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related behavior,
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resolution space.

result of the study is a canonical causalty decomposition theorem,

This is a study of the structure of englneering systems with respect to time

The development is unconventional in not being based on gystem
properties such as linearity, time invariance, etc.

The main question of interest

concerns the possibility of deccmposing a general system into a sum of systems with
An analysis of characteristic properties of
such systeiis and their interconnection with other aspects of system behavior is

The approach used in the study is "functional analytic," making use of
recently developed axiomatic structures called the group resolution space and Hilbert

This in turn permits the efficient utilization of powerful
techniques from the Gohberg-Krein theory of Volterra operators.

The most important

Other results

include a theorem connecting the temporal properties of an open loop system to the
gtability of the closed loop feedback system.
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CAUSALITY STRUCTURE OF ZNGINEERING SYSTEMS

by

T rhcesd _omem o

Romano Mario De Santis
Cha.rman: William A. Porter

This study is about the structure of engineering systems with
respect to time related behavior. Studies of this type are usually
based on such system properties as linearity, time invariance,
contin. ty and physical realizability. A distinguishing character of
the pesent development is that none of these properties is essential.
This gxplains in part the unconventional character of questions,
appr.r."ach and results.

‘In contrast to a physically realizable system, an engineering
syster . need not be causal and may present a complex time related
behavi’r. The main question of interest concerns then the possibility
of deci.:nposing a general system into the sum of systems with a time
related behavior which is, in some sense, "simple'. The analysis
of characteristic properties of such systems and of their intercon-
nections with other aspects of system behavior is als» a relevant
question of investigation.

The above questions are applicable to many and diverse engi-

neering fields and the desirability of an abstract approach is quite

iih




patural. The approach adopted in this study can be described as
"functional analytic* and makes use of recently devaioped axiomatic
structures called group resoiution space and Hilbert resolution space.
This not only provides a natural framework in which to embed the
intended research, but it also permits an efficient utilizaticn of
ypowerful techniques from the Gohberg-Krein theory of Volterra
operators.

The most important result of this study is a canonical cansality
decomposition theorem. This theorem states that under appropriate
hypothe .es every engireering system can be represented as the sum
of "simple' systems. Another relevant theorem connects the tem-
poral properties of an open loop system to the stability of the closed

loop feedback system.
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The results of this thesis are reported under the labels of lemiras,
propositions, and thecorems. The results apprcaring as '>r.:mas have been
borrowed from the rete.ences. Unless otherwise state:, all the results
labeled propositions and theorems are original to the best ::: the author's

knowledge.
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1. INTRODUCTION

1.1 Introduction

When the concepts of time and its associates - past, present
and future - are extended from the world of physical systems into
the broader context of engineering sysiems they become abstract
entities. They may then preserve little in common with the original
notion of physical "fourth dimension' and the terms real and nonreal
time are often adopted.

Heuristically, a system is callad causal if "present behavior"
of the system is only a function of the past. In this regard a widely
accepted axiom is the principle of causality: all physical systems
are causal., As engineering systems need not be physical nor do they
necessarily function in real time, it is quite natural that for these
systems the assumption of causality is no longer valid.

Indeed, in the engineering domain it is not unusual to be faced
with proi;lems related to noncausal behavior. Classical filtering and
estimation probleins in communication theory do not necessarily have
& cavsal solution [ 141, [35]. In stability theory the instability of
a large class of linear time invariant systems can be explained in
terms of absence of causality [11 ], [ 53 ). In optimal control theory
noncausal controllers occur regularly in minimum effort, minimum

fuel, and optimal time problems [41], (44 ].
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; In the impl.émentation of an engine;erjng system the requirémcnt
that the system be causal is important. ' In particular if .the ixpple-
mentation has to be phyéical, then fhis requirement becomes manda-
tory. When this happens one either confines hin'lself to consider‘onl‘y

causal systems | 9 ], [ 63], [ 68], [ 69], or, inan alternative approach,

b

one lifts the causality coastraint in a preliminary phase of the design
. I " .

4 and reconsidere it in a later phase [ 30], [ 66]. In this latter instance,
.i 1 ,

usually an analysis of the causality structure of the system is in order
48], | | o

This then explains one characteristic of the present de . elopment:

, a stuay about time related behavioral patterns of engineering systems.

] That is, ahout the modalities by which p‘ast, present avd future of the

input affect the present of the output. In the context of thus study | ' '

causal ard noncausal as well as Jinear and nonlinear systems are

considered.

A proper characterization of the natare of titne behavioral pat-
terns may suggest various engineerihg implications. For instance,
A the fact that a system L5 noncausal behavior implies that it cannot

be physically implemented. On the other hand, if the noncausal

hehavior is, in some sense, "almost causal' then, for engineering
purposes, the system can still enjoy the property of physical iinple-

mentation.
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To mention other types of implications note that in linear
systems theory the fact that a physical realization of a4 linear time
invariant dynamical system defines uniquely the input-output weighting
pattern of the system | 65] can be viewed as a consequence of the
special causality structure of the system. Similarly, in stability
theory some special causality properties of an open loop system can
imply the stability of the closed loop feedback system [ 11], [ 12],
[131*.

A second characteristic of this development will, at this point,
appear natural: the study of interconnections between time related
behavioral patterns and other aspects of system behavior. In this
regard interconnections between state and causality structures are
investigated. An additional topic of research is the study of relations
between staility and causality properties.

in a broad sense a study of the present type falls into the context
of causulity theory. On the other hand, emphasis here is on systems
which dc not necessarily enjoy those properties on which much of the
previnus research on causality is based, namely: iinearity, time
invariance, continuity, and most notable causality. It is then not
surpriswng if the classical theory cn cauvsalily presents limitations

in this area.

*Other significant implications caa a'so be 2nvisioned in less
academic and more earthly engineering areas. Here the reader is
referced to Appendix A.




In particular, for instance, the technical literature has paid
scant attention to the study of noncausal systems. Apparently this
situation has been justified by the feeling that noncausal behavior can
be treated as causal behavior in reverse time. This suits quite well
studies confined to physical systems and, to a certain extent, linear
systems [ 48]. However, such an approach is not applicable to the
type of problemc considered here.

A more general approach has recently been adopted by Porter
[41], [42] and Saeks [48], [49]. These references treat causal and
noncausal systems on an equal footing and provide much of the ideas
and inspiration for the present development. These efforts are,
however, mostly confined to the study of linear systems in a Banach
or a Hilbert space context. Many systems of interest, however, not
only are not linear but, most important, cannot be fitted in any Banach
or Hilbert space framework.

The above discussion allows us to introduce a third and perhaps
most relevant characteristic of this study: the abstract approach. The
desirability of an abstract treatment is quite natural in view of the
many and diversec engineering fields in which the subject applies. To
those fields already mentioned we can, for instance, add game theory,
decision theory, prediction theory, electric network thecry and others.

Some of the advantages of abstraction are then evident: the possibility

e -
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of emphasizing those features which are truly connected to time
related belavior; t*e unification of diverse classes of problems; the
possibility of obtaining results with a wide range of applicability; the

cortribution to studies with an interdisciplinary character.

1.2 Organization

Commensurate with the discussion in the previous section we will
treat the following topics: i) identification, analysis and physical inter-
pretation of those systeins which, in some sense, are "basic'" with
respect to time related behavior; ii) consideration of the question
whether a general system car be decomposed into the sum of basic
systems; iii) investigation of some connections between causality and
other system theoretic properties.

The development of topics i) and ii) is carried cut in Chapters
2 and 4. More specifically, Chapter 2 considers systems with a mathe-
matical representation (group resolution spaces) which is "minimal"
for this type of study and does not possess any topolczical structure.
Chapter 4 deals with linear and nonlinear systems defined on a Hilbert
space.

Topic iii) is treated in Chapters 3 and 5. In Chapter 3 some
connections between causality and state structures are studied. This
study is embedded in a group resolution space context. Chapter 5

investigates some connections between special causaiity properties



of an open loop sysiem and the stability properties of the closed loop
feedback system. Here the system is modeled by a mappirg on a

Hilbert space.

1.3 A General Summary of Results

A geuneral theory of the causality related structure of engineering
systems has been developed. The mathematical framewerk in which
this theory is imbedded is called group resolution space. In this setting
we identify and study various ""basic" systems: causal (strongly, strictly),
anticausal (strongly, Strictly) , crosscavsal (strongly, strictly), and
memoryless. Relevant prcperties of these systems are illuminated by
Propositions 2. 4. 1-6 and 2. 5. 1-6.

The concepts of causal, anticausal, and memoryless systems are
in agreement with those already appearing in the technical literature.
The concept of crosscausality is new and plays an essential role in the
extension of the available theory of causality into a nonlinear systems
context. When a group resolution space (GRS) becomes a Hilbert
resolution space (HRS), these concepis have a natural and straight-
forward extension. Some aspects of this extension are illustrated by
Definitions 4. 3. 1-6 and Propositions 4. 4.1-4. Moreover if we restrict
our interest to linear systems in a Hilbert resolution space, then our
framework coincides with the one which was adopted by S.cks as a

starting point. This aliows one to rediscover results which had




R R R R I B B P T R P R R R o PR PR e S

already been stated by Saeks (Propositions 4.7.1-3). New results in
line with Saek's development are also obtained (Theorem 4.5.1, and
Propositions 4. 5. 1-3 and 4. 7. 6-10) .

In GRS various forms of a causality canonical decomposition
Theorem can be obtained (Thecrem 2.6.1). A typical statement of

this theorem is as follows: every system in a GRS can be decomposed

into the sum of causal, anticausal, crosscausal, and memoryless
systems. When we confine our attention to weakly additive systems

then crosscausal operators disappear and most of our results

assume the familiar formulation of those results which have Leen stated
by other authors in the zase of linear systems in HRS (Theorem 2. 7.1
and Propositions 2. 7.1 - 4).

In 2 HRS context it is found that a causality canonical decompo-
sition theorem cannot in gereral be stated. However necessary and
sufficient conditions for a canonical decomposition to exist can be
given (Theorems 4.6.1 and 4.7.1). These conditions are utilized tn
study the causality structure of various classes of special syster.s.

In particular it is shown that a Hilbert Schmidt system admits a
canonical causality decomposition. Moreover the components of such

a decomposition are mutually orthogona! (Theorem 4. 8. 1 and Propositicn
4.8.1-3).

The GRS framework ig also utilized to study some common features

of causality and state concepfs. To do this we first generalize the notion




of state which was developed by Saeks [49 ] and illustrate some
important aspects of this generalization (Proposition 3.3.1-4). We
proceed then to investigate meaningful interconnecticns between
state and causality properties. In this regard Theorem 3. 4.1 relates

the identification of basic causality components of a system with its

state and cosiate decompositions. Additional results can also be found

in the statements of Propositions 3.4.1 - 6.
The final part of this thesis is concerned with the study of inter-
connecticns between causality and stability. For this purpose we
corsider a basic feedback svstem in HRS and relate some causality
properties of an open loop system to the stability of the closed loop
system. Important results bere are provided by Theorems 5.2. 1,
5.3.1 and 5.4.1. Some relevant implications of these theorems are

illustrated by Propositions 5. 4. 1-4.

1.4 A Brief Review oi Research on Causality

Questions concerning causality related concepts have been a
focus of modern scientific research for a number of decades. Most
of this research is directed to the study of the principle of causality
and its implications in various aspects of system behavior. These
implications range from constraints on the f{requency response of
single variate linear, time invariant systems, to a number of more
involved properties for the so called "'collision matrix' of infinite

dimensional systems defined by various scattering processes
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55!, | 66], | 6i|. The above type of propertics are usually categori-

zed with the title of dispersion relations[ € ). | 7 1

The investigation of the connections between the principle of
causality and dispersion relations has long been the objective of con-
siderable research. Among others this research is marked by the
contributions of Paley and Wiener, Foures and Segal, Tcll and Youla,
Castriota and Carlin.

Paley and Wiener [ 38] can be considered the pioneers of the
modern study on caasality. Their famous Paley-Wiener theorem gave
necessary and sufficient conditions for the modulus of a frequency
response function to represent a causal system. This theorem is the
basis for much of the subsequent related classicai work on causality.

Using the Paley-Wiener theorem, Toll obtained an additional
formulation of necessary and sufficient conditions [ 55]. Here causality

is associated with analytical properties of the frequency response func-

tion when its domain is extended from the imaginary axis to the complex

plane.

Similar conditions were oifered by Foures and Segal [ 20 |. Later
on Youla, Castriota and Carlin extended these results to the frequency
response mairix function of linsar passive n-port networks [ 63 |.

The mathematical techniques supporting the above develcpments

are essentially centered on the theory of functicns of compiex variables

ETSRAS DS 2
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and Fourier integrals. In a somewhat different context the properties
of causal systems have also been studied by Sandberg [ 51], Falb and
Freedman [ 19 ].

Sandberg considered nonlinear systems on a Hilbert space context
and obtained scme necessary conditions for causality in terms of phy-
sically meaningful quantities. Falb and Freedman focused their
attention on linear systems in locally compact abelian groups and
obtained a generalization of the classical results of Foures and Segal.
With the work of these latter authors, the study of causality assumes
a more general character. This is marked by two basic features:
association of the concept of causality with other system theoretic
concepts such as passivity, dissipativity, stability, etc., and the
introduction of modern tools of functional analysis.

Recently this new type of approach has been supported by a
number of other authors ;11], [42], [43], [48], |60 ] Here the
works of Porter, and of Saeks are the most closely related to the

present study and will be a subject of attention later in this development.
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2. CAUSALITY ON GROUP RESOLUTION SPACE

2.1 Introduction

The development of this chapter can perhaps be best introduced
by a brief discussion of some relevant work of Saeks [ 48 ].

Saeks models a system by the use of an axiomatic structure called-
Hilbert resolution space. In this context he defineg and studies various
classes of systems with special causality related properties.

These classes consist basically of causal, anticausal and memoryless
systems. In heuristic terms a memoryless system has the property
that the present of the output is only affected by the present of the
input. An anticausal system is characterized by the property that it
becomes causal if we reverse the direction in which the time flows.

To categorize the causality structure of a linear system, Saeks
vffers a canonical causality decomposition theorem. This theorem
stateg that every linear system (on a Hilbert resolution space) can be
decompose! intc the sum of causal, anticausal and memoryless systems.
At this point one begins to envision a reasonable approach to the causa-
lity problem: to start by defining and studying a set of ""basic' systems
with a particular causality character; and then to investigate whether
a general system can be decomposed into the combination of basic
systems. Indeed, these two steps are precisely the core of Saeks'

develcyment.

11
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It may thus appear as if the causality problem has been
exhausted. To show th:t this is not the case we introduce the fol-
lowirg observitions: c) the statement of the canonical causality
decomposition theorem, even in the limited form in which it has
been presented, is not, in general, valid (a proof of this fact is givea
in Section 4.7) ; b) the classes of causal, anticausal and memoryless
systems appear unable to account for the causality behavior of simple
nonlinear systems in communication and control theory; c) the mathe-
matical model proposed by Saeks limits the scope of his results to a
very restricted class of systems. This model canrot, for example,
be used to discuss causality concepts in relation to even the most
elementary sequential machine.

A close examination reveals that the causality problem is far

- from being solved. Two fundamental questiocns which seem to charac-

terize this problem are the following: under what circumstances is it
possible to decompose a system into the sum of kasic systems with a
well understood causality siructure? What properties should a system
have in order to be considered basic?

In the present chapter we address our efforts to the investigation
of the above two questions, Clearly a first order of business is the
formulation of a mathematical model to represent the systems under

consideration. In this regard a setting called group resolution space

-
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is developed. Among the various advantages provided by the group
resolution space setting the most important are the following: i) it
allows a meaningful development . .« ausality which is general enough
for modeling most system probleme in information, automatic control
and aviomata theory; ‘i) it is minimal in the sense that every element
of this mathematicai setting appears to be essential for a reasonable
development of causality to be carried out; iii) it permits other
system theoretic concepts (such as state) to be analyzed.

At this point an overview of the chapter may be in order. Section
2 deals with some necessary mathematical preliminaries, in particular
the characterization of group resolution spaces. In Section 3 we give
the definitions of basic causality concepts. Some properties of these
concepts are studied in Sections 4 and 5. Section 6 considers the
question of causality canonical decomposition. In Section 7 the results
of the previous sections are revisited to treat the case of weakly

additive systems. Finally, Section 8 gives some conclusive remarks.

2.2 Gvoup Resolution Spaces (GRS)

In this section we introduce the mathematical setting of group
resolution spaces on which much of the present causality study will
be based.

To start, recall that an abelian group (in the sequel simply a

group) is a set G together with a binary operation (x,y) -> xy mapping
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G X G —> G such that the following conditions are satisfied:
i) x(yz) = (xy)= for all x,y,z ¢ G (associative law)
ii) there exists an element e € G such that ex = x for all

x € G (e is the identity element)

iii) for all a € G there exists 2l Gsuchthata la-e
(a"l is calied the left inverse of a)

iv) ab=ba for all a,b € G.

A set v is linearly ordered if it is equipped with a relation "<", con-

tained in the Cartesian product v X v, such that for all t,s,v € v, the
following conditions are satisfied:
i) t <t (reflexive)
ii) t<sarnde <timplyi= s (antisymmetric)
iii) t <sand s <7 imply t < 7 (transitive)

iv) t,7e v, impliesi <7 or 7<t (trichotomy).

Given a (abelian) group G and a linearly orac-ed set v the space

S[G, v] is definad as follows: if xeS[G, v] then, to every tev, x asso-

ciates a well defined element x(t) €eG. In other words we have:
S[G,v] = {x|x is a mapping v —> G}.

The space S[G, v] comes equipped with a family of truncation
operators Pt, P,. These operators Pt, Pt act on S[G, v| as follows:

if x, v,z belong to S{G,v] and y = Ptx, z = Px, then
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y(8) = x(s) for s <t, y(8) = ¢ otherwise, and
z(s) = x(8) for s >, z(s) = ¢ otherwise

where the symbol ¢ indicates the null element ¢f G. The space S[G, v]
together with the family of truncation operators will be called a group

resolution space (in short GRS) .

In the sequel we will alro use an additioral family of operators
dP(t): S[Gr]| = S[G, v]. This family is defired as follows: if x and

y belong to 8[G, v] and y = dP(t)x, then y(s) = x(s) if s=t and y(s) = ¢
t t

otherwise. Clearly dP(t) = P I~"t = PtP . For later use we denote
by 7t ang P, the operators:
st pt. dP(t) and P, = P, - dP(t)

t™ 7t
Occasionally dP(t) x, i"tx and ?tx are referred .o respectively as

present, past and future of x at time t.

To gain some familiarity with the above definitions and to pro-
vide some background for later considerations '+e introduce the

following simple examples,

Exampie 1, Let R" be the usual Euclidean spac with dimension n,
Every element x in R" is given by an n-tuple of :eal numbers
X = (xl,xz, con ,xn) and it can be viewed as a fun- tion mapping the

set of integers {1, 2,...,n} into the set of real r.umbers R.

ST w R,

1 Az o e b,
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Consider the set v = {1,2,...,n} to be equipped with the wﬂ
order, and the set G = R to be equipped with the familiar nétion .of
addition. Clearly v is a linearly o'rdered set, G is a group and we can
then talk abcut the group resolution space R - S[G, v].

The various families,of truncation pper'ators are defined as
follows: ifx = (xl, .- .,x,n), y= 6’1’ .. .,yn)l, W= (wl, “ee ,wn) and

z=(%y,...,2,) are elements cf §[G,v] then the relations

y =P, w-= Px, z=dP()x je {1,2,...,n}

imply the following

¥ = X, for j <i and yi=0forj>1
w-i=0 for j <i and Wi = X for i >j

Z; =X, for,j=1i and zi=0 for 1#].\ q

Example 2. Denote by [0,») the set of posl,itive real numbers and by .
R the s;at of all real numbers. |

If we consider the elements in [0, ) to be drdelred in the
natural way and th~ set R to be again equipped with the. u;:ugl notion
of addition, then we can vizw [0, ) as,a linearly ordered set and R

as a group. Using the notation v = [0,») and G = R, 'we can thén

consider the group resolution space

S[G, '] = {x|x is a function mapping [0, ) into R}.
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The various families of truncation operators are
new defined as follows: if x,y,w,z ¢ S[G, »] and

y= Ptx, w=Px z= dP(t)x, te [0,w)

then we have the follcwing relations
y(s) = x(s) for s <t, y(3) =Ofor s >t
w(s) =O for s <t, w(s) = x(s) for s >t

z(s) = x(3) for s=t and z(s) =0 for s £ t. <)

A GRS can be easily given a group structure. To this purpose
the addition o: two elements is defined as follows: if x,y,z € S[G, v]
then z is the addition of x andy, z = x +y, wher 2(8) = x(8) + y(s)
for all 8 € v. Similarly z :s the difference between x andy, z=x-y
il y(s) - x(s) = z(s). For later use it is observed that by virtue of
these definitions, any element x ¢ S[G, v] can be represented as
follows: x = Z dP(t)x. Similarly Ptx and Ptx can be represented by

tev

Px= ) dP(s)x, Px= )} dP(s)x.
s<t s>t

Consider now operators T, T', T" ali mapping S[G, v] —= S§[G, v].
The operator T is the addition of T' and T, T = T' + T",if for every
x € 3[ G, v] the following relation holds: Tx = T'x + T"x. T is the

difference between T' ~nd T", T=T'- T", i Tx= T'x - T"x. T is




18

the composition of T' and T", T = T'T" is for every x ¢ S| G, 1] the
following relation holds: Tx = T'(T"x).

An operator T on a GRS is unbiased if T[¢] = ¢ where ¢ indicates
the element x in S[ G, v] such that x(s) = ¢ (the nuil element ir G) for
all s € v. In the sequel only unbiased operators will te considered.
This is not a serious limitation. If T is not unbiased, the development

will still be valid for the operator T - T[¢].

2.3 Causality Concepts in GRS

In this sec*ion we introduce and discuss some basic concepts
related to causality. The notation T is used to indicate an operator
(unbiased) on S[G, v] and x and y indicate two elements in S[G, v].
Definition 1. T is causal (anticausal) if Ptx = Pty implies Pth = PtTy
(Ptx = Py implies Pth = PtTy) .

Definition 2. T is memoryless if it is simultaneously causal and

anticausal.

Definition 3. T is strongly causal (strongly anticausal) if T is causal

(anticausal) and TdP(t)x = ¢.

Definition 4. T is strictly causal (strictly anticausal) if Blx - f‘ty

t

implies P'Tx = Pt’l‘y (ﬁtx = P'ty implies P, Tx = P{Ty) .

Definition 5. T is crosscausal if TdP(t)x = ¢; Ptx = ¢ implies

P'Tx = ¢ and Px = ¢ implies P,Tx = 4.



Definition 6. T is strongly crosscausal if P'x - ¢ implies P'Tx = ¢

and ?tx = ¢ implies P,Tx = ¢.

The concepts of causal, anticausai, and memoryless systems
are in formal agreement with those proposed by Porter [ 42], [43 ]
and Sacks [ 48 ]. It will be apparent later that this agreement extends
also to the concepts of strictly causal and strictly anticausal systems.

The concepts of crosscausality and strong causality find no
correspondence in previous work of other authors. It will become
clear with the unfolding of the present development, that these con-
cepts are essential for the study of the causality siructure of nonlinear
systems. In Section 7 it is shown that in the case of additive systems
the concept of <rosscausality vanishes and strong causality coincides
with strict causality. This explains in part the absence of these
cencepts in the classical literature.

The attention of the reader is called to the fact that in definitions
1-6 the domain of the operator T is assumed to be the whole space
S[G,v]. When the operator T is defined only on a particular subset
E of S[ G, v] the concepts of causal, anticausal, and memoryless
systems can be easily extended. In Definition 1 for example, it would
be sufficient to add the sentence "for all x andy in E",

To extend the concepts of crosécausality, strong causality, and

strict causality appropriate and less evident modifications are required.

P—




Usually these modifications must be varied in order to suit each
specific situation. This is a rather serious limitation and will again
present itself when the question of canonical causality decomposition
is considered. This limitation should be viewed as the price being
paid to the inevitable compromise: to obtain a development which is
restricted enough as to lead to meaningful resulis and which at the
same time is general enough as to provide ground for further inves-
tigation when these results are not directly applicable.

In the sequel it will be helpful to refer to the causality related
concepts through an alphabetic code. For this purpose the following

shorthand notations will be adopted.

A = anticausal X = crosscausal

C = causal X = strongly crosscausal
M = memoryless A = strongly anticausal
A = strictly anticausal C = strongly crosscaus il
C = strictly causal

The alphabet A = {A,C, M, X, A,C, X, A,C} will be used extensively
and in various ways. On some occasions, for instance. a sentenco of
the type "the operator T is either causal, or anticausal, or memoryless"
is abbreviated as follows "the operator T is @€ {C,A, M}. On other
occasions to remind the reader of the causality character of the operator
T, the symbols TC’ TA, TM are used.

As an illustration of the notational convenience provided by the

proposed causality alphabetic code, it is helpful to consider the




statement of the foi owing principle of causal duality”’: "Let a statement

or equality be phrased using relations invelving concepts associated to
the alphabet A = {A,C,M, X, A, C,X, A,C} and families of truncation
operators such as {Pt, P, B, l_’t}. Then the statement or equality

remains valid if th2 following interchange in symbelsg occurs:

#>p, #>p, p>p, B>P
C—>A, C—>A, A=, A>C
C—>A, A—>C, X—>X, X—=>X.

