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SUM o RY

The objective of this program is to develop the metheZulogy for per-
forming calculations of the turbulent near wake behind a slender body in
supersonic flow. The two major technical problems are:

1. To develop turbulence model equations which adequately describe
the mean flow properties and, in addition, provide information
about the properties of the fluctuation field.

2. To develop numerical procedures for the solution of the model
equations. ° .

A turbulence modeling based on an eddy viscosity, which is a function
of turbulence properties (the turbulent kinetic energy, e, and an irtegral
scale length function, &), is being developed. The model equations are
programmed for solution by a steady state finite difference method (with
only the boundary layer form of the laminar and turbulent transport terms
included) for comparison with available experimental data. After several
modifications of the original equations, the turbulence model has now been
shown to adequately describe both mean and turbulence properties of incom-
pressible and compressible adiabatic flat plate boundary 1syers. Additional
verification of the model by comparison with mixing layer experiments would
be desirable before applying the model to the near wake calculation.

The near wake problem, because of the recirculation region immediately
behind the body, constitutes a boundary value problem. The proposed comput-
ational approach is to obtain the steady flowfield as the 1imit of the time
dependent solution of the Navier-Stokes equations with turbulence modeling.
The numerical method proposed uses alternating-direction implicit differ-
encing of the conservation form of the equations. The method has been
programmed for the laminar Navier-Stokes equations. Truncation error has
been shown to be second order in temporal and spatial meshsize. Stability
has been demonstrated for a temporal step size up to ten times that beyond
which explicit difference methods become unstable. Calculations of shock
structure have demonstrated excellent agreement with exact solutions even
with relatively poor spatial resolution. Shock jump conditions are accur-
ately calculated even with spatial resolution as poor as half the shock
thickness.

i



Aa initial application or the numerical methods to the near wake pro-
blem, using laminar conservavion equations, is in progress.
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1. INTRODUCTION

The principal objective of this program is to develop the capability
of performing calculations of turbulent near wakes of slender bodies. Two
major subtasks are involved:

1. Develop turbulence model equations applicable to compressible
as well as incompressible flows.

2. Develop finite difference methods for the solution of the model

equations.

An integral part of the development of the turbulence model equations
is comparison of calculations of simple flows with experimental data. Such
comparisons are necessary to test the validity of the proposed modeling.
These simple flows can be modeled quite adequately using subsets of the
complete conservation and turbulence model equations which are being pro-
posed for use in the near wake problem. The particular subset being used
for this purpose is one which has been applied to the laminar steady cal-
culation of interacting flows(] » and contains both the complete inviscid
terms (in the supersonic flow) and the boundary-layer-1like viscous terms.
The addition of the turbulence modeling to this existing code and the develop-
ment and testing of the model equations using this code has been jointly
supported by the ROPE Project funded by ABMDA and ARPA under Contract

DAHC-60-71-C-0049.

The near wake problem has the intrinsic character of a boundary value
problem because of the prasence of the subsonic region immediately behind
the body. It is possible to make simplifying assumptions in the recircul-
ation region and recast the problem as a pseudo-initial-value-problem. The
upstream influence characteristic of the boundary-value-problem is then
retained through the presente of an eigenvalue required to pass through a
downstream saddle-point singularity (see Reference 1). However, a more
rigorous approach (and the one proposed here) is to desc-ibe the near wake
using the complete steady state conservation equations. The boundary value
problem resulting from this formulation can be converted to a more easily
solved initial value problem by considering the steady state solution to be
the asymptotic 1imit of a time-dependent calculation. The numerical methods
for solution of these equations can be developed relatively independent of



the turbulence modeling, since the laminar (Navier-Stokes) equations embody
most of the computational difficulties expected from the complete set of
model equations.

This report describes the initial (and relatively independent) work
on the modeling of turbulent flows and on the computational techniques
required to solve problems described by Navier-Stokes-1like equations.

The work described in this report was performed in the period 1 April
through 1 October 1972.



