (13)

R (beR: y(b)hL U {beS: y(b)eL, c(b) = 0) U [fb: y(m(b))L',

y (b)el -S'] (14)

Thus S is screened to form subsets of S' and R', R is purged of

non-conforming arcs and added to R', and the sets Qt for icL' are scanned to
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form the remaining elements of S' and R'. This "recycling" of the sets

S and R further restricts the population from which the new cut set is

generated and, thus, reduces the effort required to effect multiple potential

changes.

The basic steps of the new potential change procedure are:

1. If a previous potential change has been made for the current

breakthrough attempt, perform step 3; otherwise go to step 2.

2. For each labeled node i, inspect Qt and create the sets Si and Ri.

Let S =i'S, and R =ý'Ri and go to step 4.

3. Form new sets S and R as in (13) and (14).

4. If S 0, stop; there is no feasible solution to the problem.

Otherwise, let e = min c(b).
bcS

5. If 5eS 1 R update the relative costs as follows:

c(b) = c(b) - 0

c(m(b)) = c(m(b)) + e

while simultaneously updating the partition.

Specialized Computer Results Pertaining to the New Breakthrough and Change

of Potential Procedures

Table 2 provides some statistics regarding the usefulness of the par-

tltlcn and the recycling of R and S in the breakthrough and change of

potential procedures. To study the value of the partition, each time that

a potential change was effected, the number of arcs in Bi and Qi were

counted and accumulated and when multiple changes were made, only the B1 and

Qj associated with the newly-labeled nodes (W') were counted. These cum-

ulative totals, given In columns "ZB1 " and "EQi" indicate the number of- ( I
arcs which would have had to have been inspected without the partition

(EBI) as opposed to those which actually were inspected (EQi) to form the ii
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base population from which all sets S and R were derived. The column

* "zQt/zBt' thus indicates that the partition avoided examining about 9%

of the arcs unnecessarily - a relatively insignificant saving by com-

parison to the substantial gains from the partition that were identified

relative to the labeling procedure.

A second set of statistics were gathered to study the effect of the

recycling filters which, as the table shows, were used in generating the

cut set in over one-half of the cases, on the average. To get an indication

of the amount of work which these screening devices saved, each time S

and R were recycled, the number of reviewed elements from the previous

sets were counted as were the number of arcs which would have had to have

been inspected if the recycling filters had not been used. These cumula-

tive totals are given in columns "Recycled ES+R" and "Recycled EQi", re-

spectively. The ratios of these totals, given in "Recycled ES+R/Recycled

EQt" column, indicate the proportion of arcs passing through the filters
to the arcs which would have otherwise required inspection. These ratios

indicate that the filters eliminated from inspection, on the average,

approximately 35% of the arcs in the type I networks and about 60% in the

type II networks.

New Kilter Conditions

The six original out-of-kilter conditions may be compacted to the

following four states for a given pseudo-arc number b:

condition corrective action

A: nc(b) < 0 decrease flow on b

E: nc(m(b)) < 0 increase flow on b

F: nc(b) > 0, c(b) > 0 increase flow on b

G: nc(m(b)) > 0, c(m(b)) < 0 decrease flow on b.
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The equivalence of these conditions to the six original out-of-kilter

conditions is easily established. From the symmetric properties of these

conditions, it follows that whenever a pseudo-arc is in-kilter then its

mirror is also in-kilter. Once a pseudo-arc is in-kilter it will, more-

over, always remain in-kilter due to the equivalence of the new labeling,

breakthrough, and potential change procedures to the original procedures.

Thus by successively putting the "main" pseudo-arcs in-kilter (i.e., those

pseudo-arcs corresponding to original arcs), an optimal solution can be

obtained by examining each of these arcs once. Alternatively, if pseudo-

arcs are inspected as main-mirror pairs in the state determination process, :1
only states A, E, and F need be checked for the main pseudo-arc and only

state G need be checked for the mirror (i.e., the main pseudo-arc can be

considered in-kilter if it violates states A, E, and F, whereupon the mirror

is immediately put in-kilter via state G).