At this point the formulation aspect of this study has been laid
down and the above machinery can be used to answer some of the basic
questions of interest. First, to gain sume familiarity with the various

concepts it is helpful to discu:>s a simple example.

Example 1. Consider the GRS described in Example 2.1. Every
element x in this GRS is given by a function x(-) mapping € very
t € [0,0) into an element x(t) € R. Consider the operator T defined

as follows: ify x € S[G,v] and y = Tx then
y(t) = x(t + 1) x(t + 7)

where 7 and 7o are real numbers and we have used the notation

x(s) = 0 for s < 0.

*A formal proof is omitted for brevity. The reader should have
no difficulty to verify by direct inspection that this principle holds in
all future situations where we invoke its validity.
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The causality character of T is determined by the location of
the point (7, 12) in the R2 plane. For instance, if (11, 12) coincides
with the origin then T is memoryless. When (7,, 12) # (0, 0) various
situations can occur and are illustrated in Figure 2.1.

In particular, if the point (7;, 79) is in the third quadrant then T
is, in general, causal. More specifically, if both g and Ty Are negative
and different from zero then T is simultaneously strictly causal and
strongly causal; ii 7 is negative and Ty is equal to zero then T is strongly
causal but not strictly causal.

Similarly if the point (7, 12) is located in the s:cond or fourth
quadrant then T' is, in gex'xeral, a crosscausal operator. Finally, if

T is positive and 79 is negative then T is strongly crosscausal. Q

2.4 Causality Properties of Basic Systems in GRS

In this section we elaborate on some meaningful prysical inter-
pretations of the causality concepts formulated in Section 2.3. This
will also lead us to a number of mathematical implications which will
play a key role later in the development.

To help motivate our discussion recall that, in heuristic terms,
a system T is causal if the present of the o:tput does not depend on the
future of the input. This can be expressed by saying that the past of
the output is only a function of the past of the input. This pioperty is

in turn equivalent tc a special ''sum-type' representation.
yp P
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anticausal, strongly anticausal, strictly anticausal
crosscausal, strongiy crosscausal

causal, strongly causal, sirictly causal
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causal, anticausal, memoryless
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Figure 2.1: Causality character of the operator T as a iunction
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Proposition 1. The following statements are equivalent:

a) T is causai
b) Pr=prPt forallte v

¢) T has the following representation T = ), dP(s) TP>.
Sev

Prooi. a) —>b). Suppose that T is causal. I b) is not true, then

there exists anx € S[G,»] and t ¢ v such that P'Tx # P'TPx. If we

now use the notation y = P'x, we obtain that P'x = Ply and Pt1x # Pl1y.
This is a contradiction to the hypothesis that T is causal.
b) —>c). If b) holds then for every s ¢ v we have: PoT =
P3PS and since dP(s) = dP(s) P° we obtain dP(s) T = dP(s) TP>.
Hence we can write T = ) dF(s) TP,
Sev ¢

c) —>a). Suppcse that x and y belong to S[G, v] and Ptx = PYy.

Since Pth(s) = ¢ whent <s, then if c¢) holds we can write

Plrx = ¥ dr(s) TP k.
sgt
But for s <t we have PSPt = Ps. It follows
ul s 1
Plrx= } ap(s)TPPx = T ap(s) TPPYy - Py, <

s<t s<t

Using techniques similar to those adopted above, we obtain the
next proposition. This proposition states that a memoryless system

is characterized by the property that past or future of the output are a
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function of, respectively, orly the past or the future of the input. In
other words, ‘he present of the cutput is determined only by the present
of the input. This property can a.s0 be put into a 1-1 correspondence

with a special "sum-type" repres+ntation.

Proposition 2. The following staterients are equivalent

a) T is memoryicss
b) P'7= plrptand BT = BT,

¢) T= ), dP(s)TaP(s).
8€Ev

A meaningful physical interpretai:on can also be assigned to the
concepts of strong and strict causality. In particular, a strongly
cansal system is a causal system with the property that the present
of the input caunot affect the present of the output when the past of the
input is null. The behavior of a strictly causal system satisfies a more
severe requirement. In addition to being causal this type of system
has the property that the present of the input can in no way affect the
present of the output. These considerations are formalized and made

more precise hy the following Propositinns 3 and 4.

Proposition 3. The following statements are equivalent:

a) T is strongly causal

b) P'T = P'TP and dP(t) TdP(H) = o

¢) T iscausal and ), dP(s) TdP(s) = ¢.
Sev

e b
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Proof. a) —> b). In view of Proposition 1, all we have to show is
£ — ot
that dP(t) TAP(t) = ¢. Indeed from P'T = P'TP! it follows BiT < Phrit

and from here we obtain

B s —————— N

Prap) = (B + dP@)) TdP(Y) = PiTap) + ap(s) Tdp(t)

= PTPYaP(t) + dP(t) TAP(t) = dP(t) TdP() .

This implies that if TdP(1) = ¢ then we also must have dB(t) TdP(t) = ¢.
b) —c). Ifb) is true then, from Proposition 1, T is causal.

Moreover, since we must have dP(s) TdP(s) = ¢ for every s € v then it

follows that we must also have ) dP(s) TdP(s) = ¢.
¢) > a). I ¢) holds tlsleenl; T is causal and we must have !

dP(t) TdP(t) = ¢. This implies that PtTdP(t) = ¢ and T must then be

strongly causal. Q

Proposition 4. The following statements are equivalent:

a) T is strictly causal

b) pir - plrpt

c) T= ) dP(s)TP°and ) dP(s)TdP(s) = ¢.
Sev sev
Proof. a) —>b). If b) is not true then we can find a pair x,y ¢ S[G, 1]

such that lstx = 13t

y and Pth # PtTy. This is a contradiction to a) .
b) —c¢). If b) holds then for every t ¢ v we have

dP(t) T = dP(t) P'T = ap(t) Pt - ap(t) TB

and

dP(t) TdP(t) = dP(t) TB'dP(t) = .
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From here it follows that

T= ) dP(s)T= ), dP(s)TP°and ) dP(s)TdP(s) = ¢.
SEV Sev S€V
c) —>a). Suppose that c¢) holds and let x,y € S[G, v] be such

that Pt = ?ty. Then we have

plrx = ; dP(s) TPk = ) dP(s) TP P'x
s<t s<t
-1-)s—t t
= Z dP(s)TP Py =P Ty.
s<t
We can then conclude that T is strictly causal. = q

The causality behavior of a crosscausal system has a physical
interpretation which is similar to those seen in the case of causal,
anticausal or memoryless systems. In this case the past or the future
of the output are null whenever, respectively, past or future of the input
are null. Moreover, if past and future of the input are simultaneously
null then the present of the input has no effect on the output.

Analogously, a strongly crosscausal system is a crosscausal
system with the additional property that the present of the output is
null whenever the past or the future of the input is null.

To further illustrate the nature of this type of system we introduce

Propositions 5 and 6.



Proposition 5. The foliowing statements are equivalent:

a) T is crosscausal

b) TP' - P'1P', TP, = B,TP, and TdP(t) - ¢

c) ZdP(s)TP = ), dP(s) TP = ) dP(e) TdP(s) = ¢

sev SEV
Prooi. a) —>b). Suppose that T is crosscausal. 1i T8t ¢ Plrpt
then there exists an element x € S[G, v] such that TP'x = P'TP'x.

-~ = — — —t
Using Pt =T- Pt we have PtTPt = 'TPt - PtTP” and hence from the

above inequality PtTﬁtx # ¢ holds. Letting y = b we have
PtTy = ¢ and Pty = ¢

Since, by hypothesis, T is crosscausal this is impossible and we
must then have TP = BITEL, Invoking the principle of causal duality
we also obtain f’tT = ?tTist*. Finally suppose TdP(t) # ¢. Then
there exists an element x ¢ S[G, v] such that TdP(t) x # ¢. This

is again a contradiction to a).

b) — ¢). Suppose that b) Lolds. then we have
TP® = P5rP® and TP = P TP .

S

From these relations and the fact that TdP(s) = ¢ we obtain

TdP(s) = ¢ = D TdP(s) + dP(s) TdF(s) + P _TdP(s)

*For a direct proof the reader is invited to apply the change in
symbols indicated by the principle of causal duglity and to repeat
‘'verbatim' the argument used to obtain TPt - PiTPL,




It follows
¢ = iiSTdep(s) + dP(s) TdP(s) + ?STdep(s)
= B TP dP(s) + fsPsTPsdP(s) + dP(s) TdP(s)

dP(s) TdP(s) = ¢

4]

and consequently

Y dP(s) TdP(s) = ¢

o
8€V

Moreover, using the fact that dP( 8)P° = an(g) P 5= ¢ we obtain

Y dp(s)TP®= ) dP(s) BT = ¢
ssv sev

and

), dP(s)TP = ) dP(s)P TP =4,
scy sey

We can then conclude that ¢) holds.

¢) —>a). Suppose that c) holds. For every x ¢ S{C, v] we have

TdP(t)x = ), dP(s) TdP(t)x
Se€v

= ). dP(s)TdP(t)x + dP(t) TdP(t)x + ) dP(s) TdP(t)x.
s<t sSt

Noting that ﬁsdp(t) = dP(t) for s <t, P°dP(t) = dP(t) for s >t,

dP(t) dP(s) = dP(t) for s = t and dP(t) dP(s) = ¢ for s # t, we ohtain
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TdP(t)x = ¥ dp(s)Tﬁsdp(tjx'+ Y dP(s) TP dP(s)x +
s<t - St .

aP(t) Y dP(s) TdB(s) dP(t)x = .
SEV . _

Moreover if Pix = ¢, then we alsc have

PTx=P

dp(s)TP'x = ) dp{s) PPk = ¢.
t LY ' ' )

s>t

From: the above and the principle of causal duality it foliows that

Pty = ¢ implies PtTy =¢. It can then he concladed that T is crcss-

causal. : | <]

Proposition 6. The following statemeunis are eﬁuivalent:

a)' T is strongly crosscausal
t —

b) TP P'TP' and TP, - B,TP,
5 ¢ : _ o\ N
c) ), dP(s)TP" = ) dP(3)TP_= ) dP(s)TdP(s) = ¢

SeEV Sev SFy

Proof. a) —>b). Supl;ose that a) holds. If TPt # IP't'I’Pt, then there |
exists an x ¢ 8[G, v] such that Tl;tx # f5tTPt;<. This implies PtTPtx * 6.
Using the notation Ptx =y we then obtain that 13ty = ¢ and PyTy # ¢. This
is a contradiction to a). We must then have TP - *tTPt. Invoking the |
principle of causal dualilty this'argumént gives also TP, = ﬁtTPt.

b) ;—> c) . If b) holds then for eacht ¢ v we must have

dap(t) TPt = dp(t) BiTet - 6, ap() TP, - dP(t) B,TP, = ¢
and

dP(t) TdP(t) = dP(t) B'TdP(t) = ¢.
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It follows

Y, dP(s)TP®= ), dP(s)TP_= ), dP(s) TdP(s) = 9.
sev sev - 34

¢) —>a). Suppose that ¢) is true. Then for every x € S[G, v]

such that ﬁtx = ¢ we must have

t spt
P.Tx = dP(s) TP x = dP(s) TP"P'x = ¢.
t sét sét

By the principle of causal duality this also says that if y € S[G, v] and

f’ty = ¢ then PtTy = ¢. It can then be concluded that T is strongly cross-

causal. <]

2.5 Causality and the Composition of Systems in GRS

In this section we contimie our investigation on some causality
related aspects and properties. In particular Propositions 1-5
illustrate some properties connected with the addition and composition
of systems with a special causality structure. Two disjointedness
properties of these systems are given in Propositions 6 and 7.

In most nontrivial applications, basic subsystems are combined
through the operations of addition and composition. A first natural
question then is whether the class of systems which are
ae {A,C,M, X, A,C,X,A C} is closed under such operations. The
following propositiorn shows that the answer to this question is

affirmative.




J&

Proposition 1. If T and T' are @€ {A,C,M, X, A,CX,A,C} then
T + T' and TT' are also a.

Proof. In view of the similarity among the various cases, we will
only consider a= C and a = X. Suppose then that T and T' are C.
From Proposition 4. 1 we have

plr - pirpt and pi1 - Pirept,

From here we obtain

PYT + T = Pr + P - Phrpt 4 prropt - pYT 4 1y Bt
t
plrr - pretr - plretret - Pirrph.
Applying again Proposition 4.1 it follows that T + T’ and TT' are C.

Suppose now that T and T' are X. From Proposition 4. € we have

rpt - Prpt and TP - P,TP,.

This implics

t t st

(T + TP = TPt 4 1ot = Blrpt 4 Blrept - BYT + T Bt

and by the principle of causal duality
(' + T') Py = P(T + T Py.

By Propositicn 4. € it “ollows that T + T' is strongly crosscausal.
Similarly for TT' we have

t t

1Pt - TP t

pt = ptrptrpt - Blrropt

TT'P; = TPtT'Pt = PtTPt'I"Pt = PtTT'Pt

and consequently TT' is also strongly crosscausal. <]
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The causality properties of a system given by ithe composition
of systems with diverse causality structures can usually be determined
only by a case by case analysis. Under special circumstances scme
general statements are, however, possible. The next proposition,
for iastance, indicates that whenever a system T is composed with a
memoryless system T' then the causality character of TT' and T'T

coincides with that of T.

Proposition 2. K T is memoryless and T' is a € {A,C, M, X, A, (_3,_1_(,:‘:,5

then TT' and T'T are also a.

Proof. This proof follows a pattern whick is similar for the various
choices of a. It will then be sufficient to treat the case in which T' is
X. From Propositions 2 and 6 we obtain the following rclations

P'T = P'TP and P,T = PyTP,

rrpt - Blrept and T'P, = B,T'P,.

From here we also obtain

rpt - plrpt 4 P,T

pt - pirpt . ﬁtTP'tPt = pirpt

+ P'tp, - p,TP, + P'TP'P, = P,TP .

TP, = PtTP t t t

t t
It then follows that

rrpt = TEbrpt - Blrptrpt - Blrrpt

TT'Py = TP, T'P, = P TP,T'P, = P, TT'P

t ot t
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and similarly,
et - Plrerpt
T'TP, = B,T'TP,.

Froi these relations and Proposition 4. 6 we can conclude that TT'

and T'T are indeed X. 4

The next Propositions 3, 4 and 5 illustrate an interesting repro-
ducing property of strongly causal, strictly causal and strongly cross-
causal systems. According to this property, the classes of strictly
causal and strongly causal systems can be viewed as a "symmetric
ideal"” in the class of causal systems. Similariy the class of strongly
crosscausal systems can be viewed as a symmetric igeal in the larger
class of crosscausal systems. For brevity we will oLly prove Propo-

sition 3.

Proposition 3. If T is strongly causal and T' is causal then TT' and

T'T are also strongly causal.

Proof. From Proposition 4. 1 and 4. 3 we have the following relations

plr - ptret and dP(t) TAP(t) = ¢

plr - plript,

These relations also imply

TPt = PtTPt and T'P = PtT'Pt.
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It follows
prr - pire'T - Plretrpt - ptrrpt
and similarly
pirT = plrrpt.
Moreover,

dP(t) TT'dP(t) = dP(t) TPtPtT'dP(t) = dP(t) TdP(t) T"dP(t) = ¢
and ccensequentiy
dP(t) T'TdP(t) = ¢.

From the above relations and Proposition 4. 3 we can then conclude

that T'T and TT' are strongly causal. q

Proposition 4. If T is strictly causal and T' is causal then TT' and

T'T are also strictly causal.

Proposition 5. I T is strongly crosscausal and T' is crosscausal then

TT' and T'T are strongly crosscausal.

To conclude our review of causality properties, we observe that
the various causality classes under consideration are, in geperal,
overlapping. For example a memoryless system is also causal and
anticausal. Similarly a system which is crosscausal can, at the same

time, be causal or anticausal. The next result shows that the classes
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of strongly causal, strongly anticausal, strongly crosscausal and

memoryless systems, however, are disjoi’.t.

Proposition 6. If T is simultaneously a; and a, with @y, a, € {A,C, M, X}

then either a; = Qy Or T is the null operator.

Proof. For the various choices of oy and oy the arguments to be used
turn out to be similar. It will be then sufficient io treat a special case.
Suppose, for instance, that T is simultaneously X and C. Then from

Propositioas 4.1 and 4. 6 we have

T= ) dP(s)TP°and ) dP(s)TP®-= ¢.
Sev Sev

1t follows that T must be the null operator. <]

The next result is similar to Proposition 6 and states that also
the classes of strictly causal, strictly anticausal, memoryless and

crosscausal systems are disjoint.

Proposition 7. K T is simultaneously a; and &, with @, a, € {4,C, M, X}

then either @, = a, or T is the null operator.

The above discussion provides a clear picture of the relation;
of containment among the various causality classes. These relations

are further illustrated in Figure 2.2.

2.6 Canonical Causality Decomposition in GRS

The development in the previous sections provides insight into

the causality structure of those systems which are basic, that is
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systems which are a¢ {A,C,M, X, A,C,X,A,C}. The purpose of this
section is to extend that irsight to the case of more general systems.

To help motivate the development, observe that our insight into
the causality structure of basic systems can be readily used to charac-
terize the causatity structure of those systems which are fcrmed by
the addition of basic systems. The natural question then arises as to
whether it is pcssible to represent a general system as the addition
of basic systems. If this representation does exist it is also of interest
to know whether it is unique.

Such questions as those above have been considered in the techni-
cal literature and are known collectively as the canonical causality
decomposition problem [ 48 ]. However, as the systems considered in
[ 48] are linear and defined on a Hilbert space while our systems are
neither 'inear nor are defined in a linear space, the answer given in
[ 48] is of little help to this development.

Concerning the matter of uniqueness suppose, for example, that
T=T, +T,.. Then we can also write T= T/, + T',, where T', = T, -

A °C C A’ A TA

M’ Tb = TC - TM and TM is any memoryless operator. This implies

that the decomposition of T is not unique.

T

A moment of reflection shows that the above argument is suc-
cessful because the various classes of basic systems are overlapping.

On the other hand we have seen in Proposition 5. 6 that the classes of

i = ot e

2o ——— e —ptmae wree sas




systems ae {A,C,M, X} are disjoint. From here it appears natural
to modify the causality decomposition question with the followinz more
specific formulation: "is it possible to decompose a general system
into the sum of systems which are a¢ {A,C,M,X} ? If a decomposition

of ihis type exists it will be calied 2 canonical causality decomposition*.

To begin cur study, we settle the uniqueness question with the

following proposition.

Proposition 1. If a canonical causaliily decomposition exists then it is

unique.

Proof. Suppose that a system T has two canonical decompositions.

Then we can write

+ Ty, + Ty =T + T, + Ty, + Ty

T=Ta*tTe*Tm* Tx=Tar Te* Tm* Tx
¥From lere it follows that
TM'Tiv[:T'i_\’Té+TE_:'TQ+TX"TX (1)

and since TM -T!

M is a memoryless operator, from Proposition 4. 2

we must have

Ty~ Tyg= L 9P(8)(Ty, - Ty) dP(s).
Sey

M

This leads to the following

*Note that an alternative formulation of a causality decomposition
is also suggested by Proposition 5.7. While attention is focused on the
{A, C,M, X} decomposition, 2 derompositicn based on {A, C, M, X}
can be handled with similar techniques and results.




zVv

Ty~ = L dP(s)(T"é- é) dP(s) + ), dP(s) (T - Tg)dP(s)

sey Sey -

+ dP(s) (T3, - T,,) dP(s).

Applying Propositions 4.3 and 4. 6 we obtain that each term on the
right hand side of the above equation is null, We can then conclude

- MY 3 L — 3
Let us now show that TC = 'IC. Since TM TM = ¢, Equation

(1) leads to

TA-TL=T,-T,+T,-T

c™cTrAT AT X T X

Since T, - Té is strongly causal we can apply Proposition 4. 3 and

obtain

v iy pS
Tg - Tg— s;y dP(s) ('rg 'rg)p .

This leads to the following

e Tg- ¥ dP(s)(TA-Té)PS+ ) 4P(s) (Ty - T ) P>

Scl - Sev X

Observe that the second term on the right hand side of the above

equation is null oy Proposition 4. 6 and the fact that T! - T, is strongly

X X

crosscausal. The first term is also null as can be seen by using the

strong anticausality of TA -T A together with the dual of Proposition

4.3, namely
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) dP(s) (T}, - TP = ) dP(s)P(T), - T, P _P®
Sev - S€ey - -

), dP(s)(T}, - T,)dP(s) = ¢
Sev - -

We can then conclude that Tb = TC’ and from the principle of causal

duality T' =T Finally from Equation (1) and the fact that T!, - T
A’ M M

= ' - = ¥ - = = '
-T& TC '1A TA_¢, wehave'lX Tx ¢. Hence TX Txand

the proof is complete. Q

From the above proposition if T has the property that T = T At TC +

TM + TX it is meaningful to talk about the o component of T, ae {é, C,M, )_(}.

In this regard we will use the following definition.

Definition 1. IfT=TA+TC+TM thenT,,T T ard T, are

A" °C X ATC X
called respectively strong anticausal, strongly causal, memoryless and

+ T

strongly crosscausal components of T,

In general the question of existence of a canonical decomposition
can be viewed in terms of the existence of a special set of mappings on
the space of operators. This point of view offers some technical acdvan-
tages and it is convenient to clarify it.

To begin with, let § indicate the space of all operators T on a
GRS, and“T an operator on $. To emphasize that ¥ maps a space

of operators into itself, T is called a transformator*. A transformator

*This terminology is inspired from Gohberg and Krein [25 ].
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¥ will be indicated by‘1; ,a@ € {A,C,M, X} if for each T € $ we have
that'f; [l‘] is an a cperator. For example the range of 'g( consists
of the elass of operators which are X. Occasionally we wiil— also use
the notation I to indicate the identity traasformator, that is the trans-
formator with the property that I [T] = T for every T in §.

The foliowing proposition shows the equivalence between exis-
tence of a canonical decomposition and existence of a special set of

transformators.

Proposition 2. A canonical causality decomposition always exists

if and only if there exists a set of transformators'T; ,
a< {A,C,M,X} = A, such that the following properties are satisfied:
pi) Ta is defined onr $

pii) For each pair {a,y) € ﬂz we have that
T T-¢ifafy and T T =T ifa=y
a vy a vy a

piii) ) 1; = I
aef

Proof. "only if". If each T has a causality canonical decomposition
we can define the transformators 'T; according to the following rule:
T; (T] = T, where T, is the o component of T. Ther properties pi)
and piii) are clearly satisfied. To prove pii) suppose that'T; 'f; #
for a # v. Then we can find an operator T such .hat T is ¢ and the y

comnponent of T is different from zero. It wou: ' {ollow thar T has at
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least two distinct causality canonical decompositions. This is a con-
tradiction to Proposition 1.

"if"', Suppose that there exists a set of transformators'f; such
that pi), pii) and piif) are satisfied. Then for every operator T ¢ $
we can compute the operators T = T, [T], for eacha € A, and from

piii) we can write
T =T: +T_c_+TM+T)_('
This means that T has a causality canonical decomposition. Q

With the above result and the development in Section 4, it is now
easy to state and prove that a canonical causality decomposition always

exists.

Proposition 3. Every system on a GRS can be decomposed into the sum

of strongly causal, strongly anticausai, strongly crosscausal and

memoryless components.

Proof. Suppose that T is an operator on S[G, v] and define a trans-

formator 'fl'w according to the following rule:

Ty [T]= ), dP(s) TdP(s).
Sev

From Proposition 4. 2, T;/I [T] is a memoryless operator. Define

now the transformators 1(3’ T, as follow..

T[Tl = Y aps)[T - T, [T]]P®
Sevy
’IZ[T] = dp(s){'r-"fl'w['rjjps.
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From Proposition 4. 1 and its dual, 'l; [T] and T, ['T] are respectively

strongly causal and strongly anticausal. Finally, consider the trans-
L Y
formator "g( defined by the following expression

T [T] =:T-‘T;,I['r] - T [T] - T, I7]

Observe that the operator E [T] satisfies thé relations in Proposition

4.6. Hence, it is strongly crosscausal. At this point verify that the
above set of transformators 'l'M,T(':,'!Z, and '1;( satisfies pi-ii-iii)
in Proposition 2. It can then be concluded that T has a causality canoni-

cal decoraposition. :4 <,

Combining Propesitions 1 and 3, it is now possible to state the

following Canonical Causality Decomposition Theorem.'

Theorem 1. Every system on a GRS has a canonical causality decom-

position and this decomposition is unique.

To illustrate the meaning of“ the above result we'now pause td

discuss a simple example.

Example 1. Suppose that S[G, v] is described as. in Example 2. 1.
Then every element x ¢ S[G, v] is given by an n-tuple of real numbers ‘
(xl,xz, ces ,xn). For simplicily we will assume that n = .3‘ In this
GRS we can consider the (unbiased) system T detined as followls:

if x,y € S[G,v] andy = Tx, then

e r—— W Y8 D S RN, Do o8

e LW NN L AR KM o
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¥y= (xl) 2 + X4Xg + lexz
2 2
Y= 2(xz) + 4x1x3 + 3x_2x3 + 5(x1)
2
Y3 = X4Xg + 3(xl) + X Xg.
It is easily verified that T does not satisfy anyone of the require-

ments in Definitions 2.1 - 2.6. Therefore T is not a basic system.

