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1.0 Introduction 

In this paper we show how to solve a class of optimization problems which 

has arisen, in a manner of speaking, from the grave.  The attempt to specify a 

global chronological ordering of ancient cemetery data is shown to give rise to 

a mathematical formulation for a class of problems resembling the traveling 

salesman problem, but which can be solved by an elegant one-pass, "maximum 

consonance" algorithm. 

The cemet-ary of the anthropological study which underlies our model consists 

of a number uf individual gravesites each containing a series of artifacts at 

various ground depths. At each gravesite, pottery types have been identified and 

marked according to their ground depth. Due to the fact that a grave will sink 

after a number of years and the site will be reused, it is customary to assume 

a direct relationship between the age of each pottery type and its ground depth 

at each gravesite.  From such partial (or "relative") chronological orderings 

at each gravesite, weights may be determined to reflect the relative strength 

of the ordering in a local sense.  (The partial orderings at different gravesites-- 

or even at the same gravesite for different graves—may be inconsistent, and may, 

thus, involve different precedence weights" for the same pottery types.) Due to 

the inconsistency of the data, there is no direct way to use the partial orderings 

to derive a global partial ordering on the pottery types.  Consequently, given 

these precedence weights, the problem becomes that of finding a "best" partial 

global ordering of the pottery types according to various criteria. 

Viewing each pottery type as a node and each precedence relationship as a 

directed arc (where a directed arc from node 1 to node J corresponds to the 

precedence relationship, i precedes J), our problem is, in a network context, 

to determine a set of arcs that contains no directed cycles (circuits) and which 
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optimizes some objective function defined in terms of the arc weights.     In 

particular,  the objective of maximizing the sum of the weights on the selected 

arcs gives rise to the following problem formulation: 

Maximize      £ wn   xn 
(i.J)eN      J      J 

subject to 

(i,J)eCircuit for every Circuit. 
xy f. one less than # of arcs in the Circuit 

«^ ■ 0 or 1, 

where N is the set of admissible arcs, Wj* is the weight associated with arc (itJ) 

and x^ is the 0-1 decision variable associated with selecting i to precede j. 

This problem can alternatively be stated as a weighted covering problem (See 

Balinski (  1 JJ as follows: 

Minlnlze   £     wi« vi< 

(l.J)c» J 

subject to: 
£ y.. 1 1,  for «very Circuit 

(i,J)cCircult      J 

ylJ 
-    0 or 1 

where y  ■ 1 - x. . Unfortunately, however, these formulations require the 

enumeration of all circuits and thus place the problem at a level of difficulty 

somewhat beyond that of the ordinary weighted covering problem.  In fact, 

observing that the constraints in either formulation are esaentlally the "cuts" 

proposed by Oantzig et al [ 4 ] in their approach to the traveling salesman 

problem, the problem at hand appears to be much closer to the traveling 

salesman problem than to the weighted covering problem. Moreover, in the absence 

of enumerating all circuits, this problem has the same definition as the traveling 

salesman problem except that it allows no master circuit and thus lacks the 

single additional constraint which requires  £    x.. to equal the number of 
(i,J)tN  J 



nodes In the network.  In this sense, the problem may be regarded as an "open" 

traveling salesman problem. 

The close relationship of this problem to the traveling salesman problem 

suggests that efficient solution methods will in general be difficult to come 

by. Nevertheless, we will show that a natural (indeed, virtually compelling) 

reformulation of the objective function makes it possible to solve the problem 

via an elegant one-pass procedure.  Our approach is germane to any class of 

problems which may be characterized rcughly as follows: given a collection of 

data, experiments, historical summaries, etc. that impute weighted partial 

orderings to certain objects, determine au optimal global ordering of all ubjects 

with respect to the weights.  In addition, our procedure is useful for testing 

consistency and isolating inconsistency in the data for such problems. 

2.0 Some Ways of Determining Precedence Weights 

For many problems, including the graveslte problem, there is a very large 

number of ways one could determine precedence weights from the raw data.  It is 

not our intent in this section to provide even a partial enumeration of alternative 

approaches that might be used. However, we shall propose some procedures for 

imputing weights which have a particularly appealing property. The schemes we 

propose will be stated in terms of the graveslte problem, but can obviously be 

applied In other contexts.  They all satisfy the condition that w.j - -Wj* where 

wj. Is the weight assigned to the precedence relationship, i precedes J. 

