
TURBULENT  WAKES 

E .   Baum 

TRW  Systems  Group 

AD-752  592 

Prepared for: 

AdvancedResearch Projects Agency 

30 November  1972 

DISTRIBUTED BY: 

National Technical Intormation Service 
U. S. DEPARTMENT OF COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 



BEST 
AVAILABLE COPY 





Unclassified 
Srt unt v Cl.tssitu'.itiitn 

intv  * /.is M/K utt'tn >»' 

DOCUMENT CONTROL DATA -R&D 
d   .f   fh-.tr;i, I .in./ in./.■>.,,,   .,i„, •I.Hi,,,, mi,--    I:,- OII(. 111/ whn,  thy UVmtaU r.p.if> is  cUtlKllletl) 

■ 11.1N A 11 NO Ac T1 vr T v fi'ntputttte ,'itthiiri 

TRW Systems Group 
One Spaci Park 

—Redondc, Beach. Cal ifornia 90278, 

iO.REPOR       SECURITY   CLASSIUCA TION 

Unclassified 
it.    GROUP 

1     HI.COX I     I I T . 

Turbulent Wakes 

1 

4   OESCRtr1 Ti vi   NOTFS (Type of report .im/.inr 7i/s r v»- detea) 

Semi-Annual Technical  Report, Period ending 10/31/72 
AU fHORiS) fFirat tmnto, middh- mtiial. Ittst nam») 

f,   n t P o f< * i i 

_November 30, ^972_ 
H.I N   t I    -> *     ' ■{     , I    A n  I    fiO 

N00014-72-C-C/!48 
h    PROJF '   r  NO 

la.   TOTAL   NO.   OF PAGES 

 49 
7b.   NO     OF   REFS 

19 
9«.   ORIGINATOR'S   R.-PQRT   NUMBERIS) 

23023-6001-RU-00 

9fi.  OTHER REPORT NOISI (Any other numbers IIIBI may bf ataläntd 
this report) 

l-il'i T Hl D'J TU   ■ .       PATEMFNT 

Approved for public release, distribution unlimited 

11      ■   Jl-'t.'!    t MT»-! '  A H V   NO TLS 

ABSTRACT 

12.   SPONSORING MILI TARY   ACTIVITY 

ARPA/0NR 

Describes progress in developing turbulence ,nodel  equations based on an eddy 

viscosity, written in terms of the scalar quantities e (turbulence energy) and 

z (ir.tegral  length scale).    The turbulence model equations have been shown to 

adequately describe mean and turbulence properties for incompressible and com- 

pressible flat plate boundary layers.    Describes properties of an implicit 

finite difference method for solving the time-dependent model equations, as 

applied to laminar (Navier-Stokes) problems.    The method appears to be uncondi- 

tionalTy stable, of second order accuracy in space and time, and to be very well 

behaved in the presence of internal shocks. 

^rvr." ,1473 (PAGF " —44- 



Sfcurit\  n.issificaüon 

KEV    WORDS 
LINK    * 

ROLE WT 

Turbulence modeling 

Time-dependent 

Navier-Stokes equations 

Finite differences 

Alternating-direction implicit 

-gA, 
DD .'■,r..l473 "«CM 
S/N   0101-807-6821 

Unclassified 
Security Clussificatlou 



23028-6001-RUTOO 

4. 

SEMI-ANNUAL TECHNICAL REPORT 

TURBULENT WAKES 

3Ü November 1972 

Principal Investigator: 

Effective Date of Contract: 

Expiration Date: 

Amount of Contract: 

Contract Number: 

Program Code Number: 

Scientific Officer: 

E. Baum (213) 535-2890 

1 April 1972 

31 December 1972 

$100,000 

.100014-72 ^-0448 

2E90 

Director Fluid Dynamics Programs 
Mathematical and Information Sciences Division 
Office of Naval Research 
Department of the Navy 
Arlington, Virginia   22217 

Sponsored by 

Advancec Research Projects Agency 

ARPA Order Number 1801 

' 

Et 
. a 

Approved for public release; distribution unlimited 

O 

The views and conclusions contained in this document are 
those of the authors and should not be interpreted dS 
necessarily representing the official policies, either 
expressed or implied, of the Advanced Research Projects 
Agency of the U. S. Government. 