Theorem 1 says, however, that T can be represented by the addition
of basic systems. I these basic systems are chosern to be a,

c;e {A,C, M, X} then the repre sentation is unique. In this case we
can write

T=T, +Tq+Ty, +T

A °C M X

— — —

Moreover accordirg to the proof of Proposition 3, T A TC’ T,, and

M
T,, can be computed by the expressions

X
3
Tpg= ), P() TAP()
i=1
3 i
T, = ), dPHTP - Ty
= =1
3
To = ), dPA)TR - T,
= i=1
Ty = T-Ty-Tg- Ty

The meaning of these expressions is that T N TQ’ TM and T?S are des-
cribed as follows: if x,y € S[G,v] andy = Tx, ae {A,C, M, X} then

we write:




iy

7y = )2 9= 2%, + 3%,
Ty| 7= 2xy) 2 Tyl | ¥o=3x3%y

yg= (x5) yy= 0

y,=0 y4=0
Tg: Vo= 5(xl) 2 T)E: Vo= 4x3x1

73= 2%, + 30xp) > y4= 0.

Often the question of canonical causality decomposition arises in
a more complicated setting than the one considered here. In general
the complications are due to the following: the operator T may not be
defined over all the GRS; the operator T may belong to a particular
subset $1 of § and it is of interest to determine whether a canonical
decomposition exists such that the components of T belong to $2,
another sv*set of $.

In both such situations the statement of Proposition 1 remains
valid. When the domain of T is a proper subset of the GRS it is best
to proceed on a case by case basis. An illustration of the type of
procedures which might be used is given in [ 42] and [48] where
operators T defined on Hilbert spaces are considered. In regard to
the second situation it may be helpful to rephrase the result of Propo-

gition 1 in a slightly more convenient form.
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Proposition 4. The following statements are equivalent:

a) Every operator T ¢ $l has a canonical decomposition

T=T

At TC + Ty + 'I‘x with TA’TC TM’TX in$2.
b) There exists a set of transformators-l:, ae {A,C, M, X}
such that the following properties are satisfied:
pi) 'f; is defined over $, and maps $ y into $2

pii) and piii) identical to pii) and piii)in Proposition 1.

From a conceptual point of view it is important to underline the
resemblance between the properties of the set of transformators"l;
considered in Propositions 2 and 4 and the familiar properties of a set
of orthogonal ""projection-operators". In particular in Section 4.8,
it is shown that, in the case of a very special subsf. $1, the trans-
formators 'f; can indeed be identified as orthog-.nal projectors. In

general the following proposition holds.

Proposition 5. Suppose that a set of transformators"f; has the proper-
ties pi-ii-iii) considered in Proposition 1. Then the transformators

'Ta are additive and idempotent.

Proof.
Let us start to prove that the transformators'l; are additive.
To this purpose consider two operators T and T' and let Y be the

operator defined by the following
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Y- PTT+T]- 2Tt - STIT

where A = {A,C,M,X}. From piii) we have that the operator Y 1s
mll. Compute now"f; [Y]. Inview of pi-ii) we obtain
T X]=TIT+T]-T [T]-T,[T]=¢.
It follows that
'T; (T +T] =T; [T] +1; [(T'].
Let us now show thaj:'T;2 = 1;. Suppose that T is an operator in $.
Then by piii) we have

TA[T] +1E [T] +.r;/1 [T] +-%[T] =T.

Apply now-l; to both members of the above equation. The desired

result is an immediate consequence of pii). q

As we observed in a footnote at the beginning of this sec icn, a
canonical causality decomposition can also be envisioned in terms of

systems which are ¢ ¢ {A, C, M,X}. Using teci .ques similar to

those illustrated, all of the previous results could be rephrased and
proved in order to accommodate this alternative formulation. In
particular, for instance, in correspondence to Theorem 1 we would

obtain the following.

Proposition 6. Every system can be uniquely decomposed into the sum

of strictly causal, strictly anticausal, memcryless and crosscausal

components.




Example 2. Consider the syster. discussed in Example 1. According
to Proposition 6 this system can be uniqueiy represented by the

expression

TzTK+TC_f+TM+TX'

In particular TK’ T(—:-, TM and TX are defined as follows: if

x,y € S[G,v] andy = T X, ae {A,C,M, X}, then

¥y = (xy) 2 y4=0
Tyt (Vg= 2(1:2)2 Tg Yg=0
y3 = (x3) 2 y3=10
y3=0 Y1 = Zgxp + 3%y
TE: Vo= 5(x1) 2 TX: Vg = 3x3x2 + 4x3x1
73 = 2%y + 3(x)) y3="0.

<

2.7 Causality and Weakly Additive Operators in GRS

In this section the results of Sections 4,5 and 6 are specialized
for the case in which the systems under consideration are weakly

additive.

Definition 1. An operator T on S[G, v] is weakly additive if it has the

following property

T[x] = T[Ptx] + T[I_)tx] = T[P'tx] + T[Ptxj

for all x € S[G, v] and every t € v.




In control and communication theory a weakly additive operator
is a convenient system model in those situations where the sources of
nonlinear behavior have 1 memoryless character. Operators with the
weak additivity property have already been considered in the technical
literature [ 23], [ 35], [ 40], [69 ]. Their importance will be further
emphasized iu Chapter 5 where some important iraplications of this
property will be studied. In the sequel it is shown that most of the
causality properties which are usually stated for the class of linear
systems, hold "verbatim" for the more general case of weakly additive

systems.

Proposition 1. For a weakly additive system T the following statements

are equivalent:

a) T is causal
b) Plx = ¢ implies that P'Tx = ¢

c) TPt = PtTPt

4 pir - plrpt

e) T= ) dP(s)TP"
SEV
Proof. a) —>b). Suppose that T is causal. Then for every t ¢ v and

all x,y € S[G, v] such that plx - Pty, we have P'Tx - PtTy. In par-

t

Tx = P'T¢ = 0.

ticular if P% = ¢ then P




b —>c¢). Suppose that TPtx # PtTPt‘ Then there exists an

x in S[G, v] such that TPx # PTP,x. This implies that P'TPx = ¢.

==Y thenwehavei"t'l‘y#qsandftyzq’.

This is a contradiction to b).
t

If we use the notation P
¢) =>d). If P'T + P'TP! then by the weak additivity of T we
have P':Tft #¢. It follows Tl—’t = PtTi"t + ﬁtTPt # ?tT?t. This is
a contradiction to c).
The proof of d —e) and e) — a) is identical to that given in

Proposition 4. 1. <]

The attention of the reader is called to the formal equivalence
between the above result and Proposition 2.3 in [48 ]. From the
principle of causal duality and Proposition 1 we obtain the next

proposition.

Proposition 2. If T is weakly additive the following statements are

equivalent:

a) T is memoryless
t

b) Pl = ¢ implies P'Tx = ¢ and P.x = ¢ implies P,Tx = ¢
¢) TP' = ptrpt and TP, = B, TP,
e otmot ¢

d PT=PTP a.ndPtT=PTPt

e) T= ) dP(s)TdP(s).
SEV
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The following two propositions indicate that in the case of
weakly additive systems the concepts of strong and strict causality

are equivalent and the concept of crosscausality vanishes.

Proposition 3. For a weakly additive system the concepts of strong

and strict causality are equivalent.

Proof. Since every strictly causal system is also strongly causal
it is sufficient to show that if a system is weakly additive and strongly
causal then it is also strictly causal. Suppose then that T is weakly

additive and strongly causal. Applying Proposition 4. 3 we obtair

T= ) dP(s)TP®
Sev

and from the weak additivity of T
T= ) dP(s)TP® + ), dP(s)TdP(s).
Sev SEV
Applying again Proposition 4.3 we must have } dP(s) TdP(s) = ¢.

Sev
Hence T is strictly causal. q

Proposition 4. I T is weakly additive and crosscausal then T is the

null operator.

Proof. If T is a weakly acdditive operator on S| G, v] then for every

x € S[G, v] we can write

Tx = Z dP(s) TdP(s)x + L dP(s) TP x + L‘ dP(s)TﬁSx.
SEV SEV SEV




Suppose that T is also crosscausal. Then we can apply Proposition
4.5 and obtain that all the terms on the right hand side of the above

equation are null. This implies that T is the null operator. q

Observe that in view of Propositions 3 and 4 the containment
relations indicated in Figure 2. 2 can be simplified as in Figure 2. 3.
In regard to a canonical decomposition theorem for weakly

additive operators, we have the following result.

Theorem 1. Every weakly additive system can be uniquely decomposed
into the sum of strictly causal, strictly anticausal and memoryless

weakly additive systems,

Proof. Suppose that T is an operator on S[G, v]. By Theorem 6. 1

T has a unique canonical decomposition T = T At T(_I + TM + T)_(.

If T is weakly additive then for each s € v the operator dP(s) T is

weakly additive. This implies that dP(s) T A and dP(s) TC are also

weakly additive. Suppose for instance, that dP(s) TC is not. Then

we would have a point t € v, t <s, and an element x € S[G, v] such
t

that dP(s) T, P + dP(s) TP x + dP(s) TC(PS PY)x. This, however,
is not pos51ble because by the weak additivity of dP(s) T we have
dP(s) T,P°x = dP(s) TP% = dP(s) TP'x + dP(s) T(P®- PY)x

= dP(s) TCPtx + dP(s) T (P®- ph)x.
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From the weak additivity of dP(s) T C and dP(s) T A Ve oktain the

weak additivity of TC and T A’ Moreover since every memoryless

operator is weakly additive so is TM. 1t follows that TX must also
be weakly additive. We can now apply Propositions 3 and 4 and
obtain Tx = ¢, TC = T(—: and T AT TK' We can then conclude that if

T is weakly additive then T has the unique decomposition T = TK +
T'C' + TM. q

2.8 Summary

This chapter is characterized by the development of 2 mathe-
matical setting in which some basic causality questions may be studied.
It contains two novel ideas: the use of the structure of group resolu-
tion spaces and the introduction of the class of crosscausal operators.
These two ideas are exploited to discuss with a certain mathematical
rigor various important properties related to system causality. These
properties are emphasized by a number of propositions and theorems
in Sections 4, 5,6 and 7.

The most important theoretical results consist of Theorems
6.1and 7.1. Theorem 6. 1 gives a general cancnical cecomposition
thecrem for nonlinear operators on nonlinear spaces. It can be
stated as follows: every system in a grou, resolution space can be
decomposed into the sum of strongly causal, strongly anticausal,

memoryless and strongly crosscausal systems. When the system




S »

under consideration has a "weak additivity" property then the statement
of Thecrem 6.1 can be improved to the form of Theorem 7.1. This
latter theorem also provides a canonical decomposition of the type
conjectured by Saeks [ 48 ]. To paraphrase this result: every weakly
adaitive system in a group resolution space is given by the sum of

strictly causal, strictly anticausal and memoryless weakly additive

sysitems.



3. CONNECTIONS BETWEEN THE CONCEPTS
OF CAUSALITY AND STATE

3.1 Introduction

In the previous chapter the structure of a system with respect to
time related behavior was investigated. This included the study and
formulation of various causality concepts.

It should be observed that the concept of state is also related to the
temporal behavior of a system, Heuristically speaking, causality con-
cepts reflect the modalities by which past,present and future of the input
affect the present of the output, while the concept of state indicates how
past and present of the input affect the future of the output.

From the above observation the question arises as to whether the
knowledge of the causality structure of a system supplies some infor-
mation about the system state structure and, conversely, whether the
state structure might have ramifications concerning the causality
stracture. To investigate this question it is convenient to model a sys-
tem as an operator on a group resolution space (GRS). A first order
of business is to properly define in this context the concept of state.

The format of the present chapter is a natural realization f 1his
iine of reasoning. In Section 2 we establish the notion of state in GRS.
Section 3 deals with some characterizations of the structure of a system

with respect {o state. In Section 4 interconnections between state and
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causality concepts are developed. Section 5 closes the chapter with

some concluding remarks.

3.2 On the Notion of State in GRS

In-developing ilifgg/({g‘pt of state we are faced with satisfying
two parti’alljr competing requireme‘nts:’ the notion of state has to have
sufficient generality to encompass systems in the various engineering
fields of interest; the notion has to be flexill)le énough as to lead the
investigation to meaningful results.

A concept of state ‘based on equivalence classes would be suffi-
ciently general. Such an approach was used by Mesarovich [33],
Windernecht [ 60] and Zadeh [ 64 ] a;mong others, and could easily be
formalized in our ‘mathemat:'.cal frayme\]work. Such a development ,doqs
not appear, however, to be sufficiehtly ‘fle:‘{ible. Tl‘xe notion of state
via the definition of a state decompdsition as récent}y proposed by ' '
Saeks in [ 48], is another potential alternative. Transléted in'the
framewcrk of group reéolution spaces (GRS) 1fl=e. fpllowing definitic;n
would be obtained: a state decomposition of a system T on S[G, v is
a triple ({t), S, {(t)) where S is a set (state set) and WUt), t) are

families of mappings such that

and

(B ut) = B,TP , (3.2)

for every te v.

ot S S ——— A o Wb R Rt




This latter definition is quite satisfactory in a linear system
context. It is not fully satisfactory, however, in the more general
pframework under consideration. The deficiency of this definition resides
in part in the fact that this concept does not satisfy the ""consistency
conditions' required by Zadeh [ 65]. In particular it can happen that
the knowledge of the state of a system T at a certain time, t, is not
sufficient to describe the input-output behavior of T after t. This can

perhaps be best illustrated by introducing a simple example.

Example 1. Consider the system T which was discussed in Example
2.3.1. Recall that if x and y belong to S[G, v] then x and y are real
functions defined on the interval [0, ). Moreover if y = Tx, theny

is given by the following expression:
y(t) = x(t+71)x(t+72).

If we now suppose that =" —%— and Ty = —%— , then the triple
(Ut), S, {t)), with S consisting of a null element, ¢, and {t) mapping
S into the null element of i"t S[G, v], satisfies Equations (3.1) and
|(3.2) . Therefore according to the definition of state introduced by
Saeks, this triple is an admissable state decomposition of T. In this
case, however, the state would fail to give an adequate description of
the past configuration of T so that the future behavior of T can be

satisfactorily characterized. For instance, if t = 2 is tie present



time, then from the state of T at t and the future of x, we cannot in
general evaluate the future of y = Tx. Indeed, the future of y depends on
the values of x in the intecval (1.5, 2] and no record of these values

can be found in the state of T. <]

In the present study attention is focused on a generalizaticn of
the state decomposition format. In stating this generalization Sl’ 82
are sets and S = S1 X 82 plays the role of the state set. Similarly
x,lxl(t) , z,lxz(t) , tj’l(t) , Cz(t) are parameterized families of mappings while
Wut) = (z,lzl(t)xpz(t)) and {t) = (§(t), §2(t)) play the role of inpui-to-state

and state-to-output mappings. Our format definition is the following.

Definition 1. A state decomposition of an operator T on S[G v] is a

triple (y(t), S, {t)) such that:

i) S=8,% 82 where Sl’ S2 are sets

1
if) Yt) = (xpl(t),wz(t)), where domain [d/i(t)] = PtS[ G, v] and
range yY;(t) © §;, i=1,2,te v
iil) qt) = (Cl(t),tjz(t)), where domain ‘gi(t) = Si’ range
Cl(t) C FtS[G, v] and the range of {H(t) is contained in the

space of operators on ﬁtsl‘ G, v]

iv) For every x,y € S[G, v] the following relations are

satisfied

t. = oot
L)y () Px = BTPx

Qg(t) [[wzkt) lptx‘]ijtY] = 0T Ptxl f)tyl
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where the symbol 6T x[y] stands for T[x+y] - Tx-Ty.

By the substitution of the term ''state'" with "'costate' and by
a subsequent substitution of symbols as indicated in the principle of
causal duality, Definition 1 provides a concept which is dual to that of a
state decomposition. As this concept will also be useful, we introduce

the following additional definition.

Definition 2. A costate decomposition of an operator T on S[G, v] is

a triple (Yt), S, {(t)) such that:
i) 8= S1 X 8y, where §,,§, are sets
i) YUY = (Y (t),¥(t)), where domain [H(t) ] = PtS[ G, v]
and range wi(t) €8, i=1,2, tev
iii) t) = (Cl(t), §2(t)), where domain g.l(t) = Si’ range
Cl(t) c I3ts[ G, v] and the range of &(t) is contained in
the space of operators on ﬁtS[G, V]

iv) For every x,y € S[G, v] the following relations are

satisfied
_ ..t
Cl(t)xpl(t) Ptx =P TPtx

&(t) [[ v(t) [Pyx]] ﬁty] - é'rptxl?ty]-

In Definition 1, a state decomposition can be viewed as given by

two components:




i) the first component (wi(t), Sl,gl(t)) reflects the influence
of the past of the input over the future of the output with
the constraint that the future of the input is null;

ii) the second component (llJz(t) »Se, igz(t)) indicates how the
past of the input influences the effect of the future of the
input on the future of the output.

The proposed state decomposition formulation is a natural exten-
sion of the formulation of Saeks. The main difference between the two
consists of the appearance of (l,l/z(t) , Sz, Cz(t)) the second component
of the state. This inclusion allows the present definition of state to
satisfy the forementioned consistency conditions of Zadeh [ 65]. The

concept of state proposed by Saeks satisfies these conditions only in the

particular case in which the system is weakly additive (Proposition 2. 4).

Thus, by the introduction of the component (xpz(t) , Sz, {2(t)) the gap
existing between the definitions given by Saeks and Zadeh appears to be

bridged.

3.3 State Related Concepis in GRS

The structure of systems with respect to the notion of state can be
diverse. To describe the variety of situations which can occur, it is
convenient to introduce the concepts of controllability, observability
and minimality. For details on the genesis of tl cse concepts the inter-

ested reader is referred to [ 18 |,

.

e ¥
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Definition 1. The state decompocition (Y{t), S, {t)) is completely

controllable with respect to the first (second) component if dzl(t)
(:J/Z(t)) is onto.

Definiticn 2. The state decomposition (Y(t), S, {t)) is completely

observable with respect to the first (second) component if cl(t)
(cz(t)) is 1-1.

Definition 3. The state decomposition is minimal with respect to the
first (second’ component if it is completely controllable and completely

observable with respect to the first (second) component.

Definition 4. A state decomposition is strictly minimal (strictly com-

pletely controllable, strictly completely observable) if it is minimal
(completely controllable, completely observable) with respect to both

first and second components.

Definition 5. Two state decompositions (t), S, t)) and (Y(t), S, '(t))

are strictly equivalent if there exists a unique family of invertible

mappings [K(t) such that the following conditions are satisfied

Wt) =DK(t) P(t) and &t) = o) K ).

In what follows we give some results related to the above state
concepts. These results allow a better appreciation of our definitions

and consequently a better understanding of the results of the next section.
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They are, however, not essential to the main development and can be
omitted at first reading.

As a start, the following proposition gives a connection between
the mathematical concept of minimal state decomposition and the
intuitive notion of a state space which contains only "essential" ele-

ments.

Proposition 1. Suppose that the completely observable (y(t), S, ((t))

and the strictly minimal (|{t), S, {(t)) are state decompositions of T.
Then there exists a unique family of mappings [K(t) taking S onto §

and such that

Ut) = K(H)Yt) and (t) = §(t) K(t) . (3.3)

Proof. First we show that the family [X(t) exists and satisfies

Equation (3.3). For this purpose suvppose that, at index t, v is the

state of T in S. Let U be the set in S[ G, v] with the following property:

v=yt)ufor any ue U.
For any pair Uys Uy in U we have

) wt uy = (Ut u,
and this implies

GORO Uy = 4O YOy, =1,2,

e e A A2




From this equation and the definition of state decomposition it follows

=mot. 5 mot — s
P,TPu, = P,TPu, and POT , [ 1=P0T , [ 1,
Pul P“z

and from here

s(t)_xl_(t)ul = g(t)g_buz.
Moreover, from the minimality of (y{t), S, {(t)), {(t) must be 1-1 and
therefore we must also have

i,(t)ul = _u:(t) Uy.

Note, at this point, that according to the above construction at each
t € v every element v in S defines a unique set U in S[G, v]; such a set
U, in turn, defines a unique element v in S. Thus we have built [K(t)
a family of mappings S —> §. Cleuarly for each u € S[ G, v] we have

v=yYythu= I Ut)u=K(E)v
and therefore y(t) = [K(t) {t). We alsc ::ve {t} = K(t) {(t). This
follows from

L(t) IK(E)Ut) = (UL ()Yt

and the fact that y{t) is onto.
It remains to be proved that each mapping [X(t) is onto and that

the family [K(t), t € v, is unique. If [K(t) is not onto then there exists

a state v € S such that




K(t)v# v foreveryve . (3.4)
From the strict minimality of (Yt), S, {(t)), y{t) is onto. Hence there
exists an input u € S[G, v] such that v = y(t) u,- Letv=yt)u , and

let U be a subset of S[G, v] such that
V= 1[,(t)u0 = yY(t)u, for any u ¢ U.
Then the following relation holds
v=yYt)uforanyue U

and from here, v = [K{t)v. This is a contradiction to Equation (3.4).
Hence [K(t) must be onto. Finally, suppose that the family [K(t) is

not unique. Then for some t € v, there would exist at least two mappings
[Kl(t) and [Kz(t) such that [Kl(t) # [Kz(t) and Equation (3. 3) holds.

This implies that there would exist an element v ¢ S such that

(K, () v # (Ky(t) v o 3.)

and

(B v = §(t) KK () v = {(t) TKo(t)v.
It would follow

g(t) K, (0)v - L) Ky(t)V = 6.

But by hypothesis ((t) is 1-1. Hence it must be that

This is a contradiction to Equation (3. 5) . q




The next proposition shows that all strictly minimal state decompo-
sitions oi an operator T are strictly equivalent. This is a generalization
of a similar well known result in the context of linear dynamical systems
[42], [ 65]. A result of this type was also given by Saeks for linear

systems in Hilbert space [ 49 ].

Proposition 2. All strictly minimal state decompositions are strictly

equivalent.

Proof. Suppose that (Yt), S, gt)) and (Ut), S, £(t)) are strictly minimal
state decompositions for the operator T. We have to show that there
exists a family of invertible mappings {K(t) such that the equations in
Definition 5 are satisfied.

From Proposition 1, we know that there exists a family of onto

mappings [K(t): S—> S such that
Yt) = BK(t) Ut) and £(t) = L) OK(E).

Therefore all we have to show is that [X(t) is 1-1. If (X(t) is not 1-1
there would exist two elements v, v0 € S such that v # o and K(t)v =

IK(t) v, It would follow that
4t v = YO W v = O KBV, = &) vy,

and this equation is a contradiction to the fact that by the strict mini-

mality of the state decomposition (t) is 1-1. <}
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An additional property of a strictly minimal state decomposition

is that it allows to define the notion of a 'transition operator' (Saeks
[49]).

Proposition 3. Suppose that ((t), S, {t)) is a strictly minimal state

decomposition. For q <t, t,q € v, assume that no input to the system
occurs between q andt. Then there exists a well defined mapping
&t,q) such that
v(t) = &t,q)v(q)

where v is the state of the system,
Proof. To every element t ¢ v and each element v € S, associate U(t),
a subset of PtS[G, v], such that U(t) is maximai with respect to the
following property: if u ¢ U(t), then v = y(t)u. This defines the family
of mappings M(t): § > IP{S[G,v]} where IP{S[ G,v]} indicates the
power set of S[ G,v] . Conversely, to every subset U(t) C PtS[ G,v]

with the property that there exists a veS such that
v=yYt)u, any u ¢ U(t),

associate the element v. This defines a family of mappings
[[M(t)ﬂ'l: IP{8[G,v]} = S.

Lett,ge v, t 2 q and suppose that is an input to T such that
[Pt-Pq}g_ = ¢. Consider the states v(t) and v(q) given by the following

equations

U e 2 TP e Do




oY

t
v(t) = Yt) Py, v(a) = Yq) Plu. (3.6)
In what follows it is shown that

vt) = [M) 17 M@) v, (3.7)

thus &(t.q) = [ M(t) ]I'IM(q) is the mapping whose existence was to be

proved.

The proof of Equatior (3.7) is equivalent to the proof of the fol-

lowing equation
M(q) v(q) € M(t) v(t).

Suppose that u € U(q) = M(q) v(g) . From the definition of state decompo-

sition and Equation (3.6) we have the following

& @) vl(q)\ ﬁquqp_ f’qTPqu

Ha)v(a) =
gz(Q)vz(Q)) P_oT q“[ ] anT q [ ]

for allue U(q). It follows

§1(t) vl(t) PtTP u
gty v(t) = =
GOV  \RoT [ ]
Pu
P, TP PP 1PN \)
P,6T PP oT | }

= t)wt) Py, allu e U(q).
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From the above equation aad ihe fact that ¢(t) is 1-1 we bave
v(t) = 4 P, all u e Ulg)

and therefore  (q) = U(t). The oroof is thus complete. <l

The operator 4(t,q) is called the Transition operator of the state

decomposition. An interesting corollary io the above result is the

foliowing.

Corollarv 1. Let #(t,q) be the transition operator of a strictly minimal

state decomposition (2.5, {ti}. Then
0, -1
&t ry - 4t.3)¥Uq,1), £ >9 >r.

In Secrioa 2. T we observed that, when a system is weakiy additive,
the causality deficitions preserted in this develovment ccincide with
those propos>d by Saeks. The n2iural question tha is whethe, a simi-
lar situsiion cccurs ior the defirii.on of state Jecomposition. In more
precise terms: i< it true thai in the case of weaklr additive systems
Saeks’ conce of a state decomposition coincide 5 ¥ith the concept
iormalized in Definitior. 1. 1? The following pr--position shows that the
answer to this svestion 1s affirmztive.