2. TURBULENCE MODELING

The calculation of high speed turbulent shear flows requires a descrip-

tion of the Reynolds stresses and the turbulent heat flux terms appearing

in the time averaged and hence, mean flow momentum and energy equations.
Using arguments similar to those for laminar flows, the transport of momentum
and energy by turbulence is found to be proportional to the time averaged
rate-of-strain or time averaged temperature gradient, and to the so-called
eddy diffusivity function which depends upon the structure of the turbulence,

du.  dU.

j.e., u%u} = € (EY%'+ 57%—). Classically, the eddy viscosity has been
Jj i

written in terms of mean flow variables which were found by empirical means

to represent the turbulence. For example, in simple jets, wakes, and

mixing layers, € = K § Unax where K is an empirical constant and § is the
lateral extent of the shearing region. The strong dependence of the class-
ical approach on the geometry of the flow makes it unacceptable for des-
cribing a complex turbulent flow configuration such as encountered in the

near wake. Instead, a more sophisticated representation of the eddy viscosity
based upon a local modeling of the turbulence field is required.

The turbulent field can be represented by as few as two quantities which
are generally considered to be the turbulent kinetic energy, e = ) ugu;/z
1

and an integral scale length of the turbulence, %, which is related to the
width of the spectrum of the autocorrelation function of the turbulent
ninetic energy. The eddy diffusivity, written in terms of these variables
is ¢ = y* e]/2 % where y* is a scaling constant. The determination of e
and 2 requires the development of two model equations which describe the
convection, production, dissipation, and diffusion of turbulence in the
flow. An equation directly describing the turbulent kinetic energy has
been used in numerous modern investigations, beginning with Bradshaw(z),
is now reasonably well understood and accepted. However, less confidence
exists with the second turbulence model equation, primarily because this
equation represents a higher order balance between production, dissipation,
and diffusion than does the kinetic energy equation. The uncertainties,
which exist in the modeling of individual terms, are therefore more



important in the second equation. The determination of the most appropriate
second equation is part of the present effort.

Two promising modeling theories for the second turbulence equation have
been considered in the present study. One was developed by Saffman(3) in
terms of a transport equation for the turbulent vorticity fluctuations, and
the other was developed by Jones and Launder 4) who wrote & transport equa-
tion for the turbulent energy dissipation rate Eq = Cd e3/2/1, where Cd is
a universal dissipation constant to be determined from experiment. To
determine which theory produces better agreement with experiment, both
equations were solved, each with the turbulent kinetic energy equation, for
a flat plate boundary layer in incompressible flow. These equations are
mutually coupled to the mean flow momentum and continuity equations and the
resulting solutions, therefore, represent simultaneous solutions of all
four equations.

The calculations were initiated by estimating on the basis of experi-
mental data the mean flow velocity profile and the profiles of e and &
across the boundary layer. The turbulent boundary layer was then calculated
by streamwise marching over a distance of 50 initial boundary layer thick-
nesses. Experience of other investigators showed initial profile effects
to be negligible for an integration of this distance. Referring to the
vorticity model of Saffman, by adjusting the constants appearing in the
turbulence equations over their acceptable range, it was possible to produce
solutions which were in reasonable agreement with experimental data in the
Taw-of-the-wall region. Two such cases are shown in Figure 1 where the
velocity ratio U/UT(UT = (Tw/pw)]/z) is plotted against the reduced coordin-
ate, y* u y/uw. A wealth of experimental data has been correlated in

=P
Wt
the Taw-of-the-wall region with the expression

=C+ %—mn y*

CIC

T

and the vorticity model resutts are in reasonable agreement with this cor-

relation with C = 5.24 and « = 0.40 in the range 100 < y* < 2000. However,

(5)

experimental data by tleighardt is also presented and shows a breakaway

from the Taw-of-the-wall region at about y* = 800, indicative of the outer
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wall-of-the-wake region. The vorticity model thus fails to produce the
wall-of-the-wake region of the boundary layer consistent with experiment.
This is more clearly seen in Figure 2 where a comparison of one vorticity
model solution in velocity defect coordinates can be made with the experi-
mentally correlated velocity defect law. The vorticity model solution does
not display the curvature required to agree with the velocity defect law in
the wake region (y/s > 0.2).

