AD-752 558

V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION. VOLUME II. APPLI-CATION OF PREDICTION METHODS

Peter T. Wooler, et al

Northrop Corporation

Prepared for:

Air Force Flight Dynamics Laboratory

January 1972

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARIMENT OF COMMERCE

5285 Port Royal Road, Springfield Va. 22151

AFFDL-TR-72-26 Volume II

A STATE A STATE AND A

V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION

Volume II. Application of Prediction Methods

P.T. Wooler H.C. Kao M.F. Schwendemann H.R. Wasson H. Ziegler

Northrop Corporation Aircraft Division

TECHNICAL REPORT AFFDL-TR-72-26, Volume II January 1972

Approved for public release, distribution unlimited.

Reproduction NATIONAL TECHNICAL INFORMATION SERVICE

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

ACCESSION IN	
¥718	White Section
826	Buti Section 🔲
UNAL DIVISED	al
Kuliasi di Xu	
BY	MICADILITY COOLS
Jist. AVA	I. DI/W PLOIN
A	

Statistical States

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/30 November 1972 - 300

IImol			
Unclassified			
	T CONTROL DATA . P	& D	
(Security classification of title, body of abstract and	indexing annetation must be	on' and when the	• overall report is classified)
ORIGINATING ACTIVITY (Cosperate author)		24. REPORT S	ECURITY CLASSIFICATION
Northrop Corporation		Unc	lassified
Alicrait Division Houthoma California		24. GROUP	
nawulorne, Carlornia			والبراد ما دار وروور والمراجع المتعاون والمالية المراجع والمراجع المراجع والمراجع المراجع والمراجع والمراجع
TI COMOT ATT COL			
V/SIOL AIRCRAFT AERODYNAMIC Volume II	PREDICTION ME	THODS IN	VESTIGATION -
A. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Final Report - 1 May 1969 to 31 Januar	v 1972		
AUTWOR(\$) (First name, middle initial, last name)			
Peter T. Wooler	Howard R. Wa	asson	
HS140 C. Kao	Henry Ziegler	•	
Myles F. Schwendemann			
January 1972	74, TOTAL NO. C	21,2	11
. CONTRACT OR GRANT NO.	BE ORIGINATOR	S REPORT NUM	<u> </u> (BER(3)
F33615-69-C-1602			
. PROJECT NO.	NOR '	72-9, Volu	me II
698 BT			
e. Task No., 698 BT 01	Sb. OTHER REPC this report)	AT NO(S) (Any	other numbers that may be easigned
4	AFFDL	-TR-72-26	. Volume Π
D DISTRIBUTION STATEMENT			, , , , , , , , , , , , , , , , , , ,
Approved for public release; distributio	In unlimited.	MILITARY	IVITY
-	Air Force	Flight Dyna	amics Laboratory
	Ohio 45433	terson Air	Force Base
Analytical engineering methods are deve stability and control derivatives and for and vectored thrust V/STOL aircraft in methods take into account the strong pow and sideslip, and changes in aircraft ge V/STOL aircraft operating in the aforer configurations studied have a convention diction methods are suitable for use by and evaluation of $V/STOL$ aircraft of the This report consists of four volumes. This v/STOL configurations in this volume, methods may be found in Volume I. Det prediction methods are given in Volume in Volume IV.	eloped for use in place and moment coe the hover and tran wer effects, large ometry that are as nentioned flight reg al wing, fuselage a design personnel d e type previously n The prediction meth The theoretical de tails of the compute III. The results o	redicting th ifficients of sition fligh variations sociated wi gimes. Th and empenn uring the p mentioned. mods are ap velopment er programs i a literatu:	te static and dynamic i lift-jet, lift-far, it regimes. The ir angle of attack ith high disk loaded e aircraft tage. The pre- reliminary design oplied to a number of of the prediction s associated with the re survey are presented
Details of this docum studie	illustrations in nent may be bette ed on microfiche	r	
D FORM 1473	1a-	Unclassif Securi	fied ty Classification

the sub-fraction with the set of the

ishirti biyah midayi yumda yaqradikasi da takan yan yuda na ada mana takati yaya. Ingi yangara da da ada

Unclassified Security Classification LINK A LINK . LINK C 14 KEY WORDS ROLE ROLE ROLE WT wτ WT V/STOL Aircraft **XV-**5A V/STOL Stability and Control Aerodynamic Characteristics (Subsonic) Forces (Normal Force, Lift, Side Force) Moments (Pitching, Rolling, Yawing) **Rotary** Derivatives V/STOL Aerodynamics Nonlinear Aerodynamics Wing Stall Separated Flows V/STOL Transitional Flight Engine Wake Effects Jet Exhaust Fields Jet interference Effects Jet in Cross Flow Jet Path Multiple Jets Jet Interaction **Power Effects** Engine Inlet Effects Vortices **Computer Programs**

WUS Government Printing Office 1972 - 759-488/195

and have been and the second and the second second second and the second second second second by the second s

ih

Unclassified

Security Classif valion

V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION

Rental Provide Lawrence - 25 -

Į,

1-

a www.was

.

- - -

** ;

and a second second

Volume II

Application of Prediction Methods

P.T. Wooler H.C. Kao M.F. Schwendemann H.R. Wasson H. Ziegler

Approved for public release, distribution unlimited.

ic

FOREWORD

This report summarizes the work accomplished by the Aircraft Division of Northrop Corporation, Hawthorne, California for the Air Force Flight Dynamics Laboratory, AFSC, Wright Patterson Air Force Base, Ohio, and USAF Contract No. F33615-69-C-1602 (Project 698 BT). This document constitutes the Final Report under the contract.

This work was accomplished during the period 1 May 1969 to 31 January 1972, and this report was released by the authors in January 1972. The Air Force Project Engineers were Mr. Robert Nichelson and Mr. Henry W. Woolard of the Control Criteria Branch, Flight Control Division, AFFDL. Their assistance in monitoring the work and providing data is greatly appreciated.

The authors gratefully acknowledge the assistance and c_{e} operation of NASA Langley Research Center personnel during the wind tunnel matter testing in the NASA Langley V/STOL tunnel.

Special recognition is due Mr. Richard J. Margason of NASA Langley Research Center who, besides being actively involved in the testing at Langley, has made valuable contributions to other areas of the investigation.

Various people at Northrop's Aircraft Division contributed to the investigation, particularly the following persons in the areas designated:

Lynn B. Fricke	Developed empirical methods for the wing. Was Test
	Engineer for the wind tunnel testing of the component model.
Hsiao C. Kao	Developed the transformation method for estimating power effects on wings and fuselages. Developed the empirical method for the body.
Myles F. Schwendemann	Developed the method for estimating engine inlet effects. Provided prediction method wind tunnel testing interface for the configuration model. Participated in the hover analysis.

Martin F. Silady	Assembled the V/STOL bibliography and was responsible for the literature survey.
Howard R. Wasson	Developed the method for mapping general sections.
	Developed the nonlinear body prediction method. Assisted
	with the development of the perturbation method.
Peter T. Wooler	Directed the technical effort and developed the nonlinear wing prediction method.
Henry Ziegler	Developed the jet flow field prediction method. Per-
	formed the analysis of wing power effects employing
	lifting surface theory.

Contributions have also been made by U.A.G. Brynjestad to this study in a number of areas, particularly the literature search and perturbation method developmen.; by M.S. Cahn in the development of the method for mapping general sections and perturbation method development; by members of the Northrop Aerosciences Laboratories in respect to model design, fabrication, testing and data reduction — especially T. Comerinsky, F. W. Peitzman, E. G. Kontos and W. S. Ramos.

This report contains no classified information. This technical report has been reviewed and is approved.

tar an interest in the second of the second of

C. B. Westbrook Chief, Control Criteria Branch Flight Control Division Air Force Flight Dynamics Laboratory

ABSTRACT

A LA LA LA

Analytical engineering methods are developed for use in predicting the static and dynamic stability and control Cerivatives and force and moment coefficients of lift-jet, lift-fan, and vectored thrust V/STOL aircraft in the hover and transition flight regimes. The methods take into account the strong power effects, large variations in angle of attack and sideslip, and changes in aircraft geometry that are associated with high disk loaded V/STOL aircraft operating in the aforementioned flight regimes. The aircraft configurations studied have a conventional wing, fuselage and empenage. The prediction methods are suitable for use by design personnel during the preliminary design and evaluation of V/STOL aircraft of the type previously mentioned.

This report consists of four volumes. The prediction methods are applied to a number of V/STOL configurations in this volume. The theoretical development of the prediction methods n.ay be found in Volume I. Details of the computer programs associated with the prediction methods are given in Volume III. The results of a literature survey are presented in Volume IV.

Preceding page blank

v

TABLE OF CONTENTS

έ.

--

service of the servic

...

Section			Page
I	IN	TRODUCTION	1
	1.	PURPOSE	1
	2.	SCOPE	1
	3.	TECHNICAL APPROACH	2
	4.	ORGANIZATION OF VOLUME II	2
II	РО	WER EFFECTS ON THE WING	4
	1.	SAMPLE PROBLEM	5
	2.	APPLICATION OF MAPPING METHOD TO THE WING	7
	3.	APPLICATION OF JET FLOW FIELD THEORY TO WING	19
		a. Transformation Method	19
		(1) Sample Problem Computation	19
		(a) Input for Sample Problem	20
		(b) Output for Sample Problem	22
		(2) Applicability and Limitations	30
		b. Lifting Surface Theory	31
		(1) Sample Problem Computation	32
		(a) Dut for Sample Problem	3 2
		(b) Output for Cample Problem	34
		(2) Applicability and Limitations	36
	4.	APPLICATION OF TRANSFORMATION METHOD TO WING	36
		a. Inputs to Transformation Method for Sample Problem	3 6
		b. Outputs from Transformation Method for Sample Problem	3 8
		c. Method Applicability and Limit tions	52
	5.	APPLICATION OF LIFTING SURFACE THEORY TO WING	58
		a. Sample Problem Computation	58
		(1) Input for Sample Problem	59
		(2) Output for Sample Problem	64
		b. Applicability and Limitations	64
		c. Additional Calculations and Comparison with Test Data	67

Preceding page blank

TABLE OF CONTENTS (Continued)

3

and a series of a second and a second and a second and a second

of a set of the sector of the

*

Section			Page
ш	PO	WER EFFECTS ON THE FUSELAGE	76
	1.	SAMPLE PROBLEM	76
	2.	APPLICATION OF THE MAPPING METHOD	77
	3.	APPLICATION OF JET FLOW FIELD THEORY TO FUSELAGE.	87
		a. Sample Problem Computation	87
		(1) Input for Sample Problem	88
		(2) Output for Sample Problem	90
		b. Applicability and Limitations	93
	4.	APPLICATION OF TRANSFORMATION METHOD TO FUSELAGE	9 8
		a. Inputs to Transformation Method for Sample Problem	98
		b. Outputs from Transformation Method for Sample Problem	98
		c. Method Applicability and Limitations	123
IV	PO	WER EFFECTS ON CONTROL SURFACES	124
	1.	SAMPLE PROBLEM	124
	2.	APPLICATION OF JET FLOW FIELD PROGRAM TO	
		CONTROL SURFACES	125
	3.	CALCULATION OF POWER INDUCED FORCES AND MOMENTS	
		ON CONTROL SURFACES	125
v	AP	PLICATION OF INLET METHOD	128
	1.	SELECTION OF PARAMETERS	130
		a. Inlet Method	130
		b. Fan Flow Model	131
	2.	EXAMPLES OF APPLICATION	131
		a. Fan Flow Calculations	132
		b. Fan-in-Nacelle	132
		c. Fan-in-Fuselage	133
		d. Fan-in-Wing	134
VI	NO	NLINEAR BODY AERODYNAMICS	145
	1.	SAMPLE PROBLEM	145
		a. Description of Body Coord.nate System	145
		b. Body Description for Nonlinear Force and Moment Program	147
		c. Modification of Mapping Function for Body Aerody amics	
		Program	148

TABLE OF CONTENTS (Continued)

のないななな

121 - 124

Section				Page
		d.	Simplified Handbook Method for Obtaining Coefficients	150
		e.	Viscous Cross Flow Input	150
	2.	SAN	MPLE COMPUTATIONS FOR TEST BODY	152
		a.	Sample Inputs for Force and Moment Program	152
		b.	Sample Outputs from Force and Moment Program	159
	3.	COI	MPARISON WITH TEST DATA	161
VII	NO	NLIN	EAR WING AERODYNAMICS	166
	1.	SAN	IPLE PROBLEM	166
		a.	Determination of Section Parameters	167
		b.	Inputs to Nonlinear Wing Aerodynamics Program for	
			Sample Problem	167
		c.	Outputs to Nonlinear Wing Aerodynamics Program for	
			Sample Problem	170
		d.	Method Applicability and Limitations	170
	2.	COI	MPARISON WITH TEST DATA	171
APPEN	DIX	[– W	IND TUNNEL TESTING OF V/STOL CONFIGURATION MODEL	175
	1.	MO	DEL AND APPARATUS	175
	2.	TES	ST PROCEDURE	176
		a.	Balance Calibration and Corrections	176
		b.	Calibration of Engine Simulators	177
		c.	Wall Corrections	178
		d.	Test Parameters	178
		e.	Test Program	179
	3.	RES	SULTS	180
		а.	Presentation of Results	180
		b.	Selection of Unpowered Baseline Data	180
APPEN	DIX	II - B	ALANCE CORRECTIONS AND CALIBRATION	220
APPEN	DIX	Π – 1	EFFECT OF FORWARD SPEED ON EJECTOR JET	
]	ENGINE SIMULATORS	222
APPEN	DIX	IV - 1	NORMAL FORCE AND PITCHING MOMENT IN THE LIFT	
		•	JET WAKE	225
REFERI	ENC	es .	• • • • • • • • • • • • • • • • • • • •	228

LIST OF ILLUSTRATIONS

Naukh

Structure to a structure and the state

Figure		Page
1	Mapping Program Input Data for Sample Problem (Wing)	8
2	Mapping Program Output Data for Sample Problem (Wing)	10
3	Comparison of Original and Mapped Airfoil	15
4	Coordinate System for Typical Wing	19
5	Jet Flow Field Program Input Data for Sample Problem (Wing; Transformation Method)	21
6a	Input Parameters for Sample Problem	23
6b	Jet Centerline for Sample Prcolem	23
6c	Induced Velocity Components at Station $Y = 0$	24
6d	Induced Velocity Components at Station Y = 20.125	25
7	Jet Flow Field Program Punched Output for Sample Problem (Wing; Transformation Method)	26
8	Control Points on Wing for Sample Problem	32
9	Jet Flow Field Program Input Data for Sample Problem (Wing; Lifting Surface Theory)	33
10	Induced Velocity Components at Control Points	35
11	Jet Flow Field Program Punched Output for Sample Problem (Wing; Lifting Surface Theory)	35
12	Transformation Method Program Input Data for Sample Problem (Wing)	37
13	Partial List of Input Data for Sample Wing	40
14	Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Wing Sections	41
15	Power Effect Pressure Coefficients on Sample Wing After Application of Segment Method	43
16	Power-Effect Pressure Coefficients on Sample Wing After Residual Source and Sink Modification	44
17	Power-Effect Pressure Coefficients on Sample Wing After One Iteration	45
18	Power-Effect Pressure Coefficients on Sample Wing After Residual Source and Sink Modification (Second Time)	46
19	Power-Effect Pressure Coefficients on Sample Wing After Two Iterations	47

х

_

Figure		Page
20	Forces and Moments on Sample Wing by Transformation	48
		40
21a	Power-Effect Pressure Coefficients on Sample Wing at Station Y = 5.04, U_{α}/U_{i} = 0.2, $\alpha = \beta = 0^{\circ}$, Lift Jet	49
21b	Power-Effect Pressure Coefficients on Sample Wing at Station Y = 7.7925, $U_{\infty}/U_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	50
21c	Power-Effect Pressure Coefficients on Sample Wing at Stations Y = 10.545 and Y = 16.05, $U_{\alpha}/U_{i} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	51
22	Power-Effect Lift for Wing with Lift Jet	53
23	Configurations Tested at Northrop	54
24	Power-Effect Pressure Coefficients on Northrop Wing at Station Y = 2.0, $U_{\infty}/U_{j} = 0.1$, $\alpha = \beta = 0^{\circ}$, Two Midspan Jets at X/C = 0.5 and 0.8.	55
25	Power-Effect Pressure Coefficients on Northrop Wing at Station Y = 2.0, U /U = 0.1, $\alpha = \beta = 0^{\circ}$, Two Midspan Jets at X/C = 0.2 and $0.5.5$.	55
26	Downwash Control Points on Wing	59
27	Lifting Surface Theory Program Input Data for Sample Problem	60
28	Lifting Surface Theory Program Printed Output for Sample Problem	65
29a	Interference Lift for Vectored Thrust, Forward Position, 90° Deflection Angle	69
29b	Interference Lift for Vectored Thrust, Forward Position, 45° Deflection Angle	70
29c	Lift for Vectored Thrust, Forward Position, 90° Deflection Angle	71
29d	Interference Lift for Vectored Thrust, Aft Position, 90° Deflection Angle	72
29e	Interference Lift for Vectored Thrust, Aft Position, 45° Deflection Angle	73
29f	Induced Lift Versus Angle of Attack, Lift Jet $(U_{\infty}/U_{i_0} = .20)$	74
29g	Induced Lift Versus Angle of Attack, Vectored Thrust, Forward Position, 90° Deflection Angle (U /U. = .20)	75
30	Station 264.25 of Test Model Fuselage	78
	.	

xi

;

- -

ł

the state of the state of the state of the state of the

artiteine automation Sector die Automation

and the second of the second second second second of the second second of the second of the second second second

31Inputs to Mapping Program for Section at Station 264.257932Output of Mapping Function Program at Test Fuselage Station 264.25	Figure		Page
32Output of Mapping Function Program at Test Fuselage Station 264.258133Mapping of Fuselage at Station 264.258534Jet Flow Field Program Input Data for Sample Problem (Fuselage)8935aInput Parameters for Sample Problem9135bJet Centerline for Sample Problem9135cInduced Velocity Components at Stations 23.7 and 4979236Jet Flow Field Program Punched Output for Sample Problem (Fuselage)9437Transformation Method Program Input Data for Sample Problem (Fuselage)9938Partial List of Input Data for Sample Fuselage10139Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Fuselage Sections10240Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method10641Power-Effect Pressure Coefficients on Sample Fuselage After Application of Sample Fuselage by Transformation Method11243aPower-Effect Pressure Coefficients on Sample Fuselage at Stations X = 73.0 and X = 118.0, U_U_U_J = 0.2, $\alpha = \beta = 0^\circ$, Lift Jet11343bPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 264.25, U_w/U_J = 0.2, $\alpha = \beta = 0^\circ$, Lift Jet11443cPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 343.0, U_w/U_J = 0.2, $\alpha = \beta = 0^\circ$, Lift Jet11644aPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 343.0, U_w/U_J = 0.2, $\alpha = \beta = 0^\circ$, Lift Jet11543dPower-Effect Pressure Coefficients on Sample Fuselage at St	31	Inputs to Mapping Program for Section at Station 264.25	79
33Mapping of Fuselage at Station 264.25.8534Jet Flow Field Program Input Data for Sample Problem (Fuselage)8935aInput Parameters for Sample Problem9135bJet Centerline for Sample Problem9135cInduced Velocity Components at Stations 23.7 and 4979236Jet Flow Field Program Punched Output for Sample Problem (Fuselage)9437Transformation Method Program Input Data for Sample Problem (Fuselage)9438Partial List of Input Data for Sample Fuselage10139Correspondence Between Angular Increments of Mapping Clircles and Cartesian Coordinates of Fuselage Sections10240Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method10641Power-Effect Pressure Coefficients on Sample Fuselage After One Iteration11243aPower-Effect Pressure Coefficients on Sample Fuselage at Stations X = 73.0 and X = 118.0, U_{u}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet11443aPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 264, 25, U_{w}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet11443bPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 264, 25, U_{w}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet11543dPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 264, 25, U_{w}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet11543dPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 343.0, U_{w}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet11543dPower-Effect Pressure Coefficien	32	Output of Mapping Function Program at Test Fuselage Station 264.25	81
34Jet Flow Field Program Input Data for Sample Problem (Fuselage)	33	Mapping of Fuselage at Station 264.25	85
35aInput Parameters for Sample Problem9135bJet Centerline for Sample Problem9135cInduced Velocity Components at Stations 23.7 and 4979236Jet Flow Field Program Punched Output for Sample Problem (Fuselage)9437Transformation Method Program Input Data for Sample Problem (Fuselage)9938Partial List of Input Data for Sample Fuselage10139Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Fuselage Sections10240Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method10641Power-Effect Pressure Coefficients on Sample Fuselage After One Iteration10942Forces and Moments on Sample Fuselage by Transformation Method11243aPower-Effect Pressure Coefficients on Sample Fuselage at Stations X = 73.0 and X = 118.0, U_{\omega}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet	34	Jet Flow Field Program Input Data for Sample Problem (Fuselage)	89
35bJet Centerline for Sample Problem9135cInduced Velocity Components at Stations 23.7 and 4979236Jet Flow Field Program Punched Output for Sample Problem (Fuselage)9437Transformation Method Program Input Data for Sample Problem (Fuselage)9938Partial List of Input Data for Sample Fuselage10139Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Fuselage Sections10240Power-Effect Pressure Coefficients on Sample Fuselage 	35a	Input Parameters for Sample Problem	91
35cInduced Velocity Components at Stations 23.7 and 4979236Jet Flow Field Program Punched Output for Sample Problem (Fuselage)9437Transformation Method Program Input Data for Sample Problem (Fuselage)9938Partial List of Input Data for Sample Fuselage10139Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Fuselage Sections10240Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method10641Power-Effect Pressure Coefficients on Sample Fuselage After One Iteration10942Forces and Moments on Sample Fuselage by Transformation Method11243aPower-Effect Pressure Coefficients on Sample Fuselage at Stations X = 73.0 and X = 118.0, U ω /U $j = 0.2, \alpha = \beta = 0^{\circ}$, Lift Jet11343bPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 185.5, U ω /U $j = 0.2, \alpha = \beta = 0^{\circ}$, Lift Jet11443cPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 264.25, U ω /U $j = 0.2, \alpha = \beta = 0^{\circ}$, Lift Jet11543dPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 343.0, U ω /U $j = 0.2, \alpha = \beta = 0^{\circ}$, Lift Jet11644aPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 343.0, U ω /U $j = 0.2, \alpha = \beta = 0^{\circ}$, Lift Jet11644aPower-Effect Pressure Coefficients on Fuselage at Stations X = 73.0 and X = 118.0, U ω /U $j = 0.2, \alpha = 0^{\circ}, \beta = 10^{\circ},$ Lift Jet116<	35b	Jet Centerline for Sample Problem	91
36Jet Flow Field Program Punched Output for Sample Problem (Fuselage)9437Transformation Method Program Input Data for Sample Problem (Fuselage)9938Partial List of Input Data for Sample Fuselage10139Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Fuselage Sections10240Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method10641Power-Effect Pressure Coefficients on Sample Fuselage After One Iteration10942Forces and Moments on Sample Fuselage by Transformation Method11243aPower-Effect Pressure Coefficients on Sample Fuselage at Stations X = 73.0 and X = 118.0, U_{\nu}/U_{\nu} = 0.2, \omega = \beta = 0^\circ, Lift Jet11343bPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 185.5, U_{\nu}/U_{\nu} = 0.2, \omega = \beta = 0^\circ, Lift Jet11443cPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 264.25, U_{\nu}/U_{\nu} = 0.2, \omega = \beta = 0^\circ, Lift Jet11543dPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 343.0, U_{\nu}/U_{\nu} = 0.2, \omega = \beta = 0^\circ, Lift Jet11644aPower-Effect Pressure Coefficients on Fuselage at Station X = 343.0, U_{\nu}/U_{\nu} = 0.2, \omega = \beta = 0^\circ, Lift Jet11644aPower-Effect Pressure Coefficients on Fuselage at Station X = 343.0, U_{\nu}/U_{\nu} = 0.2, \omega = \beta = 0^\circ, Lift Jet11644aPower-Effect Pressure Coefficients on Fuselage at Stations X = 73.0 and X = 118.0, U_{\nu}/U_{\nu} = 0.2, \omega = 0^\circ, \beta = 0^\circ, \beta	35c	Induced Velocity Components at Stations 23.7 and 497	92
37Transformation Method Program Input Data for Sample Problem (Fuselage)9938Partial List of Input Data for Sample Fuselage10139Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Fuselage Sections10240Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method10241Power-Effect Pressure Coefficients on Sample Fuselage After One Iteration10642Forces and Moments on Sample Fuselage by Transformation Method11243aPower-Effect Pressure Coefficients on Sample Fuselage at Stations X = 73.0 and X = 118.0, U_{\mu}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet11343bPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 264.25, U_{m}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet11443cPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 343.0, U_{m}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet11543dPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 264.25, U_{m}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet11644aPower-Effect Pressure Coefficients on Sample Fuselage at Station X = 343.0, U_{m}/U_{j} = 0.2, \alpha = \beta = 0^{\circ}, Lift Jet11644aPower-Effect Pressure Coefficients on Fuselage at Station X = 343.0, U_{m}/U_{j} = 0.2, \alpha = 0^{\circ}, \beta = 10^{\circ}, Lift Jet116	36	Jet Flow Field Program Punched Output for Sample Problem (Fuselage)	94
38Partial List of Input Data for Sample Fuselage10139Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Fuselage Sections10240Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method10641Power-Effect Pressure Coefficients on Sample Fuselage After One Iteration10942Forces and Moments on Sample Fuselage by Transformation 	37	Transformation Method Program Input Data for Sample Problem (Fuselage)	99
39 Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Fuselage Sections 102 40 Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method 106 41 Power-Effect Pressure Coefficients on Sample Fuselage After One Iteration	38	Partial List of Input Data for Sample Fuselage	101
40 Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method	39	Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Fuselage Sections	102
41 Power-Effect Pressure Coefficients on Sample Fuselage After One Iteration	40	Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method	106
 42 Forces and Moments on Sample Fuselage by Transformation Method	41	Power-Effect Pressure Coefficients on Sample Fuselage After One Iteration	109
43a Power-Effect Pressure Coefficients on Sample Fuselage at Stations X = 73.0 and X = 118.0, $\bigcup_{\alpha} / \bigcup_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	42	Forces and Moments on Sample Fuselage by Transformation Method	112
Lift Jet	43a	Power-Effect Pressure Coefficients on Sample Fuselage at Stations X = 73.0 and X = 118.0, $U_{\mu}/U_{i} = 0.2$, $\alpha = \beta = 0^{\circ}$,	
43b Power-Effect Pressure Coefficients on Sample Fuselage at Station X = 185.5, $U_{\alpha}/U_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet		Lift Jet	113
43c Power-Effect Pressure Coefficients on Sample Fuselage at Station X = 264.25, $U_{\alpha}/U_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	43b	Power-Effect Pressure Coefficients on Sample Fuselage at Station X = 185.5, $U_{\alpha}/U_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	114
43d Power-Effect Pressure Coefficients on Sample Fuselage at Station X = 343.0, $U_{\alpha}/U_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	43c	Power-Effect Pressure Coefficients on Sample Fuselage at Station X = 264.25, $U_{\alpha}/U_{i} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	115
44a Power-Effect Pressure Coefficients on Fuselage at Stations X = 73.0 and X = 118.0, $U_{\alpha}/U_{j} = 0.2$, $\alpha = 0^{\circ}$, $\beta = 10^{\circ}$, Lift Jet	43d	Power-Effect Pressure Coefficients on Sample Fuselage at Station X = 343.0, $U_{\alpha}/U_{i} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	116
	44a	Power-Effect Pressure Coefficients on Fuselage at Stations $X = 73.0$ and $X = 118.0$, $U_{\alpha}/U_{j} = 0.2$, $\alpha = 0^{\circ}$, $\beta = 10^{\circ}$, Lift Jet	117

Figure

The start is a second of the second start in the second start and the second start is a second start in the second start in

an and the second s Total Providence

-

and and and

an and the second s

100

Shareko akt

Charles Contraction of the

Alman Street

44 (682.94

Caller and

「ないち いたかい しょうちょうしょう

with a start of the same

44b	Power-Effect Pressure Coefficient on Fuselage at Station $X = 185.5$, $U_{\alpha}/U_{i} = 0.2$, $\alpha = 0^{\circ}$, $\beta = 10^{\circ}$, Lift Jet	118
44c	Power-Effect Pressure Coefficients on Fuselage at Stations $X = 264.25$ and $X = 343.0$, $U_{\alpha}/U_{j} = 0.2$, $\alpha = 0^{\circ}$, $\beta = 10^{\circ}$, Lift Jet	119
45	Power-Effect Lif. for Fuselage Alone with Lift Jet	120
46a	Power-Effect Pressure Coefficients on Northrop Body at Stations X = 8.1 and X = 8.9, $\bigcup_{\alpha} / \bigcup_{j=0.1, \alpha} = \beta = 0^{\circ}$, Center Jet at X = 10.0	121
46b	Power-Effect Pressure Coefficients on Northrop Body at Stations X = 11.1 and X = 11.9, U /U = 0.1, $\alpha = \beta = 0^{\circ}$, Center Jet at X = 10.0	122
47	Lift Jet Power Induced Downwash at Rake Location	126
48	Lift Jet Power Induced Sidewash at Rake Location	127
49	Fan-in-Nacelle Configuration	133
50	Fan Flow Parameters	137
51	Fan-in-Nacelle, Inlet Leading	138
52	Fan-in-Nacelle, Inlet Trailing	139
53	Fan-in-Fuselage, Propulsion Parameters	140
54	Fan-in-Fuselage	141
55	1/6-Scale XV-5A, Fan-in-Wing, Lift Force	142
56	1/6-Scale XV-5A, Fan-in-Wing, Drag Force	143
57	1/6-Scale XV-5A, Fan-in-Wing, Pitching Moment	144
58	Sign Convention for Body Aerodynamic Coefficients	146
59	Change of Mapping Function for Body Aerodynamics Program	149
60	Nonlinear Body Aerodynamics Program Input Data for Sample Body	154
61	Nonlinear Body Aerodynamics Program Output for Sample Problem	160
62	Theory and Test Conditions of C _N and C _m for Wind Tunnel Test Model Fusciage	162
63	Theory and Test Comparison of C and C for Wind Tunnel Test Model Fuselage $\dots \dots \dots$	163

a start de la serie de la companya de la construction de la construction de la construction de la construction d

erna Liechitea aitheolitic

and the second second second second second second

align the second

indial and a state of the state

match is a character subby

Figure		Page
64	Computed C _{Nq} and C _{mq} for Wind Tunnel Test Model Fuselage	164
65	Computed Cy _r and C _{nr} for Wind Tunnel Test Model Fuselage	165
66	Wing Planform with Lifting Lines and Downwash Control Line Shown	166
67	Nonlinear Wing Aerodynamics Program Input Data for Sample Problem	169
68	Sample Outputs for Nonlinear Wing Aerodynamics Program	172
69	Wing Calculations for an Aspect Ratio 6 Wing	173

APPENDIX ILLUSTRATIONS

I-1	Model General Arrangement.	192
I-2	Wing-Body-Nacelle with Tail Flow Angularity Rake, Powered by Small Forward Nozzles	193
I-3	Wing-Body-Naceile-Tail with Flap, Powered by Aft Small Nozzles	194
I-4	Wing-Body-Tail, Powered by Lift Jet	195
I-5 a	Ejector Operating Characteristics Forward Small Nozzles	196
I-5 b	Ejector Operating Characteristics Aft Small Nozzles	197
I-5 c	Ejector Operating Characteristics Aft Large Nozzles	198
I-6	Typical Exit Profiles Along Longitudinal Nozzle Centerline	199
I-7	Circumferential Fuselage Pressure Ports	200
I-8	Nacelle Centerline Pressure Ports	202
I-9	Air Supply Sting - Balance Assembly	203
I-10	Effect of Model Height, $\alpha = 6^{\circ}$	204
I-11	Effect of Free Flow Through Inlet on Model Aerodynamic Loads	205
I-12	Inlet Weight Flow for Unpowered Ejector	206
1-13	Thrust Due to Free Flow Inlet	207
I-14	Effect of Open Inlet on Power Model Loads	208

APPENDIX ILLUSTRATIONS (Cont'd)

Figure		Page
I-15	Unpowered Aerodynamic Coefficients	209
I-16	Effect of Free Flow Through Inlet on Wing Pressure Loading	210
I-17	Effect of Free Flow Through Inlet on Section Pressure	211
I-18	Effect of Free Flow Through Inlet on Fuselage Pressures	212
I-19	Effect of Free Flow Through Inlet on Nacelle Centerline Pressures	215
I-20	Free Flow Inlet Effect on Lower Fuselage Centerline Pressures	216
I-21	Effect of Free Flow Through Inlet on Downwash at the Tail Flow Angularity Rake	217
I-22	Free Flow Inlet Effect on Lower Fuselage Centerline Pressures	218
1-23	Effect of Open Inlet on Lower Fuselage Centerline Pressures with Forward and Aft Nozzles	219
JII-1	Effect of Forward Speed on Inlet Flow from Bellmouth Measurements	224
IV-1	Jet Wake Contributions to Fuselage Lift	226
IV-2	Jet Wake Contributions to Fuselage Pitching Moment	227

LIST OF SYMBOLS

SECTION V

A _f	fan flow area
ē	mean aerodynamic chord
с _D	drag coefficient at $\alpha = 0$ deg, D/QS
C ⁸ _D	slipstream drag coefficient at $\alpha = 0$ deg, $D/q^8 A_f$
C _D S _{CB}	fan centerbody drag area
с _ғ	fan thrust coefficient, T _f /QS
с _{го}	lift coefficient at $\alpha = 0$ deg, L/QS
C ⁸ L _o	slipstream lift coefficient at $\alpha = 0 \deg$, $L/q^8 A_f$
с _{то}	pitching moment coefficient at $\alpha = 0 \text{ deg}$, M/QS \bar{c}
C _m ^s _o	slipstream pitching moment coefficient at $\alpha = 0 \deg$, $M / q^{B} A_{f} D_{f}$
c _t	fan pressure rise coefficient, $\Delta P/\frac{1}{2} \rho U_t^2$
D	drag force
D _f	effective fan diameter, $\sqrt{4A_f/\pi}$
D _L	inlet lip lift force
К	ratio of freestream component of velocity at fan entrance to freestream
	velocity
L	lift force
LL	inlet lip lift force
L _s	inlet surface lift force
Μ	pitching measure
M _L	inlet lip rolling moment

ALC: NO.

M	inlet surface rolling moment
M _M L	inlet lip pitching moment
M _{MS}	inlet surface pitching moment
q ⁶	slipstream dynamic pressure, Q + T_0/A_f
Q	freestream dynamic pressure
r	radius
R ₁	inlet "lip" radius
S	wing area or reference area
T _f	thrust of fan rotor
т _о	total static lift
U _f	fan flow velocity corresponding to A_{f}
U _{jt}	static fan flow velocity
U _t	fan tip speed
U	freestream velocity
α	angle of attack
β	angle of sideslip
η	inlet dynamic head recovery factor
ρ	density
θ	reference angle in plane of inlet surface

1

5

4

an and an an an an an an

a de la como

t any distant

Service and a service of the service

10.0

APPENDIX I

STATES AND A STATES

*** *

A _j	total area of operating nozzles
b	wing span
с	local chord
5	wing mean aerodynamic chord
с _р	drag coefficient, D/QS
د	lift coefficient, L/QS
с _м	moment coefficient, $M/QS\bar{c}$
C _p	pressure coefficient. (P-P $_{\infty}$)/Q

c _T	thrust coefficient, T/QS
D	drag force, jet diameter
D _e	effective jet diameter, $\sqrt{4A_j/\pi}$
FS	fuselage station
ĥ	height above tunnel floor. measured to center of lift jet exit
L	lift force
L _f	fuselage reference length, 50 inches
M	pitching moment
P	pressure
Рер	ejector primary nozzle plenum pressure
Ро	ambient pressure
P _T	total pressure
ຊ້	freestream dynamic pressure, $\frac{1}{2}\rho_{\infty} U_{\infty}^{2}$
r	radius
R _i	jet radius
ร้	wing area
Т	total thrust
T'	thrust of one nozzle
U	velocity
v/v _j	effective velocity ratio, $\sqrt{2A_{j}Q/T}$
w ^w p	ejector primary nozzle weight flow
* 8	ejector secondary (inlet) weight flow
WL	waterline
WS	wing station (butt line)
x	distance aft of wing leading edge
x	distance aft of longitudinal reference
Y	lateral distance
Z	vertical distance
α	angle of attack
δ	deflection,
	ratio of pressure to standard pressure
E	downwash angle
λ	ratio of specific heats
θ	ratio of temperature to standard temperature
ρ	density

Property of the second second

xviii

/1/1

Subscripts:

ŝ

and the second second second second second

A CO. STAR BUNK STA

N.M.

Ę

where the real sche is a real schedule in south the

terror milestation

and the second second second second second

Property in

100-112

terrar and a second be concrete the station of the

Ĵ	jet
F	flap
H	horizontal
V	vertical
•0	freestream condition

APPENDIX II

.

.

A	axial force
Ϋ́BAL	matrix of loads measured by balance
₽ ₽	matrix of corrected loads exected on model
к	matrix of balance-sting correction coefficients
M _x	rolling moment
M _y	pitching moment
Mz	yawing moment
N	normal force
Y	side force

APPENDIX III

A _j	jet exit area
ହ	freestream dynamic pressure
Т	thrust
To	thrust under static conditions
U _j	jet exit velocity
U _{jo}	jet exit velocity under static conditions
v/v _j	effective velocity ratio
w s	ejector secondary (inlet) weight flow
δ _i	jet deflection angle
ρ	densıt <u>ı</u>

SECTION I

INTRODUCTION

This volume is the second of three volumes treating V/STOL Aerodynamic prediction methods. This volume is directed toward presenting applications of the methods developed during the study program. These applications represent the complete prediction techniques developed except for empirical methods for treating power effects on wings and bodies which are presented in Volume I.

1. PURPOSE

and first and the first state of the

ì,

The purpose of this volume is to demonstrate the use of the prediction methods in computing the aerodynamic coefficients and derivatives of V/STOL aircraft. To accomplish this purpose example problems are worked out using the prediction techniques. The accuracy of the methods can be assessed by comparing the predicted aerodynamic coefficients against test results. Limitations of the methods are described and the necessary assumptions and simplifications which must be made are pointed out. It should be possible for the user to evaluate the described methods and to assess their limitations for use in his problems by examining the included sample problems.

2. SCOPE

The methods which are applied in this volume represent the theoretical prediction techniques which have been developed during the study contract. The one theoretical thechnique which is not presented is the vortex tracking method which is not applied to a given example problem since the method was not operable. Also not included in this volume are the empirical methods for treating wing or body. These methods are treated completely in Volume I.

In presenting samples of the use of the method the specific nature of the chosen problem often does not demonstrate the full capability of the methods being employed. To further demonstrate the method capabilities it is frequently pointed out where the methods are more general and where different problems can be treated by the same methods.

3. TECHNICAL APPROACH

Non-State of the shares at which

and and the second states and the second states and the

The method of demonstrating the application of the individual methods which was adopted for this volume was to select a sample problem and to apply the methods to this problem where applicable. The details involved in using each method are explained by presenting a complete treatment of the sample problem. Where computer programs are involved complete inputs, outputs and comparison of results with experiments are presented. Where computer programs are not involved the equations used are presented and comparison with experiment is presented.

Sample problems have been chosen where test data is available for comparison with theoretical results. This permits the accuracy of the prediction techniques to be evaluated and permits a better understanding of the difficulties to be encountered in predicting the aerodynamics of V/STOL aircraft.

4. ORGANIZATION OF VOLUME II

The main body of Volume Π is devoted to sample problems treating V/STOL aircraft configurations. The treatment is divided into sections considering the power induced effects and the power off effects.

Section II presents two methods of treating power effects on the wing of a V/STOL configuration. Each of these methods has certain advantages for the user and both will be useful in treating power induced effects on wings.

Section. III presents the method of predicting power induced effects on the fuselage and illustrates the accuracy which can be obtained.

Section IV demonstrates the use of the prediction methods in obtaining downwash and sidewash effects at the empennage location and illustrates how these results can be used to estimate power effects on the tail surfaces.

Section V presents the method applicable to predicting the power effects of the inlets. Comparisons are made with test data to illustrate the accuracy of the method.

Sections VI and VII present the methods for treating the unpowered effects of nonlinear body and wing aerodynamics. Section VI presents the nonlinear body method and shows comparisons with test data. Section VII presents similar comparisons for wing aerodynamics. Four appendices are added to this volume to complete the documentation of work performed under the contract. The first three appendices describe the wind tunnel test program undertaken during the study. This description is presented in this volume to permit the details of the test program and model description to be available to the user. This is desirable since much of the test data used for comparison with the prediction method came from the test program. A method for estimating normal force and pitching moment in the lift jet wake region is presented in Appendix IV.

and the second second second second

SECTION II

POWER EFFECTS ON THE WING

There are two alternative procedures for computing the power induced effects on the wing. The first of these combines the mapping method, the jet flow field program and the transformation method. In this method the mapping program is used to describe the wing, the jet program calculates volocities induced by the jet at the wing surface and the transformation method calculates pressures, forces and moments induced by the jet on the wing.

In the second procedure the jet program is used in conjunction with the lifting surface theory to predict power induced wing effects. The jet program computes a downwash field at the wing plane which gives an effective camber distribution for the wing. The lifting surface theory then ctilizes this camber distribution to compute lift and pitching moment on the wing. This method does not give the pressure distribution about the wing but is simpler and easier to use than the first method.

The following subsections will describe the use of both of these methods as applied to a given wing. The use of the methods will be described in detail so that a complete understanding of the methods can be obtained.

1. SAMPLE PROBLEM

Variation Contraction of the Contraction

To demonstrate the method of predicting the power induced aerodynamic effects on a wing, a sample problem is given. This problem is for a single jet in the presence of an isolated wing. The wing of the sample problem is the one tested in the configuration wind tunnel test program discussed in Appendix I.

Wing Description:

Root chord:10.733 inchesTip chord:5.367 inch 3sSemispan:20.125 inchesLeading Edge sweep:9.76 degreesSection:NACA 63A010 at all wing stations

х

Section coordinates:

x (Percent c)	z (Percent c)
0	0
0.25	0.555
0.5	0.816
0.75	0.983
1.25	1.250
2.5	1.737
5.0	2.412
7.5	2.917
10	3,324
15	3.950
20	4.400
25	4.714
30	4.913
35	4.995

x (Percent c)	z (Percent c)
40	4.968
45	4.837
50	4.613
55	4.311
60	3.943
65	3.517
70	3.044
75	2.545
80	2.040
85	1.535
90	1.030
95	0.525
100	0.021

Leading Edge radius 0.742 percent c

Jet location and description:

and the stand of t

main as

States and states for

and Ap

Takes of a state

ALC: NO. OF ALC: NO.

dimeters include

and the second second second

and the second

A sketch of the coordinate system defining the jet location relative to the wing is shown below.

For the sample problem:

$$x_j = .6$$
 inches
 $y_j = 0$
 $z_j = -6.635$ inches (positive upward)
Jet diameter $d_j = 2.25$ inches

The jet exhausts into the mainstream along the negative z-direction, that is perpendicular to the wing planform.

Velocity ratio
$$\frac{U_{\infty}}{U_{J_{0}}} = .2$$

Wing attitude:

Angle of attack a = 0 degrees Sideslip angle $\beta = 0$ degrees

2. APPLICATION OF MAPPING METHOD TO THE WING

In the sample problem all the wing sections are geometrically similar so that it is only necessary to map a single section and then to scale the coefficients to provide a mapping for different spanwise stations Figure 1 shows the inputs to the mapping program used to obtain the initial mapping.

The first card lists in order the number of coordinates being input, the number of corners (and pseudo-corners) being input, the number of terms to be taken in the expansion for the potential and the mapping, and a zero to indicate that the section being mapped is symmetrical about the x-axis.

Cards 2 through 5 give the x-coordinates selected as input points starting at the section trailing edge and proceeding arcund to the nose. Cards 6 through 9 are the z-coordinates of the airfoil at the same points. Since the section is symmetrical only the upper half plane coordinates are input.

Card number 10 specifies that the airfoil is to be shifted .5 units in the negative x-direction. This is necessary since to obtain the mapping it is necessary that the airfoil be centered with respect to the origin to some degree. It is not necessary to center the section exactly but it should be centered somewhere near the centroid of area.

Card 11 specifies which input points are corner points. This card indicates that the first input point (the trailing edge) is a corner point. The second number, the zero, indicates that the second corner is a pseudo-corner; that is, is not a true corner but merely indicates a region of large survature. This second number refers to the nose of the airfoil.

Card 12 specifies the x and z coordinates of the first corner and the angle turned through at the corner in radians.

Card 13 similarly describes the second corner specifying the location of the center of the leading edge radius and specifying that a corner of π radians is turned. This angle turned is only an approximation; it is not necessary to specify the angle exactly.

Card 14 specifies parameters needed to tell the program how to write out the mapped section with the corners included. The first two numbers are the x- and z- coordinates of the initial point to be mapped, in this case the leading edge point. The third and fourth numbers specify the first and last points to be mapped specified as angular distances around the mapping circle. In the the sample section the mapping is to start at the nose (180 degrees) and proceed around the lower surface until just

?

FIGURE 1. MAPPING PROGRAM INPUT DATA FOR SAMPLE PROBLEM (Wing)

ahead of the trailing edge (355 degrees). The last number specifies that mapped points are to be obtained at increments about 5 degrees apart. In this example, it was necessary to choose these parameters to avoid specifying the trailing edge as one of the end points. This is because the trailing edge is a corner and a corner point cannot be specified as one of the end points. 「「「「「」」」」」」

ź

Card 15 specifies the necessary parameters needed to map out points on the section with the corners removed. This card specifies that 37 points are to be printed out with a spacing increment of 5 degrees about the mapping circle and that the mapping is to start at $\theta = 0$ degrees on the mapping circle.

The outputs of the mapping functions for the inputs of Figure 1 are shown in Figure 2. The first page of outputs, Figure 2(a), relates to the computations made in calculating the potential and the point-to-point correspondence between points on the section and points on the mapping circle.

The first two columns represent x- and y-coordinates of the input points with the x-coordinate shifted by the incremental value of ΔX input (in this case, -.5). The third column represents the distance, R, from the new origin to the point on the section. The fourth column gives the computed perimeter, S, of the section from the positive real axis to the point in question. The fifth column gives the velocity, V, calculated due to the unit vortex about the body. The velocities written out for corner points are meaningless. ALPHA is the angle of the section slope at each point as calculated in the program. OMEGA specifies the angular distance in degrees around the section measured about the new origin. THETA is the predicted angular distance o' the points around the mapping circle in degrees.

The second page of printouts, Figure 2(b), represents the results obtained by computing the derivative of the mapping function with the corners contained explicitly and integrating the resulting expression numerically. The location of the first point was specified as explained above (this point is not printed out). The three columns give the x-coordinate, the y-coordinate and the angle around the mapping circle θ for a series of points as specified by the parameters specified in the input cards. The degree to which these points agree with the original section represents the degree of accuracy obtained by using the mapping method.

The third page of outputs, Figure 2(c), represents the results of multiplying out factors representing any corner singularities and integrating the resulting expression analytically.

CCMPUTATIONS FOR S ANC ALPHA VERSUS THETA

reprised to be a sub-barry group of an unit little to a grad the by group as in the astronomy by little with the

THETA UMEGA 2011 2012 PHA. Å > 0.0 0.50275 0.50275 0.50275 0.50275 0.20104 0.20100 S α ≻ -0.5CC00E -0.15000E -0.15000E -0.15000E -0.15000E -0.35000E -0.35000E -0.45500E -0.45500E -0.45500E -0.45500E -0.45500E -0.45500E -0.45500E u . 50000 × 0

MAPPING PROGRAM OUTPUT DATA FOR SAMPLE PROBLEM (WING)

ର୍ଷ

FIGURE

(a) COMPUTATIONS FOR S AND ALPHA VERSUS THET

∢

SECTICA VEPPING BY NUMERICAL INTEGRATION.

A Statester

THETA	.32289E C	33161E 0	34C34E C	34907E 0	35774E C	36652F C	37525E 0	38397E 0	3927CE C	40143E 0	41015E 0	41888F C	42760E 0	43633E 0	445C6E C	45378E 0	46251E C	471246 0	477965 0	48865E 0	45742E 0	50614E C	51487E C	52360E C	53232E 0	54105F C	54978E C	5585CE C	56723E 0	57596E 0	58468F 0	59341E C	60214E 0	61086E 0	61959F 0
	•	; ;	ບໍ	ċ	•	ċ	•	0	•	• •	•	•	•	•	•	ċ	•	•	. 0	•	•	•	•	• 0	•	• •	•	•	•	• •	•	• •	•	•	•
*	-C.52736E-02	-0.102055-01	-C.14651E-C1	-0.1873CE-01	-0.22711F-01	-0.26798F-C1	-0.3C974E-01	-0.35001E-01	-C.38570E-01	-0.41505E-01	-C.43853E-C1	-C.45818E-01	-0.47569E-01	-C.45C65E-01	-C.5005CE-01	-0.5C156E-C1	-0.49155E-01	-0.47144E-01	-0.44415E-01	-C.41385E-01	-0.38329E-01	-C.35278E-01	-0.32083E-01	-0.28596E-01	-C.24835E-01	-0.210356-01	10-316421.0-	-0.144145-C1	-0.117946-01	-0-54623E-02	-0.72019E-02	-0.49643E-02	-C.2901.FE-02	-C.12800E-02	-0.30513E-03
×	C.16133E-02	6.65723E-02	C.15147F-01	C.27545F-C1	C.43736E-01	r.63415F-01	C.46139E-01	C.11154E 0C	C.13945E CC	3.16536E 00	C.20279E 0C	C.23RC5F 0C	C.27523F 0C	0.313785 0C	r.35323E 0C	C.34337F CC	0.43420F 05	C.47584F CO	C.51824E 0C	C.561CRE 0C	C.6C331E 00	C.64553F 0C	C.6966AF 0C	n.72614E 00	C. 744C4F 00	C.90C41F OC	C.83477F 0C	C.86667E 0C	C. 49557E 0C	C.921C9E 9C	r.943C5E 90	C.9614RE 00	C.97637E 00	C.98757E 0C	C.94472E 0C

(b) SECTION MAPPING BY NUMERICAL INTEGRATION

FIGURE 2. (Continued)

RACIUS OF MAPPING CIRCLE = 0.26916E 00

ļ

f

•

KEAL PARTS CF COEFFICIENTS.

C.6CA15E-C1 0.75779E-03 0.69368E-04 C.12786F-06 -0.23231E-06 0.15404E-C6 0.11822E-07 -0.46527E-10 -0.4495CF-C9

IMACINARY PARTS CF COEFFICIENTS.

0.0 0.0 0.0 0.0 0°0 0°C 0°0 0.0 0°0

(c) COEFFICIENTS OF MAPPING FUNCTION

FIGURE 2. (Continued)

MAPPING OF SECTION WITH CCRNERS REMOVED.

>	0.0		C.CO146	0.00310	0.00455	0.00667	C.C0905	C.C1178	0.01479	0.01794	C.C2131	C.C2470	0.02815	C.C3164	0.03516	C.U3861	C.C41H7	0.04476	C.C4711	C.C4878	C.C457C	C.049P4	5.04526	0.04607	C.04622	C.04392	C.C4115	0.03910	0.03471	0.03107	C.52721	C.C2315	C.C1889	0.C1441	C.CO575	0.00492	00103-0
×	C.5C544	6210C*1	C.5CO65	C.48975	C . 4 7 4 8 4	C.45603	C.4363	C.4C792	C.3792C	C.3477C	C.31375	C.27743	C.23914	C.19933	C.15P21	C.11627	C.C7389	C.03142	-C.01084	-C.05268	-6.09351	-0.13436	-C.17362	-0.21207	- C.24885	-C.24392	-C.31657	-0.34775	-C.376C1	-C.40151	-C.4240C	-0.44329	-C.45921	-C.47165	48055	-0.49588	- C. 44766

FIGURE 2. (Concluded)

(d) MAPPING OF SECTION WITH CORNERS REMOVED

and the standay and

First, the radius of the mapping circle is printed out as computed. Next, the coefficients of the mapping function are written out – first the real parts a_n — then the imaginary parts b_n . The mapping function is written in the form

$$Z = \zeta + \frac{a_1 + ib_1}{\zeta} + \frac{a_2 + ib_2}{\zeta^2} + \dots + \frac{a_n + ib_n}{\zeta^n}$$

The coefficients are written out in order $a_1, a_2, a_3, \ldots, a_n$ and for this particular case, all the imaginary parts of the coefficients are zero since the section is symmetrical.

Page four, Figure 2(d), prints out the x- and y-coordinates obtained with the analytically integrated mapping function. It is not possible to obtain the location of the body directly by this method of computation; i.e., the constant term. in the above mapping is missing. This prevents the location of the section being mapped from being specified. This is readily remedied by plotting the original section and the mapped section and the displacement required to obtain a good fit between the two sections represents the constant term of the mapping.

Figure 3 shows a comparison between the mapped output and the original input section, the lower surface also being shown since the section is symmetrical and the mapping retains the property of symmetry.

