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ABSTRACT

CAUSALITY STRUCTURE OF ENGINEERING SYSTEMS

by

Romano Mario De Santis

Chaixman: William A. Porter

This study is about the structure of engineering systems with

respect to time related behavior. Studies of this type are usually

based on such system properties as linearity, time invariance,

contin, ty and physical realizability. A distinguishing character of

the p-esent development is that none of these properties is essential.

This explains in part the unconventional character of questions,

appr(r:•ch and results.

ýTn contrast to a physically realizable system, an engineering

systey, need not be causal and may present a complex time related

behavi ir. The main question of interest concerns then the possibility

of dec(,onposing a general system into the sum ol systems with a time

related behavior which is, in some sense, "simple". The analysis

of characteristic properties of such systems and of their intercon-

nections with other aspects of system behavior is also a relevant

question of investigation.

The above questions are applicable to many and diverse engi-

neering fields and the desirability of an abstract approach is quite

iib



natural. The approach adopted in this study can be described as

"functional analytic" and makes use of recently developed axiomatic

structures called group resolution space and Hilbert resolution space.

This not only provides a natural framework in which to embed the

intended research, but it also permits an efficient utilization of

powerful te•mniqucs from the Gohberg-Krein theory of Volterra

operators.

The most important result of this study is a canonical ca",sality

decomposition theorem. This theorem states that under appropriate

hypothe,.es every engineering system can be represented as the sum

of "simple" systems. Another relevant theorem connects the tem-

poral properties of an open loop system to the stability of the closed

loop feedback system.
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The results of this thesis are reported under the labels off ,em.1 atz,

propositioas, and theorems. The results appearing as •n-,nas have been

borrowed from the rele.'ences. Unless otherwise state.d, all the eesults

labeled propositions and theorems are original to the best ,.: the author's

knowledge.
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1. INTRODUCTION

1.1 Introduction

When the concepts of time and its associates - past, present

and future - are extended from the world of physical systems into

the broader context of engineering systems they become abstract

entities. They may then preserve little in common with the original

notion of physical "fourth dimension" and the terms real and nonreal

time are often adopted.

Heuristically, a system is called causal if "present behavior"

of the system is only a function of the past. In this regard a widely

accepted axiom is the principle of causality: all physical systems

are causal. As engineering systems need not be physical nor do they

necessarily function in real time, it is quite natural that for these

systems the assumption of causality is no longer valid.

Indeed, in the engineering domain it is not unusual to be faced

with problems relpted to noncausal behavior. Classical filtering and

estimation problems in communication theory do not necessarily have

cavsal solution [ 14 ! [35J. In stability theory the instability of

a large class of linear time invariant systems can be explained in

terms of absence of cdusality [11], ( 59]. In optimal control theory

noncausal controllers occur regularly in minimum effort, minimum

fuel, and optimal time problems (411, [44 ].
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In the implementation of an engineering system the' requirei.ent

that the system be causal is important. ' In particular if the imple-

mentation has to be physical, tI~en this requirement becomes manda.-

tory. When this happens one either confines himself to consider only

causal systems [ 9 ], [ 63], [ 68],J 69], or, in an alternative approach,

one lifts the causality constraint in a preliminary phase of the design

and reconsiders it in a later phase [ 30], [ 66]. Inthis latter instance,

usually an analysis of the causality structure of tthe system is in order

[481.

This then explain's one, characteristic of the present de ielopment:

a stiay about time related behavioral patterns of eagineering systems.

That is, about the modalities by which past, present and future of the

input affect the preseint of the output. In the context of this study

causal and noncausal as well as linear and nonlinear systems are

considered.

A projer characterization of the natiaie of time behaviora1 pat-

terns may saggest various engineering implications. For instance,

the fact that a system hvi noncausal behavior implies that it cannot

be physically implemented. On the other hand, if the noncausal

behavior is, in 3ome sense, "almost causal" then, for engineering

purposes, the system can still enjoy the property of physical imple-

mentation.
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To mention other types of implications note that in linear

systems theory the fact that a physical realization of a linear time

invariant dynamical system defines uniquely the input-output weighting

pattern of the system [ 65] can be viewed as a consequence of the

special causality structure of the system. Similarly, in stability

theory some special causality properties of an open loop system can

imply the stability of the closed loop feedback system [ 111, [121,

[131*.

A second characteristic of this development will, at this point,

appear natural: the study of interconnections between time related

behavioral patterns and other aspects of system behavior. In this

regard interconmections between state and causality structures are

investigated. An additional topic of research is the study of relations

between sta".ility and causality properties.

in a broad sense a study of the present type falls into the context

of causality theory. On the other hand, emphasis here is on systems

iwIhich do not necessarily enjoy those properties on which much of the

previous research on causality is based, namely: iinearity, time

invariance, continuity, and most notable causality. It is then not

surprising if the classical theory ou causality presents limitations

in this area.

*Other significant implications can a!so be envisioned in less
academic and more earthly engineering aLeas. Here tha reader is
referred to Appendix A.
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In particular, for instance, the technical literature has paid

scant attention to the study of noncausal systems. Apparently this

situation has been justified by the feeling that noncausal behavior can

be treated as causal behavior in reverse time. This suits quite well

studies confined to physical systems and, to a cortain extent, linear

systems [ 48 ]. However, such an approach is not applicable to the

type of problems considered here.

A more general approach has recently been adopted by Porter

[41], [ 42] and Saeks [ 48], [49 1. These references treat causal and

noncausal systems on an equal footing and provide much of the ideas

and inspiration for the present development. These efforts are,

however, mostly confined to the study of linear systems in a Banach

or a Hilbert space context. Many systems of interest, however, not

only are not linear but, most important, cannot be fitted in any Banach

or Hilbert space framework.

The above discussion allows us to introduce a third and perhaps

most relevant characteristic of this study: the abstract approach. The

desirability of an abstract treatment is quite natural in view of the

many and diverse engineering fields in which the subject applies. To

those fields already mentioned we can, for instance, add game theory,

decision theory, prediction theory, electric network theory and others.

Some of the advantages of abstraction are then evident: the possibility
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of emphasizing those features which are truly connected to time

related behavior; tl'e unification of diverse classes of problems; the

possibility of obtaining results with a wide range of applicability; the

contribution to -tudies wi.'h an interdisciplinary character.

1.2 Organization

Commensurate with the discussion in the previous section we will

treat the following topics: i) identification, analysis and physical inter-

pretation of those systems which, in some sense, are "basic" with

respect to time related behavior; ii) consideration of the question

whether a general system can be decomposed into the sum of basic

systems; iii) investigation of some connections between causality and

other system theoretic properties.

The development of topics i) and ii) is carried out in Chapters

2 and 4. More specifically, Chapter 2 considers systems with a mathe-

matical representation (group resolution spaces) which is "minimal"

for this type of study and does not possess any topolegical structure.

Chapter 4 deals with linear and nonlinear systems defined on a Hilbert

space.

Topic iii) is treated in Chapters 3 and 5. In Chapter 3 some

connections between causality and state structures are studied. This

study is embedded in a group resolution space context. Chapter 5

investigates some connections between special causality properties
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of an open loop system and the stability properties of the closed loop

feedback system. Here the system is modeled by a mappirg on a

Hilbert space.

1.3 A General Summary of Results

A geueral theory of the causality related structure of engineering

systems has been developed. The mathematical framework in which

this theory is imbedded is called group resolution space. In this setting

we identify and study various "basic" systems. causal (strongly, strictly),

anticausal (strongly, strictly), crosscar.sal (sti ongly, strictly), and

memoryless. Relevant prcperties of these systems are illuminated by

Propositions 2. 4. 1-6 and 2. 5. 1-6.

The concepts of causal, anticausal, and memoryless systems are

in agreement with those already appearing in the technical literature.

The concept of crosscausality is new and plays an essential role in the

extension of the available theory of causality into a nonlinear systems

context. When a group resolution space (GRS) becomes a Hilbert

resolution space (HRS), these concepts have a natural and straight-

forward extension. Some aspects of this extension are illustrated by

Definitions 4.3. 1-6 and Propositions 4. 4. 1-4. Moreover if we restrict

our interest to linear systems in a Hilbert resolution space, then our

framework coincides with the one which was adopted by Scieks as a

starting point. This allows one to rediscover results which had
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already been stated by Saeks (Propositions 4.7.1-3). New results in

line with Saek's development are also obtained (Theorem 4. 5. 1, and

Propositions 4. 5. 1-3 and 4.7.6-10),

In GRS various forms of a causality canonical decomposition

Theorem can be obtained (Theorem 2.6. 1). A typical statement of

this theorem is as follows: every system in a GRS can be decomposed

into the sum of causal, anticausal, crosscausal, and memoryless

systems. When we confine our attention to weakly additive systems

then crosscausal operators disappear and most of our results

assume the familiar formulation of those results which have Leen stated

by otber authors in the case of linear systems in HRS (Theorem 2. 7. 1

and Propositions 2. 7.1 - 4).

In a HRS context it is found that a causality canonical decompo-

sition theorem cannot in general be stated. However necessary and

safficient conditions for a canonical decomposition to exist can be

given (Theorems 4. 6. 1 and 4. 7. 1). These conditions are utilized to

study the causality structure of various classes of special systeL.s.

In particular it is shown that a Hilbert Schmidt system admits a

canonical causality decomposition. Moreover the components of such

a decomposition are mutually orthogonal (Theorem 4. 8. 1 and Proposition

4.8.1-3).

The GRS framework ip also utilized to study some common features

of causality and 3tate concepts. To do this we first generalize the notion



8

of state which was developed by Saeks [ 49 ] and illustrate some

important aspects of this generalization (Proposition 3. 3. 1-4). We

proceed then to investigate meaningful interconnecticns between

state and cauisality properties. In this regard Theorem 3. 4. 1 relates

the identification of basic causality components of a system with its

state and cosiate decompositions. Additional results can also be found

in the statements of Propositions 3. 4. 1 - 6.

The final part of this thesis is concerned with the study of inter-

connecticns between causality and stability. For this purpose we

corsider a basic feedback system in HRS and relate some causality

properties of an open loop system to the stability of the closed loop

system. Important results here are provided by Theorems 5.2. 1,

5.3. '. and 5.4. 1. Some relevant implications of these theorems are

illustrated by Propositions 5.4.1-4.

1. 4 A Brief Review of Research on Causality

Questions concerning causality related concepts have been a

focus of modern scientific research for a number of decades. Most

of this research is directed to the study of the principle of causality

and its implications in various aspects of system behavior. These

implications range from constraints on the frequency response of

single variate linear, time invariant systems, to a number of more

involved properties for the so called "collision matrix" of infinite

dimensional systems defined by various scattering processes
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i 55 1, 1 561, 1 611, The above type of propertics are usually categori-

zed with the title of dispersion relations [ 6 ], [ 7 .

The investigation of the connections between the principle of

causality and dispersion relations has long been the objective of con-

siderable research. Among others this research is marked by the

contributions of Paley and Wiener, Foures and Segal, Tell and Youla,

Castriota and Carlin.

Paley and Wiener [ 38] can be considered the pioneers of 6he

modern study on causality. Their famous Paley-Wiener theorem gave

necessary and sufficient conditions for the modulus of a frequency

response function to represent a causal system. This .heorem is the

basis for much of the subsequent related classical work on causality.

Using the Paley-Wiener theorem, Toll obtained On additional

formulation of necessary and sufficient conditions [ 55 1. Here causality

is associated with analytical properties of the frequency response func-

tion when its domain is extended from the imaginary axis to the complex

plane.

Similar conditions were offered by Foures and Segal [ 20 1. Later

on Youla, Castriota and Carlin extended these results to the frequency

response matrix function of linear passive n-port networks [ 63].

The mathematical techniques supporting the above developments

are essentially centered on the theory of functions of compiex variables

p~
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and Fourier integrads. In a somewhat different context the properties

of causal systems have also been studied by Sandberg [ 51], Falb and

Freedman [19 1.

Sandberg considered nonlinear systems on a HUbert space context

and obtained scome necessary conditions for causality in terms of phy-

sically meaningful quantities. Falb and Freedman focused their

attention on linear systems in locally compact abelian groups and

obtained a generalization of the classical results of Foures and Segal.

With the work of these latter authors, the study of causality assumes

a more general character. This is marked by two basic features:

association of the concept of causality with other system theoretic

concepts such as passivity, dissipativity, stability, etc., and the

introduction of modern tools of functional analysis.

Recently this new type of approach has been supported by a

number of other authors ll1 [42], [43], [48], 160]. Here the

works of Porter, and of Saeks are the most closely related to the

present study and will be a subject of attention later in this development.



2. CAUSALITY ON GROUP RESOLUTION SPACE

2. 1 Introduction

The development of this chapter can perhaps be best introduced

by a brief discussion of some relevant work of Saeks[ 48 ].

Saeks models a system by the use of an axiomatic structure called,

Hilbert resolution space. In this context he defines and studies various

classes of systems with special causality related properties.

These clases consist basically of causal, anticausal and memoryless

systems. In heuristic terms a memoryless system has the property

that the present of the output is only affected by the present of the

input. An anticausal system is characterized by the property that it

becomes causal if we reverse the direction in which the time flows.

To categorize the causality structure of a linear system, Saeks

offers a canonical causality decomposition theorem. This theorem

states that every linear system (on a Hilbert resolution space) can be

decomposed into the sum of causal, anticausal and memoryless systems.

At this point one begins to envision a reasonable approach to the causa-

lity problem: to start by defining and studying a set of "basic" systems

with a particular causality character; and then to investigate whether

a general system can be decomposed into thte combination of basic

systems. Indeed, these two steps are precisely the core of Saeks'

develckp-ment.

1 11
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It may thus appear as if the causality problem has been

exhausted. To show thM t this is not the case we introduce the fol-

lowing observitions: a) the statement of the canonical causality

decomposition theorem, even in the limited form in which it has

been presented, is not, in general, valid (a proof of this fact is give,

in Section 4.7) ; b) the classes of causal, anticausal and memoryless

systems appear unable to account for the causality behavior of simple

nonlinear systems in communication and control theory; c) the mathe-

matical model proposed by Saeks limits the scope of his results to a

very restricted class of systems. This model cannot, for example,

be used to discuss causality concepts in relation to even the most

elementary sequential machine.

A close examination reveals that the causality problem is far

from being solved. Two fundamental questions which seem to charac-

terize this prloblem are the following: under what circumstances is it

possible to decompose a system into tho sum of basic systems with a

well understood causality siructure? What properties should a system

have in order to be considered basic?

In the present chapter we address our efforts to the investigation

of the above two questions. Clearly a first order of business is the

formulation of a mathematical model to represent the systems under

consideration. In this regard a setting called group resolution space
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is developed. Among the various advantages provided by the group

resolution space setting the most important are the following: i) it

allows a meaningful development - .iusality which is general enough

for modeling most system problems in information, automatic control

and automata theory; •i) it is minimal in the sense that every element

of this mathematicai setting appears to be essential for a reasonable

development of causality to be carried out; iii) it permits other

systeni theoretic concepts (such as state) to be analyzed.

At this point an overview of the chapter may be in order. Section

2 deals with some necessary mathematical preliminaries, in particular

the characterization of group resolution spaces. In Section 3 we give

the definitions of basic causality concepts. Some properties of these

concepts are studied in Sections 4 and 5. Section 6 considers the

question of causality canonical decomposition. In Section '7 the results

of the previous sections are revisited to treat the case of weakly

additive systems. Finally, Section 8 gives some conclusive remarks.

2.2 Gi'oup Resolution Spaces (GRS)

In this section we introduce the mathematical setting of group

resolution spaces on which much of the present causality study will

be based.

To start, recall that an abelian group (in the sequel simply a

group) is a set G together with a binary operation (x, y) --> xy mapping



14

G x G -> G such that the following conditions are satisfied:

i) x(yz) = (xy) P for all x, y, z c G (associative law)

ii) there exists an element e e G such that ex = x for all

x E G (e is the identity element)

iii) for all a e G there exists a-I E G such that a-Ia = e

(a is calied the left inverse of a)

iv) ab =ba for all a, b e G.

A set P is linearly ordered if it is equipped with a relation "<"', con-

tained in the Cartesian product v x v, such that for all t, s, T f v, the

following conditions are satisfied:

i) t < t (reflexive)

ii) t < s and s <-t imply t = s (antisymmetric)

iii) t < s and s <r imply t < r (transitive)

iv) t, T fV, implies L <_T or T • t (trichotomy).

Given a (abelian) group G and a linearly oracred set v the space

S[G, v] is defined as follows: if xeS[G, v] then, to every tuv, x asso-

ciates a well defined element x(t)E G. In otber words we have:

S[G, '] = {xjx is a mapping v -> G}.

The spae.e S[ G, v] comE s equipped with a family of truncation

t toperators Pt, Pt' These operators Pt, P. act on S[ G, v] as follows:
t

if x. y, z belong to S[ G, v] and y = Ptx z = X, then

Jt
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y(s) = x(s) for s < t, y(s) = 4 otherwise, and

z(s) = x(s) for s > t, z(s) =) otherwise

where the symbol 4 indicates the null element of G. The space S[ G, v]

together with the family of truncation operators will be called a group

resolution space (in short GRS).

In the sequel we will alro use an additional family of operators

dP(t) : S[ G,v I -> S[ G, v]. This family is defined as follows: if x and

y belong to S[G, v] and y dP(t)x, then y(s) = x(s) if s = t and y(s) =

otherwise. Clearly dP(t) = PtPt = PtP . Fol later use we denote

by P-t and ft the operators:

Pt = pt - dP(t) and Pt = Pt - dP(t)

Occasionally dP(t)x, O5x and Ptx are referred :o respectively as

present past and future of x at time t.

To gain some familiarity with the above definitions and to pro-

vide some background for later consideratibns lye introduce the

following simple examples.

Example 1. Let Rn be the usual Euclidean spac • with dimension n.

Every element x in Rn is given by an n-tuple of . eal numbers

x = (Xl, x 2,..., n) and it can be viewed as a fun- tion mapping the

set of integers {1, 2,.. ,,ali} into the set of real ri.mbers R.
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Consider the set v = { 1,2,..., n} to be equipped with the natural

order, and the set G = R to be equipped with the faniliar notion of

addition. Clearly v is a linearly drdered set, G is a group and we can

then talk about the group resolution space Rn = S[ G, .

The various families of truncation operators are defined as

follows ifx= (x,...,xI), y= (yI,...,yIn), w=(w 1 ,..=.,w) and

z = (X..., zn) are elements of Sf G, vJ then the relations

y = P~x, w= Px, z = dP(j)x j e {1, 2,...,n}
I

imply the following

Yi =" Xfor j<i and yi=Oforj >1

wi-=0 for j<i and wi-xi for i~j

z-xi forj=i and z.=0 for i <j.

Example 2. Denote by [ 0, co) the set of positive real rAumberq and by

R the set of all real numbers.

If we consider the elements in [ 0, oo) to be ordered in the

natural way and thA set R to be again equipped with the uLual notion

of addition, then we can visw [ 0, ,o) asa linearly ordered set and R

as a group. Using the notation v [ 0, oo) and G =: R, Iwe can then

consider the group resolhtion space

S[G, G.] {x Ix is a function mappingf 0, oo) into R}.
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The various families of truncation operators are

now defined as follows: if x, y, w, z e S[ G, PJ and

Sy=Ptx, w=Ptx, z=dP(t)x, te [0,0V)

then we ha've the following relations

y(s) = x(s) for s < t, y(.3) = Of or s > t

w(s) =0 for s <t, w(s) = x(s) for s _>t

Sz(s) = x(s) for s =t and z(s) =O for s • t. <I

A GRS can be easily given a group structure. To this purpose

the addition o- two elements is defined as follows: if x, y, z E Sf G, v]
then z is the addition of x and y, z = x + y, wher. z(s) = x(s) + y(s)

for all s e P. Similarly z !s the difference between x and y, z = x - y

if y(s) - x(s) = z(s). For later use it is observed that by virtue of

these definitions, any element x E S[ G, v] can be represented as

follows: x = • dP(t) x. Similarly Pty and Ptx can be represented by
tE V

A = dP(s)x, Ptx= Z dP(s)x.

s<t s>t

Consider now operators T, T', T" ali mapping S[ G, v] -> Sf G, v].

The operator T is the addition of T' and T", T = T' + T",if for every

x c 3[ G, v! the following relation holds: Tx = T'x + T"x. T is the

difference betueen T' ,nd T", T T' - T", d Tx T'x - T"x. T is
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the composition of T' and T", T = T'T" is for every x c S1 G, i;j the

following relation holds: Tx = T'(T'x).

An operator T on a GRS is unbiased if T[i] = O where 0 indicates

the element x in S[ G, v] such that x(s) = (the null element ip G) for

all s e v. In the sequel only unbiased operators will be considered.

This is not a serious limitation. If T is not unbiased, the development

will still be valid for the operator T - T[.

2.3 Causality Concepts in GRS

In this sec*ion we introduce and discuss some basic concepts

related to causality. The notation T is used to indicate an operator

(unbiased) on S[ G, v] and x and y indicate two elements in S[ G, v] .

Definition 1. T is causal (anticausal) if Ptx = Pty implies PtTx= pt Ty

(Ptx = Pty implies PtTx = PtTy).

Definition 2. T is memoryless if it is simultaneously causal and

anticausal.

Definition 3. T is strongly causal (strongly anticausal) if T is causal

(anticausal) and TdP(t)x =x

Definition 4. T is strictly causal (strictly anticausal) if T x = P y

t t -implies PtTx = P Ty (Ptx = Pty implies PtTx = PtTy).

Definition 5. T is crosscausal if TdP(t)x = d); Ptx4 implies

P tTx = ¢ and P tx = ¢ implies PtTx =
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Definition 6. T is strongly crosscausal if Ox =# implies PtTx =
and P = implies Pt

The concepts of causal, anticausai, and memoryless systems

are in formal agreement with those proposed by Porter [ 421], [ 43 ]

and Saeks [ 48 ]. It will be apparent later that this agreement extends

also to the concepts of strictly causal and strictly anticausal systems.

The concepts of crosscausality and strong causality find no

correspondence in previous work of other authors. It will become

clear with the unfolding of the present development, that these con-

cepts are essential for the study of the causality structure of nonlinear

systems. In Section 7 it is shown that in the case of additive systems

the concept of -'rosscausality vanishes and strong causality coincides

with strict causality. This explains in part the absence of these

concepts in the classical literature.

The attention of the reader As called to the fact that in definitions

1-6 the domain of the operator T is assumed to be the whole space

S[ G, v]. When the operator T is defined only on a particular subset

E of S[ G, v] the concepts of causal, anticausal, and memoryless

systenis can be easily extended. In Definition 1 for example, it would

be sufficient to add the sentence "for all x and y in E",

To extend the concepts of crosscausality, strong causality, and

strict causality appropriate and less evident modifications are required.
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Usually these modifications must be varied in order to suit each

specific situation. This is a rather serious limitation and will again

present itself when the question of canonical causality decomposition

is considered. This limitation should be viewed as the price being

paid to the inevitable compromise: to obtain a development which is

restricted enough as to lead to meaningful results and which at the

same time is general enough as to provide ground for further inves-

tigation when these results are not directly applicable.

"In the sequel it will be helpful to refer to the causality related

concepts through an alphabetic code. For this purpose the following

shorthand notations will be adopted.