Beiore stati:g this result it ;s corvenient t pause {or a mon.ent

aid ciarify some a24ddit:onal shworthand notations. Jt 21'i e <. 4 that a




]
:
;

11

siate decompositior (y(t), S, {t}) has its second component given hy
the triple (¢,¢,¢) if Sz has cnlv one element (again indicated by ¢)
and ¢,(t) maps this element into the null operztor on FtS[ G,v].
Finally a state decomgoa:ition (Y1), S, {t)) is given by ihe triple

(%, ¢,¢) i both its first and second components are given by the triple
{$,9,9).

Proposition 4. I T is weakly additive then it has a state decomposition

whose secong component ig given by the triple (5, 6,4).

Proof. Choose a tripie (y{t},S, t)) where Y(t) = (¢-1(t),¢) , S= (Sl, ¢)
qt) = ({l(t) ,¢) and (\!/l, Sl, ;1(t)) is any ndmissable first component for
a stale decompoasition of 1. To prove that (y{t), S, Jt)) is admissable
it is sufficient to spow that (&Z(t),sz, ;l(t)) = (¢, 9,0) sztisfies the
requirements of Definition 1. 1. That this is indeed the case follows
from the relat‘on

- - - £ v == - = t
3 - ) i i - : | .
Pté‘l‘ tul P‘xj K PtT; P.X + Pu! PtT‘ Ptxj Ptﬂ Pul=¢

~

whick is valid for all Bx € B,S{G, »; and Pu ¢ P'siG,0). <]

3.4 Some Connectious Prtween Causality and State Froperties in GRS

Heouristically, i a system: :s aaticausal, then its state spice should
Ye vacuous. This resuit is giver mathematical 1.gor 1 the following

projositicn.
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Proposition 1*¥ If T is anticausal then it has a state decomposition given

by the triple (¢,4,4) . Conversely, if the triple (¢,¢,¢) is an admis-

sable state decomposition for T, then T must be anticausal.
Proof. Suppose that T is anticausal. Then for every element u ¢ S| G, v]
and ¢t ¢ v we have '13t'1‘g = f)t'r'f)tu and therefore T’t'r?tu =& Similariy,

for any x¢ P,S[{G,v1 aad t € v we have

_ ' N ST ”
PthPtu[ x] = PtT[ P u+Ptx] - P,TPu-F,TPx = ¢

and, from here, I_’téTpt u[ ] = 4. Choose now the trinle (t), S, t))
such that S = (6,6), Yt) = (6,3) 2nd (t) = (6,6). In view of the above
equztions it is trivial to verify that this triple satisfy tne requirements
of Definition 1. 1 and therefore it is an admissable staté decoraposition

for T. Conversely, suppcse {hat the triple (6, 6,6) is an admissable

state decomgosition for T. Then from Definition 1. :, we have
t by { t o ™ t — e .
P 1P = sand I, TP + Pt:\] - PTPu- P TEX= o.

Frora this i follows ihat PtT - PtTPt and appi- * the dual of Propo-

sition 3.1 ve can concindz that T s anticausal. <‘

In the case of memorvless systems (which are snticausal) a
straightforward applicadion of the above propositicr and of the principie

of causal duality generates the {:llowing coroliarv

*A resilt of this tvpe ®as 1irst 1 tablish - Sacks 1n 4 I'near
system context 'see 48 ).
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Corollary 1. A necessary ard sufficient condition for T to be memory-
less is that the triple (¢, ¢,¢) be simultaneously an admissable state

and coastate decomposition for T.

Corpllary 2. If the system T is anticausal then it admits a strictiy

minimal state decomposition.

When a system is crosscausal a result similar to Proposition 1

can be stated.

Proposition 2. I T is crosscausal then there exists a state decompo-

sition with first component given by the triple (¢,¢,4). Conversely.
J T has a state decomposition with first component given by the triple
(¢,¢,4), then T is given by the sum of a crosscausal plus an anticausal

operator.

Proof. First we show that the triple (wl(t) ’Sl’ cl(t)) = (¢,¢,9¢) is an

admissible first component for a state decompositicn of T, where T
is crosscausal. Beginning with Proposition 2.2.3, we have dP(s) TPtz o

for each s >t. This implies that

PTP' - \ dPis)TP - 6.
s>t

From here it follows easily that wl(t) , Sl, gl(t)) = (6,6,¢) satisfies the
requirements of Definition 1. 1 and therefore is an admissible first

component for a state decomposition of T.
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Suppose now that the first componeni of a state decomposition of

T is given by the triple (¢,¢,4). This implies that we must have
1—’t'I‘Pt = ¢ for every t € v. (3.9)
Note that from Proposition 2.6.6 we can write

T=T,+ Ty +Tg, (3. 10)

where T A’ TX and T(—:- are uniquely defined anticauszl, crosscausal and

sti'ictly causal operators. From the dual of Proposition 2.4.1 and
Proposition 2. 4. 5 we have

t = t =4t t
P =¢ and PthP =PtP TXP = ¢.

5 -
PtTAP =PtPT

A
From .hese relations and Equations (3.9) and (3. 10) it follows that
?tTEPt = ¢. This implies dP(s) T(—:Pt = ¢ whenever s >t and from the

fact that T(-:- is strictly causat it follows that T(—: is a null operator.
From this and Equation (3. 10) we can conclude that T is given by the

addition of a crosscausa! sius an anticausal component. <]
Corollary 3. If T is crosscausal then it admit - . state decomposition
which is minimal with respect to its first component.

Before proceeding further it is convenient to :ntroduce the tul-

lowing result which is a useful tool ir extending Propositions ! and 2.

Proposition 3. Let «L"(1), S, {"(t)y and (Y1) . 5°. 07 11) ) be two state

decompositicns for T" and T respectively. Tne.. a~ »dmissable state
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decomposition for T = T' + T" is given by the triple ((t), S, {(t)),

where
(W) = @ 0,%' ®), i=1,2, tev

") (8= s; x 8", i=1,2, te v

LCi(t)si= g ®)s + L8 t) s, , =1L,2, tev
where 5; = (s{,8;') €8, xS, i=1, 2.

Proof. To show that *he triple (apl(t) »S cl(t)) , defined by (*) for

1’
i=1, is an admissible first component for a state decomposition of

T=T'+ T", it is sufficient to chsw that the following holds
¢, )¢y () = B,TP"
171 t
Since (y#(t),S',¢"(t)) and (Y "(t),S",L"(t)) are state decompositions
of T* and T" respectively, we must have
Y8 o], — D t " ' _ D M t
§i®)¥3(®) = P,T'P" and {JOY(t) = PTP .
It follows then that
I S
£ B Y1) = LY () + LHOY(t) = PT'P « PTP
o ) ' v’ t D t
= P(T* + TP = P,TP".
This implies that (v'/l(t) , Sl, { 1(t)) 15 a2 admissable first component
.or 3 state decomposition of T.

Using an identical argument it can be shown that (éz(t) -8, {2(0)

defined by (*) is an admi=sable second component for a state decorupo-

pd!
sition of T. ~d
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Using Proposition 3, the results in Propositions 1 and 2 can be
applied in more general situations. This is illustrated by the fol-

lowing Propositions 4, 5 and 6.

Proposition 4. For every operator T there exists a state decomposition

with the property that the first component depends only on the strictly

caasal part of T.

Proof. Applying Propositicn 2. 6.6, T can be represented as follows

T=TK+TE+TM+TX

Suppose that (¥, (1),S,, ¢ (1), ae {A,C, M, X}, are state decompositions
for TK’ T(—:, TX and TM respectively. By Propositions 1 and 2,
W,(1),S,,5,(1)), @ e {A,M,X}, can be chosen in such a way that the
first component is given by the triple (¢,¢,¢). A state decomposition
(Ut),S, qt)) for T can now be obtained by the procedure indicated in
Proposition 3. The first component of this state decomposition depends

clearly only on TE' <j

Proposition 5. If the strongly caucal component of T is weakly additive,

then there exists a state decomposition with the property that the first
component depends only cn the strictly causal part of T and the second

component depends only on the strongly crosscausal part of T.

Proof. Consider again the represent‘ation T-T;~T<+Ty =T

A C M X"
Bv ihe application »f Proposition 1 and 2.4 1 . -wss:ble to find state

decompositions for T, T“ and TC with the propertv tnat the second

A




(i

component is given by the triple (¢, $,¢). The rest of the proof can

be obtained through an argument identical to that used in the proof
of Proposition 4. 4

Proposition 6. A necessary and sufficient condition for T to admit

a state decomposition with a first component given by the triple

(¢, ¢,¢) is that the strictly causal part of T is mull.

The proof of Proposition 6 uses techniques similar to those seen
in Propositions 4 and 5 and will be omitted for brevity.

To help motivate the next result, observe that a system can
clearly have more than one state decomposition. Conversely, Propo-
sitions 1 and 2 indicate that a state decomposition can correspond
simultaneously to many systems. The natural question that arises is
concerned with what must be in common to two systems in order that
they can both have the same state decomposition. The answer to this

question is given by the following theorem.

Theorem 1. A state decomposition of T defines uniquely the strongly

causal and strongly crosscausal components of T.

Proof. We have to show that if two systems T and T' admit an icentical

state decomposition (t), S, {(t)), then TC = Té and Tx = Ti(, where

TC’ TX and T'C, T)'( are strongly causal and strongly crosscausal com-

ponems respectively of T and T'. Consider the operator T - T'. By
the application of Proposition 3, a state decomprsitionof T - T' 1s

given by (Ut , §, Eflt) ), where, using the notation of Proposition J,
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%O = wo, %) =1,2 Fcsxs

i=1,2 and ¢(t) is defined as follows: if V= vy V) € ’§1 then'{i(t)'\‘r’i =
ivy - iy Clearly (J(%) S ﬁt)) has the property that ?'(t) U = ¢,
for i=1,2. From Definition 1.1 it follows that B(T - T)P* = ¢ and
6T pt [ ] = ¢ for every x € S[G,v] andt € v. This implies that
the triple (¢,,¢) is an admissable state decomposition for T - T'.
From Proposition 1 it follows that T - T' must be anticausal. This

means that TC + T)E TC - TX = ¢. From Proposition 2. 4. 1 it then

follows that TC T

and T,, = Ty

X X’ which completes the proof. Q

¢
Interesting corollaries of the above result are the following.

Corollary 4. A state and a costate decompositions of T define strongly

causal, strongly anticausal and strongly crosscausal components of T.

Corollary 5. H T is given hy the sum of a strongly causal an' » strongly
crosscausal system, then T is completely defined by any one of its state

decompositions.

Corollary 6. Suppose that (Yt),S, C(t)) and (Y(t),S", '(t)) are siate
decompositions of, respectively, T and T'. I (yt), S, {(t)) and
(/(t), 8", 0'(t)) are strictly equivalent then T and T' have identical

strongly causal and strorgly crosscausal componznts.

Note that the z2bhove statements provide r - “ts which in the

context of linear dynamical systems arc very {famili.... 10 particular
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from Corollary 7 we obtain that two strictly equivalent dynamical

systems have the same weighting pattern [ 65].

3.5 Summary

In this chapter we have studied some interconnections between
the causality concepts developed in Chapter 2 and the concept of state.
Motivated by the causality development of Chapter 2, it was natural to
embed this study in the framework of group resolution space. A first
order of business was then to formalize a meaningful concept of state
in this general context.

For this purpose an extension of the state decomposition format
of Saeks was introduced. As a partial result of this extensior. our
notion of state satisfies the consistency conditions required by Zadeh.
Moreover it permits to generalize most of the available state-related
results which are usually formulated for linear systems. This leads,
for instance, to a generalization in a nonlinear context of Propouition
2.4, 2.5 and Theorem 2.7 in [ 48 ].

Meaningful connections between state and causality properties
were also established. These results give a rigorous formulation of
the heuristic idea that whenever a system has something special with
respect to its state structure then it has also something special with
respect to its causality structure. In particular, this is illustrated

by Propositions 2.3. 1-4. The converse is also true.
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The most significant result of the chapter is given by
Theorem 3.1. This theorem states that the strongly causal and
strongly crosscausal components of a system are uniquely defined by

any one of its state decompositions.




4, CAUSALITY PROPERTIES IN HILBERT
RESOLUTION SPACE

4.1 Introduction

Many system problems in communication and automatic control
have natural models as operators on a Banach or a Hilbert space. As
these spaces cannot be viewed, in general, as group resolution spaces
(GRS), the causality results in Chapter 2 are not directly applicable.
By applying appropriate modifications, most of the development in
GRS can, however be extended as to cover operators on a Banach cr
a Hilbert space. The main objective of this chapter is to discuss the
nature of these modifications and to elaborate on the type of results
which can be stated in the new context.

To achieve this objective we will focus attention on the case of
systems in Hilbert space. This will permit us to utilize some results
recently developed by mathematicians of the Russian school,

[ 24}, [25]. At the same time we will be able to illustrate basic

ideas and techniques which can also be used in a Banach space context.
In this latter case, however, a more curnbersome and complex develop-
ment would be required [ 42 ].

There are several procedures by which the causality development
of Chapter 2 can be made compatible with a H'.bert space context. To
motivate the speciic character o1 our approach it is helpful to first

consider two simple examples
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Example 1. Let R" be the Hilbert space defined by ordered n-tuples

of real numbers with the usual inner product. Every element

X = (X),Xg,. .. X ) € R" can be viewed as an element of the GRS des-
cribed in Example 2.2. 1 and conversely every element of that GRS

can be viewed as an clement of R". It follows then that all the causality
co~cepts and results presented in Chapter 2 are valid and meaningful

in the context of operators on the Hilbert space R". <]
Example 2, Let £y be the familiar Hilbert space defined by ordered

o0
sequences of real nimbers (x;,Xy,...) suchthat ) xi2 <w. The

-]
i=1
space {, can be viewed as a subset ot the group resolution space
~

S[ G, v] which is obtained by setting G= R and v = {1, 2, .. .}. More-
over, the truncation operators P’ and P, associated with S[G, v] map
!22 —=>1 9 and can be viewed as projection-operaiors on 22.

The causality concepts of Chapter 2 can be applied in a natural

way to systems in f.,. For example a system T mappingg 9 — 9

can be called causal if,

Pix = Piy implies Pl'b{ = PiTy for all x,y ¢ 9 andie v.

The other causality concepts car be similarlv defined. Note
however that ly is not a GRS. This implies that the causality results
in Chapter 2 do not necessarily apply. For exampie the proof of
Theorem 3.1 is not valid in f 9 and the questiur of existence of a
caronical causality decomposition has to be reconsin red

~J
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The discussion of the above examples illustrates a typical ""case
by case' procedure for carrying the causality study into a Hilbert space
context. This vrocedure is quite satisfactory in many instances. It
implies, however, the possible need for a rew approach to suit each
specific Hilbert space. The desirability of a unified treatment moti-
vates a more sophisticated and structural approach. This leads in
turn to the adoption of a mathematical setting called Hilbert resolution
space and to a causality development in this setting.

A few comments about the organization of this development are
in order. Section 2 is used tc review some mathematical preliminaries
and in particular to define Hilbert resolution spacas and some related
notions. In Sections 3 and 4 causality c. ¢ and properiies are
discussed. Some closure properties of systems with a special causa-
lity structure are considered in Section 5. Section ¢ deals with the
question of causalily canonical decompocsition. In Section 7 the treat-
ment is specialized to weakly additive systems in Hilbert space. In
Section 8 Hilbert Schmidt operators are discussed. rinally, Section 9

reviews some highlights of the chapter.

4.2 Hilbert Resolution Spaces

In this section some basic mathematical concepts and definitions
arc briefly reviawed. The purpose of this review is twofold: to clarify

the notational machinery used in the following sections and to make the
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treatment reasonably self contained. A unified treatmen.t of those
standard mathematical cthepts and definitions which are needed in
this chapter can be found in [ 27], [ 41], [ 62]. For the concepts
related to Hilbert resolution spaces and integ‘xjals in these spaces
the reader is referred to [ 24), | 25], [ 42], [ 50].

The reader is assumed to be .familia‘rfwi‘th the noticns of metric
spaces, linear spaces, normed spaces, inner product s'paces and the

concepts of linear and nonlinear mappings in theée spaces (see for

Example [ 27], | 41], [62]). A Banach space is a normed linear space ‘
which is complete under the metric induced by the norm. If x is an ;
element of a Banach space, the norm of x is indicated by the syxﬁbol

|x|. A Hilbert space is a Banach space with the norm induced by an

inner product.

Suppose that T is a mapping on a Banach spacé B. T is bounded
if |T|= sup AT o s bounded, the number |T| is called

0#xeB  |x| ‘, | .

the norm of T. T is called compact if T(F), the closure of the 1mage
under T of a bounded set F is a compact set. T is unbiased if T(0) = 0.
As in the case of the GRS development, we will only consider unbi+sed
operators. ‘

Suppose that H is a Hilbert spz'ace and v an ordered set with t,

andt respectively minimum and maximum elements* of v. A family

IR= {Pt}, t ¢ v, of orthogonai projectors on H is called a Resolution

cf the Identity if-

N t and too do not exist the definition has a natural extension
(see, for instance, | 42]p. §7),
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Ri) PXH o PlHwhenk >¢; k2 e v
tO - t»’-”O -
Rii) P°H=0, P °H= H.

The projector I - Pt will be dewoted by Pt' A pair of projectors
Ps, Pk ¢ IR, s >k, is called a gap in IR if there is no element ¢ € v
such that Pk u P2 < P5. IR is continuous if it does not contain

any gap. IR is closed if P belongs to IR whenever there exists
a sequence of projectors { Pi} in IR such that {Pi} converges

strongly* to P. The Hilbert space H equipped with IR is called a

Hilbert resolution space (in short: HRS) and is denoted by the

symbol [H, Pt]. In the sequel we suppose that IR is closed.

The parallelism between GRS and HRS appears quite natural;
indeed using "spectral multiplicity" theory (see Halmos [ 26 D, a
HRS can be viewed as a modified GRS with some additional structure.

In GRS it was found that ""sum representation” of the type

Z dP(s)’I‘Ps, etc..., were essential to the causality deveicpment.
Is;: HRS context the notion of an integral can play an equivalent role,

Suppose that T(s), s ¢ v, is a family of operators on a HRS
indexed by s ¢ v, and consider the following operations:

i) Chocse a partitior & of v, 2 = {Eptpeeo EN} where

£y=ty En=t, and {gj} is a finite set of elements

in v such that £]. < £j+1’ =1, 2,...,N-1,

*A sequence of operators {T.} is strongly convergent to T, if
for every element x ¢ H we have {”}‘ix} - Tx.
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ii) Consider the partial sum

o N
I'= ) AP(K)T(s) 4.1)
k=4
k-1
where AP(k) =P = _ P 2ud s, is any element of v, such

k
that Ek-l < S)c < gk.

iii) On the set of all partitions  of v, define a partial order
as follows: Ql D 92 if every element of 92 is contained
in Ql.

iv) Suppose that there exists an operator T such that in
corresnondence to any e ;> O there is a partition Q of
v with the following property: the operator norm

T - 1% is less than ¢ if @50,

The operator T obtained through cperations i-iv) is called the

A RAL o b e et T A v SR e MR e e v

integral of the iamily T(s) with respect to IR and it is denoted by
7= [ dPT(s).

Slight variations of the above concept of integral are also of

interest. To this purpose we will denote by

T= gﬁ dP(s) or T = lﬁ dPT(s)
the integral which is obtained by choosing Sy in operation ii) respec-
tively as follows: Sy = £h-1 or s = gk. Similarly the operatur

T= f dPT(s) dP will denote the integral which is obtained by replacing

Equation (4. 1) in operation ii) by the tollowing
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N
7= T R()T08) AR().
. k=

Often it is convenient to relax the condition on the type of con-
vergence of the partial sums in Equation (4.1). Ia narticular it may
be sufficient to require that in step iv) uniform coivergence be
replaced by "strong convergence". In this case Ltep iv) would have
to be modified as follows: '"There exists an op.rator T such that in
correspondence to any x ¢ H and any real positive ¢ > 0, there exists
a partition e of v with the following property: if Q > QE then
(T - TDx| <em

In the course of this development it will ne natural to associate
with an operator T on a HRS [H, P!] the families TP® and TP . These

families will lead to integrals such as

fdpTP®, thdPTP?, M dPTP®

and similar.

In a causality context this type of integrals were first applied by
Saeks, [48]. Their rigorous study is, however, cue to mathematicians
of the Russian school ([24 ],[25]). Thess studies are documented by
a large number of results. Only a few of these results will be needed
here and they are listea in Appendix B.

For later use and to gain some familiarity with the abov> defini-

tions, it is convenient to pause and consider some examples of HRS.
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Example 1. Suppose that H is given by L2[ 0, 0), the Hilbert space of
Lebesgue square integrable combplex functions. In L2[ 0, 0} we can
define a family of orthogonal projection cperators IR = { Pt}, t € [0, ),
according to the following rule: if x andy e LZ[O’ w) andy = Ptx, then
y(s) = x(s) a.e. in [0,t] and y(s) = O a.e. in[t,0). The family IR = {Pt}
is a resolution of the identity because it enjoys properties Ri) and Rii),
We can then consider the HRS [Lz[O, w), Pt]. The resolution of the

identity in this example is easily shown to be maximal and continuous.d

Example 2. Suppose that H is given by 22, the Hilbert space of square

summable sequences of complex numbers (xl,xz,. «o). In 12 we can

consider the family of orthogonal projectors IR = {P'}, i cv=l, 2,...,
where each P' is defined as follows: if x=(x1,x2, ees), y=(y1,y2, ees)

€ {,andy = Plx, then yjﬂj for j > i and yj= 0 for j>i. The elements

2
of the family IR satisfy the properties Ri) and Rii) and consequently

IR = {P'} is a resolution of the identity in £,. We can then consider

20
the HRS [ lz,Pl] . Observe that here the res~.ution of the identity

is maximal but not continuous.

Example 3. Suppose that H is given by L[ 0, )X 22. This means

2
that a typical element of H is given by a pair (xl,xz), where Xy is an
element of L2[ 0, ) and Xy = (le,xzz,x23, ...) s an element of £2.

In this Hilbert space we can consider the familv of projection operators { Pl}




defined as follows: if (xl,xz) and (yl,yz) 3 LZ[O, 0) X 12 and (yl,yz) =
Pj(xl,xz), then

y4(8) = x4(s) a.e. in[0,j], y(s) = 0a.e. in[j,)
and
Yoi = xzifor i<j andy2i= 0for i >j.

Again the family IR satisfies properties Ri) and Rii) and therefore is a
resoluation of the identity in L2 X 22. We can then consider the HRS
[LgX £, Pl]. Notice that in this case the resolution of the identity

is neither maximal nor continuous. ‘<]

From the above examples we can observe that Hilbert resolution
spaces can simultaneously represent those continuous time, sampled
data and hybrid systems which are usually consiczred in automatic
control theory (see [ 41]). More complicated and less familiar systems
in communication theory can also be embedded in this framework. In

this regard the reader is referred to [ 17].

4.3 Causality Concepts in HRS

The basic causality concepts which were introduced and discussed
in Section 2.3 will now be extended into the HRS context. In the case of
causality, anticausality and memorylessness this extension is straight-
forward. To this purpose let T denote an (unbiased) operator on

[H, Pt] and let x and y indicate two elements in [H, Pt].
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Definition 1. T is causal (anticausal) if Ptx = Pty implies Pth = PtTy

(Ptx = Pty implies Pth = PtTy) .

Definition 2. T is memoryless if it is simultaneously causal and

anticausal.

The task of extending the concepts of crosscausality and strict
and strong causality is not as straightforward. The difficulty is caused
by the fact that in GRS these concepts were based on the notion of the
evaluation operator dP(t). Usually a HRS does not come equipped with
this type of operator. This is the case, for instance, for the spaces
considered in Examples 2.1 and 2. 3.

Tc overcome the impasse, observe that from Propositions
2. 3. 3-4-5-6 the causality concepts under consideration can also be
based on the notion of special "sum-type'" representations. This,
together with the heuristic similarity between "'sum-type' and
"integral-type' representations, leads in a ratural way to the fol-

lowing definitions.

Definition 3. T is strongly causal (strongly anticausal) if T is causal

(anticausal) and

fdPTdP =0 .

Definition 4. T is strictly causal (strictly anticausal) if

T = th dPTP® (- M dPTP ) and [ dPTdP = 0.
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Definition 5. T is crosscausal if [ dPTdP = 0, P'x = 0 implies

PlTx = 0 and P.x = 0 implies P,Tx = 0.

Definition 6. T is strongly crosscausal if

MAdPTP® = hdPTP_= [dPTdP = 0.

In view of the similarity between causality concepts in GRS and
in HRS, most of the considerations and physical interpretations in
Section 2. 3 can be applied in the HRS context. In particular it is
again helpful to adopt the causality alphabetic code A = {A, C,MX,
A,C,X,A,C}. The principle of causal duality also remains valid and

will often play a key role in the simplification of the various proofs.

Principle of Causal Duality in HRS : Let a statement or equality be

phrased using relations involving concepts associated o the alphabet

A, families of projection-operators such as Pt, Pt and integral trans-
formators of the type y‘l[ l, Al ] Then the statement or equality

remains valid if the following interchange in symbols occurs:

C—>A, C—>A C—>A A>C, A>C,A>C

p'>p,p,>P, >k ho M x>X X->X.