To obtain coefficients for the wing of the sample problem it is necessary to change the coefficients to account for the size of the actual wing. The coefficients of Figure 2 are based on a unit chord and the mapping for this section can be written:

$$\frac{Z}{c} = \zeta_{j} + \partial_{0}' + \frac{a_{j}'}{\zeta_{j}} + \dots + \frac{d_{q}'}{\zeta_{q}'}$$
(1)

where

and an approximation of the primer sector in a party sector

L' California

$$a'_{1} = .60815 \times 10^{-1}$$

$$a'_{2} = .75779 \times 10^{-3}$$

$$a'_{3} = .69368 \times 10^{-4}$$

$$a'_{4} = .12786 \times 10^{-6}$$

$$a'_{5} = -.23231 \times 10^{-6}$$

$$a'_{6} = .15404 \times 10^{-6}$$

FIGURE 3. COMPARISON OF ORIGINAL AND MAPPED AIRFOIL

$$a'_7 = .11822 \times 10^{-7}$$

 $a'_8 = -.46527 \times 10^{-10}$
 $a'_9 = -.44950 \times 10^{-9}$

and

 a'_0 has not been determined and it a_2 best to leave this coefficient undefined until the coefficients have been ratioed up to true size.

It is desired to reexpress Equation (1) in the form:

$$\vec{z} = \vec{\zeta} + \vec{a}_0 + \frac{\vec{a}_1}{\zeta} + \dots + \frac{\vec{a}_q}{\zeta^q}$$
(2)

where the coefficients $a_0 a_1, a_2, \ldots a_9$ reflect the true wing dimensions at given stations along the wing. Rewriting Equation (1) in the form

$$Z = \zeta + a_0 + \frac{a_1}{\zeta} + \dots + \frac{a_q}{\zeta^q}$$

and equating $c_1 \zeta_1$ to ζ we obtain

$$\overline{\mathcal{Z}} = \zeta + ca_0' + \frac{c^2 a_1'}{\zeta} + \frac{c^3 a_2'}{\zeta^2} + \cdots + \frac{c^{10} a_q'}{\zeta^q}$$

so that it can be shown that

$$a_n = c^{n+1} a'_n$$
 $n = 1, 2, \dots, 9$

The radius of the new mapping circle defined by $\zeta = r_c e^{i\theta}$ is now $r_c = cr'_c$

To obtain the coefficient a_0 it is sufficient to note that from the first and last numbers of the last page of Figure 2, the mapping without the constant coefficient maps the section about a chordwise point of .4891, so that for the origin of the wing located at the

nose of the root chord and a leading edge sweep of 9.76 degrees, the coefficient a_0 can be found as

 $a_0 = .4891c + y + tan 9.76$ degrees,

where $c = c_r - (c_r - c_t) y/_{b/}$

For use in the transformation method, it is also necessary to define $\frac{dr_c}{dy}$ for the wing. This can be done by noting that

$$r_{c} = .26916 c$$
$$\frac{dr_{c}}{dv} = .26916 \frac{dc}{dv}$$

•

K is now possible to compute all of the numbers needed for the transformation method.

These numbers are tabulated in Table 1.

8 ₉	-9.1189	-4.8006	-2.3934	-1.0602	43705	18457	056366	0089134
8 ⁸	087942	049365	026385	012680	-, 0057112	0026290	00090399	00017191
a7	2.0819	1.2461	.71404	.37224	.18320	. 091926	.035590	.0081385
a B	2.5274	1.6130	16066.	.56041	.39137	. 16483	.071852	.019759
a ⁵	35514	24166	15916	097650	057378	034208	016790	0055521
в ф	.018211	.013214	. 0093259	.0062097	. 0039869	. 0025909	.0014318	.00056937
en e	. 92054	.71218	.53911	. 38925	.27307	. 19343	.12036	. 057555
a2 a	- 93694	. 77289	.62724	.49130	.37661	. 23079	.20372	.11715
a1	7,0057	6.1320	5.3613	4.5556	3.8157	3.2114	2.5332	1.7518
a 0	5.2495	5.3533	5.4592	5.5735	5.6880	5. 7903	5.9174	6.0867
dr _c /dy	0.0	071767	071767	071767	071767	-, 071767	071767	071767
ړ ۲	2.8839	2.7094	2.5272	2.3296	2.1320	1.9559	1. 7372	1.4446
WING STA	÷	2.5	5.04	7.7925	10.545	13.00	16.050	20, 125

TABLE I. COEFFICIENTS FOR WING OF SAMPLE PROBLEM

3. APPLICATION OF JET FLOW FIELD THEORY TO WING

a. Transformation Method

yn bir en soeren oege oed ⁹e blynde er den oere oeddin fan de stander yn de den an den wet de soeren en tettet

The purpose of the Jet Flow Field theory, when used in conjunction with the Transformation Method, is to predict jet-induced velocity components at those control points on the wing at which the Transformation Method requires them to evaluate power effects. This is accomplished by executing the Jet Flow Field computer program to generate the required data for the Transformation Method in the form of punched data cards. To insure compatibility with the Transformation Method, the control points on the wing are specified by utilizing the mapping coefficients for the wing cross sections obtained by the procedure described in Section II.2. The punched output is generated in a manner to provide a continuous block of input data to the Transformation Method computer program. Both of the above features will be described in greater detail in the discussion below.

(1) Sample Problem Computation

For the sample problem being considered, the Jet Flow Field program is now used to compute the jet-induced velocities at the cight spanwise stations on the wing described in Section II.2. Figure 4(a) shows a sketch of the wing and the location of the jet with respect to the input/output coordinate system. Figure 4(b) defines the jet exhaust angles ϕ and ψ . It should be noted that the input/output coordinate system shown below differs from the general coordinate system utilized in Section II, Volume I.

FIGURE 4. COORDINATE SYSTEM FOR TYPICAL WING

(a) Input for Sample Problem

and the state of the state of the state

The input cards required for the sample problem are tabulated in Figure 5.

Card 1 lists three control indices. The first one, MULT = 1, indicates that a single jet configuration is being treated. The second one, $IGE \oslash M = 1$, specifies that control points on wing cross sections will be generated, utilizing the mapping coefficients obtained in Section II. 2. The third control index, IPUNCH = 1, generates the punched output for the Transformation Method program.

Card 2 specifies angle of attack $\alpha = 0$, and angle of sideslip $\beta = 0$.

Card 3 controls the number of steps and the step size in the numerical integration of the equations of motion for the jet path. For the sample problem, 90 steps with a step size of 0.4 jet exit diameters are chosen.

Cards 4 and 5 contain information about the jet. The jet location in the coordinate system of Figure 4 is X = 0.6, Y = 0., Z=-6.63. The jet exhaust angles ϕ and ψ , defined in Figure 4(b) are 180 and 0 degrees respectively. The jet exit diameter, $d_0 = 2.25$ and the velocity ratio $U_{\infty}/U_{i0} = 0.2$.

Card 6 may be left blank for computations provlying a single jet. For a multiplejet configuration it would be used to control the geometry of the jet resulting from the intersection of two other jets.

The remaining input cards provide data to generate the control points at which jet-induced velocities are to be evaluated. These control points are generated by utilizing the mapping coefficients and mapping radii obtained in Section II.2 for the eight wing stations of the sample problem. The number of control points generated at each spanwise station is governed by the input variable NTHT, which is the number of increments $\Delta \theta$ into which the mapping circle is to be divided in the Transformation Method computer program.

Card 7 specifies that NTHT, the number of control points at each spanwise station or the number of $\Delta\theta$ increments around the mapping circle is 36, and that the number of spanwise stations NS =8. It also defines the number of terms used in the mapping expansion of Section II.2, NCØEF = 11, and through the control index IRECT = 1 indicates that the wing is nonrectangular.

Cards 8 – 12 provide the data from which the wing cross section at the first spanwise station can be generated by the computer program. Card 8 specifies the location of the station, Y = 0, the mapping circle radius R = 2.8889 and the rate of

3 1				-		02	0	ŏ		1	ļ	1		1.	0	0	0	
	1.		-		1		9	3	5		1	ł	1	1	0	9	0	
1 1		4	-	↓ ·		2.E	26	2.6	1	1	1]	-		2	2C)E	
11		N	+	1 :	1 :	0	10	0		- 1	1	1	1	1	0.6	0	10	
1			1	! .	. I	00	00	00		-	-	1	-		2	20	00	
I			1	1 :	1 :	Õ	0	0		1	4	1	1	1 :	00	0	0	
	1	1	1		-	0.	à	0	-		ł		4	4 -	2.	d	3	
3 1			1	1					1	j	İ	1	1	1				
						0	9	20		1	1	ł	ļ	4.	0	50	20	
<u> </u>		1	1	1 1 1 1				.]	1		1]	1	1 3		.]	Ĩ	
	1 :		1	1 1		2	2	9.6	-	1	{	1	1		9.6	2	56	
						5	~	2	1	1	1		4	1 :		in a	8	
1		0	1	1 1		ð	8	0	ł	1		i	1	1 -	25	9	2	
			4			5		2	1 9]	1	-	4		-	5	8	
			1.	11		0	0	0	ļ	1	1	1	1	1 :	0	0	0	
	4.		1			0	0	0	6	-					-0	2	_	6
			1	1 1		0	0	Õ	Õ		1	1	1		0	0	0	õ
4			4	1 •	' 1	5	5	U	5	•	4	4	4	1 1	5	5	-	u
	• •		1			0	0	0	0	4	1	1		1 1	0	0	0	0
						0	00	00	00	,i	1	4	4	1 +	00	00	00	00
		60	1	• •	1	0	00	0	0	1	` 1	•	1	1 1	0	õ	Q	ğ
• 4	4	2	• •	1 :	-		5	2.0		4	1	4	1		0	2	0	9
: 1	•		•	4 4	1	0	Ø	0	0		*	•	1		0	0	0	0
			•	•		0.7	00	01	01			•	1	67	20	27	07	02
			•			1.1	List	5	1.4	1	. 4		1	Ē				Ĭ
		m	+ -	1]	1	5	9	4	6		1		1	2	7.6	56	9.6	9.6
• •	1.	9	-		1	50	5		8	1	1			0	36	55	5	m
1 1 1 1	1 1	ø	• •	4 4	0	2	N	5			1	ł	1	0	õ	0	3	0
1 1	1		1.	•	•	Ś	6	N;	0	-	•		Ì		9	5		80
] .	1	· •	• •		4	0	0	0	0	•		•	:	1 1	0	Q	0	0
• •		1	; -	~	1	0	00	00	00	بع	۱	I	1	1-1	8	00	8	0
	1 1	1	• •	1 1 1 1	9.9	5	ud.	w	u.t	4	,	۱ ۹	ı i	19	- - Lui	5	بب اسا	5
- 1	• •	1	• •	: 1	8	ò	õ	0	0		•	•	4	0	0	0	0	0
~		•1			, eo	0,0	00	80	0,0	4	4	i	1	4	00	00	000	00
	0	0			N	õ	Ő	0	0	•	4	1	-		õ	0	0	0
•	1		1 -			9.	5.	2	0	•	• 1	÷	٠	11	0.	0	0.	0
		i		' -	1	0	0	0	0	4	-	1		•	0	0	0	0
~				8	+	01	00	00	07	I	, ,	•	1	<u>+</u> ;	61	00	02	53
• • •,		1 4	· •	• •	÷	1	1	La.	Ĩ.	۰ ۱	•		t 1	1 1			Ţ	ī
	•		X		•	0.6	46	4	25	•	•		1	12	06	52	Ž Ē	2.6
		, jo	× ₹	5	-	20	5	$\hat{\mathbf{z}}$	5				4 2		0	11	2	0
-	00	٦.		ň	0	0	3	5	22	۱	1		•	0	0.0		5.4	11
	,		RQ.	i .	I	2.1	0	ņ	8					N	~	-	Ś	1
•	i		;	'	•	0	Ø	ò	0					1 1	0	ġ	0	0.
	$\overline{}$			~	_		_		-					- <u></u> -	_		1	لير

۰,

ł

FIGURE 5. JET FLOW FIELD PROGRAM INPUT DATA FOR SAMPLE PROBLEM (Wing; Transformation Method)

÷

change of R with Y, DRDY = 0. Cards 9 - 12 list the real and imaginary parts of the coefficients to be used in the mapping expansion. Cards 13 - 47 are similar data blocks for the spanwise stations Y = 2.5, 5.04, 7.7925, 10.545, 13., 16.05 and 20.125. The data in cards 8 - 47 are taken from the Table I in Section II.2.

<u>Note</u>: The rate of change of the mapping circle radius with spanwise distance, DRDY, is not required for any of the computations performed by the Jet Flow Field program. It will, however, be required by the Transformation Method program and is read as part of the input that it may be punched out in the proper sequence in the data package to be provided to the Transformation Method program.

(b) Output for Sample Problem

For the problem being considered both printed and punched outputs are obtained.

• Printed Output:

Figure 6(a) shows the first page of printed output. The jet configuration being treated is identified both by appropriate heading and by other pertinent input information. Input controlling the numerical integration procedure is also displayed. Figure 6(b) shows the location of the computed jet centerline. The nondimensionalized jet speed U_i/U_i and the nondimensionalized major diameter of the ellipse representing the cross section of the jet, d/do are also printed out. These properties are printed out at each integration interval. Output shown in Figure 6(b) shows only the initial portion of the printed output generated for this example. The centerline was computed to Z = 87.63, which represents integration of the jet equations over the range $Z = 90 \times 0.4$ x 2.25 = 81. The variables XCOORD and DIA show a monotonic increase over this region, while $UJ = U_j/U_{j_0} \approx .2$ as the mean jet speed approaches the freestream speed U_{∞} . Figure 6(c) shows the printout for the jetinduced velocity components at the first spanwise station specified, Y = 0. The coordinates of the 36 control points at the station are identified. The induced velocity components U, V, W all nondimensionalized by U are printed out for each control point. Figure 6(d) shows the output for the last station considered in the sample problem, Y = 20.125. Similar printouts are obtained for the other intermediate stations specified as part of the input.

*** SINGLE JET CONFIGURATION ***										
XJET 0.6000	¥JET 0.0	ZJFT -6.6300	РНІ 180.0070	P51 0.0	U/UJC 0+2000					
ANGLE OF ATTA ANGLE OF SID	ACK = 0.0 ESLIP = 0.0	2								
NUNBER OF STU INTEGRATION	EPS IN INTEGRI INTERVAL = Co	ATION = 90 .40 JET EXIT DIA	METERS							

FIGURE 6(a). INPUT PARAMETERS FOR SAMPLE PROBLEM

Section of

**	SINGLE JE	1 CENTER	LINF *	*
****	*******	*******	*****	*****
XCOORD	YCOORD	ZCOORD	UJ	DIA
0.60	0.0	-6.63	1.000	1.00
0.61	0.0	-7,53	0.948	1.18
0.64	0.0	-8.43	0.893	1.45
0.71	0.0	-9.33	0.833	1.90
0.83	0.0	-10.23	0.760	2.64
1.01	0.0	-11.13	0.698	2.93
1.27	0.0	-12.03	0.626	3.23
1.62	0.0	-12.93	0.573	3.55
2.06	0.0	-13.83	0.528	3.85
2.61	0.0	-14.73	0.489	4.23
3.28	0.0	-15.63	0.456	4.60
4.09	0.0	-16.53	0.427	4.98
5.06	0.0	-17.43	0.402	5.37
6.21	0.0	-18.73	0.381	5.77
7.56	0.0	-19,23	0.363	6.18
9.15	0.0	-20.13	0.347	6.60
11.02	0.0	-21.03	0.333	7.03
13.21	0.0	-21.93	0.321	7.47
15.78	0.0	-22.83	0.311	7.92
16.78	0.0	-23.73	0.301	8.38
22.29	0.0	-24.63	0.293	8.86
26.39	C.0	-25.53	0.285	9.34
31.18	0.0	-26.43	0.278	9.85
36.78	0.0	-27.33	C.272	10.37
43.34	0.0	-28.23	0.266	10.91
51.00	0.0	-29.13	0.261	11.47

FIGURE 6(b). JET CENTERLINE FOR SAMPLE PROBLEM

x	۷	Z	U	v	¥						
0.717	0.0	0.0	0.11367E-01	0.0	-0.47648E-01						
10.623	0.0	0.020	0.11582E-01	0.0	-0.47592F-01						
10.346	0.0	0.050	0.122205-01	0.0	-0.47586F-01						
9.904	0.0	0.097	0.13282E-01	0.0	-0.47535E-01						
9.319	0.0	0.159	0.14771E-01	0.0	-0.47360E-01						
8.616	0.0	0.229	0.16691E-01	0.0	-0.46985E-01						
7.817	0.0	0.302	0.19044E-01	0.0	-0.46294E-01						
6.948	0.0	0.377	0.21786F-01	0.0	-0.451216-01						
6.043	0.0	0.449	0.24793E-01	0.0	-0.43336F-01						
5.133	0.0	0.506	0.27913E-01	0.0	-0.40918E-01						
4.242	0.0	0.533	0.3C975F-01	0.0	-0.37918E-01						
3.394	0.0	0.529	0.33823E-01	0.0	-0.34394E-01						
2.578	0.0	0.496	0.36272E-01	0.0	-0.30461E-01						
1.847	0.0	0-442	0.38173F-01	0.0	-0.26360E-01						
1.214	0.0	0.373	0.39493F-01	0.0	-0.22435F-01						
0.699	0.0	0.292	0.40340E-01	0.0	-0.19039E-01						
0.321	0.0	0.203	0.40931E-01	0.0	-0.16461F-01						
0.092	0.0	0.105	0.41508E-01	0.0	-0.14885E-C1						
0.015	0.0	-0.000	0.42236F-01	0.0	-0.14410F-01						
0.092	0.0	-0.105	0.43145E-01	0.0	-0.15127E-01						
0.321	0.0	-9.203	U.44135E-01	0.0	-U.1/164E-01						
0.699	0.0	-0.292	U-44971E-01	0.n	-0.206198-01						
1.214	0.0	-0.373	U-452/3E-01	0.0	-U.25421E-01						
1+347	0.0	-0.442	U.44784E-01	0.0	-U.31202E-01						
2.578	0.0	-0.496	U.42576F-01	J.()	-U. 57266t-01						
2.354	0.0	-0.529	0.39/80t-01		-9.427332-01						
9.292	0.0	-0.553	0.30099E-01 0.30401E-01		-0.409796-01						
7+135	0.0		0.04001E=01		-0.490421-01						
0.045	9.9 0 0	-U+449 -A 377	U.202/02*01	0.0	-0.5199291-01						
0+740 7 617	0.0	-0-202	Vezz4558*U1		-V.JIKKJC-01 -0 600195-01						
1+011 9 111	0.0	-0.220	0.1446/E-01	0.0	-0.304164-01						
0.210	0.0	-0.160	10044C=U] 0.14464C=01	0 0	-0 206305-01						
7. 717	0.0	-0.007	V+1933484VI A.121376=A1	0.0	-0.4993901-01						
74704	0.0	-0.071	0.121645-01	0.0	-0 200095-01						
0.622	0.0	-0.030	V+121741=V1 0.116615=01	0.0	-V.+3223(-01 -0 670305-41						
	0.0	-0.020	A+11222F=01	V.•V	-0.410391-01						

地震に行わった。世界は一般

and the operation of the state
ないないないないない

and the second
metric particular description of the second

ì

FIGURE 6(c). INDUCED VELOCITY COMPONENTS AT STATION Y = 0.

*** INDUCED VELOCITIES ON HING ***

x	Y	2	U	v	N
8.821	20.125	0.0	0-11150F-01	-0-131506-01	-0-430976-02
8.774	20.125	0.010	0.11103E-01	-0-13115E-01	-0.42903E-02
8.635	20.125	2.025	C-11296F-01	-0.13024F-01	-0.42270E-02
8.414	20.125	0.049	0.112738-01	-0.12878E-01	-0-41249F-02
8.122	20.125	0.079	0-11357E-01	-0-12682F-01	-0.39885F-02
7.770	20.125	0.114	0.114548-01	-0.12443E-01	-0.38213E-02
7.370	20.125	0.151	0.1155dE-01	-0-121670-01	-0.36273F-02
6.936	20.125	0.189	0-11661F-01	-0.11862E-01	-0.34126F-02
6.483	20.125	0.225	0.11758E-01	-0.115388-01	-0-31849F-02
6.029	20.125	Q.253	0.11847E-01	-0.11211E-01	-0.29503F-02
5.583	20.125	0.267	0.11929E-01	-0.10892E-01	-0.27121E-02
5.154	20.125	0.264	0.12004E-01	-0.10588E-01	-0.24743E-02
4.751	20.125	0.249	C-12070E-01	-0.10303E-01	-0.22434E-02
4.385	20.125	0.271	0+121278-01	-0.10046E-01	-0.20272E-02
4.069	20.125	0.186	0.12174E-01	-0.98250F-02	-0.18339E-02
3.811	20.125	0.146	0.12214F-01	-0.96477E-02	-0.16705E-02
3.62?	20.125	0.101	0.12249F-01	-0.95225E-02	-0.154298-02
3.508	20.125	0.052	0.12280F-01	-0.94554E-02	-0.14541E-02
3.469	20.125	-0.000	0.12311E-01	-0.94487F-02	-0.14057E-02
3.508	20.125	-0.057	0.12339E-01	-0.95020E-02	-0.13995E-02
3.622	20.125	-0.101	0.123626-01	-0.961455-02	-0,14375E-02
3.811	20.125	-0.146	0.12377E-01	-0.97845E-02	-0.15195F-02
4.059	20.125	-0.186	0.12383E-01	-0.10007F-01	-0,16427E-02
4.385	20.125	-0.221	0.12374E-01	-0.1^273F-01	-0.18025E-02
4.751	20.125	-0.248	0.12347E-01	-0.10571F-01	-0.19943E-02
5.154	20.125	-0.264	0.122996-01	-0.10489F-01	-0.22126E-02
5.533	20.125	-0.267	0.122258-01	-0.11212F-01	-0.24522F-02
6.029	20.125	-0.253	0.12126F-01	-0.115318-01	-0.27081E-02
6.493	20.125	-0.225	0.12004E-01	-0.11836F-01	-0.297376-02
6.936	20.125	-0.189	0.11965E-01	-0.12123F-01	-0.32386E-02
7.370	20.125	-0.151	0.11719E-01	-0.123856-01	-0.34906E-02
7.770	20.125	-0.114	0.11574F-01	-0.12614E-01	-0.37198F-02
8.122	20.125	-0.079	0.11440E-01	-0.12804E-01	-0.39191E-02
8.414	20.125	-0.049	0.113225-01	-0.12954E-01	-0.40830E-02
8.037	20.125	-0.025	0.11231F-01	-0.13064E-01	-0.42056F-02
0.114	20.125	-0.010	0-111736-01	+0.13131E-01	-0.42819E-02
		******	***********	******	

ารเป็นที่รู้จะและเหมือนได้เรื่องเรื่องได้เป็นและแก้ได้ที่มีการเหมือน และ 2 ก็ 2 การเห

FIGURE 6(d). INDUCED VELOCITY COMPONENTS AT STATION Y = 20.125

T	T 0.0 2.888900 0.0			1	
11	0.10000E 01 0.0 0.52495E 01 0.0 0.700	57E 01 0.0		1	1
	. 0.93694E 00 0.0 0.92054E 00 0.0 0.182	11E-01 C.O		1	2
0	○ -0.35514E 00 0.0 0.25274E 01 0.0 0.208	19E 01 0.0		1	3
Ħ.	H -0.87942E-01 0.0 -0.91189E 01 0.0			1	4
24	• 0.11362E-01 0.11582E-01 0.12220E-01 0.13282E-01 0.147	71E-01 0.16691E-01	U	1	1
No l	6 0.19044E-01 0.21786E-01 0.24798E-01 0.27913E-01 0.309	75E-01 0+33823E-01	U	1	2
Ť	0.36272E-01 0.38173E-01 0.39493E-01 0.40340E-01 0.409	31E-01 0.41508E-01	U	1	3
Ita	g 0.42236E-01 0.43145E-01 0.44135E-01 0.44971E-01 0.452	736-01 0-445846-01	U	1	2
02	0.42576E-01 0.39280E-01 0.35099E-01 0.30601E-01 0.262		U	1	2
10		54E-01 0.11553E-01	U V	L	0
ці ці		0.0	₹ u		1
E		0.0	v.	1	2
B		0.0	v.	1	2
õ		0.0	v	1	Š
10		0.0	v	î	6
ĕ	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	605-01-0.66985E-01	ů.	1	1
ch Ch	0 -0.44294E-01-0.45121E-01-0.43334E-01-0.40018E-01-0.370	18F-01-0.34394F-01	ū	î	2
ur	= 0.30461E = 01 = 0.26360E = 01 = 0.22635E = 01 = 0.19039E = 01 = 0.164	61F-01-0-14885F-01	ū.,	1	3
P L	$A_1 = 0.14410E = 01 = 0.15127E = 01 = 0.17164E = 01 = 0.20619E = 01 = 0.254$	21F-01-0-31202F-01	ü.	î	i.
1	-0-37266E-01-0-42753E-01-0-46970E-01-0-49642E-01-0-509	296-01-0-512236-01	ü.	ī	5
1	-0.50918E-01-0.50293E-01-0.49538E-01-0.48809E-01-0.482	23E-01-0.47839E-01	N.	ī	6
	2,500000 2,709399 -0.071767			2	-
	0.10000E 01 0.0 0.53533E 01 0.0 0.616	20E 01 0.0		2	t
	0.77289E 00 0.0 0.71218E 00 0.0 0.132	14E-01 0.0		2	2
	-0.24166F 00 0.0 0.16130E 01 0.0 0.124	61E 01 0.0		2	3
	-0.49365E-01 0.0 -0.48006E 01 0.0			2	4
	0.12325E-01 0.12530E-01 0.13133E-01 0.14131E-01 0.155	16E-01 0.17283E-01	U	2	1
	0.19419E-01 0.21872E-01 0.24526E-01 0.27241E-01 0.298	96E-01 0.32376E-01	U	2	2
	0.34548E-01 0.36300E-01 0.37600E-01 0.38516E-01 0.391	94E-01 0.39805E-01	U	2	3
	0.40465E-01 0.41184E-01 0.41866E-01 0.42329E-01 0.423	04E-01 0.41493E-01	U	2	4
	0.39697E-01 0.36945E-01 0.33499E-01 0.29741E-01 0.260	35E-01 0.22652E-01	U	Z	5
1	0.19746E-01 0.17366E-01 0.15494E-01 0.14084E-01 0.130	98E-01 0.12514E-01	U	2	6
	-0.95974E-02-0.95911E-02-0.96194E-02-0.96592E-02-0.969	37E-02-0.97102E-02	¥.	2	1
	-0.96874E-02-0.95914E-02-0.93949E-02-0.90961E-02-0.870	79E-02-0-82380E-02	V.	Z	2
	-0./6951E-02-0./1089E-02-0.65313E-02-0.60244E-02-0.564	78E-02-0.54480E-02	V	2	3
		956-02-0.889186-02	V.	2	4 £
		91E-01-0.11347E-01	V V	2	7
		U7E-U2-U+90014E-U2 516-01-0 442425-01	¥ L	2	0
		715-U1-U+443035-U1 565-01-0 327255 01	100 U	2	1
	-0.29415E-01-0.26011E-01-0.22772F-01-0.100716-01-0.170	495-01-0.145736-01	W .	2	2
	-0.16235E-01-0.16907E-01-0.18663E-01-0.21537E-01-0.254	28F=01=0.30030E=01		2	3
	-0.34843E-01-0.39282E-01-0.428575-01-0.45330F-01-0.467	50F-01-0-47357E-01	н 1.	2	5
	-0.47420E-01-0.47150E-01-0.4670(E-01-0.46225E-01-0.458	196-01-0.455456-01		2	,
		/////// VI	-	κ.	0

FIGURE 7. JET FLOW FIELD PROGRAM PUNCHED OUTPUT FOR SAMPLE PROBLEM (Wing; Transformation Method)

ł

5.040000	2-527200	-0.071767		3	
0.10000E 01	0.0	0.54592E 01 0.0 0.53613E 01 0.0		3	1
0.627248 00	0.0	0.53911E 00 0.0 0.93239E 32 0.0		3	2:
-0.15916E 00	0.0	0.99091E 00 0.0 0.71404E 00 0.0		3	3
-0.263858-01	0.0	0.23934E 01 0.0		3	46
0-13806E-01	0.13983E-01	0.145126-01 0.153786-01 0.165614-01 0.1803	19E-01 U	3	2
0.19781E-01	0-21724E-01	0-23762E-01 0-25790E-01 0-27730E-01 0-2951	8E-01 U	3	۷
9.31078E-01	0.32354E-01	0.33332E-01 0.34055E-01 0.3460 -01 0.3509	3E-01 U	3	3
0-35573E-01	0.36045E-01	0.36446E-01 0.36669E-01 0.36568E-01 0.3598	15E-01 U	3	4
0-34003E-01	0-33009E-01	0.30704E-01 0.28074E-01 0.25341E-01 0.2271	3E-01 U	3	5
0.20349E-01	0.18335E-01	0.16697E-01 0.15430E-01 0.14528E-01 0.1398	37E-01 U	3	6
-0.169358-01-	-0.16911E-01	0.16913E-01-0.16905E-01-0.16861E-01-0.1676	4E-01 V	3	1
-0-19282E-01-	-0.16284E-01	0.15837E-01-0.15259E-01-0.14582E-01-0.1382	19E-01 V	3	2
-0-13017E-01-	-0-12186E-01-	D.11397E-01-0.10721E-01-0.10232E-01-0.9980	4E-02 V	3	3
-0.10018E-01-	-0.10343E-01	U.10975E-01-0.11908E-01-0.13102E-01-0.1445	SE-01 V	3	4
-7.15833E-Cl-	-0.17960E-01	0.17994E-01-0.18556E-01-0.18758E-01-0.1869	70E-01 V	3	5
-0.18454E-01-	-0.181316-01	v.1/777E-01-0.17448E-01-0.17188E-01-0.1701	.Æ-01 V	3	6
-0.39000E-01-	-U-38916E-01	U. 30763E-01-0.38484E-01-0.38033E-01-0.3736	X6E-01 W	3	1
-0.36426E-01-	-U. 35144E-01	v.JJ494E-01-0.31519E-01-0.29291E-01-0.268	TSE-OI W	3	Z
-0.24344E-01.	-U.ZI 829E-01	U.19490E-01-0.17495E-01-0.15995E-01-0.1509	77E-01 W	3	3
-0.14854E-01-	-U.15309E-01	v.10495E-01-0.18408E-01-0.20981E-01-0.2403	>/E-01 W	3	4
-0-273168-01-	-U. 30509E-01	v.3332/E-01-0.35578E-01-0.37210E-01-0.3826	38E-01 ₩	3	5
-0.389238-01-	-U.39224E-01	0.39296E-01-0.39242E-01-0.39149E-01-0.3906	57E-01 W	3	6
7.792500	2.329599	-0.071767		4	-
0-10000E 01	0.0	U->>735E 01 0-0 0-45556E 01 0-0		4	1
U-49130E 00	0.0	U.389Z5E DU 0.0 0.62097E-02 0.0		4	2
-0.976508-01	0.0	U. DOUALE UU 0.0 0.37224E 00 0.0		4	3
-0.126808-01	U-U	V.IU9022 01 0.0	36	4	4
U-17026E-01	0.10160E-01	U-137/UE-UI U-16231E-UI U-1/116E-UI U-1819	35-01 U	4	1
Vo179205-01	V= 2V 139E-U1	U.22100E-01 U.25598E-01 U.24612E-01 U.257		*	2
U-20000E-01	V-219302-01	U.200022-01 U.207272-01 U.200962-01 0.292		2	5
0.2010E-UL	V-27/70t-Ul	0.30020E-01 0.30133E-01 0.30069E-01 0.2974	102-01 U	*	4 5
U+271U3E-U1	U-201102-UI	V•2000000-01 V•272278-01 V•237000-01 V•2174	+02+U1 U	•	2
-0.20007E-UL	Velocius-U1	00113715-01 00103705-01 00120205-01 00131	AC-OL U	4	0
-V+2V0112-01	-0.102106-01	**************************************	155-01 V	4	1
-0.16274E-01	-0-1470146-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19E-01 V	7	ů R
-0-173675701	*0.127755-01	······································	VE-01 V	4	ر ۲
- V+164066~UL	-Veleff75-Vl -N_187875-A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	105-01 V	4	۳ ۲
-0.21420E-01	-0.2130AE_A1		17E-01 V	4	~
-0.20027E-01	-0-208485-01			4	1
-0.270725-01	-0-250405-01	······································	74F-01 H	4	2
-0.177495-01	*U*532015-01		355-01 0	4	2
-0.11500E-01	-0-117-0E-01			4	4
	-0.200414-01	·Vestatutevi-Vet33266*V1=Vet3V4V6*V1=Vet000 .0.220166=01=0.246016=01=0.241746=01=0.2723	746-01 4	4	5
	-0.290K16-01		11E-01 M	4	, ,
V*CV271E-V1	V=207716-VI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AND AL M	-	

internation provide and the only or dealer the second state

FIGURE 7. (Continued)

10-544999 2-132000	-0.071767			5	
0-19000E 01 0-C 0	-56880E 01 0-0	0.38157E 01 0.0		5	1
0.37661E 00 0.0 0	.27307E 00 0.0	0.39869E-02 0.0		5	2
-0.57378E-01 0.0 0	.30137E CO 0.0	0.18320E 00 0.0		5	3
-0.57112E-02 0.0 -0	.43705E 20 0.0			5	4
0-15256E-01 0-15346E-01 0	.15627E-01 0.16077E-01	0.16667E-01 0.17370E-01	U	5	1
0.18154E-01 0.18975E-01 C	-19784E-01 0-20547E-0L	0.21249E-01 0.21879E-01	U	5	2
0~22425E-01 0-22875E-01 0	-23232E-01 0-23510E-01	0-237336-01 0-239266-01	U	5	3
0.24110E-01 0.24276E-01 0	.24405E-01 0.24474E-01	0.24447E-01 0.24288E-01	U	5	4
0-23960E-01 0-23443E-01 0	-22735E-01 0-21855E-01	0.20850E-01 0.19786E-01	U	5	5
9-18738E-01 0-17767E-01 0	.16916E-01 0.16216E-01	0.15695E-01 0.15371E-01	U	5	6
-0-21136E-01-0-21077E-01-0	•20959E-01-0•20759E-01-	0.20467E-01-0.20082E-01	۷	5	1
~0-19596E-01-0-19002E-01-0	•18313E-01-0-17565E-01-	0.167968-01-0.160298-01	V	5	2
-0.15281E-01-0.14578E-01-0	•13953E-01-0•13443E-01-	0.13085E-01-0.12900E-01	V X	5	3
				2	-
				2	7
			V.	2	0
	1.209922-01-0.205972-01-			2	2
	-100555-01-0 833325-02-	V. [4406C-VI-V. 1329UC-VI		2	2
	_\$\$\$7\$C=\1=\+72333C=\02= _\$\$\$7\$C=\02=\0_01@00C=-\02=			5	5
+0-123195-01-0-135985-01-0	148895-01-0.141765-61-	(0.17268E+01-0.18278E+01)		ŝ	ŝ
-0-19136E-01-0-19829E-01-0	-20363E-01-0-20756E-01-	0.210265-01-0.211825-01	<u>.</u>	ś	ĥ
13.000000 1.955899	-0-071767			6	•
0-10000E 01 0-0	-57903E 01 0-0	0.32114E 01 0.0		6	1
0.29079E 00 0.0 0	- 4343E 00 0-0	0-25909E-02 0-0		6	2
-0-34208E-01 0.0 0	-16483E 00 0-0	0.91926E-01 0.0		6	3
-0.26290E-02 0.0 -0	.18457E 00 0.0			6	4
0.14669E-01 0.14728E-01 0	-14914E-01 0-15209E-01	0.15591E-01 0.16039E-01	U	6	1
0-16531E-01 0-17036E-01 0	0.17525E-01 0.17980E-01	0.18394E-01 0.18767E-01	U	6	2
0-19089E-01 0-19357E-01 0	0.19572E-01 0.19743E-01	0.19883E-01 0.20006E-01	U	6	3
0-20121E-01 0-20225E-01 0	.20307E-01 0.20353E-01	0.20346E-01 0.20265E-01	U	6	4
0.20089E-01 0.19804E-01 0).19404E-01 0.18894E-91	0.18296E-01 0.17645E-01	U	6	5
0-16987E-01 0-16363E-01 0	0.15802E-01 0.15331E 01	0.14975E-01 0.14751E-01	U	6	6
-0-19649E-01-0-19590E-01-0	0.19455E-01-0.19232E-01-	-0-18920E-01-0-18523E-01	V	6	1
-0.180416-01-0.174792-01-0	0.16853E-01-0.16195E-01-	·0.15535E-01-0.14890E-01	V	6	Z
	J-13208E-01-0-12806E-01-	-0.125242-01-0.123822-01	¥.	6	3
	.128542-01-0.133052-01-		¥.	0	÷.
				0	2
-0.148665-01-0 148045-01-0	/*173812-01-0.1471/2-014	·U·IYOUJE-UI-U·IYO4YE-UI	T N	6	0
-0-128895-01-0-14000C-01-0 -0-128895-01-0-14000C-01-0	/**************************************		w La	6	2
-0. A30A9F+02+0. 76782E-03-0	/*************************************	-V+70071E-V2-V+7V001E-V2 .0.50693E-07-0 57037E-07		6	2
-0.55912F-02-0.562825-02-0	/*************************************	······································		6	í
~0_81541E~02-0_87752E-02-0		-0-11508E-01+0-12277E-01	2	6	5
-0-12963F-01-0-1354#F-01-0	14024F-01-0.14393F-01-	-0.146576-01-0.148156-01		6	6
			_	<u> </u>	

and the provident of the providence of

1.10

こうれい おたま かかかかい たちかか

à,

FIGURE 7. (Continued)

16-017708	1-737200	-0-071767				7
9-10000E 01	0-0	0-59174E 01	6-0	0.25332E 01	0_0	7 1
0.20372E 00	0-0	0-12036E 00	0.0	0-14318E-02	0.0	7 2
-0.16790E-01	0.0	0.71852E-01	0.0	0-355906-01	0.0	73
-0.903996-03	0.0	-0.56366E-01	0.0			74
0.13312E-01	0.13343E-01	0.134476-01	0-13609E-01	0-13817E-01	0.14058E-01 U	7 1
0.1431 <i>8</i> E-01	0.14581E-01	G.14831E-01	0.15062E-01	0-15272E-01	0.15461E-91 U	1 Z
6-15626E-01	0.157658-01	0.15878E-01	0.15970E-01	0-16047E-01	0.16116E-01 U	73
0,16281E-01	0-16240E-01	0.16287E-01	0.16317 E-0 1	0.16320E-01	0.16287E-01 U	74
0.16207E-01	0-160725-01	0.15878E-01	0.15623E-01	0-15316E-01	0.14975E-01 U	75
0.14622E-01	0.142806-01	0.139668-01	0.136988-01	0-13491E-01	0.13361E-01 U	76
-0.16887E-01	-0.16836E-01	-0.16711E-01	-0.16508E-01-	-0-16231E-01-	0.15886E-01 V	7 1
-0.15481E-01	-0.15023E-01	-0.14527E-01	-0.14017E-01	-0.13515E-01-	0.13032E-01 V	7 2
-9-12578-01	-0.12163E-01	-0.11804E-01	-0.115158-01-	-0.11313E-01-	0.11208E-01 V	7 3
-0.11200E-01-	-0.1130/E-01	-0.11509E-01	-0.118105-01	-0.12199E-01-	0.12660E-01 V	1 5
-0-151712-014	-0-13/072-01	-0.142332-01	-0.14/3/2-01	-U+15199E-01-	-0.15612E-01 V	
-0.907965-02	-0.903006-01	-0.107022-01	-0.077005-02	-U.105UUE-U1-	-0.108/2E-01 V	7 0
-0.776385-02	-0.733615-02	-0.6976176-02	-V.0/2005-V2 -0 620865-02	-U+8408UE-UZ-	0.01999C-U2 W	7 7
-0.494376-02	-0.153012-02	-0.001020-02	-0.381286-02	-0.256295-02-	0 330615-02 W	7 2
-0.331635-02	-0.332655-02	-0.713072-02	-0.361202-02-	-0.390765-02-	-0-333016-02 W	7 4
-0.462525-02	-0.515205-02	-0.545706-02	-0.617075-02	-0.669106-02-	0.719495-02 W	7 5
-0.766135-02	-0.807406-02	-0-842336-02	-0.870356-02	-0-890925-02-	0.90352E-02 W	7 6
20-125000	1.444599	-0-071767				R
0-10000E 01	0.0	0-60867E 01	0-0	0-17518E 01	0-0	8 1
0.11715E 00	0.0	0.57555E-01	0.0	0-56937E-03	0.0	8 2
-0.55521E-02	0-0	0.19759E-01	0.0	0-81385E-02	0.0	8 3
-0-171918-03	0.0	-0.89134E-02	0.0			8 4
0.11150E-01	0.11163E-01	0.11206E-01	0-11273E-01	0-11357E-01	0-11454E-01 U	8 1
0-11558E-01	0-11661E-01	0.11758E-01	0.11847E-01	0-11929E-01	0.12004E-01 U	82
0-12070E-01	0.12127E-01	0.12174E-01	0.12214E-0i	0-1224 %E-01	0.12280E-01 U	83
0-12311E-01	0.123398-01	0.12362E-01	0.12377E-01	0.12383E-01	0.12374E-01 U	84
0-123472-01	0.12299E-01	0.12225E-01	0.12126E-01	0-12004E-01	0.11865E-01 U	85
0.11719E-01	0.11574E-01	0.11440E-01	0.11322E-01	0-11231E-01	0.11173E-01 U	86
-0-131506-01-	-0.13115E-01	-0.13024E-01	-0.12878E-01	-0.12682E-01-	0.12443E-01 V	8 1
-0.121678-01	-0.1186ZE-01	-U.11538E-01	-0.11211E-01	-0.10892E-01-	0.10588E-01 V	82
-0-103032-014	-0.100405-01	-0.98270E-02	-0.964//2-02	-0.952256-02-	·U.94>>4t-U2 V	8 5
-0. 105716-02	-V•Y7U2UE-02'	-0.90145E-02	-0.9/8436-02	-0.1000/E-01-	0.10273E-01 V	
-V. 17715-VL	-V+TA90A5+AF.	-0.130046-01	-0.120545-01	-0 130646-01-	V+12123C=J1 V	5 7
-V+LEJOJE-VL'	-0.430736-01	-0+120098-01	-V+167778-01	-V+IJV075-VI*	·V+LJLJLC=VL ▼ .0 283126_03 □	0 0 2 1
-0. 362737 -02-	-0.36126-02		-0.705025-02	-0.370035-02-	.0.34743E=02 W	0 L 0 2
-0.22434F-02	-0.20272F=02	-0.310472-02	-0.167056-02		0.145415-02 W	0 L 9 2
-0,140976-02-	-0.13905F_02	-0.163755-02	-0.101096-02.	-0.164275-02-	0.180256-02 W	8 £
-0.199635-02	-0.22126F-02	-0.245226-02	-0.270815-02	-0.297375-02-	0.32386F-02 W	8 5
-0-349068-02-	-0.37198F-02	-0.391916-02	-0.408305-02	-0.42056E-02-	0_42818F-02 ₩	8 6
	VL	<i>></i> /1/10-VL			AAAFATAF AF M	00

3

كالمنامع مناليا بال

FIGURE 7. (Concluded)

5

C 2 2

• Punched Output:

The punched card output for the sample problem is shown in tabulated form in Figure 7. The output data block for the first spanwise station is identified. The first card lists the spanwise station Y = 0, the mapping radius R = 2.8889 and the rate of change of R with Y, DRDY = 0. The next four cards list the real and imaginary parts of the coefficients used in the mapping expansion. Cards 6 - 11 list the induced velocity components in the X direction for each of the 36 control points at Y = 0. The induced velocity components in the Y-direction are listed on cards 12 - 17 and cards 18 - 23specify induced velocity components in the Z-direction. Data blocks of this type, each consisting of 23 cards, follow for each of the other 7 spanwise stations specified as part of the input. The punched output is identified in columns 73 - 80. The spanwise station number is shown in columns 75 - 77. Sequence numbers for each station appear in columns 78 - 80. The letters U, V, W in column 74 identify the velocity components listed on the data cards.

<u>Note</u>: From the tabulations of Figure 7 it is apparent that the first five cards of the data generated for each spanwise station represent an exact duplication of input cards described previously. They are generated as part of the punched output so that a more complete data package for the Transformation Method program may be obtained and additional card handling circumvented.

(2) Applicability and Limitations

The Jet Flow Field program may be utilized to evaluate the induced flow field at given control points due to one, two or three exhausting jets. For a single jet the initial jet exhaust direction, specified by ϕ and ψ , and the freestream direction, specified by α and β are arbitrary. For a two-jet configuration the jet exits must both lie in the same XY plane and the jet exhaust planes, defined by the freestream vector and the initial jet exhaust vectors, must be parallel. The same restrictions apply to a three-jet configuration. Additionally, three-jet configurations must be collinear and negative angle-of-attack cases cannot be treated. More complex configurations, as shown below, may be treated by reduction to two- or three-jet type configurations, as indicated, and adding the induced velocities at each control point due to configurations (a) and (b).

Extensive comparisons between computations and experimental data have been made for velocity ratios $0.10 < U_{\infty}/U_{j0} < 0.30$ and the Jet Flow Field program may be considered most applicable in this range of velocity ratios.

The choice of the variables governing the numerical integration for the jet path is related to the velocity ratio of the problem being considered. For $U_{\infty}/U_{j0} < 0.125$ integration in the direction normal to the freestream over an extent of at least 30 jet exit diameters has been found desirable. As U_{∞}/U_{j0} increases this may be decreased, as the jet penetrates less at the higher velocity ratios. For the above range of velocity ratios an integration step size of ≤ 0.5 jet exit diameters has been found satisfactory.

Control points at which jet-induced velocity components are to be evaluated may not lie within the jet itself, as the Jet Flow Field theory is not valid in this region. Generally, control points positioned less than 2 jet exit diameters from the center of the jet exit should be avoided, to avoid distortion in the computed velocity distributions.

b. Lifting Surface Theory

his the desired by a state with the second and the second se

The purpose of the Jet Flow Field theory, when used in conjunction with the Lifting Surface theory, is to predict jet-induced downwash distributions on the wing to be utilized by the Lifting Surface theory in evaluating power effects. This is accomplished by executing the Jet Flow Field computer program to generate required input data for the Lifting Surface program in the form of punched data cards. These data cards will then constitute the downwash matrix [W], which forms part of the input for the Lifting Surface program described in Section II.5.

It should be noted that the manner in which the Jet Flow Field program is utilized to provide date for the Lifting Surface program is almost identical to its application in conjunction with the Transformation Method described in Section II.3. a. The discussion below will treat in detail only those areas of input and output which differ from Section II.3.a

(1) Sample Problem Computation

For the sample problem being considered, the Jet Flow Field program is now used to compute jet-induced downwash distributions at 10 spanwise stations on the wing. Figure 8 shows details of the planform of the wing and indicates the network of control points to be utilized in the computations.

FIGURE 8. CONTROL POINTS ON WING FOR SAMPLE PROBLEM

The wing is treated as a planar surface, Z = 0. Each spanwise station has 10 control points spaced evenly between 0.05 and 0.95 of the local chord. The spanwise stations are distributed evenly between 0.05 and 0.95 of the semi-span.

(a) Input for Sample Problem

The input cards required for the sample problem are tabulated in Figure 9.

Card 1 again lists the three control indices. $IGE \emptyset M = 3$ indicates that the coordinates of all control points will be provided directly as part of the input. The other two indices remain unchanged from Section II. 3. a. The punched output generated will, of course, now be suitable for use with the Lifting Surface program.

Card 2 remains unchanged from Section II. 3. a.

		0.	<i>0</i> . <i>0</i> .	0.		0	0.		0	0.
	o .	1.00.60	1.0060	<i>i0060.</i>		19.11.40	19.11.90.	19.1190	19.11.40	19.1140
╒╪╎╷╞╣╏┲┇┟┨┶┟╴╘┆╘╹╷ ╸╾┶╍╺╶╸╺╺┍╼╼╼╴╴╸╺	180.	<i>J.</i> 7923 3.8347	5.9271 8.0195	10.1118		4.1327	5.2603	6.3879	7.5155	8.6031
	- 6.63	0.	0.	0 .		0.	0.	0		C
	0.	1.0060	1.0060	1.0060		19.1140	19.1140	12.1140	1.9. 11.20	01100
	501 3.	1.0 1.0 2.6961 2.7885	4.8809	9.0657	· · · · · · · · · · · · · · · · · · ·	3.5689	4.6965	5.8241	6.9517	~~~~~

and the second se

.

AV A SHOW

1

.

·

FIG JRE 9. JET FLOW FIELD PROGRAM INPUT DATA FOR SAMPLE PROBLEM (Wing; Lifting Surface Theory)

NAME OF TAXABLE

ì

Card 3 controls the number of steps and the step size in the numerical integration of the equations of motion for the jet path. For this case, the number of steps has been cut down to 50, as computations in Section II.3. a showed that after a penetration of 20 jet exit diameters into the crossflow, the nondimensionalized jet speed $U_j/U_{j0} = 0.202$, i.e., the jet has virtually slowed to the speed of the crossflow and further contributions to the jet-induced velocities will be negligible.

Cards 4-6 see Section II. 3. a.

Card 7 lists the number of spanwise control stations, NS = 10 and specifies that the number of control points at each station NC = 10.

Cards 8-57 list the coordinates for the control points of the grid shown schematically in Figure 8. The coordinates for each control point appear in the order X, Y, Z. Control points are listed from leading edge to trailing edge for each spanwise station, with the spanwise stations appearing in a root-to-tip sequence. The total number of control points is NC x NS. The listing is continuous, i.e., no new record is required for the first control point at each spanwise station.

(b) Output for Sample Problem

Both printed and punched outputs are obtained.

• Printed Output:

The initial part of the printout dealing with configuration identification and jet centerline printout will be identical to that shown in Figures 6(a) and 6(b) of Section II.3. The centerline computations are now carried out to Z = 51.63 consistent with the 50 integration steps specified. Figure 10 shows a portion of the printout for the jet-induced velocity components at the control points specified as part of the input. The control points are listed in the order in which they were read in. All three velocity components are printed cat, although only the downwarh component W needed in conjunction with the Lifting Surface theory.

• Punched Output :

The punched output for the sample problem is shown in tabulated form in Figure 11. The data block for the first spanwise station is identified. The cards list the downwash component -W, nondimensionalized by U_{∞} , for each control point at the first spanwise station in \circ leading to trailing edge

	***	INDUCED	VELOCITIES AT CON	ITROL POINTS ***	
X	Y '	Z	U	v	W
0.096	1.006	0.0	0.42185E-0t	-0.25052E-02	-0.19470E-01
1.742	1.006	0.0	0.41069E-01	-0.31934E-02	-0.27364E-01
2.788	1.006	0.0	0.38306E-01	·0.37568E-02	-0.34289E-01
3.835	1.006	0.0	0.34488E-01	-0.41490E-02	-0.39742E-01
4-881	1.006	0.0	0.30233E-01	-0.43711E-02	-0.43625E-01
5-927	1.005	0.0	0.26004E-01	-0.44536E-02	-0.46118E-01
6-973	1.006	0.0	0.22069E-01	-0.44349E-02	-0.47507E-01
8-019	1.006	0.0	0.18547E-01	-0.43495E-02	-0.48074E-01
9.066	1.006	0.0	0.15463E-01	-0.42236E-02	-0.48055E-01
10.112	1.006	0.0	0.12797E-01	-0.40755E-02	-0.47630E-01
1.015	3.018	0.0	0.39548E-01	-0.73734E-02	-0.19404E-01
2.008	3,018	0.0	0.38348E-01	-0.89783E-02	-0,25778E-01
3.000	3.018	0.0	0.35964E-01	-0.10302E-01	-0.31410E-01
3.993	3.018	0.0	0.32795E-01	-0.11266E-01	-0.35995E-01
4.986	3.018	0.0	0.29248E-01	-0.11869E-01	~0.39455E-01
5.978	.3.018	0.0	0.25651E-01	-0.12161E-01	-0.41875E-01
6.971	3.018	0.0	0.22215E-01	-0.12211E-01	-0.43418E-01
7.963	3.018	0.0	0.19056E-01	-0.12087E-01	-0.44267E-01
8.956	3.018	0.0	0.16219E01	-0.11845E-01	-0.44586E-01
9.949	3.018	0.0	0.13710E-01	-0.115298-01	-0.44514E-01

FIGURE 10. INDUCED VELOCITY COMPONENTS AT CONTROL POINTS

Station 1.006 0.1946997E-01 0.2736357E-01 0.3428907E-01 0.3974187E-01 0.4362537E-01 0.4611834E-01 0.4750663E-01 0.4807373E-01 0.4805501E-01 0.4763048E-01 0.1940424E-01 0.2577788E-01 0.3140971E-01 0.3599505E-01 0.3945525E-01 0.4187481E-01 0.4341806E-01 0.4426672E-01 0.4458629E-01 0.4451389E+01 C.1722910E-01 0.2192676E-01 0.2618271E-01 0.2982682E-01 0.3278734E-01 0.3507354E-01 0.3674650E-01 0.3789202E-01 0.3860138E-01 0.3896004E-01 0.1413587E-01 0.1745514E-01 0.2054700E-01 0.2331698E-01 0.2571272E-01 0.2771608E-01 0.2933651E-01 0.3060186E-01 0.3153021E-01 0.3222350E-01 0-1101770E-01 0-1332559E-01 0-1552317E-01 0-1756243E-01 0-1940951E-01 0.2104460E-01 0.2246060E-01 0.2366059E-01 0.2465511E-01 0.2545955E-01 0.8287247E-02 0.9881828E-02 0.1142634E-01 0.1289609E-01 0.1427143E-01 0.1553807E-01 0.1668714E-01 0.1771446E-01 0.1862001E-01 0.1940690E-01 0.6058868E-02 0.7158797E-02 0.8237526E-02 0.9282477E-02 0.1028281E-01 0.1122979E-01 0.1211669E-01 0.1293890E-01 0.1369373E-01 0.1438010E-01 0.4310101E-02 0.5068891E-02 0.5819704E-02 0.6556150E-02 0.7272489E-02 0.7963751E-02 0.8625664E-02 0.9254884E-02 0.9848863E-02 0/1040578E-01 0.2969740E-02 0.3493453E-02 0.4014853E-02 0.4530825E-02 0.5038351E-02 0.5534708E-02 0.6017454E-02 0.6484497E-02 0.6934032E-02 0.7364653E-02 0.1957927E-02 C.2319387E-02 0.2680826E-02 0.3040665E-02 0.3397372E-02 0.3749519E-02 0.4095748E+02 0.4434913E-02 0.4765924E-02 0.5087804E-02

FIGURE 11. JET FLOW FIELD PROGRAM PUNCHED OUTPUT FOR SAMPLE PROBLEM (Wing; Lifting Surface Theory)

sequence. The sign of W is changed to provide compatibility with the Lifting Surface theory where downwash is conventionally considered to be positive. Similar data blocks are generated for the other 9 spanwise stations. Each spanwise station starts on a new record. ころうちょう いろう ちょうしょうかん ちょうかん ちょう ちょうちょう

.....