A anticausal X = crosscausal

C causal X strongly crosscausal

M = memoryless A = strongly anticausal

A = strictly anticausal C = strongly crosscaus iI

C = strictly causal

The alphabet ;; = {A, C, M, X, A, C, X, ,, C/ will be used extensively

and in various ways. On some occasions, fPir instance, a sentenc,' oi

the type "the operator T is either causal, or anticausal, or memoryless"

is abbreviated as follows "the operator T is a c {C, A, M}. On other

occasions to remind the reader of the causality character of the operator

T, the symbols T., TA9 TM are used.

As an illustration of the notational convenience provided by the

proposed causality alphabetic code, it is helpful to consider the

r
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statement of the folowing principle of causal duality*: "Let a statement

or equality be phrased using relations involving concepts associated to

the alphabet A = {A,C,M,X, A, C,X,, C} and families of truncation

operators such as {pt, t Pti}. Then the statement or equality

remains valid if thb following interchange In symol s o ncrs:

t -- pt, it ---> t, Pt -> pt,

C-->A, C A A- C, A->C

Sxx x-->x.

At this point the formulation aspect of this study has been laid

down and the above machinery can be used to answer some of the basic
-i

questions of interest. First, to gain some familiarity with the various

concepts it is helpful to discu:,s a simple example.

Example 1. Consider the GRS described in Example 2. 1. Every

element x in this GRS is given by a function x(. ) mapping e very

t e [0, ,oo) into an element x(t) E R. Consider the operator T defined

as follows: if y, x E S[ G, v] and y = Tx then

y(t) = x(t + rl)%(t + T2)

where T, and -2 are real numbers and we have used the notation

x(s) = 0 for s <O.

*A formal proof is omitted for brevity. The reader should have
no difficulty to verify by direct inspection that this principle holds in
all future situations where we invoke its validity.

r
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The causality character of T is determined by the location of

the point (T1, T2) in the R2 plane. For instance, if (T1, 7'2) coincides

with the origin then T is memoryless. When (T1 , T2) j (0, 0) various

situations can occur and are illustrated in Figure 2. 1.

In particular, if the point (T1, T2) is in the third quadrant then T

is, in general, causal. More specifically, if both T, and T2 are negative

and different from zero then T is simultaneously strictly causal and

strongly causal; if T1 is negative and T2 is equal to zero then T is strongly

causal but not strictly causal.

Similarly if the point (T1 , 72) is located in the se.cond or fourth

quadrant then T1 is, it, general, a crosscausal operator. Finally, if

Sis positive and 72 is negative then T is strongly crosscausal.

2.4 Causality Properties of Basic Systems in GRS

In this section we elaborate on some meaningful physical inter-

pretations of the causality concepts formulated in Section 2. 3. This

will also lead us to a number of mathematical implications which will

play a key role later in the development.

To help motivate our discussion recall that, in heuristic terms,

a system T is causal if the present of the o-tput does not depend on the

future of the input. This can be expressed by saying that the past of

the output is only a function of the past of the input. This p1 operty is

in turn equivalent to a special 'sum-type" representation.
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Proposition 1. The following statements are equivalent:

a) T is causal

b) PtT = ptrpt for all tE v

c) T has the following representation T = 3 dP(s) TPs.
SEV

Proof. a) -> b). Suppose that T is causal. If b) is not true, then

there exists an x c S[ G, v] and t e v such that ptTx j PtTPtx. If we

now use the notation y = Px, we obtain that Px = P ty and P tTx ý PtTy,

This is a contradiction to the hypothesis that T is causal.

b) --> c). If b) holds then for every s E v we have: pST =

PSTPs and since dP(s) = dP(s) Ps we obtain dP(s) T = dP(s) TPS.

Hence we can write T Z dP(s) TPs.
SE V t t

c) -- ) a). Suppose that x and y belong to S[ G, v] and Ptx = Py.

Since PtdP(s) = • when t K s, then if c) holds we can write

ptTy = E dF(s) TP'x.

s<t

But for s < t we have pSpt = P It follows

PtTx= ý dP(s)TPsPtx - dP(s)TPpyPtTy. =
se.t s<t

Using techniques similar to those adopted above, we obtain the

next proposition. This proposition states th.,,t a memoryless system

is characterized by the property that past or future of the output are a
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function of, respectively, orly the past or the future of the input. In

other words, the present of the Dutput is determined only by the present

of the input. This property can a _o be put into a 1-1 correspondence

with a special "sum-type" represntation.

Proposition 2. The following staterients are equiva!lent

a) T is memoryiuss

b) OT = PtTPt and PtT = PtTP,

c) T-= Z dP(s) TCP(s).
SE P

A meaningful physical interpretatin can also be assigned to the

concepts of strong and strict causality. In particular, a strongly

causal system is a causal system with the property that the present

of the input cannot affect the present of the output when the past of the

input is null. The behavior of a strictly causal system satisfies a more

severe requirement. In addition to being causal this type of system

has the property that the present of the input can in no way affect the

present of the output. These considerations are formalized and made

more precise by the following Propositions 3 and 4.

Proposition 3. The following statements are equivalent:

a) T is strongly causal

b) PtT = PtTPt and dP(t) TdP(t)

c) T is causal and Z dP(s) TdP(s) .
SE V
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Proof. a) -> b). In view of Proposition 1, all we have to show is

that dP(t) TdP(t) = q. Indeed from ptT = PtTPt it follows ptT = OtTOt
and from here we obtain

PtTdP(t) = (Pt + dP(t)) TdP(t) = TP-TdP(t) +.Qt) Tdp(t)

= -TptdP(t) + dP(t) TdP(t) = dP(t) TdP(t).

This implies that if TdP(t) = 4 then we also must have dP(t) TdP(t) - c.

b) 0>c). If b) is true then, from Proposition 1, T is causal.

Moreover, since we must have dP(s) TdP(s) = • for every S E v then it

follows that we must also havw Z dP(s) TdP(s) =

SE V
c) -- a). If c) holds then T is causal and we must have

tdP(t) TdP(t) = •. This implies that P TdP(t) = C and T must then be

strongly causal. <

Proposition 4. The following statements are equivalent:

a) T is strictly causal

b) PtT pt TOt

c) T= • dP(s) TPs and Z dP(s) TdP(s) =
SE V SE V

Proof. a) -> b). If b) is not true then we can find a pair x, y E S[ G, !,J
-t -t t tsuch that P x = P y and P Tx ý P Ty. This is a contradiction to a).

b) --> c). If b) holds then for every t E v we have

dP(t) T = dP(t) PtT = dP(t) ptTfit = dP(t) TVt

and

dP(t) TdP(t) = dP(t) TptdP(t) =
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From here it follows that

T= • dP(s)T= • dP(s) TPS and O dP(s) TdP(s)=
SE v E v SE '

c) -> a). Suppose that c) holds.and let x, y e S[ G, v] be such

that Ptx = fity. Then we have

ptTx =s~ dP(s) TPSx = s dP(s) TPsPtx

S~zt s~t

= • dP(s)TTV'Pty =ptTy.

s<t

We can then conclude that T is strictly causal. <

The causality behavior of a crosscausal system has a physical

interpretation which is similar to those seen in the case of causal,

anticausal or memoryless systems. In this case the past or the future

of the output are null whenever, respectively, past or future of the input

are null. Moreover, if past and future of the input are simultaneously

null then the present of the input has no effect on the output.

Analogously, a strongly crosscausal system is a crosscausal

system with the additional property that the present of the output is

null whenever the past or the future of the input is null.

To further illustrate the nature of this type of system we introduce

Propositions 5 and 6.
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Proposition 5. The following statements are equivalent:

a) T is crosseausal

b)Tt -t A-t-
b) TP t = P t, TPt = Pt T'Pt and TdP(t) =

c) ZdP(s)Tps= T, dP(s)TPs= dP(s)TdP(s)=4.
se V e V se V

-4 -t -t
Proof. a) -> b). Suppose that T is crosscausal. Ti TP # ptTp

then there exists an element x e S[ G, v] such that TPtx - ptTptx.

UEing = - Pt we have ptTPt = TPt - PtTPt and hence from the

above inequality PtTPt x • holds. Letting y = POx we have

P t Ty 0 and P

Since, by hypothesis, T is crosseausal this is impossible and we

must then have TPt = p tTp. Invoking the principle of causal duality

we also obtain PtT PtT15t*. Finally suppose TdP(t) • k. Then

there exists an element x c S[G, v] such that, TdP(t) x • •. This

is again a contradiction to a).

b) -> c). Suppose that b) holds. then wp have

Tp .p5 STp and TPs = PTP-s.

From these relations and the fact that TdP(s) -- we obtain

TdP(s) = 4 = pSTdP(s) + dP(s) TdP(s) + P sTdP(s)

*For a direct proof the reader is invited to apply the change in
symbols indicated by the principle of causal duality and to repeat
".1verbatim" the argument used to obtain TPt -- P-lTpt.
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It followsI * =pTP dP(s) + dP(s) TdP(s) + fTP T dP(s)

= P sTP sdP(s) + Pf PSTPdP(s) + dP(s) TdP(s)

dP(s) TdP(s) = ¢

and consequently

OdP(s) TdP(s) = ¢.

Se V

Moreover, using the fact that dP(s)P 5 = dP(s) P = 4 we obtain

VdP(s)TPs= , dP(s) PSTpS =

and

OdP(s) TPV - dP(s)PsTPs =PS.
SEv Se P

We can then conclude that c) holds.
c) -- a). Suppose that c) holds. For every x E S[ C, v] we have

TdP(t) x = dP(s) TdP(t) x

sevt
= dP(s) TdP(t)x + dP(t) TdP(t)x + V dP(s) TdP(t)x.

S<t

Noting that P dP(t) = dP(t) for s < t, PsdP(t) = dP(t) for s > t,S

dP(t) dO(s) =dP(t) for s t and dP(t) dP(s) = ,for s :A t, we obtain
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TdP(t)x= Z dP(s)TsdLp(t)x + Y' dP(s)TV dP(s)x+
s<t S ) t

daP(t) • dP(s) TdP(s) dP(t) x =.
SE P

Moreover if Ptx = P, then we also have

PjX( x = sýtdP(s)TPsPtxS;T =Ps Tfis =t

From the above and tho principle of causal duality it follows that

Pty = 0 implies PtTy = . It- can then be concluded that T is cross-

causal. K<i

Proposition 6. The following statements are equivalent:

a)' T is strongly crosscausal

b) TPt'= PtPt and TPt = PtTPt

c) dP(s) TPs '0 dP(s)TP = dP(s)TdP(s)--
SEV SE' VSr- P

Proof. a) -> b). Suppose that A) holds. If TPt * VStTPt, then there
exists an x e S[ G, v,] such that TPtx * P Tptx. This implies PtTptx t

Using the notation PAx = y we then obtain that Pty - 0 and PtTy • 4. This

is a contradiction to a). We must then have TPt = pTPt. Invoking the

principle of causal duality this argument gives also TPt PtTPt.

b) --2> c) , If b) holds then for each t E v we must have

dP(t) TPt = dP(t) PttTP - 4, c!P(t) TPt - dP(t) P tTPt P

and

dP(t) TdP(t) =dP(t) PtTdP(t) -.
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It follows

s dP(s)TpS = s dP(s)Tis -- s, dP(s) TdP(s) - 0.
se V Be V SE V

c) -> a). Suppose that c) is true. Then for every x e S[G, v]

such that Ptx = we must have

- "x = s; dP(s) TPsPtx zP.

By the principle of causal duality this also says that if y e S[ G, v] and

iy = o then PTy = . It can then be concluded that T is strongly cross-

cxaisal. Kl
2.5 Causality and the Compositiou of Systems in GRS

In this section we continue our investigation on some causality

related aspects and properties. In particular Propositions 1-5

illustrate some properties connected with the addition and composition

of systems with a special causality structure. Two disjointedness

properties of these systems are given in Propositions 6 and 7.

In most nontrivial applications, basic subsystems are combined

through the operations of addition and composition. A first natural

question then is whether the class of systems which are

a {A, C, M, X, A, C_,X,X,,} is closed under such operations. The

following proposition shows that the answer to this question is

affirmative.



Proposition 1. If T and T' are a {A, C, MX, XA,CxA } then

T + TI and TT' are also a.

Proof. In view of the similarity among the various cases, we will

only consider a = C and a = X. Suppose then that T and T' are C.

From Proposition 4. 1 we have

ptT = pTp and PtT'= PtTpt.

From here we obtain

Pt(T + TV) = PtT + PtT'= PtTPt + PtTOt = Pt(T + T')Pt

t t t t t t
PtTT' = P TPT= PtTptTPt = P TT'P.

Applying again Proposition 4. 1 it follows that T + T' and TT' are C.

Suppose now that T and T' are X. From Proposition 4. e we have

TPt = -tTpt and Tpt = PTPt.

This impl;,,s

(T + T')P t= TVt+ ,'rt = PTPt+ PtT'Pt P(T + T')Pt

and by the principle of causal duality

+ TV) Pt = Pt(T + T') Pt"

By Proposition 4. 6 it 'ollows that T + TV is strongly crosscausal.

Similarly for TT' we have

TTVPt = TPtTPt = OtTPtTVPt_ PtTTVPt

TT'Pt = TPtT'Pt = PtTPtT'Pt = PtTT'Pt

and consequently TT' is also strongly crosscausal.
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The causality properties of a system given by the composition

of systems with diverse causality structures can usually be determined

only by a case by case analysis. Under special circumstances some

general statements are, however, possible. The next proposition,

for instance, indicates that whenever a system T is composed with a

mermoryless system T' then the causality character of TT' and T'T

coincides with that of T.

Proposition 2. If T is memoryless and T' is a {A,CM, X,ACX,C }

then TT' and T'T are also a.

Proof. This proof follows a pattern which is similar for the various

choices of a. It will then be saifficient to treat the case in which T' is

X. From Propositions 2 and 6 we obtain the following relations

VPT PtTPt and PtT = PtTPt

r T'pt ptT'pt and T'Pt = PtT'Pt.

From here we also obtain

TPt = PTPt +PtTPt = ptTPt + PTPPt =PTp

TPt = PtTPt + tTP t = PtTPt + PtTPtpt -- PtTP,.

It then follows that

TTPt = TOtT'Pt = PtTOtTPt = PtTT'Pt

TT'Pt = TPtT'Pt =P t PtT'PtTPt tT'Pt

L _ ___
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and similarly,

TVTPt = P-tT

T'TPt = PtT'TPt.

From these relations and Proposition 4.6 we can conclude that TT'

and T'T are indeed X.

The next Propositions 3,4 and 5 illustrate an interesting repro-

ducing property of strongly causal, strictly causal and strongly cross-

causal systems. According to this property, the classes of strictly

causal and strongly causal systems can be viewed as a "symmetric

ideal" in the class of causal systems. Similarly the class of strongly

crosscausal systems can be 7iewed as a symmetric ideal in the larger

class of crosscausal systems. For brevity we will oily prove Propo-

sition 3.

Proposition 3. If T is strongly causal and T' is causal then TT' and

T'T are also strongly causal.

Proof. From Proposition 4. 1 and 4. 3 we have the following relations

PtT P tTpt and dP(t) TdP(t) =

PtT =PtTPt

These relations also imply

TPt = PtTft and T'Pt PtT'Pt.
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It follows

PTT, = PtTPt, = ptTptTIpt = ptTTpt

and similarly

PtTIT = PTITPt.

Moreover,

dP(t) TT'dP(t) = dP(t) TptPtTtdP(t) = dP(t) TdP(t) TdP(t) =

and consequently

dP(t) T'TdP(t) =0.

From the above relations and Proposition 4.3 we can then conclude

that T'T and TT' are strongly causal. <K

Proposition 4. If T is strictly causal and T' is causal then TT' and

TIT are also strictly causal.

Proposition 5. If T is strongly crosscausal and T' is crosscausal then

TT' and T'T are strongly crosscausal.

To conclude our review of causality properties, we observe that

the various causality classes under consideration are, in general,

overlapping. For example a memoryless system is also causal and

anticausal. Similarly a system which is crosscausal can, at the same

time, be causal or anticausal. The next result shows that the classes



36

of strongly causal, strongly anticausal, strongly crosscausal and

memoryless systems, however, are disjoitI.

Proposftion 6. If T is simultaneously a, and a2 with a,, a2 e {, Cq, M, X}

then either a, = at or T is the null operator.

Proof. For the various choices of a, and a2 the arguments to be used

turn out to be similar. It will be then sufficient to treat a special case.

Suppose, for instance, that T is simultaneously X and C. Then from

PropositioAns 4. 1 and 4.6 we have

T= V dP(s)TPsand Y dP(s)TPs=,O.
SEV SE V

It follows that T must be the null operator. <I

The next result is similar to Proposition 6 and states that also

the classes of strictly causal, strictly anticausal, memoryless and

crosscausal systems are disjoint.

Proposition 7. If T is simultaneously a1 and a2 with a1 , a2 E {A, C, M, XI

then either a1 = a2 or T is the null operator.

The above discussion provides a clear picture of the relation;

of containment among the various causality classes. These relations

are further illustrated in Figure 2.2.

2.6 Canonical Causality Decomposition in GRS

The development in the previous sections provides insight into

the causality structure of those systems which are basic, that is
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Figure 2. 2: Relations of containment among various classes

of systems.
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systems which are ac A,C,MX,A,C,X,.,Cj. The purpose of Lhis

section is to extend that in3ight to the case of more general systems.

To help motivate the development, observe that our insight into

the causality structure of basic systems can be readily used to charac-

terize the causality structure of those systems which are formed by

the addition of basic systems. The natural question then arises as to

whether it is possible to represent a general system as the addition

of basic systems. If this representation does exist it is also of interest

to know whether it is unique.

Such questions as those above have been considered in the techni-

cal literature and are known collectively as the canonical causality

decomposition problem [ 48 ]. However, as the systems considered in

[48 ] are linear and defined on a Hilbert space while our systems are

neither Hnear nor are defined in a linear space, the answer given in

[ 48 ] is of little help to this development.

Concerning the matter of uniqueness suppose, for example, that

T-T +T Then we can also writeT= T +T', whereT = -T -

TM, TV = T - T and T is any memoryless operator. This implies
MC C M M

that the decomposition of T is not unique.

A moment of reflection shows that the above argument is suc-

cessful because the various classes of basic, systems are overlapping.

On the other hand we have seen in Proposition 5. 6 that the classes of
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systems a e { A,C, M, x_} are disjoint. From here it appears natural

to modify the causality decomposition question with the following more

specific formulation: "is it possible to decompose a general system

into the sum of systems which are a c {A, C, M, X} ? If a decomposition

of this type exists it will be called a canonicalcau.sality decopsition*.

To begin our study, we settle the uniqueness question with the

following proposition.

Proposition 1. If a canonical causality decomposition exists then it is

unique.

Proof. Suppose that a system T has two canonical decompositions.

Then we can write

T=TA+T +T +TX=TI+T +TM+
A C M XT ATC M Xý

From here it follows that
TM-T' =T' - T+T-T +T'""

T TM A A T C T X (1)

and since TM - TI is a memoryless operator, from Proposition 4. 2

we must have

T - TI= , dP(s) (TM - Tj) dP(s).TM

This leads to the following

*Note that an alternative formulation of a causality decomposition
is also suggested by Proposition 5.7. While attention is focused on the
S{A, C, M,X_} decomposition, a decomposition based on {A, C, M, X}
can be handled with similar techniques and results.

LI



TM - Tj 4 = dP(s) (Tý - TA) dP(s) + Z dP(s) (Tt - Tc) dP(s)
SEE -- -R E -- --

+ Z dP(s) (Tý - TX) dP(s).

SE V

Applying Propositions 4.3 and 4. 6 we obtain that each term on the

right hand side of the above equation is null. We can then conclude

that TM = T M,

Let us now show that TC T' Since T' - TM Equation

(1) leads to

T -T T -T A+ T+ TX.

Since T0 - T' is strongly causal we can apply Proposition 4 3 and

obtain
I s

T - T= s dP(s)(T - T•)P.
- SEP V C.

This leads to the following

Tc-T'- d7(s)(T- TA)PS+ Z dP(s)(TC- TX)P'
- - s5 l - - s5 V - -

Observe that the second term cn the right hand side of the above

equation is null zy Proposition 4. 6 and the fact that TI - TX is strongly
x

crosscausal. The first term is also null as can be seen by using the

strong anticausality of T' - T together with the dual of Proposition
A A

4.3, namely

!.
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dP(s)(T .- T)PT , dP(s)Ps(T - T Ps
se - -- seV - -

= • dP(s)(Tt- TA)dP(s) = .
seV -A -

We can then conclude that T' = TC and from the principle of causalC
duality TX =TA. Finally from Equation (1) and the fact that T' - TM

=T'- T = TA- TA=4, we haveT - =•. HenceT= T' and

the proof is complete.

From the above proposition if T has the property that T - T + TC +

TM + T it is meaningful to talk about the a component of T, a {A_, C_, M, X}.

In this regard we will use the following definition.

Definition 1. If T = TA + TC + TM + TX, then TA) TC, TM and Tx are

called respectively strong anticausal, strongly causal, memoryless and

strongly crosscausal components of T.

In general the question of existence of a canonical decomposition

can be viewed in terms of the existence of a special set of mappings on

the space of operators. This point of view offers some technical advan-

tages and it is convenient to clarify it.

To begin with, let $ indicate the space of all operators T on a

GRS, and" han operator on $. To emphasize that " maps a space

of operators into itself, " is called a transformator*. A transformator

*This terminology is inspired from Gohberg and Krein [2 5].
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'will be indicaied by4T ,a {A,C,M,X} if for each T c $ we have

that "To [ r] is an a operator. For example the range of T consistsaCo
of the dlass of operators which are X. Occasionally we will also usa

the notation I to indicate the identity transformator, that is the trans-

formator with the property that I [ T] = T for every T in$.

The following proposition shows the equivalence between exis-

tence of a canonical decomposition and existence of a special set of

transformators.

Proposition 2. A canonical causality deeomposition always exists

if and only if there exists a set of transformators o a,

1A {A, C, M, X} = A, such that the following properties are satisfied:

pi) T is defined on $

2pii) For each pair (a, y) F- _2 we have that

'T' "'-•if a'y andy oro ='T ifa ya y a Y a

piii) • ' = I.

Proof. "only if". If each r has a causality canonical decomposition

we can define the transformators 'r according to the foll-w4ng rule:

or [T] = To where Ta is the a component of T. Thep propertiesa pi)

and piii) are clearly satisfied. To prove pii) suppose that 4 "

for a y. Then we can find an operator T such dhat T is a and the

component of T is different from zero. It woui ' follow that T has at
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least two distinct causality canonical decompositions. This is a con-

tradiction to Proposition 1.

"if". Suppose that there exists a set of trausformators"'I sucha

that pi), pii) and pii.) are satisfied. Then for every operator T C $

we can compute the operators Or = or [TI, for each a q, and from

piii) we can write

T=T, +TC +TM +TX.
_ x-

This means that T has a causality canonical decomposition.

With the above result and the development in Section 4, it is now

easy to state and prove that a canonical causality decomposition always

exists.

Propositoui 3. Every system on a GRS can be decomposed into the sum

of strongly causal, strongly anticausal, strongly crosscausal and

memoryless components.