Further examination of the solution shows in Figures 3 and 4 that the
integral scale length, 2/6, and dimensionless kinematic eddy viscosity
e/uea*, where §* is the displacement thickness, both reach values in the
central portion of the boundary layer which far exceed the measurements of
K]ebanoff(s) and the values deduced by Maise and McDona]d(7) from experi-
mentally measured and correlated velocity profiles. A comparison of the
calculated turbulent kinetic energy is made with Klebanoff's data in Figure
5, and the agreement is clearly much better.

Since € e1/22. the discrepancies noted in Figure 4 between the

theoretical (vorticity model) and measured ¢ are mostly attributable to

the length scale, 2. This suggests that the problem lies with the vorticity
equation. Physically, the difficulty seems to be attributable to the inabil-
ity of the turbulent vorticity fluctuation function to diffuse from the outer
wake region towards the wall; consequently, the wall has much too large an
influence in the central portions of the boundary layer.

This calculation was repeated with the energy dissipation rate model
equation of Jones and Launder and the results were found to be in accept-
able agreement with experimental data. The velocity distribution U/UT
versus y* is presented in Figure 1 and clearly displays law-of-the-wall
and law-of-the-wake regions which are in good agreement with Weighardt's
data, and the correlation curve. Some indication of the sensitivity of
the solution to the constants is also given. Curves C and D differ pecause
of a small change in the production constant Cg and sublayer constant CS.

In Figure 2, the agreement of the velocity profile from the dissination
model with the velocity defect law is excellent, and demonstrates the ability
of the theory to predict the law-of-the-wake region. The integral scale
length, %/6, the kinematic eddy viscosity, e/Ued*, and the turbulent kinetic
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Figure 3. Comparisons with Experiment of Calculated Scale Length

Profiles for Mach Zero Adiabatic Flat Plate Flow
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Figure 4. Comparisons with Experiment of Calculated Kinematic Eddy
Viscosity Profiles for Mach Zero Adiabatic Flat Plate Flow
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energy function, V?e?UT, in Figures 3, 4, and 5, respectively, are also in
much better agreement with the data, and the differences which are present
are not considered serious.

Jones and Launder applied thie dissipation model to accelerating tur-
bulent boundary layers undergoing relaminarization and obtained results
which were in remarkably good agreement with existing data. Since an
important part of the present task deals with an accelerating boundary layer
about the rounded aft shoulder of a reentry vehicle prior to separation,
their results are very encouraging. However, an extremely important facet
of the modeling is the inclusion of the proper compressibility effects, and
hence the next step in the modeling was in this direction.

Two experimentally observed features of compressible turbulent flat
plate flow, with which the theoretical model must agree, are that the velo-

u 1/2
city profile under the transformation u* =.f (%—) du and the integral

e
length, t, are essentially invariant with Mach number. An analysis of the
law-of-the-wall region for compressible flow demonstrated that the two
turbulence model equations written for the variables pe and p3/2cd should
yield the desired invarience of % with Mach number. This was confirmed
in a calculation of a Mach 5 adiabatic boundary layer, and the results are
shown in Figure 6 where a comparison with the Mach zero (incompressible
case) is made. The results of two other attempts where the variables were
e, p3/2cd, and e, cd/o are also shown, and are in strong disagreement with
the Mach zero results. A comparison of the turbulent kinetic energy with
experimental data of Kist]er(e) is presented in Figure 7 and shows that
acceptable agreement with the variables pe and p3/ €4 is achieved. Better
agreement is obtained with the variables e and cd/o. but the large discrep-
ancy in ¢ prohibits use of this fuaction. The effect of Mach number on
the eddy viscosity is 11lustrated in Figure 8, both from the calculation
and from the experimentally deduced results of Maise and McDona'd. The
predicted trend with Mach number is correct even though the values are some-
what larger than the Maisc and McDcnald results. A comparison of the velo-
city profiles at Mach 5 and Mach zero is shown in Figure 9 under the