TRW 
irtnms Qimur 

One Space Park 

Redondo Beach, Callfo'nia   90?78 

-£> 



SUK. RY 

The objective of this program is to develop the methodology for per- 
forming calculations of the turbulent near wake behind a slender body in 
supersonic flow. The two major technical problems are: 

1. To develop turbulence model equations which adequately describe 
the mean flow properties and, in addition, provide information 
about the properties of the fluctuation field. 

2, To develop numerical procedures for the solution of the model 
equations. ' 

A turbulence modeling based on an eddy viscosity, which is a function 
of turbulence properties (the turbulent kinetic energy, e, and an integral 
scale length function, i)t  is being developed. The model equations are 
programmed for solution by a steady state finite difference method (with 
only the boundary layer form of the laminar and turbulent transport terms 
included) for comparison with available experimental data. After several 
modifications of the original equations, the turbulence model has now been 
shown to adequately describe both mean and turbulence properties of incom- 
pressible and compressible adiabatic flat plate boundary loyers. Additional 
verification of the model by comparison with mixing layer experiments would 
be desirable before applying the model to the near wake calculation. 

The near wake problem, because of the recirculation region immediately 
behind the body, constitutes a boundary value problem. The proposed comput- 
ational approach is to obtain the steady flowfield as the limit of the time 
dependent solution of the Navier-Stokes equations with turbulence modeling. 
The numerical method proposed uses alternating-direction implicit differ- 
encing of the conservation form of the equations. The method has been 
programmed for the laminar Navier-Stokes equations. Truncation error has 
been shown to be second order in temporal and spatial meshsize. Stability 
has been demonstrated for a temporal step size up to ten times that beyond 
which explicit difference methods become unstable. Calculations of shock 
structure have demonstrated excellent agreement with exact solutions even 
with relatively poor spatial resolution. Shock jump conditions are accur- 
ately calculated even with spatial resolution as poor as half the shock 
thickness. 

iiCL 



A.» initial application of the numerical methods to the near wake pro- 

blem, using laminar conservation equations, is in progress. 
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1.    INTRODUCTION 

The principal objective of this program is to develop the capability 

of performing calculations of turbulent near wakes of slender bodies.    Two 
major subtasks are involved: 

1. Develop turbulence model equations applicable to compressible 
as well as incompressible flows. 

2. Develop finite difference methods for the solution of the model 
equations. 

An integral part of the development of the turbulence model equations 

is comparison of calculations of simple flows with experimental data.    Such 

comparisons are necessary to test the validity of the proposed modeling. 

These simple flows can be modeled quite adequately using subsets of the 

complete conservation and turbulence model equations which are being pro- 

posed for use in the near wake problem.    The particular subset being used 

for this purpose is one which has been applied to the laminar steady cal- 

culation of interacting flowsv y, and contains both the complete inviscid 

terms (in the supersonic flow) and the boundary-layer-like viscous terms. 

The addition of the turbulence modeling to this existing code and the develop- 

ment and testing of the model equations using this code has been jointly 

supported by the ROPE Project funded by ABMDA and ARPA under Contract 
DAHC-60-71-C-0049. 

The near wake problem has the intrinsic character of a boundary value 

problem because of the presence of the subsonic region immediately behind 

the body.    It is possible to make simplifying assumptions in the recircul- 

ation region and recast the problem as a pseudo-initial-value-problem.    The 

upstream influence characteristic of the boundary-value-problem is then 

retained through the presence of an eigenvalue required to pass through a 

downstream saddle-point singularity (see Reference 1).    However, a more 

rigorous approach (and the one proposed here) is to describe the near wake 

using the complete steady state conservation equations.    The boundary value 

problem resulting from this formulation can be converted to a more easily 

solved initial value problem by considering the steady state solution to be 

the asymptotic limit of a time-dependent calculation.    The numerical methods 

for solution of these equations can be developed relatively Independent of 



the turbulence modeling, since the laminar (Navier-Stokes) equations embody 

most of the computational difficulties expected from the complete set of 

model equations. 

This report describes the initial  (and relatively independent) work 

on the modeling of turbulent flows and on the computational techniques 

required to solve problems described by Navier-Stokes-like equations. 

The work described in this report was performed in the period 1 April 

through 1 October 1972. 