The next section reports a computational comparison of a code (called

SUPERK) using this reformulated structure and three other widely used

out-of-kilter codes.

.4

t I
Ii
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3.0 COMPUTATIONAL RESULTS AND THEIR INTERPRETATION

Section 3.1 presents our results on transportation problems. Section

"* 3.2 provides the computational results and interpretations on uncapacitiated

network problems and discusses the interrelationship of the data in sections

3.1 and 3.2. Further, this section also discusses the effect of type I and

II networks and the effect of advance dual start methods on total solution

time. Section 3.3 summarizes the computational data on the capacitated

networks problems and section 3.4 indicates the computer memory requirements

of the codes tested.

3.1 TRANSPORTATION RESULTS

Since most of the published computational resu'lts that relate to min-

imum cost flow problems deal with transportation problems, these problems

were examined first. The results obtained from this comparison character-

ize the basic results that prevail for general minimum cost flow network

problems as well. One of the unique findings obtained by a joint analysis

of both types of problems is that an increase in the number of sources

(origins) and sinks (destinations) for a fixed problem size causes the

solution time to increase. This finding is unexpected since it is a parti

of the folklore that transportation problems are easier to solve than net-

work problems. The implications of this will be discussed in detail later.

Tables 3 and 4 report our results on 55 transportation problems varying

in size from 10 x 10 to 150 x 150 and varying in density from 90% to 5%.

Each set of m x m transportation problems contained five problems. Table 3

contains the median solution time and solution time range for each of these

problem sets. Table 4 gives the individual solution times for each problem

in the 50 x 50, 80 x 80, and 100 x 100 problem sets. "NA" in Tables 3 and

4 indicate that we could not solve these problems using the TWB code due

_ _V
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to computer memory requirements of the code for problems of this size and

density. This limitation in the size of problems that can be handled is

due to a design incorporated into the code by the Texas Water Development

Board which improves its efficiency at the expense of computer memory.

A noteworthy feature of the computational results that pervades the

entire study is the fact that each apparent trend was found to require

qualification. To nearly every positive conclusion there was an exception.

The most important consistent finding is that the code based on the form-

ulation of Section 2 is decidedly superior to the others. Aside from this,

the behavior of the four codes varied widely on like problems. The range

of solution times reported in Table 3 provides an illustration. Out of

these erratically diverging times emerge the following uniformities. The

Boeing Code exhibits the widest range of solution times for each problem

size and SUPERK the narrowest range. Similarly, the Boeing Code is often

the least efficient and, as already remarked, SUPERK is without exception

the most efficient. (Roughly, SUPERK is at least 5 times faster and in

many cases 8-10 times faster than the other three codes.) However the

data in Table 4 indicate that among the codes SHARE, Boeing, and TWB,

none is strictly dominant.

The times in Table 4 portray the sensitivity of out-of-kilter methods

to density. Reduced density, as might be expected, leads to definite im-

provements in computation times. For instance 11 methods are uniformly

slower on the .53density 50 x 50 problems reported in Table 4 than on the

.27 density problems of the same size. It should be noted however that the

times do not always strictly increase with density, particularly if the

change in density is not large. An illustration is provided by the 100 x

100 problems in Table 4 of density .22 and .29. Clearly, density is not
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the only factor that affects solution time.