10
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aforementioned transformation. The two curves should be in better agreement;
however, the early breakaway of the Mach 5 profile from the laminar sublayer
(y* = 20) is due to a compressibility effect not zccounted for in the sub-
layer formulation. The turbulent viscosity used in the resulfs shown is
modified by the local turbulent Reynolds number Rez = pe]/zz/u according to

uy = el /2001 + 224 C/Re,)

Subsequent analysis has shown that the factor (p/pw)2 should multiply the
constant Cs' and that the effect should be to bring the velocity profile
into good agreement with the Mach zero profile. A recalculation of the
boundary layer with this minor change is anticipated in the immediate
future.

The development of the turbulence modeling has taken several twists
and turns, and further comparisons with experiment are yet required. For
example, how the modeling holds up under a mixing layer calculation is
important to the near wake problem. The decay of the turbulent remant of
the boundary layer is also important during the expansion into the near
wake, and it seems likely that additional modifications will be made to
improve the model for pressure gradient effects. The turbulence model
equations as they stand today are presented below (minus pressure gradient
effects). The dissipation rate equation, as given, is the one used to
obtain the results presented here.

Turbulent Kinetic Energy Equation

(conv.) (prod.) (diss.) (diff.)
gLe.= 7 1 222]) [( * )“’QLe
t " \er) tea\ T TR Taar [\e et 5

or

16



Energy Dissipation Rate Equation

(conv.) (prod.) (diss.)
Dp3/2e p1/2e 2 p3/282 9
d.¢ d Yy _ d (¢ + 8+ 1
ot 1 e M\lor e 2" 2 IR,
d
(diff.)
3/2
LA [(Mw )rw a ed]
prm ar T ar
where n: distance normal to wall
uy = oel/22/(1 + .224 C/R))
Rz = pe]/zl/u
and the constants are:
Cd = 0.09 CS = 120
Cg = 1,090 o = .77
Cm = 0,055 o* = 1.0
C] = 2,5 - Cg C2 = 2.5 - Cm/Cd

17



3. NUMERICAL METHODS

The TACIT (Temporal Alternating-direction-implicit code for Compressible
and Incompressible Turbulent flows) code is being developed to solve the
complete turbulence model equations. As a first step, the code has been
written to solve the compressible time-dependent Navier-Stokes (1aminar)
equations. This section describes and examines the characteristics of the
finite difference methods used.

(9 - 16)

A number of numerical techniques have been applied to related
problems. With the exception of one method(13), these use explicit differ-
ence approximations, which are relatively easy to apply, but which have in
common a stability requirement of the form

max [aK ., bKp] < 1 (1)

where

K, = (“T"(—Cl At (2)

Ky = 24 3
R p(ax) =

a and b are constants of order unity

¢ = local speed of sound.

This Timitation on the time step size makes these methods impractical for
Irw speed flows (u << c), where the time interval must be small enough that
a sound wave travels less than one spatial mesh interval. For high speed
flows, this limitation is not generally as serious, except that high spat-
ial resolution (small AX) becomes costly since At must then also be reduced.
This can become a serious Timitation when only limited regions of a flow-
field require a small spatial meshsize. This is particularly true of
turbulent boundary layers, which require very high resolution for the 1am-
inar sublayer.

The one partially implicit scheme(]3) which has been applied to related

problems is better suited than the explicit methods to low speed flows, but

18



has stability requirements which make it unsuitable for describing viscous
effects at high Reynolds numbers

A method, which has not been applied to the Navier-Stokes equation,
but appears to be well suited for this application for both high and Tow
speed flows, with no stability limitations and _asonably small truncation
errors, is the alternating-directioen-implicit (ADI) scheme. This method
was first applied to the solution of the two-dimensional heat conduction
equation

3_U=32\1+3U (4)
T o
by Peaceman and Rachford(]7) and to a system of hyperbolic equations cf the
form
U _ 5 du du
n AE)(+Bay ()

by Gourlay and Mitchell(]S), and was shown to be unconditionally stable in
both cases. The method would be expected to have the same stability char-
acteristics when applied to the Navier-Stokes equations. The following
sections briefly describe the ADI difference approximations and their
application to the present problem. A more detailed description will be
presented in a forthcoming special report.