For the kiil graveslte (trial), let p., be a number which reflects the number 

b 
of times i appears before J.  For example, one could increase Pj. by a. if i 

precedes J by one level, a» if i precedes J by two levels, etc. Another possibility 

would be to reduce p.. by an arbitrary amount if the number of times 1 precedes 

J is relatively small, thereby implicitly accommodating the fact that such an 



ordering might be a freak occurence and deserves less weight. Having decemined 

values for p^, the weights w.  on the arcs (1,1) in the global network can 

be determined by any one of the following: 

1. -u " £ PiJ " £ Pji' 

In thip  instance, w  represents the net number of times (in a weighted sense) 

that i precedes J over all trials. 

2. w^ - (I pjj - t  p^j) / [I (p^ *  p^) / n] 

where n is the number of nodes in the network. 

Here w^ corresponds to the net number of times i precedes J divided by 

the average number of times i precedes J or J precedes i. 

3. Define the weights w  as in 2, but let n be any positive real number. 

(Note that if the objective function is linear in the Wj. then 2 and 3 trill yield 

the same optimal solutions.) 

In general,far the objective function of maxlaiilng I w^x^, 

it is reasonable to include in the network only those arcs with positive weights. 

Further since 1, 2, and 3 will yield wj* values such that «j. " "w_) 1 • dropping 

all zero and negative weight arcs will immediately eliminate the simplest type 

of inconsistency, and we henceforth assume that such arcs are in fact deleted. 

The use of the foregoing definitions will avoid inconsistencies in the w 's for 

any particular trial. Thus, it is only by considering two or more trials in 

conjunction that inconsistencies in the weigbte can occur. 

3.0 Some Objective Functions 

There are a few special situations in which the difficulties of smlvlng the 

problem as formulated in the preceding section can be circumvented. For instance, 

suppose the data is perfectly consistent after deleting the non-positive arcs. 

This would mean that if i precedes J, there is no implication that J precedes I 



(I.e., If a path exists from 1 to J, then a path does not exist from J to 1). 

If this "transitivity" condition exists In the network then clearly the clr- 

cult constraints are automatically satisfied by every feasible solution. Thus, 
i 

1        the problem becomes solvable as an ordinary linear program since the Integer 

restrictions will serve only to restrict the variables to be less than or 

equal to one. Moreover, In this case, the optimal solution Is exceedingly 

easy to obtain since it simply consists of selecting all positive weight arcs. 

The solution is also easy to obtain in a few more general cases. For example, 

if the circuits which are composed only of positive weight arcs are disjoint, 

it suffices to drop the minimum weight arc In each of these circuits, selecting 

Che positive weight arcs that remain.  Similarly, if it is possible to identify 

a minimum cardinality set of arcs whose removal will break all circuits, and 

whose sum of weights does not exceed that of any larger cardinality set, then 

eliminating these arcs will solve the problem.  In most cases, however, the 

problem data is not so amenable to exploitation, and the computational diffi- 

culties previously alluded to loom very lar^e Indeed. 

Disregarding these computational difflculcies and taking the liberty of 

considering alternatives that may more closely reflect the underlying purpose 

of the model, it would seem especially desirable to modify the problem object- 

ive to maximize what might be called the "consonance" of the selected arcs. 

To accommodate this, it is useful to think of replacing the w^ by "consonance 

meauures" c^..  The concept of consonance car. be described by reference to the 

inequality relationship:  If 1 precedes j (w.^ > 0) and j precedes k (wj^ > 0) 

then w^v > max { WJJ , WJIJ . This sort of transitivity is much stronger than 

required for the original objective to permit an easily obtained optimal 

solution, but is what one would expect to encounter if all data were "perfectly 



consistent." In a given circuit we can therefore think of the "dissonance" 

of a given arc as the weight of the maximum weight arc that precedes It (I.e., 

of all other arcs In the circuit) minus the weight of the given arc. This Is 

the amount by which the given arc conflicts with the Inequality relationship 

If the other arcs are correctly weighted. The consonance of the arc, or the 

amount of potential agreement of that arc with other arcs In the circuit, can 

be defined as the negative of the quantity obtained by subtracting the greatest 

dissonance over the other arcs from Its own dissonance. From another stand- 

point, the minimum weight arc In a circuit Is the "most suspect" arc, and 

consonance can be defined as the weight of the given arc, less the weight of 

the most suspect (minimum weight) arc on the rest of the circuit. These two 

definitions give the same rank ordering of consonance In a given circuit, and 

for circuits of more than two arcs, give the same arithmetic measure of con- 

sonance for all arcs except the one of maximum weight. Of course, an arc 

may be contained In more than one circuit, and we define Its consonance over 

the entire graph (or Its global consonance) to be Its smallest consonance In 

any circuit In which It lies.  [Note, by either of the definitions of con- 

sonance over a circuit this Implies that a consonance value over the entire 

graph Is zero or negative If and only if it corresponds to the minimum weight 

arc in some circuit.] 