■ 



i.e., u'-u*. = e 
' J   4 -j 

2. TURBULENCE MODELING 

The calculation of high speed turbulent shear flows requires a descrip- 
tion of the Reynolds stresses and the turbulent heat flux terms appearing 
in the time averaged and hence, mean flow momentum and energy equations. 
Using arguments similar to those for laminar flows, the transport of momentum 
and energy by turbulence is found to be proportional to the time averaged 
rate-of-strain or time averaged temperature gradient, and to the so-called 
eddy diffusivity function which depends upon the structure of the turbulence, 

/3Ü.   9Ü.V 

(gjf + ax" }• class1'cally' the eddy viscosity has been 

written in terms of mean flow variables which were found by empirical means 
to represent the turbulence. For example, in simple jets, wakes, and 
mixing layers, e ^ K 6 um=lv where K is an empirical constant and 6 is the 
lateral extent of the shearing region. The strong dependence of the class- 
ical approach on the geometry of the flow makes it unacceptable for des- 
cribing a complex turbulent flow configuration such as encountered in the 
near wake. Instead, a more sophisticated representation of the eddy viscosity 
based upon a local modeling of the turbulence field is required. 

The turbulent field can be represented by as few as two quantities which 
are generally considered to be the turbulent kinetic energy, e = E u'.u'./2 

i 
and an integral scale length of the turbulence, «,, which is related to the 
width of the spectrum of the autocorrelation function of the turbulent 
kinetic energy. The eddy diffusivity, written in terms of these variables 

112 is e = Y* e ' «, where y* is a scaling constant. The determination of e 
and %  requires the development of two model equations which describe the 
convection, production, dissipation, and diffusion of turbulence in the 
flow. An equation directly describing the turbulent kinetic energy has 
been used in numerous modern investigations, beginning with Bradshaw^ ', 
is now reasonably well understood and accepted. However, less confidence 
exists with the second turbulence model equation, primarily because this 
equation represents a higher order balance between production, dissipation, 
and diffusion than does the kinetic energy equation. The uncertainties, 
which exist in the modeling of individual terms, are therefore more 



important in the second equation. The determination of the most appropriate 

second equation is part of the present effort. 

Two promising modeling theories for the second turbulence equation have 

been considered in the present study. One was developed by Saffman^ in 

terms of a transport equation for the turbulent vorticity fluctuations, and 

the other was developed by Jones and Launder^ ' who wrote a transport equa- 

tion for the turbulent energy dissipation rate e^ = C. e3/2/«,, where C. is 

a universal dissipation constant to be determined from experiment. To 

determine which theory produces better agreement with experiment, both 

equations were solved, each with the turbulent kinetic energy equation, for 

a flat plate boundary layer in incompressible flow. These equations are 

mutually coupled to the mean flow momentum and continuity equations and the 

resulting solutions, therefore, represent simultaneous solutions of all 

four equations. 

The calculations were initiated by estimating on the basis of experi- 

mental data the mean flow velocity profile and the profiles of e and a 

across the boundary layer. The turbulent boundary layer was then calculated 

by streamwise marching over a distance of 50 initial boundary layer thick- 

nesses. Experience of other investigators showed initial profile effects 

to be negligible for an integration of this distance. Referring to the 

vorticity model of Saffman, by adjusting the constants appearing in the 

turbulence equations over their acceptable range, it was possible to produce 

solutions which were in reasonable agreement with experimental data in the 

law-of-the-wall region. Two such cases are shown in Figure 1 where the 
1 /2 

velocity ratio U/U (U = (x/p,,) ' ) is plotted against the reduced coordin- 
T  T      W  W 

ate, y* = p u y/u . A wealth of experimental data has been correlated in 
W T   W 

the law-of-the-wall region with the expression 

^ = C + i £n y* 
T 

and the vorticity model results are in reasonable agreement with this cor- 

relation with C = 5.24 and K = 0.40 in the range 100 < y* < 2000. However, 
(S) 

experimental data by lJeighardtv ' is al-o presented and shows a breakaway 

from the law-of-the-wall region at about y* = 800, indicative of the outer 

... . 
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wall-of-the-wake region.    The vorticity model thus fails to produce the 

wall-of-the-wake region of the boundary layer consistent with experiment. 

This is more clearly seen in Figure 2 where a comparison of one vorticity 

model solution in velocity defect coordinates can be made with the experi- 

mentally correlated velocity defect law.    The vorticity model solution does 

not display the curvature required to agree with the velocity defect law in 

the wake region (y/6 > 0.2). 