3.1 Equations

The TACIT: code is designed to solve the continuum conservation equations
in rectilinear axisymmetric coordinates. These equations can be written
in the form:

continuity

d

©

|

%% + 20U %'%F (rov) = 0 (6)

(o5

2
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"2xial momentum

w2 o
pu  gou” 15 3P _ zz 13
5t T 5z Y ¥ ar (rouv) + + (rcrz) +F , (7)

radial momentum

a0 c
ooV, apuv , 13 o2y P PFrz 12 %
S F - g Wnevt) e 2SR nas () - 5, (8)
total energyv
3k  3oud 13 = 3T,
3% T T3z T Yoar (rohv) 5z ["9p * Uo,, * vo,., ] (9)

13
t v Ir(ea  + o, + vo, )] + uF, + VF

F = FL/p

E=e+%2+%2=f/u$
H=h+%2+%2=ﬁ/u:‘,whereh=e+§
9 = a/p U

z=2z/L

r=r/L

t=t ur/L

p =plp,

u=u/u,

v = v/ur

20




2
F/orur

<
"

c/pru

Q
"

2
r

The stresses %3 act on the normal p1=hé i in the direction J. Thg heat'

flux g, is in the direction i. lThe bodv force F, is in the dirgction i.
The energy equation is not completely general,, in. that radiation is not
included; multi-component gases Xwith or without chepical reaction§) are
properly described only if all diffusion coefficients are etual and the
Lewis number is unity, and if in addition diffusion is due to gradieats: in

species concentration only.

As an initial test of the comnuting fechnique, the conservation !
equations are programmed for solution of a laminar flow, with no body
] .

forces present, so that:

-1
O
~N
"

)
0
"

Finally, it is assumed that
form: ‘

©
"
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an equation of state is available, of the



3.2 Difference Approximations

Two step difference approximations are used, with

k+1 k
(A Y

)
at i,

)
L i'] Oj

aA)
B —— =
( ar i,j"]

for the first (odd)

time

+ At

I+

Az

I+

ar

i 1.
k+1 k+1
Bi ; (Ai+l.j - Ai-l,j) /282
k k
B1 ; (Ai,j+l - Ai,j-l) /2ar
kg, : k1
g (ZAM g 2% g ZAi-l.j) /62

i (f"mﬂ "By TR

K 1 3 k
Mg ( Zhign B T R ) e

step. Here,

22
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(18)

(19)
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(21)
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The even time step approximations are

3A k k+] k
(3?) = (A - A )/At (24)
1,J 1,3 1,J
A k k k
(B 3_2)1,1 = Bi,j (AH] " Ai-l ,j) /242 (25)
3A k k+1 k+1
(B 3?)1 ; = Bi : Ai,j+l - Ai,j-l /24ar (26)

Here, for the odd step, derivatives in the z direction are implicit (written
in terms of dependent variables at the new time point) and derivatives in
the r direction are explicit. For the even step, z derivatives are explicit
while r derivatives are implicit. When these difference approximations are
applied to the Navier-Stokes equations in conservation form, the result is

a set of algebraic non-linear equations for values of the dependent variables
at time k+1. Coupling between values at i+1, i, i-1 occurs during the odd
step so that equations for all values of { are coupled together for any
particular value of j, and must, therefore, be solved simultaneously.
Conversely, during the even step, the equations for all values of j must

be solved simultaneously for any particular value of i. The coupled non-
1inear algebraic equations are solved by a quasi-linearization technique.
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3.3 Truncation Error

Analysis shows that the Navier-Stokes equations, differenced using the
approximations of Section 3.2, have a truncation error of order Atz. Azz.
Arz. This has been verified for the inviscid terms by performing a calcula-
tion in which a spherically symmetric, Gaussian shaped energy pulse 1s
instantaneously introduced into an otherwise uniform very large Reynolds
number flow. An analytic solution can he obtained for this problem and the
calculated error {is indeed second order in at, az, ar.