An earlier in-depth study of transportation methods [15] makes it

possible to compare our results with SUPERK to results obtained for more

specialized codes that were designed specifically for bipartite (trans-

portation) networks. This study discloses that the most efficient solu-

tion procedure for transportation problems arises by coupling a primal

transportation algorithm (embodying recently developed methods for acceler-

ating the determination of basis trees and dual evaluators) with a version

of the Row Minimum start rule and a "modified row first negative evaluator"

rule. The resulting method has been found to be at least 100 times faster

than OPHELIE, and 6 times faster than the SHARE out-of-kilter code. 2 Since

the present study and the study in [15] use overlapping transportation

problem sets and the same computer, a direct comparison of results is

warranted. This comparison yields the following observations:

1) SUPERK is about 100 times the OPHELIE/LP general simplex linear

programming code [24,25] since the median of OPHELIE/LP on the 100 x 100

problems is 277 seconds. OPHELIE/LP is an "in-core, out-of-core" code;

thus, this comparison is not completely fair to general simplex computer

codes sihich exploit sparse coefficient matrices. However, this LP code

does have the advantage of being coded in a machine language and of being

designed to exploit all of the computational features of the CDC 6600.

In addition, the authors are not aware of any in-core LP code capable of

a 100 x 100 transportation problem. (This situation may soon be changed

F4
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by a code being developed by David Sommer, Robert Choquist, and others of

Control Data, drawing on ideas for storing and manipulating data proposed

by James Kalan of S.M.U.)

2) The special purpose simplex code of [15] is about 30% faster than

SUPERK on transportation problems. Since the code of [15] is the fastest

known special-purpose simplex code 3 , we must conclude that SUPERK is

substantially faster than most simplex-based codes; however, the existence

of a faster code(for the restricted class of bipartite networks) sub-

stantiates the findings of [15] that out of-kilter is not the most effi-

cient algorithm for solving transportation problems. 4 This result is

contrary to the results in [8, p. 109) where Ford and Fulkevson reported

that the primal simplex method (MODI method) is twice as slow as the

out-of-kilter method in this context.

3.2 UNCAPACITATED MINIMUM COST FLOW NETWORKS

In this section we examine how the four out-of-kilter codes compare

on more general networks than those of transportation problems. These I4

networks vary in size from 50 to 1500 nodes, have densities ranging from

.001949 to .30, and contain different numbers of source and sink nodes.

We also examine the effect of two advanced dual start methods on total

solution time. Tables 5,6, and 7 contain our results.

Table 5 reports results for the Type I and Type II networks, whose

topological characteristics were discussed in Section 1.0. Solvability

differences of these problem types 4-e also illustrated by the data in

Tables 1 and 2. Tables A and 7 are devoted to reporting results on ca-

pacitated problems. The problems of these tables were solv.,M twice using

SUPERK - once with and once without the capacity values to afford com-

parisons of the performance of the mrthod on a given network structure
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TABLE 5

Type I and II Upcepacitated Network Problms
Various Sizes

Source Sinks Nodes Density Type SHARE Boeing TWO SUPERK ADS-i ADS-2

3 7 50 .03 1 .162 .080 .068 .048 .072 .062
5 3 .06 I .294 .131 .159 .094 .120 .118
4 3 .15 .707 .332 .423 .224 .248 .250
3 2 .24 i 1.283 .806 1.001 .389 .232 .248
4 5 .30 1 1.743 .993 1.387 .588 .484 .456

8 7 100 .03 1 1.105 .546 .630 .333 .300 .292
9 9 .06 2.921 1.439 1.899 .874 .844 .846
5 8 .15 1 3.932 2.254 3.327 1.146 .925 .935
7 9 .24 1 4.640 2.978 5.476 1.497 1.312 1.328
5 5 .30 1 5.592 3.703 6.595 1.585 1.413 1 4N3
3 10 .03 It* ONR ONR DNR .510 DNR
3 10 .03 II* DNR DNR DNR .579 ONR DNR
5 15 .24 11* DNR DNR DNR 1.406 N DNR
5 15 .24 OI* ONR DNR DNR 1.586 ONR ONR

4 12 400 .006 DNR DNR ONR 2.990 DNR ONR
4 12 .014 11* DNR DNR DNR 3.940 DNR DNR
8 60 .006 II* DNR DNR DNR 4.624 DKR DNR
8 60 .014 It* DNR DAR ONR 6.096 DNA DNR