(2) Applicability and Limitations

ters the break increase by the state of the break of the second on the second of the second of the second of the

See discussion in Section II.3.a.

Additionally, since the punched output variable -W serves as an approximation to the tangent of the downwash angle when it is utilized as input to the Lifting Surface program, the application of the Jet Flow Field program must be restricted to small angles of attack.

4. APPLICATION OF TRANSFORMATION METHOD TO WING

The transformation method uses the jet-induced velocity components at a number of stations on the wing to determine wing power effects in the form of surface pressure distributions and integrated force and moment. The transformation method requires that the mapping function for each of the wing sections is known. The jet induced velocity components are determined using the jet flow field program described in Volume ¹. The mapping function is determined using the techniques developed in Section III of Volume I.

The generation of the coefficients of the mapping function for the sample problem has been described in Section II. 2. A description of the application of the jet flow field program to the sample problem has been given in Section II. 3. The punched card output of the jet flow field program is compatible with the transformation method and includes the mapping coefficients and jet induced velocity components for each of the wing sections. To complete the input to the transformation method program various flow indices must also be specified. Most of these indices have already been defined in the preceding section.

a. Inputs to Transformation Method for Sample Problem

Shown in Figure 12 are the input data for this sample problem in which the punched outputs from the jet flow field program constitute the major portion. However, to activate the computation two cards must precede this basic input block. There may be none, two or three cards following this block, depending on the specified options.

FIGURE 12. TRANSFORMATION METHOD PROGRAM INPUT DATA FOR SAMPLE PROBLEM (Wing)

Card 1 lists in order the classification index (1 specifies a wing), the modification index (1 denotes the option of three-dimensional modification being exercised), the number of iterations, the number of layers for distributing residual sources and sinks, the power index (0 indicates the power effect), the configuration index (1 refers to a nonrectangular wing), and the force index (1 indicates forces and moments to be computed).

Card 2 lists in order the number of stations, the number of pairs of the mapping coefficients, the number of coefficients in the Fourier series expansion, the computation index, the number of angular increments on the mapping circle, the freestream to the jet velocity ratio, the angle of attack in degrees, and the sideslip angle in degrees.

Cards 3 through 186 contain the punched output data provided by the jet flow field program, which include the y coordinate, the mapping coefficients, and the induced velocity components for stations No. 1 through No. 8. There are 23 cards for each station.

Card 187 lists in order the option index (0 denotes no average value used for the station next to the exhausting jet) and the station number where the jet is located.

Card 188 lists the number of stations on which the downwash modification is to be applied.

Card 189 lists in order the number of jets, the jet exit diameter, X coordinate of the moment center, Z coordinate of the moment center, and the reference length for making the computed moments dimensionless.

b. Outputs from Transformation Method for Sample Problem

and the state of t

and the second second second second

うわえいようないない

Figure 13 lists directly or indirectly a portion of the input data on Card 1 through Card 186.

Figure 14 establishes the correspondence between the angular increments of the mapping circle and their corresponding locations on the wing section at every station. The first column states the angular increments in degrees.

Figure 15 gives the pressure distributions in coefficient form $(\mathbf{p} - \mathbf{p}_{\infty})_{q_{\infty}}$, at every station after completion of the segment method. These coefficients are tabulated against the angular increments. To obtain the actual location, reference must be made to the previous figure. The second and the third lines in this table list the radius of the mapping circle (RB) and the gradient of this radius in y-direction (DRDY). Figure 16 lists the pressure distributions at various sections after imposing the residual sources and sinks in the network. Columns 7, 8, 9 in this table remain the same as those in Figure 15, since the flow properties near the wingtip are not modified.

Figure 17 lists the pressure distributions after completion of a three-dimensional modification of one iteration.

Figures 18 and 19 show printout of the pressure coefficients after imposing the residual sources and sinks for the second time and the completion of a three-dimensional modification of two iterations.

Figure 20 lists the parameters used in the three-dimensional modification and in the force and moment computations, originally read in as input data on Cards 187, 188, and 189. Also tabulated are the computed forces (normalized to the thrust) and moments (normalized by the thrust and reference length) on this wing after two iterations.

Figures 21(a) through 21(c) show the comparison between the computed pressure coefficients and wind tunnel test data at stations y = 5.04'', 7.2925'', 10.545'', and 16.0''.

and site of the strend protection and the states

14

States of the states

Sec. Therese

FIGURE 13. PARTIAL LIST OF INPUT DATA FOR SAMPLE WING

MING COMPUTATION

3

JPTIJNS SPECIFICU FJR THIS RIM ARE

1. THREE DIMENSIONAL MODIFICATION OF 2 ITENATION

2. PONFK EFFECT ONLY

****INPUT DATA****

-		000 000	0.16691E-01 0.33823E-01 0.41508E-01 0.44584E-01 0.22435E-01 0.11553E-01	000000	-0.46985E-01 -0.14394E-01 -0.14485E-01 -0.11485E-01 -0.51225E-01 -0.47839E-01
ECT - 1 IFURCI		0.700570F 01 0.182110F-01 0.204190E 01	0.14771E-01 0.14771E-01 0.4091E-01 0.45273E-01 0.45273E-01 0.25276F-01	c c c c c c c c c c c c c c c c c c c	-0.47360E-01 -0.37318E-01 -0.16461E-01 -0.25421E-01 -0.50329E-01 -0.49223E-01
MTHET+ 36 IR(0	0ERIV+ 0.0	0000	0.13287E-01 0.27913E-01 0.27913E-01 0.40340E-01 0.44971E-01 0.344971E-01 0.13177E-01	00000C 000000	- 9.47535E-01 - 3.40918E-01 - 0.19039E-01 - 0.20619E-01 - 0.49642E-01
20 NSYA I BETA 0.	- 2.664900	FDA 51AT1 DN 0.524950E 01 0.926540E 00 0.252740E 01 -0.911890E 01	1 NC11 0-12220 10-3247986-0 10-3464986-0 10-366968-0 10-366968-0 10-366968-0 10-366969-0		7104 1 -0.47586E-01 -0.47336E-01 -0.22435E-01 -0.17164E-01 -0.49536E-01 -0.49536E-01
4= 11 NFUUN- ALPHA= 0.0	D HADEUS	ICLENTS	46NT 000 AT 51A 0.115426-01 0.217966-01 0.314776-01 0.31456-01 0.332406-01 0.166446-01	ENT «V* AT STA 0.0 0.0 0.0 0.0 0.0	46NT *W* AT STA -0.47597F-01 -0.45121E-01 -0.45121E-01 -0.45121E-01 -0.15127E-01 -0.42753E-01 -0.50293E-01
VSTA= 8 1	STATION= 0-(5E0METHY CAFF 3.100000E 01 0.335940E 00 -3.55140E 00 -3.879419E-01	VELNCITY CUMPO 0.11362E-01 0.19044E-01 0.36272E-01 0.422365-01 0.42576E-01 0.19220E-01	VELDCITY CJ4PJ 9.0 0.0 0.0 0.0 0.0	VELDCITY COMPON-0.47548E-01 -0.47548E-01 -0.46294E-01 -0.10461E-01 -0.14410E-01 -0.37266E-01 -0.50913E-01

TABLE FOR WING GEOMETRY

1.79 * 2 [] 5.04 *, 2 (1) 2 2.50 Ť /[1] // 0.0 X((1) 0.107176 02 0.107176 02 0.107176 02 0.99036E 01 0.99036E 01 0.99036E 01 0.99134E 01 0.69476E 01 0.69476E 01 0.69476E 01 0.92131E 01 0.92134E 01 0.92134E 01 0.912137E 00 0.92082E 00 0.92082E 00 0.9213476 01 0.912137E 01 0.92134E 01 0.92134E 01 0.9213476 01 0.92134E 01 0.92134F 01 0.92134E 01 0.92144E 01 0.9214E 01 0.9214E 01 0.9214E 01 0.9214E 01 0.9214E 01 ,#

CIRCLES AND CARTESIAN COORDINATES OF WING SECTIONS 14. FIGURE

÷

Ξ,

TABLE FUR WING GEQMETRY

Party Restaura

errorded has a stability of the second states with the states in the second states and the second states are stated as

ĝ

and beauting

out at the second sector

5 About 1

A Draw March

Same in

dir. Mar

20.13	(1)2	0.0	01 0.999176-02	01 0.25174F-01	01 0.465696-01	01 0. 794136-01	01 0.114395 00	D1 0.15107E 00	01 0.136716 00	01 0.224736 00	01 0.252846 00	01 0.246746 00	01 0.264395 00	01 0.24806E 00	01 0.221096 00	01 0.186326 00	01 0.14604E 00	01 0-101346 00	01 0.5230BE-01	01 0.190556-06	01 -0.52307F-01	01 -0.10136E 00	01 -0.146048 00	01 -0.18632E 00	01 -0.22109E 00	01 -0.24806E 00	01 -0.26439E 00	01 -0.26674E 00	01 -0.25284E 00	01 -0.224730 00	01 -0.18871E 00	01 -0.15107E 00	010.114346 00	01 -0.794146-01	01 -0.485696-01	01 -0.251746-01	01 -0.9991AE-02
• >	x()	0.66209E (0.477376 (0.863526	0.641406 (0.812195 (0.77703E (0.73705E (0.693585 (0.648335	0.602856	0.558276 (0.515305 0	0.475106	0.436556 (0.40686E	0.381116 (0.36221E (0.350766 (0.34694E	0.350766 (U.36221E (0.38111E (0.406866	0.438556	0.47510E C	0.51534E (0.558275 (0.602856 (0.648335 (0.493586 (0.73705E (0.777036 0	0.812195 (0.841406	0.863526 (0.877376 0
.05	(1)7	0.0	0.12029E-01	0.107986-01	10-3444440	0.95545E-01	0.13761F 00	0.181736 00	0.22699F 00	0.27031E 00	0.304156 00	0.32083E 00	0.31800E 00	0.298366 00	0.265925 00	0.224105 00	0.175666 00	0.1%191E 00	0.629136-01	0.229186-06	-0.62913E-01	-0.12191E 00	-0.17566E 00	-0.22410E 00	-0.26592E 30	-0.29836E 00	-0.31600t 00	-0.32083E 00	-0.30415E 00	-0.27031E 00	-0.22699E 00	-0.151736 00	-0.13761E 00	-0.455456-01	-0.584446-01	-0.302986-01	-0.120296-01
. 16	X(1)	0.920536 01	0.91486F 01	0.84820E 01	0.87160E 01	0.436475 01	0.74420C 01	0.746126 01	0.69385E 01	P.63443E 01	0.58474E 01	0.531136 01	0.47955E 01	0.431124 01	0.387165 01	0.34406F 01	0.31809E 01	0.24537F 01	0.241595 01	0.27700E 01	0.24159F 01	0.29537E 01	0.318096 01	0.3490AF 01	0.34716F 01	0.43117E 01	0.479556 01	0.531176 01	0.58474F 01	0.63943E 01	10 43854 01	0.74A12F 01	0.734235 01	0.83647E 01	0.37150E 01	0.69820E 01	0.41486F 01
c0.	(11)7	0.0	0.135176-01	U.34062E-01	0.657296-31	0.10748F 30	0.154836 00	0.204506 30	0.25545E 00	0.304226 00	0.34232F 00	0.36111E 30	0.35793F JU	0.33583E 00	0.29931F 00	0.252246 00	0.19772E JO	0.13722F 00	0.70815E-01	0.25747E-36	-0./38154-01	-0.13722E 00	-0.19771E 00	-0.25224F 00	-0.29931E DO	-0.33583E 00	-0.35794E 00	-0.36111F 00	-0.34232E 30	-0.30422E UO	-0.25545F 0U	-0.20450E 00	-0.15483E JO	-0.10748F 00	-0.657246-01	-0.340626-01	-0.13517E-Ul
Y= 13.	(1)×	P.94923E 01	0.942A4F 01	0.924095 01	0.89414E 01	C.85458E 01	0.80674E 01	0.75285E UL	0.64400E 01	0.632725 01	0.57115E 01	0.51C73E 01	0.45272F 01	0.39818E 01	0.34369F 01	C.30579E 01	0.27092E 01	0.24533E 01	0.22983E 01	0.22466F 01	0.22493E 0)	0.24533E 01	0.27092E 01	0.30579E UL	0.348695 01	0.39818F 01	0.45272E 01	0.51C785 01	0.57115E 01	0.63272E 01	0.69400F 01	0.752d5E 01	*.80699E 01	0.85458E 01	0.84414E 01	0.92409E 01	0.94284E 01
• 54	(1)7	0.0	J.14736F-01	0.371335-01	0.71653E-01	0.11717F 00	0.16879E 00	U.27292E 00	0.27946E 00	0.331621 00	0.37315E 00	0.34363E 0C	0.39016E 00	0.36607E 00	0.32626E 00	0.27445E 30	0.21552E 00	0.14958E 0G	0.771926-01	0.731205-06	-0.77142E-01	-0.14958E 00	-0.21552E OC	-1.27495E 00	-0.32626E 30	-0.36607E ')O	~0.34016E 00	-0.39363E 00	-0.37315F 00	-0.33162E 00	-0.27846E 00	-0.3292E 00	- J.16373E 00	-0.11717F 00	-0.71654F-D1	-0.37133E-01	-0.147366-01
V= 10.	(]) X	0.97233E PL	9.44536E 01	0.94492E 01	0.91723E 01	0.36916F 01	0.81728E 01	0.75427E 01	0.69412E 01	0.62733E 01	r.55021E 01	0.49441E 01	0.431116 01	0.37167E 01	0.31772E 01	0.273965 01	0.232956 01	J.20506E 01	0.188165 01	0.197526.01	0.16816E 01	0.23>06E 01	0.23295E 01	0.27096E 01	0.31772E 01	0.37167E 01	0.43111E 01	0.44441E 01	0.56021E 01	0.62737E 01	0.69412E 01	9.75827E 01	0.31724E 01	0.86916E 01	9.91223E 01	0.94497F 01	0.96536E 01
	THETA	0.0	10.01	cc.05	30.00	40.03	50.03	00.00	79.00	8 7. 70	00.09	100.00	110.00	120.05	00.061	66.041	150.00	160.00	170.00	180.00	197.09	200.70	210.00	270.00	230.00	240.03	250.03	260.00	270.00	280.70	290.03	00°00E	310.70	321.00	00.066	340.07	150.00

FIGURE 14. (Concluded)

PRESSURE CHEFICIENTS AT AING. SEGANT METHOD.

*																																					
Y= 20.13	KG: 1.44	-0.576065-02	-), > 14 495-01	-0.21A275-01	-0.20927F-01	-0.20242F-01	-0-195756-01	-0.188756-01	-3-162476-01	-9.177126-01	-0.17058E-01	-0.160846-01	-0.146485-01	-0.127366-01	-0.101916-01	-9.650446-02	-0.4003E-03	C.10574E-01	0.335366-01	-3.15496F-02	-0.700716-01	-0.58231E-01	-0.49946E-01	-0.454146-01	-0.42815E-01	-3.411126-01	-0.39798E-01	-0.34432E-01	-0.367006-01	-0.346576-01	-0.32646E-01	-0.31035E-01	-3.29494E-01	-0.27924E-01	-0.26311E-01	-0.2492JE-01	-9.238986-01
Y= 16.05	080Y= -0.07	-0-13106E-02	-0-28223E-01	-0.25123E-01	-0.231836-01	-0-215556-01	-0.200016-01	-0.1441 HE-01	-0.16897E-01	-0.15364E-01	-0.13599E-01	-0.113485-01	-0.440226-02	-0.440406-02	0-513636-03	0.802586-02	0.20211E-01	0.429866-01	0-96448E-01	-0.121626-01	-0.141656 00	-0.138306 00	-0.88056E-01	-0.770866-01	-0. 705906-01	-0.66175E-01	-0.62693E-01	-0.543056-01	-0.55463E-01	-0.51237E-01	-0.472386-01	-0.437546-01	-0.4051 BE-01	-0.373256-01	-0.34141E-01	-0.31367E-01	-0.26962E-01
Y= 13.00 PR= 1 96	DRDY= -0.07	-0.861816-02	-0.312106-01	-0.26463E-01	-0.23324E-01	-0.205856-01	-0.179896-01	-0.15371E-01	-0.12787E-01	-0.10094E-31	-0.69402E-02	-0. 31 721E-02	0.15376E-02	0754826-02	0.15697E-01	0.27745E-01	9.473866-01	0.837846-01	0.149856 00	-0.34-67E-01	-0.23465 00	-0.17063E 00	-0.13477E 00	-0.115496 00	-9.10393E 00	-0.95920E-01	-0.894706-01	-0.832585-01	-0.76438E-01	-0.642A1E-01	-0.62523E-01	-0.56591E-01	-0.51127E-01	-0.45373E-01	-0.40A00E-01	-0.36317E-01	-0.32204E-01
Y= 10.54 EA= 2.13	DRDY= -0.07	-0.9 350 25-32	-0.324306-01	-0.26036E-01	-0.21621E-01	-3.17710E-01	-0.14000E-01	-0.10264E-01	-0.65192E-02	-0.25148E-02	0.21574E-02	0.758516-02	0.142136-01	0.22619E-01	0.34059E-01	0.51046E-01	0.747836-01	0.124766 00	0.21875E 00	-0.73662E-01	-C.34350E 00	-0.243146 00	-0.138585 00	-0.15945E 0G	-0.14142E CO	-0.12439E 00	-0.111176 00	-0.10929E 00	-0.94727E-01	-C.87736E-01	-0.775486-01	-0.68625E-01	-0.60526E-01	-0.52429E-01	-9.457685-01	-0.39470E-01	10-316416.0-
Y= 1.74	70-0- = Viso	-J.933J7F-02	-3.31566E-31	-0.230476-01	10-3121210-	-0.11691E-01	-7.64963E-32	-0.125946-02	0.41115E-02	0.995426-02	0.167935-01	3.245476~21	0.334256-01	0.45538F-01	J.61496[-01	0.35260E-01	J.12477E 33	0.19443F 33	0. 308A6E 00	-3.17U21E 00	-0.513316 30	-0.35250E 90	-0.26916E 00	-0.22504E 00	-0.19805E 00	-0.17451E 00	-0.161486 00	-0.14565E 00	-J.12460E JO	-0.11133C 30	-0.45654E-01	-0.421316-01	-0.70143C-01	-3.593276-01	-7.444056-01	-0.401e9t-01	-0.323046-01
1 5.04 24 2.53	10.6- =YC 40	-0.811476-02	-0.274596-01	-0.17694E-01	- 0.10229č-01	-0.333636-02	0.334456-02	0.101446-51	0.172756-01	0.251416-01	0.343946-01	0.447126-01	0. 5485 8E-01	0. 771176-91	0.92854E-01	0.123746 30	0.173946 00	0.263915 07	0.395415 0.)	-0.31234E 00	-0.721645 03	-0.44407E 00	-0.36414E 03	-0.304296 00	-0.26576E 00	-0.236826 00	-0.211046 00	-0.18554E 00	-0.15926L OÚ	-0.133ACT 00	-0.111054 00	-0.421196-01	-0.759366-01	-0.618555-01	-0.49325E-01	-0.385546-01	-0.27624E-01
Y* 2.50 B1= 2.71	10.0- =YCH	-0.55241E-02	-C.22821c-01	-0.117166-91	-0.35914E-02	0.416696-02	0.114036-01	J. 1965 4E - 01	0.280706-01	10-396426.0	10-356-84-01	0.637255-01	n. 14961E-01	0.427545-01	C.11641F 00	0.15254 00	0.210525 00	0.313366 00	0.45774E ON	- 3. 446946 00	-0.442146 00	-0.54214E 00	-1.447665 00	-0.37237E 00	-0.32457E 00	-0.23694E 00	-0.251726 00	-0.216416 90	-0.18075E OC	-0-147206 00	-0.11274E 00	-0.955376-01	-C. 764356-01	-0.601366-01	-3.46025E-01	-0-33884E-01	-0.21309E-61
Y= 2.84	RDY= 0.0	-0.276236-02	-]. [8446-0]	-0.150206-32	7.53746E-93	0.83716E-02	0.161635-01	0.24217E-01	7.32936E-01	0.427496-01	0.54212E-01	n.66831E-n1	0.81560F-01	0.49852E-01	n.12450F nn	1.16120E 00	9.22044E 00	7.324136 00	0.47190E 00	0.42790E 30	-0.94408E 00	-0.62850E 00	-7.4786AE 00	-0.40158E CO	-7.35221E 00	-0.311 JF 03	-0.27198E 50	-0.21111E 10	-0.14995E CV	-0.15192E 00	-0.12028F 90	-0.44413E-31	-0.744246-01	-0.57163E-01	-0.42422E-01	-0.29842E-31	-7.162126-01
	THETA D	0.0	C0.01	21.03	10.00	C0.04	50.30	60.00	70.00	80.73	90.09	100.00	110.07	127.03	139.00	140.00	151.00	160.00	170.30	161.19	190.70	20-03	210.015	220.03	230.03	240.33	250.00	260.00	270.00	280.00	290.00	00.001	00.016	320.00	3 30.00	340.00	359.00

POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AFTER APPLICATION OF SEGMENT METHOD FIGURE 15.

PRESSURE CUEFFICIENTS AT MING AFTER RESIDUAL SOURCE/SINK MUDIFICATION.

Y= 20.13 27= 1.44 0x3Y= :0.07	-0.57006-02	-0.234696-01	-0.21A27F-01	-0.209275-01	-0.202426-01		-0.14875E-01	-0.182476-01	-0.177126-01	-0.170586-01	-0.100846-01	-0-140486-01	-0.12736E-01	-0.10191E-01	-0.55044402		0.10574F-01	0.335365-01	-0.154966-02	-0.70071F-01	-0.582316-01	10-3986840-	-0.454145-01	-0.428156-01	-0.41112E-01		-0.18432F-01	-0.34700E-01	-0.34657F-01	-0.326965-01	-0.310355-01	-0.24446-01	-0.27424E-01	-0.267116-01	-0.249236-01	-0.236486-01
Y. 16.05 Ru 1.74 DROY -0.07	-0.73706E-02	-0.26223E-01	-0.251236-01	-0.21163E-01	-0.715556-01	-0.200016-01	-0.18418E-01	-0.148976-01	-0.153846-01	-0.13599E-01	-0.113485-01	-0.840226-02	- 0. 46040E-02	0. 51 363E - 03	0.802586-02	0.202116-01	0.429865-01	0-864486-01	-0.121626-01	-0.14165E 00	-0.10830E 00	-0.880%6E-01	- 0. 7 7086E - 01	-0.70590E-UL	-0.66175E-01	-0.626936-01	-0.593055-01	-0.55463t-01	-0.5123YE-01	-0.472345-01	-0.437546-01	-0.4051df-01	-0.379256-01	-0.34161E-01	-0.113676-01	-0.28962E-01
Y= 13.00 R8= 1.96 URDY= -0.07	-0.86181E-02	-0.312106-01	-0.26463E-01	-0.23324E-01	-0.20585E-01	-0.17989E-01	-0.153716-01	-0.12787E-01	-0.100946-01	-0.69402E-02	-0.317216- 32	0.153766-02	0.754826-02	0.156976-01	0.277456-01	0.473866-01	0.937846-01	0.149856 00	-0.36667E-01	-0.23365E 00	- 0.17063E 00	-0.13477F 00	-0.11549E 00	-0.10393E 00	-0.95920E-01	-0.894706-01	-0.832585-01	-0.764086-01	-0.69241E-01	-0.625236-01	-0.56591E~01	-0.51127E-01	-0.45873E-01	-0.40400E-01	-0.363176-01	-0.32704E-01
V= 13.54 RB* 2.13 DNDV= -0.67	-0.93678E-02	-0.322766-01	-0.25562E-01	-0.20450E-01	-0.16754E-01	-0.126776-01	-0.44874E-02	-0.41/285-02	0.51393E-03	0.54414E-02	0.12269E-01	0.149945-01	0.292256-01	0.419086-01	0.40602E-01	0.90982E-01	0.14647E 00	0.24074F 00	-0.471846-01	-0.37312E 00	-0.25403E 00	-0.202936 00	-0.170 34E 00	-0,15062E 00	-0.13571E 00	-0.12524E 00	-0.11434E 00	-0.19278F 00	-0.40862E-01	-0.138876-01	10-361601-0-	-0.617316-01	-0.536906-01	-0.46196F-01	-0.31597E-01	-0.332246-01
Y= 7.79 RB= 2.33 DKUY= -0.07	-0.95267E-02	-0.31015 -01	-0.225106-01	-0.16548F-J1	-0.110536-01	-0.57449E-02	-0.35044E-03	0.522446-32	J.11336E-01	0.18458E-01	0.265416-01	0.36131F-01	0-481935-01	0.64547E-01	0.64407E-01	9.12458E 30	0.240546 00	0.31658F 00	-J.17981E 00	-0.52d20F 30	-0.36137E 00	-0.27525E 00	-0.22971E 00	-0.20185E 00	-0.18170E 0C	-0.16455E 00	-0.147946 00	-0.13032E 00	-0.11262E 70	-0.46516E-01	-0.827425-01	-0.705476-01	-0.53488F-01	-0.44345E-01	-7.40538E-71	-0.317776-01
∀= 5.∩4 RB= 2.53 RDY= -0.07 [-0.83852E-92	-0.27074E-01	-0.173865-01	- 0° 1 04 94E - 01	-0.409106-02	n.20528F-02	0.82308E-02	0.14627F-01	0.21661E-31	0.29860E-01	0.390/4E-01	0.50010E-01	0.63877E-01	0. 82 8 4 4 F - 0 L	0.11144E 90	0.15820E 00	0.24284E 00	0.37372E 00	-0.26452E 00	-0.66854E 00	-0.45403E 00	-0.34620F 00	-U.23944E 00	-0.25403E 00	0.22725E 00	-0.20315F 00	-0.179285 00	-0.154 38E 00	-0.12956E 00	-0.10796F 00	-0.89735E-01	-0.74269F-01	- 0. 606 U4E-01	-0.49415E-01	-0.37845E-01	-0-271506-01
Y= 2.50 ×5= 2.71 20Y= -0.07 0	-0.57341E-02	-0.22714E-01	- 0.12703E-01	-0.5061E-02	0.11617E-02	n. 74443E-02	0.13654E-01	0.20069E-01	0.271046-01	0.35323E-01	0.44524E-01	0.55512E-01	3.69671E-C1	0.841545-01	0.113836 00	0.117736 00	0.25670F 00	0. 39284E 00	-0.31087E 00	-0.73551E 00	-0.503846 00	-0.38876E 00	-0.32837F ON	-0.289605 00	-0.25834E 00	-0.22815E 00	-0.1972CF CO	-0.16551E 00	-0.13553E 00	-0.11006E 00	-0.84311E-01	-0.72130E-01	- 0.51449E-01	-0 JE-01	- 0.33455E-01	-0.21461E-01
Y= 0.0 RB= 2.89 }KDY= 0.0 Ľ	-0-1-0446-02	-0.21337E-31	-0.11655F-01	-0.44714E-02	3.20437E-02	0.803576-02	0.13841E-01	0.197966-01	0.76240E-01	0.33763E-01	0.42152F-01	1.52244E-01	0.65167E-01	0.936 77E-01	J.11179E 00	0.15835E 00	0.243776 00	C.37672F DO	-U.25552E 00	-0.70767E 30	-1.40387E 00	-0.38832E 00	-0.33372E 00	-9.29797E DO	-7.26714E 00	-0.23493E 00	-0.20066E 00	-0.16554E 00	-0.13292E 00	-0.1C585E 00	-0.84279E-01	-0.669675-01	-0.52463E-33	-0.401396-01	-0.30000E-71	-0.19418E-01
THETA C	 0	10.03	20.00	00.05	00.04	51.30	60°03	00.01	80.09	60.09	100.03	CC.011	120.09	130.00	140.00	150.00	160.031	00.071	182.70	90.00	C0.002	210.73	00-022	237.00	CC.C+5	250.10	260.00	277.00	280.70	CC.0P5	300.00	\$10.00	120.00	90,0FE	CC.04	350.30

FIGURE 16. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AFTER RESIDUAL SOURCE AND SINK MODIFICATION

.

.

ITERATION. PRESSURE CREFFICTENTS AT WING, END OF THREE DIMENSIONAL WODIFICATION OF 1

Sec. No.

Y= 20.13 RB= 1.44 DRDY= -0.07	-0.57604E-07 -0.23469E-01 -0.21827E-01	-0.209276-01	-0-195756-0)	-7.18875E-01	-0.177126-01	-0-17058E-01	-0.16084E-01	-0.12736E-01	-0.10191E-01	-3.65044E-02	-0.60003E-03	0.105745-01	0.335366-01	-0.15496E-02	-0-10011E-01	-0.58731E-01	10-394664-0-	-0.43414E-01		-0.39798E-01	-0.38432E-01	-0.357006-01	-0.34657E-01	-0.326965-01	-0.310356-01	-0.294945-01	-9.27924E-01	-0.26311E-91	-0.249236-01	-0.73898+-01
Y= 16.05 RB= 1.74 DRDY= -0.07	-0.73706E-02 -0.28223E-01 -6.25123E-01	-0.231636-01	-0.200016-01	-0.18418E-01	-0-15384E-01	-0.13599E-01	-0.11348E-01	-0.840255-02 -0.46040E-02	0-513436-03	0.80258E-02	0.202115-01	0.42986 .01	0.86448E-01	-0-12162E-01	-0.141655 00	-0.10830E 00	-0.88056E-01	-0.10866-01		-0.62693E-01	-0-593056-01	-0.55463E-31	-0.51237E-01	-0.47238E-01	-0-43754F-01	-0.40518E-01	-0.373256-01	-0.34161E-01	-0.313676-01	-0.28962E-01
Y= 13.00 RB= 1.96 DRDY= -0.07	-0.86181E-02 -0.31210E-01 -0.26463E-01	-0.233246-01	-0.17989E-01	-0.15371E-01	-0.100946-01	-0.69402E-02	-0.31721E-02	0.75482F-02	0.156976-01	0.27745E-01	0.47386E-01	0.83784E-01	0.149855 00	-0.36667E-01	-0.23365E 00	-0.17063E 00	-0.13477E 00	-0.11549E 00	-0. 109935 00 -0. 053205-01	-0.89470E-01	-0.832585-01	-0.7648BE-01	-0.69281E-01	-0.625236-01	-0.56591E-01	-0.51127E-01	-0.45873E-01	-0.40600E-01	-0.36317E-01	-0.32204E-01
Y= 19.54 R8= 2.13 DKUY= -0.07	-3.43742E-02 -0.332277E-01 -0.355156-01	-0.20960E-01	-0.12499E-01	-0.82590E-02	-0. 53880E-07 0.86567E-03	0.64127E-02	0.12741E-01	0.23976F-01	0.42825E-01	0.617501-01	0.92489E-01	0.14857E 00	0.24361E 00	-0.995526-01	-0.36254E 00	-0.20664E 00	-0.204646 00	-0.171635 00	-0.131636 00	-0.12596E 00	-C.11440E 00	-0.10323E 00	-0.91230E-01	-0.801626-01	-0.705546-01	-0.61845E-01	-0.53825E-01	-().46288E-01	-0.33644E-01	-0.332226-01
Y= 7.74 Rb= 2.33 JRDY= -0.07	-0.93214E-02 -0.30967E-31 -0.333366-01	-0-19192E-01	-0.13361E-01 -0.83411E-02	-0.43024E-02	0.305666-03 0.52548E-02	0.11039E-01	0.17519E-01	0.25335E-01 0.35238F-01	0.48739E-01	0.691756-01	A.10279E 30	0.16439E 00	U.26935E 30	-0.12882E 00	-0.44781E 00	-0.31472E 00	-0.24428E 00	-0.20597E 00	-0.184995 00	-0.15774E 00	-0.13309E 00	-0.12235E 00	-C.10619E CD	-0.91422F-01	-0.78637E-01	-0.67356E-01	-0.571246-01	-0,47406E-01	-0.39705E-01	-0.31925E-01
Y= 5.04 KB= 2.53 JRUY= -0.07	-0.79456E-02 -0.26978E-01	-0.135846-01	-0.86693E-02 -0.40871E-02	0.39450E-03	0.48743E-02 0.96188E-02	C.15099E-01	0.21221E-01	0.286285-01	0.51676E-01	0.72471E-01	0.10742F 30	0.17316E 00	0.28521E 00	-0.151986 00	-0.50219E 00	-0.35873E 00	-0.28324E 00	-0.24330E 00	-0.218965 00	-0,17934F 00	-0.159486 00	-0.13810E 00	-0.11669E 00	-0.97660E-01	-0.815996-01	-0.67915E-01	-0.55908E-01	-0.45276E-01	-0° 36191E-01	-0.27246E-01
Y= 2.50 RB= 2.71 DRUY= -0.07	-0.50720E-02 -0.22572E-01	- 0- 1004 PE-01	-0.55752E-02 -0.15934F-02	0.21144E-02	0.51017F-02 0.43677F-02	0.13577E-01	0.182146-01	10-368652-0	0-31026-01	2-613106-01	0.92752F-01	0.153406 00	0.26241E 00	-0.13442E 0C	-0.44783E 00	-C.36194F 00	-0.29495E 00	-0.25954F 00	-0.235946 00	-0.1971612.0-	-0.16913E 00	-0.14186E 00	-0.116525 00	-0.94878E-01	77252E-01	-0.62326F-01	-0.50537E-71	-0.79922F-01	-0.310206-01	-0.27(00E-01
Y= 0.0 R8± 2.89 CR0Y= 0.0	-0.741906-03 -0.211776-01	-0.95504E-02	-0.549485-02	0.926366-03	0.37043F-07 0.43697F-07	0.438796-02	0.12646[-0]	0.16970E-01	0-31011E-01	0.47036F-01	0-73748E-01	0.12700E 30	0.225706 00	-0.103555 00	-0.43J01F 00	-0.336156 00	-7.28358E 00	-0.25670E 00	-0.23785E 00	-7.215685 0J	-0.16810F 10	-0-13908F 00	-7-11158E 00	-3.884956-01	-0.709165-01	-0-54526E-01	-0.44748E-01	-0.34483E-01	-0.27291E-01	-0.14577E-01
THETA	0.0	30.00	40.03	\$C.0.	10.00	00.09	100.00	110.07			150.00	167.23	170.00	180.73	190.001	00.007	C0.015	227.39	230.30	240-00	00.0045	210-00	00-044	00-062	00.001	00.011	00.01	330.00	340-00	350.70

FIGURE 17. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AFTER ONE ITERATION •

20.13 Υ= κd= 0RDY= 16.05 1.74 -0.07 Y= RB= DRDY= -0.86181E-02 -0.2533245E-01 -0.2533245E-01 -0.173785E-01 -0.173785E-01 -0.173785E-01 -0.173785E-01 -0.173785E-01 0.153765-02 0.153765-02 0.153765-02 0.153765-01 0.43826-01 0.44826-01 0.44826-01 0.173555 00 -0.173555 00 -0.173555 00 -0.1755555555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175555 00 -0.175550 00 -0.1755550 00 -0.1755550 00 -0.1755550 00 -0.1755550 00 -0.1755550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.175550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.155550 00 -0.1555500 00 -0.1555500 00 -0.15555000000000000000000000000000 13.00 1.96 -0.07 86= 0Y= õ 10.54 2.13 -0.07 Υ= 88= DY= ă 41.7 25.33 70.07 =Y =8% =YCXG 5.04 2.53 -0.07 ¥8= ¥8= 04= ы С 2.50 =85 =85 9404e $\begin{array}{c} -0.17328 f= 0.2\\ -0.15521 f= 0.1\\ -0.15521 f= 0.1\\ -0.15521 f= 0.1\\ 0.65326 f= 0.1\\ 0.12666 f= 0.1\\ 0.23710 f= 0.1\\ 0.23730 f= 0.0\\ 0.23730 f= 0.0\\ 0.23730 f= 0.0\\ 0.23730 f= 0.0\\ 0.25730 f= 0.0\\ 0.2570 f= 0.0\\ 0.2570 f= 0.0\\ 0.2570 f= 0.0\\ 0.2570$ 0.0 2.63 0.0 4= 43= 20X= UR I I HETA

PRESSURE COEFFICIENTS AT WING "TFR RESIGNAL SOURCE/SINK 4001FICATION.

ITFATION. v PRESSURE COEFFICIENTS AT AINUM ENJ UF THRFE DIMENSIONAL MUDIFICATION TH

Y# 20.13 RH= 1.45 DRDY= -0.07	-0.57606E-32 -0.23469E-01	-0.21927E-01	-3.204276-01	-0.202426-01	-0.14575E-01	-0.148/5F-01	-0.182476-01	-9.17712E-01	-0.170585-01	-0.16084E-01	-0.14648E-01	-0.12738E-01	-0.10191E-01	-0.65044E-02	-0.600036-03	9.10574F-01	0.33536E-01	-0.15496E-02	-C. 70071E-01	-0.58231E-01	-0.49946č-01	-).45414E-01	-0.42815E-01	-0.41112E-01	-0.39798E-01	-0.38432E-01	-0.36700E-01	-0.34657E-01	-0.37696F-01	-0.110356-01	-0.29494E-01	-0°51924E-01	-0.26311E-01	-0.249235-01	-0.238986-01
Y= 16.05 R8= 1.74 UR3Y1 -0.07	-0.73706E-02 -0.28223E-01	-0.251236-01	-0.231636-01	-0.21555-01	-0.20001E-01	-0.18418E-01	-0.16897E-01	-0.15384E-01	-0.135996-01	-0.113486-01	-0.84022E-C2	-0.46040E-02	0.51383E-03	0.80258E-02	0.202116-01	0.42986E-01	0.86448E-01	-0.121626-01	-0.14165E 00	-0.10830E 00	- 0. 88056E-01	-0.77086F-01	-0.70590E-01	-0.66175E-01	-0.62693E-01	-0.59305E-01	-0.55463E-01	-0.51237F-01	-0.47238E-01	-0.437546-01	-0.40518E -''1	-0.37325E-01	-0.34161E-01	-0.31367E-U1	-0.28962E-31
Y= 13.00 Ru= 1.96 ORDY= -0.07	-0.86181E-02 -0.31216E-01	-0.26463E-01	-0.23324E-01	-0.20585E-01	-0.179896-01	-0.15371E-01	-0.12787E-01	-0.10094E-01	-0.694026-02	-0.31721E-02	0.15376E-02	0.75482E-02	0.15697E-01	0.27745E-01	0.47386E-01	0.83784E-01	9.14985E 00	-0.36667E-01	-0.23305E 00	-n.17063E 00	-0.13477E 00	-0,11549E 00	-0.10393E CO	-0.95920E-01	-0.89470E-01	-0.83258E-01	-0.76488E-01	-0.69281E-01	-0.62523F-01	-0.56591E-01	-0.511276-01	-0.45873E-01	-0.44800E-01	-0.36317E-01	-0.32204E-01
Y= 10.54 RB= 2.13 DRDY= -0.07	-0,93680E-07 -0,32/31E-01	-0.258326-01	-0.21442E-01	-0.17441E-01	0.135466-01	-0.953766-02	-0.540496-02	-0.9453JE-03	0.42519E-02	0.10213E-01	0.17353E-01	0.252704-01	9.332655-01	U.55973E-01	0.84813E-01	0.13771E 00	0.22964E 00	-0.87604E-31	-0.359996 00	-0.25353E 00	-0.19603E 00	-0.16538E 00	-0.14691E 00	-0.13366E 00	-0.12277E 00	-0.11221E 00	-0.10095E 00	-0.83276E-01	-0.78494E-01	-0.69090E-01	-0.60640E-01	-0.52006E-01	-0.45496E-01	-0-34069-0-	-0.32969E-01
Y= 1.77 RB= 2.33 RDY= -0.07	-0.32046E-02 -0.33237E-31	-3.22896E-51	-0.174076-01	-0.13405ë~01	-0.31654E-92	-0.497446-32	-0.83301E-33	0.35277E-32	0.87510E-02	0.14541E-01	0.21664F-01	0.30749E-01	0.43317E-01	0.62349E-01	0 • 3 4 0 6 4 E - 0 I	0.152996 00	0°25424E 00	-0.11454F 00	-0.42343E 00	-0.3U043E 00	-J.23464E JU	-0.19474£ 00	-0.17834E 30	-0.16243F 00	-0.14844E 03	-G.13430E 00	-0.119796 00	-0.10419E 00	-0.89876E-01	-0.77455E-01	-0.66450E-01	-0.56423E-01	-9.47222F-01	-0.39153E-01	-0.31285E-01
Y= 5.04 ky* 2.53 kDY= -0.07 D	-0.78013E-02 -0.25726E-01	-0.13463E-01	-0.13546E-01	-0.90834F-02	-0.447046-02	-0.10043E-02	0.288°0E-02	0.69516E-02	0.11657E-01	0.16439E-01	n.23442F-01	C-32013F-01	0.4'1 76E-C1	0.6 221E-01	0. 55214F-01	0.15690E 00	0.26406F 00	-0.13082E CO	-0.46802E 07	-0.33840E 00	-0.26974E 00	-0.23306E 00	-0.20979E 00	-0.191 546 00	-0.17351E 00	-C.15457E 00	-0.13475E 00	-0.11343E 00	-0.95038E-01	-0. 79485E-01	-0.66198E-01	-0.544805-01	- 0 - 44013E-C1	-0.3495AE-01	-0.26038E-01
7 - 2.50 2 - 2.71 2 - 0.07	-0.52336E-02 -0.21761E-01	-0.14833E-01	-0.101/36-01	-0.60560E-02	- 0.24179t-02	7.92234E-03	0.40791E-02	n.72375E-02	n.13872E-01	0.14906E-01	0.20063E-01	0.27192E-01	0.37660E-01	0.54692E-01	n.84232E-01	0.14218F CO	0.24702E 06	- J.12018F 00	-0.40241E 00	-0.34640t 00	-0.23339E 00	-0.25078E 00	-0.22858F 00	- 0.20880E 00	-0.137356 00	-0.16304t 00	-0.13830E 00	-0.113866 00	-0.92971E-01	-0.75962E-01	-0.61932F-01	-0.49903E-01	-0.34441E-01	-0,3045aE-01	-0.21450F-01
2 C.0 = 7 2 8= 2.99 2 2.89	-0.13501F-02 -0.28055F-01	-0.118476-01	-0.12060E-01	-0.744964-02	-0.38785E-02	-0.86047E-J3	n.16713E-02	1.39384E-02	9.64407E-02	3.91673E-02	1.12912E-01	0.18499F-01	0.27C88E-01	0.416396-01	0.073206-01	C.118305 00	n.21264F 00	-0.40908E-01	-0.405J8E 00	-r.31552E 0C	~J.26870E GO	-3.24430E 00	-0.22741E 00	-7.20975E 00	-0.1A769F 30	-0.16188E 10	-0.1342'E 00	-0.10820E 00	-0.360726-01	-0.59737E-01	-1.56439E-01	-0.4573GE-01	-0.370765-01	-0.367786-71	-0.247886-01
THETA D		20.00	CC.05	46.00	59.03	60.70	00 02	60.08	10.0	00.001	110.03	00.051	137.07	140.30	150.30	16	00.071	190.00	193.27	233.00	217.03	CC.025	230.00	240.03	C0.045	261.33	210.00	280.00	60.65	10.00	00.010	320.07	130.07	00-040	((,))

FIGURE 19. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AFTER TWO ITERATIONS

FIGURE 20. FORCES AND MOMENTS ON SAMPLE WING BY TRANSFORMATION METHOD

:

2 r.

FORCES AND MOMENTS

8.350

REFFRENCE LENGTH=

c•0

ŝ

PARAMETERS USED IN 3D MODIFICATION OF WING COMPUTATION IDIS= 4 NBDOL= 0 MEXIT= 1 MOD= PARAMETERS IN FJRCE/MJMENT COMPUTATION 1JET OF DIAMETER= 2.250 XCG= 10.718 ZCG=

Z-FORCE -0.213E 00 X-FURCE Y-FURCE -0.599E-02 0.0 PITCHING 40MENT COMPUTED ANGUT AXIS THRU C.G.= -0.176E 00

YAWING MOMENT COMPUTED ABUUT AXIS THRU C.G.= 0.0

ROLLING MOMENT COM-UTED ABOUT AXIS THRU C.G.* 0.0

###END UF WING COMPUTATION###

•

 $U_{\alpha}/U_{j} = 0.2, \ \alpha = \beta = 0^{0}, \ \text{Lift Jet}$

FIGURE 21a. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AT STATION Y = 5.04

49

FIGURE 21b. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AT STATION Y = 7.7925"

 $U_{\infty}/U_j = 0.2, \ \alpha = \beta = 0^0, \text{ Lift Jet}$

Power Effect, ΔC_p

 $U_{\infty}/U_{j} = 0.2, \ \alpha = \beta = 0^{0}, \text{ Lift Jet}$

Comparison of forces for sample problem with wind tunnel test date of Appendix I is shown in Figure 22, together with further calculations and test data. The calculated power-induced lift follows the trend of the test data. The calculated values show a greater loss in lift than the test data. This is consistent with the surface pressure results shown in Figure 21. The reasons for these differences are not known at the present time.

c. Method Applicability and Limitations

This method is generally applicable to power effects on the wing. In addition to the present configuration, fairly extensive calculations on a rectangular wing of aspect ratio equal to 3 with a modified NACA 65-010 section have also been performed (Figure 23(b)). The jet (or jets) was (were) situated at the midspan of the wing and exhausted directly from the lower surface. But the chordwise location of the jet was allowed to vary (three positions: 20 percent, 50 percent and 80 percent of the chord length from the leading edge) and the number of the jets could be one or two. Most of those calculations have been compared with the wind tunnel test data which were obtained at Northrop prior to the present study. Some of these comparisons are shown in Figures 24 and 25.

When the jet exhausts directly from the wing surface, the induced velocity distribution generally shows large and abrupt changes across the jet station. If two iterations are planned these iterations should be smoothed out. Otherwise, the computed results following the second iteration may exhibit unacceptable oscillations. If the calculation is limited to one iteration no smoothing was found to be necessary. Since the lift jet did not exhaust directly from the wing surface in this sample problem, the input data was not smoothed, even though two iterations were computed.

Under the present scheme all the vertical velocity components at any given station, regardless of the chordwise position, are reduced equally to a magnitude of one third of the lifting line downwash value (see pages 101-102 of Volume I for details). Since the aforementioned procedure is somewhat arbitrary some limitations on the method presumably exist. For flow conditions radically different from the present one, the approach given here may have to be modified.

The present method, even when the three-dimensional modification is used, does not include all the three-dimensional effects. The method is, in effect, a quasitwo-dimensional one. Like the widely used quasi-one-dimensional approximation for diffusers and nozzles, its applicability is not as restricted as it may appear. In every example considered, the agreement between calculation and test data is fairly satisfactory. Because of the quasi-two-dimensional nature, however, computations beyond two

to a second s

Samp converses

Service Services

FIGURE 22. POWER-EFFECT LIFT FOR WING WITH LIFT JET

FIGURE 24. POWER-EFFECT PRESSURE COEFFICIENTS ON NORTHROP WING AT STATION Y = 2.0"

content to traject being a construction by the present and construction of

いたいちょうないちょうないちょう フィー・・・

n . $U_{\infty}/U_{j} = 0.1$, $\alpha = \beta = 0^{\circ}$, Two Midspan Jets at X/C = 0.2 and 0.5

.

56

iterations may not be warranted. In practice, one iteration is what is usually needed. Two iterations have, nevertheless, been carried out in some selected problems and also in the sample problem here. This is more for demonstration purpose than for utility.

august alemanteries interest which are the anteresting access of states.

and the state of the second

State with the second

The present computer program is, in a formal sense, capable of treating both power-on and power-off problems. However, for the power-off case, the wing tips exert a much larger influence upon the flow property than in the case when power effects are being calculated. This important three-dimensional effect has not been adequately accounted for by the present method and the calculations from it are likely to be less accurate. Therefore, the lifting surface theory is recommended under such circumstances.

5. APPLICATION OF LIFTING SURFACE THEORY TO WING

Lifting Surface theory may be utilized to determine the load distribution and aerodynamic coefficients for a given arbitrary planform and specified downwash distribution. The Lifting Surface computer program evaluates power effects on the wing by considering a known, jet-induced downwash distribution.

There are three main components to the program which may be used together in one continuous operation or independently. The downwash control point matrix [D] is generated in the first part of the program, its least squares inverse $[D]^{\Psi}$ is generated in the second part of the program. The pressure distribution produced by the specified downwash matrix [W] is computed by the third component of the program. The downwash control point matrix and its inverse depend only on the planform, the location of the downwash control points and the number of terms in the loading series. Both matrices are independent of the downwash distribution. Once the inverse is computed it forms an input to the third component of the program, where the pressure distribution is computed. Thus $[D]^{\Psi}$ may be retained in punched card form and then used as input for computing the pressure distribution due to specified downwash distributions. The inverse need not be recomputed as long as the planform, location of downwash control points and the size of the pressure loading series remain unchanged.

The Lifting Surface program is a modified version of the computer program for designing and analyzing subsonic lifting surfaces documented in Reference 12. The design options have been eliminated. The capability to calculate pressure distributions produced by a specified cambered surface has also been deleted.

a. Sample Problem Computation

For the sample problem being considered the Lifting Surface program is now used to determine the load distribution and aerodynamic coefficients on the wing, produced by the jet-induced downwash computed in Section II.3.

Figure 26 shows details of the planform of the wing and indicates the location of downwash control points. Figure 26 is identical to Figure 8 of Section II.3, except that all dimensions are now based on a semi-span of unity.

FIGURE 26. DOWNWASH CONTROL POINTS ON WING

(1) Input for Sample Problem

The input cards required for the sample problem are shown in Figure 27. Since all three main components of the program, discussed in detail above, are being executed in one continuous operation, some duplication of input data occurs.

Card 1 lists two control indices, specifying which of the three major components of the program are to be executed. The combination of ISTART = 1, ISTOP = 3 will execute all three major components. Consequently, the program will start by computing the downwash control matrix [D], will find the inverse $[D]^{\Psi}$ and will compute the load distribution and aerodynamic coefficients.

Card 2 is a title card.

Card 3 lists the number of spanwise stations on semispan where downwash control points are to be located, NS = 10. It specifies the number of spanwise modes to be used in the pressure loading series, M = 6 and the number of chordwise modes, N = 8. The input control index NEED = 1 indicates that the first chordwise mode, i.e., $\cot \theta/2$ mode, is to be used in the computations. The number of leading and trailing edge flaps are specified with NFLAP = 0. The next two integers are print and punch controls for the downwash control matrix [D]. With NPR = 0, NPU = 0, no printed or punched output on [D] will be generated. The print control NAY = 0 specifies that no intermediate print is to be generated during the computation of [D]. The number of leading edge discontinuities 1: pecified as N \emptyset LED - 2, and the number of trailing edge discontinuities, N \emptyset TED - 2, is indicated.

Contraction of the second

95 5 1 1 . 65 1 1 .95 5.5 2 08 IX)WNWASH MATRIX [W]GENERATED AS P'INCHED OUTPUT IN SECTION II. 3, b ...525 . 35 6 38.0 0 roli oli oli oli oli oli oli oli oli oli 5.0 でちく 2.6.6.9 PROJ たい 3 6.3

FIGURE 27. (Concluded)

Card 4 indicates that the chord lise locations of the downwash control points must be specified through input cards at each spanwise station by listing SPACE = 0. It also lists the Mach number, FMACH = 0., and defines the root-semichord F = .2667.

Cards 5 and 6 list the spanwise locations of the downwash control points.

Card 7 may be left blank for a wing with no leading or trailing edge flaps.

Card 8 specifies the tangents of the sweepback angles of the leading edges of the geometric regions.

Card 9 specifies the tangents of the sweepback angles of the trailing edges of the geometric regions.

Card 10 lists the spanwise locations of the leading edge discontinuities.

Card 11 lists the spanwise locations of the trailing edge discontinuities.

Card 12 specifies the number of downwash control points at each spanwise station.

Cards 13 - 22 list the chordwise locations of the downwash control points at each spanwise station (in percent of local chord).

This completes the input required for the first main component of the program, which computes the downwash control point matrix [D].