Further examination of the solution shows in Figures 3 and 4 that the 

integral scale length, i/s, and dimensionless kinematic eddy viscosity 

e/u 6*. where 6* is the displacement thickness, both reach values in the 

central portion of the boundary layer which far exceed the measurements of 

Klebanoff^ and the values deduced by Maise and McDonald^ from experi- 

mentally measured and correlated velocity profiles.    A comparison of the 

calculated turbulent kinetic energy is made with Klebanoff's data in Figure 

5, and the agreement is clearly much better. 

Since e * e '  i, the discrepancies noted in Figure 4 between the 

theoretical  (vorticity model) and measured e are mostly attributable to 

the length scale, I.    This suggests that the problem lies with the vorticity 

equation.    Physically, the difficulty seems to be attributable to the inabil- 

ity of the turbulent vorticity fluctuation function to diffuse from the outer 

wake region towards the wall; consequently, the wall has much too large an 

influence in the central portions of the boundary layer. 

This calculation was repeated with the energy dissipation rate model 

equation of Jones and Launder and the results were founr* to be in accept- 

able agreement with experimental data.    The velocity distribution U/U^ 

versus y* is presented in Figure 1 and clearly displays law-of-the-wall 

and law-of-the-wake regions which are in good agreement with Weighardt's 

data, and the correlation curve.   Some indication of the sensitivity of 

the solution to the constants is also given.    Curves C and D differ oecause 

of a small change in the production constant C   and sublayer constant Cs 

In Figure 2, the agreement of the velocity profile from the diss-nation 

model with the velocity defect law is excellent, and demonstrates the ability 

of the theory to predict the law-of-the-wake region.    The integral scale 

length, 1/6, the kinematic eddy viscosity, E/Ue6*, and the turbulent kinetic 
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.12 

.10   - 
VORTICITY MODEL 
ß (FIG. 2-1) 

y/6 

1.2 

Figure 3.   Comparisons with Experiment of Calculated Scale Length 
Profiles for Mach Zero Adiabatic Flat Plate Flow 
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Figure 4.    Comparisons with Experiment of Calculated Kinematic Eddy 
Viscosity Profiles for Mach Zero Adiabatic Flat Plate Flow 



energy function, /Ze/U , In Figures 3, 4, and 5, respectively, are also In 

much better agreement with the data, and the differences which are present 

are not considered serious. 

Jones and Launder applied thle dissipation model  to accelerating tur- 

bulent boundary layers undergoing relamlnarizatlon and obtained results 

which were In remarkably good agreement with existing data.    Since an 

Important part of the present task deals with an accelerating boundary layer 

about the rounded aft shoulder of a reentry vehicle prior to separation, 

their results are very encouraging.    However, an extremely Important facet 

of the modeling Is the Inclusion of the p oper compressibility effects, and 

hence the next step In the modeling was In this direction. 

Two experimentally observed features of compressible turbulent flat 

plate flow, with which the theoretical model must agree, arc that the velo- 

1 u \1/2 
city profile under the transformation u* = J   i^-j      du and the Integral 

length, I, are essentially Invariant with Mach number.    An analysis of the 

law-of-the-wall  region for compressible flow demonstrated that the two 
3/2 turbulence model  equations written for the variables pe and p      c . should 

yield the desired Invarlence of l with Mach number.    This was confirmed 

In a calculation of a Mach 5 adlabatlc boundary layer, and the results are 

shown <n Figure 6 where a comparison with the Mach zero (Incompressible 

case) Is made.    The results of two other attempts where the variables were 
3/2 e, P      ej, and e, e ./p are also shown, and are In strong disagreement with 

the ►'ach zero results.    A comparison of the turbulent kinetic energy with 
fil experimental data of Kistler  '  Is presented In Figure 7 and shows that 

3/2 
acceptable agreement with the variables pe and p ' cj Is achieved.    Better 

agreement Is obtained with the variables e and tJo% but the large discrep- 

ancy In t prohibits use of this function.    The effect of Mach number on 

the eddy viscosity is Illustrated in Figure 8, both from the calc^atlon 

and from the experimentally deduced results of Maise and McDona'd.    The 

predicted trend with Mach number is correct even though the values are some- 

what larger than the Maisc and McDonald results.    A comparison of the velo- 

city profiles at Mach 5 and Mach zero is shown in Figure 9 under the 

10 
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jforementloned transformatloru    The two curves should be in better agreement; 

however, the early breakaway of the Mach 5 profile from the laminar sublayer 
(y* » 20) is due to a compressibility effect not eccounted for in the sub- 

layer formulation.    The turbulent viscosity used in the results shown is 

modified by the local  turbulent Reynolds number Re   = pe '  t/u according to 

vj = pe1/2i/(l + .224 Cj/R^J 

Subsequent analysis has shown that the factor (P/PJ2 should multiply the 
constant Cs, and that the effect should be to bring the velocity profile 

into good agreement with the Mach zero profile.    A recalculation of the 
boundary layer with this minor change is anticipated in the immediate 
future. 