28 27 500 .006 1 15.850 3.170 4.868 1.813 3.091 3.131
25 26 .009 1 16.213 5.911 12.226 3.655 6.096 6.107
29 29 .011 1 15.537 5.906 NA 3.707 6.518 6.568
28 27 .014 1 17.516 5.710 NA 3.959 7.730 7.72526 28 .017 1 21.748 6.913 NA 4.5%,9 8.770 8.90528 27 .006 I1 26.655 131.103 26.730 6.263 DNR DNA

5 26 .OD9 it 24.270 53.709 30.786 6.125 DNR DNR29 29 .011 11 28.278 48.130 NA 7.a54 DNR DNR
28 27 .014 1t 30.625 55.691 NA 7.789 DNR DNR
26 28 .017 11 34.152 64.990 NA 9.339 DoR ONR

o so 1000, .0029 11 85.626 46.237 NA 19.599 20.439 20.068
so so .0034 11 87.580 157.110 NA 18.193 21.672 21.942
50 so .0038 1t 83.579 175.331 KA 20.548 26.802 27.367

so so .0044 I! 85.647 153.924 NA 21.574 24.570 24.15050 so .0048 11 104.549 190.878 NA 26.739 28.511 28.150

75 75 ism .001949 II 137.809 122.519 NA 33.424 ONR ONR
75 75 .001930 1I 138.405 353.758 NA 35.158 DNR DNR
75 75 .002270 I1 128.248 252.608 NA 34.801 DNR DNR
75 75 .002264 I! 135.574 394.551 NA 33.710 ONR ONR75 75 .002547 It 138.535 283.173 NA 35.753 ONR DNR

*4edian of 6 oroblms
NA - Will not fit into the computer memory available
ADS-I- Advance Dual Start version I
ADS-Il- Advance Dual Start version 11

DNR-Did not run

rv •
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in these two different situations. The uncapacitated problems in Tables 6

and 7 are further distinquilhed from those in Table 5 by virtue of con-

taining transhipment sources and sinks as well as pure sources and sinks.

The fundamental inference to be drawn from the data in Table 5 is that

SUPERK dominates the other codes regardless of problem size, problem type,

density, and number of sources and sinks. This table also shows that the

solution time increases for each problem type as problem size and/or

density increases.

The solution times for type I networks possess a remarkable con-

sistency that permits the codes to be uniformly ranked across these prob-
lems in terms of their relative efficiencies. In particular, the ranking

of the codes in descending order of efficiency is SUPERK, Boeing, TWB, and

SHARE. Several differences between these results and those for trans-

portation problems are also apparent. The superiority of SUPERK over

the Boeing code has dropped from about eight times faster on the transpor-

tation problems to twice as fast on the Type I networks; also the Boeing

code has switched from being the least efficient to the most efficient of

the codes other than SUPERK.

A quick glance at the Type II network times discloses that the

rankings of the Boeing, TWB, and SHARE codes in terms of efficiency are

reversed on these problems. Further the superiority of SUPERK over the

best of the other codes is increased to a factor of 4.

The 500 node problems provide some useful insights both about the

probiem types and the codes. Type I and II 500 node problems have the

same density, total supply, cost range, number of sources, and number of

sinks. Comparing the percentage changes in solution time from the Type I

problems to the Type II problems, the SHARE times changed the least, fol-

lowed by SUPERK; in both cases the magnitude of this change is rougily
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200%. The data of Table I give an idea of where the additional time

required to solve the Type II networks was spent. This table shows that

the number of breakthroughs and cycle lengths (number of arcs in the flow

augmenting path) for the two types of networks are essentially equal.