A brief discussion on the implications connected with the choice
bcwween strong and uniform convergenc~ for the integral in the above

definitions is in order. As it will become clear in the course of our

TOUEEES TR AT
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development, uniform convergence allows greater simplicity in the
proofs of certain results. Occasionally it also plays an essential
role for the very existence of other important results. Strong con-
vergence, however, is often preferable from a physical point of view.

This can perhaps be best illustrated by a simple example.

Example 1. Consider the HRS described in Example 2. 1. A system
T on this HRS maps every element x ¢ L2[ 0,:0) into an element

ye L2[0, ). Suppose that T is defined as follows: if y = Tx then
yit) = x{t + 71) x(t + 72)
where Ty and Ty are real numbers and x(s) = 0 whenever s <0.

The system under consideration is formally identical to that
considered in Example 2.3.1. As in that example, the causality
character of T is a function of the location of the point (79 T,) in the
Cartesian plane RZ. In particular, for Ty <0and Ty <0it is easy to
verify that T is causal. Similarly for T >0 and Ty >0 T is anticausal,
and for 7= 0, 7o = 0 T is simultaneously causal and anticausal, hence
memoryless,

When the convergence of the integrals in definitions 3-6 is in-
tended in the strong sense then the causality structure of T as a function
of (71,12) can be a subject of further analysis. For instance, if 7, <0

1
and 7, >0, then in addition to TP' = P'TP' and TR - P,TE,, we have
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f dPTdPx = 0 for every x ¢ L2[ 0,0). This implies that T is cross-
causal. More specifically T is strongly crosscausal because we

also have that
s -— —
MAdPTP"x = hdPTP x = 0.
Similarly for T < 0and Tq < 0 we can verify that
Tx = hdPTP

and therefore T is strictly causal. Proceeding in this way we obtain
that the causality character of T is identical to that described in
Example 2.3.1. In particular the results illustrated in Figure 2.1
are again true.

It is important to observe, however, that in the case of uniform
convergence not ail nf the above results hold and the analysis becomes
somewhat less responsive to our expectations. For instance, for
T <0 and Ty < 0 T wouid not be strictly causal because (in the case
of uniform convergencg) it is no longer true that T = 5fdeTPs.

Similarly when T <0 and Ty < 0 T would not be crosscausal. 4

To conclude the section the following remark is in order. Results
and considerations in this chapter remain formally identical whether
strong or uniform convergence is adopted. Thus, the adoption of uni-

form convergence has to be considered as a matter of mere technical



convenience. The situation is somewhat different in the next chapter.
In that context the use of uniform convergence is essential and, if

strong convergence is adopted instead, then the results of that chapter

do not hold.

4.4 Causality Properties of Basic Systems in HRS

From the similarity between the definitions of causality concepts
in GRS and those in HRS, it is natural to expect that properties similar
to those already seen in GRS might also be stated in the HRRS context.
To illustrate that this is the case, we will revisit some of the results
in Sections 2.4 and 2. 5. For brevity our attention will be confined to
those results which will be needed later in the developmenti.

To start with, the following Propositions 1 and 2 are similar to
Propositions 2.4.1 and 2.4. 2. These results have already appeared
in the technica! literature [ 43] [ 48]. As the present mathematical
setting is slightly different from that adopted in those references, a

brief review of the proofs is included.

Proposition 1. The following statements are equivalent:

a) T is causal

t

b) P'r= Pt

¢) T=MdPTP,

T ST (S e T 1 P B .
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Proof. a)—>b) . The argument is formally identica} to that seen in the
proof of Proposition 2.3.1. b}—>c¢). Suppose that T is causal.
Then for any partition Q = {toz Epbp by by tw} of v the following

relations hold

N N & N
T= ), AP(()T= ) AP(E)P T = ) AP(£)TP
=1 i=1 1=1

£

i

Hence T = rﬁ dpPTP®. ¢) —> a). Suppose that ¢) holds and choose
any X,y ¢ Hand t ¢ v such that Ptx = Pty. Then we have

plrx = P4 aPTP% - M PlaPPpx - MiPlapTROPYy - Pl1y.

This implies that T is causal. <

Proposition 2. The following statements are equivalent:

a) T is memoryless

b) P'T = P'TP' and P,T = P,TP,

¢) T= [dPTdP .
Proof. The equivalence of a) and b) is a direct consequence of Propo-
sition 1 and its dual. It is then sufficient to prove the equivalence

botween b) and c).
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b) —>¢). Suppose that b) holds. Qbserve that for every parti-

tion@={t =&, &,..., 6= tw} we cap write

N
T= ), AP()T.
i=1

Applying b) we obtain that for each i the following relation hoids
3 £
AP(()7T = AP(¢)P P, T=APE)TP P
i i £, i £.
i-1 i-1
= AP(E) TAP(E)) .
It follows that for every partition Q of N we can write

N
T= _2] AP(E,) TAP(E,) .
=1

This impiies c).

c) —>b). For any t ¢ v and any partition Q = {to £y bqpee

such that t ¢ 2, we have

¢ N t N t
P 21 AP(£,) TAP(¢) = P =Z1 AP(¢;) TAP(¢,) P

12

] .Z AP()TAP(E) = P,

AP(£) TOP(E) R .
i=1 1

1

1}

If ¢) holds, the above equaiion implies

plr - ptret and P,T= P,TP,

thereby completing the proof. <J




The next proposition is analogous to Proposition 2.4.5. The
proof is based on techniques similar to those adopted in Propositions

1 and 2 and will be omitted for brevity.

Proposition 3. The following statements are equivalent:

a) T is crosscausal

b) TP, = P,TP,, TP'= P'TP' and jaPTdP= 0

¢) haPTP® = MdPTP_= [dPTdP = 0.

Techniques similar to those adopted in the proofs of Propositions
1 and 2 can also be applied to obtain results of the type illustrated in

Section 2.5. In this regard we introduce the following two propositions.

Proposition 4. If T is strongly causal (strictly causal) and T" is

causal then T'T" and T"T' are strongiy causal (strictly causal).

Proof. If T'is strongly causal then by definition T' is causal and

fdPTdP = 0. (4. 2)

Since T" is also causal we can apply Propcsition 1 and obtain

ptpipr - ptprptpe - ptprpopt

Applying again Proposition 1 this implies that T'T" is causal.

To prove that T'T" is strongly causal it remains to be shown

that [dPT'T"dP = 0.
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Given any partition @ of v, @ = {t9 =§pbyseeerbn = t }, from

the causality of T' and T" the following 'relations hold

[ E.
AP(E)T' = AP(£) T'P 1

T"AP(ﬁi) = P£ .

T AP(E;)
i-1

i=1,2,...,N.

It follows that for each i=1,2,...,N we have.

!

AP(£) T'T"AP(E,) =

£, ‘ ‘
= AP(£,) T'P 'P,, T"AP(E,) =
‘-1 . ,
. = AP(£,) T'AP(E,) T"AP(E)

and from here

N N
‘ AP( ) T'T"AP(E,) = '21 AP(¢,) T'AP(£,) T"AP(E) .
1= ' .

o

1

1=

It foliows that

1

| _i’l AP(£) T'AR(;) T'aR(E) | < (sup [AP(6)T'aPE) | |17
. | | (4.3)
and from Equations (4. 2) and (4.3) it follows f dPT'T"dP = ¢. Similarly
for T,

Suppose now that T' is strictly causal. It has to be shown that

T'T" is strictly causal. From the definition of strict éaﬁsality and

Propo-ition 1 the following relations hcld
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T = odPT'P® and T" = MdPT"P".
From the definition of integral, given any ¢ > 0, twc partitions Qé and

Qg can be found such that for all partitions , D S:,é u 9"5',

Q={t,&,..., b5 the following relations hold

T - T'| <e and |T"-7T"| <e (4.4)

where

1

and T"= } AP(£)T"P 1

el

~ N £
T =) AP(¢) T'P
i=1
From Equation (4.4} it follows that
iT'T" - $'T"| S IT' _ 'ri\’vl IT-'I Se IT"'
and
|"i’"'r"- "i'""l‘v"l < |"f"| e <(|T'] +¢€) €.
From here we obtain
[T - F | <(|T']| + |T"] +€) €. (4.5)

But we also have

N
T = ) AP()T'T"P
i=1
and from Equations (4. 5) and (4.6) and the definition of integral it

£,
i-1 (4.6)

follows

T'T" = hdeT'T"P",




It can then be concluded that T'T" is strictly causal. A similar argu-

ment would show that T"T' is also strictly causal. 4

Proposition 5. If T is simultaneously ¢, and ¢, witha,, @, ¢ {A,C, M, X},

then either 2y =@, or T is the null operator.

Proof. Suppose, for instance, that T is simultanecusly A and C. From

Definition Z.4.3 and Proposition 1 we must simultaneously have

't - plrpt (4.7
T = HdPTP (4.8)
fdpPTdP = 0. (4.9)

From Equation (4. 8) it follows that for any ¢ > 0, there exists a parti-
tion ©_ such that for any other partition & = {¢, = tpkp sk =t )

22 Q, the following relation holds

N
| ) AP(£) TP, - T| <e.
i=1

£,

i-1

But from Equation (4.7) we obtain
N N
2. AP(E) 'I‘Pg‘ = .Z AP(£,) TAP(Z) .
i=1 1 i=1

1~

This means that given any € > 0 we can find a partition Qe such that for

any other partition © O Qe we have

N
lgl AP(¢) TAD{E) - T| <e.

PPV

b
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This implies T = [dPTdP and irom Equatior (4.9; T must be the null

operator. The proof for the other cases is similar and wiil be omitted. <]

In view of the above results the containment relations among the
various classes of systems with a basic causality structure are identical
to those already discussed in a GRS context. In particular the pictorial

{ apresentation in Figure 2.2 is also valid for systems defined in HRS.

4.5 Some Closure Properties

The set of all bounded operators mapping a HRS into itself can,
in a natural way, be viewed as a linear and normed space § Moreover,
it is easy to verify that gis complete under the metric induced by the
operator norm.

The various sets of systems with a basic causality structure can
also be viewed as linear normed spaces. These spaces are subspaces
of i and the natural question arises whether they too enjoy the com-
pleteness property. From the completeness of § this is equivalent to
determine whether the limit of a convergent sequence of goperators

which are ae A is a a operator. In this regard we can state the

following results.

Proposition 1.* The subspace of hounded causal operators .s complete.

Proof. Suppose that { Ti} is a convergent sequence of bounded and

causal operators and {Ti} —> T. We have to show that T is causal.

*A result of this type has been already established in the technical
literature (see for example [48)).
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By Proposition 4. 1 this is equivalent to show that given any pair

(y,t), ye Hand t € v, the following relation holde
Pty - Pirely.
This can be done by showing that for any positive ¢ > 0 the following
expression holds
[Pty - PRy | <e.
To this purpose choose an integer N such that

IT - Ty <——. (4. 10)

2lyj

Since TN is causal it follows

t

p t

t
TNy =P TNP y. (4.11)

From Equations (¢ 10) and (4. 11) the fcllowing relation holds

Pty - Plrely| - |Plry - Plryy + BT By - PhTRY) <

N
. |yl ly|

<|PYT - Tyl + [Py MY | <3 5 . e
y y

It can then be concluded that T is causal and the proof of the theorem

is thus complete. <]

Proposition 2. The subspace of bounded strongly causal operators

is complete.




Proof. Suppose that {Ti} is a convergent sequence of bounded and
strongly causal operators and {Ti} —>T. By Proposition 1 T is

causal and it remains to be proved that f dPTdP = 0. To this purpose

it has to be shown that for any ¢ > 0, a partition Q'e of v can be found
such that it enjoys the following property: If = {t0 =Ebp-e by tw}
is any other partition of v and 2 D Qe’ then

N
|j§1 AP(E) TAR(E) | <e.

Let i0 be an integer such that

.
|'rio- T| <5 (4.12)

Since Ti is strongly causal there exists a partition of v Qe such that if
0
Q= {t0 =k by tw} and @ > @ _ then the following relation
holds
N €
|j§l Ap(gj)TioAp(gj) | <5 (4. 13)

From this equation it follows that

N N
lj;l AP(¢) TAP(E) | = | ,-;1 AP(5,) (T - T, AP() +
N
j;l AP(E)) TioAP<£j) | <

N N
< '1-;1 AR (T - T, ) ARG | + | ]_;1 AP(E)T; AP [

(4. 14)




T W T Lt d - d e e o]

- g A
e e Rl ol vvvwvw?mw—vnnw, ,1:';-1* > ¥

104
Moreover
N
l jﬁ’l AP(E)(T - Tio) AP(Ey) [ = s;nplAP(ej) (T - Tio) AP(£;) | <|T- Tio [.

From here and Equations (4. 12), (4.13) and (4. 14) it follows that
for 2 D Qe the {ollowing holds

N
| j§1 AP(E)TAP(E) | <5+ 5=

At this point it can be concluded that T is strongly causal and the proof

is thus complete. q

Proposition 3. The subspace of bounded and crosscausal operators is

complete.

Proof. We have to show that if {Ti} is a sequence of bounded cross-
causal operators and { Ti} —>T,, then T is also a crosscausal opera-
tor. Since each element of the sequence {Ti} is crosscausal, from
Definition 3. 5 we have that whenever T = Ti the following equations

are satisfied

Tpt - plrpt (4. 15)
TP, = P, TP, (4. 16)
fdPTdP = 0. (4.17)

We have to prove that Equations (4. 15), (4.16) and (4.17) are
also satisfied for T = TO. Let us start to show that for any ¢ > 0 we

have




‘To this purpsse choose an integer io such that
IT - Tiol <% -

We«.an then write

r - Pr Bt < [T Pt B 4 |7, PR PhrRt| <2t | <o

o o o

From the arbitrarity of ¢ it follows that Equation (4. 15) is true for
T-= 'l‘o. By the principle of causal duality also Equation (4. 16) 1S
true for T= T,. To complete the proof we have to show that JdpT oGP = 0.
Given any € > 0 consider the integer iy such that |T - T, | <. Since
Ti is crosscausal there exists a partition e of v such l?hat for any other

0
partition Q = {Eozto’gl""’gN:too}’ 2 > 9, we have

N
€
|Z AP(£) T, AP(E) | <5-
i=1 o
This implies
€
max |Ap(gi) 'rioAP(gi) | <5
From here we obtain the following

max |aP(E;) T AP(Z)) | < max |aP(g ) (T - Tio) AP(E) | +

+ max ]AP(gi) T, AP(£,) | <e.
1 0
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It follows that for gﬂe we have
N
| Y. AP(E) TAP(E) | <e.
i=1
We can then conclude that [dPTdP = 0 thereby completing the proof. <]

From the 2bove results we can conclude that each one of the
subspaces under consideration can be viewed as a Banach space. As
these subspaces also enjoy the property of being closed under the
operation of composition of operators, we can state the following

theorem.

Theorem 1. The subspace of bounded causal (strongly causal, cross-
causal) operators is a Banach algebra.

Observe that in the particular case of linear and causal operators,
Theorem 1 gives a result which was already stated by Saeks in [ 48 ]

(see Proposition 3.1).

4 6 Canonical Causality Decomposition in IIRS

In analogy with the causality development for sysiems defined on
a GRS it is natural at this point to ask whether a system on a HRS might
be represented by the sum of systems of type a ¢ {A,C,M,X}. This
representation will be again called a canonical causality decomposition
and to investigate its existence we will use an approach similar to that

adopted in Section 2.6. To start consider the following result.




Proposition 1. H T has a canonical decomposition then this decompo-

sition is unique.
Proof. Suppose that

At et tMTIxT AT et Mt X

T=T T.+7 T. =T +T.+T. +T.

holds where {'r-, T(_:' Ty 'r}_{} and {'r_é, 'ré, Ty '1'5_{} are two distinct
canonical decompositions. Then it also holds that

é+TC-TC+ X

— —

T T T X

M T_-T

M= TA"

Since TM - TM is memoryless we can apply Proposition 4. 2 and obtain

T

M- Th =fdp['r'é-'r

A+TC-TC+T5(- }_K_]dP

= fdP[TA- Té]dP + fdP[Té - Tg]dP + fdP{T)'_(- T)_{]dP.

By Definitions 4. 3.3 and 4. 3. 4, each term on the right hand side of the

above equation is null. It then follows that TM = Ti\('

Proceeding in a similar way

- =T _ 't
Tg Tg Té Té+T§ T&

and applying Proposition 4. 1 we obtain

: s :
'rg-'ré=gﬁdp['1‘é-'1'é]p + WdP[ Ty - )_(_]PS-

S
Observe that by Definition 4.3.4, MdP[T - Tx|P =0 and by inspection
i 3 8 — t —
Mqvf T;}. -T é]P = fdP[T W T é] dP = 0. It follows then that

'I’C = TC.




Applying the principle of causal duality it follows that T A= Tk

and from this it follows also that TX = Tk. We can then conclude that
{¢ N Tg' Typ Tg} and {'r'_, Té, Thp 'r):{_} cannot be distinct. This
implies that if T has a canonical causality decomposition then this

decomposition must be unique. <]

In analogy to Definition 2.6. 1, when T has a causality canonical

decomposition T = T At TC + TM + T)_(, we will refer to T A’ Tg, TM’ TX

. as the canonical components of T.
To deal with the question of existence of such a decomposition it

is convenient to use again the notiou: of "transformator". Indicating

by $ the space of all operators on a {RS we will say that T is a

PR VP

transformator* if ‘T is an operator mapping $ into itself. T will

be denoted by T , a ¢ {A,C,M, X} if for each T ¢ $ we have that

'l; [T]is an ¢ operator. As examples of transformators we can

mention some of the integrals defined in Section 4.3. In this case

the terminology of integral transformators is adopted. With the

P PR

above setting we can now state a result similar to Proposition . 6.

Proposition 2. T has a canonical causality decomposition if and only

if T is in the domain of the set of transformators defined as follows ;

*This terminology is borrowed from Gohberg and Krein [25].
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T LTl = fapTdP
T[] = shap(T - T, [T11P®

T[Tl = fiap(T - Tyrr]j®

(T Tl = T - Tyl1] - Ty (1] - T

Proof. '"Only if". Suppose that T has a causality canonical decompo-

sition. Then we can write

T=T

+ Ty + T

A"'C "M X
From here it follows that
TM=T-Té— QNT}E

and applying Proposition 4. 2 we obtain
Ty = JdPTdP - [dPT AP - | dPT 4P
- f dPTydP.

MzT;d

fore T is in the domain of the transformator 1;.11' Proceeding in a

Applying Definitions 4. 3. 3-. 6 we obtain that T [T] and there-

similar fashion we can also obtain that T is in the domain of T, Ty

A C
and 1;(
"if". Suppose that T is in the domain of the above integral

transformators. Then it is immediate to verify that
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T ='TA[T] +'TZ;—[T] Tl T] +T;_([T].
By a direct application of the causality definitions we can now recognize

thaﬂZ[T},'lE[T],T;d[T] and"[;(['f] are respectively A,C, M and X.

This compietes the proof. <]

The statements of Propositions 1 and 2 can be combined in the

following theorem.

Theorem 1. If T has a canonical decompesition then this decomposition

is unique and «ts components can be computed as follows:
Ty, = JAPTiP, T, = thdP{T - T |P_

- Mdo[T - T 1p° =T- - -
Tg-lﬁd-['r TM]P,TE_T Ty-To-T

M

To illustrate some implications of Theorem 1 we pause for a

moment and discuss two simple examples.

Example 1. Consider [L2[0, ), Pt], the Hilbert resolition space des-

cribed in Example 4. 2. 1 aad suppose that T is described as follows:

fy,xc¢ L2[0, w) and y = Tx then

a) oD
y(t) = g ({ K(t, 53, 3p)x(sy) (s, dsds,

where k(t], 8y s.2) is a real function such that

9 0 ¢ 9
(x[°= S J &%, s, 5,) dtds,ds, <
00 ' ”

Note that from a simple applicatiun of Fubif’i's theorem | 27, we

have

I3
4

’
v)? < 0x[° x[2

¢

(4.18)

/
4

!
/
/




Observe also that T can be writtenas T = T, + Ty + Ty, where T{, T

and T3 are described as follows:

y= Tlx implies y(t) = 6[ K(t, g1 sz) x(s4) x(sz) dslds
o0

8

J
0
o
y:sz implies y(t) = ‘( { K(t, Sy z)x(sl)x(sz)dsl 2
t
)

y= T3x implies y(t) = j; K(t, Sy 52) x(sl) x(s2) dslds2

-

Y

o0
+ [ fO K(t’ 81’ 52) x(sl) X(Sz) dsldSZ'

From standard arguments of real analysis based on the validity of

Equation (4.19 it is not difficult to verify that
S
JdPTdP = 0, T, = hdPTP", T, = YdPTP_

where the integrals are intended in the strong sense. Applying Theorem
1 we can conclude that T has a unique canonical causality decomposition.
The basic components of this decomposition are as follows: T

M- 0
=T, T.=T,and T

c™Tr Tan 1o x= T3 <]

‘ T

Example 2. Consider again [L2[0, ), Pt] and suppose that T is des-

cribed as follows: if y,x ¢ L2[ 0,©) and y = Tx then

yit) = ] Kyt 8)x(s)ds +

o~

K2(t, Sy s2) x(sl)x(sz) dslds2 +

*8

w0
[ ] Byltisy. . s)x(s)x(sy) . x(s,) dsydsy. . . ds,




112

where Ki(t, 8, ...,5;) is a real function such that

© o 4 . _
{,. .. _{)K (t,sl,sz,...,si)ds:lusz...dsi< o

for i=1,2,...n. . Note that this type of operators are‘ called Frechet-
Volterra and have been extensively utilized in the information and
automatic control literature [ 1 ], [28], \{35], [46].

Using a line of reasoning snnifar to that in Example 1, we can
again see that T hqs a canonical causality decomposition. In this
decomposition the memoryless component is null and TC, T and
T , respectively strongly causal, strongly anticausal and. strongl v

crosscausal components of T can be identifed as follows. Let

Vo= Tgx, yé = Téx and y}S = T)Sx,' then

yo(t) = }J f f t, 89, 8g, - .,si)x(sl)x(sz).."’.x(si)dsldsz...ds. '

8

n .
yA(t) = Z f ft (t, S4)Sg) - ,si)x(sl)x(sz)..].x(si) ds,ds,. . .

¥x = Tx - Téxl- Tg)g. | q

Theorem 1 links the study of existence of a causality canonical
decomposition to the study of the convergence properties of a special

class of integral transformators. This latter study has recently
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received attention from a number of mathematicians from the Russian
school. Of particular interest here is the work of Gohberg and Krein
[ 24], [25].

A result of this study with negative implications for the canonical
decomposition is that trese integral transformators sufter from con-
vergence problems. To emphasize this the following proposition is

noted.

Proposition 3. There exists systems T on a HRS which do not have a

canonical decomposition.

Proof. It suffices to present an example operator for which at least

one of the integral transformators in question fails to exist. The
reader is referred to Appendix B fcr some preliminary results in
this direction. In particular from Lemma B. 5, we have that for
every HRS with a zontinuous resclution of the identity there exists
a compact self-adjoint operator T such that f PSTdP is not defined.
From Lemma B. 4 it follows that [ dPTP® is also not defined.

Moreover applying Lemma B. 1
Ty = J dPTdP = 0
and applying Lemma B. 2

S s S
J dPTP® = MdPTP® = MdP[T - T,,]P".
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From the fact that [ dPTP? is not defined, it can be concluded that
MAP(T - Typ) P® is also not defined. It follows that such a T does not

have a canonical decomposition. q

4.7 Causality and Weakly Additive Operators in HRS

The importance of weakly additive operators was already out-
lined in Section 2.7. In the sequel the development of that section will

be revisited in a HRS context.

Definition 1. An operator T on [H, Pt | is weakly additive if for every

x € H and all t € v the following relation is satisfied
T[x] = T[P'%] + T[Px].
Before proceeding with a causality study of weakly additive opera-

tors, it may be helpful to consider some examples. To this purpose we

introduce the following rroposition.

Proposition 1, The following operators are weakly additive.

i) every linear operator
ii) every memoryless operator
iii) the linear combination of weakly additive operators
iv) the composition T"T' where T' is weakly additive and T" is
linear
v) the composition T"T' where T' is memoryless and T'" is

weakly additive.
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Proof. i) and iii) are trivial. ii) Suppose that T is memoryless.

Then for any t ¢ v and x € H the following relations hold:

P,Tx = B,TP,x, that is P'TP' - 0, and

pirx - PiTPY%, that is P'TP, - 0.

It follows that for all t ¢ v and x ¢ H, we have

Tx = P'Tx + PyTx = P'TP' + P,TPx = TP'x + TPx.

iv) For allt e v and x € H the following relations hold

T'T'x = T[T'P'% + T'Px] = T"T'P'x + T'T'Pyx.

v) Again for allt ¢ v and x ¢ H we have

ToTx = T T'Px + T'Px] = [ Ptrpx + P,T'Px]

= T"[PtT'x + ftT'x] = T"pirx 4 T"f’tT'x =

- PPl + T T Bx = T TP + TUT'Bx.

We can conclude that T"T' is weakly additive. <]

Most of the causality properties which were stated in the case of
weakly additive operators in a GRS are also valid in the case of weakly
additive operators in a HRS. More specifically, the statements of
Propositions 1, 2,3, and 4 in Section 2.7 hold "almost verbatim in the

HRS setting.




In particular, Propositions 2.7.1 and 2.7. 2 provide results which were
already stated by Porter [ 42] and Saeks [ 48 ] for the case of linear

operators.