Proof. Suppose that T is an operator on S[ G, Y•] and define a trans-

formator according to the following rule:M

TM [T] : 2 dP(s) TdP(s).
se V

From Proposition 4. 2, [T] is a memoryless operator. Define

now the transformators T " as follow-

, 5T ] LT dP(S)[T- I4 ~T]jP5
i SE/2

AT] = dP(s)[T-TM[TJ]Ps.

SE V
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From Proposition 4. 1 and its dual, " [T] and F T] are respectively

strongly causal and strongly anticausal. Finally, consider the trans-

formator IrX' defined by the following expression

r IT]= T- 'r- [T] -'r- [T] - TA fT]

Observe that the operator 'r [ T] satisfies the relations in Proposition

4.6. Hence, it is strongly crosscausal. At this point verify that the

above set of transformators or'." ?, and • satisfies pi-ii-iii)

in Proposition 2. It can then be concluded that T has a causality canoni-

cal decomposition.

Combining Propositions 1 and 3, it is now possible to state the

following Canonical Causality Decomposition Theorem.

Theorem 1. Every system on a GRS has a canonical causality decom-

position and this decomposition is unique.

To illustrate the meaning of the above result we now pause to

discuss a simple example.

Example 1. Suppose that S[G, v] is described as in Exampie 2. 1.

Then every element x E S[ G, v] is given by an n-tuple oi real numbers

(xl, X2, ... Xn). For simplicity~we will assume that n = 3. In this

GRS we can consider the (unbiased) system T delined as follows:

if x,yE S[G, v] and y= Tx, then
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Yl + Xs + 2.'[ '3 ' 2

I.
2 2Y2 2(x2 ) +4xx 3 + 3x -Y3 +5(x1 )

Y3 lX2 +3(X1 ) + X1 X2 "

It is easily verified that T does not satisfy anyone of the require-

ments in Definitions 2. 1 - 2.6. Therefore T is not a basic system.

Theorem 1 says, however, that T can be represented by the addition

of basic systems. If these. basic systems are chosen to be a,

a E {A, C, M, X} then the representation is unique. In this case we

can write

T = T A + T C + TM + TX.

Moreover according to the proof of Proposition 3, TA2 TC, TM and

TX can be computed by the expressions

3
TM = • dP(i) TdP(i)

TA = dP(i) TPi- TMT- i=1

3
TC = Z dP(i)TR - TM

TX = T- TA- TC - TM.

The meaning of these expressions is that TA' TC, TM and TX are des-

cribed ao follows: if x, y e S[ G, v] and y= Tx, ac {A,C,M, X} then

we write:



AM

j,=(i)2Y = Ixl+ 3xjc 1

T:y 2 =2(xý 2  TA- Y2= 3x3x23 = 3)2 Y3 =0

Yl = 0 (Yl= 0

(2
T Y=: 2(j TX:Y xx

=3 2y 2 +3(x 1 ) Y3 0.

Often the question of canonical causality decomposition arises in

a more complicated setting than the one considered here. In general

the complications are due to the following: the operator T may not be

defined over all the GRS; the operator T may belong to a particular

subset $1 of $ and it is of interest to determine whether a canonical

decomposition exists such that the components of T belong to $ 2'

another st,-set of $.

In both such situations the statement of Proposition 1 remains

valid. When the domain of T is a proper subset of the GRS it is best

to proceed on a case by case basis. An illustration of the type of

procedures which might be used is given in [ 42] and [48] where

operators T defined on Hilbert spaces are considered. In regard to

the second situation it may be helpful to rephrase the result of Propo-

sition 1 in a slightly more convenient form.

moecnein om
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Proposition 4. The following statements are equivalent:

a) Every operator T e $1 has a canonical decomposition

T= TA + TC + TM + TX with TA, TC, TM, TX in $2 .

b) There exists a set of transformators'"r a, e M

such that the following properties are satisfied:

pi) "r is defined over $1 and maps $1 into $2

pii) and piii) identical to pii) and piii) in Proposition 1.

From a conceptual point of view it is important to underline the

resemblance between the properties of the set of transformators1"T
a

considered in Propositions 2 and 4 and the familiar properties of a set

of orthogonal "projection-operators". In particular i-i Section 4.8,

it is shown that, in the case of a very special subsr', $1, the trans-

formators • can indeed be identified as orthog'.nal projectors. Ina

general the following proposition holds.

Proposition 5. Suppose that a set of transformators " has the proper-

ties pi-ii-iii) considered in Proposition 1. Then the transformators

" are additive and idempotent.

Proof.

Let us start to prove that the transformators 'r are additive.

To this purpose consider two operators T and T' and let Y be the

operator defined by the following
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T [T+.T'jI- 7 ITj- [T'j

where A z {AI C, , X}. From piii) we have that the operator Y is

null. Compute now?' [Y]. in view of pi-ii) we obtain
a

Ir [Y,] = -r T + T11 -or T] -r. [TI]=

It follows that

Or[T + T11 =-r[T] +-r TIT].

Let us now show that or 2 ='?'" Suppose that T is an operator in $.

Then by p iii) we have

T• [T] +% [T] +'TM [T] +orX [T]= T.

Apply now'= to both members of the above equation. The desired

result is an immediate consequence of p ii). <I

As we observed in a footnote at the beginning of this sec ion, a

canonical causality decomposition can also be envisioned in termts of

systems which are U E {A, C, M,X}. Using tecr. aques similar to

those illustrated, all of the previous results could be rephrased and

proved in order to accommodate this alternative fumulation. In

particular, for instance, in correspondence to Theorem 1 we would

obtain the following.

Proposition 6. Every system can be uniquely decomposed into the sum

of strictly causal, strictly anticausal, memcryless and crosscausal

components.
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Example 2. Consider the systerm discussed in Example 1. According

to Proposition 6 this system can be uniquely represented by the

expression

T =Tx+T+TM +TX.

In particular TjX, Te, TM and Tx are defined as follows: if

xy r S[Gv] andy= T x, ac {A,CM,X}, then

Yl = (Xl) 2 =0

TM: Y2 = 2(x 2 ) 2 T" Y2 =0

Y3 = (x3)

YI = 0 Yl = 2x2Xl + 3x 3x,

T?ý: Y2 = 5(x1)2 TX: Y2= 3x 3x 2 + 4x 3x,
Y3-- 2x x2 + 3(x2 Y3 =0.

2.7 Causality and Weakly Additive Operators in GRS

In this section the results of Sections 4, 5 and 6 are specialized

* for the case in which the systems under consideration are weakly

additive.

Definition 1. An operator T on S[G, P] is weakly additive if it has the

following property

ttT[x] = T[ptx] + T[Ptx] = T[P x] + T[Ptx]

for all x e S[ G, v] and every t iv.
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In control and communication theory a weakly additive operator

is a convenient system model in those situations where the sources of

nonlinear behavior have a memoryless character. Operators with the

weak additivity property have already been considered in the technical

literature [ 23], [3 J, [ 40], [ 69 J. Their importance will be further

emphasized iu Chapter 5 where some important implications of this

property will be studied. In the sequel it is shown that most of the

causality properties which are usually stated "or the class of Airkar

systems, hold "verbatim" for the more general case of weakly additive

systems.

Proposition 1. For a weakly additive system T the following statements

are equivalent:

a) T is causal

b) pA 0- implies that ptTx =

c) TPt= PtTPt

d) ptT ptTpt

e) T= Z dP(s)TPs.
SE V

Proof. a) --> b). Suppose that T is causal. Then for every t e v and

all x, y E S[ G, v] such that Ptx = pty, we have PtTx = P tTy. In par-

ticular if Ptx = x then PtTx = PtTO = 0.
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b -> c). Suppose that Wet * PtTP t. Then there exists an

x in S[G, P] such that Wetfi PtTPt. This implies that Pttx- = i .
If we use the notation Ptx = y, then we have P--{ and -y =,0.

This is a contradiction to b).

c) -4 d). If PtT ptTPt then by the weak additivity of T we

have PtTpt#. It follows TPt = PtTpt + PtTPt * PtTPt. This is

a contradiction to c).

The proof of d) -> e) and e) -> a) is identical to that given in

Proposition 4.1.

The attention of the reader is called to the formal equivalence

between the above result and Proposition 2.3 in [48 ]. From the

principle of causal duality and Proposition I we obtain the next

proposition.

Proposition 2. If T is weakly additive the following statements are

equivalent:

a) T is memoryless
b) ptx = implies ptTx = and P tx = implies Pt Tx=

c) TPt - PtTPt and TPPt tTPt

d) ptT = PtTpt and PtT = pt TPt t

e) T= • dP(s)TdP(s).
SE V



The following two propositions indicate that in the case of

weakly additive systems the concepts of strong and strict causality

are equivalent and the concept of crosscausality vanishes.

Proposition 3. For a weakly additive system the concepts of strong

and stri-'t causality are equivalent.

Proof. Since every strictly causal system is also strongly causal

it is sufficient to show that if a system is weakly additive and strongly

causal then it is also strictly causal. Suppose then that T is weakly

additive and strongly causal. Applying Proposition 4.3 we obtai.

T= • dP(s)TPs

SE V

and from the weak additivity of T

T= • dP(s)Tp + 3 dP(s)TdP(s).
SEV SE V

Applying again Proposition 4.3 we must have • dP(s) TdP(s) =
SE V

Hence T is strictly causal.

"Proposition 4. If T is weakly additive and crosscausal then T is the

null operator.

Proof. If T is a weakly additive operator on SI G, v] then for every

x f S[ G, v] we can write

Tx= Y dP(s) TdP(s)x + O dP(s) TPSx + " dP(s) TP x.
SE E V S
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Suppose that T is also crosscausal. Then we can apply Proposition

4.5 and obtain that all the terms on the right hand side of the above

equation are null. This implies that T is the null operator. <

Observe that in view of Propositions 3 and 4 the containment

relations indicated in Figure 2. 2 can be simplified as in Figure 2.3.

In regard to a canonical decomposition theorem for weakly

additive operators, we have the following result.

Theorem 1. Every weakly additive system can be uniquely decomposed

into the sum of strictly causal, strictly anticausal and memoryless

weakly additive systems.

Proof. Suppose that T is an operator on S[ G, v]. By Theorem 6. 1

T has a unique canonical decomposition T = TA + TC + TM + TX,

If T is weakly additive then for each s c v the operator dP(s) T is

weakly additive. This implies that dP(s) TA and dP(s) TC are also

weakly additive. Suppose for instance, that dP(s)TC is not. Then

we would have a point t e v, t < s, and an element x e S[ G, v] such

that dP(s) TCPS * dP(s) T cPtx + dP(s)Tc(PS- Pt)x. This, however,

is not possible because by the weak additivity of dP(s) T we have

t s- tdP(s) TcPSx- dP(s)TPSx = dP(s) TPtx + dP(s) T(Ps- P )x

= dP(s)TCPtx + dP(s) Tc(P pt)X.
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Figure 2. 3 : Relations of containment am,," .,aTious causality

classes of weakly additive sy'.tems.



From the weak additivity of dP(s) T and dP(s) TA we ol:1ain the

weak additivity of TC and TA. Moreover since every memoryless

operator is weakly additive so is TM. It follows that TX must also

be weakly additive. We can now apply Propositions 3 and 4 and

obtain TX , TC =- Tf and TA = TA. We can then conclude that if

T is weakly additive then T has the unique decomposition T = T-. +

"T + TM. 1

2.8 Summary

This chapter is characterized by the development of a mathe-

matical setting in which some basic causality questions may be studied.

It contains two novel ideas: the use of the structure of group resolu-

tion spaces and the introduction of the class of crosscausal operators.

These two ideas are exploited to discuss with a certain mathematical

rigor various important properties related to system causality. These

properties are emphasized by a number of propositions and theorems

in Sections 4, 5, 6 and 7.

The most important theoretical results consist of Theorems

6. 1 and 7. 1. Theorem 6. 1 gives a general canonical Cecomposition

theorem for nonlinear operators on nonlinear spaces. It can be

stated as follows: every system in a grout resolution space can be

decomposed into the sum of strongly causal, strongly anticausal,

memoryless and strongly crosscausai systems. When the system

"'"-U_-4
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under consideration has a "weak additivity" property then the statement

of Thecrem 6. 1 can be improved to the form of Theorem 7. 1. Thiq

latter theorem also provides a canonical decomposition of the type

conjectured by Saeks [ 481. To paraphrase this result: every weakly

additive system in a group resolution space is given by the sum of

strictly causal, strictly anticausal and memoryless weakly additive

systems.



3. CONNECTIONS BETWEEN THE CONCEPTS
OF CAUSALITY AND STATE

3. 1 Introduction

In the previous chapter the structure of a system with respect to

time related behavior was investigated. This included the study and

formulation of various causality concepts.

It should be observed that the concept of state is also related to the

temporal behavior of a system. Heuristically speaking, causality con-

cepts reflect the modalities by which past,present and future of the input

affect the present of the output, while the concept of state indicates how

past and present of the input affect the future of the output.

From the above observation the question arises as to whether the

knowledge of the causality structure of a system supplies some infor-

mation about the system state structure and, conversely, whether the

state structure might have ramifications concerning the causality

stricture. To investigate this question it is convenient to model a sys-

tem as an operator on a group resolution space (GRS). A first order

of business is to properly define in this context the concept of state.

The format of the present chapter is a natural realization nf i-his

line of reasoning. In Section 2 we establish the notion of state in GRS.

Section 3 deals with some characterizations of the structure of a system

with respect to state. In Section 4 interconnections between state and

57
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causality concepts are developed. Section 5 closes the chapter with

some concluding reniarks.

3.2 On the Notion of State in GRS

In-developing the conpept of state we are faced with satisfying

two partially competing requirements: the notion of state has to have

sufficient generality to encompass systems in the various engineering

fields of interest; the notion has to be flexible enough as to lead the

investigation to meaningful results.

A concept of state based on equivalence classes would be suffi-

ciently general. Such an approach was used by Mesarovich [ 33],

Windernecht [ 60] and Zadefi [64 ] among others, and could easily be

formalized in our mathematLcal framework. Suc h a development does

not appear, however, to be sufficiently flexible. The notion of, state

via the definition of a state decomposition as recently proposed by,

Saeks in [ 48], is another potential alternaptve. Translated in' the

framework ofgroup resolution spaces (GRS) ti~c following definition

would be obtained: a state decomposition of a system T on S[ G, vJ is

a triple (i(t), S, .(t) ) where S is a set (state set) and it), ý(t) are

families of mappings such that

i(t) ' G, v I--> S, V/\ t) = xt) PE, ý(t) : ->S G.••, P(t) W () (311

and

((t)t€t) = Pt.TP (3.2)

for every t 1 v.



This latter definition is quite satisfactory in a linear system

context. It is not fully satisfactory, however, in the more general

framework under consideration. The deficiency of this definition resides

in part in the fact that this concept does not satisfy the "consistency

conditions" required by Zadeh [ 65]. In particular it can happen that

the knowledge of the state of a syictem T at a certain time, t, is not

sufficient to describe the input-output behavior of T after t. This can

perhaps be best illustrated by introducing a simple example.

Example 1. Consider the system T which was discussed in Example

2.3. 1. Recall that if x and y belong to S[ G, v] then x and y are real

functions defined on the interval [ 0, co). Moreover if y - Tx, then y

is given by the following expression:

y(t) = x(t+T,'x(t+T2).

1 1 thntetil
If we now suppose that 1= - - and T2 T then the triple

(L(t), S, q(t)), with S consisting of a null element, p, and qt) mapping

S into the null element of Pt S[ G, v], satisfies Equations (3.1) and

(3.2). Therefore according to the definitior of state introduced by

Saeks, this triple is an admissable state decomposition of T. In this

case, however, the state would fail to give an adequate description of

the past configuration of T so that the future behavior of T can be

satisfactorily characterized. For instance, if t = 2 is the present



time, then from the state of T at t and the future of x, we cannot in

general evaluate the future of y = Tx. Indeed, the future of y depends on

the values of x in the interval (1. 5, 2] and no record of these values

can be found in the state of T.

In the present study attention is focused on a generalizaticn of

the state decomposition format. In stating this generalization S1 , S2

are sets and S = SI x S2 plays the role of the state set. Similarly

V1 (t), iý2 (t), ý1(t), 2(t) are parameterized families of mappings while

V(t) = (4/1(t) V2 (t)) and q(t) = (CI(t), I2(t) ) play the role of input-to-state

and state-to-output mappings. Our format definition is the following.

Definition 1. A state decomposition of an operator T on S[ G v] is a

triple ((t) , S, q(t) ) such that:

i) S-=- S × S2 where S1, S2 are sets

ii) i(t) = (VIl(t) , 4/2 (t)), where domain [ iP/(t) ] = pS[ G, v] and

range i(t)_C Si, i= 1, 2, t E V

iii) q(t) = (Cl(t), 2(t)), where domain ýi(t) - Si, range

t) _c PtS[ G, v] and the range of ý2(t) is contained in the

space of operators on PtSI- G, vJ

iv) For every x, y e S[ G, v] the following relations are

satisfied

t - t
tl (t) V/l(t) ptx = PtTP x

ý2(t) [ 4 2tt)IPtxl]Pty]= 5)ttx fptyI
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where the symbol 5Tf[Yj stands for T[x+y] - Tx-Ty.

By the substitution of the term "state" with "costate" and by

a subsequent substitution of symbols as indicated in the principle of

causal duality, Definition 1 provides a concept which is dual to that of a

state decomposition. As this concept will also be useful, we introduce

the following additional definition.

Definition 2. A costate decomposition of an operator T on S[ G, v] is

a triple (44t), S, ý(t) ) such tlhat:

i) S= S1 x S2 , where S1, S2 are sets

ii) k(t) = (zpl(t), p/2 (t)), where domain [ 41(t)] = PtS[ G, v]

and range V/i(t) S Si, i=1, 2, t e v

iii) Y(t) = (•l(t), 2(t)), where domain i(t) =, range

Ct(t) C ptS[ G, v] and the range of 2(t) is contained in

the space of operators on Pt S[G, v]

iv) For e",ery x, y E S[ G, v] the following relations are

satisfied

2(t) [[/ 2(t)[Ptx]]Pty] = 6TpIPty]'

In Definition 1, a state decomposition can be viewed as given by

two components:

L-_



i) the first component (V/i(t), S1 ,9l(t) ) reflects the influence

of the past of the input over the future of the output with

the constraint that the future of tLe input is null;

ii) the second component (P2 (t) , S2 , 1(t)) indicates how the

past of the input influences the effect of the future of the

input on the future of the output.

The proposed state decomposition formulation is a natural exten-

sion of the formulation of Saeks. The main difference between the two

consists of the appearance of (412 (t), I S2(t) ) the second component

of the state. This inclusion allows the present definition of state to

satisfy the forementioned consistency conditions of Zadeh [ 65]. The

concept of state proposed by Saeks satisfies these conditions only in the

particular case in which the system is weakly additive (Proposition 2.4).

Thus, by the introduction of the component ('P2 (t) , S2 , 2(t)) the gap

existing between the definitions given by Saeks and Zadeh appears to be

bridged.

3. 3 State Related ConcepLs in GRS

The c+ructure of systems with respect to the notion of state can be

diverse. To describe the variety of situations which can occur, it is

convenient to introduce the concepts of controllability, observability

and minimality. For details on the genesis of tI ese concepts the inter-

ested reader is referred to [ 18].
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Definition 1. The state decompocition (4(t), S, I(t)) is completely

controllable with respect to the first (second) component if 4/1(t)

( is onto.

Definition 2. The state decomposition (4(t) , S, I(t)) is completely

observable with respect to the first (second) component if lt)

I; (•V(t)) is 1-1.

Definition 3. The state decomposition is minimal with respect to the

first (second) component if it is completely controllable and completely

observable with respect to the first (second) component.

Definition 4. A state decomposition is strictly minimal (strictly com-

pletely controllable, strictly completely observable) if it is minimal

(completely controllable, completely observable) with respect to both

first and second components.

Definition 5. Two state decompositions (igt), S, qt)) and (4/(t), S', C'(t))

are strictly equivalent if there exists a unique family of invertible

mappings UK(t) such that the following conditions are satisfied

44t) =K(t) V(t) and C(t) = ý'(t) IX -(t).

In what follows we give some results related to the above state

concepts. These results allow a better appreciation of our definitions

and consequently a better understanding of the results of the next section.

L'



They are, however, not essential to the main development and can be

omitted at first reading.

As a start, the following proposition gives a connection between

the mathematical concept of minimal state decomposition and the

intuitive notion of a state space which contains only "essential" ele-

ments.

Proposition 1. Suppose that the completely observable (4(t), S, ý(t))

and the strictly minimal (4t), S, ýt)) are state decompositions of T.

Then there exists a unique family of mappings EK(t) taking S onto S

and such that

•t) = EK(t)4(t) and ý(t) = ý(t)fK(t) . (3.3)

Proof. First we show that the family I:K(t) exists and satisfies

Equation (3. 3). For this purpose suppose that, at index t, v is the

state of T in S. Let U be the set in S[ G, v] with the following property:

v = z(t) u for any u e U.

For any pair ul, u2 in U we have

and this implies

i(t)ý'i(t) ul = 'i(t)ýi(t)u 2 , i=1 ,2.

.L



From this equation and the definition of state decomposition it follows

tTptl = PtTpt 2 and Ptt6 T [ ]=tPtTt[ ]'
P'u1 P u2

and from here

V(t) (t) u1 = O(t)_ u2 .

Moreover, from the minimality of (_ý(t) ,S,(t)), _(t) must be 1-1 and

therefore we must also have

4(t)u 1  =(t)u2 .

Note, at this point, that according to the above construction at each

t e v every element v in S defines a unique set U in S[ G, v]; such a set

U, in turn, defines a unique element v in S. Thus we have built [K(t)

a family of mappings S -> S. Clearly for each u e S[ G, v] we have

v =ýt = t G;1t) u = EK(t) v

and therefore ý(t) = EX(t) 4(t). We alsG 1we It) = K(t) ý(t). This

follows from

_(t) CK(t) z(t) = (t) t •(t) z(t)

and the fact that i(t) is onto.

It remains to be proved that each mapping EX(t) is onto and that

the family LK(t), t E v, is unique. If EK(t) is not onto then there exists

a state v E S such that



[K(t) v for every v e S. (3.4)

From the strict minimality of (4(t)., S,Y (t)), I4t) is onto. Hence there

exists an input u E S[ G, v] such that v = 4t) uo. Let v = i(t) uo, and

let U be a subset of S[ G, v] such that

v-= lkt)u° = z(t)u, for any u E U.

Then the following relation holds

v =4(t) uforanyuE U

and from here, v = [XOt) v. This is a contradiction to Equation (3.4).

Hence LK(t) must be onto. Finally, suppose that the family EK(t) is

not unique. Then for some t E v, there would exist at least two mappings

[K,(t) and OK2 (t) such that [K,(t) ý MK2 (t) and Equation (3. 3) holds.

This implies that there would exist an element v e S such that

(Kl1(t) v ý LK2 (t) v (3. 5)

and

ý(t) v = _(t) I(K1(t) v = _(t) 1K2 (t) v.

It would follow

_(t) [Ki(t) v - _ (t) [K2 (t)M v .

But by hypothesis _(t) is 1-1. Hence it must be that

Ti iI (t) v = 2(t) Mv

This is a contradiction to Equation (3. 5).

L _



The next proposition shows that all strictly minimal state decompo-

sitions of an operator T are strictly equivalent. This is a generalization

of a similar well known result in the context of linear dynamical systems

[42], [ 65]. A result of this type was also given by Saeks for linear

systems in Hilbert space [ 49].