Card 23 is a title card for the next main component of the program.

Card 24 lists the number of rows in the downwash control point matrix or the number of control points contained in [D], NRØW = 100. It specifies the number of columns in [D], NCØL = 36. This is the product of the chordwise and spanwise pressure modes. The control index NREAD = 0 indicates that the second main component of the program is being executed in a continuous operation and hence [D] will be read from a scratch tape, rather than input cards. With NPR = 0, NPU = 0, no printed or punched output will be obtained for $[D]^{\psi}$, the inverse of the downwash control point matrix. The print control NAY = 0 specifies that no intermediate print is to be generated during the computation of $[D]^{\psi}$.

This completes the input for the second main component of the program, which inverts the downwash control point matrix [D] to obtain $[D]^{\psi}$.

Card 25 is a title card for the third main component of the program which computes the load distribution and aerodynamic coefficients for a specified downwash matrix.

1.17

Card 26 lists the number of chordwise modes used in the pressure loading series, N = 6, and the number of spanwise modes, M = 6. It specifies the number of spanwise stations where downwash control points are located, NS = 10, and specifies the number of rows in the downwash control point matrix, NRØW = 100. It specifies the number of spanwise stations where the chordwise pressure loading distribution is to be calculated, NETA = 6. It lists the number of wing discontinuities, NDISC = 2 and the number of leading and trailing edge flaps, NFLAP = 0. The intermediate print control is again NAY = 0. It also specifies the number of chordwise points at which the pressure loading is to be computed, NPSI = 10.

Card 27 lists the number of angles of attack to be treated, NALFA = 1. It also specifies the number of EPSLN's to be read later, NEPSLN = 1. The input control NEED = 1 indicates that the first chordwise mode, i.e., the $\cot \theta/2$ mode, is to be used in the computations. The control index NREAD1 = 0 again indicates a continuous operation and thus [D] will be read from a scratch tape rather than from input cards. The next control integer, NREAD2 = 1 indicates that the downwash matrix [W] is read from input cards. The number of downwash distributions to be analyzed is specified with NW = 1.

Card 28 specifies the root semi-chord, F = .2667. It indicates that the chordwise locations of the downwash control points are specified through input cards at each spanwise station by listing SPACE = 0. It lists the spanwise location of the edge of the fuselage, YF = 0. It indicates how the points at which the pressure loading is calculated are located chordwise, by giving the chordwise spacing DPSI = .1.

Card 29 lists the spanwise coordinates of the downwash control point stations.

Card 30 specifies the spanwise locations where the pressure loading is to be computed.

Card 31 lists the angle of incidence between the centerline of the fuselage and wing root chord in degrees, EPSLN = 0.

Card 32 specifies the angle of attack in degrees, ALFA = 0.

Card 33 may be left blank for a wing with no leading or trailing edge flaps.

Card 34 specifies the chord at each spanwise discontinuity.

Card 35 gives the location of each spanwise discontinuity.

Card 36 lists the distance from root leading edge to the leading edge at each spanwise discontinuity.

Card 37 specifies the number of downwash control points at each spanwise station.

Cards 38 - 57 specify the tangent of the downwash angle at every control point. Cards 38 - 57 are the downwash matrix [W] generated in Section II.3 and shown in tabulated form in Figure 11 of Section II.3.

(2) Output for Sample Problem

With the choice of the punch controls described above, only printed output is obtained.

Figure 28(a) shows a composite of the printout generated by the first main component of the program (CHAIN 1, 8) which computes the downwash control point matrix.

Figure 28(b) shows the printout generated by the second main component of the program (CHAIN 6, 8) which inverts the downwash control point matrix [D]. The determinant of the unit matrix is printed out as a check on numerical accuracy.

Figure 28(c) shows the output from the third main component of the program. (CHAIN 7, 8) which calculates the pressure loading and aerodynamic coefficients.

Geometric parameters of the wing are shown in Figure 28(c) and are all identified. Aerodynamic coefficients and the pressure loading calculated at the spanwise stations specified are shown in Figure 28(c). Again all computed variables are identified.

b. Applicability and Limitations

The program is applicable to continuous surfaces of arbitrary planform and no interference effects such as slots, ground effects, large dihedral angles or end plates are included. The program does contain provisions for body effects.

Downwash control points must not be located at or near the leading edge, since the cotangent elements of [D] would become excessively large and dominate the solution for the pressure coefficient matrix [A]. Due to the computing techniques utilized, downwash control points must not be located at discontinuities in the planform and at flap hinge lines.

		CHAI	N (1,8)		
CALCULATION OF DOM	IN#AS:1 CG	NTROL I	PCINT 44	TRIX FOR SAV	IPLE PROBLEM
NO. OF SPANWISE 30	DDES =	4			
NO. OF CHURDWISE	10025 -	5			
NO. OF FLAP MODES	5 -	0			
COTANGENT MODE.	NEED =	L			
POSITION OF FLAP	1 = 0.0				
			60480.04		
	100 000		CONTROL	11412	HACH MULEULL
DOWNWASH CONTROL P	UINTS I	1 73	10	Y= 0.499997	197E-01
DOWNWASH CONTROL P	01575 11	t TO	20	Y= 0.149999	198E 00
DOWNWASH CONTROL P	01NTS 21	, to	30	Y= 0.250000	00 300
DOWNWASH CONTROL P	DENTS 31	TJ	40	Y= 0.349999	95E DO
DOWNWASH CUNTROL P	01475 41	T D	50	Y= 0.449999	9998 00
DOWNWASH CONTROL P	DINTS 51	TC	50	¥= 0.549991	95E 00
DOWNWASH CONTROL P	DINTS 61	. TO	70	Y= 0.649999	98E JU
DOWNWASH CONTROL P	01~TS 71	าว	60	Y= 0.750000	DOJE OD
DOWNWASH CONTROL P		το	90	Y= 0.840999	905 20
	01113 01	-			

:: *

FIGURE 28(a). LIFTING SURFACE THEORY PROGRAM PRINTED OUTPUT I OR SAMPLE PROBLEM

CHAIN (5+6)

INVERT DOWNWASH CONTRUL POINT MATRIX FOR SAMPLE PROBLEM

DETERMINANT OF UNIT MATRIX = 0.100000000 01

FIGURE 28(b). (Continued)

CHAIN (7.4) CALCULATION OF PRESSURE LOADING DISTRIBUTION FOR SAMPLE PROBLEM NO 300Y GEOMETRIC PARAMETERS AVERAGE CHORD, CAVE = 0.400100 MEAN AERODYNAMIC CHORD, CUAR = - C.414381 LOCATION OF 1/4 CBAR, XBAR = 0.180132 SPANWISE LUCATION OF CHAR, YEAR = 0.444514 RESULTS FUR ALFA= 0.0 , AND EPSILON= 0.0 DEGREES LIFT COEFFICIENT, CL = -0.11013 MOMENT COFFFICIENT, CM = -0.00069 INDUCED DRAG COEFFICIENT, COT = J.03095 PRESSURE LOADING DISTRIBUTION, PR 0.1000 0.886 .C 0.5250 0.8000 0.9500 SPAN = 0.2500 FRACTION OF CHORD -0.1576 -0.2422 0.1000 -0.2231 -0.1915 -9.0431 -0.0501 0.2000 -0.1884 -0.1703 -0.1437 -0.1185 -0.0547 -0.0377 0.3000 -0.1639 -0.1499 -0-1285 -0.1073 -0.0505 -0.0275 0.4000 -0.1360 -0.1262 -9.1098 -0.0922 -0.2520 -0.0231 0.5000 -0.1072 -0.1013 -0.0496 -0.0755 -0.0419 -0.0190 0.5000 -0.0534 -0.0811 -0.0737 -0.0529 -0.0350 -0.0162 0.7000 -0.0659 -0.0667 -0.0630 -0.0549 -0.0319 -0.0147 -0.0526 0.8000 -0.0493 -0.0517 -0.0461 -0.0292 ~0.0129 0.9000 -0.0272 -0.0301 -0.0279 -9.0084 -2.0307 -9.0167 1.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 LOCAL SEMICHOPD, C/2 0.2533 0.2333 0.2150 0.1967 0.1401 0.1431 CL C/CAVE -0.1045 -0.1851 -0.1355 -0.1051 -0.0509 -7.0721 CM C##2/CAVE CHAR -0.0352 -0.0132 0.0008 0.0044 0.0050 0.0028 CO+C/CAVE 0.0029 0.0017 0.0009 0.0003 -0.0000 -0.0000

FIGURE 28(c). (Concluded)

c. Additional Calculations and Comparison with Test Data

Once the inverse of the downwash control point matrix has been obtained for a particular wing planform, it is a relatively easy task to obtain the power induced aerodynamics for a range of downwash distribution corresponding to different power conditions. Figures 29a through 29g show calculations for the test model, described in Appendix I, compared with test data for a number of power configurations, velocity ratios and angles of attack.

The interference lift for the vectored thrust, forward position, 90° nozzle deflection angle is shown in Figure 29a for a range of velocity ratios. The wing calculations show that, for all velocity ratios, the induced lift L₁ (lift with power on minus lift with power off) is less than for the static case that is, $U_{\infty} = 0$. In contrast the test data for wing plus body indicate that there is a lift augmentation at the higher velocity ratios. For nozzle deflection angles of 45° (Figure 29b), although there is now no positive jet interference lift at the higher velocity ratios, the induced lift from the test data is nearly constant for $.3 \le U_{\infty} / U_{j_0} \le .5$, whereas the calculations indicate the induced lift decreases as the velocity ratio increases.

For both the above cases the induced lift was determined from the test data using the inlet plugged as the unpowered case. With the inlet open the mainstream flow through the ejector produces a "power" effect which can be quite large as indicated in Appendix I.

The body alone lift, with power on, for the vectored thrust, forward position, 90° nozzle deflection angle is shown in Figure 29c. Since this configuration was not tested with the inlets plugged, it is not possible to determine the induced lift. However, due to model symmetry, it is reasonable to assume that the power off plugged inlet lift will be quite small and so that the induced lift graph for the body alone configuration will be very similar to Figure 29c.

The positive lift arises due to power induced uploads on the nacelles and body ahead of the jet exits. If this lift increment is subtracted from the wing-body test data, we get very good agreement with the wing calculations.

Figures 29d and 29e show comparisons between the calculations and test data for the aft nozzle positions with two vectoring angles. For the aft position the body alone power effects are expected to be smaller than for the forward position due to the jet exhausts being farther removed from the nacelles. The agreement between test and calculations is seen to be extremely good for all velocity ratios.

Figure 29f shows calculations of the induced lift on the wing with the lift jet operating at a velocity ratio of . 20 for a range of α . For $\alpha \leq 8^{\circ}$, Li/_T and hence

67

 C_{Li} (induced lift coefficient), is effectively independent of α . For larger α the calculated induced lift is still approximately constant whereas the test data shows a sudden increase in induced lift. This is due to a change in the stalling characteristics for the wing, deduced from the pressure measurements, brought about by the jet induced flow field producing a downwash over the wing for this particular jet arrangement and velocity ratio.

and the second state of th

A state of the sta

This result identifies an area in which care must be taken in using the prediction methods. It has been assumed that one can calculate power effects and add these to the unpowered aerodynamics of the vehicle. This procedure of superposition appears to be justified for the linear range of α , but must not be used for nonlinear α . Instead, these two effects must be considered together for nonlinear α . It is possible that the induced flow field due to the power could be included in the nonlinear wing aerodynamics procedure presented in Section VII of Volume I but this has not been studied under the present investigation.

Similar observations may be made for the vectored thrust configuration. Calculations and test data are shown in Figure 29g.

Calculations of pitching moment due to power effects show that there is a nose up pitching moment for body alone, the magnitude of which does not change noticeably with the addition of the wing. This result is in agreement with the calculations.

FIGURE 29a. INTERFERENCE LIFT FOR VECTORED THRUST, FORWARD POSITION, 90° DEFLECTION ANGLE, $\alpha = \beta = 0$

and a second property and the second

ÿ

FIGURE 29b. INTERFERENCE LIFT FOR VECTORED THRUST, FORWARD POSITION, 45° DEFLECTION ANGLE, $\alpha = \beta = 0$

なななないとうし、ころなってい

4

FIGURE 29d. INTERFERENCE LIFT FOR VECTORED THRUST, AFT POSITION, 90° DEFLECTION ANGLE, $\alpha = \beta = 0$

-.

「ないないない」のである、ない、このものでいない、ない、そう、

4

FIGURE 29e. INTERFERENCE LIFT FOR VECTORED THRUST, AFT POSITION, 45° DEFLECTION ANGLE, $\alpha = \beta = 0$

. .

Astron Quality

ŝ

à

FIGURE 29f. INDUCED LIFT VERSUS ANGLE OF ATTACK, LIFT JET $(U_{\infty}/U_{j0} = .20), \beta = 0$

FIGURE 29g. INDUCED LIFT VERSUS ANGLE OF ATTACK, VECTORED THRUST, FORWARD POSITION, 90° DEFLECTION ANGLE $(U_{\infty}/U_{jo} = .20), \beta = 0$

SECTION III

POWER EFFECTS ON THE FUSELAGE

The calculation of the jet induced loads on a fuselage is accomplished by using the transformation method with the disturbance velocities at the surface of the body calculated by the jet program. To use the transformation method, it is necessary to map the body at different body stations. This section describes the application of these methods to the calculation of fuselage loads.

1. SAMPLE PROBLEM

To demonstrate the application of the methods, the fuselage of the wind tunnel test model which was tested during this investigation will be used. This fuselage is described in Appendix I of this volume. A sketch of the model fuselage with coordinate system is shown below.

The power and flight conditions which must be specified to complete the problem description are as follows:

Jet location (single jet issuing from the fuselage):

$$X_{j} = 208 \text{ inches}$$

$$Y_{j} = 0$$

$$Z_{j} = -30.8 \text{ inches}$$
Flight Conditions:
Jet diameter = 22.5 inches
$$a = 0$$
Jet velocity ratio
$$\frac{U_{\infty}}{U_{i0}} = 0.2$$

$$\beta = 0$$

All the above dimensions are ten times wind tunnel model dimensions, as will be the case throughout this section.

Jet inclination angles:

a stade te maditasa den seta a ser 👼 1201 -

- ear in termination for a general strate for the fair to be a fair of a state of the state of the state of the

Sec. un apply

The jet will be taken to be exhausting along the negative Z direction for the sample problem.

2. APPLICATION OF THE MAPPING METHOD

A complete description of the fuselage will not be given here since this is not necessary to describe the application of the mapping method. Instead, a complete treatment of one section of the body will be given, this being sufficient to demonstrate application of the method.

Figure 29 shows the section of the wind cunnel test model body at station 264.25 together with terminology for mapping into a circle. This section has been rotated 90° counterclockwise so that the axis of symmetry is along the X-axis with the bottom of the section cutting the positive X-axis. This coordinate system is not related to the original fuselage coordinate system but is in the terminology used in the mapping program. This location of the section is the proper one for the mapping method, and the mapping coefficients obtained with this orientation are in the correct form for the transformation method. Figure 30 shows the inputs to the mapping computer program required to obtain a mapping of this section.

The first card contains four integers. The first of these numbers specifies the number of points specified about the section. The second number s, ecifies the number of corners around the section (for a symmetrical section this would represent the number of pairs of corners except for corners on the X-axis), which for this section is

77

	2. 27.956	5.2. 5.10.09	518.858	6 -38.749		4 20.648	25.1	25.998	8 7.4.770			
* * * * * * * *	29.21	B. 09	-15.86	-37.44		17.96	25.1	25.1	1.7.46			4
	29.3	11.09	-12.869	-35.620	• • • • • • •	19.925	25.1	25.1	19.832		* * * * * * *	
	29.3	14.085	-9.8739	-33.291	-90.7	11.98	25.096	25.1	21.719			
	29.3	17.076	- 6.8.791	-30.617	-40.652	8.9.848	29.945	26.1	23.069	2.9944	• • • • • •	
	29.3	20.041	- 3. 88.42	-27.761	- 90. 985	5.28.99	24.535	25.1	23.963	5.9.895	- - - -	1.80.
0	29.3	22.938	. 88936	- 24 . 823	- 40.169	2.9951	23.789	25.1	24.535	8.9611		. 0.
37 0 10	29.3	25.656	2.1055	21.847	39.609	0.	22.557	25.1	24.874	20.2.11	0.0	29.3

R. A.

FIGURE 31. INPUTS TO MAPPING PROGRAM FOR SECTION AT STATION 264.25

79

zero. The third number represents the number of terms in the expansions for the potential and for the mapping function. The last number on this card specifies that the section being mapped is symmetrical.

Cards 2 through 6 specify the X-coordinates of the (in this case) 37 points being taken about the section starting on the positive X-axis and ending on the negative X-axis. Cards 7 through 11 specify the Y-coordinates of these same points on the section.

Since there are no corners to be specified on this section, the next number (on card 12) specifies what shift is desired to translate the body along the X-axis. In this case there is no need to shift the section location as it is sufficiently well centered.

and house of the real more described a second free books and the second of the second s

A MARKET PROPERTY AND

Card 13 specifies inputs needed to specify parameters for the numerical integration of the mapping function obtained. The first two numbers specify the X- and Y- locations of the initial point of the mapping.

The next three numbers specify the angular range (about the mapping circle) of points to be obtained on the section, and the approximate spacings to be obtained. In this case it is specified that points from 0° to 180° around the mapping circle are to be calculated and are at an interval size of 5° .

Card 14 specifies a similar set of parameters for the analytically integrated mapping. It specifies that 37 points are to be obtained with a spacing of 5° of theta and that the points are to start at $\theta = 0^{\circ}$.

Figure 31 shows the output of the mapping program. These outputs have been described in Section II.2 and so will not be further explained here.

Figure 32 shows a plot of the mapping as obtained by analytical integration. A comparison of Figure 32 and Figure 29 shows that the mapped section must be shifted 4.42 inches in the negative X direction to give the best fit. This, then, is the value of the constant term in the mapping.

The complete tabulation of coefficients for the wind tunnel test model body with canopy off are shown in Table II. The values of dr_c/dx , the rate of change of the mapping circle radius with body station, have been obtained by graphical differentiation of r_c plotted versus x. In addition to the coefficients tabulated in Table II, the initial mapping coefficient a_{-1} , required as input to the jet program, is equal to 1.0 for all the fuselage stations.

COMPUTATIONS FOR 5 AND ALPHA VERSUS THETA.

South and the second state of the second
1000

| 0.0 | 01 0.40005E 01 | 02 0.80756F 01 | | 02 0.12523E 02 | 02 0.125236 02
02 0.125836 02
02 0.176866 02 | 02 0.125235 02
02 0.176865 02
02 0.235825 02
02 0.298175 02 | 02 0.125235 02
02 0.176865 02
02 0.235826 02
02 0.296175 02
02 0.361375 02 | 02 0.125235 02
02 0.176865 02
02 0.235826 02
02 0.298175 02
02 0.361376 02
02 0.420616 02 | 02 0.125236 02
02 0.176866 02
02 0.235826 02
02 0.296176 02
02 0.494106 02
02 0.494106 02 | 02 0.125236 02
02 0.176865 02
02 0.235825 02
02 0.298175 02
02 0.361375 02
02 0.494105 02
02 0.494105 02
02 0.561085 02 | 02 0.125236 02
02 0.176865 02
02 0.235826 02
02 0.296176 02
02 0.454615 02
02 0.45445 02
02 0.551465 02
02 0.551465 02
02 0.551465 02
02 0.551465 02
02 0.573445 02 | 02 0.125236 02
02 0.176865 02
02 0.235826 02
02 0.296176 02
02 0.454615 02
02 0.494105 02
02 0.494105 02
02 0.673445 02
02 0.673445 02
02 0.673445 02
02 0.673445 02 | 02 0.125236 02
02 0.176865 02
02 0.235826 02
02 0.298176 02
02 0.494106 02
02 0.494106 02
02 0.5514865 02
02 0.551486 02
02 0.551486 02
02 0.5713896 02
02 0.713896 02
02 0.713896 02 | 02 0.125256 02
02 0.176865 02
02 0.298176 02
02 0.298176 02
02 0.494106 02
02 0.494106 02
02 0.5519465 02
02 0.5519465 02
02 0.5519465 02
02 0.713896 02
02 0.713896 02
02 0.787366 02 | 02 0.125236 02
02 0.176866 02
02 0.235826 02
02 0.298176 02
02 0.494106 02
02 0.494106 02
02 0.494466 02
02 0.5513446 02
02 0.5513446 02
02 0.713896 02
02 0.713896 02
02 0.787366 02
02 0.787366 02
 | 02 0.125236 02
02 0.125636 02
02 0.235826 02
02 0.298176 02
02 0.4994166 02
02 0.4994166 02
02 0.4994166 02
02 0.4994166 02
02 0.499456 02
02 0.499456 02
02 0.442576 02
02 0.442576 02
02 0.442576 02 | 02 0.125236 02
02 0.125236 02
02 0.298176 02
02 0.298176 02
02 0.494106 02
02 0.494106 02
02 0.49446 02
02 0.49446 02
02 0.49446 02
02 0.49456 02
02 0.442576 02
02 0.4425576 02
02 02 02 02 02
00 02 02 02 02 02 02
00 02 02 02 02 02 02 02 02 02 02 02 02 0 | 0220212523602
022012553602
022029817602
022029817602
022029817602
0220561602
0220561602
0220561602
022057606
022057344602
022057344602
022057344602
022057344602
022057344602
022057344602
02205454602
02205454602
02205454602
0220542602 | 0220212523602
022029817602
022029817602
022029817602
022029817602
0220561502
0220561602
0220561602
02205136602
02205744602
02205744602
02205744602
02205446602
02205446602
02205446602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
0220554666602
0220554666602
0220554666602
0220554666602
0220554666602
0220554666602
0220555666602
0220555666602
0220556666602
0220556666602
0220556666602
0220556666602
0220556666602
0220556666602
022056666602
02205666660000000000

 | 02 0.125236 02
02 0.125656 02
02 0.298176 02
02 0.298176 02
02 0.494106 02
02 0.551086 02
02 0.551086 02
02 0.551086 02
02 0.5713896 02
02 0.857426 02
02 0.842576 02
02 0.842576 02
02 0.842576 02
03 0.933046 02
03 0.972106 02 | 022 0.125236 02
022 0.298176 02
022 0.298176 02
022 0.298176 02
022 0.494106 02
022 0.551086 02
022 0.551086 02
022 0.5713896 02
022 0.89456 02
02 0.842576 02
02 0.842576 02
02 0.8426130 02
03 0.913046 02
03 0.9106130 02
02 0.842576 02
02 0.8426130 02
02 0.842600 02
00 000 02 000 02
00 000 000 000 00 | 022 0.125236 02
022 0.298176 02
022 0.298176 02
022 0.298176 02
022 0.494106 02
022 0.551086 02
022 0.551086 02
022 0.551086 02
022 0.49456 02
02 0.492576 02
02 0.492576 02
02 0.492516 02
03 0.47366 02
03 0.47366 02
03 0.47366 02
03 0.47366 02
03 0.472106 02
02 0.442576 02
02 0.44256 02
02 0.44256 02
02 0.44256 02
02 0.44256 02
02 0.44256 02
02 0.44256 02
02 0.4426 02
02 02 02 02 02
02 02 02 02 02 02 02 02 02 02 02 02 02 0 | 022022523602
022022523602
022022582602
02202582602
02202582602
022052446602
022055446602
022055446602
02205746602
02205446602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
02205466602
0220546602
0220546602
0220546602
0220546602
0220546602
0220546602
02205466602
0220546602
0020000000000000000000000000000000 |
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02244E
022244E
022244E
02202
02202
02202
02202
02202
022244E
02202
02202
022244E
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02200
02200
02200
02200
02200
02200
02200
02200
02200
02200
02200
02200
02200
02000
02000
02000
02000
02000
02000
02000
002000000 | 02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
02202
0220202
002000
002000000 | 022 0.125236 02
022 0.298176 02
022 0.298176 02
022 0.4424616 02
022 0.4424616 02
022 0.4424666 02
022 0.442466 02
022 0.442466 02
022 0.442466 02
022 0.442576 02
02 0.442556 02
03 0.472106 02
03 0.123666 03
03 0.12366 03
03 03 03 03 03 03
03 03 03 03 03 03 03
03 03 03 03 03 03 03 03 03 03 03 03 03 0 | 022 0.125236 02
022 0.235856 02
022 0.235826 02
022 0.452466 02
022 0.45256 02
03 0.472106 02
03 0.472106 02
03 0.472106 02
03 0.472106 02
03 0.128666 03
03 0.12866 03
03 03 03 03 03 03
04 05 05 05 05 05 05 05 05 05 05 05 05 05
 | 02 0.125236 02 0.235856 02 02 0.235826 02 02 0.235826 02 02 0.255366 02 02 0.255466 02 02 0.442666 02 02 0.442466 02 02 0.449466 02 02 0.449466 02 02 0.442576 02 03 0.472106 02 03 0.472106 02 03 0.472106 02 03 0.472106 02 03 0.112726 03 03 0.123666 03 03 0.123666 03 03 0.123666 03 03 0.123666 03 03 0.123666 03 03 0.1236666 03 03 0.1236666 03 03 0.1236666 03 03 0.141556 03 03 0.141556 03 < | 022 0.125536 02
022 0.298176 02
022 0.298176 02
022 0.298176 02
022 0.551466 02
022 0.551466 02
022 0.551466 02
022 0.551466 02
022 0.452466 02
022 0.452466 02
02 0.452466 02
02 0.452466 02
02 0.45266 02
03 0.47346 03
03 0.117756 03
03 03 03 03
03 03 03 03 03
03 03 03 03 03
03 03 03 03 03 03
03 03 03 03 03 03
03 03 03 03 03 03 03 03 03 03
03 03 03 03 03 03 03 03 03 03 03 03 03 0 | 02 0.125536 02 0.17686 02 02 0.235826 02 02 0.235826 02 02 0.235826 02 02 0.235826 02 02 0.235826 02 02 0.296176 02 02 0.492106 02 02 0.492106 02 03 0.492576 02 03 0.492576 02 03 0.492576 02 03 0.492576 02 03 0.492576 03 03 0.10708 02 03 0.117956 03 03 0.123666 03 03 0.123666 03 03 0.153666 03 03 0.153666 03 03 0.153666 03 03 0.153666 03 03 0.153666 03 03 0.153666 03 03 0.153666 03
 | 022 0.235856 02
022 0.298176 02
022 0.298176 02
022 0.4424616 02
022 0.44246616 02
022 0.442466 02
022 0.673446 02
02 0.673446 02
03 0.713866 03
03 0.1070646 03
03 0.107066 03
03 0.117956 03
03 0.117956 03
03 0.117956 03
03 0.157196 03
03 0.157166 03
03 | 02 0.125536 02 0.298176 02 0.255365 02 0.25516 02 0.255365 02 0.25516 02 0.25516 02 0.425536 02 0.45516 02 0.45516 02 0.45516 02 0.45516 02 0.45516 02 0.45516 02 0.45516 02 0.455366 03 0.472106 03 0.472106 03 0.472106 03 0.472106 03 0.108466 03 0.108466 03 0.123666 03 0.123666 03 0.123666 03 0.123666 03 0.123666 03 0.123666 03 0.123666 03 0.123666 03 0.123666 03 0.123666 03 0.123666 03 | 02 0.125536 02 0.17686 02 02 0.235826 02 02 0.25536 02 02 0.25536 02 02 0.25536 02 02 0.25536 02 02 0.45616 02 02 0.45616 02 02 0.555466 02 02 0.555466 02 02 0.555466 02 03 0.472106 02 03 0.472106 02 03 0.472106 02 03 0.472106 02 03 0.472106 02 03 0.472106 02 03 0.10846 03 03 0.112756 03 03 0.123666 03 03 0.123666 03 03 0.153666 03 03 0.153666 03 03 0.153666 03 03 0.164376 03 <t< th=""><th>2 0.89848E 01 0.30647E 02 0.89848E 01 0.27908E-01 0.90000E 02 0.17044E
2 0.11980E 02 0.31655E 02 0.11980E 02 0.32614E-01 0.90000E 02 0.22238E</th></t<> | 2 0.89848E 01 0.30647E 02 0.89848E 01 0.27908E-01 0.90000E 02 0.17044E
2 0.11980E 02 0.31655E 02 0.11980E 02 0.32614E-01 0.90000E 02 0.22238E |
|---------------------------------------|-----------------|------------------|-----------------|----------------|--|--|--|--|--|--|---|---|--|---
--|--|---
--
--
---	---	---
---	---	
--	--	
---	--	--
--	---	--
··· · · · · · · · · · · · · · · · · ·	0.58366E 01 0.4	0.1155 +E 02 0.0
0.222385
0.215895
0.315895
0.315895
0.315895
0.451315
0.45535
0.455375
0.455375
0.45554
0.45554
0.45554
0.45554
0.45554
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.4555
0.45555
0.4555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.45555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.455555
0.4555555
0.4555555
0.455555555
0.455555555
0.45555555555
 | 0.222388
0.315895
0.315895
0.315895
0.315895
0.4415116
0.445576
0.46616276
0.46616276
0.46616276
0.256088
0.221246
0.221246
0.2200986
0.221246
0.221246
0.2200986
0.2200986
0.221246
0.22009
0.4950
0.221246
0.22009
0.221246
0.22009
0.221246
0.22009
0.22009
0.22009
0.22009
0.22009
0.22009
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.22000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.200000
0.200000
0.20000000
0.200000000 | 0.222388
0.315895
0.315895
0.315895
0.315895
0.45536
0.455376
0.455376
0.455376
0.45554
0.45556
0.45554
0.45556
0.455126
0.220
0.485126
0.220
0.487956
0.220
0.487956
0.220
0.487956
0.220
0.487956
0.220
0.487956
0.220
0.487956
0.200
0.220
0.487956
0.200
0.2200
0.4976
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.000
0.0000
0.0000
0.0000
0.0000
0.000000 | 0.222388
0.315895
0.315895
0.315895
0.315895
0.45536
0.455376
0.455376
0.455376
0.45556
0.45556
0.45556
0.45556
0.455126
0.22256
0.47956
0.22226
0.47956
0.22226
0.0200
0.487956
0.2200
0.111476
0.2200
0.12229
0.0200
0.12229
0.0200
0.12229
0.0200
0.12229
0.0200
0.12220
0.0200
0.12220
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.02000
0.02000
0.0200000000
 | 0.222388
0.215895
0.315895
0.315895
0.315895
0.355958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.555958
0.55595858
0.5559588
0.5559588
0.5559588
0.5559588
0.555958
0.5559 | 0.222386
0.315846
0.315846
0.315846
0.315846
0.355976
0.555976
0.555976
0.555976
0.555976
0.555976
0.555976
0.555976
0.555976
0.555976
0.122124
0.987557
0.111476
0.987557
0.122124
0.987557
0.111476
0.125226
0.02
0.987557
0.111524
0.02
0.125226
0.02
0.125236
0.02
0.125236
0.02
0.125236
0.02
0.125237
0.02
0.125237
0.02
0.125237
0.02
0.125237
0.02
0.125237
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.0 |
0.222338
0.315899
0.315899
0.315899
0.441916
0.5569376
0.5569376
0.5569376
0.5569376
0.556936
0.556936
0.72126
0.222338
0.556936
0.556936
0.222338
0.222338
0.556936
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.222338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.223338
0.233338
0.233338
0.233338
0.233330
0.233338
0.233338
0.233338
0.233330
0.233338
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308
0.233308 | 0.222386
0.315895
0.315895
0.315895
0.315895
0.455376
0.455376
0.455376
0.455376
0.455376
0.455376
0.45545
0.455376
0.4554576
0.45636
0.45636
0.45636
0.455256
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.45756
0.457566
0.457566
0.4575660000000000000000000000000000000000 |
0.222388
0.315895
0.315895
0.315895
0.315895
0.451316
0.5665387
0.56653876
0.56653876
0.56653876
0.5665386
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.22036
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.122296
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200000000 | 0.222388
0.315895
0.315895
0.315895
0.315895
0.315895
0.55605376
0.55605376
0.55605976
0.55605976
0.55605976
0.55605976
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256
0.551256 |
0.222388
0.315895
0.315895
0.315895
0.315895
0.5557575
0.5557575
0.5557875
0.5557875
0.5557875
0.5557875
0.5559875
0.5559875
0.721246
0.721246
0.721246
0.721246
0.721246
0.22098
0.22098
0.111476
0.1215995
0.111476
0.125295
0.111476
0.125295
0.111476
0.125295
0.111476
0.125295
0.111476
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.11559595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.115595
0.1155950
0.115595050
0.11559550
0.11559500000000000000000000000000000000 | 0.222386
0.315896
0.315896
0.315896
0.315896
0.556986
0.5661627
0.556986
0.556986
0.556986
0.556986
0.556986
0.556986
0.222386
0.556986
0.222386
0.556986
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.2200
0.222386
0.2200
0.222386
0.2200
0.222386
0.2200
0.222386
0.2200
0.222386
0.2200
0.222386
0.2200
0.222386
0.2200
0.2200
0.2200
0.2200
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.2300
0.23000
0.23000
0.230000000000 | 0.222386
0.315895
0.315895
0.315895
0.315895
0.451216
0.5565976
0.5565976
0.5565976
0.5565976
0.2556986
0.222386
0.222386
0.222386
0.222386
0.222386
0.222386
0.222586
0.222586
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.25566
0.22556
0.22556
0.22556
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.25566
0.2556
0.25566
0.25566
0.2556
0.2556
0.2556
0.2556
0.2556
0.2556
0.2556
0.2556
0.2556
0.2556
0.2556
0.2556
0.2556
0.2550
0.2556
0.2550
0.2550
0.2556
0.2556
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2550
0.2500
0.2550
0.2500
0.2550
0.2500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.255000
0.255000
0.255000
0.255000
0.255000
0.255000
0.2550000000000 |
0.222386
0.315895
0.315895
0.315895
0.315895
0.45556
0.5565976
0.5565976
0.5565976
0.5565976
0.5565976
0.222386
0.222386
0.5565976
0.222386
0.222386
0.222386
0.222386
0.222596
0.222596
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.22556
0.25556
0.2556
0.2556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25556
0.25550
0.25556
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25550
0.25500
0.25550
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.25500
0.255000
0.255000
0.255000
0.2550000
0.2550000000000 | 0.222386
0.315895
0.315895
0.315895
0.315895
0.5565936
0.5565936
0.5565936
0.5565936
0.5565936
0.222386
0.5565936
0.222386
0.222386
0.222386
0.222386
0.222386
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.222586
0.220586
0.222586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.220586
0.20050
0.225586
0.20050
0.225586
0.20050
0.225586
0.20050
0.225586
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.20050
0.200500
0.200500
0.200500
0.200500
0.200500
0.200500
0.200500
0.2005000
0.20050000000000 | 2 0.11990E 02 0.31655E 02 0.11960E 02 0.32614E-01 0.90300E 02 |
| JC 200E 02 0.583 | | 90000E 02 0.11 | 90000E 02 0.17(| 10000E 02 0.22 | 120 0 CO 360 00 | 0423E 02 0.270 | 0423E 02 0.270
99152E 02 0.315
12987F 03 0.364 | 10423E 02 0.27(
19152E 02 0.315
12987F 03 0.364
(4923E 03 0.41) | 0423E 02 0.27(
9152E 02 0.315
2987F 03 0.364
(4923E 03 0.46) | 0423E 02 0.270
99152E 02 0.315
2987F 03 0.365
4923E 03 0.461
(4147E 03 0.461
(6147E 03 0.461
16914E 03 0.461 | 0423E 02 0.270
9152E 02 0.315
2987F 03 0.364
4923E 03 0.461
6147E 03 0.461
16147E 03 0.461
16914E 03 0.500
174814E 03 0.500
174814E 03 0.500 | 0423E 02 0.270
9152E 02 0.315
4923E 03 0.364
6147E 03 0.461
14894E 03 0.460
1894E 03 0.550
1894E 03 0.550
1894E 03 0.550
1894E 03 0.550
1894E 03 0.550 | 0423E 02 0.270
99152E 02 0.315
2987F 03 0.315
4923E 03 0.461
6147E 03 0.461
16914E 03 0.460
18944E 03 0.555
1894E 03 0.555
18946E 03 0.555
179744 03 0.555 | 0423E 02 0.270
9152E 02 0.315
2987F 03 0.315
4923E 03 0.461
6147E 03 0.461
17894E 03 0.555
17894E 03 0.555
17975 03 0.5555
17975 03 0.55555
17975 03 0.55555
17975 03 0.55555
17975 03 0.55555
17975 03 0.55555
17975 03 0.555555
17975 03 0.555555
17975 03 0.555555
17975 03 0.555555555555555555555555555555555 | 0423E 02 0.270
9152E 02 0.315
2987F 03 0.315
4923E 03 0.461
6914E 03 0.461
1894E 03 0.555
1894E 03 0.556
17975 03 0.556
17975 03 0.656
17975 03 0.656
17975 03 0.656
17975 03 0.656
17975 03 0.656 | 0423E 02 0.270
9152E 02 0.315
2987F 03 0.315
4923E 03 0.461
6914E 03 0.461
1944E 03 0.465
17945E 03 0.655
1944E 03 0.455
1794E 03 0.655
1794E 03 0.655
1794E 03 0.655
1794E 03 0.655
1794E 03 0.655
1794E 03 0.655
1794E 03 0.655
 | 0423E 02 0.210
9152E 02 0.210
2987F 03 0.315
4923E 03 0.461
6914E 03 0.461
1794E 03 0.465
1794E 03 0.465
1794E 03 0.465
1794E 03 0.465
17997E 03 0.455
17997E 03 0.455
17977E 03 000000000000000000000000000000000 | 0423E 02 0.210
9152E 02 0.210
2987F 03 0.315
4923E 03 0.461
6414F 03 0.461
17944E 03 0.461
17944E 03 0.461
17944E 03 0.461
17944E 03 0.461
17997E 03 0.461
179 | 00423E 02 0.270 19152E 02 0.315 29287F 03 0.423 4923E 02 0.315 4923E 03 0.461 4923E 03 0.461 6147E 03 0.461 6914E 03 0.461 1792E 03 0.461 1799E 03 0.471 1799E 03 0.471 1799E 03 0.471 1799E 03 0.471 1799E 03 0.472 1799E 03 <t< td=""><td>00423E 02 0.276 19152E 02 0.315 2987F 03 0.424 4923E 02 0.315 4923E 03 0.461 4923E 03 0.461 4914F 03 0.461 6914F 03 0.461 1794C 03 0.472 17999 03 0.485 17999 03 0.485 17999 03 0.485 18000 03 0.498 18000 03 0.110 18000 03 0.110</td><td>0423E 02 0.276 9152E 02 0.315 2987F 03 0.424 4923E 02 0.315 4923E 03 0.461 4923E 03 0.461 4924F 03 0.461 4924F 03 0.461 6914F 03 0.461 1794C 03 0.461 8011E 03 0.666 17999 03 0.461 17999 03 0.461 80006 03 0.472 80006 03 0.472 80006 03 0.472 80006 03 0.472 80006 03 0.472 81956 03 0.472</td><td>0423E 02 0.276 9152E 02 0.315 2987F 03 0.424 4923E 02 0.315 4923E 03 0.461 4923E 03 0.461 4924E 03 0.461 6914F 03 0.461 6914F 03 0.461 6914F 03 0.461 8901E 03 0.461 8000E 03 0.461 8000E 03 0.472 8481E 03 0.110 8481E 03 0.124</td><td>0423E 02 0-23E 9152E 02 0-276 29287F 03 0-478 4923E 02 0-315 4923E 03 0-461 4923E 03 0-461 4924 03 0-461 4925E 03 0-461 4925E 03 0-461 8011E 03 0-461 8000E 03 0-421 8481E 03 0-110 8481E 03 0-122 8481E 03 0-122 9481E 03 0-122 9481E 03 0-122 9481E 03 0-122</td><td>0423E 02 0 29152E 02 0 29152E 02 0 29287F 03 0 4923E 02 0 4923E 02 0 4923E 02 0 4923E 03 0 69147E 03 0 69147E 03 0 69147E 03 0 69147E 03 0 80115 03 0 80006 03 0 80006 03 0 8481E 03 0 8481E 03 0 93 0 10 93 0 10 93 0 10 8481E 03 0 03 0 10 93 0 10 93 0 10 93 0 10 93 0 10 93 0 10 93</td><td>0423E 02 0 2152 9152E 02 03 0 216 64127E 03 03 0 216 64127E 03 0 03 0 216 64127E 03 0 03 0 216 74947E 03 0 03 0 216 74947E 03 0 03 0 216 74997E 03 0 03 0 216 79997E 03 0 03 0 216 80000E 03 0 03 0 216 80000E 03 0 0 876 03 80000E 03 0 0 876 0 0 10 80000E 03 0 03 0 110 0 566 0 0 10 80000E 03 0 0 03 0 110 0 566 0 0 10 0 10 0 0<td>0423E 02 0.276 9152E 02 0.315 22987F 03 0.424 22987F 03 0.414 22987F 03 0.414 22987F 03 0.414 24925E 03 0.414 25011 03 0.461 25011 03 0.461 25011 03 0.461 25011 03 0.461 26001 03 0.461 27001 03 0.461 28000 03 0.461 28000 03 0.466 28000 03 0.485 281425 03 0.485 281425 03 0.485 281425 03 0.485 281426 03 0.485 281425 03 0.485 281425 03 0.495 281426 03 0.495 281426 03 0.495 281426 03 0.495 281426 03<!--</td--><td>00423E 02 0 9152E 02 03 29152E 02 03 29152E 02 03 29287F 03 0 4928E 02 03 4928F 03 0 7492F 03 0 7503 0 0 7997 03 0 7997 03 0 7997 03 0 79997 03 0 79997 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800955 03 0 800955 03 0 800955 03 0 800955 03 0 800955 03 0</td><td>00423E 02 02423E 9152E 02 03423E 19152E 03 04635 19942E 03 04647 19942E 03 04661 19942E 03 04661 19942E 03 04661 19993E 03 04661 19993E 03 0472 19992 03 0472 19992 03 0472 19992 03 0472 19992 03 0472 19932 0472<!--</td--><td>00423E 02 03 04423E 29152E 02 03 0423E 49287F 03 0423E 02 61473E 03 0423E 03 69157F 03 0453E 03 69147E 03 0456 03 69147E
03 0456 03 69147E 03 0456 03 79957 03 0456 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0472 0472 80000 03 0472 0472 80000 03 0472 0472 8000 03 0472 0472 800 03 0472 0472 800 03 0472 0472 800 03 0472 0472 </td></td></td></td></t<> <td>00423E 02 0 29152E 02 03 29152E 02 03 49287F 03 0 6147E 03 0 69152F 03 0 69157F 03 0 69147F 03 0 69147F 03 0 69147F 03 0 69147F 03 0 6914 03 0 6903 0 0 7993 0 0 80011 03 0 80000 03 0 80000 03 0 80000 03 0 80000 03 0 80000 03 0 80000 03 0 80000 03 0 80000 03 0 8000 03 0 800 03 0 800 03 0 800 03 0</td> <td>0423E 02 0423E 9152E 02 03 0423E 64123E 02 03 0423E 64123E 02 03 0423E 64147E 03 0447E 03 74987F 03 0461E 03 74997E 03 0460 03 74997E 03 0460 03 74997E 03 0460 03 74997E 03 0460 03 80000E 03 0495 03 80000E 03 0495 040 844925 03 0411 040 94492 03 0412 040 84492 03 0412 040 84492 03 0412 040 84492 03 0412 040 <</td> <td>0423E 02 0 9152E 02 03 0 22987F 03 0 03 0 22987F 03 0 03 0 03 74917F 03 0 03 0 03 0 75917F 03 0 03 0 03 0 0 78947F 03 0 03 0 03 0 0 03 79997F 03 0 03 0 03 0<td>00423E 02 0 219157E 02 0 229157E 03 0 0 22927E 03 0 0 0 29157E 03 0 03 0 0 29157E 03 0 03 0 0 0 78997E 03 0 03 0 0 0 1 78997E 03 0 03 0 0 0 1 1 79997E 03 0 03 0 0 0 1 1 70997E 03 0 03 0 0 1</td><td></td></td> | 00423E 02 0.276 19152E 02 0.315 2987F 03 0.424 4923E 02 0.315 4923E 03 0.461 4923E 03 0.461 4914F 03 0.461 6914F 03 0.461 1794C 03 0.472 17999 03 0.485 17999 03 0.485 17999 03 0.485 18000 03 0.498 18000 03 0.110 18000 03 0.110 | 0423E 02 0.276 9152E 02 0.315 2987F 03 0.424 4923E 02 0.315 4923E 03 0.461 4923E 03 0.461 4924F 03 0.461 4924F 03 0.461 6914F 03 0.461 1794C 03 0.461 8011E 03 0.666 17999 03 0.461 17999 03 0.461 80006 03 0.472 80006 03 0.472 80006 03 0.472 80006 03 0.472 80006 03 0.472 81956 03 0.472 | 0423E 02 0.276 9152E 02 0.315 2987F 03 0.424 4923E 02 0.315 4923E 03 0.461 4923E 03 0.461 4924E 03 0.461 6914F 03 0.461 6914F 03 0.461 6914F 03 0.461 8901E 03 0.461 8000E 03 0.461 8000E 03 0.472 8481E 03 0.110 8481E 03 0.124
 | 0423E 02 0-23E 9152E 02 0-276 29287F 03 0-478 4923E 02 0-315 4923E 03 0-461 4923E 03 0-461 4924 03 0-461 4925E 03 0-461 4925E 03 0-461 8011E 03 0-461 8000E 03 0-421 8481E 03 0-110 8481E 03 0-122 8481E 03 0-122 9481E 03 0-122 9481E 03 0-122 9481E 03 0-122 | 0423E 02 0 29152E 02 0 29152E 02 0 29287F 03 0 4923E 02 0 4923E 02 0 4923E 02 0 4923E 03 0 69147E 03 0 69147E 03 0 69147E 03 0 69147E 03 0 80115 03 0 80006 03 0 80006 03 0 8481E 03 0 8481E 03 0 93 0 10 93 0 10 93 0 10 8481E 03 0 03 0 10 93 0 10 93 0 10 93 0 10 93 0 10 93 0 10 93 | 0423E 02 0 2152 9152E 02 03 0 216 64127E 03 03 0 216 64127E 03 0 03 0 216 64127E 03 0 03 0 216 74947E 03 0 03 0 216 74947E 03 0 03 0 216 74997E 03 0 03 0 216 79997E 03 0 03 0 216 80000E 03 0 03 0 216 80000E 03 0 0 876 03 80000E 03 0 0 876 0 0 10 80000E 03 0 03 0 110 0 566 0 0 10 80000E 03 0 0 03 0 110 0 566 0 0 10 0 10 0 0 <td>0423E 02 0.276 9152E 02 0.315 22987F 03 0.424 22987F 03 0.414 22987F 03 0.414 22987F 03 0.414 24925E 03 0.414 25011 03 0.461 25011 03 0.461 25011 03 0.461 25011 03 0.461 26001 03 0.461 27001 03 0.461 28000 03 0.461 28000 03 0.466 28000 03 0.485 281425 03 0.485 281425 03 0.485 281425 03 0.485 281426 03 0.485 281425 03 0.485 281425 03 0.495 281426 03 0.495 281426 03 0.495 281426 03 0.495 281426
03<!--</td--><td>00423E 02 0 9152E 02 03 29152E 02 03 29152E 02 03 29287F 03 0 4928E 02 03 4928F 03 0 7492F 03 0 7503 0 0 7997 03 0 7997 03 0 7997 03 0 79997 03 0 79997 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800955 03 0 800955 03 0 800955 03 0 800955 03 0 800955 03 0</td><td>00423E 02 02423E 9152E 02 03423E 19152E 03 04635 19942E 03 04647 19942E 03 04661 19942E 03 04661 19942E 03 04661 19993E 03 04661 19993E 03 0472 19992 03 0472 19992 03 0472 19992 03 0472 19992 03 0472 19932 0472<!--</td--><td>00423E 02 03 04423E 29152E 02 03 0423E 49287F 03 0423E 02 61473E 03 0423E 03 69157F 03 0453E 03 69147E 03 0456 03 69147E 03 0456 03 69147E 03 0456 03 79957 03 0456 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0472 0472 80000 03 0472 0472 80000 03 0472 0472 8000 03 0472 0472 800 03 0472 0472 800 03 0472 0472 800 03 0472 0472 </td></td></td> | 0423E 02 0.276 9152E 02 0.315 22987F 03 0.424 22987F 03 0.414 22987F 03 0.414 22987F 03 0.414 24925E 03 0.414 25011 03 0.461 25011 03 0.461 25011 03 0.461 25011 03 0.461 26001 03 0.461 27001 03 0.461 28000 03 0.461 28000 03 0.466 28000 03 0.485 281425 03 0.485 281425 03 0.485 281425 03 0.485 281426 03 0.485 281425 03 0.485 281425 03 0.495 281426 03 0.495 281426 03 0.495 281426 03 0.495 281426 03 </td <td>00423E 02 0 9152E 02 03 29152E 02 03 29152E 02 03 29287F 03 0 4928E 02 03 4928F 03 0 7492F 03 0 7503 0 0 7997 03 0 7997 03 0 7997 03 0 79997 03 0 79997 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800955 03 0 800955 03 0 800955 03 0 800955 03 0 800955 03 0</td> <td>00423E 02 02423E 9152E 02 03423E 19152E 03 04635 19942E 03 04647 19942E 03 04661 19942E 03 04661 19942E 03 04661 19993E 03 04661 19993E 03 0472 19992 03 0472 19992 03 0472 19992 03 0472 19992 03 0472 19932 0472<!--</td--><td>00423E 02 03 04423E 29152E 02 03 0423E 49287F 03 0423E 02 61473E 03 0423E 03 69157F 03 0453E 03 69147E 03 0456 03 69147E 03 0456 03 69147E 03 0456 03 79957 03 0456 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0472 0472 80000 03 0472 0472 80000 03 0472 0472 8000 03 0472 0472 800 03 0472 0472 800 03 0472 0472 800 03 0472 0472 </td></td> | 00423E 02 0 9152E 02 03 29152E 02 03 29152E 02 03 29287F 03 0 4928E 02 03 4928F 03 0 7492F 03 0 7503 0 0 7997 03 0 7997 03 0 7997 03 0 79997 03 0 79997 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800095 03 0 800955 03 0 800955 03 0 800955 03 0 800955 03 0 800955 03 0 | 00423E 02 02423E 9152E 02 03423E 19152E 03 04635 19942E 03 04647 19942E 03 04661 19942E 03 04661 19942E 03 04661 19993E 03 04661 19993E 03 0472 19992 03 0472 19992 03 0472 19992
03 0472 19992 03 0472 19932 0472 </td <td>00423E 02 03 04423E 29152E 02 03 0423E 49287F 03 0423E 02 61473E 03 0423E 03 69157F 03 0453E 03 69147E 03 0456 03 69147E 03 0456 03 69147E 03 0456 03 79957 03 0456 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0472 0472 80000 03 0472 0472 80000 03 0472 0472 8000 03 0472 0472 800 03 0472 0472 800 03 0472 0472 800 03 0472 0472 </td> | 00423E 02 03 04423E 29152E 02 03 0423E 49287F 03 0423E 02 61473E 03 0423E 03 69157F 03 0453E 03 69147E 03 0456 03 69147E 03 0456 03 69147E 03 0456 03 79957 03 0456 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0476 03 80000 03 0472 0472 80000 03 0472 0472 80000 03 0472 0472 8000 03 0472 0472 800 03 0472 0472 800 03 0472 0472 800 03 0472 0472 | 00423E 02 0 29152E 02 03 29152E 02 03 49287F 03 0 6147E 03 0 69152F 03 0 69157F 03 0 69147F 03 0 69147F 03 0 69147F 03 0 69147F 03 0 6914 03 0 6903 0 0 7993 0 0 80011 03 0 80000 03 0 80000 03 0 80000 03 0 80000 03 0 80000 03 0 80000 03 0 80000 03 0 80000 03 0 8000 03 0 800 03 0 800 03 0 800 03 0
 | 0423E 02 0423E 9152E 02 03 0423E 64123E 02 03 0423E 64123E 02 03 0423E 64147E 03 0447E 03 74987F 03 0461E 03 74997E 03 0460 03 74997E 03 0460 03 74997E 03 0460 03 74997E 03 0460 03 80000E 03 0495 03 80000E 03 0495 040 844925 03 0411 040 94492 03 0412 040 84492 03 0412 040 84492 03 0412 040 84492 03 0412 040 < | 0423E 02 0 9152E 02 03 0 22987F 03 0 03 0 22987F 03 0 03 0 03 74917F 03 0 03 0 03 0 75917F 03 0 03 0 03 0 0 78947F 03 0 03 0 03 0 0 03 79997F 03 0 03 0 03 0 <td>00423E 02 0 219157E 02 0 229157E 03 0 0 22927E 03 0 0 0 29157E 03 0 03 0 0 29157E 03 0 03 0 0 0 78997E 03 0 03 0 0 0 1 78997E 03 0 03 0 0 0 1 1 79997E 03 0 03 0 0 0 1 1 70997E 03 0 03 0 0 1</td> <td></td> | 00423E 02 0 219157E 02 0 229157E 03 0 0 22927E 03 0 0 0 29157E 03 0 03 0 0 29157E 03 0 03 0 0 0 78997E 03 0 03 0 0 0 1 78997E 03 0 03 0 0 0 1 1 79997E 03 0 03 0 0 0 1 1 70997E 03 0 03 0 0 1 | |
| | | | | -01 0.9000 | | -01 0.99152 | -01 0.99152
-01 0.12987 | -01 0.99152
-01 0.12987
-01 0.14923 | -01 0.99152
-01 0.12987
-01 0.14923
-01 0.16147 | -01 0.99152
-01 0.12987
-01 0.12987
-01 0.14923
-01 0.16147
-01 0.16914 | -01 0.99152
-01 0.12987
-01 0.14923
-01 0.14923
-01 0.16147
-01 0.16914 | -01 0.99152
-01 0.12987
-01 0.14923
-01 0.14923
-01 0.16147
-01 0.16914
-01 0.17487
-01 0.17894 | -01 0.99152
-01 0.12987
-01 0.14923
-01 0.14924
-01 0.16144
-01 0.17894
-01 0.17894
-01 0.17894 | -01 0.99152
-01 0.12987
-01 0.14923
-01 0.16147
-01 0.178914
-01 0.178487
-01 0.178487
-01 0.178487
-01 0.178787
-01 0.1787 | -01 0.99152
-01 0.12987
-01 0.14923
-01 0.16147
-01 0.164814
-01 0.17894
-01 0.17894
-01 0.17894
-01 0.17894
 | -01 0.99152
-01 0.99152
-01 0.12987
-01 0.169147
-01 0.1691483
-01 0.17894
-01 0.17894
-01 0.17894
-01 0.17891
-01 0.17891
-01 0.17991 | -01 0.12985
-01 0.12987
-01 0.14923
-01 0.16147
-01 0.16914
-01 0.17891
-01 0.17891
-01 0.17891
-01 0.17991
-01 0.17991
-01 0.17997
-01 0.17997 | -01 0.12987
-01 0.12987
-01 0.14923
-01 0.16147
-01 0.16914
-01 0.17893
-01 0.17893
-01 0.17893
-01 0.17991
-01 0.17997
-01 0.17997
-01 0.18003 | -01 0.12985
-01 0.12987
-01 0.14923
-01 0.16147
-01 0.164914
-01 0.17994
-01 0.18049
-01 0.17991
-01 0.17997
-01 0.18002
-01 0.17997
-01 0.18002
-01 0.18002
-01 0.18002