Proposition 2. If T is weakly additive the following statements are

equivalent:
a) T is causal
b) P'x = 0 implies P'Tx = 0
c) TP, = P{TP,
4 pir - pirpt

e) T= MdPTP®,

Proposition 3. If T is weakly additive the following statements are

equivalent:
a) T is memoryless

b) P = 0 implies P'Tx = 0 and Px = 0 implies P,Tx = 0

¢
¢) TPt = ptrpt and TP, = P,TP,

d P'r= PP ana P,T = P,TP,

e) T= [dPTdr.

In regard to Propositions 2.7.3 and 2. 7.4 it is of interest to see

the modifications needed in order to make those results applicable in

a HRS context. This leads to the following Propogitions 4 and 5.

Proposition 4. In the context of weakly additive systems the concepts

of strong and strictly causality are equivalent.
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Proof. As in Proposition 2. 7.3 it is sufficient to chow that if a system

is weakly additive and strongly causal then it is also strictly causal.
Suppose then that T is weakly additive and strongly causal. By the

definition of strong causality and Proposition 4.4. 1 we obtain
T = MdPTP® and [dPTdP = 0. (4. .2)

Moreover if Q = {to =k Ep - inT tw} is any partition of v then
from the weak additivity of T it follows

3 S i1 N
igl AP(¢,) TP ~ = 11:“1 AP(£)TP © © + ig,l AP(E,) TAP(,) .

This implies that
MdPTP® = hdPTP® + [dPTdP
and from Equation (4. 19) it follows that
T = thdPTP®.

We can then conclude that T is strictly causal. <]

Proposition 5. If T is weakly additive and crosscausal, then T is null.

Proof. Suppose that T is crosscausal. Then
JdPTdP = 0, MAPTP" = 0 and fidPTP_ = 0.

Given any ¢ > 0 there exists a partition Qe of v such that for any other
partition Q of v, 9 = {to =6,y by too}, Q2% the following

relations hold
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N
| L aP(e)Tar() | <%

N gi €
[ ), AP(E)TP | <=,
. i 3
i=1
5 <
Y AP(E.)TP <.
i=1 Vg, 8
By the weak additivity of T we have
N N N & N
T=) AP(£)T = - AP(g,) TAP(E,) + ) APTP "+ ) AP()TP
i1 i=1 i1 =1 Y &

It follows that |T| <-3- +=- +3-= ¢ and from the arbitrarity of ¢, T
must be the null operator. <‘

The next three propositions illustrate some additional properties
of weakly additive operators on a HRS. These properties will turn out
to be useful in the course of the next chapter. In regard to the proofs,
the reader no doubt recognizes that Proposition 6 is a direct consequence
of Proposition 4 and Theorem 5.1. Similarly, Proposition 7 follows from
Proposition 4, and the proof of Proposition & is based on Froposition 5

and Lemma B. 3 in the Appendix.

Proposition 6. The space of bcunded weakly additive and strictly causal

systems is a Banach Algebra.

Proposition 7. A necessary and sufficient condition for a causal and

weakly additive system to be strictly causal is that f dPTdP = 0.
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Proposition 8. If T is a linear, causal and compact operator on

[H, PY] and {P'} is a continuous resolution of the identity then T is

strictly causal.

In regard to the question of canonical causality decomposition,
unfortunately a result equivalent to Theorem 2. 7. 1 cannot be stated.
In fact the causality canonical decomposition of an arbilrary weakly
additive operator may not exist. Results in this direction are limited

tc the following.

Theorem 1. I T is weakly additive and has a canonical decomposition

then T bas the unique representation T = T At TC + TM, where

T = hdPTP®, T, = MdPTP_ and Ty, = [dPTdP. (4.20)

Proof. In view of Propositions 2,3,4 and 5, we have to show that if a

canonical deconiposition exists, then T C and T A

can be computed through
Equations (4.20) . To this purpose, observe that from Theorem 6. 1

the following relation holds

T, = YidPTP® - T

M

and from the weak additivity of T
MdPTP® = hdPTP® + [dPTdP.
It follows that

To= $dPTP® + T

v - Ty = HhdPTP®
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and from the causality principle of duality

T, = MdPTP_.

The proof is complete. q

The statement of the above theorem is valid aiso for linear opera-
tors and shows that even in this context the canonical decomposition
question is not as simple as it was thought in a previous study ([ 48 ]).

To shed some further light, two additional propositions are introduced.

Proposition 7. Suppose that T is a bounded weakly additive operator

and that T, = [dPTdP is well defined. Then, given any ¢ > 0, there
exists an operator T such that |T - T| <¢ and T has a causality canoni-

cal decomposition.

Proof. Choose a partition @ = {to = Epbp--rtn= tm} such that

N
| ), APE)TARE) - Ty <e. (4.21)
1=

Congider the operator T defined by the following expression

w N £i1 N
T= ), AP(£,) TP + Typ + > Ap(gi)'rpg. (4.22)
i=1 i=1 i

Ar
From the above equation T has a canonical decomposition. Moreover

T - T| Igms)'r <§AP<5)TPE“ T
= = . - . +
i=1 ! 1:1 1 M

N
+ ) AP(£1)TP£)|. (4. 23)
i=1 i
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From he e and Equations (4. 24) and (4. 22) it follows
N
IT-T[=) aP(E;)TAP(E) - Ti| <e
i=1
and the proof 1 thus complete. (3

Proposition 10. Suppose that a HRS has a continuous resoluticn of the

identity. Then g:ven any operator T and any real ¢ > 0, there exists
an operator T suct that |T - T| < ¢ and T does not have a causalitv

canonical decompovwition.

To conclude tl.is section it is of interest to observe that when an
operator T on a HRS .s linear then all of the above results are auto-
matically valid. In those cases in which T has also some additional
specific analytic properties various other interesting causality results
can be stated. This is done partly in the next section where Hilbert
Schmidt operators are considered and partly in Appendix C wiiere

compact and (or) self-adjoint operators are considered.

4.8 Causality and Hilbert Schmidt Operators

In this section some causality properties related to Hilbert
Schmidt operators on a HRS are presented. This is done for two
main reasons: the importance of this type of operators in control
and communication theory ([ 35],[46 ],[ 47]), the fact that the

causality properties of these operatcrs enjoy a completeness which
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is not present in the general case (for exampie the canonical decompo-

sition theorem as stated in [48 ] is true for Hilbert Schmidt operators).

Suppose that T is a bounded linear operator on [H, Pt] and let

{xﬁ}, B € E, be a complete orthonormal set in H.

Definition 1. A bounded linear operator T is a Hilbert Schmidt (in

short HS) operator if the quantity ||T||

o 1
Il =1 ), [mx,|*} 2
Tl =1 3, s

is finite. The number ||T lis called the Hilbert Schmidt norm of T.

The following two lemmas state the two special properties of
HS operators which determine their particular structure with respect

to causalily.

Lemma 1 ([16] p. 1610). The Hilbert Schmidt norm is independent
of the orthonormal basis used in its definiticn. The set of ali HS

operators is a Banach space under the Hilbert Schmidi norm.

Lemma 2, The Banach space of HS operators is a Hiloert space. The
inner product between two elements T, S ¢ HS can be defined by

-

B, T>- ) < ,Txp>.
geE B

The causality structure of HS operators can now be clarified by

the following propositions.

PR PR A

e o ey W st 6t s A P R S ¥ T 2 e VY i TOaZe b P

3
P

%
v
4
.
8

4
.
’

3

a
3
f

e
* -4
R+

!
e
o

i

Vi
a
P

4
X
s
?
‘.
[
.



123

Proposition 1. The class of causal (anticausal, memoryless) HS

cperators is a Hilbert space.

Proof. Let CHS (AHS, MHS) denote the space of causal (anticausal,
memoryless) HS operators. Clearly from Lemma 2, CHS is a linear
inner product space. To show that CHS is a Hilbert space it has to
be proved that CHS is complete under the norm induced by the inner
product. Suppose then that {Ti} is a Cauchy sequence in CHS. Since
HS is compiete, the sequence {Ti} converges to an operator T ¢ HS
and it remains to be shown that T is causal. This follows from
Proposition 5. 1 and the well kncwn fact that the operator norm is
smaller than the Hiibert Schmidt norm. Applying the principle of
causal duality, it follows that AHS is a Hilbert space. From the

fact that MHS = CHS n AHS it is obtained that MHS is also a Hilbert

space. The proof is thus complete. <l‘

Proposition 2. The space of HS operators is given by the direct sum

of the three orthogonal subspaces of strictly causal, strictly anticausal

and memoryless operators.

Froof. Using he notation adopted in the proof of Theorem 1, let

4 A
CHS=CHS n (MHS) and AHS = AHS n (MHS) “where (MHS)' indicate.
the complement of MHS in HS. Note that CHE, AHS and MHS are

orthogonal subspaces.
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Let ux now prove that every T € HS has a canonical decomposition

7 = T(_T +T A + Ty
In view of Theorem 6. 1 this means that it has to be stown that the
integrals ﬁdPTPs, yIdPTPS, f dPTd? are well defined. From Lemma
B.3 in the Appendix, it is obtained that T, = fdPTdP is well defined.

By simple inspection the following relation holds

thdPTP® = [dP[T - T, |P°,

where [dP[T - T, JdP = 0. From Lema B.6 and Lemma B.4 it
follows that !ﬁdPTPS is well defined. By the principle of duality

MdPTPS is also well defined. If we now observe that T ¢ CHS,

C
T A and TM are

Té ¢ AHS and T,, € MHS, then we obtain that TQ’
mutually orthogonal.

To complete tne proof it remains to be shown that the spaces
CHS and AHS are made respectively of strictly causal and strictly

anticausal operators. To this purpose suppose that 1' ¢ CHS. If T

is not strictly causal then we can write T = 'I‘C + TM’ where Tce CHS

and TM # 0 ¢ MHS. This is a contradiction to the fact that QHS—is
orthogonal to MHS. We can then conclude that CHS consists of strictly
causal operators and, from the principle of causal duality, that AHS
consists of strictly anticausal cperators, The prooi oi the proposition

is thus complete. <]
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Proposition 3. Suppose that T is a #S operator. Then there exists

a unique HS operator T , z¢ {A,C,M, A, C} such that

o

T -7l = min T -7l

where "fa is any a HS operator and Ta is the @ component of T.

The proof of Proposition 3 is a direct consequence of Proposition
2 and is omitted for brevity. From the combination of th: statements

of Propositions 1 and 2 we have the folicwing theorem.

Theorem 1. Every Hilbert Schmidt operator has a causality canonicai

decomposition. The components of this decemposition are mutually

orthogonal.

4.9 Summary

The contents of this chapter can be summarized from two peinis
of view: refinements of the GRS results in Chapter 2 or generalization
of the causality study developed by Porter [43] and Sacks [46].

From the first point ot view, the present development snows how
concepts and techniques in GRS can be applieqd to systems defined on a
HRS. In the transition, the validity of most of the results can be main-
tained. This is illustrated by a number of propositions.

The "sum'" type representations which were so helpful in GRS
become "integrals" in HRS. This allows an efficient utilization of ihe

results con integral transformators due to mathematicians of the Russian
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school ([2'4}, [25])." Results from this latter study were used to show
that the existence of a canonical causaiity decémpos;ition does not carry
over in HRS. This is iliustrated by Theorem 6.1 for the case of general
operators and by Theorem 7.1 for t.~ case of weakly additive and linear
operators. The situation is somewﬁat different for 1ine¥1r operators
with a special analytic structure. In .particullai‘- every Hilbert Schmidt
operator has a canonical causality deébmposit'ion. Moreover, ,thel
comnonents of tkis decomposition can be viewed és mutually orthogoaal
(Thecrem 8.1).
In regard to the second point of vié*w. it shouid be emphagized
that in the casé of linear operators the present develobment coincides
"werbatim" with that in [48]. The bridge betwcen the :wo approaches
is provided nere by Propositions 9. 1-2, It is i:q'xportant to observe
however that the main result in [48] (fi.at is Theoren{ 2.3.9) isin
cori‘vadiction with our Theorem 7: 1. ' This is becaus:;e the propertie s
of integraf trax}sformators are not as extensive as it was assumed in

that study. o , C
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5. CAUSALITY, STRICT CAUSALITY AND STABILITY

S.1 Introductiqr}*

To rootivate the development of the present chapter, let us start

to consider the following linear integral Volierra equation

S
y(s) =x(s) - [ Kis,t)x(t)dt, se[0,) (5.1)
0

where y(.) is a known element of the Hilbert space L2[ 0, ), while
K(s,t) is a known kernel of the equation and x(.) s an unknown func-

tion to be computed.

As it is well knownf, if the following condition is satisfied
« o 2
[ K%s,t)dsdt <o (5. 2)
o o

then Equation (5. 1) has a unique solution for every ye L2[0, w) .

Moreover this soiution can be computed by the formula
S
x(s) =y(s) + [ K(s,0y(t)dt, te [0,). (5.3)
0

Here K(s,t) is callec the reznlving kernel of the Volterra equation

and it can be computed by the following expression

o o]
K(s,t) = ) KYs,t) (5.4)
n=1

where Kl(s, t) = K(s,t) and Kn(s, t) = K(s,-) * K" 1(.,t), n=23,... .

b
Most of the mathematical concepts used in thig chapter are
defined in Section 4. 2.
T See, for example, eference [ 34].
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In relation to Equation (5. 1), Gohberg and Krein [ 25] observed
that the kernel K(s,t), viewed as an operator K on the Hilbert space
Lz[ 0,0}, has the following properties:

a) Kis linear

b) K is compact

¢) K= thdPKP®.

Tile integral of c) has to be interpreted in the uniform convergence
sense defined in Section 4.1 and is computed with respect to the
family {Pt} of truncation operators on L,[ 0, ).

The above observation of Gohberg and Krein led to the study of

a "generalized linear Volterra equation" of the type

y=x-Kx (5.5)
where y is an assigned element of a given Hilbert space H, K is a known
operator on H and enjoys properties a),b),c) and x is an unknown ele-
ment to be computed. The result of this study was the following: under
hypotheses a),b), c) the solution to Equation (5. 5) exists, is unique

and can be computed by the formula

x=Yy + Ky (5. 6)

where the operator K is given by the following expression

K=+ ) K' (5.7)

i

-
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where K1 = K and, for n=2,3,..., K" is given by the composition of
K with K" 1,

The above results can be given a meaningful engineering inter-
pretation. To this purpose a brief review of current technical termi-
nology is in order. To Equation (5. 9) we can associate a closed loop

basic feedback system of the type in Figure 5.1. The operator K

is called the open loop system and the problem of investigating some

of the characteristics of the solution x in Equation (5. 5) is generally

called the feedback system stability problem.

The stability problem for systems of this type, or equivalent
types, has been studied by a number of authors (see for example
[11], [40], [52], [59], [ 67], [ 68]). In particular (Damborg
[ 11]) the basic feedback system is called stable if the operator
(I-K) is invertible, and its inverse is bounded causal and continuous®.

Using the terminology introduced above, the result offered
by Gohberg and Krein can be rephrased as follows: '"A sufficient
condition for a basic feedback system to be stable is that the open loop

system be linear compact and strictly causal',

'This result is very attractive in its technical conciseness.
Ho ever in stability theory the operator K is in general not compact.
The following natural questions then arise:
Q1: Can the above result be extended to the case in which K is linear

bounded and strictly causal but not necessarily compact?

*An operator T on a Banach space B is continuous if for any x¢ B
and € > 0, there exists a 6 > 0 such that |Tx-Ty[ <e¢ when |x-y| <.
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Q2: If this extension is feasible can it be carried further so as, for
example, to apply to some special class of nonlinear systems?

The following sections are devoted to the task of answering
these type of questions. A brief comment on their contents may be
helpful. The central results of the chapter are stated in Section 2
and are related to a special class of weakly additive systems. In
Section 3 these results are specialized to the case of linear systems.
Further results are inmiroduced in Section 4. Finally Sections 5 and

6 discuss respectively some applications and concluding remarks.

Figure 5.1 : Basic Feedback System

5.2 Stability and Causality

In this section we consider the questions Q1 and Q2 which were
posed in the introduction. As it turns out, it is possible to give a
completely affirmative answer to Q1. The proof of this result depends
very little on the linearity of K. This fact is rather remarkable if it

is considered that the proof offered by Gohberg and Krein for their

Ay il
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result was based in an essential way on the spectral theory of bounded
linear operators (see Theorem 6.1, p. 27 in |25]).

According to the proof proposed in this section, what seems to
be essential is the property of weak additivity which was already con-
sidered in Sections 2.7 and 4. 7. In view of this fact it is convenient
to reverse the order of consideration of Q1 and Q2. Thus while the
following results can be considered as related toc Q2, a formal answer
to Q1 is obtained as a corollary.

To start consider the following technical result.

Proposition 1. Suppose that K is a causal Lipschitz continuous* opera-

tor with Lipschitz norm less than 1. Then the basic feedback system

is stable.

Proof i) (I-K is invertible. We have to show that for evervy ¢ H
the equation

y=x - Kx (5.8)

has a unique solution. This is clearly equivalent to establishing exis-
tence and uniqueness of a fixed point x for the operator Ty :H—>H
defined by

Ty(x) =y + Kx.

* An operator T on a Banach space B is called Lipschitz continuous
if there exists a positive real number L such that sup [Tx - Ty [/ [Xx- y|
< L. Ls called the Lipschitz norm of 1. X£y € B
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Note that the operator Ty is such that for any pair XqrXg € H the

following relation holds

[Ty(xl) Ty(xz) | = {le - Kx2| <L [x, - x2|

where L <1 is the Lipschitz norm of K. We can then apply the Banach

contraction mapping theorem (see for example [11], Lemma 4.1, p. 84).

This theorem states that the desired fixed point x exists and it is unique.

ii) (I-K) -1 is bouv.ided and continuous*. It will clearly be sufficient
to show that (I-K) -1 is Lipschitz continuous. To this purpose observe

that for any pair X1 Xg € H, we have

lxl-Kx1:~ (xz—Kx2)|= |x1-x2+Kx2-Kx1]

> [x) - xo| - |Kxg - Kx; | > (1-1) [x; - %, (5.9)
where, once again, L <1 is the Lipschitz norm of K. Set
¥y = (I-K)x1
Vo= (I-K)x2 5.10)

From Equations (5.9) and (5. 10) and the fact that (I-K) is invertible,

it follows that for each Yp Yot H, we have

1 -1

v, Yol >(1-1) [0-K) Ty, - (-K) Ty, . (5. 11)

This impiies

*This result has been noted also by Zarantonello |70].
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-1 -
-8 Yy, - -8 7y, |

<1/(1-1). (5.12)
lyl" Yzl

We can then conclude that (I-K) -1 is Lipschitz continuous.

iii) (I-K) -1 is causal. Suppo.e that V1> Voo X, Xg € H and
x, = (I-K) Yy, x, = @-K) "1 5.13)
1 - yl’ 2 - YZ° ( -

To prove that (I-K) 1ig causal, it is sufficient to show that if Pty1 =
Ptyz, then Ptx1 = Ptxz.
Note that from Equation (5. 13) and the hypothesis that K is causal,

we can write

t t t., .t
Pyl-le-Ppr1
t ottt
Pyz-sz PKsz.
t t .
ForPy1=Py2 it follows that
t t t, .t t, .t
|P'x, - Pxy| = |P'KPx, - PKPx, |. (5.14)

From this equation we must have Ptx2 = Ptx1 because if Ptx2 # Ptx1
then we would obtain a contradiction to the hypothesis that the Lipschitz

norm of X is less than 1. <]

The above proposition allows to state and prove the central

theorem of this chapter.
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Theorem 1. Suppose that K has the following properties:

[}

continuous cperator and KC’ KC are bounded linear

a) K= KCNI + KC, where N, is a memoryless Lipschitz

operators;

b) KC is strictly causal and K, is causal,

C

c) the norm of KC is less than 1.

Then the basic feedback system is stable.

Proof. I-K is invertible. We have to show that for any elementy ¢ H

we can find a unique element x ¢ H such that the following equation is

satisfied

y = x - Kx. (5.15)

To start, let L be the Lipschitz norm of N, and suppose that IKCI =1-5,

where 0 <5 -{1. Then tor every pair X1,Xg € H we have

IN x

¢*1 " N¥al SLlx; - xp) (

I

Ich1 - ch2| <(1-9) ]xl - le. (.

Note that from the strict causality of K C we can find a partition Q

the ordered set v, Q = {to = Sorkpr bgrea by }, such that

=t
0
N

| 2 aP(&) K aP(&) | < 6/2L.

i=1 ek

This implies that

. 18)

17)

of

e . A WA 70 e b
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|ap(&,) Kg AP(¢,) | < 6/2L (5. 18)

for every i=1,2,...,N. From Equations (5. 16), (5. 18) and the fact
that N! is memoryless, it follows that for each i=1,2,...,N and any

pair XpXg € H, we have

|AP(E ) KON AP(Ex, - AP(E) KON AP(E) %, | =

= |AP(E) KGAP(E) NAP(E,) %, - AP(E) Ko AP(E) NAP(E) X, |

] - 6
<o INAP(E)x; - N &P(E)x,| < 5 [AP(E) x - AP(E) %,
This equatioa together with Equation (5. 17) implies that for each
i=1,2,...,N and any pair XyrXg € H we have

{aPi£) KAP(¢ ) x, - SP(;) KAP(E) xy|

|aP(£;) %, - AP(E,)x, |

< 1. (5. 19)

Observe now that to solve Equation (5. 15) is equivalert to finding

an x ¢ H such that the following equation is satisfied
£,
AP(£,)Y = AP(£;)x - AP(£)KP 'x (5. 20

where i=1,2,...,N. Indeed, if x ¢ H satisfies Equation (5. 15) then,
from the causality of K, AP(Z,i)x must clearly satisfy Equation (5. 20) .
Conversely, suppose that the element x ¢ H is such that AP(gi)x does

satisfy Equation (5. 20). Then we have
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N N N £
Y AP(£)y = ), AP(E)x - ). AP(:)KP x.
i=1 i=1 i=1

To see that this last equation coincides with Equation (5. 15), it suffices
to note that from the causality of K we can write
N gi N
), AP(£)KP 'x = ) AP(£)Kx = Kx.
i i=1

i=

For i=1, Equation (5. 20) becomes
AP(£4)y = AP(£4)x - AP(%4) KaP(£ ) x. (5.21)

By Equation (5. 19), AP(!’;I) KAP(gl) , the restriction of K to the Hilbert
space AP(¢ l)H, is Lipschitz continuous with Lipschitz norm less than
1. Proposition 1 can then be applied and there exists a bounded con-

tinuous causal operator T1 such that the element
AP(El)x = T1 AP(&l)y (5. 22)

(and only this element) satisfies Equation (5. 21).

For i=2, Eguation (5. 20) becomes

£,
KP(E)Y = AP()X - AP(£,)KP k. (5. 23)

From the fact that K is weakly additive (see Proposition 4.7.1) we can

rewrite this equation as follows

. oair m e tarrmn
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AP(£3)y + AP(£,) KAP(£)x = AP(£9) X - AP(£,) KAP(£,) X.

Again by Equation (5. 19), AP(f 2) KAP(&Z) , the restriction of K to the
Hilbert space AP(£9) H, is Lipschitz continuous with Lipschitz norm
less than 1. Proposition 1 can again be applied and there exists a
bounded continuous and causal operator T2 such that it provides the

following unique sclution to Equation (5. 23)
-’ Ap(gz)x = Tz AP(§2) [Y + KAP(;I)X]

where AP(&l)x is defined by Equation (5.22). By induction, having
computed AP(£;)x, AP(¢ 2)x, veey AP(gi_ 1)x, the solution to Equation
(5.20). AP({j)x, can be compuled as follows

i-1
AP(;)x = T; AP(£;)[y + K -21 AP(£;)x] (5. 24)
J::
where T, is a bounded continuous and causal operator.
N
The above recursive relations defire the element x = Z AP(E.) x
i=1
and this element is the unique solution to Equation (5. 15). We can

then conclude that I-K is indeed invertible.

i) (I-K) "1 s bounded. Suppose that x = (I-K) -ly. Note that for
eachi=1,2,3,. " ~ N, AP(¢) (I-K)’1 is defined by Equation (5. 24) .
Using the boundedne:s of K, and applying Proposition 1, it is easy

to verify that there exists a set of real positive numbers Ml’ M'z,

MH

1o Mi, Mg' such that

|aP(¢ ) 1-K) Ty | <M, Jy |
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and for i=2,3,4,...,N

. -1 .
|ap(z,) a-K) "ty | <M fy | - a0y [Pk

From this equation it follows that there exists a positive M such that
-1
[-%) "y | <Mly|.
It can then be concluded that (I-K) -1 is bounded.

iii) (I-K) ~1 s continuous. Observe that the continuity of (I-K)~ 1
is equivalent to the continuity of AP(£;) (I-K) i 1, j=1,2,...,N, where
{ gj} is, once again, the partition of v considered in part i). The
transformation AP(gj) (I-K) "1 s defined by Equation (5. 24) where
Pg'lx is a function of y. By Proposition 1, this transformation is

3

continuous with respect to y and P -1 1t follows that AP(gj )(I-K) 1

is continuous on y. But from Equation (5. 22) and Proposition 1, the
3 £

element P 1x depends continuously on y. Then also P 2x depends con-
tinuously on y and, by induction, P ) 1x depends continuously on y for

each j=1,2,....N. We can then co: clude that (I-K) "1 s continuous.

iv) (I-K) 1 is causal. By virtue of Proposition 4. 4. 1 it suffices
to prove that for any * ¢ v and any y ¢ H, the followirg relation holis

-1 -1t

Fa-g) "y = pYa-k) " iply. (5. 25)

Consider the partition Q' of v given by

Q' = {to= EO’£1’€2’""gi—l’t’gl’”"gN= too}
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where I ¢ o’ 51, cen gN} is the partition Q considered in part i) of this
proof and it has been assumed, without any loss of generality, that
te [£_; &) Use the following notations

SRS A B

where y1 =y and y2 = Pty. From Equation (5. 24; the following relation

holds

where g=1, 2. By inspection, irom this equation we have

3 £
1x1 =P 1x2

P

3 3
P 2}.1 =P 2x2
TETTT E o
p il pig2
Ptxl.—. tx2

This implies the validity of Equation (5. 25). The proof of the theorem

is at this point complete.