Proposition 2. All strictly minimal state decompositions are strictly

equivalent.

Proof. Suppose that (i(t) , S, (t) ) and (ý(t) , S, ý(t)) are strictly minimal

state decompositions for the operator T. We have to show that there

exists a famil7 of invertible mappings CK(t) such that the equations in

Definition 5 are satisfied.

From Proposition 1, we know that there exists a family of onto

mappings IX(t): S -> S such that

g(t) = CK(t)4(t) and _(t) = C(t) CK(t).

Therefore all we have to show is that IX(t) is 1-1. If [K(t) is not 1-1

there would exist two elements v, v° 0 S such that v # vo and iX(t) v -

EK(t) vo. It would follow that

§(t) v = ((t) EK(t) v = ý(t) [K(t) v 0 = t) Vo,

and this equation is a contradiction to the fact that by the strict mini-

rmality of the state decomposition ý(t) is 1-1. <l
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An additional property of a strictly minimal state decomposition

is that it allows to define the notion of a "transition operator" (Saeks

[49]).

Proposition 3. Suppose that (i(t) , S, O(t) ) is a strictly minimal state

decomposition. For q < t, t, q e v, assume that no input to the system

occurs between q and t. Then there exists a well defined mapping

Vt, q) such that

v(t) = 4(t, q) v(q)

where v is the state of the system.

Proof. To every element t E v and each element v E S, associate U(t),

a subset of PtS[G9 v], such that U(t) is maximal with respect to the

following property: if u E U(t), then v = t•t) u. This defines the family

of mappings M(t): S--> IP{S[ G, v]} where IP{S[ G, v] } indicates the
t

power set of S[ G, v] . Conversely, to every subset U(t) c P S1 G, v]

with the property that there exists a yES such that

v = zt) u, any u E U(t),

associate the element v. This defines a family of mappings

SM(t) -1: IP Is[ G, v }-..S.

Let t, q e v, t Ž q and suppose that is an input to T such that

[pt-pqju ¢. Consider the states v(t) and v(q) give! by the following

equations



v(t) = 4(t) Ptu, v(q) = 4 (q) Pqu. (3.6)

In what follows it is shown that

v(t) = [ M(t) I- M(q)v(q), (3.7)

thus 4(t. q) = M(t) ]1 M(q) is the mapping whose existence was to be

proved.

The proof of Equation (3. 7) is equivalent to tbe proof of the fol-

lowing equation

M(q) v(q) c M(t) v(t).

Suppose that u e U(q) = M(q) v(q). From the definition of state decompo-

sition and Equation (3.6) we have the following

CIq v~) ~u PTP%

ý(q) v(q) =v()\q
•(qýv~q) = 6(q) v2[ ] qTI6Tpqu I

for all u E U(q), It follows
ylt) vl(t) •tPt

qt)V(t) v ))(=_
2(t) v 2(t) P ptuR

f t6T Pt'q6T pqu[]

YO() tP(qu, all u q U(q).

tkit.-t
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From the above equation Pad the fact that C(t) is 1-1 we bave

v(t) = 4t)P%, all u e U(q)

and therefore -(q) = U(t). The proof is thus complete.

The operator 4(t, q) is called the Transition operator of the state

Sdecompotisin. An interesting corollary to the above result P; the

Sfolling.

Corollary 1. Let 4t, q) be the trinsition operator of a strictly minimal

state decomposition (;!4t' S, 4•tI). Then

4(t,t) 0- I

At r) 4-t- -t) 4}(q, r) , t •>a r.

rIn Sectioa 2. 't we observed that, w'hen a svsten-, is weakly additive,

the causality defiritiens presented in this develcnmmnt ccincide with

those proposed by Saeks. The n2,tiral question tl-a is whethe, a sbr,,-

far citudi.m occurs for the definitton of state JeCmposi'tion. In more

precise terms: is it trme 1sat ii the case of we•;ly additive systems

Saeks" conccpt oP a state decomposition coincide 3 with the cn-rcept

.ormalized in Dpfinitior. 1. 1? The following pr.-poýMoieln shows that the

answe-r to this --juestion is affirmtz--rz.

Before stati:g this result it is cor-enie•nt t paus, for a mor.ent

And clarift shme addit:onal shorthand ncwation.- It "I!i &e . d that a
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sade decomposttiou (i(t), S, ift) ) has its second component given by

the triple ( i,, ,) if S. has only one element (again indicated by 4)

and iý(t) maps this element into the null operator on PtSf Gv].

Finally a state decomposition ((t) 8, g(t)) is given by the triple

(, , 4) if both its first and second components are given by the triple

Proposition 4. If T is weakly additive then it has a state decomposition

whose secnnd component iu given by the triple ( 6, •).

Proof. Choose a triple (4(t), S,• t)) where 0(t) S = (S1 , )

It) = (q(t) 9 0) and (1/, S1, q(t) ) is any admissable first component for

a state decomposition of T. To prove tht (4(t), S, It)) is admissable

it is sfficient to show that '4, ,) ., 2 9, ý(t) 0 ) satiblies the

requirements of efirnitior' 1.1. rhat this is indeed the case follows

from the relat'on

Pt6p ýW Pxj - JPtT' -Ljx + Vtu' - tT1, Pix'- ftTJ Ptul

wtuch is valid br all Pt P1S1 G3 iai ý PE tS Giv. <]1

3.4 Some Connect.ou*s E-twsen Causality and State Properties in GRS

Wlierisically, if a systenm :s- ;%nicxsal. then its state sp.-ce should

be racuous. This resuft is giver, -na*inatical 1 jer ir the following

pro"o-iticn,



Proposition 1' If T is articausal then it has a state decomposition given

by the triple (•, •, •). Conversely, if the triple (0, 0, 0) is an admis-

sable state decomposition for T, then T must be anticausal.

Proof. Suppose that T is anticausal. Then for every element u f Si G, v]

tand t E u we have Pt'Ip = PTPtu and therefore PtTPU d (h. Similarly,

for any x P tS[G,vI andtEv wehave

P t6T ptu [x] = PtTfitu+Ptx] - PtTptu-ftTPtx

and, from here, Pt6Tuf J . Choose now the tri'fle (;(t) S, 4t))

such that S = (6, 0), i(t) = (6,;5) and qLt) = (6,6). In view of the above

equations it is trivial to verify that this triple satisfy the requirements

of Definition 1. 1 and therefore it is an admissable state decormposition

for T. Conversely, suppose ti-at the triple (6, 6,6) is an admissable

state decomposition for T. Then from Definition 1. -, we have

PtIP'= and PTptu -Pt PtTptu- PtTFtxo.

From this it follows ihat P tT - PtTPt and appi- , the dual of Propo-

sition 3. 1 ",ve can concljdc that T -s anticausal.

In the case o; memnorvless systewn' %.'-ich are ;,nticausal) a

straightforward a'PliC3LiOn Of thte above propositieP and of the principle

of cawjsal dhiality generates the ,,t-Iow-'W coroIlar,:

*A resut ! of this tvjp- was -;r.- :"n _. -W . a"
systpm context ' set, 4i. I..
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Corollary 1. A necessary and sufficient condition for T to be memory-

less is that the triple (0, 0, 0) be simultaneously an admissable state

and costate decomposition for T.

Corollary 2. If the system T is anticausal then it admits a strictiy

minimal state decomposition.

When a system is crosscausal a result similar to Proposition 1

can be stated.

Proposition 2. If T is crosscausal then there exists a state decompo-

sition with first component given by the triple ( ), 4, b). Conversely,

if T has a state decomposition with first component given by the triple

(0, 0, 4), then T is given by the sum of a crosscausal plus an anticausal

operator.

Proof. First we show that the triple (i 1l(t), S, (I(t)) = (0, 0, o) is an

admissible first component for a state decompositicn of T, where T

is crosscausal. Beginning with Proposition 2.2.3, we have dP(s) TPt=

for each s > t. This implies that

PtTPt = \ dP(s)TPO e6.~sAt

From here it follows easily that (i,1 (t) ,SI, I(t)) =. (6,6,0) satisfies the

requirements of Definition 1. 1 and therefore is an admissible first

component for a state decomposition of T.
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Suppose now that the first component of a state decompositioui of

T is given by the triple (4, 0, 0). This implies that we must have

PtTPt =for every t c v. (3.9)

Note that from Proposition 2.6.6 we can write

T = TA + Tx + Tf, (3.10)

where TA, Tx and Tf. are uniquely defined anticausal, crosscausal and

strictly causal operators. From the dual of Proposition 2.4. 1 and

Proposition 2.4.5 we have

PT -P tP0 and ftr 0P-P TPt0
PtTAP PtPT A tX t x

From ýhese relations and Equations (3.9) and (3. 10) it follows that

PtTePt =,0. This implies dP(s) TfPt = 0 whenever s >t and from the

fact that Tf is strictly causal it follows that TE is a null opei ator.

From this and Equation (3. 10) we can conclude that T is given by the

addition of a crosscauza! plus an anticausal component., K

Corollary 3. If T is crosscausal then i,. admit - state decomposition

which is minimal with respect to its iirst componcnt.

Before proceeding further it is convenient to :ntroduce the tol-

lowing result whizh is a useful tool in extending Propo.sitions ! and 2.

Proposition 3. Let S'(t),S,•"t) i and VA•t). S" C':t) I be two state

decompositicns for T' and T" re5pectively. Twi.-..,- -drn•ssable state



75

decomposition for T T' + T" is given by the triple (1(t), S, C(t)),

where

! • i~t = • (), ' ()),i= 1, 2, t• Ez,

M. Si= S. x S[ i=11,2, t• C
1 1

=i(t) si= (t) s + •'(t) si, l=1, 2 , t E v

where s. =(s.,SIT) IES.t Xf 7 S" 2i .1 11 1 '-1,2.
wh r i Is , i I i f' -

Proof. To show that t he triple (ýkl(t), S1 , Cl(t)), defined by (*) for

i= 1, is an admissible first component for a state decomposition of

T = T' + T", it is sufficient to shw that the following holds

lotlt) = PtTPt.

Since (41(t), S', C'(t) ) and (* "(t),S", C"(t) ) are state decompositions

of T' and T" respectively, we must have

C(t);P,(t) = Ptript and q(t) A'(t) = pT"Pt.

It follows then that

(t),t)= 4(t)(t)VMt) + C(t)4M;(t) = PtT'pt - PtT"Pt

=Pt(T' + T'j Pt =P tTp.

This implies that (Ilyt) , S, (l(t)) ib an admissable first component

-or a state decomposition of T.

Using an identical argument it can be shown that ( I(t). S2, C2 t))

defined by i) is an admi;sable second component for a state decomIpo-

sition of T.



76

Using Proposition 3, the results in Propositions 1 and 2 can be

applied in more general situations. This is illustrated by the iol-

lowing Propositions 4, 5 and 6.

Proposition 4. For every operator T there exists a state decomposition

with the property that the first component depends only on the strictly

causal part of T.

Proof. Applying Proposition 2.6. 6,, T can be represented as follows

T= Tx+T+TM +TX

Suppose that (4/(t), SC, •a(t)), a E {A, C, M, X}, are state decompositions

for TA, T , TX and TM respectively. By Propositions 1 and 2,

(ka(t), Ca •a(t)), a E {A, M,X}, can be chosen in such a way that the

first component is given by the triple (0, •, •). A state decomposition

(4(t) , S, It) ) for T can now be obtained by the procedure indicated in

Proposition 3. The first component of this state decomposition depend3

clearly only on TE.

Proposition 5. If the strongly causal component of T is weakly additive,

then there exists a state decomposition with the property that the first

component depends only on the strictly causal part of T and the second

comporer•f depends only on the strongly crosscausal part of T.

Proof. Consider again the representation T TA * T - TM ; TX-

Pyv %e application -)f Proposition I and 2.4 it . ossble to find state

decomposit .- If-,:- T- T M ard T( with the iprocrtv Iial the- second



77

component is given by the triple (4, (A, ) ). The rest of the proof can

be obtained through an argument identical to that used in the proof

of Proposition 4.

Proposition 6. A necessary and sufficient condition for T to admit

a state decomposition with a first component given by the triple

(, 4, 4)) is that the strictly causal part of T is null.

The proof of Proposition 6 uses techniques similar to those seen

in Propositions 4 and 5 and will be omitted for brevity.

To help motivate the next result, observe that a system can

clearly have more than one state decomposition. Conversely, Propo-

sitions 1 and 2 indicate that a state decomposition can correspond

simultaneously to many systems. The natural question that arises is

concerned with what must be in common to two systems in order that

they can both have the same state decomposition. The answer to this

question is given by the following theorem.

Theorem 1. A state decomposition of T de'fines uniquely the strongly

causal and strongly crosscausal components of T.

Proof. We have to show that if two systems T and TI admit an icentical

state decomposition (V4t), S, C(t)), then T = T' apd T = T' . whereC C x x'
TC, T and T' T' are strongly causal and strongly crosscausal com-c x c' x
ponents respectively of T and T'. Consider the operator T - T'. By

the application of Proposition 3, a state decompr sition of T - T' is

given by (;;At), S, (t) ), where, using the rotation of Propostion 3,
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,(t) (t iit)) I,2; Si C Si x Si

i=1,2 and •(t) is defined as follows: iff'- (vi, vi) E S. then i(t)•i -

aivi - Civi. Clearly ( ?t) ,, 't)) has the property that r(t) ýt) - 4,

for i= 1,2. From Definition 1. 1 it follows that Pt(T - T') Pt - • and

PtTtx6 ] = o for every x E Sf G,2 ] and t E v. This implies that

the triple (0, 01, ) is an admissable state decomposition for T - T'.

From Proposition I it follows that T - T? must be anticausal. This

means that TC + Tx - T' - Ti -- . From Proposition 2.4.1 it then

follows that TC = T' and TX = T1, which completes the proof.

Interesting corollaries of the above result are the following.

Corollary 4. A state and a costate decompositions of T define strongly

causal, strongly anticausal and strongly crosscausal components of T.

Corollary 5. If T is given by the sum of a strongly causal an.' .- strongly

crosscausal system, then T is completely defined by any one of its state

decompositions.

Corollary 6. Suppose that (i(t) , S, C(t)) and (/(t) . S', t'(t) ) are sfate

decompositions of, respectively. T and T'. If (;jt), S, C(t)) and

(V(t), S', ý'(t)) are strictly equivalent, then T and T' have identical

strongly causal and strongly crossca':sal cowpon:nts.

Note that the above statements providc - 'is which in the

context of linear dvnamical systems arc very Lim•l,..t . ,Jirtjcular
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from Corollary 7 we obtain that two strictly equivalent dynamical

systems have the same weighting pattern [ 65].

3.5 Summary

In this chapter we have studied some interconnections between

the causality concepts developed in Chapter 2 and the concept of state.

Motivated by the causality development of Chapter 2, it was natural to

embed this study in the framework of group resolution space. A first

order of business was then to formalize a meaningful concept of state

in this general context.

For this purpose an extension of the state decomposition format

of Saeks was introduced. As a partial result of this extension our

notion of state satisfies the consistency conditions required by Zadeh.

Moreover it permits to generalize most of the available state-related

results which are usually formulated for linear systems. This leads,

for instance, to a generalization in a nonlinear context of Proptition

2.4, 2.5 and Theorem 2.7 in [ 48 J.

Meaningful connections between state and causality properties

were also established. These results give a rigorous formulation of

the heuristic idea that whenever a system has something special with

respect to its state structure then it has also something special with

respect to its causality structure. In particular, this is illustrated

by Propositions 2,3.1-4. The converse is also true.
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The most significant result of the chapter is given by

Theorem 3. 1. This theorem states that the strongly causal and

strongly crosscausal components of a system are uniquely defined by

any one of its state decompositions.



4. CAUSALITY PROPERTIES IN HILBERT
RESOLUTION SPACE

4. 1 Introduction

Many system problems in communication and automatic control

have natural models as operators on a Banach or a Hilbert space. As

these spaces cannot be viewed, in general, as group resolution spaces

(GRS), the causality results in Chapter I are not directly applicable.

By applying appropriate modifications, most of the development in

GRS can, however be extended as to cover operators on a Banach cr

a Hilbert space. The main objective of this chapter is to discuss the

nature of these modifications and to elaborate on the type of results

whici can be stated in the new context.

To achieve this objective we will focus attention on the case of

systems in Hilbert space. This will permit us to utilize some results

recently developed by mathematicians of the Russian school,

[ 24], [25 ]. At the same time we will be able to illustrate basic

ideas and techniques which can also be used in a Banach space context.

In this latter case, however, a more cumbersome and complex develop-

ment would be required [ 42].

There are several procedures by which the causality development

of Chapter 2 can be made compatible with a H Lbert space context. To

motivate the specific character oi our approach it is helpful to first

consider two simple examples
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Example 1. Let R be the Hilbert space defined by ordered n-tuples

of real numbers with the usual inner product. Every element

x = (Xlx 2 ,.. Xn) eRn can be viewed as an element of the GRS des-

cribed in Example 2.2.1 and conversely every element of that GRS

can be viewed as an elemoent of Rn. It follows then that all the causality

co•cepts and results presented in Chapter 2 are valid and meaningful

in the context of operators on the Hilbert space R n. K
Example 2. Let f2 be the famil.iar Hilbert space defined by ordered

sequences of real numbers (xlx 2 ,.) such that N <cc. The
i= IA

space f2. can be viewed as a subset of the group resolution space

S[G, v] which is obtained by setting G = R and v = {1,2,...}. More-

over, the truncation operators P1 and Pi associated with S[G, v] map

f2 -->2 and can be viewed as projection-operaiors on k2"
The causality concepts of Chapter 2 can be applied in a n;atural

way to systems in 2" For example a system T mapping f 2 ?2

can be called causal if,
i • 1 i

P x = P y implies P Tx = P Ty for all x,ycf and v.

The other causality concepts car, be similarly defined. Note

however that f2 is not a GRS. This implies that the causality results

in Chapter 2 do not necessarily apply. For example the proof of

Theorem 3.1 is not valid in f2 and the questiur of e. isltence of a

canonical causality decomposition has to be rfconsir1, red

"-1
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The discussion of the above examples illustrates a typical "case

by case" procedure for carrying the causality study into a Hilbert space

context. This procedure is quite satisfactory in many instances. It

implies, however, the possible need for a r ew approach to suit each

specific Hilbert space. The desirability of a unified treatment moti-

vates a more sophisticated and structural approach. This leads in

turn to the adoption of a mathematical setting called Hilbert resolution

space and to a causality development in this setting.

A few comments about the organization of this development are

in order. Section 2 is used to review some mathematical preliminaries

and in particular to define Hilbert resolution spaces and some related

notions. In Sections 3 and 4 causality ck s and properties are

discussed. Some closure properties of systems with a special causa-

lity structure are considered in Section 5. Section C, deals with the

question of causality canonical decomposition. In Section 7 the treat-

ment is specialized to weakly additive systems in Hilbert space. In

Section 8 Hilbert Schmidt operators are discussed. Finally, Section 9

reviews some highlights of the chapter.

4. 2 Hilbert Resolution Spaces

In this section some basic mathematical concepts and definitioiis

are briefly reviewed. The purpose of this review is twofold: to clarify

the notational machinery used in the following sections and to make the
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treatment reasonably self contained. A unified treatment of those

standard mathematical concepts and definitions which are needed in

this chapter can be found in [ 27], [411, [ 62]. For the concepts

related to Hilbert resolution spkces and integrals in these spaces

the reader is referred to [ 24J, [ 25], [ 42], [ 50].

The reader is assumed to be familiar with the notions of metric

spaces, linear spaces, normed spaces, inner product spaces and the

concepts of linear and nonlinear mappings in these spaces (see for

Example [ 27], [ 41], [ 62 ]). A Banach space is a normed linear space

which is complete under the metric induced by the norm. If x is an

element of a Banach space, the norm of x is indicated by the symbol

Ix I. A Hilbert space is a Banach space with the nbrm' induced by an

inner product.

Suppose that T is a mapping on a Banach space B. T is bounded

if IT sup - Tx' <o. if T is bouqded, the number IT I is called
F0'xcB lxi

the norm of T. T is, called compact if T(F), the closure of the image

under T of a bounded set F is a compact set. "( is unbiased if T(0) = 0.

As in the case of the GRS development, we will only consider unbiised

operators.

Suppose that H is a Hilbert splace and v an ordered set with t,

and to0 respectively minimum and maximum elemcnts* of v. A family

IR = {pt}, t c v, of orthogonai projectors on H is called a Resolution

of the Identity if-

S*t aind t do not exist the definition has a natural extension

(see, for i'istance" i 42] p. 37),
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Ri) PkHDP Hwhenk>1; k,Ic v
t t = H

Rii) POH =0,P H

The projector I - Pt will be de-toted by Pt. A pair of projectors
i pk

P, P kER, s > k, is called a gap in IR if there is no element I E v

such that P _ p S. IR is continuous if it does not contain

any gap. IR is closed if P belongs to IR whenever there exists

-a sequence of projectors {P1} in IR such that {P'} converges

strongly* to P. The Hilbert space H equipped with IR is called a

Hilbert resolution space (in short: HRS) and is denoted by the

symbol [H,Ptl. In the sequel we suppose that IR is closed.

The parallelism between GRS and HRS appears quite natural;

indeed using "spectral multiplicity" theory (see Halmos [ 26 ]), a

HRS can be viewed as a modified GRS with some additional structure.

In GRS it was found that "sum representation" of the type

. dP(s)TPs, etc..., were essential to the causality develcpment.
Sc V
In a HRS context the notion of an integral can play an equivalent role.

Suppose that T(s), s E v, is a family of opee'ators on a HRS

indexed by s c v, and consider the following operations:

i) Choose a partition S1 of v, k2 = N , 1} where

ýo = to) ýN = too and { j} is a finite set of elements

in v such that fj < ýj+l, j=l' 2,..., N-1.

*A sequence of operators {TM} is strongly convergent to T, if
for every element x E H we have {f+ixJ -> Tx.
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ii) Consider the partial sum

N
Z= AP(k) T(sk) (4.1)

k=4

where AP(k) = P _p-k-1 Pnd sk is any element of u, such

that tk-1 S sk < ýk"

iii) On the set of all partitions 2 of v, define a partial order

as follows: 61 D S2 if every element of 02 is contained

in 12

iv) Suppose that there exists an operator T such that in

correspondence to any c > 0 there is a partition n of

v with the following property: the operator norm

IT - 1 92 is less than E if 9 ) 62"

Thbc operator T obtained through operations i-iv) is called the
J integral of the iamily T(s) with respect to IR and it is denoted by

T:. f dPT(s).

Slight variations of the above concept of integral are also of

interest. To this purpose we will denote by

4T = dP(s) or T = * dPT(s)

the integra! which is obtained by choosing sk in operation ii) respec-

tively as follows: sk M •k-1 or sk = •k Similat'ly the operatur

T = f dPT(s)dP will denote the integral which is obtained by rcplacing

Equation (4. 1) in operation ii) by the followhig
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N
I k=•1 AP(k) T(sk) AP(tk)"

Often it is convenient to relax the condition on the type of con-

vwrgence of the partial sums in Equation (4. 1). In narticular it may

be sufficient to require that in step iv) uniform co•ivergence be

replaced by "strong convergence". In this case ý,tep iv) would have

to be modified as follows: "There exists an operator T such that in

correspondence to any x e H and any real positive E > 0, there exists

a partition fQ of v with the following property: if n > RE then

I(T- I'xI <E'.