(Note that density does not seem to affect these statistics.) The hjg

difference between the problem types is that the Type II networks require

the generation of twice as many labels. Thus, approximately twice as many

arcs must be examined in the labeling process. Further, Table I discloses

that the average number of nodes labeled per breakthrough is approximately

100 for the Type I problems and 200 for the Type II problems. This in-

crease in the number of labeled nodes essentially doubles the number of

arcs to be examined in determining the sets S and R. In essence, these

results indicate that solution times of SHARE and SUPERK are proportional

to the number of arcs examined during the solution process. From this it

may be concluded that the greater efficiency of SUPERK is due in large

measure to the partition which reduces the number of arcs considered

during labeling by nine-tenths and during the determination of S and R by

one-tenth. Additional efficiency is evidently contributed by the label

change and the recycling of S and R. The large fluctuation in the TWB

and Boeing codes suggests that these codes involve some form of search

among the arcs, either during the labeling process to identify arcs lead-

ing into and out of nodes in the labeled tree or during the potential

change process to identify arcs that compose the sets S and R.

The statistics in Tables 1, 2 and 5 that the Type II problems are

much harder to solve. (Correlated with this difficulty is the interesting

fact that their optimal objective function values were twice as large as

their corresponding Type I problems.) This solution difficulty is due

to the complex paths between sources and sinks and due to the inability 4
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to reach all siitks from any given source. The effect of this structure,

as evidenced in Tables 1 and 2, is to greatly increase the number of labels

generated and the number of potential changes made. These two things in-

crease solution time respectively by requiring more arcs to be examined

for inclusion in the cut set and by requiring more cut sets to be deter-

mined.

The data in Table 5 for the Type II problems discloses a consistent

increase in the median solution time (holding density constant) as the

number of sources and sinks increase. The same effect may be observed

in Tables 6 and 7 for the uncapacitated solution times when an equal number

of transhipment sources and sinks are introduced. Thus, in fact, the

addition of transhipment sources and sinks appears to increase solution

times in a fashion identical to increasing the number of pure sources

and sinks. However, it seems likely that the effect of adding sources and

sinks must at some point reverse itself and begin to decrease solution

time. This conjecture comes from comparing the solution times of the

50 x 50 transportation problems to those of 100 node network problems,

holding density roughly constant. Of these two classes of networks,

both of equal size, the transportation problems - which consist only

of source and sink nodes- are easier to solve. (Note that this result

holds fnr all codes.) I
The last part of our analysis on the uncapacitated network problems

deals with testing advance dual start procedures. Two procedures were

tested. The first used Dijkstra's [6] shortest path algorithm to find

the shortest path from the master source to all other nodes using arc

costs as "distances". Once this tree of shortest paths was determined,

the associated node potentials were used to c~Prulate the starting

i
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marginal costs. This starting procedure is identified as version I of

the "advance dual start" heading in Table 5. Version II is essentially

the same except that the shortest path from master source to master sink

is saturated with flow and these flow values along with the node potential

values were used to initiate the algorithm. Both advanced start pro-

cedures were tested only using SUPERK. The results, which are indicated

in Table 5 include the time to find the advance start in the total so-

lution time. The outcome is somewhat surprising. The procedures yield

on small problems slightly improved solution times or less but actually

impede the solution times on large problems (500 nodes or more). The

main reason for this negative effect seems to be that the node potentials

initially determined cause a large number of nodes to be labeled eligible

on subsequent label-outs. This in turn causes large trees to be gener-

ated, increasing the computational effort during labeling and cut set

determination. (The start procedures may be subject to some improvement,

however, through improved coding.)

The foregoing results with the findings of the studies by Srinavasan

and Thompson [31] and by Glover, Karney, Klingman, and Napier [15] on

special-purpose primal transportation codes; that is, if the central so-

lution algorithm is coded to perform its basic functions with maximum

efficiency then the computational time required to find a superior start

is often not compensated by its savings. However, advance start pro-

cedures are often helpful when performing hand calculations because of

the inefficiency of humans in carrying out the basic algorithmic steps.