Our motivation behind this definition of global consonance values is to 

minimize the amount of dubious orderings that will appear in an optimal solution. 

To see this, consider the network in Figure 1. 



Figure 1 ~ w.. weights are shown. 

Here,  the  (global)  consonance values are negative for the two adjacent arcs 

of weight 1 and weight 2.    Thus,  to maximize I c..x..   (where the c.. are the 

consonance values),  both of these arcs will be dropped,  though only the arc 

of weight 2 "needs" be dropped to eliminate directed cycles.    But retaining 

the "weight 1 arc" is very dubious, since this would imply that it precedes a 

host of others that should quite possible precede it.    Discarding it does not 

create suspicious relationships, but merely eliminates them.    A valid pre- 

cedence ordering may thus be overlooked, but it becomes less likely that 

an Invalid one will be retained.     (Also note that an optimal solution to the 

maximum consonance problem will be optimal to the maximum weight problem if 

the network contains no circuits or contains only disjoint circuits.) 

4.0    Solving the Maximum Consonance Problem. 

There are two main difficulties encountered in replacing the maximum 

weight problem by the maximum consonance problem.    The first difficulty 

(computationally though not conceptually)  is to calculate the consonance values 

c    .    The second difficulty is that the "form" of  the problem has not really 

changed—we have merely substituted c    for w    —and we have already observed 

that problems of this form are potentially very difficult to solve. 



Thus, while maximizing consonance In a network may be more desirable thar 

maximizing "weight", It appears that no gains have been made toward making 

the problem more tractable. However, It fortunately turns out that the con- 

sonance measure Is desirable for more than Its Intuitive appeal. To see this, 

recall that a consonance value Is nonpositive If and only If It Is the minimum 

weight arc In some circuit. Thus every circuit must have at least one arc 

whose c  value Is nonpositive, and It also follows that the arcs with positive 

consonance can form no circuits. Moreover, as noted earlier In connection 

with the maximum weight problem, a problem In which positive weights do not 

form circuits Is one that Is very easy to solve. Applied In the present con- 

text, this observation leads to the following prescription for solving the 

maximum consonance problem: Find and eliminate all arcs In the network whose 

consonance values are negative, together with a sufficient subset of those 

whose consonance values are zero so that no circuits remain. This nevertheless 

leaves the Initial difficulty of computing consonance values, or of developing 

a solution algorithm that does this implicitly. We now consider how this 

may be accomplished. 

One approach would be to enumerate all circuits In the network and then 

to find a minimum weight arc In each circuit. This procedure, while perfectly 

direct, unfortunately Involves as much effort as formulating the maximum weight 

problem as a weighted covering problem. 

Another approach to finding the negative or zero valued consonances would 

be to order the weights In ascending order and then to consider each arc 

successively In the network, applying the rule whereby the arc is deleted If 

it Is a minimum weight arc In some circuit of the current network. This 

approach Improves considerably on the preceding but still requires a labeling 

procedure to determine whether deleting an arc from a graph will break a circuit. 



Since the labeling procedure may have tc be performed a large number of times, 

it seems worthwhile to look for better alternatives. 

T A more effective approach we propose, can be founded on a network con- 

struction rather than a network reduction.  (We will show subsequently how 

the details of this construction can be performed in an efficient manner.) To 

begin, suppose that the weights are arranged in descending order.  It suffices 

then to examine the arcs in sequence, determining whether the arc currently 

being examined forms a circuit with some subset of the arcs examined previously. 

If it does, this arc is designated as a "temporary arc" and the process contin- 

ues. After all arcs have been thus examined, the arcs designated "temporary" 

are discarded from the network. The arcs remaining provide an optimal solution. 

The justification of this follows by considering the partial network created 

by the addition of the current arc to the preceding arcs. Each temporary arc 

corresponds to the minimum weight arc in a new circuit created in such a partial 

network.  Thus, this arc would have a consonance value of at most zero, and in 

addition, no circuits can remain once the temporary arcs are removed. 