 | -01 0.12985
-01 0.12987
-01 0.14923
-01 0.16147
-01 0.16914
-01 0.17991
-01 0.17991
-01 0.17997
-01 0.17997
-01 0.17997
-01 0.17997
-01 0.17997
-01 0.17997
-01 0.18002 | -01 0.12987
-01 0.12987
-01 0.14923
-01 0.16147
-01 0.16914
-01 0.17994
-01 0.17997
-01 0.18002
-01 0.18002
-01 0.18002
-01 0.18002
-01 0.18002 | -01 0.12987
-01 0.12987
-01 0.14914
-01 0.16147
-01 0.16914
-01 0.17991
-01 0.17991
-01 0.18091
-01 0.18091
-01 0.18000
-119999
-01 0.18000
-119999
-01 0.18000
-01 0.18481
-01 0.18481
-0 | -01
-01
-01
-01
-01
-01
-01
-01
-01
-01
 | -01
-01
-01
-01
-01
-01
-01
-01 | | -01 0.12987
-01 0.12987
-01 0.169147
-01 0.169147
-01 0.174914
-01 0.17494
-01 0.17494
-01 0.17494
-01 0.18090
-01 0.18090
-01 0.18090
-01 0.18481
-01 0.1848141
-
 | -01
-01
-01
-01
-01
-01
-12987
-01
-12987
-01
-12987
-01
-12987
-01
-12987
-01
0.169147
-01
0.17947
-01
0.17947
-01
0.17947
-01
0.17997
-01
0.180995
-01
0.180995
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180955
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.180555
-01
0.1805555
-01
0.1805555
-01
0.1805555
-01
0.1805555
-01
0.1805555
-01
0.1805555
-01
0.1805555
-01
0.18055555
-01
0.180555555
-01
0.18055555555555555555555555555555555555 | -010-129852
-010-169152
-010-169154
-0100-169147
-0100-17993
-01100-17993
-0100-17993
-0100-17993
-0100-17993
-0100-17993
-0100-18093
-0100-18093
-0100-18093
-0100-18093
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-0100-18481
-010 |
-01
-01
-01
-01
-01
-01
-12987
-01
0.12987
-01
0.12987
-01
0.17997
-01
0.17997
-01
0.17997
-01
0.17997
-01
0.17997
-01
0.17997
-01
0.17997
-01
0.17997
-01
0.17997
-01
0.17997
-01
0.18481
0.18481
-01
0.18481
-01
0.18481
-01
0.18481
-01
0.18481
-01
0.18481
-01
0.18481
0.18481
-01
0.18481
0.18481
-01
0.18481
0.18481
0.18481
-01
0.18481
0.18481
-01
0.18481
-01
0.18481
-01
0.18481
0.18481
-01
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.18481
0.184818555555555555555555555555555555555 | -01
-01
-01
-01
-01
-01
-01
-01 | -01
-01
-01
-01
-01
-01
-01
-01 | -01
-01
-01
-01
-01
-01
-01
-01
 | -01
-01
-01
-01
-01
-01
-01
-01 | 2 0.14975E C2 0.32305E 02 0.14975E 02 0.36064E |
| 0.23461E-0 | | 0.24582E-0 | 0.27908E-0 | 0.32614E-0 | | 0.36681E-U | 0.37472E-0 | 0.36681E-U
0.37472E-C
0.38991E-O | 0.36681E-U
0.37472E-C
0.38991E-O
0.39790E-O | 0.36681E-U
0.37472E-6
0.38991E-0
0.39790E-0
0.337790E-0
0.337296E-0 | 0.36681E-U
0.37472E-C
0.39991E-0
0.3319790E-0
0.332162E-0
0.26503E-0 | 0.36681E-0
0.37472E-0
0.39790E-0
0.39790E-0
0.33229E-0
0.33229E-0
0.21492E-0 | 0.36681E-0
0.37472E-0
0.33790E-0
0.33166-0
0.33166E-0
0.33256503E-0
0.21492F-0
0.20983E-0 | 0.36681E-U
0.37472E-C
0.337901E-0
0.3397901E-0
0.33216E-0
0.33216E-0
0.33216E-0
0.226503E-0
0.21492F-0
0.20983E-0
0.20983E-0
0.23460E-0 | 0.36681E-0
0.37472E-0
0.37472E-0
0.33790E-0
0.338162E-0
0.338162E-0
0.226503E-0
0.21492E-0
0.20983E-0
0.23460E-0
0.225599E-0
0.229696-0
 | 0.36681E-U
0.37472E-C
0.337978E-0
0.33790E-0
0.338164E-0
0.338164E-0
0.26503E-0
0.21492F-0
0.21492F-0
0.23460E-0
0.22559E-0
0.22559E-0 | 0.36681E-0
0.37472E-0
0.37472E-0
0.39790E-0
0.338162E-0
0.338162E-0
0.338162E-0
0.226503E-0
0.20983E-0
0.22960E-0
0.22559E-0
0.221112E-0
0.221112E-0 | 0.35681E-0
0.37472E-0
0.37472E-0
0.3397991E-0
0.338162E-0
0.338162E-0
0.338162E-0
0.225503E-0
0.22983E-0
0.22983E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.228520E-0
0.208520E-0
0.208520E-0
0.208520E-0
0.208520E-0
0.208520E-0
0.208520E-0
0.208520E-0
0.208520E-0
0.208520E-0
0.208520E-0
0.208520E-0
0000000000000000000000000000000000 |
0.36681E-U
0.37472E-C
0.337901E-0
0.338162E-0
0.338162E-0
0.338166E-0
0.226503E-0
0.21492E-0
0.223460E-0
0.223460E-0
0.221112E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.2
 | 0.36681E-U
0.37472E-C
0.33790E-0
0.33126E-0
0.33226E-0
0.226503E-0
0.22492E-0
0.22983E-0
0.221112E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.208282E-0
0.20828282828282828282828282828282828282 | 0.36681E-0
0.37472E-0
0.33790E-0
0.33226F-0
0.33226F-0
0.226503F-0
0.22492F-0
0.223460E-0
0.223460E-0
0.221112E-0
0.221112E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.221111E-0
0.22496-0 |
0.36681E-0
0.37472E-0
0.33790E-0
0.332126E-0
0.332126E-0
0.226503E-0
0.21492F-0
0.220983E-0
0.220147E-0
0.221112E-0
0.221112E-0
0.221882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.2 | 0.35681E-0
0.37472E-0
0.37472E-0
0.3391991E-0
0.331256503
0.225503E-0
0.2235503E-0
0.2235503E-0
0.2235503E-0
0.221112E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-0
0.28882E-00 | 0.35681E-0
0.37472E-0
0.37472E-0
0.33790E-0
0.332996E-0
0.33229E-0
0.25503E-0
0.25503E-0
0.225509E-0
0.22559E-0
0.22559E-0
0.22559E-0
0.22582E-0
0.22882E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22659E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22649E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22659E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.22759E-0
0.27759E-0
0.27759E-0
0.27759E-0
0.27759E-0
0.27759E-0
0.27759E-0
0.27759E-0
00000000000000000000000000000000000 |
0.35681E-0
0.37472E-0
0.337472E-0
0.33790E-0
0.33229E-0
0.33229E-0
0.214927-0
0.22559E-0
0.22559E-0
0.221112E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.227676-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.226976-0
0.227676-0
0.227776-0
0.227776-0
0.227776-0
0.227776-0
0.227777777777777777777777777777777777 | 0.35681E-0
0.37472E-6
0.37472E-6
0.33790E-0
0.33229E-0
0.33229E-0
0.25503E-0
0.225509E-0
0.225559E-0
0.2255550E-0
0.2255550E-0
0.2255550E-0
0.2255550E-0
0.2255550E-0
0.2255550E-0
0.2255550E-0
0.22555550E-0
0.22555550E-0
0.22555550E-0
0.225555550E-0
0.225555550E-0
0.2255555555555555555555555555555555555 |
0.35681E-0
0.37472E-0
0.37472E-0
0.337901E-0
0.33229E-0
0.33229E-0
0.225503E-0
0.225503E-0
0.225509E-0
0.225509E-0
0.221112E-0
0.221112E-0
0.22805-0
0.22805-0
0.22805-0
0.224919E-0
0.224919E-0
0.3546016-0
0.3546016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
0.344016-0
00.344016-0
00.344016-0
00.344016-0
00.344016-0
00.344016-0
00.344016-0
00.344016-0
00.344016-0
00.344016-0
00.344016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
00.346016-0
000000000000000000000000000000000 | 0.35681E-0
0.37472E-0
0.37472E-0
0.337901E-0
0.332291600
0.214927-0
0.2255031-0
0.2255031-0
0.2255031-0
0.2255031-0
0.2255031-0
0.2255031-0
0.2255031-0
0.22550310
0.22550310
0.22550310
0.22550310
0.22550310
0.22550310
0.22550310
0.22550310
0.22550310
0.22550310
0.22550310
0.22550310
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.225500
0.255000
0.2550000000000 |
0.36681E-0
0.37472E-0
0.337901E-0
0.3329790E-0
0.33229160
0.20983E-0
0.20983E-0
0.20983E-0
0.20147E-0
0.228167E-0
0.228167E-0
0.228167E-0
0.228167E-0
0.228178E-0
0.228178E-0
0.226171112E-0
0.23682E-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.236676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.226676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.2267676-0
0.226767676-0
0.2267676-0
0.226767676-0
0.2267676-0 | 0.35681E-0
0.37472E-0
0.337472E-0
0.33790E-0
0.33299E-0
0.33229E-0
0.25503E-0
0.225503E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.225500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.22500E-0
0.2500E-0
0.2500E-0
0.2500E-0
0.2500E-0
0.2500E-0
0.2500E-0
0.2500E-0
0.2500E-0
0.2500E | 0.36681E-0
0.37472E-0
0.337472E-0
0.337472E-0
0.33229E-0
0.33229E-0
0.21492F-0
0.21492F-0
0.225509E-0
0.225509E-0
0.225509E-0
0.225509E-0
0.2261479E-0
0.22802E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.226499E-0
0.22666E-0
0.22666E-0
0.22666E-0
0.22666E-0
0.22666E-0
0.22666E-0
0.22666E-0
0.22666E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.226506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0.2275506E-0
0000000000000000000000000000000000 |
0.35681E-0
0.37472E-6
0.37472E-6
0.3329790E-0
0.33229E-0
0.33229E-0
0.25503E-0
0.225559E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.2255569E-0
0.22555569E-0
0.22555569E-0
0.22555569E-0
0.22555569E-0
0.22555569E-0
0.22555569E-0
0.22555569E-0
0.22555569E-0
0.225555569E-0
0.2255555569E-0
0.2255555555555555555555555555555555555 | 0.35681E-0
0.37472E-0
0.37472E-0
0.332990E-0
0.332296-0
0.25503E-0
0.225509E-0
0.2255596-0
0.2255596-0
0.2255596-0
0.221112E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22882E-0
0.22666-0
0.226666-0
0.3359666-0
0.3359666-0
0.32555690
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.326666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.326666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.3266666-0
0.32666660000000000000000000000000000000 | 2 0.14975E C2 0.32305E 02 0.14975E 02 |
| n | 51F 01 0 | 99E 01 0 | 485 01 0 | 80F 02 0 | | | 595 02 0 | 59E 02 0 | | 6 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 595 02 05 05 05 05 05 05 05 05 05 05 05 05 05 | 251E 02 02 05 05 05 05 05 05 05 05 05 05 05 05 05 | 9468 022 002 002 002 002 002 002 002 002 00 | 20000000000000000000000000000000000000 | 60000000000000000000000000000000000000
 | | 12220000000000000000000000000000000000 | 20000000000000000000000000000000000000 | 00000000000000000000000000000000000000

 | 00000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | |
 | | 00000000000000000000000000000000000000
 | 64000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 000000000000000000000000000000000000
 | 00000000000000000000000000000000000000 |
 | 00000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | Contraction of the second | 2 0.14975E C2 0.32905E 02 0.149 |
| 0.0 | 0.29951 | C. 59895 | 0°87878 | 0.1196 | 0.17965 | | 0.20965 | 0.23964 | 0.20969
0.23964
0.256961 | 0. 29956
0. 29966
0. 26961
0. 29956 | 0.20969
0.23964
0.259961
0.29956
0.32951
0.32951 | 0.23996
0.23966
0.29996
0.329956
0.329956
0.329956
0.38994 | 0.20969
0.23964
0.26961
0.329956
0.329956
0.329956
0.329956
0.38941
0.41936 | 0.20956
0.20956
0.20956
0.32956
0.35956
0.38941
0.41936
0.41936 | 0. 239956
0. 239956
0. 239956
0. 389956
0. 389956
0. 41936
0. 41936
0. 41936
0. 41936
0. 41936
 | 0.239956
0.239956
0.239956
0.339956
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.41936
0.419366
0.419366
0.419366
0.419366
0.419366
0.419366
0.419366
0.419366
0.419366
0.419366 | 0.239956
0.239956
0.239956
0.382956
0.382956
0.41936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44936
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.44956
0.449566
0.449566
0.449566
0.449566
0.449566
0.4495666
0.449566666666666666666666666666666666666 | 0.539960 | $0.0 \times 0.0 $
 | 0
 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | $\begin{array}{c} 0 & 0 \\$ | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ | 0 | 0.0
 | 0 | 0.000000000000000000000000000000000000 | 00000000000000000000000000000000000000
 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ | $\begin{array}{c} 0 & 0 \\$ |
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.00000
0.00000
0.00000
0.00000
0.0000
0.0000
0.0000
0.00000
0.00000
0.00000 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ | 2 0.14975E 02 0.32305E 02
2 0.17964E 02 0.34293E 02 |
| 1300E 02 | 1453E 02 | 906E 02 | 1647E 02 | 655E 02 | 2935 02 | 754E 02 | | 1 706 02 | 170E 02
1343E 02 | -1 706 02
5 436 02
5 806 02 | 1706 02
5436 02
5806 02
2296 02
7786 02 | 1705 02
0435 02
5805 02
2295 02
17785 02
4415 02 | 1705 02
5805 02
5805 02
2295 02
7785 02
4415 02
3735 02 | 1706 02
543E 02
580E 02
580E 02
229E 02
778E 02
441E 02
373E 02
373E 02 | 1706 02
5436 02
5436 02
72296 02
72296 02
72296 02
74416 02
3735 02
1885 02
 | 1706 02
5436 02
5436 02
2296 02
2296 02
2296 02
23736 02
3736 02
1166 02
1166 02 | 1706 02
55806 02
58806 02
72896 02
72896 02
72896 02
7286 02
16886 | С 1 70 6 02
2 5 5 6 1 7 2 8 9 6 7 2 2 8 9 6 0 2 2 2 8 9 6 0 2 2 2 8 9 6 0 2 2 2 8 9 6 0 2 2 2 2 8 9 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | С 1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | 602
602
602
602
603
602
602
602
602
602
602
602
602
602
602
 | 200
200
200
200
200
200
200
200
200
200 | 100 с с с с с с с с с с с с с с с с с с | 900
900
900
900
900
900
900
900
 | С. С. С | С. С. С | 1106 02
1106 02
110 |
1106
1106
1106
1106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
11106
1 | 1.10 0.1 0.10 0.1 |
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11 | 2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
2440
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
24400
244000
24400
24400
24400
24400
24400
244000
244000
244000
244000
244000
240 | С. С. С | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
 1.000 0.000 1. | С С С С С С С С С С С С С С С С С С С | 2 0.14975E C2 0.32
2 0.17964E 02 0.34
0.20648E 02 0.34 |
| | 1 0.294 | 1 0.299 | 1 0.306 | Z 0.316 | 2 0.342 | 2 0.347 | 145.0 0 | 477 × 2 | 2 0.333 | 2 0.33)
2 0.33)
2 0.33)
2 0.33) | 2 0.335
0.335
2 0.325
2 0.202
2 0.202 | 2 0.3315
2 0.3315
2 0.3325
2 0.3325
2 0.2345 | 2 0 0 3 0 2 0 3 3 0 2 0 3 3 0 2 0 3 0 2 0 3 0 2 0 2 | 25 9 2 2 5 9 2 2 5 9 2 2 5 9 2 2 5 9 2 2 5 9 2 2 5 9 2 2 2 2 | 22222222222222222222222222222222222222
 | 22255342220
2225534222
222553422
222553422
225553422
225553422
2255534242
2255534242
2255534242
2255534242
2255534242
2255534242
2255534242
2255534242
2255534242
2255534242
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555342
22555542
22555542
22555542
22555542
22555542
22555542
22555542
22555542
22555542
22555575
225555757
22555575757
2255575757
2255575757
225557575757
225557575757
225557575757
22555757575757
225557575757575757
22555757575757575775757 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
200
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2
 | 00000000000000000000000000000000000000 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 22222222222222222222222222222222222222
 | | 2000000
000000
000000
000000
000000
00000
00000
00000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000 | 20000000000000000000000000000000000000
 | | |
 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 7 4 6 6 6 7 6 6 6 7 7 8 6 7 8 7 7 8 7 7 8 7 7 8 7 7 7 7
 | | | 20222222222222222222222222222222222222 | 2 0.14975E 0
2 0.17964E 0
2 0.20648E 0
2 25557E 0 |
| c | 29951E 0 | 59899E 0 | 89848E 0 | 11980E 0. | 17964E 02 | 20648E 02 | 22557E 0 | 23784E C | | 24535E (12 | 245355 05
249455 05
25096E 05 | 24535E 12
24945E 32
25096E 02
25100E 02 | 2453555 12
2494555 12
250965 02
251005 02
251005 02
251005 02 | 245355 12
249455 12
2509455 12
2509456 02
251006 02
251006 02
251006 02 | 24535551
2494555
25094555
25100450
25100450
25100450
25100450
25100450
25100450
25100450
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
251004500
2510045000
2510045000
2510045000
2510045000
2510045000
2510045000
2510045000
2510045000
2510045000000000000000000000000000000000
 | 245355 12
249455 12
250965 02
251005 02
251005 01
251005 01
251005 01
251005 01
251005 01 | 225100E 02
25100E 02
2510E 02
2500E 02
2500 | 225100E 02
25100E 02
255100E 02
255100E 02
255100E 02
255100E 02
255100E 02
255100E 02
255100E 02
255100E 02
25510E | 225100E 00
25100E 02
25100E 02
25100E 02
25100E 02
25100E 00
25100E 00
25100E 02
25100E 02
255100E 02
25510E 02
25500E 02
255
 | 255100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
25100
2500
25 | 255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255000
2551000
255000
255000
255000
255000
255000
255000
255000
255000
255000
2550000
2550000
25500000000 |
2251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
251000
2510000
2510000000000 | 225000
22500
22500
22500
22500
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
225100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
255100
2551000
2551000
25510000000000 | 22551000
22551000
2251000
2251000
2251000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
225510000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
2255000
2255000
2255000
2255000
22550000
22550000
22550000
225500000000 |
22551000
22551000
22551000
22551000
22551000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
2255100000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
2255100000
225510000
2255100000
2255100000
2255100000
2255100000
2255100000
2255100000
2255100000
22551000000
22551000000
2255100000000000
225550000000000000000000000 | 22551000
2255006
2255006
2255006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
2255100006
225510000
225510006
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
2255100000
225510000000000 | 22551000
225006
225006
2251000
2251000
2251000
2251000
2251000
2251000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
225500
22551000
225500
22551000
2255000
2255000
2255000
2255000
2255000
2255000
22550000
2255000
2255000
2255000
2255000
2255000
22550000
22550000
225500000000
 | 22551000
225006
225006
2251006
2251006
2251006
2251006
2251006
2251006
2251006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
22550000
22550000
22550000
22550000
22550000
225500000000 | 22551000
225096
225096
225096
2251000
2251000
2251000
2251000
2251000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
225500
22551000
2255000
2255000
2255000
2255000
2255000
2255000
2255000
2255000
2255000
2255000
2255000
2255000
22550000
22550000
225500000000
 | 2255000
2255006
2251006
2251006
2251006
2251006
2251006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
22551006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
225510006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550006
25550000000000 | 22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
2255100000
2255100000
2255100000
2255100000
2255100000
2255100000
2255100000
22551000000
225510000000
22551000000
225510000000000 | 22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
225510000
2255100000
2255100000
22551000000
22551000000
22551000000
225510000000
225510000000000 |
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
22551000
225510000
225510000
225510000
225510000
225510000
225510000
2255100000
2255100000
2255100000
22551000000
22551000000
225510000000000000000000000000000000000 | 00000 |
| | 2. 0.4 | 0.5 | 0°8 | 02 0.1 | 22 0.1 | 32 0.2 | 2.0.2 | 2.0.20 | |)2 0.2
02 0.2 | 22 0.2
22 0.2
22 0.2 | 0.22
0.22
0.22
0.22 | 22 0 5 2 0 5 7 0 5 | 0.2200.220 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | 00000000000000000000000000000000000000 | | |

 | · · · · · · · · · · · · · · · · · · · | 55555555555555555555555555555555555555 | 22222122000000000000000000000000000000 | ××××××××××××××××××××××××××××××××××××××
 | 22222222222222222222222222222222222222 |
 | ×××××××××××××××××××××××××××××××××××××× | 22222222222222222222222222222222222222 | ······································
 | | 22222222222222222222222222222222222222
 | 888888888888888888888888888888888888888 | 22222222222222222222222222222222222222 | ······································ | 2222 |
| 0.01 | 303E C | 3005 0 | 300E (| 300F (| 212E C | 7955E C | δοόδΕ ΰ | 2438E C | 0041E C | 7075E C | 7075E 0
4085E (| 7075E 0
4085E 0
1090E 0 | 7075E 0
4085E 0
1090E 0
0952E 0 | 7075E 0
4085E 0
1090E 0
0952E 0
1004E 0 | 7075E 0
4085E 0
1090E 0
0952E 0
1005E 0
1055E 0
 | 7075E0
4085E0
1090E0
0952E0
1004E0
1004E0
8936E0 | 7075E 0
4085E 0
10995E 0
10955E 0
10555E 0
88936E 0
88936E 0
88936E 0
88936E 0
88936E 0
88936E 0
88936E 0
88936E 0
88936E 0
88942E 0
8895E 0
8855E 0
885 | 7075
4085
10952
10952
10952
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
10052
100 | 70755 0
40855 0
10956 0
10957 0
09526 0
09526 0
100546 0
888426 0
87391 00000000000000000000000000000000000
 | 70755 0
10755 0
10755 0
100555 0
100555 0
100556 0
1005560 0
1005560 0
1005560 0
10055 | 70755 0
70755 0
100555 0
100555 0
1005550000000000000000000000000000000 | 107555
10755
100555
100555
100555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
1000555
10005555
10005555
10005555
100055555
100055555
1000555555
10005555555555555555555555555555555555
 | 10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
1 | 7075
7075
7075
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
7000
70000
7000
7000
7000
7000
7000
7000
7000
7000
7000
70000 |
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075 | 7075
640
640
640
640
640
640
640
640 |
7075
000005
00005
00005
00005
00005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005 | 10.10
10.10
10.10
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.005
10.00 | 70.70
0000000
000000
000000
000000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
000000
 | 70 75 10 0000000000000000000000000000000 | 7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075
7075 | 7075
4085
4085
4085
4085
8095
8095
8095
8095
8095
8095
8095
8
 | 17075E
4085E
4085E
4085E
4085E
110052E
1210052E
1210052E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
122555E
1225555E
1225555E
1225555E
1225555E
1225555E
1225555E
1225555E
1225555E
1225555E
12255555E
12255555E
1225555E
1225555E
1225555E
12255555E
122555555E
12255555E
12255555555555555555555555555555555555 |).29300E (
).29212E (
).27955E (
).27955E (
).25666E (
).22938E (
).22938E (|

OUTPUT OF MAPPING FUNCTION PROGRAM AT TEST FUSELAGE STATION 264.25 F.GURE 32.

MAN

.....

SECTION MAPPING BY NUMERICAL INTEGRATION.

the state of the second st

THETA	0.84908E-01	0.25472E 00	0.33963E 00	0.42454E 00	0.50945E 00	0.59436E 00	0.67926E 00	0.76417E 00	0.84908E 00	0.93399E 00	0.101895 01	0.11038E 01	0.11887E 01	0.12736E 01	0.13585E C1	0.14434E 01	0.15283E 01	0.16132E 01	0.16982E 01	0.17831F 01	0.18680E 01	0.1, JZYE 01	U.20378E 01	0.21227E 01	0.22076E 01	0.229256 01	0.23774E 01	0.24623E 01	0.25472E 01	0.26321E JI	0.271705 01	0.28020£ 01	0.2886JE 01	0.297.85 01	0.30567E 01	0.31416E 01
>	0.36200E 01	0.10282E 02	0.13133E 02	0.15626E 02	0.177JE 02	0.196356 02	9.21216E 02	0.22534E 02	0.23586E 02	0.24364E 02	0.24876E 02	0.25153E 02	0.25250E 02	0.25233E 02	0.25169E 02	0.25109E 02	0.25082E 02	0.25094E U2	0.25130E 02	3.25160E 02	0.25141E 02	0.25020E 02	0.24742E 02	0.24253E 02	0.23512E 02	0.22494E 02	0,21196E 02	0.19633E 02	0.17828E 02	0.15807E 02	0.13585E 02	0.11173E 02	0.85806E J1	0.58260E 01	0.29467E Q1	-0.10836E-02
×	0.29352E 02	0.29596E 02	0.29600E 02	G.29391E 02	0.28895E 02	0.28077E 02	0.26934E 02	0.25475E 02	0.23707E 02	0.21620E 02	0.19196E C2	0.16414E 02	0.13270E 02	0.97872E 01	0.60171E 01	0.20378E 01	-0.20582E 01	-0.61745E 01	-0.10220E 02	-0.14112E 02	-0.177825 02	-0.21179E C2	-0.24269E 02	-7.27041E 02	-(1,29503F 02	-C.31676E 02	-0.33589E 02	-0.35261E C2	-0.36704E 02	-0.37417E 02	-0.38896E 02	-0.39643E 02	-0.10173E 02	-0.40515E 02	-0.40701E UZ	-0.40760E 02

FIGURE 32. (Continued)

ADDIUS OF MAPPING CIPCLE = 0.33317E 02

Sal-

Bern Part

PEAL PARTS OF COEFFICIENTS.

0.[%:456 03 -0.80102E 03 -1.11475E 06 -0.54775E 06 0.17340E 07 -0.11485E 09 -0.70960E 13 -0.605825 1 -0.20472E 13

IMAGINARY PARTS OF COEFFICIENTS.

0.0	0.0	0.0	0•0	0.0	0.0	0-0
0°0	0.0					

REMOVED.	
CORNERS	
WITH	
SECT ION	
9	
MAPPING	

>	0.0	3.71916	+=====	10.53344	13.42824	15,94495	18.11038	19.96355	21.53214	22.32333	23.83009	24.54831	24.99301	25.20651	25.25409	25.20993	25.14067	25.09227	25.08478	25.11311	25.15170	.5.15948	25 .08385	24.86530	24.44403	23.76903	22-80710	21.54808	20.00362	18.19855	16.15981	13.90728	11.45243	8.80503	5.98449	3.02955	0.00042
×	33.74065	33.79533	60C 7K • C C	34.04285	34.03062	33.78172	33.22249	32.32132	31.07805	29.50369	27.60135	25.35806	22.75081	19.76187	16.39557	12.68871	8.71039	4.55337	0.32129	3.88293	- 7 . 96 487	-11.84319	-15.45312	- т8.74998	-21.71240	-24.34244	-26.66010	-28.69418	. 30.47015	-32.00211	-33.29158	-34.33445	-35.13164	-35.69736	-36.06100	-36.25879	-36.32085

FIGURE 32. (Concluded)

the second second second

. ,

A TANK

- 3 V

「「「「「「「「「」」」」」、「「「」」」、「「」」、「」」、「」」、「」、」、

4

÷

;*

85

TABLE II. COFFFICIENTS OF MAPPING FOR FUSELAGE

1.

100

and and a second sources the second second second second second

r _c dr _c dx a ₀	dr _c dx a ₀	a0		al	a2	ີ່	a A	a5	a6	a ₇	8 e	°s
10.26% 285 7.5008 .71436 × 10 ¹ 45	.285 7.5008 .71436 × 10 ⁴ 45	7.5008 .71436 $\times 10^{4}$ 45	.71436 × 10 ¹ 45	- 45	;764 x 10 ¹	17220 x 10 ³	.69240 × 10 ³	$.14727 \times 10^2$	21603 × 10 ⁵	.40889 x 10 ⁵	, 21969 × 10 ⁶	38224 × 10 ⁷
13 0898 .274 5.1714 .25764 × 10 ² 73	.254 5.7714 .25264 × 10 ² 33	5.1714 .25264 × 10 ² - 33	.25764 × 10 ² 33	- 33	365 x 10 ²	63894 x 10 ³	17548 x 10 ⁴	.43500 × 10 ⁵	.11580 × 10 ⁶	49521 x 10 ⁷	19394 x 10 ⁸	• 59975 x 10 ⁹
21.7262 ,176 1.9762 ,81113 × 10 ² 318	.1 ⁷ 6 1.9762 .81113 × 10 ² 318	1.9762 .81113 × 10 ² 315	.81113 × 10 ² 318	318	9 × 10 ³	40341 x 10 ⁴	45148 x 10 ⁵	. 38924 х 10 ⁶	.47368 × 10 ⁷	11093 x 10 ⁹	89304 x 10 ⁹	.17429 x 10 ¹¹
35.:396 .14245742 .12664 x 10 ³ 622	.142 45742 .:2664 x 10 ³ 622	45742 . 13664 x 10 ³ 622	.12664 × 10 ³ 622	-, 622	89×10^3	10198 × 10 ⁵	12042 x 10 ⁶	.6598C × 10 ⁶	.19652 × 10 ⁸	-,42390 x 10 ⁹	53246 x 10	.11100 x 10^{12}
:3436 .1153 -2.7841 .17304 x 10 ³ жи5	.1155 -2.7841 .17304 x 10 ³ 4855	-2.7841].17304 х 10 ³] нн5е	.17304 x 10 ³ + +55	- 8855	54 × 10 ³	23602 \ 10 ⁵	24410 × 10 ⁶	ۍ52265 x 10 ⁶	.28524 x 10 ⁸	12650 x 10 ¹⁰	27246 × 10 ¹¹	.33738 × 1 ¹²
30.7143 .077 -3.553 .19999 .10 ³ 1005	• 077 -3.53 .19999 × 10 ³ 1005	-3. 553 .19999 × 10 ³ 1005	.19999 × 10 ³ 1005	1005	4×10^4	47881 \ 10 ⁵	45438 x 10 ⁶	48116 x 10 ⁶	38244 × 10 ⁸	37311 x 10 ¹⁰	66089 x 10 ¹¹	25037 x 10 ¹²
11.9934 .054 -3.4020 .19745 x 10 ³ 9524	.054 -3.4022 .19745 × 10 ³ 9×524	-3.4023 .19745 × 10 ³ 95524	.19745 × 10 ³ 98524	9×524	t x 10 ³	72717 × 10 ⁵	55979 × 10 ⁶	.95070 × 10 ⁵	11108 x 10 ⁹	57747 x 10 ¹⁰	79340 x 10 ¹¹	97576 x 10 ¹²
13.0565 .04 -3.1494 .1551 ~ 10 ³ -12411	.04 -3.1494 .1851' × 10 ³	-3.1494 .1851 . 10 ³ -1.141	11471 - 10 ³ - 11761.	1471 ~	x 10 ⁴	10515 × 10 ⁶	66067 x 10 ⁶	.17509 × 10 ⁷	97966 x 10 ⁸	55082 x 10 ¹⁰	48035 x 10^{11}	10264 × 10 ¹³
3.9764 .00J.4023 .17611 × 10 ³ 13119	~00J. 4023 .17611 ~ 10 ³ 13119	-3.4023 .17611 v 10 ³ 13119	.17611 v 10 ³ 13119	-, 13119	10 ⁴	13530 × 10 ⁶	61693 × 10 ⁶	29750×10^7	50522 x 10 ⁸	50934 x 10 ¹⁰	27398 x 10 ¹¹	-24533×10^{13}
13.317 - 03 - 1.42 .16567 × 10 ³ - 80102	- 03 - 1.4C .16565 x 1 ^{n³} - 80102	-1.42 .16567 × 10 ³ 80102	.16567 × 10 ³ 80102	80102	۸ 10 ⁵	11475 × 10 ^b	54775 × 10 ⁶	$.17340 \times 10^7$	-, 11485 x 10 ⁹	70960 x 10 ¹⁰	60582 x 10 ¹	-, 20872 x 10 ¹³
11.06990503 -7.44 5 .12136 × 10 ³ 1446	0503 -7.44 5 .12156 x 10 ³ 1446	-7.44 5 .12156 × 10 ³ 14940	.12156 × 10 ³ 14940	-, 1494(× 10 ³	62063 × 10 ⁵	18956 × 10 ⁶	.40965 × 10 ⁷	48139 x 10 ⁸	36282 × 10^{19}	.79756 × 10 ¹⁰	.46619 x 10 ¹¹
(5.515306350635064	0635 -9.40649946 .10 ² .11392	-9.4064 9946×10^2 $$11392$. ~ 9946 ~ 10 ² + 11392	÷ 11392	× 10 ³	-, 41363 × 10 ⁵	13665 × 10 ⁶	.29437 × 10 ⁷	18782 x 1	18358 x 10 ¹⁰	.19634 × 10 ¹¹	$.45817 \times 10^{12}$
7.5112074 -11.4762 .475×3 × 10 ² .27331	074 -11. 4762 .475×3 × 10 ² .27331	-11. 4762 .475×3 × 10 ² .27331	.475×3 × 10 ² .27331	.27331	10 ²	24758 × 10 ⁵	13019 × 10 ⁶	.15000 × 10 ⁷	$.57690 \times 10^{7}$	93720 x 10 ⁹	.13366 x 10 ¹⁰	23796 x 10 ¹²
3. 772 135 -14. 6391 . 25525 x 10 ² . 1339.	135 -14.6391 .25525 x 10 ² .1339	-14.6391 .25525 x 10^2 .1339.	.25525 x 10 ² .1339	.1339	4 x 10 ³	14122 x 10 ⁵	69219 x 10 ⁵	.43107 × 10 ⁶	.37599 x 10	24462 x 10 ⁹	96070 x 10 ⁸	. 31622 x 10 ¹¹
.7 5796152 -17.6552 .24497 × 10 ² .8020	155 -17.6552 .24497 × 10 ² .8020	-17.6552 24497×10^{2} .8020	.24497 × 10 ² . к020	. 8020	1×10^{2}	30498 x 10 ⁴	15568 \ 10 ⁵	. 79269 x 10 ⁵	. 42978 x 10 ⁶	20739 x 10 ⁸	54266 x 10 ⁸	.22970 × 10 ¹⁰
+.213206 -21.2522 .13116 × 10 ² .8040	206 -21.2522 .13116 x 10 ² .8040	-21.2522 .13116 × 10 ² .8040	.13116 x 10 ² , 8040	. 8040	1 、 10 ¹	11905 $\times 10^3$	32960 x 10 ³	.76206 x 10 ³	. 16588 × 10 ⁴	34590 x 10 ⁵	• 90360 × 10 ³	.11027 × 10 ⁷

- ----

8f
3. APPLICATION OF JET FLOW FIELD THEORY TO FUSELAGE

The purpose of the Jet Flow Field theory, when used in conjunction with the Transformation Method, is to predict jet-induced velocity components at the control points on the fuselage required by the Transformation Method to evaluate power effects. This is accomplished by executing the Jet Flow Field program to generate required data for the Transformation Method in the form of punched data cards. To insure compatibility with the Transformation Method, the control points on the fuselage where induced velocity components are to be computed are specified by utilizing the mapping coefficients for the fuselage cross sections obtained in Section III.2. The punched output is generated in a manner providing a continuous block of input data to the Transformation Method computer program. Both of the above points will be described in greater detail in the discussion of the sample problem computations.

It should also be noted that the application of the Jet Flow Field program to provide data to the Transformation Method program for the computation of power effects on the fuselage, differs only slightly from its application to computing power effects on the wing, discussed in Section II.3. Consequently, much of the discussion below will parallel that of Section II.3.

a. Sample Problem Computation

For the sample problem being considered, the Jet Flow Field program is now used to compute the jet-induced velocities at the 16 fuselage stations described in Section III. A sketch of the fuselage and the location of the jet with respect to the input/output coordinate system is shown below. The jet exhaust angles ϕ and ψ are also defined.

(1) Input for Sample Problem

1999 - An 24

Second second second second second

The input cards required for the sample problem are tabulated in Figure 34.

Card 1 lists three control indices. The first one, MULT = 1, indicates that a single jet configuration is being treated. The second one, IGEØM = 2, specifies that control points on fuselage cross sections will be generated utilizing the mapping coefficients obtained. The third control index, IPUNCH = 1, generates the punched output for the Transformation Method program.

Card 2 specifies angle of attack, $\alpha = 0$ and angle of sideslip, $\beta = 0$.

Card 3 controls the number of steps and the step size in the numerical integration of the equations of motion for the jet path. For the sample problem, 90 steps with a step size of .4 (jet exit diameters) are chosen.

Cards 4 and 5 contain information about the jet. The jet location, in the coordinate system of Figure 33, is X = 208., Y = 0, Z = -30.8. The jet exhaust angles ϕ and ψ , defined in Figure 33(b), are 180 and 0 degrees, respectively. The jet exit diameter, $d_0 = 22.5$ and the velocity ratio, $U_{\infty}/U_{j0} = .2$.

Card 6 may be left blank for single jet computations. For a multiple-jet configuration it would be used to control the geometry of the jet resulting from the intersection of two other jets.

The remaining input cards provide data to generate the control points at which jet-induced velocities are to be evaluated. These control points, in order to insure compatibility with the Transformation Method, are generated by utilizing the mapping coefficients and mapping circle radii obtained for the 16 fuselage stations of the sample problem. The number of control points generated at each fuselage station is governed by the input variable, NTHT, which is the number of increments $\Delta\theta$ into which the mapping circle (or mapping semicircle if only half the fuselage is to be mapped at each station) is to be divided in the Transformation Method computer orogram. Since the flow is symmetric ($\beta = 0$), computations will be carried out for only half the body.

Card 7 specifies that NTHT, the number of equal increments $\Delta\theta$ into which the mapping semicircle is divided, is 18, which will generate 19 control points at each fuselage station. It defines the number of fuselage stations NS = 16. It also defines the number of terms used in the mapping expansion, NCOEF = 11, and through the control index NSYM = 0 indicates that computations are to be effected for only half the tuselage at each station.

0.692406.03 <u>03-0.329606.03</u> 2.2.5 0.71436£ 01-0.48764£ 01-0.17220£ 03 0.7 0.7 0.110275 0.14727E 02-0.21603E 05 0.40889E 06 0.21.69E 06-0.38229E -0.11905E 0. 0.3 0.80401E 01 0.90360E 180. 05 02 .285. 0.131166 345906 2.0.6 -30.8 1 1 04-0. 02 0 0. 78.0.086. 0.1 ł 1 1 10.2633. 0.10000E 01-0.21252E Q.1.658BE. 8.213 + 0.1 0... ł ł 1 16 03 4 0.10000E 01 1 2.08. 1 0.76200£ 23..7 Det BLANK 2 181 90 הו-ז-דהדי הו-ז-דהדי 497. 4 000000000000 ®,\$,\$ Θ

į?

FIGURE 34. JET FLOW FIELD PROGRAM INPUT DATA FOR SAMPLE PROBLEM (Fuselage)

=

The data in cards 8-55 are taken from Table II, which is determined in Section III.2.

Cards \vdash 10 provide the data from which the fuselage cross section at the first station can be generated by the computer program. Card 8 specifies the location of the station, X = 23.7, the mapping circle radius R = 10.2633, and the rate of change of R with X, DRDX = .285.

Cards 9 and 10 list the real parts of the coefficients to be used in the mapping expansion (thus only symmetrical fuselages may be treated).

Cards 11-55 are similar data blocks for fuselage stations X = 41., 73., 94., 118., 143.5, 162.5, 185.5, 221.5, 264.5, 316., 343., 374., 411., 453., and 497.

Note: The rate of change of the mapping circle radius with distance along the fuselage, DRDX, is not required for any of the computations performed by the Jet Flow Field program. It will, however, be required by the Transformation Method program, and is read as part of the input so that it may be punched out in the proper sequence in the data package to be provided to the Transformation Method program.

(2) Output for Sample Problem

For the sample problem being considered, both printed and punched outputs are obtained.

Printed Output

4

Figure 35(a) shows the first page of printout. The jet configuration being treated is identified both by appropriate heading and by printout of pertinent input information. Input controlling the numerical integration procedure is also displayed. Figure 35(b) shows a partial printout of computed jet centerline information. The coordinates of the jet centerline are identified. The nondimensionalized jet speed U_j/U_{j0} and the nondimensionalized major diameter of the ellipse representing the cross section of the jet, d/do, are also printed out. These properties are printed out at each integration interval as specified on card 3 of the input. The variables XCOORD and DIA show a monotonic increase over this region, while $U_J = U_j/U_{j0}$? once the jet speed U_j approaches the freestream speed U_{∞} . Figure 25(c) shows the printout for the jet-induced velocity components at the first fuselage station specified, X = 23.7. The coordinates of the 19 control points at the station are identified. For this symmetric flow sample problem, only the positive half of the fuselage station is generated. The induced

XJET	YJET	ZJET	PHI	PSI	01010
208-0000	0-0	-30.8000	180.000	0.0	0.2000
ANGLE OF ATT	ACK = 0.	.0			
ANGLE OF SID	ESLIP = 0.	.0			
NUMBER OF ST	EPS IN INTEG	RATION = 90			

and a set of the start of the

1.1.1

FIGURE 35(a). INPUT PARAMETERS FOR SAMPLE PROBLEM

** S	INGLE JET	CENTERL	INE **	
*****	*******	*******	*****	3***
XCOORD	YCOORD	ZCONRD	LU	DIA
208.00 208.10 208.44 209.10 210.26 212.10 214.71 218.18 222.60 228.11 234.83 242.92 252.59 264.06 277.60 293.52 312.22 334.13 359.77		-30.80 -39.80 -48.80 -57.80 -66.80 -75.80 -84.80 -93.80 -102.80 -111.80 -120.80 -129.80 -138.80 -147.80 -156.80 -165.80 -174.80 -183.80	1.000 0.948 0.893 0.633 0.760 0.688 0.626 0.573 0.528 0.489 0.456 0.427 0.402 0.381 0.363 0.347 0.321 0.311	1.00 1.18 1.45 1.90 2.64 2.93 3.23 3.55 3.88 4.23 4.60 4.98 5.37 5.77 6.18 6.60 7.03 7.47 7.92
399.78 424.86 465.87 513.81 569.84 635.36 711.98		-201.80 -210.80 -219.80 -228.80 -237.80 -246.80 -255.80	0.301 0.293 0.285 0.278 0.272 0.266 0.261	8.38 8.86 9.34 9.85 10.37 10.91 11.47

FIGURE 35(b). JET CENTERLINE FOR SAMPLE PROBLEM

FIGURE 35(c). INDUCED VELOCITY COMPONENTS AT STATIONS 23,7 AND 497.

velocity components U, V, W, all nondimensionalized by U_x , are printed out for each control point. Figure 35(c) also shows the printout for the last fuselage station considered in this problem, X = 497. Similar printouts are obtained for the officer intermediate stations specified as part of the input.

Punched Cutput

and by an Bard system (). A particular the second summary of the second s

ANTERESCONSISTER

The punched output for the sample problem is shown in tabulated form in Figure 36. The output data block for the first fuselage station is identified. The first card lists the fuselage station X = 23.7, the mapping radius R = 10.2633 and the rate of change of R with X, DRDX = .285. The next two cards list the real parts of the coefficients used in the mapping expansion. Cards 4-7 list the induced velocity components in the X-direction for each of the 19 control points at fuse-lage station X = 23.7. The induced velocity components in the Y-direction are listed on cards 8-11 and cards 12-15 specify the induced velocity components in the Z-direction. Datablocks of this type, each consisting of 15 cards, follow for each of the other 15 fuselage stations specified as part of the input. The punched output is identified in columns 73-80. The fuselage station number is shown in columns 75-77. Sequence numbers for each station appear in columns 78-80. The letters U, V, W and column 74 identify the velocity components listed on the data cards.

<u>Note</u>: From the tabulations of Figure 36 it is apparent that the first three data cards of 'he data generated for each fuselage station represent an exact duplication of input cards described previously. They are generated as part of the punched output so that a more complete data block for the Transformation Method program may be obtained without additional card handling.

b. Applicability and Limitations

See discussion on applicability and limitations in Section II. 3.