5.3 Stability and Causality for Linear Systems

All of the resu..s in Section 2 are valid in particular when the
open loop system under censideration is linear. In this case however

those resalts can be further improved. The following theorem not
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only guarantees the stability of the basic feedback system but it also
gives an expression for the computation of &he feedback operator
(I-K) "1. ‘Before stating this theorem it .is convenient to revisit

Propo,sitlon 2.1,

Proposition 1. If K is linear bounded and causal and it has norm less

than 1, then the basic feedback systefn is stable. Moreover, (I-K) -1

can be computed by the following Neumann series

-1 Qo |
(I-K) " =I+) K. (5.26) .
: H n:]_ .
Proof. Observe that from the fact that |K| < 1,we have thai
) X X n
lim ' | ) K'Y <lm Y |K|"=o0.
N>wo n=N N>w» n=N '

and therefore the right hand side of Equatién (5. 26) répresents a well
defined operator. In view of Propositidn 2.1, it remains then to be

! ]
proved that Equation (5. 26) is true. This is equivalent to show that

for any element y ¢ H'the element x,

S _n
x=(0+), Ky
n=1
satisfies the equation
y =X - Kx. l |
This is easily done hy inspection
20 e
n S |
y=y+ ) Ky-Ky+ ) Ky
. n=1 . n=1
0 o)
\' n n .
=y+ ) Ky-Ky- Ky=y.
n=i n?—.JZ <]

[ TR P S A e
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Theorem 1. Suppose that K has the following properties:

a) K= KQ_ + KC, where c is strictly causal and

KC is causal

b) K. and KC are linear and bounded

C

¢) the norm of KC is less than 1.

Then the basic feedback system is stable. Moreover (I-K) ! can be

computed by the following Neumann series
[00]
(I-K) " "=1+ ) K. (5. 27)

Proof. Clearly K satisfies the hypotheses of Theorem 2.1 and
therefore the stability of the basic feedback system follows from

that theorem.

It remains to be shown that Equation (5. 27) holds. To this

purpose, choose a partition Q = {t0 =E kT tw} of v such

N
~ that for all i=1,2,..., N we have*

|aP(§) KAP(g,) | <1 (5. 28)

and consider the result ot the next proposition, Note that from Pro-

position 2.1 and Equation (5. 28) it follows that Equation (5. 29) holds
for n=1. Moreover, by virtue of Proposition 2, Equation (5. 29) holds
also for n=2,3,...,N. The proof can then be concluded by observing

that for n=N, Equation (5. 29) coiacides with Equation (5. 27) . q

*Note that in the development of the proof of Theorem 2.1 it was
shown that this choice of Q is always possible.
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Proposition 2. Suppose that the partition Q satisfies Equation (5. 28)

and that the hypothesis of Theorem 1 are satisfied. If for n=1,2,...,N,

we have
Pgn(I-PgnKpgn)-1P£n= Pgn s '§1 (Pg'“xpg“)j (5. 29)
j=
then we have also
P£n+1(1_p§n+1KP£n+1)-1 P£n+l= P£n+1 . ?i (P£n+1KP£n+l)j. (5.30)
=1

Proof. Let us stari by introducing the following simplification in

notations

§ 3
P-P" Q=p™ A_q-p

and assume that Equation (5. 29) holds. We have to prove that Equation
(5.30) is also valid. To this purpose consider any element y in H and
let Qx and Px be defined by the following expressions

) le

Px = P( - PKP) 'py.

Qx = Q(I - QKQ)

Note that

Qx = Px + Ax

where, applying respectively Proposition 2. 1 and Equation (5. 29) we

have:

0 .
AX = Ay + AKPX + E [ AKA] (y + AKPx)
j=1
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and

o0 .
Px=Py+ ) (PKP)ly.
=1

It follows

o0 .
Qx = Qy + _Zl (PKP)ly
]:

w . .
+AK[Py + ) (PKP}y] + ) [aKka]ly
=1 =1

0 . o0 .
+ ) [ska]'K[Py + ) (PKP)Yy].
j=1 j=1

From the linearity of K and a convenient rearrangements of the

terms on the right hand side of this equation we obtain

Qx=Qy + § [(PKP)] + (aKa)’
=1

+ ) (aKa) Ik (PKP) "]y (5.32)
q+m=j-1

where q,m € {0, 1,2,...] and the following notations have been used
(aKa)® = A and (PKP)° = P.

Suppose now that for each j=1,2,... we have

Pkp)) + (aka)) v T (aky) IK(PKP)™ - (QkQ)).  (5.33)
q+m=j-1

This equation and Equation (5. 32) would imply

0 .
W=y ) (QKQ)’
J:
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and with an obvious change of notations this last equation coincides
with Equation {5.30). To complete the proof of the proposition it
remains then to check the validity of Equation (5. 33) for j= 1,2,3,....
To this purpose verify by direct inspection that Equation (5.33) holds

for j = 1, that is
PKP + AKA + AKP = QKQ. (5. 34)

From this equation and an induction argument it is easy to verify

that
®xp) s k)L Y (aka) Wk(PRP) ™
q+mn=j
= [(PRPY + (akA)T + Y (akn)9K(PKP)™|QKQ  (5.35)
q+m=j-1
where j=1,2,... . This equation and Equation (5. 34) imply that

Equation (5. 33) is valid for j = 2, that is
(PKP) 2+ (ak8) %+ ) (aka)IK(PKP)™ - (QKQ) 2.
q+m:.1
From this and Equation (5. 35) it follows that Equation (5. 33) is also
valid for j = 3. Proceeding by induction we can conclude that Equation

(5.33) isvalid for all j=1,2,3,... . <J

As an immediate consequence of Theorem 1 we have the following

corollary. This corollary provides a direct answer to question Q1 in
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the introduction. It also has a meaningful physical interpretation:
under certain circumstances the stability of the feedback system can

be secured by an appropriate reduction of the gain of its memoryless

part.

Corollary 1. Suppose that K has the following properties:

a) K= KQ_ + KM where KC is strictly causal and KM

is memoryless

b) KC and KM are linear and bounded

c¢) the operator norm of KM is less than 1.
Then the basic feedback system is stable. Moreover (I-K) -1 can be

computed by the following Neumann series

-1 S on
(I-K) "=1+ ) K.
h=1

Other interesting implications of Theorem 1 are estaolished by
the following two propositions. Proposition 3 can often he applied in
practical situations. Proposition 4 states some conditions for the

input-outpur equivalence of the systems in Figure 5. 2.

Proposition 3. If K is a linear, compact and causal operator on a
HRS with a continuous resolution of the identity, then the basic feed-

back system is stable.

Proof. From the hypotheses and Lemma B. 3 in the apoendix, we

obtain that f dPKdP = 0. ¥rom Proposition 4. 7.7 it follows that
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k is strictly causal. At this point the desired result follows from

Theorem 1. <]

Proposition 4. If T' and T" are linear bounded and strictly causal,

and T"i" = T"T' = 0, then
' " -] ) ' -1 ' -1
(I-T-T') “(T'+T") = (I-T") "T' +(I-T") "T".
Proof. Applying Theorem 1 we obtain the following equations:

-1 2 n
=1+ ) (T'+T")

n=1

(I-T'-T")

n~1_ i i
(I-T) " "=1+ ) (T"
I

-1 a n
(I-T") "=I+ ) (T
n=1

Using the fact that T'T" = T"T' = 0 we have.
(T'+T") n = (T') n + (T") n.

Hence:

0
-1 " Yrary = Y (T "
n=1

n
T8

0
"+ Y ("
N=

1 1

-1

(I-T") "T' + (I-T")-lT".

The proof is thus complete. q
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T"

T'

TH

Figure 5.2 : Fquivalent Systems considered in corollary 3
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5.4 Some further results

The resuits in the previous two sections provide a clear indication
of the technical convenience which derives by associating the mathe-
matical development of the theory of non-self-adjoint operators of
Gohberg and Krein ([ 24 ],[ 25 ]), with the study of causality in Hilbert
resolution spaces (Chapter 4 and [ 41],[42],[48 }) and with the stability
theory framework proposed by Damborg ([ 11 ]). This convenience is
further substantiated by the fact that Damborg's development can be
directly rephrased in terms of Hilbert resolution spaces. When this
is done a substantial gain in generality is obtained. It suffices to note
that most cf Damborg's resuits become immediately and simultaneousiy
applicable to continuous time, sampled data and hybrid systems.

It is to be expected that the extent of the results arising from
the above three independent developments is not limited to those
already discussed. To justify at least in part this expectation, some

further results are introduced.

t omrvr——————— - ar | was s
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The next theorem applies when the hypotheses of Theorems
2.1 and 3. 1 are not readily verified. In this case it is often pcssible
that the invertibility of (I-K) and the contimuity of (I-K) - can be
established through subsidiary physical o: mathematical arguments
(see for instance { 11],{12]). To insure the stability of the basic
feedback system it remains then to verify that (I-X) ~ 1 is czusal.
The following theorem states that, under some appropriate hypotheses,
a sufficient condition for this verification to be successful is that the

open loop system is "almost" strictly causal.

Theorem 1. Suppose that T satisfies the following conditions:

a) T= TC + TC’ where TC and TC are respectively strictly

causal and causal operators

b) T(_? is bounded and TC

is weakly additive and has Lipschitz norm less than 1

is Lipschitz continuous

c) T

d) I-T is invertible and (‘I-T)°1 is Lipschitz continuous,

Then (I-T) 1 is causal.

Proof. Since T, is strictly causal, there exists a seqaence of opera-

C

tors

§i-1

0
a2

AP(t.) T

=1
2 o,

such that {I "} — To. Clearly {1 *+ TC} — T. For each operator

I
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Q,
I '+ T, and any element v ¢ [H, Pt] the equation

C
Qi
y=x-1 x-TCx

has the unique solution x defined by the {oliowing recursive relations
-1
AP( )% = AP(£,) (I-T,.) '8P (£,)y

AP(¢,)x = AP(£,) <1-'rc>'1[ AP(,)y +

AP(t)) = AP(E) (1T ) [4P(E) Y +

;. Q. &
+ 8P(£) T P . AP(£)T ‘P 4

3 9 §
+ AP(£\) T, P N-1, + AP(£)T P N-1.1. (5. 36)

These relations follow from the hypotheses that the Lipschitz norm of TC is

less than 1 and TC is weakly additive plus the application of Proposition
Q.
2.1, From Equation (5.36) we can see that (I-I . T(‘) is invertible

Q.
! “1is causal. From Proposition 4.4. 1, to

and its inverse (I-I - T

c)
prove that (I-T) -1 is causal it is sufficient to show that if y is any

element of [H, Pt] and t € 1, then

t -1

) At

y = Pl1-1) "'pYy

Assume fors a moment that for every y € [H, Pt] the following relation

holds
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& -1 1.
-1 - 1) Ty +(-T) Ty [ >0 (5.37)
Then it follows
L S L SR |
{F (-1 - Te) y} —=>P(-T) 'y and
Q,
fpar - T “1pt s pbe-1) 1pYy.
€ -1
But (I-I - TC) is causal for each i=1,2,... . Hence
Q Q.
t i -1 ot i . -1t
P(I-1 *~ TC) y=P (-7 - 1C) Py
and consequently
pla-m) Yy = pa-m) vty

It remains to be shown that Equation (5. 37) is true. Assum? the con-

trary. Then there would exist a positive real € and {Tn} a subsequence
Q.

of {1 '+ TC} such that

-1 -1
(@-T ) "y - {-T) y| e, (5. 38)

In the sequel we will show that this equation canrot hold. This will
mearn that our assumption is absurd and hence that Equation (5. 37)
must be valid.

To start, denote { (I-T,) 'ly} and (I-7T) -ly respectively by {xn}

and x and observe that

y=x, +Tx =x+Tx (5.39)

n
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Note also that from the boundedness of {I-T) -1, it follows that
|(I—Tn) '1| is uniformly bounded and consequently the sequ 'nce {xn}

is also uniformly bounded, that is
-1
x| = [@-T ) y| <Mly| (5.40)

where M is a positive number conveniently chosen.
The proof of the uniform boundedness of {(I- T,) -1} goes briefly
as follows: by the boundedness of ([-T) -1 there exists a positive real

m such that for every x € [H, Pt] the following relation holds

J&TT)ILL > 2m.
x —

Ii we now choose an integer N such that n > N implies |T—Tn| <m,

then for n _>_ N we have

(-7 ) x| S |(1-T) x| (T-T ) x|
TR 2 TR TR
|(I-Tn)XI -1 1
It follows—]—ﬂ——— > m and this implies I(I-Tn) | < — =M. This

means that {(I-T o) -1} is uniformly bounded.
To proceed with the proof of Equation (5. 37), consider now the
sequence {yn} given by v, = (I-T) X - Observe that from Equations

(5.39) and (5.40) we have

i\t

ly,-v] = [@-T)x, - (0-T x|

[(T+T ) x| <M|T+T, | [v]. (5.41)
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Note also that we c2n write
@)ty - @ = e Ty - e Ty
From this equation and Equation (5. 38) it follows that
Yy - a-m 7y | >
and applying Equation (5.41) we obtain the following relation

Yy - @Yy | i
> N .
[y-y,] = M|T-T [ [y]

Since the sequence {T } converges to T we have that |T-T nl can be
as small as desired. As a consequence, the above equation implies
that (I-T) -1 is not Lipschitz continuous. This is a contradiction to

hypothesis d) and it can then be concluded that Equation (5. 38) cannot

indeed hold. q

Corollary 1. If T is strictly causal and (I-T) is invertible with (I-T) -1

Lipschitz continuous, then (I-T) “1is causal.

The rest of this section illustrates the fact that the results of
Sections 2 and 3 can often be applied even when the hypotheses on the
operator K are different frora those assumed in the proofs. In par-
ticular, Propcsition 1 considers a situation where ¥ is not weakly
additive (Figure 5.3). Proposition 2 considers a double loop feedhack
system (Figure 5.4). Finally Proposition 3 treats a case where K

is not strictly causal,
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Figure 5.3 A Basic¢ Feedback System Witnh Non-
weakly Additive Open Loop

Figure 5.4 A Double Loop Feedback System
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Proposition 1. Suppose that K = NIT where N2 and T satisfy the

following conditions:
a) T is linear bounded and strictly causal
b) N ' is memoryless invertible and both N 2 and
(N !Z) 1 are Lipschitz continuous.

Then the basic feedback system is stable.

Proof. Observe that K is not necessarily weakly additive and
that Theorem 2.1 is not directly applicable., From Theorem
2. 1 it follows however that the operator (I-TN Q) is invertible and

(I-TNQ) -1 is bounded causal and continuous. From here it is easy

-1

.to veridy that the operator Y = N (I-TNQ) -1 (N is also bounded

[ Q)
causal and continuous. Moreover Y is invertible ana its inverse is

given by the following relation

-1

Y = [NQ(I-TNQ)-I(NQ)_I] -1, N,(I-TN)) (N

-1 .
ﬂ) = (I-I\QT).

g
From the above equation it follows that (I-NQT) is invertible and its
inverse is bounded causal and continuous. This means that the feed-
back system under consideration is stable. The proof of the Propo-

sition is thus complete. q

Proposition 2, Consider the system in Figure 5.3 and suppose the

following:
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a) K and T" are linear and bounded, T' is Lipschitz
continuous
b) K is strictly causal, T' is memoryless and T'' is causal.

Then the system under consideration is stable.

Proof. By Theorem 3. 1 the system in Figure 5.4 is equivalent to the
system in Figure 5.5, where
X _n
K= ) K.
n=1

Observe that the system in Figure 5. 5 is equivalent to the system in
Figure 5.6. Moreover from the strict causality of K and Theorem
4.4.1, the operator IKKT" + KT' is strictly causal. The desired
result follows at this point from a direct application of Theorem

2.1.

Proposition 3. Suppose that T is linear and the basic feedback system

is stable for K = T. Then the basic feedback system is also stable

for K=T + f{", where K = KCNQ and KC, NQ satisfy the hypotheses of

Theorem 2.1.

Proof. Observe that, denoting y and x respectively as input and output,
the systems in Figures 5.7 and 5. 8 are equivalent. This can he seen

by means of the following equations

b ot e s
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TH el

Figure 5.5 Basic Feedback System Equivalent to the
Double Loop Feedback in Figure 5.4

’-_-.- T'KT”

L o T'IKKT" |

Figure 5.6 Feedback System Equivalent to the
System in Figure 5. 4
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X=Y +Kx + Tx
(I-T)x = y + Kx
x:(I-T)‘1y+(I-T)'1Kx

By hypothesis (I-T) -1 is linear causal and bounded. Applying
Proposition 4.4.4 it is immediate to verify that (I—T)—LK satisties
the hypotheses of Theorem 2.1. It follows that the inverse of ;
(I-(I-T)-lf(') is well defined. Moreover (I—(I-T)—lff)"1 is bounded |
causal and continuous.

By the equivalence of the systems in Figures 5.7 and 5. 8 we

obtain the following relation

1-%-T=0-1) 101" %
It follows

-1

-8 s - % " leem L

Hence the inverse of (I-ff-T) is well defined and it is bounded causal

and continuous. The proof of the Proposition is thus complete. Q

5.5 Applications

The theoretical development in this chapter has a wide range of
applicability in the area of functional analysis and stability theory.

In classical functional analysis Theorems 2. 1 and 3. 1 not only

offer a unified proof and a physical interpretation for various and
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'3

Figure 5.7 Feedback System Ccnsidered in Proposition 3

+
— (I-T)'1 ——»Q—a- ;G —— (I-T)'1
+

Figure 5.8 A Feedback System Equivalent to that in
Figure 5.7
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familiar results related to linear and nonlinear integral Volterra
equations, but they also allow a ready extension of some of those
results.

In modern functional analysis, Corollary 4.4 gives, by a proper
reformulation, an important result which was found by Brodskii, ‘4
Gohberg ard Krein. This is Theorem 6.1 a),b) p. 27 in [ 25]. Here
we emphasize that while the prcof offered by those authors was based
on a sophisticated result from the theory on the stability of the spec-
trum of bounded linear operators, no use of that theory was made in
this development.

in regard to stability theory, this is a most fertile area of appli-
cation. Tt should be noted that Theorem 4. 1 appears to fit nicely in
the general theoretical framework which was proposed by Damborg
in [ 11]. As an illustration of some aspects of the applicability of
Theorems 2. 1 and 3. 1, it is helpful to discuss the stability problem

for some simple examples.

Example 1. Consider the system in Figure 5.9. Suppose that this
system is described as follows:
i) NQ, T', T" are Lipschitz continuous operators on the space
of square integrable functions L2[0, ©) ;
ii) NIZ is memoryless, T' and T'" are linear and causal

iii) T' (or T') is compact.
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The theory of the previous sections can be applied to show that
this system is stable. This result does not depend on the particular
description of Nﬂ’ T' and T' as long as they satisfy i~ii-iii. However
the reader with a special taste for concreteness may suppose the
following:

N2 is the nonlinear gain of a memoryless amplifier
with characteristic curve indicated in Figure 5, 10

R represents a linear time invariant stable dynamical

system with a transfer function of the type

N n M m
Gy(s) = ) as / ). b s N<M
n=0 m=0
™ is an operator defined as follows: if y = T"x then
t 0 W g
y(t) = f K(t, s)x(s) ds, where f f K (t, s) dtds < co.
0 0o
Consider the Hilbert resolution space (HRS) [LZ[O’ ©), Pt] which
was described in Example 4, 2. 1 and recall that the resolution of the
identitv in this case is continuous. Clearly, the problem of the study
of the stability of the system under consideration can be embedded in
the stability study of a system in this HRS.
The operators N, T', T" can be viewed as operators on [LZ[O’ ), Pt],

Since T'" is linear compact and causal and R is continuous, Proposition

4.1.8 can be applied and it is obtained that T'' is strictly causal. From
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e o e e

e i bt s e v

Figure 5.9 : Feedback System considered in Example 1.

f(x) A

Figure 5.10 : An admissable nonlinearity.
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the application of Proposition 4.4.4 the operator T'T" is strictly
causal. We can then apply Theorem 2. 1.
From here it is obtained that the system under consideration

is indeed stable.

Example 2. Consider the system in Figure 5.1.1. Suppose that this
gystem is described as follows:
i) N,,T', T", T are operators on the space of real squars
integrable functions L2[0, ) ;
ii) Nﬁ, T', T" and T are described by the followin: relations;
a) (Nﬁx) (t) = £(x(t)) where £f(.) is a Lipschitz ccntinuous
real function
a0
' - -
b) (T'x)(t) = gnx(t Atn) where Atn >0, At > Atn-l and
n=0
{gnt €2y
¢) T")(t) = [g(t-9x(n) drwhere g(t) € L,[0,);

d) (Tx)(t) = h?t)x(t) where g(t) € L,[ 9, ©).

2

As in example 1, the theory of the previous sections can be applied
to show that this system is stable.

Consider again the Hilbert resolution space [L2[ 0, ), Pt] defined
in Example 4. 2.1, Observe that the operator N 0 is memoryless and

the operator T(Gl+ Gz) is linear, causal and bouaded, Assume, for

a moment, that
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JAPT(T* + T™) dP = 0. (5.42)

Then by Theorem 4.4. 1 the operator T(T'+T") is sirictly causal.
Corollary 2. 2 can then be applied and it can be concluded that the
system under consideration is stable.

In the sequel the validity of Equation (5.42) will be proved. To
this purpose it will have to be shown that given any ¢ > 0 a partition
Q ofv=[0,0), 2 = {o= Egrp oo fy= o}, can be fourd such

that for any other partition Q' = {0 = Egpt'ptlogee o b= w0}, with

Figure 5.11: Feedback System considered in Example 2.
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the property Q' > Qe, the following relation holds
n
| Y, AP{E')T(T' + TV AP(E",) | <e.
i=1
Choose an element £ € [ 0,c«c) such that
|0-P%) Ta-P%) | < /2T + 7).
Clearly then
|a@-P5) T(T" + T*) (I-PE) | <e/2. (5.43)

3 3
Consider now the operator Pg TT'P. Hx,y¢ LZ[O’ w) and

y= PgT T ng, then

t t
y(t) = [h(t)gt-s)x(s)ds= [K(t,s)x(s)ds
(0]

0
where k(t, s) = h(t) g(t-s) fort <¢{ and s<t
=0 fort >¢ or s>t

The kernel K(t, s) has the following property

o

|2 cE < .

® ®
[ [K°,s)dtds < |h(*) |+ (css sup g(*})
0 o

It follows that the operator P‘ET T PE is Hilbert Schmidt. As it is
well known, Hilbert Schmidt operators are compact [ 16].

By Proposition 4, 6. 5 it then follows

fap PE T T PEaP - 0.
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- 0.0.0 0
Then there exists a partition @, = {go, EgrEgs -+ s b, = 0} such

that for Q' = {0= 9 A IR «}, Q' > 2, the following
relztion holds

b - .

|3 PEYP TR RE | < o2 (5.44)
1=

Construct now a partition £ = {E Epipto---rkp= x} with the

following properties:
Q >R, 5 Q, and lg, - gi_ll < Aty if g <E.

Suppose that @' = {0= ¢' , = x} is such that &' >Q .

O)F:'l’ 5'2’ ***3 E'n
Then from Equations (5.43) and (5. 44) it follows

n' n - <
| S AP ) T(TST) ARG [<| Y AP PoTTPt AP | +
=1 -1

L1-P%) TT(1-P%) | <e

where it has been takon into account the fact that

n — -
1\ . E " g [] H

| ¥ AP(£7)P° TTUP” AP | = 0.
i=1

At this poirt it can be coicluded that Equation 15. 42) is indeed true.

<

Some connections betw on stability and cavsality have been

_5_.}3 &m‘.max_'z_

investigated. To this purpose an "abkstract” closed locp fesdback

system has been considered. The zpp~nach adopted is vased on the
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axiomatic framework of Chapter 4. This ailows a development which
is simultaneously applicable to continuous time, sampled data and
hybrid systems.

i‘articular attention has been given to some implications of the
"gtrict' causality" property of an open loop system over the stability
of tha closed loop system. The basic results are contained in Theorems
2.1and 4.1. Theorem 2. 1 represents the main contribution of this
chapter and states that strict causality of an open loop svstem plus
some other ''reasonable' conditions, guarantees the stability of the
clos.d loop system. Some of its praclical applications are illustcated
by two concrete examples. At the present time, Theorem 2.1 is con-
fined to a special class of "weakly additive' systems. Applications to
more general classes of systems have however also been considered.

Theorem 4. 1 establishes, under appropriate conditions, a con-
nection between causality of an open loop system and causality of the
closed loop systera. This resait appears to fit nicely in the siability
problam theoretical iramework which was provosed by Damborg in

(11




APPENDICES

A. Some:Examples of Time Related Behavioral Patterns and
Engineering Applications

In this appendix we discuss at some length three selected engi-
neering examples. The objective is to supply the reader with some
sort of "proving gfound" for some of the ideas and abstract con-

siderations in Section 1. 1.