The critical prerequisite to implementing the foregoing algorithm ef- 

ficiently is the ability to recognize with little effort whether the addition 

of a new arc creates a circuit in the network being constructed.  (A nearly 

identical problem is encountered by Construction A of Kruskal [6], for ident- 

ifying a minimum weight spanning tree, but is not resolved in [6], nor in sub- 

sequent references such as Berge [2] which describe this method.) We now in- 

dicate a simple procedure that will accomplish this task. 

Start with an n x n Identity matrix I where n is the number of nodes in 

the network. View the j— column of this binary matrix as indicating those 

nodes which can reach node j (i.e., if the 1— component of column J is 1 then 

a directed path exists from node 1 to node J). Equivalently, we may view the 



iÜ row of the matrix as Indicating those nodes which can be reached from 

node 1. Note that these Interpretations accord with the starting matrix I 

which corresponds to a network with no arcs. When arc (i,j) Is to be added 

to the network under construction, the updated form of the matrix which 

accords with the indicated interpretation is created by either of the following 

equivalent operations: 

(1) Replace each column k that has a 1 in row j by the bit union of 

column 1 and column k.      : 

(2) Replace each row k that has a 1 in column 1 by the bit union of 

row j and row k. 
i 

The justification of these operations is established by the following 

reasoning. Row j contains a unit entry for each node k for which there is a 

directed path from j to k. thus, adding arc (i,j) creates directed paths 

from node 1 to precisely the set of nodes k so identified. Moreover, for each 

of these nodes k, the set of all nodes p for which; a path is created from p 

to k (upon adding (l,j)) must be the set of nodes which currently connect by 

a directed path to node i. This latter set, of nodes is given by the unit 

entries in column 1. Consequently the union of columns 1 and k gives the set 

of all nodes which connect to node k after adding arc (i,j)« This Justifies 

operation (1), and operation (2) is Justified similarly. 

With the correct form of the updated matrix thus determined, the "tem- 

porary" arcs of the algorithm can be identified in a particularly simple 

fashion. In particular, the arc (i,j) above to be added to the network should 

be designated temporary if there is a unit entry in cell (J,i) of the matrix. 

Note that this Identification (and its supporting matrix updating) is not only 

quite simple but is also considerably more efficient than the iterative use of 

a labeling scheme to detect circuits. 

10 



Having thus characterized a one-pass procedure for solving the maximum 

consonance problem, we can go a step further and specify not only an optimal 

T       set of arcs but also the entire partial ordering Implied by these arcs.  One 

I particularly simple, but efficient, way to obtain this ordering Is to shadow 

the bit union matrix previously discussed with a second bit union matrix. The 

matrices oegin the same, but the updating operations are carried out In the 

second matrix only when the current arc (l,j) Is not designated "temporary." 

As a result, this second matrix has the same property as the first, but Is 

defined In terms of the optimal solution network Instead of the full network. 

Thus given this matrix. It Is quite easy to determine those nodes that node 1 

precedes, those nodes that precede node 1 and those nodes that neither precede 

nor follow node 1 In the optimal solution. Consequently, the bit union matrix 

approach not only provides a simple solution vehicle but also a convenient way 

to find and represent the optimal global partial ordering. 

5.0 Conclusion and Future Investigations 

The concepts and procedures developed In the preceding sections provide 

a highly efficient one-pass algorithm for sorting palrwise orderlngs over sub- 

sets of data Into an optimal partial ordering over the full set.  This was 

accomplished by defining the concept of consonance, and from there devising a 

procedure to obtain an optimal solution by examining each edge of the network 

exactly once.  A novel feature of this procedure Is that the precise values of 

the consonance measure, which would be extremely laborious to obtain, are never 

computed—I.e., an optimal solution Is generated without explicitly Identifying 

the coefficients of the objective function. This Is made possible by analyzing 

the form an optimal solution must exhibit, and more particularly by character- 

izing the arcs which must be excluded from this solution (In terms of their 

11 



original weights). To provide an efficient means for Implementing the al- 

gorithm we have specified a convenient approach for Identifying the creation 

of circuits In the process of constructing a network. The approach can also 

be used In other contexts (e.g., Kruskal [6]) and Is far more efficient than 

the use of a standard labeling procedure. The use of the algorithm also makes 

It possible to Identify consistency difficulties In the weights WJJ which the 

researcher may want to know In order to perform a sensitivity analysis on the 

ordering. 
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