The development of the turbulence modeling has taken several  twists 
and turns, and further comparisons with experiment are yet required.    For 

example, how the modeling holds up under a mixing layer calculation is 

important to the near wake problem.    The decay of the turbulent remnant of 

the boundary layer is also important during the expansion into the near 
wake, and it seems likely that additional modifications will be made to 

improve the model  for pressure gradient effects.    The turbulence model 
equations as thpy stand today are presented below (minus pressure gradient 

effects).    The dissipation rate equation, as given, is the one used to 
obtain the results presented here. 

Turbulent Kinetic Energy Equation 

(conv.)     (prod.) (diss.) (diff.) 

16 



Energy Dissipation Rate Equation 

(conv.)       (prod.) (diss.) 

1/9      1/2    / v9  3/2 2  . 

(diff.) 

w 

where n:     distance normal to wall 

.1/2. MT = pe'^t/O + .224 C^R^) 

- C, e3/2/. 

R£ = pe1/2£/y 

and the constants are: 

Cd = 0.09 Cs = 120 

C   = 1.090 a   = .77 

C   = 0.055 a* = 1.0 m 

CT  = 2.5 - Cg                             C2 = 2.5 - Cm/Cd 

17 



3.    NUMERICAL METHODS 

The TACIT (Temporal Alternatlng-direction-tmplicit code for Compressible 

and Incompressible Turbulent flows) code is being developed to solve the 

complete turbulence model equations.    As a first step, the code has been 

written to solve the compressible time-dependent Navier-Stokes (laminar) 

equations.    This section describes and examines the characteristics of the 
finite difference methods used. 

A number of numerical techniques have been applied to related 

problems.    With the exception of one method^13\ these use explicit differ- 

ence approximations, which are relatively easy to apply, but which have in 

common a stability requirement of the form 

max [aKc, bKR] < 1 (1) 

where 

V^P1^ (2) 

KR--^r (3) R     PUX)2 

a and b are constants of order unity 

c   = local speed of sound. 

This limitation on the time step size makes these methods impractical for 

low speed flows (u « c), where the time interval must be small enough that 

a sound wave travels less than one spatial mesh interval.    For high speed 

flows, this limitation is not generally as serious, except that high spat- 

ial resolution (small AX) becomes costly since At must then al.eo be reduced. 

This can become a serious limitation when only limited regions of a flow- 

field require a small spatial meshsize.    This is particularly true of 

turbulent boundary layers, which require very high resolution for the lam- 

inar sublayer. 

The one partially implicit scheme^    ' which has been applied to related 

problems is better suited than the explicit methods to low speed flows, but 

18 



has stability requirements which make it unsuitable for describing viscous 

effects at high Reynolds numbers 

A method, which has not been applied to the Navier-Stokes equation, 

but appears to be well suited for this application for both high and low 

speed flows, with no stability limitations and „asonably small truncation 

errors, is the alternating-direction-implicit (ADI) scheme. This method 

was first applied to the solution of the two-dimensional heat conduction 

equation 

2 2 
3U _   3   U   .    3   U lA\ 
dt     it-      3yZ 

by Peaceman and Rachford   and to a system of hyperbolic equations of the 
form 

H  M 3l  b 3y W 

(18) by Gourlay and Mitchell   , and was shown to be unconditionally stable in 
both cases. The method would be expected to have the same stability char- 
acteristics when applied to the Navier-Stokes equations. The following 
sections briefly describe the ADI difference approximations and their 
application to the present problem. A more detailed description will be 
presented in a forthcoming special report. 