In the course of this development it will oe natural to associate

with an operator T on a HRS [H, ptI the families TPs and TP . TheseS

families will lead to integrals such as

fdPTP', dPTP', dPTP5

and similar.

In a causality context this type of integrals were first applied by

Saeks, [48]. Their rigorous study is, however, due to mathematicians

of the Russian school ([ 24 ], [25 ]). These studies are documented by

a large number of results. Only a few of these results will be needed

here and they are listea in Appendix B.

For later use and to gain some familiarity with the abov a defini-

tions, it is convenient to pause and consider somie examples of HRS.
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Example 1. Suppose that H is given by L2 [0, o), the Hilbtert space of

Lebesgue square integrable comolex functions. In L2[ 0, co) we can

define a family of orthogonal projection operators IR = ypt}, t E [0, CC),

according to the following rule: if x and y E L2[0, co) and y = Ptx, then

y(s) = x(a) a. e. in [0, t] and y(s) = 0 a. e. in [t, oo). The family IR = Jpt}

is a resolution of the identity because it enjoys properties Ri) and Rii).

We can then consider the HRS [L2[0, co), p ]. The resolution of the

identity in this example is easily shown to be maximal and continuous.

Example 2. Suppose that H is given by f22 the Hilbert space of square

summable sequences of complex numbers (xlx 2,...). In f2 we can

consider the family of orthogonal projectors IR -- {pf i C u=1, 2...,

where each P1 is defined as follows: if x=(x1 ,x 2,...), y=-(yly 2,...)

E f2 and y = P x, then yj=xj for j > i and yj= 0 for j>i. The elements

of the family IR satisfy the properties Ri) and Rii) and consequently

IR = {pi} is a resolution of the identity in f2" We can then consider

the HRS [ 2g, P1]. Observe that here the res•.ation of the identity

is maximal but not continuous.

Example 3. Suppose that H is given by L2[ 0, c) 2" This means

that a typical element of 11 is given by a pair (x1,I 2), where x1 is an

element of L2[ 0, co) and x 2 = (x21 ,x22 ,x23 ,...) -.s an element of 122

In this Hilbert space we can consider the familv or[ projection operators {P'}
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defined as follows: if (x, x2) and (YlY 2 ) e L2 [O,o1) x 22 and (ylY 2) =

'J(xl, x2), then

yl(s) = xI(s) a.e. in [O,j], y (s) = Oa.e. in [j,co)

and

Y2  x 2 for i < j and Y2 = 0 for i >j.

Again the family IR satisfies properties Ri) and Rii) and therefore is a

resolution of the identity in L2 x f2. We can then consider the HRS

[L2 X f2' Pi1 . Notice that in this case the resolution of the identity

is neither maximal nor continuous. <1

From the above examples we can observe that Hilbert resolution

spaces can simultaneously represent those continuous time, sampled

data and hybrid systems which are usually consibred in automatic

control theory (see [ 41]). More complicated and less familiar systems

in communication theory can also be embedded in this framework. In

this regard the reader is referred to [ 17 .

4. 3 Causality Concepts in HRS

The basic causality concepts which were introduced and discussed

in Section 2. 3 will now be extended into the HRS context. In the case of

causality, anticausality and memorylessness this extension is straight-

forward. To this purpose let T denote an (unbiased) operator on

[H, ptI and let x and y indicate two elements in [H, p t.
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Definition 1. T is causal (anticausal) if Ptx = Pty implies PtTx = PtTy

(Ptx = Pty implies PtTx = PtTy).

Definition 2. T is memoryless if it is simultaneously causal and

anticausal.

The task of extending the concepts of crosscausality and strict

and strong causality is not as straightforward. The difficulty is caused

by the fact that in GRS these concepts were based on the notion of the

evaluation operator dP(t). Usually a HRS does not come equipped with

this type of operator. This is the case, for instance, for the spaces

considered in Examples 2. 1 and 2. 3.

To overcome the impasse, obsetwve that from Propositions

2. 3. 3-4-5-6 the causality concepts under consideration can also be

based on the notion of special "suin.-type" representations. This,

together with the heuristic similarity between "sum-type" and

"integral-type" representations, leads in a ratural way to the fol-

lowing definitions.

Definition 3. T is strongly causal (strongly anticausal) if T is causal

(anticausal) and

fdPTdP = 0

Definition 4. T is strictly causal (strictly anticausal) if

T = • dPTP3 (= i• dPTP9 ) and f dPTdP = 0.
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Definition 5. T is crosscausal if f dPTdP = 0, Pt = 0 implies

ptTx = 0 and Pex = 0 implies PtTx = 0.

Definition 6. T is strongly crosscausal if

IdPTPS = 4dPTPs = fdPTdP = 0.

In view of the similarity between causality concepts in GRS and

in HRS, most of the considerations and physical interpretations in

Section 2. 3 can be applied in the HRS context. In particular it is

again helpful to adopt the causality alphabetic code 1 = {A, C, M, X,

_A,_C,X, A, C}. The principle of causal duality also remains valid and

will often play a key role in the simplification of the various proofs.

Principle of Causal Duality in HRS : Let a statement or equality be

phrased using relations involving concepts associated to the alphabet

A, families of projection-operators such as P t, Pt and integral trans-

formators of the type *[ ], 4[ ]. Then the statement or equality

remains valid if the following interchange in symbols occurs:

C->A, C-->A, A,-->C, A->C,

P _>P' P -->p, t 7 -> 4, 4;-> i, X-> X, X--> X.

A brief discussion on the implications connected with the choice

bctween strong and uniform convergenc,ý for the integral in the above

definitions is in order. As it will become clear in the course of our



92

development, uniform convergence allows greater simplicity in the

proofs of certain results. Occasionally it also plays an essential

role for the very existence of other important results. Strong con-

vergence, however, is often preferable from a physical point of view.

This can perhaps be best illustrated by a simple example.

Example 1. Consider the HRS described in Example 2. 1. A system

T on this HRS maps every element x e L2[ 0, o-.) into an element

y E L2[ 0, c). Suppose that T is defined as follows: if y = Tx then

y 't) = x(t + T1)x(t + T

where T, and T2 are real numbers and x(s) = 0 whenever s < 0.

The system under consideration is formally identical to that

considered in Example 2. 3. 1. As in that example, the causality

character of T is a function of the location of the point (T1 , T 2) in the

2Cartesian plane R2. In particular, for TK S 0 and 12 K 0 it is easy to

verify that T is causal. Similarly for T1 _ 0 and T2 > 0 T is anticausal,

and for T1 = 0, 72 = 0 T is simultaneously causal and anticausal, hence

memoryless.

When the convergence of the integrals in definitions 3-6 is in-

tended in the strong sense then the causality structure of T as a function

of (T,, T2) can be a subject of further analysis. For instance, if TK < 0

and T2 > 0, then in addition to TPt = ptTpt and TIt = PtTt~t, we have
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fdPTdPx = 0 for every x E L2[ 0, co) This implies that T is cross-

causal. More specifically T is strongly crosscausal because we

also have that

*dPTPx = #dPTPsx = 0.

Similarly for T1 K 0 and T2 < 0 we can verify that

Tx = #dPTPsx

and therefore T is strictly causal. Proceeding in this way we obtain

that the causality character of T is identical to that described in

Example 2.3. 1. In particular the results illustrated in Figure 2. 1

are again true.

It is important to observe, however, that in the case of uniform

convergence not all of the above results hold and the analysis becomes

somewhat less responsive to our expectations. For instance, for

T< < 0 and <2 < 0 T would not be strictly causal because (in the case

of uniform convergence) it is no longer true that T = #dPTPs.

Similarly when T< < 0 and T2 < 0 T would not be crosscausal. <2

To conclude the section the following remark is in order. Results

and considerations in this chapter remain formally identical whether

strong or uniform convergence is adopted. Thus, the adoption of uni-

form convergence has to be considered as a matter of mere technical
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convenience. The situation is somewhat different in the next chapter.

In that context the use of uniform convergence is essential and, if

strong convergence is adopted instead, then the results of that chapter

do not hold.

4.4 Causality Properties of Basic Systems in HRS

From the similarity between the definitions of causality concepts

in GRS and those in HRS, it is natural to expect that properties similar

to those already seen in GRS might also be stated in the HRS context.

To illustrate that this is the case, we will revisit some of the results

in Sections 2.4 and 2. 5. For brevity our attention will be confined to

those results which will be needed later in the development.

To start with, the following Propositions 1 and 2 are similar to

Propositions 2.4. 1 and 2.4. 2. These results have already appeared

in the technical literature [3] [ 48 ]. As the present mathematical

setting is slightly different from that adopted in those references, a

brief review of the proofs is included.

Proposition 1. The following statements are equivalent:

a) T is causal

t t t
b) pT =P TP

c) T *dPTPs.



Proof. a)->h) . The argument is formally identica to that seen in the

proof of Proposition 2.3.1. b)-- c). Suppose that T is causal.

Then for any partition 9 = {to ' •1' •2' N t} of P the following

relations hold

N N N
T= 1 AP(P iT=AP( i) P T= AP(ti) TP

Hence T I $1 dPTPs. c) - a). Suppose that c) holds and choose

any x, y E H and t e v such thatP tx Pty. Then we have

PtTx = Pt* dPTPsx = *ptdpPSPtx = ptdPTpspty = Ptiy.

This implies that T is causal.

Proposition 2. The following statements are equivalent:

a) T is memoryless

b) PtT = PtTpt and PtT = PtTPt

c) T= fdPTdP

Proof. The equivalence of a) and b) is a direct consequence of Propo-

sition 1 and its dual. It is then sufficient to prove the equivalence

between b) and c).
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b) -- 0 c). buppose that b) holds. Observe that for every parti-

tion S = {t 0= to' •" 'N= t} we cap write

N
TT= &P(ti)T.

i=-

Applying b) we obtain that for each i the following relation holds

ip

AP(ti) T = AP()P P Ti- 1 T i- 1

::AP(Ri ) TAP(ki)•

It follows that for every partition I2 of N we can write

N
T= AP(i TP(i)

This imphes c).

c) -> b). For any t e P and any partition P. = 'to -

such that t e 6, we have

N tN
pZ ij AP(•i)T AP(i) = P AP(i TAP•) Pt

and

N N
Pt APi APj = Pt .~AP(q~) ThP(ý t.)

If c) holds, the above equation implies

PtT = PtTp and PtT - PtTPt

thereby completing the proof.
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The next proposition is analogous to Proposition 2.4. 5. The

proof is based on techniques similar to those adopted in Propositions

1 and 2 and will be omitted for brevity.

Proposition 3. The following statements are equivalent:

a) T is crosscausal

b) TPt = PtTPt, TPt = ptTpt and fdPTdP = 0

c) ý0`PTP5 = *dPTP-V = fdPTdP = 0.

Techniques similar to those adopted in the proofs of Propositions

1 and 2 can also be applied to obtain results of the type illustrated in

Section 2. 5. In this regard we introduce the following two propositions.

Proposition 4. If T is strongly causal (strictly causal) and T" is

causal then T'T" and T"T' are strongiy causal (strictly causal).

Proof. If T' is strongly causal then by definition T' is causal and

fdPTdP = 0. (4.2)

Since T" is also causal we can apply Proposition 1 and obtain

ptTT,, = PtTIPtT11 = ptTT,,Pt

Applying again Proposition 1 this implies that TIT" is causdal.

To prove ,.hat TIT" is strongly causal it remains to be shown

that fdPT'TT"dP - 0.
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Given any partition l of v, (0 {to='o' 1'"" ' N=%t,}' from

the causality of T' and T" the following relations hold

P( i) T' AP(4. T'P1

T"AP() P TI??AP(i)

i- it 2,...,I N.

It follows that for each i=-, 2, .. , N we have,

APP)i) T'T'AP(,,, ,d
= AP(•i)T'P 1Pk/ T"1AP(Q)

= AP(.i)T1AP(.) T"?AP(.i)

and from here

N NSA•,(ý T'T"•AP(Q) = AP(•i)T'AP'(,i)T",•P(q-)
i=1 i--I

It follows that

N
AP() TAP(i)I <(sTp IAP(Qi)TAP( 1i) T"IS"=1

(4.3)

and from Equations (4. 2) and (4.3) it follows fdPT'T"dP - 0. Similarly

for T"T'.

Suppose now that T' is strictly causal. It has to be shown that

T'T" is strictly causal. From the definition of strict causality and

Propo-tion 1 the following relations hcld
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T= dPT'P5 and T"i= dPT"'P.

From the definition of integral, given any E > 0, two partitions 01 and

all can be found such that for all partitions 1, a D Q, U 01",

S= {tot 1"" ... Y} the following relations hold

IT'-T'I <e and IT"-T"I KE (4.4)

where
N ti-1 N_++ ' = AP(•i) TIP and 'T" = V AP(•i) T"IP.

From Equation (4.4) it follows that
jT'T''- T'T"I < IT'- Tl IIT"J 1" IT"I

and

I T•'T"- •T'IT 1 IT'1 I _i <(IT' I +•)•

From here we obtain

IT'T"- ?TtI'1 K(IT'I + IT"I +E) E (4.5)

But we also have

N •i-1T = AP(•i)T'T"P (4.6)
Si=1 1

and from Equations (4. 5) and (4.6) and the definition of integral it

follows

TIT" = 4iPT'T"Ps.
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It can then be concluded that T'T" is strictly causal. A similar argu-

ment would show that T"T' is also strictly causal.

Proposition 5. If T is simultaneously a and a with al, a c A, C, MX}

then either a = a2 or T is the null operator.

Proof. &ip•ose, for instance, that T is simultaneously A and C. FromI

Definition 2.4.3 and Proposition 1 we must simultaneously have

PtT = PtITPt (4.71

T = z dPTP (4.8)

fdPTdP = 0. (4.9)

From Equation (4. 8) it follows that for any e > 0, there exists a parti-
tion nC such that for any other partition 2 = o= to, 01' ' N =Itý}'t

f/_ ) the following relation holds

i=1 1 i-I

But from Equation (4.7) wve obtain

N N
SAP(Q)TP AP TAQj

This means that given any e > 0 we can find a partition fl such that for

any other partition 0 -D SE we have

N
SiZ AP(Qi)TAP3i) - TI <E.

1=
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This implies T = fdPTdP and from Equation (4.%9 T must be the null

operator. The proof for the other cases is similar and wfil be omitted.

In view of the above results the containment relations among the

various classes of systems with a basic causality structure are identical

to those already discussed in a GRS context. In particular the pictorial

. ,presentation in Figure 2.2 is also valid for systems defined in HRS.

4. 5 Some Closure Properties

The set of all bounded operators mapping a HRS into itself can,

in a nacural way, be viewed as a linear and normed space . Moreover,

it is easy to verify that $ is complete under the metric induced by the

operator norm.

The various sets of systems with a basic causality structure can

also be viewed as linear normed spaces. These spaces are subspaces

of J and the natural question arises whether they too enjoy the com-

pleteness property. From the completeness of $ this is equivalent to

determine whether the limit of a convergent sequence of operators

which are af A is a a operator. In this regard we can state the

following results.

Proposition 1.* The subspace of bounded causal operators .s complete.

Proof. Suppose that {Ti} is a convergent sequence of bounded and

causal operators and {Ti} -> T. We have to show that T is causal.

,
A result of this type has been already established in the technical

literature (see for example 1481).
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By Proposition 4. 1 tlus is equivalent to show that given any pair

(y, t), y c H and t E v, the following relation holds

P Ty = ]TP y.

This can be done by showing that for any positive c > 0 the following

expression holds

I ptTy - ptTptyI <K E.

To this purpose choose an integer N such that

IT - TNI < _ (4.10)
21y

Since TN is causal it follows

PtTNy = PtTNPty (4.11)

From Equations (4 10) and (4. 11) the following relation holds

JptTy - ptTpty! = PtTy - PtTNy + ptTNPty - PtTPtyI

< I(T- N yj+ O( N-T)yIS2- 21
Slyl lyl

It can then be concluded that T is causal and the proof of the theorem

is thus complete. <

Proposition 2. The subspace of bounded strongly causal operators

is complete.
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Proof. Suppose that {Ti} is a convergent sequence of bounded and

strongly causal operators and {Ti} --> T. By Proposition 1 T is

causal and it remains to be proved that fdPTdP = 0. To this purpose

it has to be shown that for any > 0., a partition OE of h can be found

such that it enjoys the following property: If Q = fto = o,, twi

is any other partition of P and S D S, then

N
I [ AP( j)TAP(.j) <
j=1

Let io be an iteger such that

ITi - TI <-. (4.12)
0

Since T. is strongly causal there exists a partition of v S such that if1 E
0Ia= {to0 = to " 'N... = tot} and 9D 0 then the following relation

holds

N
Ijl &P(tj) TioAP() < --2" (4.13)

From this equation it follows that

N N

I &j= I Z AP(t.)(T - T. )hAP()

N
jl AP(j) T.i AP(Q.) i <

N N< ljý AP(j) (T - T,.)A&p(tj) I + I AP• i (•)T. h p(tj)
-j=l 10 jl A(4.)

(4.14)
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Moreover

N
& )(T - T io) ( P() I = supf&P(Q.) (T - T I )AP(Q) jI _ IT - Ti- I

j1 0 0

From here and Equations (4.12), (4.13) and (4.14) it follows that

for 0 : 1 the following holds-- E

N
EI Z=• Ap( i)TAP(Q)I_:• + ="

At this point it can be concluded that T is strongly causal and the proof

is thus complete. <

Proposition 3. The subspace of bounded and crosscausal operators is

complete.

Proof. We have to show that if {Ti} is a sequence of bounded cross-

causal operators and {Ti} -> To, then T is also a crosscausal opera-

tor. Since each element of the sequence {Ti} is crosscausal, from

Definition 3. 5 we have that whenever T = Ti the following equations

are satisfied

Tpt= PtTp (4.15)

TPt = PtTPt (4.16)

fdPTdP = 0. (4.17)

We have to prove that Equations (4. 15), (4. 16) and (4. 17) are

also satisfied for T = To. Let us start to show that for any c > 0 we

have
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IT 0  - ptT <t .

To this purp.se choose an integer i such that

IT- Ti I<T
0

We .an then write

IT 0Pt- PtToPtI IToPtTi PtI + ITi pt ptToPtI 21T - Ti I <e
0 0 0

From the arbitrarity of c it follows that Equation (4. 15) is true f-,)r

T = To. By the principle of causal duality also Equation (4. 16) is

true for T = To. To complete the proof we have to show that fdPTodP = 0.

Given any F> 0 consider the integer io such that IT-To <-•-. Since

Ti is crosscausal there exists a partition 0 of v such that for any other
0

partition 0 = {Io = to, 41" ". 4N = tz}, 1 D flR,we have

N
I =Z AP(i) Ti AP(Q ) < 'E

i=1 0

This implies

max IAP(ti)T. AP(i) I<S0 i 2-
0

From here we obtain the following

max IAP(Qi)ToAP(Qi) I a m AP(xi)(T - To ) AP(Qi)I +
i 1i 0

+ max IAP(Qi)T, AP(i) I • .

i 0



It follows that for Q D 1 we have-- E

N
Si= AP(i) TAP(%i) I < c.

We can then conclude that fdPTdP = 0 thereby completing the proof. <I

From the above results we can conclude that each one of the

msbspaces under consideration can be viewed as a Banach space. As

these sabspaces also enjoy the property of being closed under the

operation of composition of operators, we can state the following

theorem.

Theorem 1. The subspace of bounded causal (strongly causal, cross-

causal) operators is a Banach algebra.

Observe that in the particular case of linear and causal operators,

Theorem 1 gives a result which was already stated by Saeks in [ 48]

(see Proposition 3. 1).

4 6 Canonical Causality Decompositie.,- "-

In analogy with the causality development for systems defined on

a GRS it is natural at this point to ask whether a system on a HRS might

be represented by the sum of systems of type a E {A, C, M, X). This

representation will be again called a canonical causality decomposition

and to investigate its existence we will use an approach similar to that

adopted in Section 2.6. To start consider the following result.



Proposition 1. N T has a canonical decomposition then this decompo-

sition is unique.

Proof. Suppose that

T=T +T +T + T =-T' +T' +T' +T'A C M X A C M X

holds where {T T T TX and {T', T' T ' T are two distinctA' C'1 MP X A C'1 M'1

canonical decompositions. Then it also holds that

TM T = T - TA +T- TC +T -Tx.

Since T M - TM is memoryless we can apply Proposition 4. 2 and obtain

T TT'= fdP[Tv - T + T - T + T'- Tx]dP
MM ATA C C _TX _l

fdP[T - TAJdP + fdP[T - TC]dP + fdP[T - Tx]dP.

By Definitions 4.3.3 and 4.3.4, each term on the right hand side of the

above equation is null. It then follows that TM = T'4.

Proceeding in a similar way

T- T=T=-T +T-- TT
C C A A X TX

and applying Proposition 4. 1 we obtain

Tc T *dP[TA- TA]P'+ idP[T - Tx]P-.

OM,,;rve that by Definition 4.3.4, * dP[T5j - Tx]P =0 and by inspection

*1[ Tf - TA]P-= fdP[TX- TA]dP = 0. It follows then that

Tc = T1.
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Applying the principle of causal duality it follows that TA = T

and from this it follows also that Tx = Ti. We can then conclude that

{TA, Tc, TM, Tx} and {TX, T , Tv, T} cannot be distinct. This

implies that if T has a canonical causality decomposition then this

decomposition must be unique. <1

In analogy to Definition 2.6. 1, when T has a causality canonical

decomposition T = TA + TC + TM + TX, we will refer to TA, TC, TM, TX

as the canonical components of T.

To deal with the question of existence of such a decomposition it

is convenient to use again the notioh of "transformator". Indicating

by $ the space of all operators on a -JRS we will say thatT' is a

transformator* if Tr is an operator mapping $ into itself. -r will

be denoted by'l , a e {A, C, M, X1 if for each T e $ we have that
"1 [Tj is an a operator. As examples of transformators we can

mention some of the integrals defined in Section 4.3. In this case

the terminology of integral transformators is adopted. With the

above setting we can now state a result similar to Proposition 2. 6.

Proposition 2. T has a canonical causality decomposition if and only

if T is in the domain of the set of transformators defined as follows

*This terminology is borrowed from Gohberg and Krein [25].
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"MT] fdPTdP

rA[ T] = 4dP[T -M[T]]Ps

'•c[T = T idP[T - M[T]jPS

Proof. "Only if". Suppose that T has a causality canonical decompo-

sition. Then we can write

T +TC +TM +TX

From here it follows that

T -T-T -T *TM A C X

and applying Proposition 4. 2 we obtain

TM= fdPIdP - fdPTAdP - fdPT dP

- fdPTxdP.

Applying Definitions 4.3.3-. 6 we obtain that TM - "M[ T] and there-

fore T is in the domain of the transformator orm. Proceeding in a

similar fashion we can als3 obtain that T is in the domain of ¶' TC
A' C

and'"r.

"if". Suppose that T is in the domain of the above integral

transformators. Then it is immediate to verify that
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I =ý(T] +-rC[T] +-r[T] +77[T].

By a direct application of the causality definitions we can now recognize

thatAL[T],-rc[T],-'r[T] andli[T] are respectively A, C, M and X.