While 1t is clear that a smal) truncation error is preferable over a
large one, it is usually not obvious how large a truncation error can be
tclerated before the solution 1s unacceptably degraded. In fact, very large
truncation errors may be acceptable for problems in which error accumulation
is not of overriding importance (such as boundary layer problems, where
boundary conditions dominate the solution and the history of the flow,
including previously generated errors, becomes progressively less important
with distance downstream). On the other hand, wave interaction problems,
in which the phase of a wave (which propogates over many wavelengths within
the domain) 1s important, require extremely small truncation errors.

In order to crudely simulate the requirements of the near wake problem,
the following problem was numerically solved:

-Lz-2,)% + (r-ro)z]/-‘l
t=0: h=1+.005c¢e

Pety o=, us1,v=0
YM_
where P= Iil-ph (ideal gas)

M= 4, Re = 2600
For large Tor this corresponds to an instantaneous cylindrical Gaussian

shaped energy pulse at time zero in a Mach 4, otherwise uniform flow. The
translational motion can be transformed out so the resulting disturbance
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{s one-dimensional (cylindrical), centered about the point r = ros 2° 2, + t.
Contours of scalar quantities (isotherms, isobars, etc.) are therefore clr-
cular in shape, and the degree of distortion of these contours is a quick
visual measure of the accumulated errors in the calculation. It was found
that at = 0.8, az = ar = 1 produced a solution which is marginally accept-
able after 16 time steps (t = 12.8). The degradation of this solution with
increasing at or increasing az and ar is illustrated in Figure 10, which
shows contours of (P - ;ﬁ—z-). the pressure disturbance. The most serious
manifestation of accumulating truncation error {s the appearance of a wake
of error trailing behind the disturbance. This wake consists of cells of
alternating sign, with the largest error associated with the cell closest
to the disturbance. One celi is added with each time step, so the plot of
the solution with the fewest time steps (at = 6.4, two time steps) has an
uncluttered appearance, but with large errors.

The conditions of this problem are in some ways more severe than would
be encountered in the near wake problem. The spatiai resolution of the
Gaussian disturbance is quite poor and these conditions would be paralleled
in the near wake problem only near the body corner, where a strong expansion
produces large gradients, and at the separation and wake shocks. However,
these regions are stationary or at most slowly varying with time and can,
therefore, be expected to have much smaller temporal contributions to the
error.

It appears that doubling at or doubling 4z and ar over the values at
the nominal conditions (At = 0.8, ax = Ar = 1) have a similar effect on the
magnitude of the errors. It is reasonable to assume, therefore, that the
spatial and temporal contributions to truncation error are of the same order
of magnitude under these conditions. For the particular problier being
solved, one should expect little further improvement in the solutinn if only
at is decreased, leaving ax and ar fixed. On the other hand, for a problem
which {s approaching a stationary state, the temporal contribution to trunc-
ation error will decrease considerably, and the time step size can be corres-
pondingly increased without a significant degradation of the solution.

Although it is unrelated to truncation error, it shouid be noted here
that the nominal conditions in Figure 10 (at = 0.8, ax = ar = 1) correspond
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to a Courant number Kc = 1. With increasing at, K. ranges from 1 to 8,
with no sign of instability. It therefore appears that in the near wake
calculation, especially in the later stages as the solution approaches a
stationary state, a Courant number considerably greater than unity can be
used without serious degradation of the solution due to truncation error.