3.1 Equations 

The TACIT code is designed to solve the continuum conservation equations 
in rectilinear axisymmetric coordinates. These equations can be written 
in the form: 

continuity 

19 
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■ SA ial momentum 

ifiü+i£H!+ii_(rpUv) +iP = ^+i^-(ra    ) + F m 3t 3z       r ar ^,puv/      3z       3z       r 3r v urz'       z C7] 

radial momentum 

i£V + ipuv + i -L. (rpv2)   • IP = ^ü + i i- (ro    ) - -^ + F (o) 
3t 3z       r 3r vp    '      3r       3z       r 3r v    rr        r r löi 

total energy 

M + iSiLH. + i i_ (rpHv)  = — r-q    + Uo      + Vo    ] (Q) 
3t 3z       r 3r ^p,v/      3z L Hz zz rzJ ^' 

+ 1 i_ [r(-q    + Ua      + va    )] + UF    + vF„ 
r sr L v   T rz rr'J z r 

All quantities are non-dimensional, using the following reference values: 

F ■ FL/pru* 

E=e + / + ^ = E/u2
r 

2       2 
H = h + 7   +X   = H/u2 where h = e + - 2       2 r p 

q ■ q/pr
u? 

Z • 2/1 

r = f/L 

t = t ur/L 

P  ■ p/pr 

u = IT/u 

v = v/u.. 

20 



r r 
• I P = fhJtl 

-.      2 

The stresses a., act on the normal p^ne i in the direction j. The heat1 

flux q. is in the direction i. The bodv force F. is in the direction i. 

The energy equation is not completely general1, in that radiation is not 

included; multi-component gases (with or without chemical reactions) are 

properly described only if all diffusion coefficients are equal and the 

Lewis number is unity, and if in addition diffusion is due to gradients' in 

species concentration only. 

As an initial test of the computing technioue, the conservation i 

equations are programmed for solution of a laminar flow, with no body 

forces present, so that: 

\ 

'„■iff J(^»)W|7+»IF} ,    '    '",) 
_   p       1 3V   ,    ^U I i ,,    . 

0rz r Ri    TI + Tf- ,      ' (13) 
^ i 

-     H    ill c\ß\ 
■qz " RePr   5?        • i . UV 

i 

-qr " RiPF   3?   , ' {n) 

"= ! 

I 

Finally, it is assumed that an equation of state is available, of the 

form: 

P  = P (P.h) (16) 

21 
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3.2 Difference Approximations 

Two step difference approximations are used, with 

k+1       k 

. 
i 

) 

■ 

f|J] =(A       -A      W (17) 
WiJ MJ       i.J/ 

H)(, ■•U(VIJ-*I-,J ^ 

k+l      / , , \k+l 

('CU'VUC^^J-^4^-^) /si 

k+l       /    , , \k+l 

('Cu'Vu (-?A^.Jt2Ai.J-7A'-'.j)  '" 

for the first (odd) time step.    Here, 

t™   =  tk + At 

zitl = zi i A2 

rJtl = rj * Ar 
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(•CJ   =BU i^-kw)k/2tr (19) 

(20) 

(BC+rC(iAi^-2Ai-^Ai^k/&r     (21) 

(22) 

H)ij-i = Bij-i(^Ai'j+i + 2Ai'j^Ai^k/Ar   (23) 



The even time step approximations are 

k+1       k 
lit) s (A       "A      )/At W 

(B")lJ     =B1.J  (A^.J-Ai-l.J/2A2 (25) 

(BCJ   SBIJ h-W-'w)™** (26) 

Here, for the odd step, derivatives in the z direction are implicit (written 

in terms of dependent variables at the new time point) and derivatives l.i 

the r direction are explicit.    For the even step, z derivatives are explicit 

while r derivatives are implicit.    When these difference approximations are 
applied to the Navier-Stokes equations in conservation form, the result is 

a set of algebraic non-linear equations for values of the dependent variables 

at time k+1.    Coupling between values at 1+1, 1, 1-1 occurs during the odd 

step so that equations for all values of 1 are coupled together for any 

particular value of j, and must, therefore, be solved simultaneously. 

Conversely, during the even step, the equations for all values of j must 
be solved simultaneously for any particular value of 1.    The coupled non- 

linear algebraic equations are solved by a quasi-linearizatlon technique. 
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3.3 Truncation Error 

Analysis shows that the Navler-Stokes equations, differenced using the 

approximations of Section 3.2. have a truncation error of order At?, A22, 

Ar . This has been verified for the Invlscld terms by perfonnlng a calcula- 

tion In which a spherlcilly synwetrlc, Gaussian shaped energy pulse Is 

Instantaneously Introduced Into an otherwise uniform very large Reynolds 

number flow. An analytic solution can Se obtained for this problem and the 

calculated error 1$ indeed second order in At. A2, Ar. 