This completes the proof. <,

The statements of Propositions 1 and 2 can be combined in the

following theorem.

Theorem 1. If T has a canonical decomposition then this decomposition

is unique and its components can be computed as follows:

TM fdPTrP, TA 4dP[T - TMlP

TC- dP[T- TM]PS, TX- T- TA- TC- TM.

To illustrate some implications of Theorem 1 we pause for a

moment and discuss two simple examples.

Example 1. Consider L 2[0, o),pt], the Hilbert resolttion space des-

cribed in Example 4. 2. 1 and suppose that T is described as follows:

if y,x e L 2[0,100) and y = Tx then
Io3) 00

y(t) = f f K(t, s,, s2)x(sl ) x(s 2 dsds2

0 0

where k(t,, s, 2) is a real function such that

o22= 0f f fK0 (tl, S, s1 ,)dtds d) 0
S:0?

Note that from a simple applicat,.•n of Fubi i's theorem [ 27], we

have

1y I' < OK U 1x12 (4. 12)

S~/
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"Observe also that T can be written as T = T1 + T2 + T3 , where T1 , T2

and T3 are described as follows:
St t

y= TlX implies y(t) = J f K(t, sl, s2)x(sl)x(s2)dsIds 2
0 00 o

y = T2x implies y(t) = { {K(t, s, s2)x(sl)x(s 2) dslds 2

t 0o

y T3x implies y(t) = f f K(tsl's2)x(si)x(s2)ds1dS2
3 o0 t

00_t fo Ktss2) x(sl) *s2)ld"

From standard arguments of real analysis based on the validity of

Equation (4.14 it is not difficult to verify that

fdPTdP = 0, Tr, #dPTPs, T 2 = dPTP,

where the integrals are intended in the strong sense. Applying Theorem

1 we can conclude that T has a unique canonical causality decomposition.

The basic components of this decomposition are as follows: TM = 0,

TC---T1, TA-:T 2 andTX=T 3 .

Example 2. Consider again [L 2 [ 0, •) pt] and suppose that T is des-

cribed as follow~s: if y, x E L2[ 0, oo) and y = Tx then
o0

y(t) = f Kl(t' s) x(s) dS +
~oo

f f K2(t, s1 ' s 2)x(sl)x(s 2) dsds2 +

0 o 1o

j 'f Kn(t, sl"". Sn)X(S1)X(S2) ."X(sn)dsds 2" "dsn
JO
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where Ki(t, Sl, ... , s) is a real function such that

C • OK 2 (t, <
f. fK 110;.. 1<i 12

for i- 1, 2, n. Note that this type of operators are called Frechet-

Volterra and have been extensively uWilized in the information and

automatic control literature [ 1 ], [28 ], 1 35], [46].

Using a line of reasoning similar to that in Example 1, we can

again see that T has a canonical causality decomposition. In this

decomposition the mernoryless component is null and TC, T andCA
T , respectively strongly causal, stiongly anticausal and strongly

crosscausal components of T can be identifed as follows. Let

YC=Tc x yA= T xandY =T then
-C C - A yX= 3ten

n t tYc(t) f

=l 'f " " fol ...lI2' si x(s 1)x(s 2) 2x(s d'

n 00 01

YA-(t) i- f. f K (t)sl'2' ' si) x(s 1)x(s )'"'x(si)dsis 2 ""ds 1

yx= Tx- TAx,- TC_.

Theorem 1 links the study of existence of a causality canonical

decomposition to the study of the convergence properties of a special

class of integral transformators. This latter study has recently
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received attention from a number of mathematicians from the Russian

school. Of particular interest here is the work of Gohberg and Krein

[24], [25].

A result of this study with negative implications for the canonical

decomposition is that tl'ese integral transformators suffer from con-

vergence problems. To emphasize this the following proposition is

noted.

Proposition 3. There exists systems T on a HRS which do not have a

canonical decomposition.

Proof. It suffices to present an example operator for which at least

one of the integral transformators in question fails to exist. The

reader is referred to Appendix B for some preliminary results in

this direction. In particular from Lemma B. 5, we have that for

every HRS with a -ontinuous resolution of the identity there exists

a compact self-adjoint operator T such that f PSTdP is not defined.

From Lemma B. 4 it follows that f dPTPs is also not defined.

Moreover applying Lemma B. 1

TM= fdPTdP= 0

and applying Lemma B. 2

f dPTP• = *dPTP= *dP[ T - TM] Ps.

-I



114

From the fact that f dPTPs is not defined, it can be concluded that

#dP(T - TM) P 8 is also not defined. It follows that such a T does not

have a canonical decomposition. <I

4.7 Causality and Weakly Additive Operators in HRS

The importance of weakly additive operators was already out-

lined in Section 2.7. In the sequel the development of that section will

be revisited in a HRS context.

Definition 1. An operator T on [ H, PtJ is weakly additive if for every

x e H and all t e v the following relation is satisfied

T[x] = T[Ptx] + T[Ptx].

Before proceeding with a causality study of weakly additive opera-

tors, it may be helpful to consider some examples. To this purpose we

introduce the following rroposition.

Proposition 1, The following operators are weakly additive.

i) every linear operator

ii) every memoryless operator

iii) the linear combination of weakly additive operators

iv) the composition T"T' where T' is weakly additive and T" is

linear

v) the composition T"T' where T' is memoryless and T" is

weakly additive.
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Proof. Q) and iii) are trivial. ii) Suppose that T is memoryless.

Then for any t e v and x e H the following relations hold:

PtTx = PtTltx, that is PtTl = 0, and

It follows that for all t e v and x e H, we have

Tx = pTx + PtTx = pTpx + PtTPtx = TPtx + TPtx.

iv) For all t E v and x e H the following relations hold

T"'T'x = T"[ T'Ptx + T'Ptx] = TVTIptx + T"T'Ptx.

v) Again for all t e v and x e H we have

T"T'x = T"[ITIPtx + T'Ptx] = T"I[PtTIPtx + P T'Ptx]

= T"[PtT'x + lPtT'x] = TIwPtTtx + T"PtT'x =

= T"PT'Ptx + T"IPtT'Ptx = T"T'Ptx + T"T'Ptx.

We can conclude that T"?TI is weakly additive.

Most of the causality properties which were stated in the case of

weakly additive operators in a GRS are also valid in the case of weakly

additive operators in a HRS. More specifically, the statements of

Propositions 1, 2, 3, and 4 in Section 2. 7 hold "almost verbatim" in the

HRS setting.
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In particular, Propositions 2.7. 1 and 2.7.2 provide results which were

already stated by Porter [ 42 ] and Saeks [ 48 for the case of linear

operators.

Proposition 2. If T is weakly additive the following statements are

equivalent:

a) T is causal

b) Ptx 0 implies ptTX = 0

c) TPt= PtTPt

d) PtT=PtTPt

e) T = *dPTPs.

Proposition 3. If T is weakly additive the following statements are

equivalent:

a) T is memoryless

b) pt = 0 implies PtTx = 0 and Ptx = 0 implies PtTx = 0

c) TPt ptTPt and TPt = PtTPt

d) PtT ptTPt and PtT = PtTPt

e) T = frIPTdU.

In regard to Propositions 2.7.3 and 2.7.4 it is of interest to see

the modifications needed in order to make those results applicable in

a HRS context. This leads to the following Propositions 4 and 5.

Proposition 4. In the context of weakly additive systems the concepts

of strong and strictly causality are equivalent.
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Proof. As in Proposition 2.7.3 it is sufficient to show that if a system

is weakly additive and strongly causal then it is also strictly causal.

Suppose then that T is weakly additive and strongly causal. By the

definition of strong causality and Proposition 4.4. 1 we obtain

T = *dPTPs and fdPTdP = 0. (4. 2)

Moreover if S1 {to= I o'l''''"N = top} is any partition of v then

from the weak additivity of T it follows

N 4. N i_1 N
i AP(41) T = iP AP(Qi)TP + ý1 AP(•i)TAP(•i).

This implies that

*dPTP- =dPTPS + fdPTdP

and from Equation (4. 19) it follows that

T = #dPTPs.

We can then conclude that T is strictly causal.

Proposition 5. If T is weakly additive and crosscausal, then T is null.

Proof. Suppose that T is crosscausal. Then

fdPTdP = 0, *dPTPs= 0 and #dPTP = 0.

Given any E > 0 there exists a partition 62 of v such that for any other

partition Q of v, a = {to = •o' 1''''' iN = t Qj, D the following

relations hold
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N

N •I .P T

N

1- i-1 3

By the weak additivity of T we have

SN N N •i N

T AP(Q T=P(Qi+ APTP +i . AP(•)TP

It follows that ITJ <- -'- +-= e and from the arbitrarity of c, T

must be the null operator.

The next three propositions illustrate some additional properties

of weakly additive operators on a HRS. These properties will turn out

to be useful in the course of the next chapter. In regard to the proofs,

the reader no doubt recognizes that Proposition 6 is a direct consequence

of Proposition 4 and Theorem 5. 1. Similarly, Proposition 7 follows from

Proposition 4, and the proof of Proposition 8 is based on Iroposition 5

and Lemma B. 3 in the Appendix.

Proposition 6. The space of bounded weakly additive and strictly causal

systems is a Banach Algebra.

Proposition 7. A necessary and sufficient condition for a causal and

weakly additive system to be strictly causal is that fdPTdP = 0.
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Proposition 8. If T is a linear, causal and compact operator on

t,0 ndf is acontinuous resolution of the identity then Tis

strictly causal.

In regard to the question of canonical causality decomposition,

unfortunately a result equivalent to Theorem 2.7.1 cannot be stated.

In fact the causality canonical decomposition of an arbitrary weakly

additive operator may not exist. Results in this direction are limited

to the following.

Theorem 1. If T is weakly additive and has a canonical decomposition

then T bas the unique representation T = TA + TC + TM, where
TC~ = TMP' wheren

TC =•dPTPs, TA=dPTPs andTM= fdPTdP. (4.20)

Proof. In view of Propositions 2,3,4 and 5, we have to show that if a

canonical decomposition exists, then TC and TA can be computed through

Equations (4. 20) . To this purpose, observe that from Theorem 6. 1

the following relation holds

T TC=* dPTPs- TM

and from the weak additivity of T

*dPTPS = #dPTPs + fdPTdP.

It follows that

T_ #dPTP+ TM - TM- #dPTPs

r
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and from the causality principle of duality

TA- dPTPs-
TA

The proof is complete. <I

The statement of the above theorem is valid also for linear opera-

tors and shows that even in this context the canonical decomposition

question is not as simple as it was thought in a previous study ([ 48 ]).

To shed some further light, two additional propositions are introduced.

Proposition 7. Suppose that T is a bounded weakly additive operator

and that TM = fdPTdP is well defined. Then, given any c > 0, there

exists an operator T such that IT - T I < e and T has a causality canoni-

cal decomposition.

Proof. Choose a partition 0, = Ito= top ý1"" .. = t~j such that

N
SAP TAP( - TMI <E. (4.21)

Consider the operator T defined by the following expression

~ N tiI N
T= & AP(4i)TP _+ TM + i AP(qi)TP%. (4.22)

i= 1 i11

From the above equation T has a canonical decomposition. Moreover

N N •i-I
IT -'T =i=l I Y P(i) T- =AP(ti) TP +Tm

N
+ V AP(Q 1)TPi)f. (4.23)

i=11
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From be,:e and Equations (4.24) and (4.22) it follows

N
IT - TV I AP(gi) TAP(Q1 - TM1; <E

and the proof i..; thus complete.

Proposition 10. Suppose that a HRS has a contiauous resolution of the

identity. Then g:wen any operator T and any real E > 0, there exists

an operator T suct that IT - 'T < e and T does not hmve a causality

canonical decomnooition.

To conclude tli'.s section it is of interest to observe that when an

operator T on a HRS : linear then all of the above results are auto-

matically valid. In those cases in which T has also some additional

"specific analytic properties various other interesting causality results

can be stated. This is done partly in the next section where Hilbert

Schmidt operators are considered and partly in Appendix C where

compact and (or) self-adjoint operators are considered.

4.8 Causality and Hilbert Schmidt Operators

In this section qome causality properties related to Hilbert

Schmidt operators on a HRS are presented. This is done for two

main reasons: the importance of this type of operators in control

and communication theory ([ 35], [ 46 ], [ 47]), the fact that the

causality properties of these operatcrs enjoy a completeness which

F



122

is not present in the general case (for example the canonical decompo-

sition theorem as stated in [48 ] is true for Hilbert Schmidt operators).

tSuppose that T is a bounded linear operator on [H, pt] and let

{xo, c E, be a complete orthonormal set in H.

Definition 1. A bounded linear operator T is a Hilbert Schmidt (in

short HS) operator if the quantit lIT IT
JIT11 =I Z •ETxB[}

is finite. The number I IT is called the Hilbert Schmidt norm of T.

The following two lemmas state the two special properties of

HS operators which determine their particular structure with respect

to causality.

Lemma 1. ([ 16] p. 1010). The Hilbert Schmidt norm is independent

of the orthonormal basis used in its definition. The set of all HS

operators is a Banach space under the Hilbert Schmidt norm.

Lemma 2. The Banach space of HS operators is a Hilbert space. The

inner product between two elements T, S c HS can be defined by

<S, T > V <Sx Tx •
P3EE

The causality structure of HS operators can now be clarified by

the following propositions.
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Proposition 1. The class of causal (anticausal, memoryless) HS

operators is a Hilbert space.

Proof. Let CHS (AHS, MHS) denote the space of causal (anticausal,

memoryless) HS operators. Clearly from Lemma 2, CHS is a linear

inner product space. To show that CHS is a Hilbert space it has to

be proved that CHS is complete under the norm induced by the inner

product. Suppose then that {Ti is a Cauchy sequence in CHS. Since

HS is complete, the sequence {Ti} convergea to an operator T e HS

and it remains to be shown that T is causal. This follows from

Proposition 5. 1 and the well known fact that the operator norm is

smaller than the Hilbert Schmidt norm. Applying the principle of

causal duality, it follows that AHS is a Hilbert space. From the

fact that MHS = CHS n AHS it is obtained that MHS is also a Hilbert

space. The proof is thus complete. -1

Proposition 2. The space of HS operators is given by the direct sum

of the three orthogonal subspaces of strictly causal, strictly anticausal

and memoryless operators.

Proof. Using he notation adopted in the proof of Theorem 1, let

CHS1= CHS 0 (MHS) and AHS = AHS n (MHS) where (MHS)- indicatez

the complement of MH,• in HS. Note that CHE, AHS and MHS are

orthogonal subspaces.
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Let ut. now prove that every T E HS has a canonical decomposition

T C -r TA +TM-

In view of Theorem 6. 1 this means that it has to be shown that the
integrals #dPTPs, idP,'P,, fdPTdP are well defined. From Lemma

B. 3 in the Appendix, it is obtahied that TM = JdPTdP is well defined.

By simple inspection the following relation holds

ýdPTPs- fdP[T - TM]P

where rdP[T - TM]dP = 0. From Lemma B. 6 and Lemma B. 4 it

follows that #dPTPs is well defined. By the principlt of duality
$dPTPs is also well defined. If we now observe that T ECHS,

s~ CHSI

TA E AHS and TM E MH,.S, then we obtain that TC, T and TM are

mutually orthogonal.

To complete tie proof it remains to be shown that the spaces

OHS and AHS are made respectively of strictly causal and strictly

anticausal operators. To this purpose suppose that T c CHS. If T

is not strictly causal then we can write T = TC + TM, where TC e CHS

and TM ý 0 E MHS. This is a contradiction to the fact that CHS is

orthogonal to MHS. We can then conclude that CHS consists of strictly

causal operators and, fromn the principle of causal duality, that AHS

consists of strictly anticausal cperai.317s, The proof of the proposition

is thus complete.



125

Proposition 3. Suppose that T is a HS operator. Then there exists

a umique HS operator Ta, ce E [A, C, M, A, C-} suci that

IIT- Tai1 = min IIT- Ta[I

where T is any a HS operator and T is the a component of T.

The proof of Proposition 3 is a direct consequence of Proposition

2 and is omitted for brevity. From the combination of thb' statements

of Propositions 1 and 2 we have the following theorem.

Theorem 1. Every Hilbert Schmidt operator has a causality canonic,,

decomposition. The components of this decomposition are mutually

orthogonal.

4.9 Summary

The contents of this chapter can be summarized from two pcii:.s

of view: refinements of the GRS results in Chapter 2 or generalization

of the causality study developed by Porter [43] and Sacks [48].

From the first point ol view, the present development snows how

concepts and techniquets in GRS can be applied to systems defined on a

HRS. In the transition, the validity of most of the ret;ults can be main-

tained. This is illustrated by a number of propositions.

The "sum" type representations which were so helpful in GRS

become "integrals" in HRS. This allows an efficient utilization of the

results on integral transformators due to mathematicians of the Russian
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school ([24], [25]). Results from this latter study were used to show

that the existence of a canonical causality decomposition does not carry

over in HRS. This is illustrated by Theorem 6. 1 for the case of general

operators and by Theorem "0.1 for ti. - case of weakly additive and linear
operators. The situation is somewhat different for linear operators

with a special hnalytic structure. In particular every Hilbert Schmidt

operator has a canonical causality decomposition. Moreover, the

components of tis decomposition can be viewed as mutually orthogonial

(Theorem 8. 1).

In regard to the second point of view, it should be emphasized

that in the case of linear operators the preswat development coincides

"verbatim" with that in [481. The bridge between the zwo approaches

is provided here by Propositions 5. 1-2. It is important to observp

however that the main result in [48] (ti,.t is Theorem 2, 3. 5) is in

con'radiction with our Theorem 7. 1. 'This is because the properties

of integral transformators are not as extensive as it was assumed in

that study.



5. CAUSALITY, STRICT CAUSALITY AND STABILITY

5. 1 Introduction*
To m:otivate the development of the present chapter, let us start

-A to consider the following linear integral Volerra equation

y(s) = x(s) - f Ks, t)x(t)dt, s [0,00) (5.1),1 0
where y(.) is a known element of the Hilbert space L2 [ 0, co), while

K(s, t) is a known kernel of the equation and x(. "s an Luknown func-

tion to be computed.

As it is well knownt, if the following condition is satisfied

S , oo 2
f f K (st)dsdt <oo (5.2)
0 0

then Equation (5. 1) has a unique solution for every y E L210, )o0.

Moreover this solution can be computed by the formula

5x(s) = y(s) +f K(st)y(t)dt, t E [0, o). (5.3)
0

Here JK(s, t) is calleC the re.ylving kernel of the Volterra equation

and it can be computed by the following expression

00
EK(st) = • Kn(st) (5.4)

n= 1
,n n-iwhere K (s, t) = K(s, t) and K (s, t) = K(s,.)* K 1(.t), n=2,3.

Most of the mathematical concepts used in this chapter are
defined in Section 4. 2.

t See, for example, reference r 34].

127
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In relation to Equation (5. 1), Gohberg and Krein [ 25] observed

that the kernel K(s, t), viewed as an operator K on the Hilbert space

L2 [ 0, co), has the following properties:

a) K is linear

b) K is compact

c) K= #dPKPs.

The integral of c) has to be interpreted in the uniform convergence

sense defined in Section 4. 1 and is computed with respect to the

family I Ptf of truncation operators on L 0, o).

The above observation of Gohberg and Krein led to the study of

a "generalized linear Volterra equation" of the type

y = x - Kx (5.5)

where y is an assigned element of a given Hilbert space H, K is a known

operator on H and enjoys properties a), b), c) and x is an unknown ele-

ment to be computed. The result of this study was the following: under

hypotheses a), b), c) the solution to Equation (5. 5) exists, is unique

and can be computed by the formula

x = y + IEy (5.6)

where the operator IK is given by the following expression
00

IK=+ I Kn (5.7)
n= 1
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where K = K and, for n=2, 3,..., K'1 is given by the composition of

K with Kn- 1.

The above results can be given a meaningful engineerirg inter-

pretation. To this purpose a brief review of current technical termi-

nology is in order. To Equation (5. 5) we can associate a closed loop

basic feedback system of the type in Figure 5. 1. The operator K

is called the open loop system and the problem of investigating some

of the characteristics of the solution x in Equation (5. 5) is generally

called the feedback system stability problem.

The stability problem for systems of this type, or equivalent

types, has been studied by a number of authors (see for example

[11], [40], [52], [59], [67], [68]). In particular (Damborg

[11]) the basic feedback system is called stable if the operator

(I-K) is invertible, and its inverse is bounded causal and continuous*.

Using the terminology introduced above, the result offered

by Gohberg and Krein can be rephrased as follows: "A sufficient

condition for a basic feedback system to be stable is that the open loop

system be linear compact and strictly causal".

This result is very attractive in its technical conciseness.

Ho ever in stability theory the operator K is in general not compact.

The following natural questions then arise:

Ql: Can the above result be extended to the case in which K is linear

bounded and strictly causal but not necessarily compact?

*An operator T on a Banach space B is continuous if for any x E B

andE >0, there ex.sts a 5 > 0 such that jTx-Tyf K when Ix-yj y 6.
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Q2: If this extension is feasible can it be carried further so as, for

example, to apply to some special class of nonlinear systems?

The following sections are devoted to the task of answering

these type of qucstions. A brief comment on their contents may be

helpful. The central results of the chapter are stated in Section 2

and are related to a special class of weakly additive systems. In

Section 3 these results are specialized to the case of linear systems.

Further results are introduced in Section 4. Finally Sections 5 and

6 discuss respectively some applications and concluding remarks.y +x K
+ ~/,

+

Figure 5. 1: Basic Feedback System

5. 2 Stability and Causality

In this section we consider the questions Q1 and Q2 which were

posed in the introduction. As it turns out, it is possible to give a

completely affirmative answer to Q1. The proof of this result depends

very little on the linearity of K. This fact is rather remarkable if it

is considered that the proof offered by Gohberg and Krein for their



131

result was based in an essential way on the spectral theory of bounded

linear operators (see Theorem 6. 1, p. 27 in [25]).

According to the proof proposed in this section, what seems to

be essential is the property of weak additivity which was already con-

sidered in Sections 2. 7 and 4. 7. In view of this fact it is convenient

to reverse the order of consideration of Q1 and Q2. Thus while the

following results can be considered as related to Q2, a formal answer

to Qi is obtained as a corollary.

To start consider the following technical result.

Proposition 1. Suppose that K is a causal Lipschitz continuous* opera-

tor with Lipschitz norm less than 1. Then the basic feedback system

is stable.

Proof i) I-K is invertible. We have to show that for every y E H

* the equation

y = x - Kx (5.8)

has a unique solution. This is clearly equivalent to establishing exis-

tence and uniqueness of a fixed point x for the operator Ty : H -> H

defined by

T (X) = y 4 Kx.

*An operator T on a Banach space B is called Lipschitz continuous

if there exists a positive real number L such that sup Tx - Ty / x -yI

< L. L is called the Lipshitz norm of l. x~y E B
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Note that the operator Ty is such that for any pair xl, x2 - H the

following relation holds

ITy((x,)- Ty(X2 )I= 1KxI -Kx 2 1 •< L Ix 1 -x 2 l

where L < 1 is the Lipschitz norm of K. We can then apply the Banach

contraction mapping theorem (see for example [11], Lemma 4. 1, p. 84).