23.679797 10.261300 0.285000 0.1000(E 01 0.78008E 01 0.71436E 01-0.48764E 01-0.17270E 03 0.69240E 03 1 1 1 2 C. 14727E 02-0.21603F 05 0.40084E 65 6.21967E 66-0.38224E CT -0.44731E-04-0.24299E-04 0.17127E-04 0.937555-04 0.19770E-03 0.32468E-03 U 1 1 P 6.4701rE-03 0.62943E-03 0.79768E-03 0.97076F-03 0.11440E-02 0.131C2E-02 U 1 2 ន 3 0-14594E-C2 0-15857E-C2 0-1686GE-02 0-17621F-07 0-18155F-02 0-18467E-C2 U 1 Station 1 4 J.18572E-62 C. 14342E-04 U.14471E-03 U.20799E-03 U.241B1E-03 U.30423E-C3 V 1 1 5.0 0.13369E-03 0.35038E-03 0.35396F-03 0.34585E-03 0.32932E-03 0.30427E-03 ٧ 1 2 U-27944E-03 0.24165E-03 0.20212E-03 0.15697E-03 0.10731E-03 0.54512E-04 v 3 1 for 4 1 -11-10774E-68 1 0-135802-02 0-135228-02 0-733208-02 0-724828-02 0-925178-02 0-919378-02 W 1 2 U. 1125 JE-02 U. 10481E-02 D. 896 38E-02 U. 587 39E-02 U. 47007E-02 U. 86867E-02 W 1 5 3 U. #519 JE-02 U. #5234E-02 U. 84616E-02 C. 84140E-02 U. 83402E-02 0.83602E-02 1 T 1 4 ч 0.035348-02 2 15.059800 0.254000 41.0.0000 ۱ 2 0.10000E 01 0.57774E 01 0.25264E 02-0.33365E 02-0.63394E 03-0.1754HE 04 2 0.43501E 05 U.1198CE 06-0.49521E 07-0.19394E 08 0.59974E 04 - C. 5535/E-03-0.52U76E-03-3.42496E-C 3-C.27036F-03-0.61294E-04 0.14313E-03 U 2 Ł 0.48(13E-03 0.192051-03 0.11252E-07 0.146645-07 U.17903F-02 0.20779E-02 U 2 2 U-2327/E-02 0-25442E-02 0-2725HE-02 0-28671E-02 0-2908CE-02 0-303C1E-02 U 2 1 2 4 U C. 36515E-02 0.147816-03 0.28705E-03 0.40918E-03 0.50012E-03 0.58110E-03 1 v 2 6.0 U.1259/F-03 U.14146E-03 J.63142E-03 0.10470E-03 0.56769E-03 U.52009F-03 v 2 2 0+46022E-03 0.39073F-03 0.31642E-03 0.23945E-03 0.15013E-04 0.79843E-04 v 2 3 2 4 v -0.101640-08 0.11468E-01 0.11453E-01 0.11410E-01 0.11334E-01 0.11/42E-01 0.11110F-C1 W 0.10773E-01 0.10408E-01 0.17621E-01 0.10416E-01 0.10/09E-01 0.10014E-01 W 2 1 2 2 J. 18364E-02 U. 16748E-07 0.45338E-02 0.44203F-07 0.43177E-72 0.47851E-02 Ż 3 . 2 4 J. 1267.E-02 3 0.176000 73.000000 21.720196 1 U.1000.E 01 0.147520 01 0.011136 02-0.318905 03-0.403418 04-0.451485 05 3 3. 147246 C6 0.47368F 07-0.11038 09-0.49304F UV 0.17429E 11 2 4 ŧ 5.16374E-02-0.15594E-07-0.13281E-07-0.94636E-03-6.42574E-03 0.20477E-03 U 3 0. 11 164E-03 C. 16404E-02 0.24970E-02 C. 32030F-07 0. 39333E-02 0.45679E-02 U 3 2 U. 1011-E-U2 0.-49/71-02 1.97399E-02 0.60434E-02 0.67200E-02 0.63265E-02 U 3 3 4 U L.63121E-02 6.47 \$576-63 6.867636-63 C.11214E-07 0.13467E-02 6.14784E-C2 V 3 t ا م ت 0.151/01-02 0.14755F-02 0.13758E-02 0.12495E-07 0.11143E-02 0.4/01#E-01 V 3 2 ٩ 0.-145.E-03 0.45472E-01 J.50269E-01 0.3031AF-01 0.71497E-03 0.11479E-03 V ٦ 3 4 -0. 545928-06 0.17343E-CL 0.17302+-01 0.17142E-01 0.16982E-01 0.16703E-01 0.16346E-01 W 3 1 0.15)17E-01 0.15412E-01 0.14931E-01 0.14194E-01 0.13571E-01 0.12957E-01 W 2 4 3 N. 1246-F-01 C. 11992E-01 U. 11571E-61 C. 11227E-01 U. 101746-01 U. 16817F-01 1 3 4 0.107631-01 4 25.139785 14.000:00 0.142000 J. LOBOUF 01-0.457428 00 0.176648 03-0.622898 03-0.101988 05-0.120428 06 4 t 0.03480E 06 C.146527 08-0.42390E C7-0.53746E 10 0.11107E 17 2 4 - J. 25662E-02-0. 237078-02-0. 19674E-02-C. 13636E-02-0. 19183E-03 0.69221E-03 U 1 U.190642-02 0.319426-02 0.449916-02 0.571286-02 0.672496-02 0.751066-02 U L Z 0.01224E-02 0.00109E-02 0.09965E-02 0.92524E-02 0.44256E-02 0.95250E-02 U 4 3 4 4 0.4555(2-02 11 0.472078-03 0.15487E-02 0.21073F-02 0.24547E-02 0.262C6E-02 1 4 4 6.0 U-25434E-02 C.24171E-02 J.21496E-02 C.18"98E-02 D.15935E-02 0.13181E-02 v 1. 2 0.10564E-02 0.31036E-03 0.59748E-03 0.41921E-03 0.20530E-03 0.12766E-03 V 3 4 4 -0.526716-68 U-2363/E-01 0-2356CE-01 0-23322E-01 0-22929F-01 0-22374E-01 9-2107/E-01 I - 4 4 J.20H3CE-01 0.19H30F-01 0.18676E-01 0.17433E-01 0.16230E-01 0.15157E-01 W 4 2 0.14204E-01 0.13353F-01 0.12410E-01 0.12025E-01 0.11410E-01 0.11356E-01 ы 4 \$ 4 4 C-11269E-01

Punched Output

FIGURE 36. JET FLOW FIELD PROGRAM PUNCHED OUTPUT FOR SAMPLE PROBLEM (Fuselage)

118.000000 28.343547 0.113500 U.10006E U1-0.27841E 01 0.17304E 03-0.98554E 03-0.23662E 05-0.24416E 06 ٩. 1 0.52264E 06 0.28524F 08-0.12652E 10-0.27246F 11 0.33738F 12 4 2 - (-36275E-02-0.13715E-02-0.25885E-02-0.12652E-02 0.53032E-03 0.26146E-02 U 1 J.4#16/E-02 0.70119E-02 C.40068C-02 C.10838E-01 6.12125E-01 6.12988E-01 U 5 2 0.13557E-01 0.13934E-01 0.14161E-01 0.14285E-01 0.14344E-01 0.14376E-01 U 5 4 0-143858-01 4 4 0.18667E-02 0.34320E-02 0.45124E-02 0.50735E-02 0.51665E-02 V 5 1 0.0 0.4865/0-02 0.42722E-02 0.35423E-02 0.28371E-02 0.2234CE-02 0.17250E-02 V 5 2 J-12871E-02 0-42349F-03 0-64212E-03 C-42908E-03 0-26071E-03 0-12162E-03 V 5 3 -0.005698-08 5 4 0.15500E-01 0.15318E-01 0.14773E-01 0.33859E-01 0.32577E-01 0.30963E-01 # 5 1 U.29061E-01 0.26961E-01 U.2436/E-01 U.21770E-01 U.19364E-01 0.1732HE-01 W 5 2 0.15607E-01 0.14135E-01 0.12934E-01 0.12043F-01 0.11932E-01 0.11060E-01 W 5 3 ы 5 4 0.10431E-01 6 143.500000 30-764297 0.071000 1 0.1000/F 01-0.35530E 01 0.19777E 03-0.10054E 04-0.47941E 05-0.45438F 06 L -0.48116E 06-0.38244E 08-0.37311E 10-0.666089E 11-0.25037E 12 6 2 -0.51658E-02-0.45729E-02-0.27456E-02 0.36324E-73 0.44463E-02 0.88012E-02 U 6 1 U.12881E-01 0.16485E-01 U.19386E-01 G.21302F-01 0.22242E-01 0.225C9E-01 U 2 6 U.22414E-01 0.22159F-01 U.21854E-01 U.21573E-01 0.21356E-01 0.21222E-01 U 6 3 0-211768-01 6 u ٠ 0.54082E-02 0.90235E-02 0.11817E-01 0.12449E-01 0.11833E-01 V 1 3.0 6 U.10319F-01 0.52673E-02 0.61336E-02 0.431655-02 0.29537E-02 0.19802E-02 V 6 2 0.12902E-02 C.H0821E-03 0.4#372E-03 0.27492E-03 0.14384E-03 0.60530E-04 V 6 3 -0.190246-05 4 6 0.6077HE-01 0.59572E-01 0.58074E-01 0.55569E-01 0.52080E-01 0.47857E-01 W 1 6 U-43142E-01 0-37019E-01 0-322653-01 0-267345-01 0-212806-01 0-18237E-01 4 6 2 0.15373E-01 0.13187E-01 0.11550E-01 0.10380E-01 0.96024E-02 0.91580E-07 W ٦ 6 0.901278-02 t, 4 143.500000 11.993285 0.054000 1 0.1000(+ 01-0.346238 01 0.197458 03-0.985245 03-0.727178 05-0.559798 06 1 ł 0.9407CE 05-0.1110AE 07-0.57747E 10-0.79340E 11-0.97574E 12 2 1 -J. 17011E-02-0.52508F-02 0.40610E-03 0.89661E-02 0.1750CE-01 0.25021F-01 U 7 1 0.30747E-01 0.34635E-01 U.36611E-01 0.36678E-01 0.35455E-61 U.33766E-C1 U 7 2 0. J2134E-01 0. 19766E-01 9.29687E-01 0.28879F-01 0.28333E-01 0.280 JCF-01 U 7 L.274350-01 7 4 0.15283E-01 0.25505E-01 0.29494E-01 0.28665E-01 0.24923E-01 V 0.0 7 1 6.1972 JE-01 0.14085E-01 0.90177E-02 0.526115-02 0.28535E-02 0.14155E-07 V 7 2 0.5920/F-03 0.13225F-03-0.48881F-04-0.18236F-03-0.16765E-03-0.985365-04 V 7 3 0.74411E-CH 7 4 0.10149E 00 0.99479E-01 0.44320E-01 C.P7100E-01 0.78788E-01 0.68594E-01 W 7 1 0.58611E-01 0.48239E-01 0.3768/E-01 0.28150E-01 0.20680E-01 U.15376E-01 V 7 2 C+1176CE-01 0.43019E-02 0.76105E-02 0.44535E-02 0.57121E-02 0.53119E-02 w 7 3 C-11683E-02 1 4 145.500000 33.056488 0.040000 Ħ 6-1000/E 01-0-11494E 01 0-18814E 03-0-12441E 04-0-16515E 06-0-664047E C6 8 1 U.175046 07-0.47466 08-0.550828 10-0.48035F 11-0.10264E 13 2 -0.46774F-C1-0.11566E-01 0.43733E-01 0.76264E-01 0.70342E-01 0.93574E-01 U 1 0.70661E-01 0.J3775E-01 J.74253E-01 J.445990E-01 0.55741E-01 U.48502E-01 U 8 2 0.43/44E-01 0.40495E-01 0.38290.-01 0.36416E-01 0.3571"E-01 0.35456E-01 U 8 3 0.353260-01 4 R 0.06061E-01 0.10847E 00 C.75773E-01 0.73742E-01 0.52446E-01 0.3 v 8 1 C. 13674E-C1 0.18480E-01 0.19145E-02 0.214665-02-0.55154E-03-0.166955-07 V ۰ 2 -U-20364E-02-0-20321E-02-0-18132E-02-0-14670F-02-0-16319E-02-0-53451E-03 V 8 3 U-17985E-07 4 R 0.25421E 00 0.72664E 00 0.17605E 00 0.13894F 30 0.16774E 00 0.86314E-01 W A 1 J.65363E-01 0.46682E-01 J.29528E-01 0.16548E-01 0.41983E-02 0.32824E-02 N . 2 0.43977E-03-0.12567C-02-0.23242E-02-0.30174C-02-0.34464E-02-0.36735E-02 . ß 3 4 -0. 1742AE-02 A L

FIGURE 30. (Continued)

221.5:0000 53.976395 C-001000 0.1000 2 01-0.34023E 01 0.178111 03-0.13119E 04-0.13337E 76-0.61653E 06 1 7 2.2475 JE C7-C. 10522E 08-0.50994E 10-0.27394E 11-0.24583E 13 9 2 01893 E 09-C.11113E-01 C.14261C 0C C.17738E C0 0.17182E 00 0.15512F 00 9 1 G.13494E CC 9.11325E CC 0.42290E-01 0.747255-01 0.6143CE-01 0.52540E-01 U 9 2 6.4653[E-cl C.426782-01 C.40251E-01 0.38727E-01 C.57483E-01 C.37544E-C1 U 3 6-514745-1 9 4 -0.31484E 07-0.28674E 60-0.21581E 60-0.15163E 60-0.12109F 10 9 v 1 -----9. * ?204E-01-9. 58280E-51-9. 37028E-61-9. 24011E-01- J. 16584E-01- J. 12511E-01 э ٧ 2 -9•99345E-92-5•d0717E-02-9•647#5E-02-0•4946#E-02-0•34911E-02-9•175825-02 1 a 3 J. 63002E-07 -C./6+11E GC-C.55826E 90-0.33054E 00-0.22026E GR-0.16483E 00-0.13310E 00 w 9 1 -0.110776 00-0.499585-01-0.701706-01-0.543216-01-0.433336-01-0.362416-01 # 9 2 J. 31%63E-C1-G. 29277E-J1-G. 27801E-C1-O. 2699#E-01-J. 26549E-91-G. 26594E-C1 14 9 3 -0.265158-01 2 4 -0.030000 254-2*6000 33.316985 10 6-1070 F C1-0-44290E 91 0-16565E 03-0-80102E 03-0-11475E 06-0-54775E G5 10 1 G-17343E 07-G-11485E 09-U-79960E 10-0-60582E 11-0-20272E 13 10 2 ~?•1319!E-C1-0•11062E-01-C•56679E-G2 0•13507E-07 9•35044E-02 0•14766E-01 U 10 ł L-19665E-01 6-23458E-61 0-26108F-01 6-27473E-01 C-27629E-01 0-27072E-01 U 10 2 J.26284E-01 0.25546F-01 0.24946E-01 7.24599E-01 0.24215E-01 0.24976F-01 U 10 3 C-24334E-01 U 10 4 0.) -0.26718E-01-0.46978E-01-0.581255-01-C.6111CE-01-C.581125-01 V 10 1 +6.51032E-01-0.41761E-01-0.32529E-01-0.24993E-01-0.19544E-01-0.157566-01 ¥ 10 2 -6.13·0/E-61-0.10767E-01-0.05910F-02-0.66440E-02-9.45522F-02-0.23537E-02 V 10 3 0.#1961E-07 V 10 -C-17263E C0-0-17578E 00-J-16893E 00-0-15698E 00-0-14406E 00-0-13078E CC # 10 -C.11767E 00-C.10416F 00-0.90142E-01-C.76846E-01-0.65699E-01-0.573C6E-01 ¥ 10 -0.51505E-01-0.47756E-01-9.45420E-01-0.44020E-01-0.43316E-01-0.43165F-01 W 10 3 -0.43292E-CI W 10 4 316-0-0000 31-059885 -0.050300 11 U.1000UE 01-0.74475E 01 0.12155E 03-0.14940E 03-0.62063E 05-0.18956E 06 1 11 0.40v85E 07-0.48139F 08-0.36282F 10 0.19756F 10 0.46619E 11 11 2 ~0.97733E-02-5.93924E-02-3.%2796E-92-C.*53U2E-07-9.43245E-02-0.19135E-02 U 11 1 0-48[52E-03 C-27504F-02 J-48486E-02 J-66741E-02 J-50734E-02 J-7062CE-02 U 11 2 0.76554E-92 C.79766E-02 C.1C188E-C1 3.10290E-01 0.10333E-01 0.10342E-01 U 11 3 C.10341E-01 U 11 4 6. 3 +0.42478E-02-0.15257E-01-0.20242E-01-0.23027E-01-0.23846E-01 V 11 1 -J.23^56E-01-0.21080E-01-0.1E490E-01-0.15916E-01-0.13749F-01-0.11397E-01 V 11 2 -0.1C446E-C1-0.48937E-02-0.72u65E-07+0.557674-07-0.48191E-02-0.19564E-02 V 11 3 0.68995E-C7 V 11 4 -0.10435E GU-0.1035AE 00-0.101290 00-0.97611E-01-0.92912E-01 ^.#7308E-01 w 11 1 -C. A1484E-01-C. /5491E-01-0.69345E-01-0.63767F-01-0.57763E-01-0.533(1E-01 # 11 2 -0.50016E-01-0.47718E-01-J.46129E-01-J.45073E-01-0.44469E-01-0.44217E-01 w 1: 3 ¥ 11 4 -0.44153E-01 343.000000 29-515289 -0.063500 17 0.10000E 01-0.9404E 01 0.89946E 02 0.11392E 03-0.41363E 05-0.13665E 06 12 1 0.29437E 07-0.18782E 08-0.18358E 10 0.19634E 11 0.45817E 12 12 2 -0.87337E-02-0.848532-02-0.77818E-02-0.67046E-02-0.53241E-02-0.37312E-0? U 12 1 -0.20634E-02-0.43540F-03 0.11069E-02 0.25149E-02 0.36914E-02 0.45658E-02 U 12 2 0.51596E-02 0.55513E-02 0.58110E-02 0.59755E-02 0.60666E-02 0.61055E-02 U 12 3 4 0.61157E-02 U 12 0.0 -0.53084E-02-0.10011E-01-0.13592E-01-0.15802E-01-0.16736E-01 ¥ 12 1 -0.16648E-01-0.15770E-01-0.14371E-01-0.12825E-01-0.11431E-01-0.10218E-01 V 12 2 -0.90288E-02-0.77409E-02-0.63468E-02-0.48793E-02-0.33354E-02-0.17006E-02 V 12 3 0.56991E-07 V 12 -0.84367E-01-0.84305E-01-0.82705E-01-0.80231E-01-0.77008E-01-0.73190E-01 W 12 1 -0.69038E-01-0.64776E-01-0.60475E-01-0.56227E-01-0.52341E-01-0.49162E-01 W 12 2 -0.46796E-01-0.45079E-01-0.43847E-01-0.43007E-01-0.42509E-01-0.42273E-01 W 12 3 -0-42208E-01 ₩ 12 4

Contraction of the second

· Without Street -

10 · · · ·

FIGURE 36. (Continued)

374-00000 27.511200 -0.074000 13 0-10000E 01-0-11876E 02 0-47583E 02 0,27331E 03-0-24758E 05-0-13019E 66 14 1 0-15000E 07 0.57690E 07-0.93720E 09 0.13366E 10 0.23796E 12 2 13 -0.74791E-02-0.73363E-02-0.69224E-02-0.62661E-02-0.53993E-02-0.43770E-02 U 13 1 -0.32797E-02-0.21715E-02-0.10668E-02-0.75036E-04 0.78717E-03 0.14511E-02 U 13 2 0-19323E-02 0-22798E-02 0-25302E-02 0-26988E-02 0-27994E-02 G-285C8E-02 U 13 3 0-28666E-02 U 13 4 -0.35475E-02-0.67314E-02-0.92490E-02-0.10953E-01-0.11873E-01 V 13 0-0 1 +0.1211*#-01~0.11806E-01-0.11111E-01-0.10271E-01-0.9445iE-02-0.86155E-02 V 13 2 -0.76843E-72-1.66130E-02-0.54357E-02-0.41850E-02-0.28538E-02-0.14478E-02 V 13 3 0-49305E-07 13 4 0.68847E-01-0.68493E-01-0.57466E-01-0.65874E-01-0.63665E-01-0.61077E-01 W 13 1 -0.58241E-01-0.55294E-01-0.52301E-01-0.49376E-01-0.46748E-01-0.44616E-01 W 13 2 -0.42997E-01-0.41778E+01-0.40867E-01-0.40235E-01-0.39850E-01-0.39649E-01 W 13 3 4 -0- 39587E-01 M 13 411-000000 14 23.677185 -0.135000 0-10000E 01-0-14639E 02 0-25525E 02 0-13394E 03-0-14122E 05-0-69219E 05 14 1 0.43107E 06 0.37599E 07-C.24462E 09-0.96070E 38 0.31622E 11 14 2 -0.61602E-02-0.60934E-02-0.58935E-02-0.55605E-02-0.50993E-02-0.45301E-02 U 14 1 -0.38866E-02-0.31999E-02-0.24978E-02-0.18218E-02-0.12260E-02-0.74554E-03 U 14 2 -0.37828E-03-0.10029E-03 0.10727E-03 0.25195E-03 0.34119E-03 0.38726E-03 U 14 3 0-40127E-03 11 14 4 -0.22508E-02-0.42863E-02-0.59365E-02-0.71171E-02-0.783C1E-02 V 0-0 14 1 -0.81212E-02-0.80595E-02-0.77556E-02-0.73417E-02-0.68921E-02-0.63861E-02 V 14 2 -0.57664E-02-0.50152E-02-0.41590E-02-0.32221E-02-0.22084E-02-0 11250E-02 V 14 3 0-41558E-07 V 14 4 -0.55335E-01-0.55154E-01-0.54611E-01-0.53713E-01-0.52474E-01-G.50944E-01 W 14 1 -0.49202E-01-0.47322E-01-0.45364E-01-0.43434E-01-0.41685E-01-0.40238E-01 N 14 2 -C.39109E-01-0.38241E-01-0.37585E-01-0.37124E-01-0.36939E-01-0.36693E-01 W 14 3 -0-366498-01 ы 14 4 450.000000 17.579895 -0-185000 15 0-10000E 01-0-17655E 02 0-24497E 02 0-80204E 02-0-30498E 04-0-15568E 05 15 1 0.79269E 05 0.42978E 06-0.20739E 08-0.54266E 08 0.22970E 10 15 2 -0.50665E-02-0.50323E-02-0.49296E-02-0.47563E-02-0.45123E-02-0.42061E-02 U 15 1 -0-38549E-02-0-34739E-02-0-30757E-02-0-26824E-02-0-23256E-02-0-20268E-02 U 15 2 -0-17850E-02-0-15886E-02-0-14319E-02-0-13150E-02-0-12358E-02-0-11895E-02 U 15 3 ~0_11740E-02 U 15 6, 0.0 +0.11399E-02-0.21879E-02-0.30684E-02-0.37438E-02-0.42133E-02 V 15 ۱ -0.44870E-02-0.45798E-02-0.45331E-02-0.44080E-02-0.42341E-02-0.39872E-02 V 15 2 -0-36328E-02-0-31724E-02-0-26342E-02-0-20373E-02-0.13888E-02-0-70277E-03 V 15 3 0-2403CE-07 15 4 -0.45345E-01-0.45247E-01-0.44951E-01-0.44455E-01-0.4288E-01-0.42884E-01 w 15 1 -0.41880E-01-0.40786E-01-0.39635E-01-0.38486E-01-0.37432E-01-0.36540E-01 w 15 2 -0.35814E-01-0.35221E-01-0.34746E-01-0.34391E-01-0.34150E-01-0.34009E-01 W 15 3 -0-33962E-01 15 4 497.000000 8-212999 -0.206000 16 0.10000E 01-0.21252E 02 0.13116E 02 0.80401E 01-0.11905E 03-0.32960E 03 16 1 0-76206E 03 0-16588E 04-0-34593E 05 0-90360E 03 0-11027E 07 16 2 -0.38669E-02-0.38559E-02-0.38229E-02-0.37675E-02-0.36882E-02-0.35858E-02 U 16 1 -0.34644E-02-0.33268E-0?-0.31835E-02-0.30356E-02-0.28954E-02-0.27713E-02 U 16 2 -0.26646E-02-0.25732E-02-0.24969E-02-0.24371E-02-0.23945E-02/0.23687E-02 U 16 3 -0-23600E-02 U 16 4 0.0 -0.32777E-03-0.63462E-03-0.90060E-03-0.11144E-02-0.12762E-02 V 16 1 -0.13892E-02-0.14552E-02-0.14815E-02-0.14813E-02-0.14592E-02-0.14038E-02 V 16 2 -0.13014E-02-0.11519E-02-0.96575E-03-0.75149E-03-0.51400E-03-0.26051E-03 V 16 3 0-91033E-08 4 V 16 -0.36283E-01-0.36249E-01-0.36148E-01-0.35979E-01-0.35736E-01-0.35424E-01 w 16 ۱ -0.35053E-01-0.34638E-01-0.34193E-01-0.33738F-01-0.33306E-01-0.32923E-01 W 16 2 -0.32593E-01-0.32310E-01-0.32074E-01-0.31889E+01-0.31757E-01-0.31677E-01 W 16 3 -0.316502-01 W. 16 4

FIGURE 36. (Concluded)

4. APPLICATION OF TRANSFORMATION METHOD TO FUSELAGE

This section bears close resemblance to the discussion in Section II.4 of "Application of Transformation Method to Wing." A finite wing is also a three-dimensional body but it has a distinctive property of generating lift in a uniform stream. Thus, by ignoring a part of the computer program which is concerned with circulation, the power effects on a fuselzge are calculated in a manner similar to that for a wing.

a. Inputs to Transformation Method for Sample Problem

In the Developed

structure production and a sumplicate sum of a total structure and

ALL DESCRIPTION OF THE PARTY OF

All the input data for this sample problem are shown in Figure 37. The punched outputs from the jet flow field program again make up the major portion of the input. Two cards must also precede this basic input block to specify various flow indices, and none, two or four cards may follow this block, depending on the options.

Card 1 and Card 2 denote the same number of flow indices as those on Cards 1 and 2 in the previous section on application to a wing. The meaning of each input is also the same, except that the numer 1 quantities of the following indices are different. The classification index (IGECM) is now equal to 2 to denote a fuselage, the number of iterations (JSTOP) is 1, the number of stations (NSTA) is 16, the computation index (NSYM) is 0 to indicate the existence of a plane of symmetry, and the number of angular increments from 0 to π (MTHET) is 18.

Cards 3 through 242 contain the punched output data furnished by the jet flow field program, which include the X coordinate, the mapping coefficients, and the induced velocity components for stations 1 through 16. There are 15 cards for every station.

Card 243 specifies the station number immediately preceding the exhausting jet.

Card 244 refers to the X coordinate of the fuselage tail.

Card 245 lists in order the number of jets, the jet exit diameter, X coordinate of the center of gravity, and the reference length for nondimensionalizing computed moments.

Card 246 denotes in order the Y coordinate of the nose, Z coordinate of the nose; X coordinate, Y coordinate and Z coordinate of the tail.

u. Outputs from Transformation Method for Sample Problem

Figure 38 lists direction of the input data on cards 1 through 242.

and a second state of the second s

FIGURE 37. TRANSFORMATION MELHON MECHON MOGRAM INPUT DATA FOR SAMPLE PROBLEM (Fusetage)

Figure 39 establishes the correspondence between the angular increments of the mapping circle and their corresponding geometric locations at every fuselage station. The first column gives the angular increments in degrees.

Figure 40 shows the pressure coefficient distribution at each station after application of the segment method. Since these coefficients are tabulated against angular increments only, cross reference to Figure 39 is needed in order to establish pressure distributions in the physical plane.

de national de la production de

and the standard strengthe strengthe

Figure 41 is also a table for the pressure distribution similar to the one in Figure 40 but after the three-dimensional modification has been introduced.

Figure 42 gives the parameters used in the three-dimensional modification and in the computation of forces and moments, originally read in as input data on Cards 243 through 246. The computed forces (normalized to the thrust) and moments (normalized by the thrust and reference length) on the fuselage after one iteration are also tabulated in the same figure.

Some of the computed results of this sample problem have been compared with the available wind tunnel test data and are shown in Figures 43(a) through 43(d). The power-effect pressure distributions in these figures are representative for fuselages with a lift jet in a uniform flow. The typical feature of this class may be described as follows: The power effect in the fore part of the fuselage is generally very small, as seen in Figure 43(a). As we approach the lift jet, there is a small region in the front where the power effect is positive (Figure 43(b)). The negative power effect then decreases rapidly and its magnitude becomes very large in the immediate neighborhood of the jet but tapers off to a constant level in the distance of one or two jet diameters. This constant level of power effect is in general quite high and prevails over the entire back part of the fuselage (Figures 43(c) and 43(d)). Thus, it contributes a n aior portion of the forces and moments. The origin of this effect is due mostly to the wake formed behind the lift jet. Its prediction lies beyond the scope of the present method. Consequently, the discrepancy between the calculation and the test data in this region is large.

When the sideslip angle is not zero, the jet wake region does not completely enfold the back portion of the fuselage. The comparison between the prediction and the test becomes more favorable as may be seen in Figures 44(a) to 44(c).

Further calculations and wind tunnel test data are compared in Figures 45 and 46. The body referred to in Figure 46 is the one tested at Northrop prior to the present contract (see Figure 23 in Section II. 4).

のいたないであるというというないというないの

OPTIONS SPECIFIED FOR THIS RUN ARE

1. THREE DIMERSIONAL MODIFICATION OF 1 ITERATION

2. POWER EFFECT ONLY

INPUT DATA

NSYM= 0 MTHET= 18 [RECT= 1 BETA= 0.0

NSTA= 16 N= 11 NFOUR= 20 UJ= 0.200 ALPHA= 0.0

IFORCE= 1

	0E 03	8E-03 2E-02 9E-02	23E-03 27E-03 12E-04	17E-02 57E-02 02E-02
	0.69240	0.3246 0.1310 0.1846	U - 3042 0 - 3042 0 - 5451	0.9193 U.8686 O.8360
5000	-0.172200E 03 -0.382240E J1	0.19770E-03 0.11440E-02 0.18155E-02	0.26181E-03 0.32832E-03 0.10731E-03	0.92517E-02 0.87802E-02 0.83802E-02
DERIV= 0.21	-0.487640E 01 0.219690E 06	0.93755E-04 0.97076E-03 0.17521E-U2	0.20799E-03 0.34585E-03 0.15697E-03	0.92982E-02 0.88739E-02 0.84140E-02
	STATION 1 0.714360E 01 0.408890E 05	.TTDN 1 0.1/127E-04 0.79768E-03 0.16860E-02	1710N 1 0.14471E-03 0.35398E-03 0.20212E-03	1110% 1 6.93320E-02 0.89638E-02 0.84616E-02
9597 RADIUS	IENT #A# FDR •780090E 01 •716030E 05	NT *U# AT STA 0.29299E-D4 0.62943E-03 0.15857E-02	NT #V# AT STA 0.74342E-04 0.35038E-03 0.24165E-03	NT #W# AT ST 0.9352E-02 0.90491E-02 0.85234E-02
TATION* 23.69	ECMETRY CDEFFIC 1.100000E 01 0 1.147270E 02 -0	FELOCITY COMPONE 0.44731E-04 - 0.47016E-03 0.18572E-02 0.18572E-02	FELDCTTY COMPONE 0.0 0.33389E-03 0.27544E-03 0.10974E-08	FLDCITY COMPONE 0.935895-02 0.81253E-02 0.85993E-02

FIGURE 38. PARTIAL LIST OF INPUT DATA FOR SAMPLE FUSELAGE

0.254000

95RIV=

15.089800

RADIUS=

41.0000

STATION=

TABLE FOR FUSELAGE GEOMETRY

in a subsequence of the second production of the second contraction of the second
0	(1)2	-0.27860E J2	-0.27600E 02	-0.26776E 02	-0.25276E 02	-0.22984E 02	-0.19876E 02	-0.15982E 02	-0.11298E 02	-0.58934E 01	-0.11547E 00	0.55073E 01	0.10667E 02	0.15421E 02	0.19855E 02	0.238046 02	0.26997E 02	0.29321E 02	0.30762E 02	0.31260E 02	0.30762E 02	0.29321E 02	0.26997E 02	0.23804E 02	0.19855E 02	0.15421E 02	0.10667E 02	0.55073E 01	-0.11547E 00	-0.58934E 01	-0.11298E 02	-0.15982E 02	-0.19876E 02	-0.22984E 02	-0.25276E 02	-0.26776E 02	-0.27600E 02
X= 94.	V(1)	•••	0.42943E 01	0.82859E 01	0.11741E 02 .	0.14553E 02	0.16697E 02	0.16143E 02 .	0.18917E 02	0.19220E 02	0.19302E 02	0.19134E 02	0.18401E 02	0.16901E 02	0.14784E 02	0.12314E 02	0.956,97E 01	0.65371E 01	0.33016E 01	0.11900E-04	-0.33016E 01	-0.65371E 01	-0.95697E 01	-0.12314E 02	-0.14784F 02	-0.16901E 02	-0.1C401E 02	-0.19134E 02	-0.19302E 02	-0.19220E 02	-0.18917E 02 ·	-0.18143E 02	-0.16697E 02 ·	-0.14553E 02	-0.11741E 02	-0.82859E 01 .	-0.429436 01
00.	2(1)	-0.26239E 02	-0.25973E 02	-0.25152E 02	-0.23725E 02	-0.21645E 02	-0.18923E 02	-0.15592E J2	-0.11657E 02	-0.717136 01	-0.23861E 01	0.23109E 01	0.66608E 01	0.10654E 02	0.143385 02	0.17619E 02	0.20317E 02	0.22317E 02	0.23562E 02	0.239895 02	0.23562E 02	0.22317E 02	0.20317E 02	0.17619E 02	C.14338E 02	0.1454E 02	0.66608E 01	0.23109E 01	-0.23861E UI	-0.71713E 01	-0.11657E 02	-0.15592E 02	-0.189236 02	-0.21645E 02	-0.23725E 02	-0.25152E 02	-0.25973E 02
X= 73.	(I)A	0.0	0.36290E 01	0.70475E 01	0.10086E 02	0.1264AE 02	0.14677E 02	0.16119E 02	0.16968E 02	0.17354E 02	0.17454E 02	0.17266E 02	0.16589E 02	0.15269E 02	0.13364E 02	0.11124E 02	0.85964E 01	0.5845/ 01	0.29489E 01	0-10631E-04	-0.29489E 01	-0.58456E 01	-0.85964E 01	-0.11124E 02	-0.13384E 02	-0.15269E 02	-0.16589E 02	-0.17266E 02	-0.174546 02	-0.17354E 02	-0.16968E 02	-0.16119E 02	-0.14677E 02	-0.12648E 02	-0.10086E 02	-0.70475E 01	-0.36290E 01
00	2111	-0.22221E 02	-0.21992E 02	-0.21318E 02	-0.20208E 02	-0.18666E 02	-0.16725E 02	-0.14448E 02	-0.118636 02	-0.89704E 01	-0.58727E 01	-0.27953E 01	0.71674E-01	0.26857E 01	0.50562E 01	0.711956 01	0.87795E 01	0.999596 01	0.10757E 02	0.11021E 02	0.10757E 02	0.99959E 01	0.877956 01	0.71195E 01	0.50562E 01	C.26857E 01	0.71674E-0?	-0.27953E 01	-0.58727E C1	-0.89704E 01	-0.11863E 02	-0.14448E 02	-0.16725E 32	-0.18666E 02	-0.20208E 02	-0.21316E 02	-0.21992E 02
X= 41.	V(1)	0.0	0.24615E 01	0.48337E 01	0. 70168E 01	0.89361E 01	0.10549E 02	0.11794E 02	0.12609E 07	0.13018E 02	0.13131E 02	0.12993E 02	0.12510E 02	0.11587E 02	0.10256E 02	0.86160E 01	0.67169F 01	0.459146 01	0.23211E 01	0. 83717E-05	-0.23211E 01	-0.45914E 01	-0.67169E 01	-0.8616JE 01	-0.10256E 02	-0.11587E 02	-0.12510F 02	-0.12993E 02	-0.13131E 02	-0.13018E 02	-0.12509E 02	-0.11794E 02	-0.105496 02	-0.89361E 01	-0.70168€ 01	-0.48337E 01	-0.24615E 01
. 70	(1)2	-0.18601E 02	-0.10452E J2	-0.180035 02	-0.17252E 02	-0.16217E 02	-0.14928E 02	-0.13417E 02	-0.11720E 02	-0.93782E 01	-0.79298E 01	-0.59251E 01	-0.39520E 01	-0.21296E 01	-0.55655E 00	0.72769E 00	0.17239E 01	0.24354E 01	0.28600E 01	0.30003E 01	0.28600E 01	0.243.46 01	0.17239E 01	0.72769 00	-0.55655E 00	-0.21296E 01	-0.39520E 01	-0.59251E 01	-0.79298E 01	-0.98782E 01	-0.11720E 02	-0.13417E 02	-0.14928E 02	-0.16217E 02	-0.17252E 02	-0.18003E 02	-0.18452E 02
X* 23.	(I)A	0.0	0.17307E 01	0.33915E 01	0.4929LE 01	0.63004E 01	0.74621E 01	0.83752E 01	0.90129E 01	0.93588E 01	0.94143E 01	0.92113E 01	0.87972E 01	0.81901E 01	0.73626E 01	0.62817E 01	0.49539E 01	0.34241E 01	0.17507E 01	0.63475E-05	-0.17507E 01	-0.34241E 01	-0.49539F 01	-0.62817E 01	-0.73626E 01	-0.81901E 01	-0.87912E 01	-0.92113E 01	-0.94143E 01	-0.93568E 01	-0.901295 01	-0.83752E 01	-0.74621E 01	-0.63004E 91	-0.49291E 01	-0.33915E 01	-0.17307E 01
	THETA	0.5	10.00	20.00	30.00	40-00	50.00	60.00	70.00	80.00	90.00	100.00	110.00	120.00	130.00	140.00	150.00	160-00	170.00	160-00	199.00	200-00	210.00	220.00	230.00	240.00	250-00	260.00	270-00	280-00	290.00	300.06	310.00	320.00	330.00	340.00	350.00

FIGURE 39. CORRESPONDENCE BETWEEN ANGULAR INCREMENTS OF MAPPING CIRCLES AND CARTESIAN COORDINATES OF FUSELAGE SECTIONS

TABLE FOR FUSELAGE GEOMETRY

X=185.50 211) 30 163.

 0.013351

 0.012119

 0.12119

 0.12119

 0.12119

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.23351

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.233551

 0.23551

 0.23551

 0.23551

 0.23551

 0.23551

× 200 2 1 1 2 1 1 2 1 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 0 - 302506 -0 - 2 2 2 2 2 2 2 0 - 1 2 7 2 2 6 2 4 9 6 0 - 2 2 2 2 4 5 9 0 0 - 2 2 2 2 7 9 6 0 - 3 2 6 2 2 9 7 9 6 0 - 3 2 6 2 2 9 7 9 6 0 - 3 2 6 2 2 9 7 9 6 0 - 3 2 6 2 2 9 7 9 6 0 - 3 2 6 2 2 9 7 9 6 0 - 3 2 6 2 2 9 7 9 6 0 - 3 2 6 2 2 9 7 9 6 0 - 1 1 4 7 2 6 -0 - 1 1 4 7 2 6 -0 - 1 1 4 7 2 6 -0 - 1 1 4 7 2 6 -0 - 1 1 4 7 2 6 -0 - 2 2 6 0 4 9 1 9 1 6 -0 - 2 6 0 4 9 1 9 1 6 -0 - 2 6 0 4 9 1 9 1 6 -0 - 2 6 0 4 1 9 1 6 X=143.50 8 X=118. THETA 10.0 20.00 20.00 20.00 20.00 20.00 110.00 1100.00 1100.00 1100.00 1100.00 1100.00 1100.00 1

FIGURE 39. (Continued)

		20	20	õ	20	20	20	õ	0	5	5	20	20	õ	8	20	20	20	20	20	õ	õ	20	20	20	2	80	20	õ	5	õ	5	20	20	8	2	Ď
			2	H	5	ž	96	÷	ä	25	2	ŝ	¥	ĕ	ł	ä	76	26	ä	U O O	Ĩ	28	7	8			4	ŝ	2	N.	-	š	Ű	2			36
	:	156	129	10	268	10	293	Į.	136	972	5	632	230	130	5	181	25	10	5	5	510	5	2	104	-	230	230	632	5	272		404	293	949	278		
0	~	0.2	2.0	0.2		3		8.0	5	2.0	5	3	2.0	2.0	5	5	5	:	•	•	*	6		3		~ ₀	2.0	~		~ •	0					2	N •0
Õ,		Î	ł	Ĩ	*		•	•	•				_	_			_	_					_	_		_	_	_	_		1	;	1	•	1	•	1
46-			5	6	8	8	8	8	8	8	õ	8	8	8	8	8	8	8	ទ	5	5	8	8	8	õ	C	~	2	2	8	õ	8	õ	õ	8	8	0
×	_		335	936	298		23E	185	14	54	01	5.85	146	166	1976	286	85	116	926	105	92E	716	656	285	976			586	01	540	9 4 8	105	235		295		
	117	0	545	õ	Ξ	102	Š	22	239	24	240	240	ž	23	2	ē	ž	2	525	5	5	201	1	101	213	23	12	246	Š	~	23	22	202	0			
		•	ċ	•	ċ	•	ċ	ċ	ċ	.	ċ	ċ	ċ	ċ	ċ	Ċ	ċ	ċ	ċ	ċ	i	ġ	ç	ç	ខុ	ŗ	• •	ġ	i	o i	ę	i	ġ	÷	• •	• •	ŗ
		2	22	2	2	2	2	ž	~	Ξ	Ξ	2	~	N	22	20	22	2	2	22	22	2	25	2	N	~	2	2	=	2	~	N	N	2	~	~ :	~
		ų	2	ě	ų	ž	ž	ñ	ž	Ĭ	ų	<u>ب</u>	ž	<u>ب</u>	<u>س</u>	š	ž	ų	ž	Ľ	ž	ų	ž	ň	ш.	ب س	<u>س</u>	<u> </u>	س	Ĭ	ž	ž	š	ž	<u>س</u>	س	<u>س</u>
	2	1076	931	321	162	5.45	5 8 5	238	199	1131	1334	177	379	589	351	926	166	54	14	111	142	5 10	1660	926	351	5	37	17		E	199	23	82	2 4 2	2	326	66
_	~	2	- 24	~	2	ž	Ĩ	-	.0.	ě	2		2.0	ž		ņ	5	ě.	Ĭ	Ĭ	ž	ř.,	ň		-	- 20	12,0			ě.	0	-		~~~	~	~	Ň
00-9		Ÿ	Ÿ	Ÿ	Ÿ	Ÿ	Ŷ	Ŷ	Ÿ	Č	Č	Č	0	Č	Ö	Ö	0	Č	Č	0	Č	Č	Ö	Ű		0	Ű		0	Ű	ř	Ŷ	ĭ	ĭ	ĭ	Ÿ.	ĭ
-31			5	02	02	02	20	20	02	20	02	02	02	8	02	0	02	02	5	•	5	õ	2 0	02	00	0	02	8	20	02	00	02	20	20	00	20	10
×	_		33F	67E	32E	50E	785	ž	59E	95E	155	¥04	6 2 E	046	165	87E	96E	81E	135	07E	136	816	965	87E	16	04 E	62E	904 904	156	956	59E	04 E	78E	505	325	67E	336
	YII	0	298	113	158	193	219	237	245	247	248	248	24 G	238	219	189	151	106	554	202	554	106	121	189	219	238	542	240	248	244	245	237	219	193	158	113	598
	-		0	•	•	•	0	0	0	•	•	•	0	•	•	•	•	•	•	•	ę	ខ្មុំ	è	ပုံ	ò	è	ę	?	ç	ł	?	ę	÷	ę	÷.	;	ò
		~	~	~	~	Ņ	Ņ	~	2	-		N	Ņ	~	~	~	~	2	~	2	N	Ň	N	N	N	N	~	~	-1		~	N	Ņ	~	N	~ (N
		<u>م</u>	o w	o w	о щ	ы М	e w	0 9	ې س	e W	ы М	Ē	о щ	о щ	е С	ص م	ດ ພ	0 10	о ш	o w	0 4	o w	o w	۵ ۵	о ш	٥ ٣	а 5	о 191	0 11	e W	с М	0 4	ں س	5	о щ	ہ ہے اب	ų v
	2	321	506	611	803	65 B	181	1331	976	606	986	385	679	133	080	890	712	552	184	741	481	552	712	66	080	133	87.	385	ି କ କ କ	506	5	160	181	658	603	919	505
	7 (5-29	- 29	. 29	. 28	.26	- 23	.18		- 42		.12	5	. 26		÷.					- 40	• 39	. 37		.31	• 26	•10	- 12	- - -			• 13	- 23	• 26	. 28	2	52.
- 25	1	î	î	î	î	ĩ	Ŷ	ĩ	î	Ŷ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	Ŷ	ę	î	î	Ŷ	ĩ	1	1
=264			ដ	8	20	8	20	20	02	20	02	8	8	6	3	20	02	20	5	\$	5	8	20	20	0	20	20	8	20	20	8	20	ô	20	02	20	10
×	_		335	28E	IOE	326	306	93E	55E	61E	356	52 E	84 E	ų t	07E	₩ 8	50E	52E	1 1 1	- 90 6	9 I E	52E	50E	345	12	11 1 1 1		1 L 2 2	92 U	9 I E	55 E	93E	30E	32E	ΠOE	9 9 1 9	5
	111	0	727	4	181	215	9.08	543	252	251	250	251	ŝ	3	228	2002	161	E	999	218	598	114	161	õ a	0.29		2 50	22	250	52	22	540	2 3 8	512	191	134	121
	-	5	0	0	•	0	0	ð	0	0	0	0	0	0	0	5	0	•	0	0	ę	ò	è	Ģ	ò	ļ	•	ò	Ģ	ò	ļ	ò	Ģ	Ģ	è	ò	•
		~	~	~	~	2	~	~	~		-	~	~	~	~	~	~	~	~	~	~	~	~	~	Ň	~	Ň	N			~	~	N	~	Ň	Ň	~
		0 9	ы П	ы С	о ш	0 4	o w	o w	0 9	ں ۳	0 9	0 	0 w	o w	е ш	0 11	о ш	0 9	o w	ە س	о ш	о ш	o w	о ш	ບ ພ	e u	0 4	о ш	о ш	о ш	о ш	0 w	о ш	0 w	0 w	о ш	0
	6	646	800	016	293	48.8	280	456	416	610	114	312	142	711	876	808	690	555	488	746	488	555	690	808	876	711	142	312	114	610	914	456	280	984	293	910	800
	7	P.	50	.30	.30	.29	• 25	-20	.13	• 59	.27		•19	• 25	.30	₹E.	E.	• 39		.40	9.	• 39	.37	•34	.30	- 25	• 19	.11	• 27	- 59	• 13	•20	•25	.28	.30	• 30	.30
- 50		Ŷ	î	î	î	Ŷ	î	î	Ŷ	Ŷ	0	•	0	0	C	0	0	0	0	0	0	0	0	0	0	o	o	0	0	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	٩	Ŷ	0
221	•		10	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	10	ð	10	20	20	02	20	02	20	20	02	20	02	20	20	02	20	20	6
×	-		94E	136	36E	36	ų Š	36	BO	19E	52€	JOE	ų,	96.	ЭĞ	5E	36	36	96E	-3+0	e e	36	36	156	ЭÖЕ	ш 6	₩	، ب در	SE SE	19E	in S	36	u ye	ä	ω 99	ä E	ų
	Ξ	_	1526	403	906	262	476	562	562	533	516	513	502	14	2.88	1014	632	159	066	220	066	159	632	014	288	244	502	513	516	533	562	562	476	262	906	604	5 26
	~	0.0				0.5	0.5	0.5	0.1	0	0	0		0	0	.0	0.1		0.5	0.2	9.0	0.1	-0-1	0.5	ò	Ģ	0.5	-0-2	0.1	-0-7	0-2	0.1	0.2	•	• •		ò
			~	~	0	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	' c	' ~	<u>'</u>	' ~	' ~	' ~	' ~	<u>'</u>		` c	' ~	' ~	' ~	' ~	` ~	' ^	
	tET.	0.0	ŏ	2.0	0.0	0.0	0.0	0.0	0°.0	2.0	0.0	5.0	ŏ	ŏ.c	2.0	ŏ.0	0.0	0.0	2.0	5.0	0.0	ŏ.0	5.0	0.0	ŏ.0	ŏ.0	2.0	ŏ.0	š	ŏ.c	2.0	3.00	2.00	ŏ	ŏ.0	ŏ.	ŏ
	Ē	5	ä	ž	ň	¥	ř	ş	ž	ĕ	ŏ	101	1	120	ĩ	140	15	160	17	180	19	200	210	220	230	240	250	250	27	280	290	300	310	320	330	340	350

TABLE FOR FUSELAGE GEOMETRY

and international Antonio and the sec

Statistics and a second second second

FIGURE 39. (Continued)

the second second second second second

ς,

GEOMETRY	
FUSELAGE	
FOR	
TABLE	

and the second second real providence which a second second second

and Cold School Stream and the School Stream

and the address

ALC: NO

A Difference of Contract

こうちょうないできたいできたいできたいがないがなくなった。 ちょうり したただいしたがく うちいちけい ちかわたい ちょうちょう

and the states with the substance in the second second

		č o	20	20	20	20	20	20	20	20	20	20	20	20	20	20	22	20	20	20	20	20	20	20	20	20	20	20	20	20	~	20	20	20	20	20	8
	~	500	30	369	726	398	316	326	36 6	141		ij	236	8 76	736	136	316	876	141		765	176	316	135	22	14	236	3	- -	-		536		Ĭ	726	- 26	202
	2.11	.115	.117	.120	.126	.135	. 1 4 7	. 161	. 177	. 195	.214	. 232		. 263	. 276	. 267	972 .	. 302	. 306	. 308	. 306	. 302	. 296	. 287	• 2 2 •		• • • •	. 232	.214	.195	. 177	. 161	. 1 4 7	.139	.126	.120	.117
7.00		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0
64 - X			10 3	е ої	10 2	Е 01	10 11	E 01	10 3	E 01	E 01	E 01	E 01	е о1	e 01	و م	5 2	5 8	а С С	50-1	10 1	5 2 2	د 0	2 2 2	е 01 91	ы С	E 01	07 11	5 10 11	õ	Е 0] 3	6 0 1	5 2	E 01	5	E 01	10 11
	(1)		2482	1272	4719		4840	2665	5179	2196	3605	4036	2 8 2 7	9252	1526	5026	5528		2460	5074	2440	9144	9255	5202	1234)	9252	2827(0301	3 605	21961	9775	2666	4840		119	1271	2442
	>	0.0	0.1	0.2	0.9	۰. ٩	0	0.5	0.3	0.6	0.0	÷.0	0.6	6 0	•••	•••	0.0	N •0		0	-0-1	~•0-	-0-	4	-0-3	й 0	-0.6	ē.0-	9.0-	0-	ě 0-	÷.	- 0 -	0	è.	Ň.0-	-0-1
		3	00	10	5	10	،	01	20	20	20	20	20	20	~ 0	20	20	20	20	20	20	20	20	N	م	NO	20	N	N O	80	20		6	5	อี	5	8
	~	715	886	1384	02E	05E	77E	348	27E	969	90E	95E	1 7 E	236	716	4 7 E	8 0E	436	456	83E	1) 19 10	4 36	306	4 7 E	71E	236	17E	9 3 6	986	596	2 2 E		375		326		386
	7 (]	. 883	.685	103	.103	. 269	164.	. 764	.108	.143	100	216	- 249	.277.	.301	322	338	330	357	.359	357	.350	.338	.322	301	.277.	.249	216	.180	.143	108.	104	161	. 269	ē .	101	6351
00.00	•	Ŷ	î	Ŷ	0	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0	Ó	0	Ó	Ó	ó	Ó	ō	Ó	o	ò	ō	o	Ŷ	Ŷ
			10	10 3	E 01	8 0 11	02	E 02	6	0 3	E 02	E 02	50	03	02	05	01	0 10 11	10	*0-	01	5 	1 0	50 3	02	8	05	80 	č	2 0	0 3	02	03	05	10	1 0	1 0
	1		17780	94451	53651	06761	2408	3733(16411	1991	55241	56221	53251	4541	2998	10581	7140	11830	15970	1110	15930	11030	11401	0581	866	454	13250	6226	524	1991	1491	17336	18041	16761	3656	8450	8778
	>	0.0	0.30	0.5	0.8	0.10	0.1		0.1	0.1	0.1	0.1		0.1	0.1	0.1	0.8	0.6	0.30	0.1	-0.3(-0-60	8.0-	-0-11	-0.13	-0-1	-0-1	-0-1	0.1	0.1	-0-14	-0.1	-0-12	-0-10		0.5	-0-30
		10	ĩ	01	10	10	01	10	10	22	02	20	02	20	24	22	22	02	22	22	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 22	20	22	20		22	' ~	22	5	1		- 7		ร	
	_	• 1 E	256	77E (906	55	99 90	396	5 8 E		e de c	37E (116	Ш. Ф.	508	-9E	96	99E -	• 8E	94 C	86		<u>ه</u>	96E (w W O		115	176	ы В С	96	9E	19E	99	58	w W	7E (25
	112	016	890	928	700	504	.229	119	536	100	151.	1991	243	280	312	338	358(372	380	.383(380	372	3586	335	3123	280	243	1 998	151	1000	536	1196	229	504	700	82¢	9905
1.00		°,	Ŷ	Ŷ	Ŷ	5	Ŷ	ō	ō	ċ	ō	ō	ō	ō	ō	ō	ō	ö	ō	ō	ō	ō	ō	ō	ō	o	ċ	ċ	ò	ō	ċ	ō	Ŷ	Ģ	ę	ę	Ŷ
147)			1 0	0	20	20	2 0	6	20 	05	20	05	20	03	02	02	6	6	10	401	10	6	05	05	8	8	20	8	02	02	02	8	20	8	03	0	5
	2		9586	7655	3026	52685	15836	12 768	3836	0346	4058	5206	1626	10696	11665	1552E	336E	8625	1116	0176	1115	862E	336E	552F	1665	1069E	1625	520E	405E	0346	3836	12 76E	'5 83 E	2685	302E	765E	9586
	ž	0.0	0.44	0.86	0.12	0.1	0.1	0.10	0.20	0.21	0.21	0.21	0.21	0.20	0.15	0.13	0.12	0.85	0.44	0.16	0.44	0.85	0.12	0.15	0.18	0.20	0.21	0.21	0.21	0.21	0.20	0.19	0.17	0.15	0.12	0.85	0.44
		20	2	22	2	2	1	2	1	1	2	N	2	N	Ň	2	N	2	2	2	- 2	- 2	- 2	- ~	- 2	- N	' ∾	' ∾	י א		-	י ב	-	' N	י 2	2	N
		90,	9E C	110	26.0	9 4	90	76.0	ų	JE C	9 4 4 0	90	40	а Н	L L	16 0	6 6 0	96.0	ų ų	95	9 14 14	96	96	16	ы П	36.0	0 4	96	Å 0	i E	0 4	76 0	0E 0	0 4	25 0	ле С	8E 0
	(1)2	1637	1609	1525	1761	1131	8000	3859	1014	6550	1247	1824	2336	2772	3143	3452	3690	3854	3950	3981	3950	3854	3690	3452	3143	2772	2336	1824	1247	6550	1014	3859	8000	1131	1371	1525	1609
00)	• •	•	•	• • •	ę	Ŷ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ċ	•	°	•	ŗ	°	ņ	ę
= 374			1 0	10	02	20	20	20	20	20	02	20	20	20	20	0	20	10	5	+0-	ទ	10	20	02	20	02	20	02	02	02	02	02	02	02	8	10	5
×	3		530E	9168	9076	293E	3696	965E	269E	9956	392E	5495	201E	3166	818E	821E	132E	255E	3906	280E	390E	255E	132E	821E	818E	991E	201E	549E	392E	995E	269E	965E	969E	293E	106	831E	530E
	ž	0.0	0.50	19.0	0.13	0.17	0.19	0,21	0.23	0.23	0.24	42-0	0.24	0.22	0.20	0.17	0.14	86.0	0.50	0.18	7.50	C.98	0.14	0.17	02.0	0.22	0.24	0.24	0.24	0.23	0.23	0.21	0.19	0.17	0.13	16.0	0.50
	<		0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	ī o	آ ە	ĩ o	í o	ī o	í o	ĩ o	í o	آ ە	ĩ	ī 0	í o	í o	ĩ	í o	ĭ o
	THEI	0.0	10.01	20.05	30.0	0-04	50.0	60.0	70.0	90.08	90.0	0.00	10.0	20.0	30.0	0-04	50.0	60.03	70.0	80 ° 0	0.06	00-00	10.01	20-01	30.05	0.04	50.01	0.03	70.01	30-01	90.01	0.00	10.01	20.01	30.06	000	50.00
												-	-		-	~	-	-	-	-1	~	Ň	~	~	~	Ň	~	۴Ĵ	~	Ň	~	ň	m	m	n	ŕ	m

FIGURE 39. (Concluded)

PRESSURF CREFFICIENTS AT FUSELAGE, SEGMENT METHOD.

the indext addition of the statest of the statest of the second statest and the second statest addition of the second statest addition o

05 . K = 1 = X	040X- 0.05	0-111110-01	0. 782126-02	10-32841-0-	-0.4/7138-01	-0.449776-01	-0.719918-01	-0-348464-0-	-0.754776-01	-0.71916-01	-0.741086-01	-0.730716-01	-0.493076-01	-0.457486-01	10-160869.0.	-0-914404-0-	-0.546488-01	10-140545-0-	10-846846-0-	-0.544536-01	-0.568578-01	10-34046-01	-0-34644	-0-914404-0-	10-350824-01	-0-949459-0-	10-340444-0-		-0.7610A#-01	-0.71.918-01	10-34646.01	-0-348464-0-	10-110614 07	10-254 649.01	-0.477101-01	10-1444780-	0. 782068-02
X=143-50	040X+ 0.08	0-103056-01	0. 8404 76-02	0.171156-02	-0.460595-02	-0.169436-01	-0.20114E-0;	-0.316316-01	-0.345106-01	-0.410745-01		-0-424311-01	-0"495391-01	-0.458656-01	-0.451796-01	-0.4442E-01	-0.437546-01	-0.432306-01	-0.42912E-01	-0.424036-01	-0.42912E-01	-0.432306-01	-0.437538-01	-0.44422E-01	10-301 104-0-	-0.45865E-01	-0-442946-01	-0-316-61	10-342645.0-	-0.41074E-01	-0.34510E-01	-0.316346-01	-0-241146-01	-0-164681-01	-0.960526-02	0.171116-02	0.840465-02
X=114.00	DRDX- 0.11	0.724185-02	0.650668-02	0.413555-02	0.136906-03	-0.4303(E-02	-0.84229E-02	-0.121745-01	-0.15778E-01	-0.19420E-01	-0.22691E-01	-0.251736-01	-0.26792E-01	-0.27774E-01	-0.28399E-01	-0.28767E-01	-0-289336-01	-0.26979E-01	-0-28982E-01	10-308682-01	-0.269825-01	-0. 289 74E-01	-0.28935-01	-0.287676-01	-0-30100-0-	-0.277748-01	-0.267926-01	-0.251735-01	-0.226916-01	-0.19420E-01	-0.15778F-01	-0.121746-01	-0.8422AE-02	-0.410336-02	0.136975-03	0.413546-02	0.65068F-02
X= 94.00	DHDX- 0.14	0.50061E-02	0.464306-02	0.15341E-02	0.170136-02	-0.550886-03	-0.285646-02	-0.511676-02	-0.73868E-02	-0.97633E-02	-0.120856-01	-0-14080E-01	-0.15600E-01	-0.16/09E-01	-0.175A3E-01	-0.182676-01	-0.18737E-01	-0.19017E-01	-0.19164E-01	-0.19209E-01	-0.19164E-01	-0.190175-01	-0.187376-01	-0-182675-01	-0.175A3E-01	-0.167096-01	-0.15600E-01	-0.14080E-01	-0.120856-01	-0.976336-02	-0.738675-02	-0.511666-07	-0.245646-02	-0.50A5E-01	0.17013E-02	0.35341F-02	0.46429E-02
X= 73.00	DRDX= 0.18	0.3/7256-02	0.306956-02	0.24582E-02	0.146186-02	0.19644E-03	-0.118796-02	-0.259976-02	-0.402466-02	-0.55214E-02	-0-703696-02	-0.842455-02	-0.95675E-02	-0.10459E-01	-0.11191E-01	-0.11794E-01	-0.12246E-01	-0.125455-01	-0.12713E-01	-0.12766E-01	-0.12713E-01	-0.12545E-01	-0.12246E-01	-0.117946-01	-0.11191E-01	· 0.10459E-01	-0.956756-02	-0.84245E-02	-0.703696-02	-0.55214E-02	-0.40246E-02	-0.259976-02	-0.118795-02	0.19645E-03	0.146188-02	0.745821-02	0. 306951-02
X= 41.00	28DX= 0.25	0.11067E-02	0.10216E-07	0.77425E-03	0.382436-03	-0.122516-03	-0.701196-03	-0-132146-02	-0.194066-02	-0.256796-02	-0-322586-02	-0.38725E-02	-0.44421E-02	-0.49020E-02	-0-528295-02	-0.559796-02	-0.58303E-02	-0.59874E-02	-0.60812E-02	-0.51129F-02	-0.60812E-02	-0.598745-02	-0.583036-02	-0.554796-02	-0.528296-02	-3.490206-02	-0.64421E-02	-0.38725E-02	-0.32258E-02	-0.25679E-02	-0.19406E-02	-0.13214E-02	-0.70119E-03	-0.12251E-03	0.38242E-03	C.17424E-03	0.10216E-02
X= 23.70 Pa= 10.26	XDX= 0.28	0-89460E-04	0.46660E-04	-0-80734E-0-	-0.28591E-03	-0.551986-03	-0.86098E-03	-0.11922E-02	-0.15294E-02	-0.18628E-02	-0.21881E-02	-0.251085-02	-0.282736-02	-0.311666-02	-U.33463E-02	-0.350136-02	-0.36015E-02	-0.36670E-02	-0.37054E-02	-0.37181E-02	-0.37054E-02	-0.36670E-02	-0.36015E-02	-0.35013E-02	-0.33463E-02	-0.311666-02	-0.28273E-02	-0.25108E-02	-0.21881E-02	-0.18628E-02	-0.15294E-02	-0.11922E-02	-0.860995-03	-U.55198E-03	-0.28592E-03	-0.807356-04	0.46657E-04
	THEFA C	0.0	10.00	20.00	00.05	40.00	50.00	60.00	10.00	80.00	90.00	100.00	110.00	120.00	1 30.00	1 40.07	150.00	160.00	10.00	190.00	190.00	200.005	210.00	220.00	230.00	240.00	250.00	260.00	270.00	287.00	290.00	300.00	10.00	320.00	3 10.00	340.00	350.00

FIGURE 40. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE FUSELAGE AFTER APPLICATION OF SEGMENT METHOD

PRESSURE CDEFFICIENTS AT FUSELAGE, SEGMENT METHOD.