Example 1. Consider the electroaccustic system cousisting of a
loudspeaker and a microphone located in a reverberant chamber
(Figure A.1). A voltage V1 1s applied to the coil of the loudspeaker
and. the voltage V o is measured at the microphone. Ignoring transients,
this device can be described as a one input-one outbut linear time

invariant system.

’
LT — 4 TN
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() 7 Yo
o \
i { v
vy v

Fuyure A. }
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The output V0 can be viewed as the combination of two signals.
One signal is due to the direct acoustic wave from the loudspeaker;
the other is due to cumulative reflections from the walls. Thus F,

the frequency response of the overall system, can be expressed as:
F(jw) =F (W) + Fo(iW)  We (-0, 0) (1)

where F. represents the idealized direct transmission and Fz(jw)

1
“takes into account the influence of the walls.

The frequency response F can be obtained by a combination of
experimentai and analytical results. For example if the speaker-
microphone complex is located in an anechoic chamber, then to a good
approximation F2 =0 dF= Fl' Thus the identification of F1 by
experimentation is feasible. Suppose however that an anechoic chamber
is not available or that the chamber available is not completely anechoic.
Then F, £ 0 and the problem of extracting F, from F arises [15].

Under normal experimental conditions, the following assumptions

1; At2=
is the length of the path of the direct wave

are satisfied: the loudspeaker has a finite memory, At

x2~x1/c > Atl, where: Xy

from the loudspeaker to the microphone and x, is the siortest path

1
length of the various reflected waves. The constant c is the speed of
sound. In the following we show that the problem under consideration

can be viewed as one of identifving the anticausal part of a linear system.
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Suppose that F has been experimentally evaluated. Multiply it by
ejWAto, with At1 < Ato < Atz. From Equation (1) we .obtain

F(w) = ™A (u) = VAtF (w) + VA0 F (W) =F{jw) + F(iw).
It is not difficult to convince ourselves that by virtue of the above
assumptions, El is the Fourier transform of an anticausal operator
and F 9 is the Fourier transform of a causal operator. Clearly then
the prcblem of compiting Fl can be viewed as the problem of identifying
the anticausal component of F.

More specifically, the theoretical questions related to canonical

decomposition become of paramount importance.

Example 2. Consider an operator, T, on the space of square integrable
functions, Loy[a,b]. To compute y(t)= [ Tx] (t), for a givenx ¢ L2[ a,b],
one might consider the use of a hybrid computer. If T is causal it may

be advantageous to simulate T on the analog part of the hybrid computer
as this generally leads to a greater speed of computation. If T is not
causal then this procedure is not open to us. However, suppose one
cculd decompose T into a causal component TC and an anticausal com-
ponent T A Note that every anticausal system can be viewed as c.ausal
if we change the direction in which the tilne flows. It iollows then that
use of the analog part of the hybrid computer might be salvaged by a
decomposition and a partial time reversal,

To clarify suppose that y - K * { where K and { are represented

in fieure A. 2. Qur syvstem is not causal: however we can write;

 apt———
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K(t)

N£()

Figure A. 2

Ko(t)

/

v

Figure A.3
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K(7) = KA(T) + KC(T)
where
KC(T)= K(7) for 7> 0, K (7)=0 for 7 <0

K\(7}=0  for 7>0, K (7)=K(7) for 7<0.

Clearly K, is anticausal and K- is causal (see figure A.3) and the
output y can be expressed hy

y =Ky *f+ Kc*f

To compute y taking full advantage of the hybrid computer we can
now proceed as follows: i) compute the outputs yl(t) and yz(t) of the
two causal systems KC( 7) and K A(—1) with inputs respectively f(t) and
f(-t). ii) recognize that yl(t) = (Kc* 1)(t) and y2(—t)= (Kp * f)(t) and
hence compute y(t) = yl(t) + yz(-t).

Example 3. Let us consider a quality control problem related to the
acceptance or rejection of brake lining material in the automotive
industry [ 101, | 22]. The quality control procedure consists of the
following:

i) Some laboratory tests are run on the brake lining material

ii) The results are compared with some nominal results

1ii) A decis.on is made concerning the continued use of the materaal

in the production line,

The variations on this quality contrcl procedure depend on

a number of factors, Most important among tnese factors are the

- e e par——on




choice of the type of tests to be run and the criteria of interpretation
to be assigned to the results. A simplified version of one cf the most
widely adopted solutions consists basically of three steps. A small
sample of the brake lining material is inserted in a chromatographic
machine (first step). This test generates a response voliage, x(t).
The function x, which is recorded as a chart, has a behavior which
depends on the physical and chemical properties of the sample.

Typically, x appears as in figure A. 4 where t and t, indicate respec-

0 f
tively the initial and terminal time of the test.

'To analyze the test result, a straight line, y(t), (called the drift
line) is superimposed on the graph of x (second step). The purpose of
y is to take into account undesirable effects which are due to a number
of sample independent sources. In order to achieve this purpocse the
drift line must have the following properties: a) the difference x(t)-y(t)

-,

has to be positive for every te [to,tf] ;tb) the area . between the
curve x(t) and the drift-line y(t) (A= of L1x(t) - y(H)] at) is minimized
over all straight lines satisfying condition a).

In the iinal test step, the areas of well-defined veaks, i.e.,
Pl, Pz, ces ,PN, are computed and it is established whether each peak
area is within a certain predetermined tolerance (third step). Frcm 2
functicnal analysis point of view, the overall data reductioa operation

can be viewed as a transformation, 7, mapping a special class of con-

tinuous functions in C[to,'f! into functions in (2'(n). Note that
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according to extensive experimental results (which indeed constitute
the essential foundations of the overall approach) the seccnd step can
be performed correctly only after all of the curve x is known, From
this observation it follows that 7 is not a causal system.

Until recently the conventional test procedure was to initiate
second and third steps after the test was run. In this way the delay

time, to’ between test initiation and test conclusion is given by t0=

t1+ t2+t3, where t, is the time necessary to run the test, t, is the

time required to draw the drift line, and t3 is the time needed to com-

pute Pl,Pz, ceey PN. Ueing standard laboratory techniques, it turns

out that f3 is usually neglectable and that t1 and t2 are both of the

order of 50-60 minutes. Hencet o is in general of the orde. of 100-120
minutes. In the mean time the production lines continue usir3 the
material under test. As an alternative procedure, observe that the
mapping 7 can be viewed as given by the composition of two mappings
7, ané¢ n,. The mapping =

1 2 1

L
T, transforms x into { P"i} where P'l and P"i indicate the areas in

figure A.4. Clearly {Pi} = {P'i} - {P"i}, hence 7 =17

transforms x intc { P'i} and the mapping

l-n2: further-

more, it is not difficult to recognize 7, as a causal mapping (according

1

to our development 7_ can be easily 1dentifi~d as a "crosscausal’” mapping) .

2
To implement the quality control test, we .0 now adept the

following scheme: compute {P'i} while we run the test, then af.er

the test is run compute {P"i} and finaily compute he difference

' e 1
!pv .- lp .
1 1
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The amount of time required for the overall data reduction
operation in this procedure is given by‘f:“t'1 +'i:'2 where: i) 'fl is
equal to tl; 72 is the time required to compute { P"i} and to evaluate
the difference { P} - {P"}. Ingeneral it turns out that 'tvz is of the
order of 10~12 minutes. It foliows that this second scheme provides ~

a consistent economy of time with respect to the original one.
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Area Pi = Area AiBiEiFi

s |
Area Pi = Area AiCiDiFi
Area P!' = Area B.C.D.E.
i ) i Il |




B. Some Selected Results on Integral Transformators

In this appendix some selected resu'ts on integrals on Hilbert
resolution spaces are presented and briefly discussed. These results
can be found in [25] and the reader is referred to that reference for
procfs and further details. A word of warning may 32 in crder: the
various original lemmas and theorems have not been reproduced in a
faithful form. Terminology and notations have been regularly modified
and, whatl is more serious, rarge and scope of applicability of some
results have, on occasion, been arbitrarily limited. The main justi-
fication for doing this is the desire to make these results best suitable
for a direct use in the various sections of this stud;.

To start, the first two results establish some usefui connections

among various types of integrals.

Lemma 1. ([25]p. 20). For the convergence of the integral f dPT(s),
s s
it is necessary that for any gap P 2_ P 1 in R the following rclation

holds

2. .°1,
(P “-P ") [T(sz) - T(sl)]z 0.
Moreover if tiie integral f dPT(s) is well defined then
[drT(s) = 1hdPT(s) = MIdPT(s).
Lemma 2. Suppose that T is a linear bounded operator on [H, Pt].
If ¥dPTP® and {dPTdP are well defined then thdPTdP is also well

defined. Moreover ke following relation holds

[ 177 _
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¥dPTP® = thdpTr® 4 [dPTdP.

The next lemm: shows that in the case of linear compact operators,

the transformator [dP[ ]dP is always well defined.

Lemma 3. ({25],p.23 . Let T be  linear compact operator on [E, Pt].
Then [dPTJP is well defined and equal to

1 +
2, (By'= Py ) TP - Py
iew

where (Pi+, Pi-) 1s the sequence of gaps in R. In particular if R is

continuous then f dPTdP = 0.

Lemma 4 establishes the fundamental connection between trans-
formators type f P3Tdp (which were used by Saeks) and transformators

type fdPTPS which are adopted in the present development.

Lemma 4. ([25], p. 26). If T is a bounded linear operator on [H, Pt]
and the integral [P°TdP is well aefined then the ittegral [dPTPS is

also well defined. Moreover, the follcwing relaction holds
mpS . S
fdpTP” - T - [PSTap.
The next two Lemmas 5 and 6 play a key role in regard to the
question of canon' i causality cecompusition.

Lemma 5. {[25], Lemma 4 1 . 104). For any orthogonal system
<I>]. (3=0,+1,+2,...) in a Hilbert space H, here exists a resolution of

the idertity R such that {or every seli-adjcint operator
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+0
T= A (-, D).
L, ORY

satisfying the conditions
/\j >01=1,2,...), A]. <90 (j=6,-1,...)

+0
A

) Ao 4=,
jz":oo i’2j-1

the mtegral Y = f PTdP diverzes in the strong seise. Conversely for
any contiruous resolution of the identity R = {Pt} there exists an
orthonorma!l system <I>] (j=9,+1,...) sucn that the above conclusions

hold for the specified ciass of selt-adjoint operators.

Before stating Lemmea 6 it is convenient ic introduce the following

definition.

Definition 1. An operater T is called a Gw operalor if it satisfies the

following conditions:
ij T is compact

S
ii) the spectrum of (TT*) l 2, { sj(T) }, satisfies the condition
0

T @)t sim <.
j== y

Definition 2. If T e Gw then the expression

TR
ITi,=
J=-0

o}

(2-1)" 1 s,(T)

iscalled G norm of T.
—w
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Lemma 6. ((25] Theorem 4.1, p. 106). Suppose that T € G_is an
operator on a [H, Ptl and
@*-P)TP*-P) =0

for every gap (P+, P) inR. Then the integral f PTAP is well defined

and it has the precise bound

| ferap| < |7,




C. Some Additional Resulis on the Causality Structure of Linear
Systems in HRS

This appendix can be viewed as an additional section to Chapter 4

and gives some connections between some causality properties of linear
systems in a HRS and some of their analytic properties. In particular,
Propositions 1, 2 and 3 illustrate some interesting relations between
causality properties and compactness. Propositions 4 and 5 regard

the existence of a canonical causality decomposition for G . operators. *

Proposition 1. For every linear compact operatox T on a Hilbert space

H, there exists a "maximal" resolution of the identity R = { Pt} such

that T is strictly causal with respect to the HRS (H, PY.

The proof of this proposition is a direct consequence of a theorem
due to Aronszajn and Smith and is omitted for brevity (see [25], Theorem

; 3.1, p. 15).

, Proposition 2. Suppose that T is a self-adjoint operator on a HRS.

Then,if T is causal or anticausal, T is memoryless. Moreover, if

* _ * * _
T=T,+Ts+ Ty then Ty = Ty, TE=T,, Tx= T,

Proof. Suppose that T is a self-adjoint operator on [H, P"]. IfTis

causal then PiT = PtTPt. Taking the adjoint of both members of this

equation it follows T’*Pt = PtT*Pt. Using the fact that T is self-adjoint

*See Definition B. 1.
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it follows TP' = P'TP. From this equation and from the dual of
Proposition 4. 6.3, it can be concluded that T is anticausal. Suppose

— x * * *
nowthatT-TA+TC+TM. Then T -TA+TC+TM. From

e . . ok
Proposition 4.6.1 and 4. 6. 3 it follows TC = Té’ TA = T(_J_’

=TxX.

=Ty

Proposition 3. For every compact self-adjoint operator T on a Hilbert

space H, there exists a maximal resolution of the identity R = {P%}

such that T is memoryless "ith respect to the HRS [H, Pt].

Proof. From the compactness of T and Proposition 1, there exists
a maximal resolution of the identity R = {P'} such that T is causal
with respect to [H, P"]. From the fact that T is self-adjoint and

Proposition 2i) it follows that T is memoryless.

Proposition 4. Suppose that T is an operator on a HRS and that T ¢ Gw’

Then a canonical causality decomposition

A*Te+ Ty

T=T

always exists and it is unique. Furthermore the operator norms of

TA’ TQ’ TM are bounded by the number

- +00 1
= ¥ i-1) " " s.

T|,= 2 (@-D) 5(T).

J=-

Proposition 5. Suppose that T is an ope ;ator on a Hilbert space H and

that T does not belong to G. Then we can find a resolution of the iden-
tity R = { Pt} such that T does not have a canonical causality decompo-

sition on |H, Pt] .

e e

[

A ok AR AR o Ao

ER 2
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The proofs of Propositions 4 and 5 are based vn Lemmas B. 5
and B. 6 and are once more omitted for brevity. It is important to
{ note that according to these two propositions the Cw operators con-
stitute the largest class of compact operators for "vhich a canonical

causality decomposition can be guaranteed in gerv. -al.




10.

11.

12.

REFERENCES

Ahmed, N., "Fourier Analysis on Wiener Measure Space", Journal
of the Franklin Institute, Vol. 286, Nc. 2, August 1968.

Akhiezer, N. I. and Glazman, I. M., Theory of Linear Operators
on Hilbert Spaces, /Frederich Ungar, New York, 1963).

Balakrishnan, A. V., "On the State Space Theory on Nonlinear
Systems", in Functional Analysis and Optimization (ed. E. R.
Caianello), pp. 15-36, Acac mic Press, New York, 1966.

Balakrishnan, A. V., 'State Space Theory of Linear Time-Varying
Systems', in System Theory (ed. By L. A. Zadeh and E. Polak),
pp. 95-126, McGraw-Hill, New York, 1969.

Birdsall, T. G. and Roberts, R. A., "Theory of Signal Deiecta-
bility: Observation-Decision Procedure", Tech. Rept. No. 136,
Cooley Elect. Lab., The University of Michigan, Ann Arbor,
Mich. (1964).

Bogoliubov, N. N. and Shirkov, Introduction to Quantum Field
Theory (Moscow 1957; New York 1959).

Bremermann, N. J., Oehme, R. and Taylor, J. G., Relations
de Dispersion et Particules Elementaires (Les Houches, Paris
1961).

Carlin, H. J., "The Scattering Matrix in Network Theory" in
IRE Trans. Circuit Theory, CT-3 1956, pp. 88-96.

Chang, S. S., Synthesis of Opti..um Control Systems, New
York, McGraw-Hill 1961.

Colvin, A., DeSantis, R. M. and Weintraub, M. H., "Pyrolitic
Gas Chromatography of Brake Linings - Data Reduction Techniques"
in Ford Scientific Research Staff, Report No. AR 69-4, 19¢9.

Damborg, M., "Stability of the Basic Nonlinear Feedback System',
Tech. Rept. No. 37, Systems Engrg. Lab. University of Mich.,
Ann Arbor, Mich., 1969.

Damborg M. and Naylor, A., "The fundamental Structure of Input-
Output Stability for Feedback Systems', IEEE Trans. on System
Science and Cybernetics, April 1970.

184




13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

185

Damborg, M., ""The Use of Normed Linear Spaces for Feedback
System Stability", 14th Midwest Sympos:um on Circuit Theory,
Denver, May 1671.

Davenport, W. B. and Root, W. L., An Introduction to the Theory
of Random Signals and Noise (McGraw-Hill, New York, 1958).

DeSantis, R. M., "Theoretical and Experimental Investigation
of Testing Transients of Loudspeakers', D.E.E. Thesis, University
of Rome, College of Engincering, December, 1963.

Dunford, N. and Schwartz, Linear Operators. Part 1: General
Theory, Pure and Applied Math., Vol. 7, Interscience, New York
and London, 1958.

Duttweiler, D. L., "Reproducing Kernel Hilbert Space Techniques
for Detection and Estimation Problems', Technical Rept. No.
7050-18, Information Systems Laboratory, Stanford (1970).

Evangelisti, G., Controllability and Observability, C.I. M.E.,
Edizioni Cremonese, Rome, 1969.

Falb, P. L. and Freedman, M. I., "A Generalized Transform
Theory for Casual Operators', SIAM J. Control, Vol. 7, No. 3,
August, 1969.

Foures, Y. and Segal, I.E., "Causality and Analiticity'", in
Trans. Amer. Math. Soc., 78 (1955) pp. 385-405.

Freedman, M. L., Falb, P. L. and Anton, J., "A Note on
Causality and Analiticity", SIAM J. Control, Vol. 7, No. 3,
August, 1969.

Gealer, R. L., "A New Chemical Test for the Characteristic of
Organic Brake Linings - Pyrolitic Gas Chromatography', Ford
Scientific Research Staff, Rept. No. AR 66-18, 1966.

Gersho, A., "Nonlinear Systems with a Restricted Additivity
Property", IEEE Trans. on Circuit Theory, Vol. CT-16, No. 2,
pp. 150-154 7198697

Gohberg, I. Z. and Krein, M., Introduction to the Theory of
Linear and Non-self-adjoint Operators, Amer. Math. Soc.,

Vol. 18, (translation) 1969.

s m e e m"pq—__—‘w/“




. Gohberg, 1. Z. and Krein, M., Theory of Volterra Operators
in Hilbert Space and Applications, Amer. Math. Soc., Vol. 24,
(translation) 1970.

. Halmos, P. R., Introduction to Hilbert Space and the Theory of
Spectral Multiplicity, (New York, Chelsea, 1951).

. Hewitt, E., Stromberg, K., Real and Abstiract Analysis, Springer-
Verlag, 1969.

. Hsieh, H. C., "The Least Squares Estimation of Linear and Non-
linear System Weighting Function Matrices", Information and
Control, Vol. 7, pp. 84-115, March, 1964.

. Kushner, H., Intrcduction to Stochastic Control, Holt, Rinehart
and Winston Inc., Rnode Island, 1976,

. Lawser, J. J., "Properties of Dviamic Games'", Tech. Rept.
SEL-70-49, The University of Michigan, Ann Arbor, Mich.,
(1970).

. Lee, E. B, and Marcus, L., F~uv..dation of Optimal Control
Theory, New York, John Wiley and Sons, 1967.

. Lovitt, W. V., Linear Integral Equations, Dover Publications
Inc. . New York, 1950.

. Mesarovich, M., "Foundations for a General Systems Theory",
in Views on General Systems Theory, (ed. M. Mesarovich)
pp. i-24, Wiley and Sonz, New York, 1964.

. Mikhlin, S. G., Integral Equations, liew York, MacMillan, 1969.

. Mosca, E., "System Identification by Reproducing Keriel Hilbert
Space Methods", Preprints 2nd Prague IFAC Symp. on Identifi-
cation and Process Parameter Estimation, June 1970.

. Neustadt, L. W., "The Existence of Optimum Controls in the
Absence of Cenvexity Conditions", J. Math. Anal. Appl., Vol. 7,
pp. 110-117, 1963. -

. Newcombs, R. W., Linear Multiport Synthesis (McGraw-Hill,
New York, 1966). '




38.

39.

40.

41.

42,

43,

44.

45.

46.

47.

48.

49'

50.

187

Paley, R.E. A.C. and Wiener, N., Fourier Transform in the
%mplex Domain, Amer. Math. Soc., Colloquium Publ., Vol. 19,
4,

Parthasarathy, T. and Raghavan, T.E.S., Some Topics in Two-
Persons Game 3, Richard Bellman; Editor, New York, 1971.

Popov, V. M., "Absolute Stability of Nonlinear Systems of Auto-
matic Control", Automation and Remote Control, Vol. 22, No. 8,
1961, pp. 961-979.

Porter, W. A., Modern Foundations of Systems Engineering,
(MacMillan, New York, 1966).

Porter, W. A. and Zahm, C. L., "Basic Concepts in System
Theory", Tech. Rept. SEL 44, University of Michigan, Ann
Arbor, Mich. (1969).

Porter, W. A., "Some Circuit Theory Concepts Revisited",
Int. J. Conirol, Vol. 12, No. 3, pp. 433-488, 1970.

Porter, W. A., "A Basic Optimization Problem in Linear Spaces",
Springer-Verlag, 1971,

Porter, W. A., "Sensitivity Problems in Linear Systems'", IEEE
Trans. on Auto. Control, Vol. AC-10, No. 3, July, 1965.

Root, W. L., "On System Measurement and Identificatin", Proc.
Symp. on System Theory, Polytechnic Institute of Brocklyn Press,
p. 133-157, 1965.

Root, W. L., "On the Measurement and Use of Time-varying
Communication Channel"”, Information and Control 8, p. 380-422,
1965.

Saeks, R., "Causality in Hilbert Space', SIAM Review, Vol. 12,
pp. 357-383, (1970).

Saeks, R., '"State in Hilbert Space', Tech. Memo EE 6912-a,
October 1970, University of Notre Dame, Notre Dame, Indiana.

Saeks, R., '"Resolution Space, Shift Operators, and the Spectral
Multiplicity Function”, Tech. Memo EE 708-a, 1970, University
of Notre Dame, Notre Dame, Indiana.




51.

52.

53.

54.

55.

56.

57.

59.

60.

61.

62.

63.

Sandberg, I. W., ""Conditions for the Causality of Nonlinear
Operators Defined on a Linear Space", Quart. on Applied Math.,
Vol. 23, No. 1, pp. 87-91, 1965.

Sandberg, i. W., "On the L'2~boundedness of Solutions of Non-
linear Functional Equations"™, Bell System Technical Journal,
Vol. 43, July 1964, pp. 1581-1599.

Titchmarsh, E. C., Theory of Fourier Integrals, Clarendon
Press, Oxford, England, 1948.

Tricomi, F. G., Integral Equations, Interscience Publishers,
Inc., New York, 1957.

Toll, J. S., "Causality and the Dispersion Relation: Logical
Foundations', The Physical Revicw, Vs1. 104, No. 6, December
1956.

Van Kampen, N. G., ""S-Matrix and Causality Condition. I.
Maxwell Field", Physical Review, Vol. 89, No. 5, 1953.

Volterra, V., Theory of Functionsl and »f Integral and Integro-
Differential Equations, Dover Publications Inc., New York,
1959.

Wigner, E. P., Dispersion Relations and their Connection with
Causality (Academic Press-New York and London, 1964).

Willems, J. C., "Stability, Instability, Invertibility and Causality",
SIAM J. on Control, Vol. 7, No. 4, pp. 645-671, 1969.

Winderknecht, T. G., ""Mathematical System Theory-Causality",
Math. System Theory, Vol. 1, pp. 279-2388, 1967.

Wu, T. T., "Causality and the Frequency Response Function",
Lab. Rept. 223, Cruft Lab., Harvard University, Cambridge,
Mass., 1955.

Yosida, K., Functional Analysis, Springer Verlag, New York,
1966.

Youla, D. C., Castriota, L. J. and Carlin, H. J., "Bounded
Real Scattering Matricesand the Foundations of Linear Passive
Network Theory", IRE Trans. on Circuit Theory, CT-6 (1959),
pp. 102-124.




64. Zadeh, L. A., ""The Concept of State in System Theory", in Views
on General Systems Theory (ed. Mesarovich), Wiley, 1964,
pp. 39-50.

65. Zadeh, L. A. and Desoer, C. A., Linear System Theory, McGraw-
Hill Book Company, New York, 1964.

66. Zahm, C. L., "Structure of Sensitivity Reduction", Tech. Rept.
No. 33, Systems Engrg. Lab., The Univ. of Michigan, Ann Arbor,
Michigan, 1968.

67. Zames, G., "Realizability Conditions for Noaniinear Feedback
Systems", IRE Trans. on Circuit Theory, CT-611 (1964), pp.
186-194.

68. Zames, G., "On the Input-output Stability of Time-varying Feed-
back Systems - Part 1: Conditions Derived Using Concepts of
Loop Gain, Conicity, and Positivity", IEEE Trans. on Automatic
Control, Vol. AC-11, No. 2, April 1966, pp. 226-238.

69. Zames, G., '"On the Input-cutput Stability of Time-varying Non-
linear Feedback Systems - Part 2: Conditions Involving Circles
in the Frequency Plane and Sector Nonlinearities", IEEE Trans.
on Automatic Control, Vol. AC-11, No. 3, July 1966, pp. 465-476.

70. Zarantonello, E. H., "The Closure of the Numerical Range Con-
tains the Spectrum”, Bulletin of the American Mathematical
Society, 1964.