This theorem states that the desired fixed point x exists and it is unique.

ii) (I-K)-1 is bou-Aded and continuous*. It will clearly be sufficient

to show that (I-K) Ls Lipschitz continuous. To this purpose observe

that for any pair xl, x 2 f H, we have

I- KX (x 2 - Kx2 IxI - x2 i- 2 - KX, I

> Ix1 - x2 1 - JKx 2 - KxlI > (1- L) fx1 - x2 [ (5.9)

where, once again, L < 1 is the Lipschitz norm of K. Set

Yl = (I-K)xI

Y2 = (I-K)x 2  (5.10)

From Equations (5.9) and (5. 10) and the fact that (I-K) is invertible,

it follows that for each Yl' Y2 E H, we have

1ly- Y21 >(1-L)I (I-K) "1yl - (I-K) -y 2 j1 (5.11)

This implies

• This result has been noted also by Zar,,ntonello !70].

L
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1(I-K) -'y1 - (I-K)-y21
< 1/(0-L). (5.12)

Iy-" Y21

We can then conclude that (I-K) I is Lipschitz continuous.

iii) (I-K) is causal. Suppose that yl, Y2, x1, x2 E H and
-1 -1

x, = (I-K) Yl' x 2 = (I-K) Y2 " (5.13)

To prove that (I-K) 1 is causal, it is sufficient to show that if PtI =

Pty2, then Pxt = Ptx2.

Note that from Equation (5. 13) and the hypothesis that K is causal,

we can write

P1y l= Px,- PtKPtxl

Pty2 = Ptx2 - PtKpx 2.

For pty1 = Pty 2 it follows that

p t x I - pt x21 = IPtKýt2 - ptxl 1. (5.14)

From this equation we must have Ptx2 = P tx because if Ptx2 ý Ptx1

then we would obtain a contradiction to the hypothesis that the Lipschitz

norm of K is less than 1.

The above proposition allows to state and prove the central

theorem of this chapter.
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Theorem 1. Suppose that K has the following properties:

a) K = KcNj + KC, where N, is a memoryless Lipschitz

continuous operator and KC, KC are bounded linear

operators;

b) KC is strictly causal and KC is causal;

c) the norm of Kc is less than 1.

Then the basic feedback system is stable.

Proof. I-K is invertible. We have to Ehow that for any element y C H

we can find a unique element x F H such that the following equation is

satisfied

y = x - Kx. (5.15)

To start, let L be the Lipschitz norm of NI and suppose that IKcI = 1-6,

where 0 < -1. Then Ior every pair X, x2 E H we have

I~t~ k Nt21 Lx- x2l 51,

JKcXj - K Cx 21 < (1I- 6) Ix, - x2l. (5.17)

Note that from the strict causality of KC we can find a partition •Q of

the ordered set v, fl={to= o, such that

Nl P (ýi K c P(ýi)] < 6/2L.
i 1

This implies that
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IAP(i)KC •AP(ti) I < 6/2L (5.18)

for every i= 1, 2,..., N. From Equations (5. 16), (5. 18) and the fact

that N, is memoryless, it follows that for each i=1, 2,..., N and any

pair xl, x 2 FI H, we have

! ~~~JAP(•i)KcNk'•P(•i)Xl- ,•(yi)KcNjA(i)x2 =

= JP(i) KcAP(i) N'AP(.i) x - AP,(i) KC P(4) NAP(.i) x2

_ _ IN_•P(•i)xl - N L.P(•i)x 2 1 :_ • IAp('ix 1 - Ap(•i)x 2 I.

This equatioa together with Equation (5. 17) implies that for each

i=1,2,.....Nand any pairx ,x 2 E we have

IAP(ti)KAP(•i)xI - AP(ýi)KAP(yix 2j

S- AP(Qx 2 I < 1. (5.19)

Observe now that to solve Equation (5. 15) is equivalent to finding

an x c H such that the following equation is satisfied

-AP(j) y = AP( i)x - AP(ý.)KP x (5.20)

where i=l, 2,..., N. Indeed, if x E H satisfies Equation (5. 15) then,
from the causality of K, AP(t,i) x must clearly satisfy Equation (5.20).

Conversely, suppose that the element x E H is such that AP(4i)x does

satisfy Equation (5. 20). Then we have
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N N N

To see that this last. equation coincides with Equation (5.15), it suffices

to note that from the causality of K we can write

N . NI A(Q iKP x = ZAP(Q iKX= Kx.

For i-1, Equation (5. 20) becomes

A P(i) y = Ž•P(t 1)x - LsP( 1 ) KAP(QI)x. (5.21)

By Equation (5. 19), AP(t)KAP(Q1 ), the restriction of K to the Hilbert

space APP(I) H, is Lipschitz continuous with Lipschitz norm less than

1. Proposition 1 can then be applied and there exists a bounded con-

tinuous causal operator T 1 such that the element

AP()x = T 1 AP(N 1 )y (5.22)

(and only this element) satisfies Equation (5. 21).

For i=2, Equation (5.20) becomes

2P(•2 )KP x. (5.23)

From the fact that K is weakly additive (see Proposition 4. 7. 1) we can

rewrite this equation as follows

I
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AP() y + -A'(' 2 )KAP(Q )x AP(R 2 )x-P

Again by Equation (5. 19), AP(Q2) KAP( 2), the restriction of K to the

Hilbert space APQ(2 ) H, is Lipschitz continuous with Lipschitz norm

less than 1. Proposition 1 can again be applied and there exists a

bounded continuous and causal operator T 2 such that it provides the

following unique solution to Equation (5. 23)

A. P( 2 )x = T2 AP(t 2 )[Y + KAP( )x]

where AP(ýl)x is defined by Equation (5. 22). By induction, having

computed AP(y), AP(P2)x,..., AQ:(i_ 1) x, the solution to Equation

(5. 20). AP( 1i)x, can be computed as follows

i- 1

AP(Qi)x = Ti AP(.i)[y + K AP(yX] (5.24)

where Ti is a bounded continuous and causal operator.
N

The above recursive relations define the element x = AP(d
i=1

and this element is the unique solution to Equation (5. 15). We can

then conclude that I-K is indeed invertible.

ii) (I-K) I is bounded. Suppose that x = (I-K) 1ly. Note that for

each i=1, 2, 3, .:.-, N, AP(Qi) (I-K) is defined by Equation (5. 24).

Using the bouridednets of K, and applying Proposition 1, it is easy

to verify that there exists a set of real positive numbers M1 , M2 ,

M11 PM, M!' such that

1AP(qI)(I-<)-'YI _5Mllyl

P1



and for i=2, 3,4,..., N

JAP(i (I-K)" 1 < M'y IY IP x

From this equation it follows that there exists a positive M such that

[(I-K) -Iy M•lyI.

It can then be concluded that (I-K) is bounded.

c.-1. -1
iii) (I-K) is continuous. Observe that the continuity of (I-K)

is equivalent to the continuity of AP(•j) (I-K) , j=l, 2,..., N, where

{j} is, once again, the partition of v considered in part i). The
C -1

transformation AP( j) (I-K) is defined by Equation (5. 24) where

P•- x is a function of y. By Proposition 1, this transformation is

continuous with respect to y and P J- X. It follows that AP(Q.) (I-K)

is continuous on y. But from Equation (5. 22) and Proposition 1, the

element P x depends continuously on y. Then also P x depends con-

tinuously on y and, by induction, P x depends continuously on y for

-1Ieach j=l, 2,..... N. We can then co, 2lude that (I-K) is continuous.

-11iv) (I-K) Iis causal. By virtue of Proposition 4. 4. 1 it suffices

to prove that for any t E v and any y c H, the followirg relation holls

Pt (I-K) - ly = Pt (I-K) - Ity. (5. 25)

Consider the partition 0' of v given by

'= to= to)' 1't2''''' i-ll 1, t •, . , N t }0
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where ) N is the partition 62 considered in part i) of this

proof and it has been assumed, without any loss of generality, that

t E [ Use the following notations

xl= (I-K)-l y x2 = (I-K)- y2

where y = Y and y 2 =P ty. From Equation (5. 24) the following relation

holds

x= (I-K)-lq N JTj[Ap() lyq+ KP- lxq]]

+ Tt[(Pt p i-1) [yq, KP i-lxq]]

Ti[(p _pt)[yq KPttxq]]

where q=1, 2. By inspection, from this equation we have

P x =S2 1 p2 2

P x =P x

ýi1 ýipixl = pix2

ptx~l _ptx2

This implies the validity of Equation (5. 25). The proof of the theorerm

is at this point complete.

5. 3 Stability and Causality for Linear Systems

All of the resu,-s in Section 2 are valid in particular when the

open loop system under consideration is linear. In this case however

those resdlts can be further improved. The following theorem not

L.
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only guarantees the stability of the basic feedback system but it also

gives an expression for the computation of the feedback operator

(I-K) Before stating this theorem it is convenient to revisit

Proposition 2. 1.

Proposition 1. If K is linear bounded and causal and it has norm less

than 1, then the basic feedback system is stable. Moreover, (I-K)

can be computed by the following Neumann series

(I-K)-.1 K + (5. 26)

Proof. Observe that from the fact that i K < Iwe have thai

urn 0 K1h < lim IKIn = 0.
N->oo n=N N->oo n=N

and therefore the right hand sid6 of Equation (5. 26) represents a well

defined operator. In view- of Proposition 2.1, it remains then to be

proved that Equation (5. 26) is true. This is equivalent to show that

for any element y c H the element x,

X= Kn)y

satisfies the equation

y x - Kx.

This is easily done by inspection

y~y • ny-K[y+ Ky

n=1
\, n n:2Kn0=y* 4 K y-Ky- =y.

n -- L -
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Theorem 1. Suppose that K has the following properties:

a) K= KC +KC, where K is strictly causal and

K C is causal

b) KC and K are linear and bounded

c) the norm of K is less than 1.

-1"Thea the basic feedback system is stable. Moreover (I-K) can be

computed by the following Neumann series

-1 o
(I-K) =I+ Z Kn. (5.27)

flz

Proof. Clearly K satisfies the hypotheses of Theorem 2. 1 and

therefore the stability of the basic feedback system follows from

that theorem.

It remains to be shown that Equation (5. 27) holds. To this

purpose, choose a partition 02 = {to 0 = 0 ..''"IN = t 01} of v such

that for all i= 1, 2,..., N we have*

I'P(•i) KAP(•i) I < 1 (5,28)

and consider the result of the next proposition. Note that from Pro-

position 2. 1 and Equation (5. 28) it follows that Equation (5. 29) holds

for n=1. Moreover, by virtue of Proposition 2, Equation (5. 29) holds

also for n=2, 3,..., N. The proof can then be concluded by observing

that for n=N, Equation(5. 29) coincides witii Equation (5.27).

*Note that in the development of the proof of Theorem 2. 1 it was

shown that this choice of 0 is always possible.

L
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Proposition 2. Suppose that the partition S satisfies Equation (5.28)

and that the hypothesis of Theorem 1 are satisfied. If for n= 1, 2, ... , N,

we have

p n(i nKP n) P Pn+ 1(pnlKp(n) (5.29)
j=1

then we have also

pn+l •n+l pn+l 1 pn+1 pn+l CO pn+lpn+l)
P (I-P KP P P + / J P KP (5.30)

Proof. Let us start by introducing the following simplification in

notations

pn, n+1
p=p Q=p A=Q-P

and assume that Equation (5. 29) holds. We have to prove that Equation

(5.30) is also valid. To this purpose consider any element y in H and

let Qx and Px be defined by the following expressions

Qx = Q(I - QKQ) Qy

Px = P(I - PKP) Py.

Note that

Qx = Px + Ax

where, applying respectively Proposition 2. 1 and Equation (5. 29) we

have:
00

Ax = Ay + AKPx + Y, [ .AKA J(y + AKPx)
j= 1
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and

Px= Py+ Z (PKP)Jy.

j=1

It follows
00

Qx=Qy+ ý3 (PKP)Jy
jz 1

+ AK[Py + 23 (PKP)JY] + 23 [•Jy

+ 21 [AKA] K[Py + 2 (PKP) Jy.

j=1 j=l

From the linearity of K and a convenient rearrangements of the

terms on the right hand side of this equation we obtain
CO

Qx=Qy+ 23 [(PKP)I +(AKA) J
j=1

+ (A" qK(PKP) m]y (5.32)
q+m=j- 1

where q, m E {0, 1, 2,... j and the following notations have been used

(AKA)= and (PKP)°= P.

Suppose now that for each j= 1, 2,... we have

(PKP) j + (AKA)j + Z (AKA) qK(PKP) m (QKQ)J. (5.33)

q+m=j- 1

This equation and Equation (5. 32) would imply

00
Qx-=Qy + Z (QKQ)j

j=l

L.
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and with an obvious change of notations this last equation coincides

with Equation (5.30). To complete the proof of the proposition it

remains then to check the validity of Equation (5.33) for j=l, 2,3,.

To this purpose verify by direct inspection that Equation (5.33) holds

for j = 1, that is

PKP + AKA + AKP = QKQ. (5.34)

From this equation and an induction argument it is easy to verify

that

(PKP) ( ) + (A qK(PKP) m

q+m=j

= [(PKP)j + (AK j + (AKA) qK(PKP)m]QKQ (5.35)
q+m=j- 1

where j=1, 22 .... This equation and Equation (5. 34) imply that

Equation (5. 33) is valid for j = 2, that is

(PKP) 2 + + 2(AKA) qK(PKP) m = (QKQ) 2

q--m= I

From this and Equation (5. 35) it follows that Equation (5. 33) is also

valid for' j = 3. Proceeding by induction we can conclude that Equation

(5. 33) is valid for all j=1, 2, 3, ....

As an immediate consequence of Theorem 1 we have the following

corollary. This corollary provides a direct answer to question Q1 in



the introduction. It also has a meaningful physical interpretation:

under certain circumstances the stability of the feedback system can

be secured by an appropriate reduction of the gain of its memoryless

part.

Corollary 1. Suppose that K has the following properties:

a) K = KC + KM where KC is strictly causal and KM

is memoryless

b) KC and KM are linear and bounded

c) the operator norm of KM is less than 1.
-1

Then the basic feedback system is stable. Moreover (I-K) can be

computed by the following Neumann series

-1o
(I-K) I=I+ ' Kn.

h= 1

Other interesting implications of Theorem 1 are established by

the following two propositions. Proposition 3 can often be applied in

practical situations. Proposition 4 states some conditions for the

input-output equivalence of the systems in Figure 5. 2.

Proposition 3. If K is a linear, compact and causal operator on a

HRS with a continuous resolution of the identity, then the basic feed-

back system is stable.

Proof. From the hypotheses and Lemma B. 3 in the apoendix, we

obtain that fdPKdP = 0. From Proposition 4. 7. 7 it follows that
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k is strictly causal. At this point the desired result follows from

Theorem 1. <

Proposition 4. If T' and T" are linear bounded and strictly causal,

and T'i"= T"T' = 0, then

(I-T"- T") - I (T'+T") = (I-T') T' + (I-T") T".

Proof. Applying Theorem 1 we obtain the following equations:

-1 00
(I-T'-T = I Z (T'+T")

n--

(I-T') I =+ (T
n= 1

(I-T") =I + v (T")

Using the fact that T'T" = T"T' - 0 we have.,

(T'+T")n = (T')n + (T") n

Hence:

-1 CO
(I-T'-T") (TI+TT') = I (T'+T")

n=1

(T )n (T'I) n n

-1 -1l

= (I-T') T' + (I-T")) T".

The proof is thus complete. KI
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a)

+

++

+

+ Tit

b)

Figure 5. 2 Fquivalent Systems considered in corollary 3



5.4 Some further results

The results in the previous two sections proivide a clear indication

of the technical convenience which derives by associating the mathe-

matical development of the theory of non- self-adjoint operators of

Gohberg and Krein ([ 24 ], [ 25 ]), with the study of causality in Hilbert

resolution spaces (Chapter 4 and [ 41], [42 ]J, 48 J) and with the stability

theory framework proposed by Damborg ([ 11 ]). This convenience is

further substantiated by the fact that Damborg's development can be

directly rephrased in terms of Hilbert resolution spaces. When this

is done a substantial gain in generality is obtained. It suffices to note

that most of Damborg's results become immediately and simultaneously

applicable to continuous time, sampled data and hybrid systems.

It is to be expected that the extent of the results arising from

the above three independent developments is not limited to those

already discussed. To justify at least in part this expectation, some

further results are introduced.



The next theorem applies when the hypotheses of Theorems

2. 1 and 3. 1 are not readily verified. In this case it is often pGssible

that the invertibility of (I-K) and the continuity of (I-K) - can be

established through subsidiary physical o:- mathematical arguments

(see for instance [ 11 j, r 12]). To insure the stability of the basic

feedback system it remains then to verify that (I-K) 1 is causal.

The following theorem states that, under some appropriate hypotheses,

a sufficient condition for this verification to be successful is that the

open loop system is "almost" strictly causal.

Theorem 1. Suppose that T satisfies the following conditions:

a) T=TC + TC, where TC and TC are respectively strictly

causal and causal operators

b) TC is bounded and TC is Lipschitz continuous

c) TC is weakly additive and has Lipschitz norm less than 1

d) I-T is invertible and (I-T)-1 is Lipschitz continuous.

$ -1
Then (I-T) is causal.

Proof. Since T is strictly causal, there exists a seqaence of opera-

C
tors

U2. N
SI -i AP(j) TP 1

such that {I T } TC Clearly Ii TC -> T. For each operator

JC
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I.+ TC and any element y e [ H, Pt] the equation

y=x- 'x -T TX

has the unique solution x defined by the following recursive relations

AP(tl)X- x ,( = i) (1- Tc) 1 1•(t 1) y

AP( 2) x= API(•2) I-c -IA P 2) Y +

+ AP(ý2)Tc CAP(YlX + Ap(t2) I t1AP(t I) x]

AP(Q.) = AP(4.)(I-Tc)' 1 [AP(u.)y +

tj-l xNj-lP X+AP(Q )I lP

C xj. (5.36)
-m -- •--------,.-- -- - - - - - - - - - - - - - - - - -

,I(N) = AP(QN)(1-Tc)'I[AP(ýN)y +

ýN- I aiptN- Ix
+ AP(ýN) Tc P Ix + AP( N )I .X (5.36)

These relations follow from the hypotheses that the Lipschitz norm of T C is

less than 1 and TC is weakly additive plus the application of Proposition

2. 1. From Equation (5.36) we can see that (I-I - Tc) is invertible

andl its inverse (I-I 1- TC) is causal. From Proposition 4.4. 1, to

prove that (I-T) is causal i is sufficient to show that if y is any

element of [H, Pt] and t c v, then

P t(i-r) - I = Pt(IT) .P y.

Assume fo" a moment that for every y e [H, pt) the fol!owing relation

holds
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J(I-I "_ Tc) -y + (I-T) -> 0 (5.37)

Then it follows

{Pt(I-Ii- TC)-Iy} --- pt(1-T) ly and

a. 1+4-t

(I-I Tc)-Py} --> PP(I T)-Pty.

But (I-I - TC) is causal for each i=1, 2,.... Hence

(1- T) - Tc) iPyp(lI-i. TC) -y = pt(lij T C)-It

and consequently

Pt(i-T) - ly = pt(I-T) - 'Pty.

It remains to be shown that Equation (5. 37) is true. Assume the con-

trary. Then there would exist a positive real c and rr, a subsequence

of {I '+ TC1 such that

(I-Tn)'y - (I-T) - 1yj >6. (5.38)

In the sequel we will show that this equation cannot hold. This will

mean that our assumption is absurd and hence that Equation (5. 37)

must be valid.

To start, denote {(I-TW) y} and (I-T) y respectively by {xn}

"and x and observe that

y = xn + Tnxn x + Tx. (5.39)



15~2

-1
Note also that from the boundedness of (I-T) , it follows that

(i-Tn) -lj is uniformly bounded and consequently the sequ ,nce {x}

"is also uniformly bounded, that is

IxnI = I(I-Tn)-lyi _•Mlyj (5.40)

where M is a positive number conveniently chosen.

The proof of the uniform boundedness of {(I-T n) -1} goes briefly

as follows: by the boundedness of (I-T) I there exists a positive real

m such that for every x E [ H, Pt] the following relation holds

(I+T)x >2m.

Ii we now choose an integer N such that n > N implies IT- Tn <im,

then for n > N we have

I(I-Tn)X I (I-T)mxI I(T-Tn)XI-7x xxI Ix!
• i (ITn)XI

S;It follows -x n m and this implies I(I-Tn) 1 •1 =M. This

means that {(I-T n) -I} is uniformly bounded.

To proceed with the proof of Equation (5. 37), consider now the

sequence fynI given by y n = (I-T) xn* Observe that from Equations

(5.39) and (5.40) we have

Iyn-yI = [(I-T)xn - (I-Tn)xn

I (T+T n)xn 1 MIT+TnI vi. (5.41)
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Note also that we con write

(I-7T) y - (I-T) - 11 n = (I-T) y - (I-Tn) y.

From this equation and Equation (5. 38) it follows that

'I - 1 - 1y >
-(iT) y - (I-T) ynj >

and applying Equation (5.41) we obtain the following relation

I(I-T) 'y - (I-T)"lyn E
iY-Yn I-> MjT'Tnli iY1

Since the sequence f Tn converges to T we have that ,T-Tnl can be

as small as desired. As a consequence, the above equation implies

Sthat (I-T) 1 is not Lipschitz continuous. This is a contradiction to

hypothesis d) and it can then be concluded that Equation (5. 38) cannot

indeed hold.

Corollary 1. If T is strictly causal and (I-T) is invertible with (I-T)-1

Lipschitz continuous, then (I--T) is causal.

The rest of this section illustrates the fact that the results of

Sections 2 and 3 can often be applied even when the hypotheses on the

operator K are different froi-. those assumed in the proofs. In par-

Licular, P,-opcsition I considers a situation where Y is not weakly

additive (Figure 5. 3). Proposition 2 considers a double loop feedcback

system (Figure 5.4). Finally Proposition 3 treats a case where K

is not strictly causal.



+ 
T'

C

Figure 5.3 A Basic Feedback System With Non-
weakly Additive Open Loop

++K

Figure 5.4 A Double Loop Feedback System



155

Proposition 1. Suppose that K = NJT where N, and T satisfy the

following conditions:

a) T is linear bounded and strictly causal

b) N, is memoryless invertible and both N, and

(NI) are Lipschitz continuous.

Then the basic feedback system is stable.

Proof. Observe that K is not necessarily weakly additive and

that Theorem 2. 1 is not directly applicable. From Theorem

2. 1 it follows however that the operator (I-TNt) is invertible and
-1

(I-TNf) is bounded causal and continuous. From here it is easy

to ver"iy that the operator Y = N f(I-TN f -1(N is also bounded

causal and continuous. Moreover Y is invertible ana its inverse is

given by the following relation

. y-l [Nf (I.TNj)) - = N,(I-TN,) (N,) = (I-NfT).

From the above equation it follows that (I-N9T) is invertible and its

inverse is bounded causal and continuous. This means that the feed-

back system under consideration is stable. The proof of the Propo-

sition is thus complete. <

Proposition 2. Consider the system in Figure 5. 3 and suppose the

following:

r.
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a) K and 'A"'I are linear and bounded, TI is Lipschitz

continuous

b) K is strictly causal, T' is memoryless and T" is causal.

Then the system under consideration is stable.