While It Is clear that a small truncation error Is preferable over a 

large one, It Is usually not obvious how large a truncation error can be 

tolerated before the solution Is unacceptably degraded. In fact, very largt 

truncation errors may be acceptable for problems In which error accumulation 

Is not of overriding Importance (such as boundary layer problems, where 

boundary conditions dominate the solution and the history of the flow. 

Including previously generated errors, becomes progressively less Important 

with distance downstream). On the other hand, wave Interaction problems, 

in which the phase of a wave (which propogftes over many wavelengths within 

the domain) Is Important, require extremely small truncation errors. 

In order to crudely simulate the requirements of the near wake problem, 

the following problem was numerically solved: 

-CU-O2 ♦ (r-r )2]/4 
t • 0:    h - 1 ♦ .005 e 0 0 

_T_ 

r-1 

If u ■ 1, v 

where P - HL ph (Ideal gas) 

M - 4, Re » 2000 

For large r0, this corresponds to an Instantaneous cylindrical Gaussian 

shaped energy pulse at time zero In a Mach 4, otherwise uniform flow. The 

translatlonal motion can be transformed out so the resulting disturbance 
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is one-dimensional (cylindrical), centered about the point r • r0» I • ^ ♦ t. 
Contours of scalar quantities (isotherms, isobars, etc.) are therefore cir- 

cular in shape, and the degree of distortion of these contours is a quick 

visual measure of the accumulated errors in the calculation. It was found 

that at ■ 0.8, A2 • ar " 1 produced a solution which is marginally accept- 

able after 16 time steps (t ■ 12.8). The degradation of this solution with 

increasing at or increasing az and ar is illustrated in Figure 10, which 

shows contours of fP - -^-y |, the pressure disturbance. The most serious 

manifestation of accumulating truncation error is the appearance of a wake 

of error trailing behind the disturbance. This wake consists of cells of 

alternating sign, with the la-gest error associated with the cell closest 

to the disturbance. One cell is added with each time step, so the plot of 

the solution with the fewest time steps (at • 6.4, two time steps) has an 

uncluttered appearance, but with large errors. 

The conditions of this problem are in some ways more severe than would 

be encountered in the near wake problem. The spatial resolution of the 

Gaussian disturbance Is quite poor and these conditions would be paralleled 

in the near wake problem only near the body corner, where a strong expansion 

produces large gradients, and at the separation and wake shocks. However, 

these regions are stationary or at most slowly varying with time and can, 

therefore, be expected to have much smaller temporal contributions to the 

error. 

It appears that doubling At or doubling az and ar over the values at 

the nominal conditions (at ■ 0.8, ax ■ ar ■ 1) have a similar effect on the 
magnitude of the errors. It is reasonable to assume, therefore, that the 

spatial and temporal contributions to truncation error are of the same order 

of magnitude under these conditions. For the particular probleir bein& 

solved, one should expect little further improvement in the solution if only 

at is decreased, leaving ax anH ar fixed. On the other hand, for a problem 

which is approaching a stationary state, the temporal contribution to trunc- 

ation error will decrease considerably, and the time step size can be corres- 

pondingly increased without a significant degradation of the solution. 

Although it Is unrelated to truncation error, it should be noted here 

that the nominal conditions in Figure 10 (at - 0.8, ax ■ ar ■ 1) correspond 
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to a Courant number Kc • 1.    With Increasing At, Kc ranges from 1 to 8, 

with no sign of instability.    It therefore appears that in the near wake 

calculation, especially in the later stages as the solution approaches a 

stationary state, a Courant nunter considerably greater than unity can be 

used without serious degradation of the solution due to truncation error, 

3.4   Calculation of Shocks 

The differencing of the inviscid terms in their conservative form is 

equivalent to an Integration of the differential equation.    The Integrated 

conservation equations are, therefore, satisfied even If the detailed pro- 

files between two mesiipoints are unresolved.    This is most Important when 

internal shocks apj/ear in the domain of the calculation, since the shock 

jump conditions are then accurately calculated.    This property of the method, 

as well as stability and accuracy chancteristics, can be tested by compar- 

ing the numerical solution of a norma' shock layer problem with the exact 

solution obtained by G. I. Taylor for the limitirig case of Infinite Prandtl 

number. 