114=X 94-64 114=X 114X 114	0.122826-01	0-11000-01	0-244440	20-14E809-0	0.210356-02	0-114467-01	-0-36-56-03	-0.734748-03	-0-755745-03	-0-1265061-0-	べつージィチャチだ・0・	20-325542.0.	50-388565 ·O-	-0.323418-02	10-341422-01-			-0-326428-01					20-351462-01	20-154621-05	:0. 34340F-02	10-34646-05				10-34+41-03		10-114422 "0"	0-210145-02	0. 40411E-07	10 - 14 4 5 4 5 U	0-114801-01
X+374.00 Ra= 27.51 DADX+ -0.07	0.149026-01	0.137745-01	10-366201 0	0.426576-02	-0-141328-07	-0.470418-02	-0.572796-02	-0-35436-0-	-0.534136-02	-0.604248-02	-0.755878-02	-0-404446-03	-0.434146-02	-0.84786-02	-0.750765-02	-0.664005-02	-0.610406-02	-0.945345-02	-0-34142-05	-0.582348-02	-0.610N9E-02	20-454749-05	-0. 790756-02	-0.84746-02	-0.91417E-02	-0.904446-02	-0.7554-0-	-0.609335-02	-0.914101-02	-0-318-05-05	-0.472785-02	-0.470415-02	-0-10101-05	0.426545	10-165201.0	0.137745-01
X + 3 + 3. 00 2 2 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	0.173916-01	0.195196-01	1.963815-02	0-147225 10 1	-0.101956-01	-0.131705-01	-0.134026-01	-0.12295E-01	-0.11499E-01	-0.120306-01	-0-36046-01	-0.154596-01	-0.164376-01	-0.157646-01	-0.145546-01	-0.135065-01	-0.127625-01	-0.123796-01	-0.12264E-01	-0.123799-01	-0.177625-01	-0.135065-01	-0-145546-01	-0.15764E-01	10-316401-01	-0.154575-01	-0.136095-01	-0.120306-01	-0.1149AE-01	10-347661-0-	-0-114028-11	-0.131706-01	-0.101546-01	-0.576276-01	0.961756-02	0.155148-71
X=315.00 PR= 31.07 DRDX= -0.05	0.194516-01	0.165166-01	0.64914E-02	-U. 11062E-01	-0.25630E-01	-0.29711E-01	-0.248346-01	-0.225356-01	-0.207656-01	-0.2129AF-01	-0.22990E-01	-0-247476-01	-0.25914E-)1	-0.253135.01	-0.237436-01	-0.223976-01	-0.214256-01	-0.20932E-01	-0.20789E-01	-0.20432F-01	-0.214252-01	-0.23976-01	-0.237438-01	-0.25313E-01	10-361662-0-	-0-241995-01	-0.22990E-01	-0.212985-01	-0.207646-01	-0.22534E-01	-0.260376-01	-0.29710F-01	-0.256296-01	-0.110625-01	0.64905E-02	10-361691.0
X=264.25 R8= 33.32 DRDX0.03	0.267046-01	0.14284E-01	-0.279286-01	-0.10586E 00	-0.15176E 00	-0.134206 00	-0.96175E-01	-0.750605-01	-0.681516-01	-0.65334E-01	-0.633636-01	-0.612746-01	-0.594086-01	-0.570726-01	-0.538256-01	-0.51314E-01	-0.49613E-01	-0.4886CE-()1	-0.486576-01	-0.48860E-01	-0.49613E-Ul	-0.51314E-31	-0.53824E-01	-0.57072E-01	-0.544096-01	-0.61280E-01	-0.63363E-01	-0.65335E-01	-0.68150E.01	-0.750586-01	-0.96171E-01	-0.13420E 00	-0.151/55 00	-0.10585E UO	-0.279336-01	0.142831-01
x-221.50 R9= 33.98 JRDX= 0.00	0.34268E 00	-0.45446E 00	-0.10174E 01	-0.11534F 01	-0.10004E 01	-0.63370E 00	-0.391956 00	-0.27483E 00	-0.210436 00	-0.16411E 00	-0.13400E 00	-0.11360E 00	-0.10065E 00	-0.927146-01	-0.85089E-01	-0.809466-01	-0.77705E-01	-0.76656E-01	-0.76358E-01	-0.76657E-01	-0.77706E-01	-0.809405-01	-0.850845-0)	-C.92709E-01	-0.10066E 00	0.11361E 00	-0.13400E 00	-0.16412E 00	-0.21042E 00	-0.27482E UO	-0.391956 00	-0.63366E 00	-0.10002E 01	-0.11532E 01	-0.10174E 01	-0.45442E 00
x=185,50 RB= 33,06 JRDX= 0.04	0.91351E-01	-0.13480E-01	-0.18973E 00	-0.31241E 00	-0.31499E 00	-0.25572E 00	-0.21089E 00	-0.18160E 00	-0.15668E 00	-0.13339£ 00	-0.11418E 00	-0.49791E-01	-0.89729E-01	-0.82901E-01	-0.781796-01	-0.75076E-01	-0.73136E-01	-0.72177E-01	-0.71904E-01	-0.72177E-01	-0.73136E-01	-0.75076E-01	-0.781796-01	-0.82901E-01	-0.89729E-01	-0.99791E-01	-0.11418E 00	-0.13340F 00	-0.15668E 00	-0.18159E 00	-0.21084E 00	- 0.25572E 00	-0.31498E 00	-0. 31238E 00	-0.18974E 00	-0.134936-01
THETA [0.0	10.00	20.00	30.00	40.00	50-00	60.00	70.00	80.00	00.06	100.00	110.00	120.00	130.06	140.00	150.00	160.00	00.011	180.00	193.00	200.00	210.00	220.00	230.00	240.00	250.00	260.00	270.00	280.00	290.00	\$00.00	310.00	120.00	330.00	340.00	350.00

FIGURE 40. (Continued)

FIGURE 40. (Concluded)

PRESSURE COEFFICIENTS AT FUSELAGE. SEGMENT METHOD.

ar feld fra agoritation of the board of the particle of the participation of the transmission of the dependence of the second states of the

HERIOLEVISION HOLEVISION HERIO

sandan kuna mukanda inda kuna kuna kunanga kunangan kunangan kunangan salahan kunangan kunangan kunangan kunan

disabilitia (hellika) and the second second second

;

a la la superior de la su

X 88 88 8 8 8																																				
x=49°,00 Rd= 3,21 Jrdx= -0,21	3.771 #4E-02	074562E-02	0.6 0446-02	0.55×82E-02	0.45956E-02	0.40956E-02	0.383206-02	0.371676-02	0.363556-02	0.34009E-02	0.295306-02	0.247936-02	0.23078E-02	0.270926-02	0.317126-02	37167E-02	0.42363E-02	0.45996E-02	0.471426-02	0.45896F-02	0.42363E-02	0.371676-02	0.317126-02	0.27092E-02	0.2387AE-02	0.247925-02	0.29530E-02	0.340096-02	0.363556-02	0.371576-02	0.38320E-02	9.40956E-02	J.45957E-02	0.55681E-02	0.67083E-02	0. 14662E-02
x=450.00 k3= 17.5 prix= -0.18	0-101C7E-01	0.972026-02	0.84870E-02	0-64153E-02	0.43020E-02	0.79291E-02	0.219716-02	0.19841E-02	0.185186-02	0.13705E-02	0.50350F-03	-0.309256-03	-0.32121E-03	0.28413E-03	0-940 446-03	0.15546E-02	0.20156E-02	0.22682F-02	0.23466E-02	0.22642E-02	0.201575-02	0.15547E-02	0 - 94049E-03	0.28424E-03	-0.321136-03	-0-30934E-03	0.50142E-03	0.13704F-02	0.18518E-02	0.19842E-02	0.21971E-02	0.292916-02	0.43021E-02	0.641536-02	0.848696-02	0.97202E-02
THEFA	0.0	10.00	20.00	30.00	40.00	\$0.00	00. 00	70.00	80.00	90.00	100.001	110.00	120.00	130.00	140.00	150.00	160.00	170.00	180.00	190.00	200-002	210.00	220.00	30.00	240.00	250.00	260.00	270.00	280.00	290.00	100.00	110.00	120.03	330.00	340.00	150.00

PRESSURE COFFFICIENTS AT FUSELAGE, THREE DIMENSIONAL MODIFICATION OF 1 ITERATION.

44.49 .40 24

11 A A

and the second second second

Contract Statistics of Allerty

225	018 00	00 00	195 00	00 110	00 100	114 00	346 00	136 00	00 101	141 00	137 00	10-1101	10-162	10-391	748-01	10-34 61	10-342	216-01	10-110	10-312-	10-342	10-346	766-01	10-341	10-162	10-114	136 00	146 00	201 00	435 00	365 00	111 00	00 100	046 00	756 00	101 00
	1	ž	ž	5	i.	Ę		-	1	=						24.	. 190	0	Ē.	105.	.10	3	N.		2		Ξ.	11	1	Ę	1.1.1	1.	2.	Ĩ,	ž	ž
+ 2 C C C C	Ŷ	?	ç	Ŷ	Ŷ	Ŷ	Ŷ	î	î	Ŷ	Ŷ	Ŷ	ŗ	0	01	9	0	1	î	î	Ŷ	Ŷ	9	Ŷ	Ŷ	01	P	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ş	ġ I
	8	3	8	8	8	8	8	8	8	ē-	10-	ĩ	ĩ	õ	ē	0	20-	20-	20-	20-	ĩ	ទុ	ទុ	ş	ē.	ş	ទុ	ş	8	8	8	8	ŝ	8	00	8
04E 910	1214		979		278	044	1979	IC U I	3176	1084	1644	557			104	1955	100		177	62 1 E	117	1446			1405	5571	2007	1061		1031	929	84	270	1655	570	9529
	0.1	.			0.10	<u>.</u>			11.0			0.56	24.0	0.30	0.21	0.14				1.0		1.0	2.21	2.30	¥ • 0		5.1		11.0		***	0.19			:-	0.16
X ČX C X C C	ī	Ŧ	ī	ī	ī	ī	ī	ī	Ŧ	ī	ī	ī	Ī	ī	ī	ĩ	ī	ĩ	ī	ĩ	ĩ	ĩ	ĭ	ĩ	ĩ	ĩ	Ť	ĩ	ĩ	ĭ	ĩ	ĩ	ĭ	ĭ	ĭ	ř
_	10-1				10-1	10-1	10-3	10-1	10-3	10-3	10-3	10-1	10-1	10-3	10-3	10-3	10-1	10-1	10-1	10-1	10-1	10-3	10-1	10-3	10-1	10-1	10-3	10-3	10-1	10-3	10-3	10-1	10-1		10-1	10-3
	9830	203	946		000	0000	1924	6712	3252	8238	2506	• 1 • 9	1724		2005	1005	7339	94 30	1++6	94 20		104	2005	****	1726		2504	8234	1676	6712	1928	0626	1023	110		1032
	0.0	e.	• •	•	••••	0	•••	0- 0-	•••	•	4.0	0.0	.0.3	ě. 0-	0.0	.0	1.0.1	.0.	-0.1		-0-1		0- 0-	2.0.		ě	4		•		÷	ē.0	ě. 0-			ě. •
			_	-		•	•				•		•	•	•	•	•		•		•		•	•		•	•	•	•	•	•	•	•	•	•	•
	10-3	-0-	0				0-3	10-2	10-31	E-01	10-9	10-30	10-2	(0-B)	10-3	10-3	10-1	10-3	10-3	10-3	10-3	10-3	10-3	10-3	10-1	10-3	E-01	10-3	10-3	E-01	E-01	10-3	10-3	-0-1	10-1	10-3
0110	000	9676	3760		9690	4969	7270	7623	7518	4836	5662	4300	2036	1337	916	.710	7821	7263	1049	7263	7821	8710	9910	1337	2834	4300	5682	6636	7510	7623	7270	6344	5480	1514	3740	111
0 % 1 1 1 X 0 X	2.0-	ې و	0 0		~ •	~ • •	~- -	2.0-	~	~ ?	-0-2	-0-2	2.0-	2.0-	-0.1	-0.1	-0-1		-0.1	-0.1	-0.1	-0-1	-0-1	-0.2	-0.2	~ .0-	-0.2	-0.2	2.0-	-0.2	2.0-2	-0-2	-0-2	~	~ 0-	-0.2
N NO											-		-		-	-		-		-		•	-	-	-	-	-	-	•	-	•	-	-	-	-	-
	E-01	E-01	-01 	-01	E-01	E-01	E-01	E-01	E-01	10-3	10-3	10-3	E-01	10-1	10-3	E-01	10-3	E-01	10-3	10-3	E-01	E-01	10-3	E-01	E-01	10-3	10-3	E-01	10-3	E-01	10-3	10-3	E-01	10-1	E-01	E-01
9.00 6.7.1 8.1.0	2178	2298	9692	5226	3921	9494	5321	5906	6359	6614	5499	6500	1424	5165	5561	5223	9294	4782	4720	4782	4959	5228	5561	5165	5241	6500	5445	6199	6359	5906	5321	4646	3921	3225	2656	2298
	-0.1		0	-0-1	-0.1	-0-1	-0-1	-0.1		-0-1	-0-1	-0-1	-0-1	-0-1	-0-1	-0-1	-0-1		- -	- -	- -	0	-0-1			1.0-	-0-	-0-1		.0.1	-0	-0- -	0.1	0.1	-0-1	-0.1
ORD	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	'	•	•	•	•	•	•	ſ	•	•	•	•
	F-02	207 207			-03	E-03	20-3	E-02	-05	50-3	20-3	20-3	20-3	20-3	20-3	20-3	-02	20-3	20-	20-1	-02	20-1	20-1	20-	-05	-05	-05	-02	-02	102	-02	-07	-0	-0	-03	-02
5.09	1001	0216	5242	2420	2251	0119	3214	9046	56791	22581	97251	1244	10206	28291	59791	1005	14180	38121	11291	JA12 (98741	1003	59791	2829(90206	44211	1725	2258	56791	94061	1224	1119	22511	32 42	14241	2120
427 111	0.1		~	0	0.1	-0-2		.0.1	2.0	.e. o	16 ° O	•••	•	0.5	5.0	10.5		0.6	0.61	0-6 0		0.51	, o	0.5		•	0.31	0.32	0.2	0.19	0.1	 	0.1	10.0	0.7	0.10
ORDI					'	'	•	'	'	'	'	'	'	•	'	'	1	•	•	'	1	1	'	1	1	1	1	1	'	•	'	1	1			
	+0-		0		6	6	-05	20-	-02	-02	-02	-02	20-	ò	10-	207	-02	-02	201	20-	20-	20-	-02	-02	-05	20-	20-	-02	-02	-02	20-	601	ę	Ģ	+0-	10-
202-1	1460E	660E	17345	31651	1986	3960	3226	-294E	1628E	8816	1085	12 73 E	1665	463E	0136	0156	670E	3450	3181.	3460.	670E	0155	013E	463E	1365	273E	106E	881E	628E	294E	922E	999F	1986	592E	735E	657E
	0.89	0 • 4 5	0.80	92.0	0.55	0.86	0.11	0.13	0.18	0.21	0.25	0.25	16.0	0.33	0.35	0.36	0.36	16.0	0.37	16.0	0.36	0.36	0.35	0.33	0.31	0.28	0.25	0.21	0.18	0.15	0.11	0.86	0.55	0.23	0.80	0-46
X 88 8 8 80 8 0 8 0			1	•	1	;	Í	ţ	Ĩ	Í	Ĩ	ŧ	Ī	ī	Ī	Ĩ	Ĩ	ĩ	ĩ	Ĩ	Ĩ	Ĩ	Ĩ	ĩ	Ĩ	ĩ	ī	ĩ	Ĩ	ĩ	ĩ	ī	ī	ĩ	ĩ	-
1E T A	0.0	00	00.0	00"	.00	00.0	00.0	00.0	00.0	00.0	00.0	.00	00.0	00.0	.00	00.0	.00	00.0	.00	- 00	.00	00.1	00-0	.00	.00	00.0	.00	.00	• 00	.00	.00	.00	.00	• 00	• 00	.00
÷	0	3	~	ř.	4	5	\$	2	80	5	100	10	120	1 30	-	150	160	1 70	1 80	190	200	210	220	230	240	250	260	275	280	290	300	310	320	330	340	350

FIGURE 41. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE FUSELAGE AFTER ONE ITERATION 「おおおからないないないないないないない」

, .

4 \$ m \$ c. r

.

• • •

· · · · · · · · · ·

:

I TERATION. PRESSURE COEFFICIENTS AT FUSELAGE. THREE DIMENSIONAL MODIFICATION OF 1

Ŷ.

Ľ,

X=411.00 R= 23.00 DADX= -0.13	0-210162-0	10-385587 .0	10-14+44.0	0.226716-01	10-114581.0	0.141016-01	10-1101010-01	10-142461-01	10-196561 *0	10-14041-01	0-140004-01	0-1204061.0	10-344421.0	0-12446-01	0.145386-01	10-104251-01	0.157316-01	10-30001.0	10-100000	0-100011-0	0.197316-01	0-142408-01	10-14238E-01	10-366961.0		10-100001 ·0	10-100041-01	10-392641.0	10-391361-01	10-352567 * 0	10-110657 0	0.141018-01	10-114501-0	0. 126706-01	0-50498-01	0 - 5453#8-01
X=374.00 R= 27.91 DRDX= -0.07	10-145346-01	10-3654 44 00	0-305195-01	10-324406-01	10-386986-01	0.184976-01	0-196526-01	0.161886-01	0.153648-01	0-135446-01	0-111178-01	ゆう ニ い イ し か の じ っ つ	0. 797306-02	0-014418-05	0-826048-05	20- 386(68 .0	20-362616*0	0.930738-02	20-14 SEK 0	20-36406 ·0	20-342414-0	20-194149 0	0. 85 805 8-02	20-12-610-05	20-30.242.0		0-11-0	10-14-9667-0	0-193676-01	0-141944-01	0.168238-01	0-14441-0	10-346822 0	0.304728-01	0-101401-01	0-44744-01
40°00 *44 *** 20°04 **** 40°01 ****	0-441008-01	10-366494.0	0-360078-01	0-234278-01	0.972756-02	0-34446-05	0-540706-02	0.700036-02	0.744796-02	0.712656-02	20-316684.0	50-3424E 2 * 0	20-206205-05	0-143346-02	20: 30998 .0	0.390605-02	0.442148-02	0.497276-02	0-3099500	20-382464°0	0.462166-02	0. 340626-02	0-3000000	0-193346-05	20-355101-0	20-302612.0	70-100000 - 07 · 07	0-712667-02	20-34846 °C	0.700126-02	0.540726-02	0.520516-02	0.972846-02	0.234248-01	0-360666-01	0.444338-01
x=314.00 Rh= 31.07 Drixx= -0.09	0.299496-01	0.217526-01	0.037848-02	-0.15327E-01	-0.33699E-01	-0.357746-01	-0.274736-01	-0.173676-01	-0.111296-01	-0.632536-02	-0.749246-02	-0.799295-02	-0. 706008-0	10-214425-01	-0.245746-02	-0.457626-03	0.499158-03	0.13646[-02	0.155256-02	0.134465-02	0.644276-03	-0.657436-09	-0.265726-02	-0- \$2514E-05	20-39090 - 01	-0-116-05	-0-14454E-05	-0.832536-02	-0.11124E-01	-0.173456-01	-0.274716-01	-0.357765-01	-0.13697E-01	-0.153276-01	0.837696-02	0.21751E-01
X1264.25 78: 33.35 070X= -0.03	-0.21462E 00	-0.22737E 00	-0.27373E 00	-0.366406 00	-0.41460E 00	-0.363248 00	-0.27139E 00	-0.2030LE 00	-0.15231E 90	-0.112445 00	-0.80745E-01	-0.56140E-01	-0.37938E-01	-0.23984E-01	-0.121995-01	-0.35775E-02	0.201826-02	0.471555-02	0.546316-02	0.471555-02	0.201726-02	-0°357680-02	-0.121986-01	-0.23986-01	-0-37339E-01	-0.5614[E-0]	-0.507456-01	-0.11244E 00	-0.15251E 00	-0.203016 00	-0.27336E 00	-0.163236 00	-0.414598 00	-0.36639E UU	-0.27373E 00	-0.22737E 00
X=221.50 Rb= 33.98 DADX= 0.00	0.58034E 00	-0.20838E-01	-0.28404E 00	-0.14220E 00	-0.578806-01	-0.135405 00	-0.13453E 0V	-0.11470E 00	-0.10835E 00	-0.11950E 00	-0.13588E 00	-0.15726E 00	-0.17969E 00	-0.19241E 00	-0-19340E 00	-0.156946 00	-0.18491E 03	-0.18418E 00	-0.13439E 00	-0.104186 00	-0.18491c 00	-0.14095E 00	-0.19341E 00	-0.19242E 00	-0.17967E 90	-0.15726E 00	-0.13589E 00	-0.11957E 00	-0.10336E 00	-0.11470E 00	-0.13451E 00	-0.13546E 00	- 1.578856-01	-C 14214E 00	-0.284026 00	-0.20777E-01
X=185.50 88= 33.05 \$0.0X= 0.04	0.32211E 00	0.255237 00	0.15787E UC	0.345065-01	-0.20845E 00	-0.31674E 00	-0.25073E 00	-0.18377E 00	-0.16150E 00	-0.16656E 00	-0.15525E 00	-0.21002E 00	-0.23408E 00	-0.243986 00	-0.23529E 00	-0.2211AE 00	-0.21021E 00	-0.20474E 00	-0.20336E 00	-0.20474E 00	-0.21021E 00	-0.22118E 00	-J.23529E 00	-0.24398E 00	-0.23408E 00	-0.21002E 00	-0.18526E 00	-0.16685E 00	-0.16150E 00	-0.18376E 00	-0.25072E 00	-0.31674E 00	-0.20844E 00	0.347996-01	0.157875 00	0.25523E 00
THETA	0.0	10.00	20.00	30.00	00-04	50.00	60.00	70.00	00.00	90.00	100-00	110.00	120.00	1 30.00	140.00	150.00	160.00	170.00	186.00	190.00	200-002	210.00	720.00	230.00	24.0.00	< 50.00	260.00	270.00	280-00	2 90.00	100.00	310.00	320.00	330.00	140.00	150.00

FIGURE 41. (Continued)

PRESSURE COEFFICIENTS AT FUSELAGE, THREE DIMENSIONAL MODIFICATION OF 1 ITCRATION.

and the second

And a state of the second state

instruktions a paint have conversing the first and the processing to be structure of the same intersteen white the

Sectore 2

and see

in that start

California C

X X X X X X X X X X X X X X X X X X X						
x=497.00 \$8+ 4.21 080x= -0.21	0,111846.42 0,146629-422 0,6704 6-02	0.556876E-02 0.45956E-02 0.48956E-02 0.33320E-02	0.371675-02 0.363555-02 0.340095-02 0.295305-02 0.247935-02	0.23878E-02 0.27092E-02 0.31712E-02 0.37167E-02 0.37167E-02 0.47343E-02 0.47142E-02	0.458965-02 0.4784955-02 0.371675-02 0.317125-02 0.270925-02 0.238786-02 0.247925-02 0.247926-02	0.34009E-02 C.35555E-02 0.37167E-02 0.40956E-02 0.45956E-02 0.45956E-02 0.45956E-02 0.45956E-02 0.45586E-02 0.45586E-02
x=450.00 P3= 17.55 DRDX= -0.18	0.10107F-01 0.97202E-02 0.84870E-02	0.64153E-02 0.4302/ :-02 0.29291E-02 0.21971E-02	0.199416-02 0.185186-02 0.137056-02 0.503506-03 -0.309256-03	-0.321216-03 0.284)34-03 0.950446-03 0.155466-02 0.201566-02 0.22156826-02	0.22682E-02 0.20157E-02 0.15547E-02 0.15547E-02 0.15547E-03 0.78424E-03 0.29434E-03 0.50342E-03	0.13704F-02 0.19518E-02 0.19842E-02 0.21971E-02 0.29291E-02 0.43071E-72 0.43071E-72 0.43059E-02 0.97202E-02
THETA	0.0 11.00 20.00	00000 20000 20000	70.00 90.00 100.00	120.00 140.00 150.01 150.00 170.00	250.00 250.00 250.00 250.00 250.00 250.00 250.00 250.00 250.00 250.00	270-00 280-00 3100-00 320-00 330-00 350-00

IDIS- 4 NJET- B LENGTH OF FUSELADE- 517.000 PARAMETERS USED IN 3D MODIFICATION OF FUSELAGE COMPUTATION

「「「いっていい」の

and any particular with the second

LANDALS AND LOST PART

PARAMETERS USED IN FORCE AND MOMENT COMPUTATION 1JET OF DIAMETER- 22.500 XCG- 238.200 REFERENCE LENGTH- 33.500 Cookdinates of Mose X= 0.0 Y= 0.0 Z= -10.000 COORDINATES OF TAIL X= 317.000 Y= 0.0 Z= 24.900

FORCES AND MOMENTS

X-FORCE Y-FORCF Z-FORCE C.114E-02 0.552E-06 -0.122E-01 PITCHING MOMENT COMPUTED ABOUT AXIS THRU C.G.= 0.585E-03

VAMING MOMENT COMPUTED ABOUT AXIS THRU C.G.* 0.973E-07

END OF BODY COMPUTATION

FORCES AND MOMENTS ON SAMPLE FUSELAGE BY TRANSFOR MATION METHOD

FIGURE 42.

FIGURE 43a. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE FUSELAGE AT STATIONS X = 73.0 AND X = 118.0 $U_{\infty}/U_{j} = 0.2, \ \alpha = \beta = 0^{0}, \ \text{Lift Jet}$ ŝ

ŗ

and the state of t

and the second

Test Data

ť

FIGURE 44a. POWER-EFFECT FRESSURE COEFFICIENTS ON FUSELAGE

0.21

AT STATIONS X = 73.0 AND X = 118.0

 $U_{\infty}/U_{j} = 0.2, \ \alpha = 0^{0}, \ \beta = 10^{0}, \ \text{Lift Jet}$

△ Test Data Segment Method 3-D Modification

Thought a post of the second
いたちな たいのでもない かられたい ちかんかい たい

and the spirit of the second second

and and

FIGURE 44b. POWER-EFFECT PRESSURE COEFFICIENT ON FUSELAGE AT STATION X = 185.5

 $U_{\infty}/U_{j} = 0.2, \ \alpha = 0^{\circ}, \ \beta = 10^{\circ}, \ \text{Lift Jet}$

SHUMBARA

Seven Person

Constant National

and a second and a second second and a second and a second and a second and a second a second a second a second

なないないで、「ない」というないで、こと、

POWER-EFFECT PRESSURE COEFFICIENTS ON NORTHROP BODY AT STATIONS X = 11.1 AND X = 11.9FIGURE 46b.
c. Method Applicability and Limitations

Section Section

As pointed out in the beginning of this section, the method for predicting power effect on a fuselage is very similar to that of a wing. However, for the sample problems considered in this Volume, there are two differences between fuselage and wing computations. The first one is the formation of a wake behind the exhausting jet which engulfs a large portion of the fuselage and is a fundamental problem. The second difference is computational, and may be briefly described as follows: The induced velocities usually undergo very large changes across the jet, as discussed previously. These are most noticeable in the mainstream direction, which is also the longitudinal direction of a fuselage without sideslip. When we invoke numerical differentiations in the longitudinal direction to determine the strength of the residual sources and sinks, these large variations generally magnify the intensity of the sources and sinks and may cause erratic behavior in the final results. This irregularity usually gets worse when higher iterations are carried cut, even though some smoothing of the input data is applied. For this reason, two iterations were not performed. To compare the case of a wing, we notice that the largest variation in the induced velocities exists in the mainstream direction and does not traverse any of the wing stations. In addition, the computational procedure automatically smooths out some of the large variations in the mainstream direction by integration for the "boundary functions" (see Volume I, Section IV, for details) and the subsequent expansion in a Fourier series.

Since the power effect on a fuselage, disregarding the wake, contributes only a fraction to the total power-effect forces and moments, some uncertainty in prediction may be tolerable. Based on this assumption, the segment method is useful since it includes some of the three-dimensional effects that are already present in the jet flow field and gives fairly reasonable results in most cases.

As in the case for a wing, the present computer program is also capable of treating the power-on and power-off problems in a formal sense. However, the three-dimensional effects due to the nose and the tail of the fuselage are not included.

In the examples calculated so far, no smoothing procedure was used for the input data.

SECTION IV

POWER EFFECTS ON CONTROL SURFACES

To predict the aerodynamics of a V/STOL aircraft it is necessary to be able to predict the effects of power on the horizontal and vertical tail surfaces. This power effect can be attributed primarily to an induced flow angle at the tail location. Having a method of predicting the power induced flow angle it is then possible to estimate the aerodynamic forces and moments induced on the tail surfaces by the exiting jet. This section will describe how to obtain the jet induced flow angles at the location of the tail surfaces.

1. SAMPLE PROBLEM

oralise have subject when when we have been as a property of the state
The sample problem to demonstrate the calculation of the downwash at the tail will be the wind tunnel test model descaibed in Appendix I, with the lift jet operating. The jet parameters and the flight conditions are the same as specified in Section III, except that here three values of U_{∞}/U_{j0} will be considered .1, .2, and .3.

Power induced downwash and sideslip will be computed at the test rake location:

K	=	44.23 inches	
y	=	-ô.75 inches	Dimensions in model scale
z	=	.9. 2.9. 4.9. 6.9.	9. 10.9. 12.9 inches

2. APPLICATION OF JET FLOW FIELD PROGRAM TO CONTROL SURFACES

The use of the jet flow field program consists of specifying the points at which jet induced velocity components are to be computed, details of jet location and the flight variables. A description of sample input and output for the jet flow field program has been given in Section II.3. The application of the jet flow field program to the tail problem differs only in the location of the control points.

In this example the down-ash and sidewash angles will be computed at the rake location instead of the vertical or horizontal tail location since test data exists for the rake location.

aria lang protokan ataras tarak dan tanang pang hisangan kanasa tanan kanasa matan lakta tan sa kang maga ayan

Figures 47 and 48 show a comparison of power induced downwash and sidewash obtained by the jet program and compared with wind tunnel test data for the body alone with the rake attached. The theory will not account for the presence of a body or a wing so it must be assumed that these components can be ignored in calculating the power induced angles. The agreement shown in the figure can be considered satisfactory considering the scatter in the test data.

3. CALCULATION OF POWER INDUCED FORCES AND MOMENTS ON CONTROL SURFACFS

To calculate the incremental force and moments induced on the tail it is necessary to estimate the $C_{L_{\alpha}}$ of the surface in the presence of the fuselage (and other tail panels) and the cent. oid of the panel load. These values may be estimated by empirical methods such as are to be found in DATCOM. When these values are known, the jet induced downwash and sid wash can be used to estimate an incremental angle of attack or sideslip on the surface in question. From these values it is possible to estimate power induced forces and moments on the tail surfaces. Some estimates of this nature have been made for the wind tunnel test model of this study but the accuracy with which the incremental forces and moments can be measured from the test data precludes any conclusions as to method accuracy. The comparisons made do show, however, that such estimates are of the right order of magnitude.

O Theory

🛆 Test - BJ

and a second and the second and a second second

nen beit in Alterna Versteren Anter

and a subscription of the
a substantion of the second

Statute Alexand

Salar Street

SECTION V

APPLICATION OF INLET METHOD

The method of force and moment estimation for normal inlets described in Volume I, Section V, consists of three parts. The inlet induced forces are two parts, lip forces which act in the immediate vicinity of the inlet, and surface forces which act at greater distances. The third part consists of a description of the net thrust of the propulsive device causing the inlet flow. An approximation for a lift fan has been derived, but data obtained from test could be used in place of the model.

and the second
A construction of the second

The inlet method may be applied to a wide variety of configurations. This versatility is a direct result of the empirical nature of the model. Because of this empirical nature, some comment is required on selection of the parameters used in the equations summarilied below.

 $\binom{\text{inlet }+}{\text{net fan thrus}} = \binom{\text{inlet lip}}{\text{forces}} + \binom{\text{surface}}{\text{forces}} + \binom{\text{net fan}}{\text{forces}}$

Lip Forces:

$$L_{L} = /\frac{2}{2} A_{f} \left[U_{f}^{2} (1 - A_{f} / 4\pi R_{i}^{2}) + U_{\infty}^{2} (\eta - k^{2}) \right]$$

$$D_{L} = \rho A_{f} U_{f} U_{\infty}$$

$$M_{gL} = -\rho A_{f} U_{f} U_{\omega} (R_{i} / 2) \sin \beta$$

$$M_{mL} = \rho A_{f} U_{f} U_{\omega} (R_{i} / 2) \cos \beta$$

Surface Forces:

いたちいたいでいたないたちがいたいちょう ちゃうしょうれいたいちます - う

$$L_{s} = \sqrt{2} U_{cc} U_{f} \frac{A_{f}}{\pi} \left[\cos \beta \int_{1n}^{2\pi} \frac{r}{R_{i}} \cos \theta \, d\theta + \sin \beta \int_{0}^{2\pi} \ln \left[\frac{r}{R_{i}} \right] \sin \theta \, d\theta \right]$$

$$+ \sqrt{2} U_{f}^{2} \left(\frac{A_{f}}{2\pi R_{i}} \right)^{2} \int_{0}^{2\pi} \frac{2\pi}{L} \left[-(R_{i}/r)^{2} \right] d\theta$$

$$M_{ms} = \int_{2}^{2} U_{uc} U_{f} \frac{A_{f} R_{I}}{\pi} \left[\cos \beta \int_{0}^{2\pi} \sum_{i}^{2\pi} (r/R_{i}) \cdot 1 \right] \cos^{2} \theta \, d\theta \\ + \sin \beta \int_{0}^{2\pi} \sum_{i}^{2\pi} \sum_{i}^{2\pi} \sum_{i}^{2\pi} \frac{(A_{f}/2\pi)^{2}}{R_{i}} \int_{0}^{2\pi} \frac{(1-R_{i}/r)}{(1-R_{i}/r)} \cos \theta \, d\theta \right]$$

$$M_{RS} = \int_{2}^{2} U_{\omega} U_{4} \frac{A_{4}R_{1}}{\pi} \left[\cos \beta \int_{0}^{2\pi} (1 - r/\kappa_{1}) \cos \theta \sin \theta d\theta + \sin \beta \int_{0}^{2\pi} (1 - r/R_{1}) \sin^{2}\theta d\theta \right]$$

$$+ \int_{2}^{2} U_{4}^{2} \frac{(A_{5}/2\pi)^{2}}{R_{1}} \int_{0}^{2\pi} L(R_{1}/r) - 1] \sin \theta d\theta$$

Fan Flow and Force:

$$U_{f} = \left[\left(C_{t} U_{t}^{2} + (\eta - \kappa^{2}) U_{\infty}^{2} \right) / \left(1 + C_{0} S_{cB} / A_{f} \right) \right]^{2}$$

$$T_{f} = /\frac{2}{2} A_{f} \frac{C_{t}}{1 + C_{0}S_{cB}/A_{f}} U_{t}^{2} - /\frac{2}{2} (\eta - \kappa^{2}) \frac{C_{0}S_{cB}}{1 + C_{0}S_{cB}/A_{f}} U_{\omega}^{2}$$

Summation:

and a second design of the

$$L = L_{L} + L_{S} + T_{f}$$

$$D = D_{L}$$

$$M_{g} = M_{gL} + M_{gS}$$

$$M_{m} = M_{mL} + M_{ins}$$

1. SELECTION OF PARAMETERS

a. Inlet Method

In the application of the inlet method, judgement must be used in determining the boundaries of the surface upon which the inlet is assumed to have an effect. The magnitude of the pitching moment due to forward velocity as well as the magnitude and sign of the static moment is a direct function of the size and distribution of the effective area. In simple cases such as the presence of an inlet in the surface of a rectangular wing, it is obvious that the entire surface should be considered in the calculations. In more complicated situations it is presently thought that the area considered for each inlet be defined by a radius measured from the centroid of the inlet to the nearest edge of the body or the nearest barrier to flow, such as a sharp corner. Lift forces are concentrated in the immediate vicinity of the inlet and are not so greatly affected by the definition of the effective area.

The radius R_1 , used to separate the area on which "lip" forces act from the area on which "surface" forces act, is completely arbitrary. The value of R_1 does not affect the final result of the calculation which contains the sum of "lip" and "surface" forces. In a particular calculation it may be convenient to make R_1 correspond to the actual inlet size or to make R₁ a larger value and minimize the value of the surface force integrals.

Although the integrals appearing in the surface force equations are easily adapted to machine computation, graphical integration or a finite summation using a worksheet such as that shown in Table 3 has been found to be satisfactory. Because the forces are concentrated in the immediate vicinity of the inlet, large angular increments may often be used with little loss in accuracy. For configurations with more than one inlet, the present procedure is to superimpose the effects of the individual inlets without consideration of interaction between inlets.

b. Fan Flow Model

a hina bi ingina katang magi ang a itang matika at ita disa katang ang ang ang dana at na ang taita.

In application of the fan flow model, values of the parameters η and K must be selected. These parameters appear only in the combination $\eta - K^2$ and this combined parameter should be in the range ± 1 .

For deep inlets K may be assumed to be zero. For very thin inlets the value of K will approach unity. Reference (2) shows that K = 0.7 for a relatively deep far-in-wing installation.

The dynamic head recovery factor η varies from near unity for deep inlets ⁽³⁾ to zero for thin inlets ⁽⁴⁾. Even for deep inlets, the value of η will fall quite rapidly with forward speed if no flow turning device is present.

The parameter C_t is obtained by fitting static thrust versus RPM curves for a particular fan after values have been selected for $\eta - K^2$ and $C_D S_{DD}$.

2. EXAMPLES OF APPLICATION

The analytical models are applied to several configurations and indicate characteristics consistent with the data. It is not possible to completely verify the analysis as it is not presently possible to separate the effect of the propulsive wake, present in the data, from the effect of the inlet flow, and it is not yet possible to calculate the exit effect with complete confidence for these configurations. No sample calculations are shown because of the relative simplicity of the model, but the selection of the empirical parameters is indicated.

Although a large amount of data is available for both lift-jet and lift-fan configurations, only lift fan data is crusidered. Lift-jet inlet effects are relatively small due to the lower mass flows and this may result in inlet force variations of the same order as data scatter ⁽⁵⁾. The amount of usable data available is further reduced by the presence of a high legree of wind tunnel wall interference in some tests.

The methods have been applied to four configurations:

- 1. fan-in-nacelle ⁽⁶⁾
- 2. fan-in-fuselage $^{(3)}$
- 3. fan-in-wing (4)
- 4. 1/6-scale XV5A⁽⁷⁾

a. Fan Flow Calculations

n far i finn finnetenske som afgend fredgigende tærer gekal medige och finneten etter i setter i setter i sette

Reference (3) and Reference (4) have been used to substantiate the propulsion model. The static thrust versus RPM curves were fitted for both the fan-in-fuselage and fan-in-wing configurations. Using the value of C_t so obtained, fan flow versus forward velocity was calculated and '< compared to experimental values in Figure 50. Both curves are reasonably well predicted.

It should be noted that in matching the static thrust curve, the parameter actually obtained is the combination $(C_t/1 + C_D S_{CB}/A_f)$, not C_t . Therefore, variation of the value of $C_D S_{CB}$ does not affect the static values produced by the equations but only varies the apparent value of C_t and the effects of translational velocity through the parameter combination $(\eta - K^2/1 + C_D S_{CB}/A_f)$. Thus, it may be possible to fit data while using values for individual parameters which are in error.

b. Fan-in-Nacelle

The fan-in-nacelle model of Reference (6) is indicated in Figure 49. The twelve inch fan was electrically driven and was not equipped with inlet devices or exit vanes to aid in turning the flow. The model was reversed in the wind tunnel and the fan was tested in both leading and trailing positions.

The results yielded by the empirical model are shown in Figures 51 and 52; no exit effects are included in the calculated curves, which include inlet effect, net fan thrust, and unpowered aerodynamics. Available data for similar inlets indicate that the dynamic head recovery factor can be expected to decrease rapidly as free stream velocity increases from the static conditions. Therefore, curves for both total loss and complete recovery are shown. The parameter K was assumed to be zero.

FIGURE 49. FAN-IN-NACELLE CONFIGURATION

The method reflects the change in flow direction as seen in the lift data. Lift forces are reasonably well predicted by assuming high recovery at low speeds and low recovery at high speeds. Drag is also well predicted. The lack of accuracy in the moment prediction may be due to uncertainties in the unpowered aerodynamics, exit effects not included in the predictions, or errors in the selection of the propulsion parameters. Increased fan flow rates would improve overall correlation, but arbitrary changes in propulsion parameters would yield little additional information.

c. Fan-in-Fuselage

いたいちょうち おうちょうちょうちょうちょうちょう いち ちょう

and the state of the second state of the state

The full-scale fan-in-fuselage model of Reference (3) was a shoulder wing configuration of aspect ratio five. The single fan was mounted vertically in the fuselage with the fan axis passing through the wing quarter chord and moment center. A single semicircular vane was placed behind the leading edge of the inlet to improve pressure recovery and inhibit separation. Only tail-off, flap-retracted data are considered. In the application of the empirical method, the depth of the inlet led to the assumption that the flow is axial to the fan; data shows that pressure recovery of the inlet is nearly complete. Therefore, the parameter $\eta - K^2$ is assumed to be unity.

The diameter of the assumed circular inlet was chosen to contain the intersection of the actual inlet and the fuselage. The projected planform of the wing-body was used in calculating induced surface forces. Inlet sealed data was used to represent power-off terms.

The results of the calculations and data are shown in Figures 53 and 54. Figure 53 compares fan flow rate and fan rotor thrust. Figure 54 shows lift, drag and moment coefficients. It can be seen that drag is best predicted and pitching moment least well predicted. This may, however, be due to the lack of fan exit effects in the analytical predictions.

NASA TN-D-2560 identifies the presence of wind tunnel wall interference in this test and noting that uncorrected data is presented here, removal of the interference would be expected to improve lift correlation. The effect on the moment correlation is not known.

d. Fan-in-Wing

Calculations were also made for the one-sixth scale model of the XV-5A reported in Reference (7). The configuration of the test model was gear down, flaps down, and tail off. The model moment center is ahead of the far axis.

In the application of the model, the parameter $\eta - K^2$ is assumed to be zero. The assumed inlet size closely matches that of the actual inlets which are nearly circular. Each fan is assumed to produce induced forces only on the wing panel in which it is mounted. Data obtained with inlet and exit sealed are used to predict power-off effects.

The results are presented in Figures 55, 56 and 57. The empirical prediction is presented both with and without power-off aerodynamics. Fan exit effects present in the test are not included in the empirical predictions. The forces and moments for this test were nondimensionalized by the use of the "slipstream" dynamic pressure q^8 , where:

 $q^{S} = 0.5 \rho_{\infty} U_{\infty}^{2} + L_{0}^{\prime} A_{F}^{\prime}$ $L_{0} = \text{static lift at constant RPM}$ $A_{F} = \text{total fan area}$ Again, arag force is best predicted and moment least well predicted. The addition of exit effects to the prediction should improve the moment correlation and may improve the lift prediction. The use of exit open, power-off data would improve the moment prediction at the expense of lift prediction, due to disturbance of flow on the lower wing surface.

National Articles

TABLE 3 INLET-SURFACE FORCE AND MOMENT CALCULATIONS

. *

Same an arrival

Strategic Contractions and a set

1

۱ ت

12	F ₃ ∆θ	11×2	
11	F ₃	3 ⁻² -1	
T 0 T	₽дд	9×2	-
9	F ₂	4×3	
8	F ₁ ∆θ	7×2	
7	Fl	4×5	
6	sin0		
5	cosθ	_	r
4	lnR/R ₁		
3	R/R ₁		
5	<u> </u>		
ہ ا	θ		

12	м ₃ ∆9	11×2	
11	M3	4×5/3	
10	M2∆0	9×2	
6	M_2	4×5×6	
8	θΔ _I Μ	7×2	
7	M1	4×5 ²	
9	sinθ		
ς Γ	cosθ		1
4	R/R ₁ -1		
e e	R/R ₁		
5	Δθ		
, 1	θ	ſ	

12	r₃∆θ	11×2	
11	L ₃	4x6/3	
10	L2Δθ	9×2	
6	\mathbf{L}_2	4x6 ²	
8	L1∆θ	7×2	
2	r1	4×5×6	
9	sinθ		
5	cos0		1
t	R/R ₁ -1		
۳ ا	R/R ₁		
5	Δ θ		
-	6		

 $M_{s}^{=} 0.5 \rho U_{\omega} U_{f} \frac{A_{f}R_{1}}{4} (\Sigma M_{f} \Delta \theta \cos \beta + \Sigma M_{z} \Delta \theta \sin \beta) + 0.5 \rho U_{f}^{2} R_{1}^{-1} (A_{f}/2\pi)^{2} \Sigma M_{3} \Delta \theta$ $M_{s}^{=-0.5\rho U_{\omega} U_{f}} \frac{A_{f}R_{1}}{\pi} (\Sigma L_{f} \Theta \cos \beta + \Sigma L_{z} \Theta \sin \beta) - 0.5\rho U_{f}^{2} R_{1}^{-1} (A_{f}/2\pi)^{2} \Sigma L_{z} \Delta \Theta$ $L_{s} = 0.5\rho U_{\infty}U_{f}\frac{A}{\pi}f(\Sigma F_{l}\Delta\theta cos\beta + \Sigma F_{f}\Delta\theta sin\beta) - 0.25(A_{f}/2\pi R_{l})^{2}\rho U_{f}^{2} \Sigma F_{3}\Delta\theta$

FIGURE 50. FAN FLOW PARAMETERS

....

And the

FIGURE 51. FAN-IN-NACELLE, INLUT LEADING

Allegia de La nati

140

£

a bir çirkişi teşe aşı haştı a dara yatılındı. Şihir a ingi di şana raş tikli pa saranadan ta

FIGURE 54. FAN-IN-FUSELAGE

a yara sheki kuraya yara yara kura khan saya mashekarara. Na kura yarang sa dana wata wata ka kika mase 🖉 🖉

the starting of the starting for a starting of the starting of the

FIGURE 56. 1/6-SCALE XV-5A, FAN-IN-WING, DRAG FORCE

and grades

and the second states of the second states

and the state of the state of the

THE REAL PROPERTY AND A

area astronom

FIGURE 57. 1/6-SCALE XV-5A, FAN-IN-WING, PITCHING MOMENT

SECTION VI

NONLINEAR BODY AERODYNAMICS

The body aerodynamics are computed by combining slender body theory with viscous crossflow effects to obtain nonlinear coefficients at high angles of attack and sideslip. The method, described in Volume I, has been programmed for the computer with the linear and the viscous components of the aerodynamic coefficients printed out separately. The computer program requires that the mapping of the body cross sections be known. This mapping is obtainable by means of the mapping method described in Sections II and III. A simplified method of obtaining inputs to the computer program is also described which permits more ready calculation of body aerodynamics by by-passing the mapping of the body cross sections.

1. SAMPLE PROBLEM

and the second
ことれてき ちちち うち ち

To illustrate the use of the nonlinear body aerodynamics program the wind tunnel test model body described in Appendix I will be used. The aerodynamic coefficients and rotary derivatives will be calculated for this body through an angle of attack and angle of sideslip range.

a. Description of Body Coordinate System

The axis system used to describe the body is shown in Figure 58. The coordinates are body axes with the x-axis aligned along the body. The exact location of the x-axis is chosen to permit the body cross sections to be obtained in planes perpendicular to this axis. The exact location of the origin is not restricted to be at the body nose but may be chosen to suit the user. The axis system chosen consists of a right hand system with the x-axis directed aft, the y-axis to the right and the z-axis upward.

The flight conditions for the static coefficients are specified as a resultant angle of attack α and a roll angle φ . The resultant angle of attack is the angle between the freestream direction and the x-axis and is always defined as positive. The roll angle is then specified as the angle between the freestream component in the y-z plane and the body vertical plane (x-z plane) as shown in Figure 58.

U_m sin a ⋗ × × Cm, q-Cn, r $U_{\infty} \sin \alpha \cos \phi$ J U_ω sinα sinφ л С . 80 80 $U_{\infty} \cos \alpha$ $U_{\infty}\cos \alpha$

:

SIGN CONVENTION FOR BODY AERODYNAMIC COEFFICIENTS FIGURE 58.

Of the rotary velocities p is not considered of importance for a body and so is not included in the computation. The rotary components q and r are specified in body ∞ with q as a vector in the direction of the positive y-axis and r as a vector in the direction of the negative z axis. This convention was chosen to be consistent with the terminology of Reference 8.

A reference length 1_r reference area S_r and a center of gravity location x_{cg} are specified. All of the force coefficients are based on the same reference area. Pitching, yawing and rolling moment coefficients are defined on the reference area and the reference length specified. This differs from the conventional way of defining the moments. The reference point about which the moments are taken is the specified center of gravity location which is located on the x-axis. The effects of including rotary velocities assume that the center of rotations of q and r are at x_{cr} .

The force and moment coefficients are in body axes as shown in Figure 58, C_N positive along the positive z-axis, C_m positive for a moment pitching the nose up. C_y is positive in the positive y direction and C_n positive for a nose right moment. Rolling moment coefficient C_1 is defined positive counterclockwise the moment being specified about the x-axis. No attempt has been made to incorporate the axial force coefficient as the method used is not suitable for that purpose.

b. Body Description for Nonlinear Force and Moment Program

فلافكنه

tacata de

Strength

To use the computer program for aerodynamic coefficients the body must be described for a series of sections taken perpendicular to the x-axis. It is not necessary to take the sections chosen at equal intervals but the spacing should be relatively uniform with more sections being taken in regions where the cross sectional parameters are changing rapidly.

The section inputs include both the geometrical variables S and dS/dx and the coefficients of the mapping function and their derivatives. It is therefore necessary to know the mapping of each of the sections being inputed. Although it is necessary to include mapping coefficients, the nature of the slender body theory is such that only the first few coefficients are of primary significance. For this reason it is possible to approximate the coefficients of the mapping function and still retain reasonable accuracy. Therefore, methods are presented for obtaining the mapping coefficients accurately and an easier approximate method which retains the more significant coefficients.