3.3 CAPACITATED MINIMUM COST FLOW NETWORKS

The last type of network problems examined were capacitated networks.
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While non-circulatory networks acquire capacitation on the arcs which

are added to make them circulatory, we are using the term "capacitated

network" to refer to networks that have capacity restrictions before

the addition of such arcs. All arcs of the capacitated networks in this

study have lower capacities of zero and upper capacities lying in the

ranges indicated in Tables 6 and 7. The basic structural variation of

the networks in these tables is specified as follows:

1. Two problem sizes were examined, consisting of 100 nodes and

400 nodes.

2. Each problem size has two distinct densities. The 100 node

problems have densities of .03 and .24, and the 400 node

problems have densities of .006 and .014. For each of these

densities 18 problems were generated.

3. The percentage of the arcs which are capacitated from above

(capacitated density) varied f-om .20 to .80.

4. Two distinct upper capacity ranges were set for the 100 and

400 node problems. In each case, one of the capacity ranges

was purposely set quite large and the other somewhat smaller.

5. Three distinct source and sink node-sets were used.

The lock-step parameter variation of these problems is used to

enable closer examination of the effects of specific variables while

holding other variables fixed, as exhibited in the organization of the

data in Tables 6 and 7. Between each set of horizontal lines in these

tables, the source and sink node configuration is constant, with the only

varying parameters being density and capacitated density. Also, on either

side of the double horizontal lines are sets of problems whose only dif-

fering parameter is the upper capacitated range.

- - -* :y
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The following conslusions can be drawn from this data: solution

time consistently increases with density; capacitated density has an

erratic time effect, and restricting the capacity range and/or increasing

the number of nodes generally increases solution time.

The role of density has been visible th~roughout all of the preceding

computational interpretations. The capacitated problems, as well as

the uncapacitated problems, are subject to substantial increases in so-

lution times as density grows; in fact, for the TWB and Boeing codes, the

effect is of major consequence. In one case the problems cannot be solved

and in the other, solution times increase many-fold.
The erratic effect of capacitated density is believed to be directly

connected to the "non-extreme point" solution approach of the out-of-kilter

algorithm. From the point of view of a simplex-type procedure, as the

number of capacitated arcs are increased, the number of feasible extreme

points will (most likely) increase, and thus (probably) increase the

number of pivots required to reach optimality. However the results of

our computational experience with the out-of-kilter codes indicate that

the right combination of capacities can actually reduce the solution time,

as was the case in 11 of the 72 capacitated problems run with SUPERK.

(Of course, most of the capacitated problems had different optimal

solutions than their uncapacitated counterparts, as indicated by their

objective function values.)

Basically, solution time appears to increase when the problem

becomes more constrained (e.g., as objective function values increase, or

the capacity range is restricted). For instance, in the third and sixth

problems of Tables 6 and 7, there is a large difference in the objective

function values when 80% of the arcs are capacitated. Also, in com-
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parable problems for the two capacity ranges, the more restricted problems

generally yield higher solution times. The SUPERK and SHARE data support

this conclusion more strongly than the heavily mixed results of the TWB

and Boeing codes.

Increasing the number of nodes, while holding the number of arcs con-

stant, induces a substantial change in solution time. For instance, the

.014 dense, 400 node problems of Table 7 have approximately the same num-

ber of arcs as the .24 dense, 100 node problems of Table 6. Comparing

solution times, we find a three-fold difference. This change is more

dramatic than the change produced by increasing the density of the 100

node problems from .03 to .24. (See Table 6.) Also, the data in Tables 5

and 7 tend to indicate that as the number of source and sink nodes increase,

solution time increases, although Table 6 does not particularly substantiate

(or refute) this conclusion.