3.4 Calculation of Shocks

The differencing of the inviscid terms in their conservative form is
equivalent to an integration of the differential equation. The integrated
conservation equations are, therefore, satisfied even if the detailed pro-
files between two meshpoints are unresolved., This is most important when
internal shocks apyear in the domain of the calculation, since the shock
jump corditions are then accurately calculated. This property of the method,
as well as stability and accuracy characteristics, can be tested by compar-
ing the numerical selution of a norma! shock layer problem with the exact
solution obtained by G. I. Taylor for the 1imiting case of infinite Prandtl
number,

In this Vimiting case, the one-dimensional equations in conservation
form are given vectorially by

af , 29,
T T (27)
where
o] pu
f = pu y G B nuz -0
22
oE puld - uo,,
with
3 = H-P/lp
] w
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Taylor's exact steady state solution of Equations 27, for an ideal gas
equation of state, can be written

(a+ ki) (b - ku) = €82 (28)

where

K (Y"] )M]Z
U and M] are respectively the velocity and Mach number ahead of the shock,
while m is the mass flow rate across the shock, pu. Equation 28 has been
U, +u
normalized in such a way that u = —T—] 2atz=0.
The one-dimensional version of the differencing presented in Section
3.2 applied to Equations 27 gives difference equations of the form

odd cycle
1 [fkn ) f]* ] [gk+l _gkn ] . (26)
= L RTRERR

even cycle
I_[f""-f]w [g g ]=o (30)
at LT R IRRR

where the indices 1, k are implied unless otherwise specified.
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We observe that the odd cycle is implicit while the even cycle is
explicit. The solution of Equation 29 thus requires the quasi-1inearization
of the non-1inear components of the functions f and g; and the solution by
fteration of a matrix equation of the type

Bw=F8

where X is a band matrix with a width of 11 elements.

The resolution and Courant number effects on the stability and accuracy
of the numerical scheme were investigated by solving Equations 29 and 30 to
steady state and comparing with Taylor's exact solution.

Some results of celculations of shock structure for M] (the Mach number
of the undisturbed flow relative to the shock) = 2 are shown in Figures 11
and 12. In Figure 11, the Courant number was fixed at 0.75. The three
numerical solutions shown illustrate the effect of spatial resolution. The
shock thickness for these conditions corresponds to o]uld/ulzzlo. The
solutions have been shifted in z to give a best fit with the exact solution
since the final stationary position of the shock within the calculation
domain 1s not relevant in making these comparisons. The calculation with
a spatial meshsize p]u]AZ/u] = 5.23 therefore leaves the shock structure
entirely unresolved. The jump conditions in veiocity (and those in the
other flow variables which are not presented nere) are nevertheless accur-
ately computed. The shock structure is already represented reasonably well
when the mesh spacing is halved to 2.62. The undershoot in velocity at the
downstream edge of the shoc:, which is often observed in nther finite
difference methods and can be quite large, is not significant here.

In Figure 12, the resolution has been fixed at p]u]AZ/u] = 1.31. The
time stepsize has been varied to examine the effect of Courant number on
stability. The calculation was found to be stable even for a Courant number
as large as 10. The temporal truncation error associated with this large
time step size apparently does not prevent the approach to a steady solution.
Since it 1s 1ikely that an oscillatory or divergent solution which fails to
to approach a steady state would result when the time step size becomes
large enough that the temporal truncation error dominates the solution, it
can be assumed that the temporal truncation error is still reasonably small
even with this large step size.
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Since explicit difference methods are limited by stability considera-
tions to K. <1, the calculation for K. = 10 reaches a steady state in
approximately one tenth the number of time steps required by an explicit
method, with no significant degradation of the steady solution due to tem-
poral truncation error. This, again, underlines the fundamental advantage
of the implicit method, especially when the time dependent calculation is
being used to obtain the asymptotic steady solution.
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4. LAMINAR NEAR WAKE CALCULATION

A high Reynolds number slender body near wake calculation is under
progress. The body is an 8 degree half-angle sharp cone, with M_= 21,

Re, = 7.8 x 106, Hw/Hm = 0.02 (cold wall). Under these conditions, the
D
boundary layer at the rear of the body is expected to be fully turbulent.

A steady calculation, using the methods of Reference 1, has previously been
made for these conditions under the assumption that while the boundary
layer profiles at the body shoulder correspond to boundary layer transition
near the nose, the mixing in the near wake is dominated by the Taminar
viscosity. For the purpose of further testing the numerical techniques

for the time-dependent calculation under conditions very close to those
correspondin- +o the final (turbulent mixing) case, this calculation is
being used as a test case for the laminar version of the code.
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