Proof. By Theorem 3. 1 the system in Figure 5.4 is equivalent to the

system in Figure 5. 5, where

00
n

IK K
n-- 1

Observe that the system in Figure 5. 5 is equivalent to the system in

Figure 5. 6. Moreover from the strict causality of K and Theorem

4.4. 1, the operator IKKTII + KTI is strictly causal. The desired

result follows at this point from a direct application of Theorem

2.1.

Proposition 3. Suppose that T is linear and the basic feedback system

is stable for K = T. Then the basic feedback system is also stable

for K= T +K, where*K"= K C N and KCI N f satisfy the hypotheses of

Theorem 2. 1.

Proof. Observe that, denoting y and x respectively as input and output,

the systems in Figures 5. 7 and 5. 8 are equivalent. This can be seen

by means of the following equations



i. 'i

IKK

Figure 5. 5 Basic Feedback System Equivalent to the
Double Loop Feedback in Figure 5.4

-- • +• '• TKT"-

ST'IKKT"

Figure 5. 6 Feedback System Equivalent to the
System in Figure 5. 4
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x= y +Kx + Tx

(I-T) x = y + Kx

x = (I-T) y + (I-T) IKx

-1
By hypothesis (I-T) is linear causal and bounded. Applying

Proposition 4.4.4 it is immediate to verify that (I-T)-19 satisfies

the hypotheses of Theorem 2. 1. It follows that the inverse of

-19)is ell efied-1-' -1
(I-(I-T)-IIR) is well defined. Moreover (I-(I-T) K)1 is bounded

causal and continuous.

By the equivalence of the systems in Figures 5.7 and 5. 8 we

obtain the following relation

I- K- T= (I-T) (I-(I-T) K)

It follows

(I-K-T)-1 = (I-(I-T) 1) (I-T)

Hence the inverse of (I-K-T) is well defined and it is bounded causal

and continuous. The proof of the Proposition is thus complete. <

5. 5 Applications

The theoretical development in this chapter has a wide range of

applicability in the area of functional analysis and stability theory.

In classical functional analysis Theorems 2. 1 and 3.1 not only

offer a unified proof and a physical interpretation for various and
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Figure 5.7 Feedback System Considered in Proposition 3

(I -T) 1  +(I-T

Figure 5. 8 A Feedback System Equivalent to that in
Figure 5. 7
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familiar results related to linear and nonlinear integraJ Volterra

equations, but they also allow a ready extension of some of those

results.

In modern functional analysis, Corollary 4.4 gives, by a proper

reformulation, an important result which was found by Brodskii,

Gohberg ard Krein. This is Theorem 6. 1 a), b) p. 27 in [ 25]. Here

we emphasize that while the proof offered by those authors was based

on a sophisticated result from the theory on the stability of the spec-

trum of bounded linear operators, no use of that theory was made in

this development.

In regard to stability theory, this is a most fertile area of appli-

cation. It should be noted that Theorem 4. 1 appears to fit niceJy in

the general theoretical framework which was proposed by Damborg

in [ 11]. As an illustration of some aspects of the applicability of

Theorems 2. 1 and 3. 1, it is helpful to discuss the stability problem

for some simple examples.

Example 1. Consider the system in Figure 5.9. Suppose that this

system is described as follows:

i) Nf, T', T" are Lipschitz continuous operators on the space

of square integrable functions L2 [ 0, o0);

ii) Nf is memoryless, T' and T" are linear and causal

iii) T' (or T") is compact.
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The theory of the previous sections can be applied to show that

this system is stable. This result does not depend on the particular

description of NI, T' and T" as long as they satisfy i-ii-iii. However

the reader with a special taste for concreteness may &sppose the

following:

Nf is the nonlinear gain of a memoryless amplifier

with characteristic curve indicated in Figure 5. 10

T? represents a linear time invariant stable dynamical

system with a transfer function of the type

N n MG1(s) = N am NnM

•"an=s0 m=0

T"t is an operator defined as follows: if y = T'I theni

t 00 o 2

y(t) = f K(t, s)x(s) ds, where f f K (t, s) dtds < co.
0 00

Consider the Hilbert resolution space (HRS) [ L2 [ 0, c), Pt] which

was described in Example 4. 2. 1 and recall that the resolution of the

identity in this case is continuous. Clearly, the problem of the study

of the stability of the system under consideration can be embedded in

the stability study of a system in this HRS.

The operators N,, TI, T" can be viewed as operators on [ L2 [ 0, 0), Pt].

Since T" is linear compact and causal and R is continuous, Proposition

4. 7. 8 can be applied and it is obtained that T" is strictly causal. From
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N T"T -

Figure 5. 9 Feedback System considered in Example 1.

f (x)

x

Figure 5. 10 An admissable nonlinearity.
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the application of Proposition 4.4.4 the operator TIT" is strictly

causal. We can then apply Theorem 2. 1.

From here it is obtained that the system under consideration.

is indeed stable.

Example 2. Consider the system in Figure 5. 1. 1. Suppose that this

system is described as follows:

i) N- , T', T", T are operators on the space of real square

integrable functions L2 [ 0, o);

ii) N , T', T" and T are described by the followin,• relations:

a) (Nfx) (t) = f(x(t)) where f(.) is a Lipschitz ccntinuous

real function

b) (T'x) (t) = • gnx(t-Atn) where Atn >0, 0 tn > 6n- and

f{gn} E f1

c) T"x) (t) - fg(t-7)x(o) d-where g(t) : L 1 [0, 00);

d) (Tx) (t) - h(t) x(t) where g(t) e L2 [ 0,oo).

As in example 1, the theory of the previous sections can be applied

to show that this system is stable.
• pt
Consider again the Hilbert resolution space [ L2 [ 0, oc) , P ] defined

in Example 4. 2. 1. Observe that the operator N, is memoryless and

the operator T(GI+ G2 ) is linear, causal and bounded, Assume, for

a moment, that
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fdPT(T' + T") dP = 0. (5.42)

Then by Theorem 4.4. 1 the operator T(T'+T") is sLrictly czusal.

Corollary 2. 2 can then be applied and it can be concluded that the

system under consideration is stable.

In the sequel the validity of Equatioji (5.42) will be proved. To

this purpose it will have to be shown that given any f > 0 a partitioii

62 ofu= [0, co), I {0= ne 0 1' 2'' = c}' can be found such

that for any other partition Q,' -{0 = 0 ý'1' I2'" " = co}, with

,, +

+T 1 yt T"

Figure 5. 11: Feedback System considered in Example 2..
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the property S11 > _•E, the following relation holds

n
Z AP(Q'i) T(T' + T")AP(Q1) I < c.

Choose an element ý ' [ 0, Cw) such that

(I(-P•)T(I-P4) c -E/2 IT' + T"I.

Clearly then

j(I-P-)T(T' + T")(I-P P) I <c/2. (5.43)

Consider now the operator Pý TT" P . If x, y c L2[0,1 o) and

y = P4T T" Ptx, then

t t
y(t) = f h(t)g(t-s)x(s)ds = fK(t, s)x(s)ds

0 0

where k(t, s) = h(t) g(t-s) fort <• and s <t

= 0 fort >ý or s >t.

The kernel K(t, s) has the following property

J 0f2(ts)dtds < jh(')12" (ess sup g('))2. 2 < 0.
0 0

It follows that the operator P4T T" Pt is Hilbert Schmidt. As it is

well lkown, Hilbert Schmidt operators are compact [ 16].

1By Proposition 4. 6. 5 it then follows

fdP P•'T T" P1dP = 0.

i1
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0 0 0 0
Then there exists a partition 110O = NY * -Y'"" such

that for {O'= f0 t 0'/t'1' t'2''1' . n'= o}, fl' > 0 0f, the following

Srelation holds

"I Z P('i) Pt T" Pt P(') I < /2. (5.44)
I ~i=1

Construct now a partition S, = {O= l • ,1' • 2 ' ...*n ml with the

following properties:

S2 f D '12 00 C and i -i-1I < At0 if ti •"

Suppose that Q' = to 0' ) 1't 2''' n' = } is such that ' > 2

Then from Equations (5.43) and (5.44) it follows

nt lu - --

SAP(•,)T(T'+T,,)AP(,i) I <j V AP('i)PTT'P• AP(.)1 +

I= - -~

,(I-P")TT"(I-P) I <

where it has been takcn into account the fact that

n' AP("i) P• r-r"P' AP(•'i) = 0.i*

At this poirt it can be concluded that Equation 15.42) is indeed true.

5.6 Summary

Some connections betw ,n stability and cai'salitv have been

investigated. To this purlase an ":iLstract' closed loco fee-dback

system has been ccnsidered. The app-,ach adopted is )ased on the



axiomatic framework of Chapter 4. This allows a development which

is simultaneously applicable to continuous time, sampled -ata and

hybrid systems.

',,articular attention has been given to some implications of the

"strict" causality" property of an open loop system over the stability

of the closed loop system. The basic results are contained in Theorems

2. 1 and 4. 1. Theorem 2. 1 represents the main contribution of this

chapter and states that strict causality of an open loop system plus

some other "reasonable" conditions, guarantees the stability of the

clo.sd loop system. Some of its practical applications are illustrated

by two concrete examples. At the present time, Theorem 2. 1 is con-

fined to a special class of '"veakly additive" systems. Applications to

m~ore general classes of systems havw however also been considered.

Theorem 4. 1 establishes, under appropriate conditions, a con-

nection between causality of an open loop system and causality of the

closed loop system. This result appears to fit nicely in the stability

problem theoretical framework which was prop.osed by Damborg in

I:tI
I



APPENDICES

A. Some: Examples of Time Related Behavioral Patterns and

Engineering Applications

In this appendix we discuss at some length three selected engi-

neering examples. The objective .is to supply the reader with some

sort of "proving ground" for some of the ideas and abstract con-

siderations in SectIion 1. 1.

Example 1. Consider the electroacoustic system coihsisting of a

loudspeaker and a microphone located in a reverberant chamber

(Figure A. 1). A voltage VI is applied to the coil of the loudspeaker

and the voltage Vo is measured at the microphone. Ignoring transients,

this device can be described as a one input-one output linear time

invariant system.

.10

F A.
_ ___ __I

: 4 V

S~Figure A. 1

Sl Fb
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The output V° can be viewed as the combination of two signals.

One signal is due to the direct acoustic wave from the loudspeaker;

the other is due to cumulative reflections from the walls. Thus F,

the frequency response of the overall system, can be expressed as:

F(jw) = FI(jw) + F 2(Jw) w f (-00, CO) (1)

where F 1 represents the idealized direct transmission and F 2 (w)

takes into account the influence of the walls.

The frequency response F can be obtained by a combination of

experimental and analytical results. For example if the speaker-

microphone complex is located in an anechoic chamber, then to a good

approximation F2 = 0 --Ad F= F Thus the identification of F 1 by

experimentation is feasible. Suppose however that an anechoic chamber

is not available or that the chamber available is not completely anechoic.

Then F2 1 0 and the problem of extracting F from F arises [ 151.

Under normal experimental conditions, the following assumptions

are satisfied: the loudspeaker has a finite memory, Atl; At 2=

x 2-xl/c > Atl, where: x2 is the length of the path of the direct wave

from the loudspeaker to the microphone and x is the shortest path

length of the various reflected waves. The constant c is the speed of

sound. In the following we show that the problem under consideration

can be viewed a!- one of identifying the anticausal part of a linear svstcm.
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Suppose that F has been experimentally evaluated. Multiply it by

ejw A, th A Ato < At2. From Equation (1) we,-obtain
""e ,th eJW1 At0 - 2, w

F(jw) = ejwa F(jw) = e Oto (jw) + ej F(jw) = Fjw) + F(jw).

It is not difficult to convince ourselves that by virtue of the above

assumptions, F 1 is the Fourier transform of an anticausal operator

and F is the Fourier transform of a causal operator. Clearly then
2

the problem of computing F 1 can be viewed as the problem of identifying

the anticausal component of F.

More specifically, the theoretical questions related to canonical

decomposition become of paramount importance.

Example 2. Consider an operator, T, on the space of square integrable

functions, L 2 [a, b]. To compute y(t)= [Tx] (t), for a given x f L 2 [a,b] ,

one might consider the use of a hybrid computer. If T is causal it may

be advantageous to simulate T on the analog part of the hybrid computer

as this generally leads to a greater speed of computation. If T is not

causal then this procedure is not open to us. However, suppose one

ccud decompose T into a causal component TC and an anticausal com-

ponent TA. Note that every anticausal system can be viewed as ciusal

if we change the direction in which the time flows. It iollows then that

use of the analog part of the hybrid computer might ne salvaged by a

decomposition and a partial time reversal.

To clarify suppose that y = K * fwhere K and f are represented

in fimure A. 2. Our sstem is n-'t causal: however, wv can urite-
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A

K(t)

Aft
A f t

Figure A. 2

Kc(t)

t

t

Af

Kc~t)

Figure' A. 3

F
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K(T) =KA(T) + KC(r)

where

KC(r)=K(T) for o>, K (T)=OforT <o

KA(r) = 0 for T > 0, K (T) = K(T) for T< 0.

Clearly KA is anticausal and K, is causal (see figure A. 3) and the

output y can be expressed by

Y=KA-f+ KC*f

To compute y taking full advantage of the hybrid computer we can

now proceed as follows: i) compute the outputs y1 (t) and y2 (t) of the

two causal systems KC(T) and KA(--T) with inputs respectively f(t) and

f(-t). ii) recognize that yl(t) = (Kc* f)(t) and y2 (-t)= (KA * f)(t) and

hence compute y(t) -= y(t) + y2 (-t).

Example 3. Let us consider a quality control problem related to the

acceptance or rejection of brake lining material in the automotive

industry [ 10 1, 1221. The quality control procedure consists of the

following:

i) Some laboratory tests are run on the brake lining material

ii) The results are compared with some nominal results

iii) A decision is made concerning the continued use of the material

in the production line.

The variations on this quality control l)rrnedure depend on

a lumber of factor.-. Most impoitant arnonz tNese factors are the



choice of the type of tests to be run and the criteria of interpretation

to be assigned to the results. A simplified version of one of the most

widely adopted solutions consists basically of three steps. A small

sample of the brake lining material is inserted in a chromatographic

machine (first step). This test generates a response voltage, x(t).

The function x, which is recorded as a chart, has a behavior which

depends on the physical and chemical properties of the sample.

Typically, x appears as in figure A. 4 where t and tf indicate respec-

tively the initial and terminal time of the test.

To analyze the test result, a straight line, y(t), (called the drift

line) is superimposed on the graph of x (second step). The purpose of

y is to take into account undesirable effects which are due to a number

of sample independent sources. In order to achieve this purpose the

drift line must ha-re the following properties: a) the difference x(t)-y(t)

has to be positive for every t E [t 0 , tf] ; b) the area A between the

curve x(t) and the drift-line y(t) (A= tf [x(t) - y(t)] dt) is minimized
"0

over all straight lines satisfying condition a).

In the iinal test step, the areas of well-defined Peaks, i.e.,

Pip P2'"" 'PN' are computeJ and it is established whether each peak

area is within a certain predetermined tolerance (thied step). From a

functional analysis point of view, the overall data reductioa operation

can be viewed as a transformation, 7,. mapping a special class of con-

tiauou; functions in C[ tO.tf I int,- functions in ( 41). Note that

0* .
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according to extensive experimental results (which indeed constitute

the essential foundations of the overall approach) the secGnd step can

be performed correctly only after all of the curve x is known. From

this observation it follows that 1T is not a causal system.

Until recently the conventional test procedure was to initiate

second and third stepc after the test was run. In this way the delay

time, to, between test initiation and test conclusion is given by t0 =

t + t 2+t where t1 is the time necessary to run the test, t2 is the

time required to draw the drift line, and t3 is the time needed to com-

pute P 1 , P2'...P N' UEing standard laboratory techniques, it turns

out that t3 is usually neglectable and that t 1 and t2 are both of the

order of 50-60 minutes. Hence to is in general of the orde: of 100-120

minutes. In the mean time the production lines continue usir, the

material under test. As an alternative procedure, observe that the

mapping iT can be viewed as given by the composition of two mappings

Sand 772 The mapping r, transforms x into {P'I and the mapping

12 transforms x into {ipj where IP' and P". indicate the areas i

figure A. 4. Clearly {Pi } I= J'i} - {P"i}, hence n = I- 72; further-

more, it is not difficult to recognize 7i1 as a causal mapping (according

to our development a2 can be easily identif J-d as a "crosscausal" mapping).

To implement the quality control test, we . now adept the

following scheme. compute 'P'. while we run the test, then afer

the t~est is run compute and fihially computc ihe difference
1P1' ' - ,p.. ,

1 1!
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The amount of time required for the overall data reduction

operation in this procedure is given byt'=' 1 +t'2 where: i) T1 is

equal to t1 ; t2 is the time required to compute {P"i} and to evaluate

the difference {Pfi} - {P"i}. In general it turns out that t2 is of the

order of 10-12 minutes. It foliows that this second scheme provides

a consistent economy of time with respect to the original one.
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Area P. , Area A.B.E.F.1 1 1 1

Area P! = Area A.C.D.F.

Area P." = Area BiCiDiEi

A PN

P~j)

Fi, x(t)
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Ii
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Figujre A.54



B. Some Selected Results on Integral Transformators

In this appendix some selected results on integrals on Hilbert

resolution spaces are presented ard briefly discussed. These results

can be found in [25] and the reader is referred to that reference for

proefs and further details. A word of warning may ba in order: the

various original lemmas and theorems have not been reproduced in a

faithful form. Terminology and notations have been regularly modified

and, what is more serious, range and scope of applicability of some

results have, on occasion, been arbitrarily limited. The main justi-

fication for doing this is the desire to make these results best suitable

for a direct use in the varios sections of this stulI•.

To start, the first two results establish some usefui connections

among various types of integrals.

Lemma 1. ([2'5] p. 20). For the convergence of the integral fdPT(s),
s2 1~

it is necessary that for any gap P - P in R the following relation

holds

(P 2 )l [) T(s 2 )- T(S)I= 0.

Moreover if the integral fdPT(s) is well defined then

fdrT(s) = #dPT(s) = *dPT(s).

Lemma 2. Suppose that T is a linear bounded operator on jH, Pt].

If .dPTPs and fdPTdP are well defir'ed the,, 4dPTdP is also well

defined.. Moreover ýhe foilowing relation holds

177
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-dPTPS =dPTPS + fdPTdP.

The next lemma' shows that in the case of linear compact operators,

the tranaformator fdP[ ]dP is always well defined.

Lemma 3. ([25], p. 23 . Let T be a linear compact operator on [H, Pt].

T hen fdPTdP is well defined and equal to

( (P+- Pi-)T(Pi- P.J)
1EW

where (Pi, Pi-) is the sequence of gaps in IR. In particular if R is

continuous then fdPTdP = 0.

Lemma 4 establishes the fundamental connection between trans-

formators type fpsTdP (which were used by Saeks) and transformators

type fdPTPs which are adopted in the present development.

tLemma 4. ([25], p. 26). If T is a bounded linear operator on [H, P

and the integral fPsTdP is well ctefined then the i tegral fdPTP s

also well defined. Moreover, the follcwing relation holds

fdPTP S T - fPSTdP.

The next two Lemmas 5 and 6 play a key role in regard to the

question of canon; ii .ausality &ecompcsition.

Lemma 5. (1 251. Lemma 1 o :). 104). For any orthogonal system

D. (j=0,A, 1,2,.. ) in a Hilbert space H, ihere exists a resolution of
I

the identity IR sicb that for every seli-adjoint operator
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+00

satisfying the conditions

Aj i > 0 j= 1,2,.. ), j < 0=01- 19, .,...)

+o0

'27-x
-00

the :ntegral Y = fPTdP diverges in the strong se ise. Conversely for

any continuous resolution of the identity IR = {Pt} there exists an

orthonormal system 4. (j=O, +1,...) sucn that the above conclusions

hold for the specified class oi s3eU-adjoint operators.

Before stating Lemrnm 6 it is convenient to introduce the following

definition.

Definition 1. An operator T is called a G operaLor if it saiisfies the

following conditions:

i) T is compact

ii) the spectrum of (TT*) 1 I2, {sj(T)}, satisfies the condition

+CO
V/• 2-1 s (T) < oo.

)=-o0

Definition 2. If T t G then the expression
+z0 - 1

ITl 11W V- (2j1-1) sjT

is called G norm of T.
-w -
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Lemma 6. ([251 Theorem 4. 1, p. 106). Suppose that T E G is an

operator on a [H, Pt] and

(PP+-P)T(P -) = 0

for every gap (P+, P-) in IR. Then'the integral fPTdP is well defined

and it has the precise bound

I fPTdP_ I <IT W"

Ii

I



C. Some Additional Results on the Causality Structure of Linear
Systems in HRS

This appendix can be viewed as an additional section to Chapter 4

• J and gives some connections between some causality properties of linear

systems in a HRS and some of their analytic properties. In particular,

Propositions 1, 2 and 3 illustrate some interesting relations between

causality properties and compactneiq. Propositions 4 and 5 regard

the existence of a canonical causality decomposition for G. operators. *

Proposition 1. For every linear compact operatoi T on a Hilbert space

tH, there exists a "maximal" resolution of the identity I = IPt} such

that T is strictly causal with respect to the HRS [H, Pt .

The proof of this proposition is a direct consequence of a theorem

due to Aronszajn and Smith and is omitted for brevity (see [251, Theorem

3.1, p. 15).

Proposition 2. Suppose that T is a self-adjoint operator on a HRS.

Then,if T is causal or anticausal,T is memoryiess. Moreover, if
• *~r *= TA T*= T.

T=TA+TC +T thenTM-TM, TC*-T T

Proof. Suppose that T is a self-adjoint operator on [H, Pt. If T is

causal then PtT = PtTPt. Taking the adjoint of both members of this

equatior, it follows T*Pt = PtT*Pt. Using the fact that T is self-adjoint

*See Definition B. 1.
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it follows TP = PITP. From this equation and from the dual of

Proposition 4.6.3, it can be concluded that T is anticausal. Suppose

nowthatT=TA +TC +TM ThenT*=T*+T*+T*. From

Proposition 4.6.1 and 4.6.3 it follows T = T* T = T*, T T
C A' A CTM=TM,

Proposition 3. For every compact self-adjoint operator T on a Hilbert

space H, there exists a maximal resolution of the identity IR - {pt}

such that T is memoryless ".;,ith respect to the HRS [H, Pt].

Proof. From the compactness of T and Proposition 1, there exists

a maximal resolution of the identity IR {Pt} such that T is causal

with respect to [H, Pt. From the fact that T is self-adjoint and

Proposition 2i) it follows that T is memoryless.

Proposition 4. Suppose that T is an operator on a HRS and that T E G.
w

Then a canonical causality decomposition

T = TA + TC + TM

always exists and it is unique. Furthermore the operator norms of

TA, TC, TM are bounded by the number
+co -1

ITI = Y, (2j-1)- sj(T).

]=-0c

Proposition 5. Suppose that T is an ope :ator on a Hilbert space H and

that T does not belong to G. Then we can find a resolution of the iden-

tity IR = fPt} such that T does not have a canonical causality decompo-It• i sition on [H, Pt]
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The proofs of Propositions 4 and 5 are based on Lemmas B. 5

and B. 6 and are once more omitted for brevity. It is important to

note that according to these two propositions the G. operators con-

stitute the largest class of compact operators for which a canonical

causality decomposition can be guaranteed in gerf -al.
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