All network problem sets were examined to determine whether any

patterns existed in the number of breakthroughs and potential changes. Our

overall observation is that as density increases (for a fixed problem size),

the number of breakthroughs increases,the number of potential changes de-

creases, and solution time increases. (The large changes in the objective

function values in Tables 6 and 7 induced by changes in density are in-

dicative of the decrease in the number of potential changes.) The increase

in the number of breakthroughs tends to place a burden on the labeling

section of the codes and, at the same time, the determination of the cut

sets becomes quite laborious with a large number of labeled nodes. This

"is true in spite of the fact that fewer potential changes are required to

solve a problem "type" in which cost ranges, total supply, and total num-

- -- - --
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ber of nodes are kept fixed. Except for the indicated connections to

density, the out-of-kilter method is quite unpredictable with respect to

the number of breakthroughs and potential changes performed.

As on the earlier problems, SUPERK strictly dominates the other

codes for the data in Tables 6 and 7, and the superiority of SUPERK in-

creases as the problem size and/or density increases, Among the other

codes, SHARE is the most consistant and appears to be slightly more

efficient.

3.4 MEMORY REQUIREMENTS OF THE CODES

An important factor in evaluating computer codes of this type is the

size of problems which can be solved. Each of the codes investigated is

an "in-core" code; that is, the program and all problem data must be stored

within available memory for direct access. (Virtual memory schemes could

be used to effectively give "in-core, out-of-core" features for large ver-

sions of any of the codes; however, other solution procedures would seem

to be more amenable to designs of this type [15).)

The memory requirements for the main program and associated system

routines for each of the codes is approximately the same, ranging from

14.2K8 60-bit words for TWB to 17K8 60-bit words for SUPERK, however, the

problem storage requirements vary considerably. The SHARE code requires

six node-length plus seven arc-liength vectors to store a given problem,

and Boeing uses six node-length and eight arc-length arrays. SUPERK

necessitates only four node-length vectors, but uses eleven arc-length

arreys. (The authors have determined that the number of arc arrays can

be reduced to ten with minor programming changes, and to eight if aux-

ilWary memory is used.) Although the original algorithm on which the TWB

code was based [2) used four node-length and seven arc-length arrays,
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program modifications, which were made for speed enhancement, involved

the addition of two node-length and seven arc-length arrays plus a matrix

whose dimensions are number-of-nodes by maximum number of arcs touching

any given node. These modifications greatly restrict the size of problems

which can be run, as reflected in the limited number of test problems

which could be processed by the TWB code in a 220K8 field length.

These figures indicate, as might be expected, that SUPERK's compu-

tational efficiency is not without its price in terms of memory space.

The increased number of arc-length arrays can become restrictive as the

problem density increases, however, partially offsetting this is the fact

that the relatively smaller number of node-length arrays is of value in

the very sparse networks often found in industrial applications.
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Footnotes
-I

"Iln this connection, it should be remarked that the CDC 6600 has two
FORTRAN compilers. One of these compilers, the FTN compiler, has three
levels for optimization of the object code. This compiler produces
object code which executes from 3 to 15 times faster than the alternative
RUN compiler, which was the one available to us. Thus, the reported
times should be substantially faster using the FTN compiler; however,
we believe that the changes would be uniform throughout all the codes
tested.

2These times for the SHARE code are much slower than the SHARE times re-
ported in [15] for the same problems. The new times, given in Table 3,
were the result of re-solving the original problems with the same code
on the same machine during the course of preparing this paper. Since
the new times were substantially slower, the code was carefully checked
and the problems solved twice more with the same results. The only
possible explanation we have for the difference is that the Universityof Texas operating system has been substantially altered during the three -years between the two studies.

3The code developed by Srinivasan and Thompson is comparable in efficiency
to the primal code of [15] for uncapacitated problems of 100% density;
however the Srinivasan and Thompson code is not designed to accommodate
capacitated problems or to take advantage of sparseness.

4Graves and Thrall [30 ] have specialized the out-of-kilter algorithm to
transportation problems. Computational tests of this method conducted
by Lee [21] indicate that 10 x 50 transportation problems require about
3 seconds to solve on the IBM 360/65. Our tests using a different computer 4
and problem set indicate that 50 x 50 problems are solved by SUPERK in
.84 seconds.

4
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