In this limiting case, the one-dimensional equations in conservation 

form are given vectorially by 

4*^- 0 (27) 

where 

o 

ru 

I u 

P ♦ ou    - 0 
11 

puH - uo n 

with 

zz 

H - P/p 
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Taylor's exact steady state solution of Equations 27, for an Ideal gas 

equation of state, can be written 

(a ♦ ku)A (b - ku) • eB2 (28) 

where 

2+ (Y-D^2 
a •  

1 - M^ 

2 

b 
(Y*!)^ 

"TZ 

2 
(Y*1 )N| 

u^M^-1) 

u, and M. are respectively the velocity and Mach number ahead of the shock, 

while m Is the mass flow rate across the shock, pu. Equation 28 has been 
ul * u2 normalized In such a way that u ■ —j— at z = 0. 

The one-dimensional version of the differencing presented In Section 

3.2 applied to Equations 27 gives difference equations of the form 

odd cycle 

even cycle 

Mfkt,-f]^[v,-vJ-0 

where the indices 1, k are implied unless otherwise specified. 

2« 

(29) 

(30) 



We observe that the odd cycle is implicit while the even cycle is 
explicit.    The solution of Equation 29 thus requires the quasl-linearizatlon 
of the non-linear components of the functions f and g; and the solution by 
iteration of a matrix equation of the type 

ÄW = B" 

where ff is a band matrix with a width of 11 elements. 

The resolution and Courant number effects on the stability and accuracy 

of the numerical scheme were investigated by solving Equations 29 and 30 to 
steady state and comparing uHh Taylor's exact solution. 

Some results of calculations of shock structure for M,  (the Mach number 

of the undisturbed flow relative to the shock) = 2 are shown In Figures 11 
and 12.    In Figure 11, the Courant number was fixed at 0.75.    The three 

numerical solutions shown Illustrate the effect of spatial resolution.    The 

shock thickness for these conditions corresponds to o^S/u, «10.    The 

solutions have been shifted in z to give a best fit with the exact solution 
since the final stationary position of the shock within the calculation 
domain is not relevant in making these comparisons.    The calculation with 

a spatial meshsize p^Az/w, s 5.23 therefore leaves the shock structure 
entirely unresolved.    The Jump conditions In velocity (and those in the 

other flow variables which are not presented nere) are nevertheless accur- 
ately compute^.    The shock structure is already represented reasonably well 

when the mesh spacing is halved to 2.62.    The undershoot in velocity at the 
downstream edge of the shoe' , which is often observed in other finite 

difference methods and can be quite large, is not significant here. 

In Figure 12, the resolution has been fixed at P.U.AZ/P, =1.31.    The 

time stepsize has been varied to examine the effect of Courant number on 

stability.    The calculation was found to be stable even for a Courant number 

as large as 10.    The temporal  truncation error associated with this larg? 

time step size apparently does not prevent the approach to a steady solution. 

Since it Is likely that an oscillatory or divergent solution which fails to 
to approach a steady state would result when the time step size becomes 

large enough that the temporal  truncation error dominates the solution, it 

can be assumed that the temporal truncation error is still reasonably small 
even with this large step size. 
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Since explicit difference methods are limited by stability considera- 

tions to K < 1. the calculation for Kc = 10 reaches a steady state in 

approximately one tenth the number of time steps required by an explicit 

method, with no significant degradation of the steady solution due to tem- 

poral truncation error. This, again, underlines the fundamental advantage 

of the implicit method, especially when the time dependent calculation is 

being used to obtain the asymptotic steady solution. 
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4. LAMINAR NEAR WAKE CALCULATION 

A high Reynolds number slender body near wake calculation is under 

progress. The body is an 8 degree half-angle sharp cone, with M^ = 21, 

Re  ■ 7.8 x 106, H ./H = 0.02 (cold wall). Under these conditions, the 

boundary layer at the rear of the body is expected to be fully turbulent. 

A steady calculation, using the methods of Reference 1, has previously been 

made for these conditions under the assumption that while the boundary 

layer profiles at the body shoulder correspond to boundary layer transition 

near the nose, the mixing in the near wake is dominated by the laminar 

viscosity. For the purpose of further testing the numerical techniques 

for the time-dependent calculation under conditions very close to those 

conrespondin'- +o the final (turbulent mixing) case, this calculation is 

being used as a test case for the laminar version of the code. 
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