The coefficients as obtained by the mapping program must be modified before they are suitable for use with the nonlinear body aerodynamics program and the method of modification will be described. The simplified method of obtaining coefficients for the mapping function will also be described and a complete set of inputs to the program will be given for this simplified method.

c. Modification of Mapping Function for Body Aerodynamics Program

Equation (1) of Section II is not in the proper form for use with the body aerodynamics program. When this equation is rewritten to include the constant term, i.e., to locate the section

$$Z = \zeta + \partial_0 + ib_0 + \frac{\partial_1 + ib_1}{\zeta} + \frac{\partial_2 + ib_2}{\zeta^2} + \dots + \frac{\partial_n + ib_n}{\zeta^n}$$
(3)

the section is rotated and mapped as shown in Figure 59(a). For the body aerodynamics program the tion is rotated as shown in Figure 59(b) and the mapping is commenced at a different point on the section. In addition, instead of basing the mapping on a circle of radius r_c , two mapping is rewritten to base the new mapping on the unit circle coordinate $\sigma = e^{i\theta}$. The final form of the mapping is then:

$$Z = r_{c}\sigma + c_{0} + id_{0} + \frac{c_{1} + id_{1}}{\sigma} + \frac{c_{z} + id_{z}}{\sigma^{2}} + \dots + \frac{c_{n} + id_{n}}{\sigma^{n}}$$
(4)

where these coefficients are related to the coefficients of Equation (3) by the relation

$$c_n + id_n = \frac{(-i)^{n+1}}{r_c^n} (a_n + ib_n)$$
 (5)

For a symmetrical shape this reduces to the relation

$$Z = r_c \sigma - ia_0 - \frac{\partial_1}{r_c \sigma} + \frac{ia_2}{r_c^2 \sigma^2} + \frac{\partial_3}{r_c^3 \sigma^3} - \frac{ia_4}{r_c^4 \sigma^4} - \dots$$

$$= r_c \sigma + id_0 + \frac{C_1}{\sigma} + \frac{id_2}{\sigma^2} + \frac{C_3}{\sigma^3} + \frac{id_4}{\sigma^4} + \dots$$
(6)

a. Original Mapping Relation

b. Final Mapping Relation

FIGURE 59. CHANGE OF MAPPING FUNCTION FOR BODY AERODYNAMICS PROGRAM

d. Simplified Handbook Method for Obtaining Coefficients

Since it is desired to use the body aerodynamics program for preliminary design type work it is, where possible, desirable to avoid the complexity of obtaining the mapping function. It is possible to do this for the usual fuselage shapes encountered and still retain sufficient accuracy for preliminary design purposes.

The actual fuselage is replaced by an equivalent body in which the sections are replaced by equivalent ellipses keeping the same body camber. This replaces the m_{L_r} ping of Equation (6) above with the truncated mapping

$$\overline{Z} = r_c \sigma + i d_0 + \frac{c_1}{\sigma} \tag{7}$$

This expression retains the most critical terms in the mapping as far as obtaining the body aerodynamics and it is possible to approximate the three coefficients r_c , d_0 and c_1 .

Defining a to be half of the maximum vertical dimension of the true cross section and b to be half the maximum lateral dimension of the section, it is possible to approximate r_c and c_1 by the expressions

$$F_{\rm C} = \frac{a+b}{2} \tag{8}$$

$$c_1 = \frac{b-a}{2} \tag{9}$$

the results being reasonably accurate for fuselages which do not depart too far from the elliptical. The coefficient d_0 can be replaced by the centroid of the sectional area.

The remainder of the inputs required for the slender body portion of the computer program are quantities which can be obtained directly from the body geometry, such as the cross sectional areas and its derivative with respect to x.

e. Viscous Cross Flow Input

The computer program also requires that a cross flow drag coefficient be input for both the components of flow in the vertical plane and the lateral plane. The viscous crossflow terms can be obtained by using the drag coefficients of an infinite two-dimensional elliptical cylinder at each body station, the character of the ellipse changing according to the maximum dimensions of the body as described above.

These drag coefficients can be obtained using the drag coefficient given in Reference 9 for two dimensional subcritical ellipses and given by

$$C_{D} = .015 \left(1 + \frac{c}{t} \right) + 1.1 \frac{t}{c}$$
(10)

where t = maximum dimension perpendicular to crossflow

a and a same and a particular some error of same some a same best to the

and the set of the second s

c = maximum dimension parallel to crossflow

A coefficient is computed for a crossflow velocity component in the vertical direction in one case and a second coefficient is computed for a crossflow component in the lateral plane. These two coefficients are then multiplied by the maximum dimensions perpendicular to the flow direction for the input parameters.

2. SAMPLE COMPUTATIONS FOR TEST BODY

sometically and that he are typed to an advant of this historical and the second starting in the full second

Table IV shows a set of computations for r_c and c_1 for the wind tunnel test model of this study. The computations are straightforward involving no difficulties. The major inconvenience in developing the inputs for the program is in obtaining S and the derivatives of each of the coefficients with respect to body station. There is no conceptual difficulty involved but the required integration for the body cross sectional area and the centroid location and the graphical differentiations needed to obtain dS/dx, dr_c/dx , dd_0/dx and dc_1/dx is tedious. If necessary, computer programs can be written to do the necessary integration and differentiations but such programs are not included here. いちょう ちょうしん ちょうちょう

a. Sample Inputs for Force and Moment Program

Figure C0 shows a sample set of inputs for the body aerodynamics program. The data are for the wind tunnel test model body of this study contract with the canopy off.

Card 1 specifies the maximum number of mapping coefficients for any section input (maximum of 12) and the number of stations for which section data is input (maximum of 40).

Cards 2-4 give the station locations of the input sections, maximum of 40. The remainder of the cards must be in units consistent with these numbers. The stations input must not include the nose location nor the tail section if these stations have zero area and mapping circle radius.

Cards 5-7 contain the radii of the mapping circle at the input stations.

Cards 8–10 give the values of $\frac{dr}{dx}$ for the same stations.

Cards 11-13 are the cross sectional areas S of the sections.

Cards 14-16 are the values of dS/dv.

Cards 17-19 give the values of the side viscous crossflow drag coefficient per unit length times the maximum vertical dimension at the section.

Cards 20-22 give the vertical viscous crossflow drag coefficient times the maximum lateral section dimension.

Cards 23-76 consist of sets of three cards for each of the input sections (in this case 18 sets). The first card of this set contains two numbers. The first of these specifies the number of mapping coefficients of the given section. If the number specified is zero, the program uses the number given on Card 1. The number given

x	y/2	Z-	Z+	r _c	°ı
7.25	4.25	-14.1	-5.6	4.25	0
23.7	9.2	-18.7	3.1	10.05	85
41.0	13.1	-22.2	11.0	14.85	-1.75
73.0	17.4	-26.25	24.0	21.2625	-3.8625
94.0	19.25	-27, 95	31.35	24.45	-5.2
118.0	21.0	-29.2	37.75	27.2375	-6.2375
143.5	22.45	-30.2	40.7	28.95	-6.5
163.5	23.45	-30,55	40.7	29.5375	-6.0875
185.5	24.3	-30.8	40.7	30.025	~5.725
221.5	25.05	-30.6	40.7	30.35	-5.3
264.25	25.1	-29.3	40.7	30.05	-4.95
316.0	24.8	-25.0	40.7	28.825	-4.025
343.0	2 4. 6	-21.5	40.4	27.775	-3.175
374.0	24.45	-16.3	39.75	26.2375	-1.7875
411.0	21.5	-9.1	38.3	22.6	-1.10
450.0	15.6	85	35.95	17.0	-1.4
497.0	6.4	11.6	30.8	8.0	-1.6
512.0	3.545	16.11	27.5	4.62	-1.075

TABLE IV. COMPUTATIONS FOR WIND TUNNEL TEST MODEL

and the appropriate of the property of the pro

in the second of the second

(15127212121212121									1
3	31.18	+]	4	+			1	•		
(\mathbf{a})	. 725006	01	.237006 (23	.4:000E 02	730005.0		94000E. 0	2	2.0.
(7)	305561	03		m	.185506 03	.221505 0	· M	269256 0	3.316.006	20
(4)	34300£	03	.37400.6 0	33	. 911.006 03	.45000E 0.		49.7.00E. D	3 . 512.00E	03
(س)	. 425005	10	10050E. C	22	. 148.50E 02	.212636.0	•	244506.0	2 .272386	02
(c)	28950E	02	.295386 0	2	. 30.725E. 02			300505 0	2 . 288256	20
	.277756	02	.2623BE. 0	22	.22600E 02	1.7000E.D.	2	800006.0	1 . 9.62 00.E	0.7
(∞)	- 42000E	00	.315006 9	0	.245.00E 00	.167006 0		1330.0.6 .0	0	10
(G)	.470.006-	10-	-290.00.6-0	7	.120.0.0 6-0.1	.000005 0		120005-0	1 30.0.0.6.	10
(Ê)	- 450206	10-	670.00 E-0	27	11900£ 00	766.00E. 0		21.5.0.0.6 0	0 230006	0.0
A	.567006	02	.3291,66.0	2	.70541E 03	. 143286 0	•	18927E. 0	A .238996	20.
<u>(</u>	. 280206	60	.30352E 0	4	. 32438 6. 04	-39037E 0	9	331.046 0	4 .29404E	0.4
(E)	.267955	04	.23511E 0	8	.1.79385.04	. 960015 0	2	203105 0	3 . 593006	2.0
(.1380.06	03		23	. 229.00E 02	.236006 0	2	21.7006.0	2 . 19.0.0.5	20
	. 155006	25	.1230.06.0	22	. 850006. 01	.1 \$00.0 € 0.		56000E 0	1 980.00.E	10.
9	1.0600E	02	126006.0	22	194005.02	22000E 0		14.0.0.0.E.O	2 77.0005	10.
	.92450E	10	.237505 0	2	.361506.02	.546.0.6.0.		64.5.0.0 E. O	2	20
(m) (x)	. 76050E	02	- 17500E D	त्र	-77800E 02	. 77550E 0.	~	74.1.0.0.E. D	2 7150.06	0.2
କ୍ରା	.57300E	02	. 61000E. D	2	.5150.05.02	40.020E	-	208.7.0.E .O	2.12.08.05	32
୍ଦି (. 46600E	10	200101	2	.14380.5.02	.190966 0		211506 0	2.2303.06	0.2
ଲା	. 24620E	02	.25750.50	2	.2.6650.6.02	.275.00E 0		2 7.5.50.E. D	2 2722.06	02
କ୍ଷା	30005	02	.268006.0	2	.236005.02	.171.20.6. 0		1025.0.E. O.	1 .3735.06	0.1
(3)	d a	+	1					-	-	
(3)	1.0.0.0.CE	02		0						
3	.19500E	10.0	.51500.6-0		-					
]

alin Induction

and historication in the states.

Crist, S.A.

aberbarder feit voor "Steatste

to a state way a state

L BALLA

South Street

and the second second

FIGURE 60. NONLINEAR BODY AERODYNAMICS PROGRAM INPUT DATA FOR SAMPLE PROBLEM

FIGURE 60. (Continued)

1 -. 530.00E 0.1 -. 10000E-02 -- 200005-02 .9000.0E-DZ .370005-01 . 470.06-01 -- 16000£ 01 -. 10750E 01 - . 49500E 01 -. 40250E DI .235006-01 -. 31750E 01 -- 11000E 01 . 93500E-01 -. 190.0£ 01 -.1.78.75£ 0.1 1+ 12-30002-21 .119586.02 775006-01 .21276E 02 .94715E 01 -780206-01 .17703E D2 .67000E-01 .22200E 02 .38426E 01 10-300054. . 751 33E. OI . 196596.02 .47329E 01 .68700E-01 825006-01 · · · • **d** 0 0 6 0 0 á. N Q 0 0 0 0

Stanlord Schlediners

のためためで、ためたいたちになったいという

And the state of the second
FIGURE 60. (Continued)

and the shear of the second

must not exceed the number on the first card. The second number specifies whether or not the section under consideration is symmetrical or not. If the section is symmetrical, the number 0 is input; otherwise 1. The axis of symmetry is assumed to be the vertical plane.

The second card for each set specifies the coefficients of the mapping function. For a symmetrical section the coefficients input follow the order d_0 , c_1 , d_2 , c_3 , d_4 , c_5 , ... since the other coefficients are zero. For an unsymmetrical section the coefficients are specified in the order c_0 , d_0 , c_1 , d_1 , c_2 , d_2 , ... up to the maximum number of pairs specified. The subscript 0 specifies the second coefficient (or coefficient pair), the subscript 1 the third coefficient, etc.

The remaining cards specify the flight conditions under which the coefficients are to be found. Card 77 is a comment card and can contain any pertinent information desired.

Card 78 specifies four numbers: reference length, 1_r , reference area S_r , center of gravity (and moment center) location x_{cg} and the incremental step size along the body at which computations are made. The program assumes linearity between the incremental steps here specified so that a reasonably large number of steps are required along the body.

The 79th card specifies, respectively, the number of angles of attack to be computed (maximum of 18), the number of roll angles (maximum of 9), number of pitching velocities (maximum of 9) and number of yawing velocities (maximum of 9).

Cards 80 and 81 specify the angle of attack at which the coefficients are to be evaluated. These angles are in degrees.

Card 82 specifies the roll angles which are to be computed, also in degrees.

Card 83 specifies the desired values of pitching velocity inputs. The number inputed represents $q1_r^2_{2U\infty}$ (dimensionless).

Similarly Card 84 specifies yawing velocity inputs specified as $r_1^{\prime}/_{2U_{\infty}}$ (dimensionless).

This completes the input cards needed to compute the nonlinear body aerodynamics. Cards are added or subtracted as necessary to input all the specified data. That is, enough cards are used to input the numbers required and no blank cards are to be inputed. As an example, the number of stations here specified is <u>18</u> which
requires 3 cards to specify each of the first set of parameters. More of less cards would be used depending on the number of stations specified.

b. Sample Outputs from Force and Moment Program

The Althe Access Anotherin

Figure 61 shows the output from the computer program for the inputs listed in Figure 60. The first line written out in the information input on the comment card.

The second line lists the flight conditions PHI (φ), $Q\left(\frac{q1_r}{2U_{\infty}}\right)$, and $R\left(\frac{r1_r}{2U_{\infty}}\right)$ for which the coefficients are calculated.

After this are tabulated the five coefficients C_n , C_v , C_n and C_1 in that order as functions of angle of attack. The coefficients as written out are separated into a potential component (obtained by slender body theory) and a viscous component (using viscous crossflow). To obtain the coefficient these two components must be added together. The program does not calculate a viscous component to the rolling moment so this is printed out as zero.

When more than one set of flight conditions (other than α) are input this tabulation is repeated.

12/2/70.
DATA.
NCDEL
Jest
V/S TOL

;

í

;

į

i

. 1

1

ł

.

.

ł

I.

:

:

. :

1

ł

ł

:

ł

;

T

R= 0.0
0= 0 • 0
0.0
=1Hd

ALTHA 0.0	POTENTIAL VISCOUS	CN 3.4009E-04 0.0	-2.2614F-02 0.0	- 3 0 - 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	х со су со су
5.0000	POTENTIAL VISCOUS	2.6681F-04 2.5936E-03	1.2029F-32 -9.2671E-04	00 00	0 C • O	0 0 0 0
10.0000	POTENTIÄL VISCOUS	1.9059E-04 1.0296E-02	4.5463E-02 -3.6787E-03	00.00	0.0	0°0
15.0000	POTENT IAL VI SCOUS	1 • 1 3 75E-04 2 • 2 8 72E-02	7 .8157E-07 -8.1723E-03	c.o. 0.0	0 ° 0 0 0	00
20-0000	POTENTIAL VISCOUS	3.8622E-05 3.9941E-02	1.0763E-01 -1.4271E-02	0 0 ° 0	00°0 00	0°0 0°0
25.0000	POTENTIAL VISCOUS	-3.2516E-05 6.0983E-02	1.3349E-01 -2.1790E-02	0.0	•••	00 ••0
30.0000	POTENTIAL VISCOUS	-9.74991:-05 8.5360E-02	1.5496E-01 -3.0499E-02	0°0	ۍ د 0	000
35,0000	P01FN11AL V15COUS	-1.5435E-04 1.1233E-01	1.7137E-01 -4.0136E-C2	0 e 0 0 0 0	2°2 2°3	ひ ・い い
40.3000	PCTENTIAL VISCOUS	-2.0135E-04 1.4107E-01	1.8223E-C1 -5.0406E-02	00°0	0000	0°0
45.00C0	POTENT I AL VISCOUS	-2.3766E-04 1.7072E-01	1.8720E-01 -6.0499E-02	0.0	0 ° 0 ° 0	00 33

FIGURE 61. NONLINEAR BODY AERODYNAMICS PROGRAM OUTPUT DATA FOR SAMPLE PROBLEM

.

3. COMPARISON WITH TEST DATA

Figure 62 shows the comparison between theory and test for normal force coefficient C_N and pitching moment coefficient, C_m at zero sideslip. The theoretically predicted values of C_N are somewhat low. In particular, the predicted lift curve slope at zero angle of attack is predicted to be zero while the test results show a finite value. The value of C_N at zero angle of attack is also in error. The agreement obtained for the pitching moment can be considered to be good.

Figure 63 shows a comparison between test and theoretical side force C_y and yawing moment C_n . The theoretical side force tends to be somewhat low, and the agreement in yawing moment is somewhat worse than the pitching moment agreement.

The computer program does not calculate the derivatives but it is possible to compute two sets of coefficients at different values of a parameter and obtain the derivative by dividing the difference of the coefficients by the incremental change in the parameter.

Figures 64 and 65 show samples of rotary derivatives obtained using the computer program. No test data is available with which to compare the theoretical results, so it is not possible to predict what accuracy is obtained by the theoretical method.

Contraction of the second s

SECTION VII

NONLINEAR WING AERODYNAMICS

The method used for predicting the nonlinear aerodynamics of wings is that described in Section VII of Volume I. This method has been programmed for the computer and essentially converts the known section characteristics for the wing into finite wing characteristics. First the wing section characteristics have to be identified from available test data. This information is then used to obtain the positions and relative strengths of the two lifting lines. The wing planform and flight condition are included with the section model into the computer program to enable the wing aerodynamics to be determined.

1. SAMPLE PROBLEM

To illustrate the use of the nonlinear wing aerodynamics program the wing for the wind tunnel test model, described in Appendix I, will be used.

y

The wing planform is shown in Figure 66 with the axes system, lifting lines (discussed later) and downwash control line indicated. The wing employed a NACA 63A010 section.

FIGURE 66. WING PLANFORM WITH LIFTING LINES AND DOWNWASH CONTROL LINE SHOWN

The axis system chosen is a right hand system with the x-axis directed aft and the z-axis directed upwards. The flight conditions for the sample problem will be $\alpha = 14^{\circ}$ and 16°, $\beta = 0^{\circ}$ with the rotary variables p, q, r all equal to zero.

a. Determination of Section Parameters

The separation characteristics of airfoil sections are a function of the Reynolds Number, R, the flow tending to separate at a lower value of α , for lower values of R. The unpowered runs in the tests described in Appendix I were at a Reynolds Number/foot = 1.3×10^6 . No data could be found for the test model wing section (NACA 63A010) for Reynolds Numbers as low as the test value. However, data for section NACA 64_1 -012, with a similar section geometry, for the required values of R has been determined in Reference 10 and is tabulated in Table V.

The drag coefficient for the airfoil at $\alpha = 90^{\circ}$ is taken to be 2.08 (value for NACA 0012 airfoil) with the line of action passing through the chord center. The leading lifting line, in the mathematical model for the airfoil section, is positioned at the quarter chord position ($C_{m_1/4} = 0$ in linear α range). The downwash control point is taken to be at .75 chord. The aft lifting line is now chosen to give a good fit to the section pixching moment while satisfying the boundary condition of no flow through the section at the downwash control station and providing an exact duplication of the section normal force. In this case, by taking the aft lifting line to be located at .70 of the chord, a satisfactory representation to the section characteristics is possible as shown in Table V. The weighting function W_t (weighting of circulation between leading and aft lifting lines) is also shown in Table V. The value of W_t is needed for $\alpha = 0$ and this is determined by extrapolation of the values for larger α .

b. Inputs to Nonlinear Wing Aerodynamics Program for Sample Problem

A sample set of inputs for the nonlinear wing aerodynamics program is shown in Figure 67.

Card 1 specifies the initial value of wing angle of attack α , angle of sideslip β , and the step size in α all in degrees.

Card 2 provides wing planform information in the form of the y-coordinates (relative to the wing root chord), of the wing root and tip chords, wing taper ratio, and the tangent of the leading edge sweep angle.

Card 3 gives in order, the rolling, pitching and yawing velocities.

Card 4 contains the reference length (relative to the wing root chord), the x-

TABLE V. SECTION DATA FOR AIRFOIL SECTION

.....

	TEST		LIFT	ING LINE MET	HOD
α	C _N	C _{m 1/4}	с _N	C _{m 1/4}	w _t
0	0	0.0	0.	0.	Indet.
2	0.18	0.0	0.18	0.003	0.974
4	0.36	0.0	0.36	-0.007	0.972
6	0.54	0.0	0.54	-0.013	0.970
7	0.63	-0.004	0.63	-0.016	0.969
8	0.71	-0.008	0.71	-0.020	0.967
9	0.78	-0.010	0.78	-0.025	0.962
10	0.83	-0.015	0.83	-0.032	0.953
12	0.83	-0.060	0.83	-0.051	0.914
14	0.68	-0.095	0.68	-0.079	0.807

NACA 641-012

0.953 1 0.0 J 1] 7 0.962 9.0 1 1 1.875 0.96.7 • 8.0 111 -: . 688 1.584 0.969 688 • ----· · · · 0.1714 1 1.313 0.920 7.391 111: 6.0 0.972 0.0 0.75 0.75 13.98 4.0. 0.5 2.0 0.0 1 1 -0.0.139 -0.0283 0.1054 1111 1.0 8.422 2.0 0.375 0.375 0.974 1.875 0.807 0.0 0.0 0.0 5 0 J . 0.075 D. 70 0.778 0.075 6.818 0.97.6 0.0 0.25 0.0 0.914 0.75 0.0 2..08. 9 2.0. 19.0 i ? 9 99 Θ ଚ $\odot ()$ \odot ெ \bigcirc 9 9 **(**]" \bigcirc

FIGURE 67. NONLINEAR WING AERODYNAMICS PROGRAM INPUT DATA FOR SAMPLE PROBLEM

and z- coordinates of the center of gravity location.

Card 5 contains the wing section normal force coefficient for $\alpha = 90^{\circ}$ and the x-coordinate of the intersection of its line of action with the airfoil chord.

Card 6 gives the number of circulation and downwash control points.

Card 7 specifies the number of angle of attacks to be computed and the number of iterations for each α .

Card 8 indicates whether the wing loading is symmetrical about the x-axis, in this case NSYM = 0 indicating symmetry. (NSYM = 1 indicates asymmetrical loading.)

Cards 9 and 10 list the y-coordinates of the circulation control points and downwash control points.

Cards 11, 12 and 13 specify the x-coordinates (relative to chord) and the tangents of the sweep angles for the leading lifting line, the aft lifting line and the line conrecting the downwash control points.

Card 14 contains the effective angles of attack for the downwash control point stations. In this case the values have been determined from the previous calculations for $\alpha = 12^{\circ}$.

Cards 15 and 16 list the values of α in degrees at which the circulation weighting function is tabulated.

Cards 17 and 18 contain the tabulated values of the circulation weighting function determined in this case from Table V.

c. Outputs to Nonlinear Wing Aerodynamics Program for Sample Problem

Figure :8 shows the output from the computer program for the input listed in Figure 67. The flight condition is shown in the form of values for α , ? and p, q, r. The spanwise loading and effective angle of attack at the spanwise stations are shown next. The normal force coefficient and the moments about the y- and x-axes follow. This output, excepting the flight condition variables, is repeated for the number of iterations on α (in this case 2).

This set of output is then repeated for the number of α 's input to the program which in this case is two.

d. Method Applicability and Limitations

The method, as presently programmed, is restricted to straight tapered wings. Because the approach uses lifting lines the method is really applicable to large aspect ratio wings and the accuracy of the predictions will not be as good for lower aspect ratio wings. Flaps may be accounted for by changing the sectio characteristics for the wing. Calculations of the finite wing aerodynamic characteristics depend on a knowledge of the section characteristics so that in some cases this may be a limitation on the method. The method is programmed to calculate the effects of sideslip and the rotary derivatives although no significant attempt has been made to validate these options.

In typical calculations two iterations are used in the linear range of α and five iterations for nonlinear α . Estimates of the effective angle of attack are determined from previous computations at lower values of α . The initial calculations have usually started with $\alpha = 4^{\circ}$ and effective alpha equal to 2° .

2. COMPARISON WITH TEST DATA

North.

ام الأدري الم الأدري

ELX:

The calculations shown in Figure 68 are for the test model described in Appendix I. The test data for these conditions for comparison were

$$\alpha = 14^{\circ} : C_{N} = .708$$
 , $C_{MY} = .365$
 $\alpha = 16^{\circ} : C_{N} = .665$, $C_{MY} = .375$

Further calculations for an aspect ratio 6 wing are shown in Figure 69 compared with the test data of NASA TM 2-27-29A.

2 = 0.0	Ċ	2=0.0	R = 0.0		
	SPANWIS	E LOADING A	ND EFF activ	- ALPHA	
_					
Bpan T	.04	. 20	. 40	. 70	. 90
Londing	. 7348	.712.	. 5523	. 5131	. 3490
Elective Alpha	. 1506	. 1537	. 2444	. 1474	. 1070
Normal force co	efficient, C	א ^{= .73009} א			
Moment coefficie	ent about Y-	axis, C _{MY} = .	35045		
Moment coefficie	ent about X-	axis, ^C MX ^{= .}	0000		
	SP ANWIS	E LOADING A	ND EFFECTIV	E ALPIIA	
Spen	.04	. 20	. 40	. 70	. 90
Loading	. 8035	. 7123	. 5513	., 5141	. 3548
Effective Alpha	. 1571	. 1558	. 2444	. 1514	. 1093
Normal force co	officient, C.	. = . 73245			
	-				
	i -V tobout V	evic C -	95 46 9		
Moment coefficie	ent about Y-	axis, C _{MY} = .	35268		
Moment coefficie Moment coefficie	ent about Y- ent about X-	axis, C _{MY} = .: axis, C _{MX} = .:	35268 00000		
Moment coefficie Moment coefficie Results for P = 0,0	ent about Y- ent about X- r Alpha = 16	axis, $C_{MY} =$ axis, $C_{MX} =$.000, and Beta	35268 00000 : = 0.0000 Degr B = 0.0	e cs	
Moment coefficie Moment coefficie Results for P = 0, 9	ent about Y- ent about X- r Alpha = 16 Q	axis, $C_{MY} =$ axis, $C_{MX} =$.000, and Beta t = 0.0	35268 00000 : = 0.0000 Degr R = 0.0	e cs	
Noment coefficie Noment coefficie Results for P = 0,9	ent about Y- ent about X- r Alpha = 16 Q SPANWIS	axis, C _{MY} = axis, C _{MX} = .000, and Beta 2 = 0.0 E LOADING A	35268 00000 == 0.0000 Degr R = 0.0 ND EFFF7TI(ees 7e alpha	
Noment coefficie Noment coefficie Results for P = 0,0 Span	ent about Y- ent about X- r Alpha = 16 Q SPANWIS . 04	axis, C _{MY} = axis, C _{MX} = .000, and Beta) = 0.0 E LOADING A .20	35268 00000 R = 0.0000 Degr R = 0.0 ND EFFF7T10 .40	ееs /Е аlрна . 70	. 90
Moment coefficie Moment coefficie Results for P = 0.9 Span Loading	ent about Y- ent about X- r Alpha = 16 Q SPANWIS . 04 . 8905 1982	axis, C _{MY} = axis, C _{MX} = .000, and Beta e 0.0 E LOADINC A .20 .7586	35268 00000 Degr R = 0.0 ND EFFF?TIV .40 5307	есs /Е АLРНА . 70 . 5479 	. 90 . 3951
Moment coefficie Moment coefficie Results for P = 0.9 Span Loading Effective Alpha	ent about Y- ent about X- ent about X- ent about X- ent about X- g SPANWIS . 04 . 8905 . 1882 Difficient C	axis, C _{MY} = axis, C _{MY} = .000, and Beta e = 0.0 E LOADING A .20 .7586 .1790 - 7586	35268 00000 Degr R = 0.0 ND EFFF?TI(.40 5307 .2793	чев /Е аlрна . 70 . 5479 . 1735	- 90 . 3951 . 1214
Moment coefficie Moment coefficie Results for P = 0,9 Bpan Loading Effective Alpha Normal force coe Moment coefficie	ent about Y- ent about X- ent about X- c Alpha = 16 Q SPANWIS . 04 . 8905 . 1882 efficient, C ₁ ent shout Y-	axis, C _{MY} = axis, C _{MY} = .000, and Beta) = 0.0 E LOADINC A .20 .7586 .1790 N = .76861	35268 00000 Degr R = 0.0 ND EFFF?TIV .40 5307 .2793	сся /Е Alpha . 70 . 5479 . 1735	. 90 . 3951 . 1214
Moment coefficie Moment coefficie Results for P = 0,0 Span Loading Effective Alpha Normal force coe Moment coefficie Moment coefficie	ent about Y- ent about X- ent about X- c Alpha = 16 Q SPANWIS .04 .8905 .1882 efficient, C ₁ ent about Y- ent about Y-	axis, C _{MY} = axis, C _{MX} = .000, and Beta) = 0.0 E LOADING A .20 .7586 .1790 N = .76861 axis, - ⁻ . _{{1} y =	35268 00000 Degr R = 0.0 ND EFFFCTIV .40 .307 .2793 38258 00000	есs /Е Alpha . 70 . 5479 . 1735	. 90 . 3951 . 1214
Moment coefficie Moment coefficie Results for P = 0.9 Epan Loading Effective Alpha Normal force coe Moment coefficie Moment coefficie	ent about Y- ent about X- ent about X- ent about X- g SPANWIS .04 .8905 .1882 efficient, C ₁ ent about X- ent about X-	axis, C _{MY} = axis, C _{MY} = axis, C _{MX} = .000, and Beta e 0.0 E LOADING A .7586 .7586 	35268 00000 Degr R = 0.0 ND EFFF?TIV .40 5307 .2793 38258 00000	ее s /Е Alpha . 70 . 5479 . 1735	. 90 . 3951 . 1214
Moment coefficie Moment coefficie Results for P = 0.9 Bpan Loading Effective Alpha Normal force coefficie Moment coefficie	ent about Y- ent about X- ent about X- ent about X- g SPANWIS . 04 . 8905 . 1882 efficient, C ₁ ent about X- ent about X- SPANWIS	axis, $C_{MY} =$ axis, $C_{MX} =$.000, and Beta r = 0.0 E LOADING A .20 .7586 .1790 N = .76861 axis, $$ $r_{Y} =$ axis, $C_{MX} =$ E LOADING A	35268 00000 Degr R = 0.0 ND EFFF?TIV .40 5307 .2793 38258 00000 ND EFFECTIV	ес 5 /Е АLРНА . 70 . 5479 . 1735 Е ALРНА	. 90 . 3951 . 1214
Moment coefficie Moment coefficie Results for P = 0, 9 Bpan Loading Effective Alpha Normal force coe Moment coefficie Moment coefficie Span	ent about Y- ent about X- ent about X- c Alpha = 16 Q SPANWIS .04 .8905 .1882 efficient, C int about Y- ent about X- set about X- set about X-	axis, C _{MY} = axis, C _{MY} = axis, C _{MX} = .000, and Beta e 0.0 E LOADING A .7586 .1790 N = .7686J axis,, 4Y = axis, C _{MX} = E LOADING A 20	35268 0C000 = 0.0000 Degr R = 0.0 ND EFFF?T1V .40 5307 .2793 38258 00000 ND EFFECTIV .40	еся /E Alpha . 70 . 5479 . 1735 Е Alpha . 70	. 90 . 3951 . 1214 . 90
Moment coefficie Moment coefficie Results for P = 0, 0 Span Loading Effective Alpha Normal force coe Moment coefficie Moment coefficie Span Roading	ent about Y- ent about X- ent about X- c Alpha = 16 Q SPANWIS . 04 . 8905 . 1882 efficient, C ₁ ent about X- ent about X- sent about X- . 04 . 8875	axis, C _{MY} = axis, C _{MY} = axis, C _{MX} = .000, and Beta e 10.0 E LOADING A .7586 .1790 N = .76861 axis, MX = E LOADING A .20 	35268 00000 Degr R = 0.0 ND EFFFCTIV .40 .3307 .2793 38258 00000 ND EFFECTIV .40 .5298	сеs /E Alpha . 70 . 5479 . 1735 Е Alpha . 70 . 5470	. 90 . 3951 . 1214 . 90 . 3936
Moment coefficie Moment coefficie Results for P = 0.9 Span Loading Effective Alpha Normal force coe Moment coefficie Moment coefficie Span Loading Effective Alpha	ent about Y- ent about X- ent about X- ent about X- g gpANWIS .04 .8905 .1882 efficient, C ₁ ent about X- sent about X- .04 .8875 .1983	axis, C _{MY} = axis, C _{MY} = axis, C _{MX} = axis, C _{MX} = .000, and Beta e = 0.0 E LOADING A axis, C _{MX} = E LOADING A 	35268 00000 Degr R = 0.0 ND EFFF?TIV .40 .307 .2793 38258 00000 ND EFFECTIV .40 .5298 .2793	ees /E ALPHA . 70 . 5479 . 1735 E ALPHA . 70 . 5470 . 1735	- 90 . 3951 . 1214 . 90 . 3936 . 1207
Moment coefficie Moment coefficie Results for P = 0.9 Bpan Loading Effective Alpha Normal force coefficie Moment coefficie Moment coefficie Span Loading Effective Alpha Normal force co	ent about Y- ent about X- ent about X- ent about X- g SPANWIS .04 .8905 .1882 efficient, C ₁ ent about X- ma about X- .04 .8875 .1983 efficient, C	axis, $C_{MY} =$ axis, $C_{MX} =$ axis, $C_{MX} =$ axis, $C_{MX} =$.000, and Beta t = 0.0 E LOADING A .20 .7586 .1790 N = .76861 axis, $C_{MX} =$ E LOADING A .20 .7549 .1791 	35268 00000 Degr R = 0.0 ND EFFFCTIV .40 .5307 .2793 38258 00000 ND EFFECTIV .40 .5298 .2793	E ALPHA . 70 . 5479 . 1735 E ALPHA . 70 . 5470 . 1735	. 90 . 3951 . 1214 . 90 . 3936 . 1207
Moment coefficie Moment coefficie Results for P = 0.9 Bpan Loading Effective Alpha Normal force coefficie Moment coefficie Span Loading Effective Alpha Normal force co Moment coefficie	ent about Y- ent about X- ent about X- ent about X- ent about X- ent about Y- ent about X- sep ANWISI .04 .8875 .1983 refficient, C ent about Y-	axis, C _{MY} = axis, C _{MY} = axis, C _{MX} = axis, C _{MX} = coo, and Beta e = 0.0 E LOADING A E LOADING A E LOADING A E LOADING A 	35268 0C000 = 0.0000 Degr R = 0.0 ND EFFF?TIV .40 .2793 38258 00000 ND EFFECTIV .40 .5298 .2793 38263	E ALPHA . 70 . 5479 . 1735 E ALPHA . 70 . 5470 . 1735	. 90 . 3951 . 1214 . 90 . 3936 . 1207

filma da redere

And and the second

and in the

ł

ţ

a silona

astraky.

FIGURE 68. SAMPLE OUTPUTS FOR NONLINEAR WING AERODYNAMICS PROCRAM

alphaneses and a straight a

area at the same of the south and the states are before a

•——Calculation • Test Data

) Test Data (NASA TM 2-27-59A)

FIGURE 69. WING CALCULATIONS FOR AN ASPECT RATIO 6 WING

APPENDIX I

WIND TUNNEL TESTING OF V/STOL CONFIGURATION MODEL

A model was constructed and tested to supplement the analytical investigation and gain further data for use in validation and improvement of the analytical prediction techniques. The model was configured to resemble a feasible military aircuaft but was designed to operate with jets of varied number and location to allow a v riety of data to be generated. The test contributes new data because of extensive pressure instrumentation present on the model. These data facilitate identification of the sources of the various induced loads measured during the test.

1. MODEL AND AFPARATUS

ti ka nganaki bindaka sa mata na sata na sata na sa mana ka mata ka sa ta sa ta na manata sa Panta na sata sat

The model is a shoulder wing configuration equipped with an external airfoil flap and a stabilator mounted on the vertical tail above the fuselage. Two vectored thrust engines are contained in large nacelles mounted beneath the wing adjacent to the fuselage; a single lift engine is mounted within the body and forward of the vectored exits. The general arrangement of the model is shown in the three view drawing of Figure I-1 and the photographs of Figures I-2, I-3, and I-4. Detailed geometrical data are given in Table I-I.

The vectored thrust engines were simulated by ejector type jet engine simulators. Two 3.67-inch diameter nozzles were tested at two longitudinal positions (11 and 111 percent \bar{c}) at nominal deflections of 0, 45, or 90 degrees at the forward location, and 45 or 90 degrees at the aft location. Larger 4.5-inch diameter nozzles were tested in the aft position at a nominal deflection of 90 degrees. Plugs were used to seal the inlets when inlet flow was not desired.

Typical operating curves for the ejectors are shown in Figure I-5. The design of the ejector nozzles produced a relatively nonuniform jet velocity profile, shown in Figure I-6.

Preceding page blank

The lift jet was simulated by a convergent nozzle supplied through a perforated rlate. The exit diameter was 2.25 inches. No inlet simulation was provided. The lift jet possessed a relatively uniform exit profile, shown in Figure I-6.

Details of jet exit location and point of application of resultant forces are shown in Table I-II in terms of location along the mean aerodynamic chord and distance below the wing plane.

The engine simulators were driven by cold dry air supplied through a common plenum fed by a flexible metal tube passing through the sting.

Model forces and moments were recorded using a six-component internal balance.

Two hundred and sixty-four pressure taps are present on the left half of the model. They are placed in four groups: a ving pattern, a lower fuselage pattern, a circumferential pattern at five fuselage stations, a nacelle centerline pattern. Lower fuselage and wing pressure patterns are described in Tables I-III and I-IV. Circumferential fuselage and nacelle centerline patterns are shown in Figures I-7 and I-8.

A seven-probe flow angularity rake was sometimes mounted at the tail station in place of the empennage. Its general arrangement may be seen in Figure I-2.

Testing was performed in the NASA Langley V/STOL tunnel which has a test section of 14 \times 22 feet.

2. TEST PROCEDURE

internet a telepost of the

and a straight w

and and the state of the state

Testing of the model was performed in two phases: calibration of balance and engine simulators, and aerodynamic testing within the wind tunnel.

a. Balance Calibration and Corrections

The testing of a powered model requires additional balance calibration and correction beyond that routinely performed during unpowered testing. The air supply balance arrangement used during this test is indicated schematically in Figure I-9.

Although the air supply line is designed to be highly flexible and cause minimum interference with force measurements, corrections must be applied to balance measurements to reflect that portion of the total load which is carried by the line. A series of known loads was applied to the balance-air supply line assembly, and the resultant balance measurements were used to obtain a matrix of linear correction coefficients.

Pressurization of the system caused forces to be exerted on the model by the flexible supply line. These forces were measured and calibrated with the plenum sealed and no nongravitational loads applied to the model. The calibrated forces have been removed from final force data.

The final form of the corrections is shown below. The momentum input due to the supply mass flow was found to be negligible.

$$\widetilde{F}_{cor} = \widetilde{K} \widetilde{F}_{bal} - \widetilde{F}_{p}(P_{sup})$$

where

ĩ

the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of

F_{cor},

, a 6x1 matrix of applied loads

, a 6x6 matrix of correction coefficients

 \widetilde{F}_{bal} , a 6x1 matrix of loads measured by balance \sim

$$\widetilde{F}_p(P_{sup})$$
 , a 6x1 matrix of loads applied by the air supply line, calibrated agains, supply pressure

Additional details concerning the magnitude and accuracy of the corrections may be found in Appendix II.

b. Calibration of Engine Simulators

Each engine simulator-nozzle combination was tested individually to determine direct thrust force and moment applied to the model. The same air supply-balance assembly used during tunnel tests was used for this calibration. A calibrated bellmouth was used to monitor ejector inlet flow. A limited survey was made of nozzle exit profiles to determine their basic character.

These tests were performed with the units mounted on the bare model plenum to minimize static interference effects by reducing surface area near the exits. Some small interference is of necessity present in the data because of the physical proximity of the external portions of the nozzles and drive system.

Lift jet thrust was calibrated on the basis of total pressure within the nozzle. Ejectors were calibrated as a function of primary nozzle plenum pressure. No corrections were made to ejector calibrations due to forward speed present in the tunner. Error due to this approximation is examined in Appendix U1.

c. Wall Corrections

i da kadan sigi dan pagangan na sanan nyan bahada da sina na na pandada ana kata na tana ini kana ini kana kata

No corrections were made to the data for possible wall effects. The dimensions of the 14 X 22 foot test section are quite large in comparison to basic model dimensions, and computations, made prior to the test using Heyson's method (11), indicated that wall interference effects would be within the accuracy of the data acquistion system. However, the pitch mechanism used during the test was not capable of maintaining the model at a fixed position within the test section, causing the model to be nearer the floor at the lowest angle of attack tested. An investigation was made to determine if the ground effect of the floor, the nearest surface, was causing any significant effect on the model. The wing-body-nacelle-tail was equipped with the large exits, pitched ω a 6 degree angle, and tested at various forward speeds at different heights. An effect was observed a the lowest forward speed tested but not at higher speeds nor statically (see Figure I-10). The minimum valdel height during normal testing was 42 inches. The nondimensionalized minimup, neight shown below indicates that the large exits will show the most severe interference at lower angles of attack and low forward speed. The order of magnitude may $b \in t^{m}$ to three percent of total load.

Nozzle	Lift Jet	Small Vector	Large Vector
h/D	13.7	11.4	9.3

d. Test Parameters

The testing of powered models creates a requirement for a parameter relating propulsive and aerodynamic forces. The effective velocity ratio as used in this series of tests is the square root of the ratio of freestream unit momentum flux to mean jet unit momentum flux. It is obtained from the following expression:

$$V/V_{J} = \left[\frac{\rho_{co} U_{cc}^{2}}{\rho_{J} U_{J}^{2}}\right]^{0.5} = \left[\frac{Q}{T/2A_{J}}\right]^{0.5}$$

Another parameter, a relative measure of propulsive and acrodynamic forces, is the thrust coefficient - the ratio of thrust to the product of freestream dynamic pressure and wing area.

$$C_T = T/QS$$

The two parameters are related in the manner shown below.

a na manana any amin'ny kaodim-paositra dia kaodim-pa

$$V/V_{j} = \left[\frac{2A_{j}/S}{C_{T}}\right]^{0.5}$$

The effective velocity ratio is used as the prime parameter of this report because it is less related to the geometry of the particular configuration being considered, and it better describes the state of the highly deflected jet.

c. Tost Program

The model was constructed such that nacelles, lift engine, wing, and empennage could be mounted on the fuselage in any combination. Complete model buildups were performed for the wing-body-nacelle-tail configuration powered by the two ejectors in the forward position, and for the wing-body-tail powered by the lift jet. Emphasis was placed on the wing-body nacelle powered by the two ejectors with nozzles in the forward or aft position, and the wing-body without nacelles powered by the lift jet.

A standard series of runs was used throughout the test although not all configurations were tested at all conditions. The series, shown in Table I-V, consists of an unpowered angle-of-attack variation, followed by angle-of-attack variation at several velocity ratios, and velocity ratio variation at fixed angles of attack. A similar pattern was adopted for runs involving sideslip. Both force and pressure data were recorded for most runs.

The range of variables tested included angle-of-attack variations of 0 to 20 degrees, angles of sideslip from 0 to \pm 12 degrees, and velocity ratios of 0 to .3 for lift jet powered configurations and 0 to .5 for ejector powered configurations. Very limited testing was performed at combined angles of attack and sideslip. Testing was accomplished at dynamic pressures of 0 to 71 psf, resulting in Reynolds numbers of up to 1.5×10^6 per foot.

Dynamic pressure and thrust combinations used to achieve these velocity ratios are listed in Table I-VI. Because of tunnel velocity limits, higher velocity ratios were obtained with the use of reduced thrust. Note that these are nominal values. In general, actual thrust levels were slightly lower than those shown.

A summary of configurations tested is given in Table J-VII.

3. Results

a straight faightean na airtean aightean an airtean an an airtean an ann an an airtean airtean ann an airtean a

The results of this test are presented in various sections of this report in support of the development and verification of analytical prediction techniques. Complete results will be published in two NASA Technical Memorandums at a later date.

a. Presentation of Results

The force data recorded during the test are presented in several forms:

- (1) Body axis aerodynamic coefficients.
- (2) Stability axis aerodynamic coefficients.
- (3) Forces and moments nondimensionalized by thrust.
- (4) Forces and moments with direct thrust effects removed, nondimensionalized by thrust.
- (5) Forces and moments with direct thrust effects removed, nondimensionalized by dynamic pressure.

In the reduction of aerodynamic coefficients, forces were nondimensionalized by the product of freestream dynamic pressure and wing area. Longitudinal moments were nondimensionalized by the product of freestream dynamic pressure, wing area, and wing mean aerodynamic chord length; lateral moments were nondimensionalized by the product of freestream dynamic pressure, wing area, and wing span.

In the reduction of thrust coefficients, forces were nondimensionalized by the total calibrated thrust of all nozzles operating. Moments were nondimensionalized by the product of total thrust and an effective diameter. The effective diameter is defined as the diameter of a circle equivalent in area to the sum of the exit areas of the operating nozzles.

Thrust removed coefficients were obtained by removing the forces and moments of the operating engine simulators, as determined during static calibration, from the balance measured loads prior to nondimensionalization.

b. Selection of Unpowered Baseline Data

Analysis of the vectored thrust configuration tests has revealed that significant differences exist in unpowered data taken with the ejector inlets open and closed. These differences exceed those directly attributable to vectoring of freestream flow through the undriven ejectors. When these data are used to obtain an interference effect due to jet operation, two significantly different answers result, dependent on which "unpowered" coefficient is used in the calculations. 7

interference	Ï =	total	_	direct	+	unpowered	
effect		load		thrust		aerodynamics	1

The effect of the open versus the closed inlet on the power off longitudinal aerodynamic coefficients is shown in Figure I-11 as a function of nozzle deflection angle. Opening of the inlet produces a lift increment of 0.216 with the forward small nozzles deflected 90 degrees. The portion of this increment attributable to momentum change of the free flow passing through the ejectors and nozzles may be found using Figures 1-12 and I-13. The unpowered inlet weight flow is found to be 0.46 lbs/sec/ ejector producing an estimated vertical force of 2.43 lbs. This is equivalent to a lift coefficient of only 0.018. Thus, the large part of the inlet lift increment cannot be attributed to flow-through momentum, but must be due to interference with the external aerodynandes.

Powered lift data, nondimensionalized by thrust and shown in Figure I-14, do not reflect the significant differences caused by the open inlet in the unpowered data. The difference in powered lift is seen to remain approximately constant at various velocity ratios and, in general, it is small in comparison to the lift loss equivalent to the aerodynamic coefficient increment obtained from power off data. In contrast, the change in inlet mass flow ratio produced by opening the inlet is greater for the powered case than for the unpowered case.

2 de partras francisco de balancia da la contractoria de

Further examination of the inpowered data, as presented in Figure I-15, indicates that the longitudinal coefficients of the inlet open configurations are functions of nozzle deflection angle while those of the inlet closed configuration are not. This observation in combination with the lack of difference in powered data suggests that the unaccounted inlet increment may be due to the exit interactions of the inlet mass flow as opposed to the variation of the inlet condition per se. This conclusion must be considered tentative, however, because the inlet mass flow ratio as well as the exhaust exit angle are varied by nozzle deflection. An examination of the pressure data for this configuration will give more insight to the cause of the open inlet effect on power off data.

Wing pressure differentials are shown for both inlet conditions in Figure I-16. Opening of the inlets causes a pressure change similar to that produced by a positive angle of attack. Examination of both upper and lower surface pressures at WS 10,55,

Figure I-17, indi ates that the effect is present on both surfaces, confirming that opening of the unlets induces a positive angle of attack change of one to two degrees across the wing, and that the effect is not limited to one of the surfaces.

Pressure distributions about the six fuselage stations are shown in Figure I-18. The data are shown as a locus of pressure normals about the local fuselage contour. Lines within the section indicate positive pressures; lines outside the section indicate negative pressures. A^t interior corners of the body some data have been eliminated for clarity. The effects of the open inlet on fuselage pressures are noted below.

At the most forward station $\Gamma \Im 7.3$, the pressure change is similar to that which would be produced by a positive angle of attack of approximately two degrees. Changes occur on both upper and lower surfaces.

In front of the nacelles at FS 11.8, pressure changes on the fuselage sides are dominated by apparent changes in nacelle blockage.

Lower fuselage and nacelle pressures are made more positive in front of the nozzles at stations 11.8 and 19.65. Upper surface pressures are not affected at these stations.

Aft of the nozzles and nacelles at F_{5} 26.425, opening of the inlets induces a more negative pressure on the lower fuselage sides; other areas are not strongly affected. No data are available on the upper surface of the fuselage at this station.

At FS 34.30, a more negative pressure is induced about the section due to opening of inlets.

Upper nacelle centerline pressures, shown in Figure I-19, are unaffected except in the vicinity of the inlet lip. Lower surface pressures are made more positive in the vicinity of the exit.

Lower fuselage centerline data, Figure I-20, indicate that opening of the inlets creates more positive pressures ahead of the exit and more negative pressures aft of the exit.

Data from the tail flow angularity rake indicate increased downwash when the inlets are open, Figure I-21.

In summary, opening of the inlets produces:

- (1) An induced positive angle of at ack on the wing.
- (2) An induced positive angle of n wack at the nose.
- (3) Positive pressure increments on the lower fuselage and nacelle ahead of the exits.
- (4) Negative pressure increments aft of the exits.
- (5) Little effect on upper fuselage pressures.
- (6) Increased downwash at the tail station.

These flow changes are consistent with those associated with jet exit interference effects at high velocity ratios and tend to confirm the initial observation that the "inlet" effect is largely caused by the exit of the inlet flow.

Further confirmation can be gained by observation of lower fuselage centerline pressures for the configuration equipped with the large aft nozzles. It can be seen in Figure I-22 that the largest effect of the open inlet occurs in the vicinity of the exit not the inlet. If the differential lower centerline pressures due to the opening of the inlet are plotted against distance from the exit as in Figure I-23, it is seen that data for the forward small 90 degree nozzle and the aft large 90 degree nozzle show a surprisingly strong correlation.

It is concluded that the proper unpowered data for the vectored thrust configurations are that taken with the inlets closed. Data taken with the inlets open, though the model was unpowered in the sense that no drive pressure was supplied to the ejectors, are in fact power on data at a very high velocity ratio, $V/V_j = 2.9$ for the small forward 90 degree nozzle which has been discussed.

TABLE I-I. MODEL PROPERTIES AND DIMENSIONS

Wing:

- --

or bloken a generale de bergen en solden en de service de stratege solden and the destriction of the service of the

and the second state of the second
ومراركة مستشروتهم وير

The standard and the second
an an troit duise i gu

how the share had

:

Span, b	40.25 in
Area (projected), S	324.00 in^2
Mean aerodynamic chord, c	8.35 in
Location of 25% c	
F.S	23.83 in
W. L	3.555 in
B. L	± 8.94 in
Taper ratio, λ	0.50
Aspect ratio, AR	5.00
Airfoil section	63A010
Leading edge sweep, $\Lambda_{I,E}$	9.76 deg
Quarter chord sweep, Λ_{c_A}	5.96 deg
Horizontal Tail:	
Show h	00 40 1
Span, b _H	22.40 m 2
Area (projected), S _H	110.72 in
Mean aerodynamic chord, c _H	5.14 in
Location of 25% c _H	
F. S	44.22 in
W.L.	6.62 in
B. L	5.00 in
Taper ratio, $\lambda_{\rm H}$.50
Aspect ratio, AR _H	4.50
Airfoil section	63A008
Leading edge sweep, $\Lambda_{LE_{H}}$	13.40 deg
Quarter chord sweep $\Lambda_{cH/4}$	8.86 deg
Vertical Tail:	
Span (centerline), b _v	11.00 in
Span (exposed), b	9.00 in
Area (exposed), \mathbf{S}_{V}	71.10 in 2
Mean aerodynamic chord (exposed), \vec{c}_V	8.66 in

TABLE I-L. MODEL PROPERTIES AND DIMENSIONS (CONTINUED)

Location 25% \bar{c}_{V}	
F.S	43.93 in
W.J	7.25 in
B.L	0.00 in
Taper ratio (exposed), λv	. 26
Aspect ratio (exposed), AR _v	4.56
Airfoil section	63A008
Leading edge sweep, $\Lambda_{LE_{w}}$	42.9 deg
Quarter chord sweep, $\Lambda_{c_{v/4}}$	34.0 deg

Flap:

Second Strange W.S.

50.000

Span, b _F	0.65 wing span
Chord, o _F	0.25 local wing chord
Deflection, $\delta_{\mathbf{F}}$	45.0 deg

Airfoil Section

	FLAP ORDI	NATES
X/C	Yu/C	Y:/C
0 .0125 .025C .0500 .0750 .1000 .1500 .2000 .3000 .4000 .5000 .6000 .7000 .8000 .9000 .9500	.9350 .0544 .0650 .0788 .0888 .0950 .1069 .1138 .1169 .1138 .1050 .0913 .0525 .0281 .0150	0350 0194 0150 0094 0063 0013 0003 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ert stillet skuttigensen

Overlap	0.01 c
Gap	0.02 c
Location of moment other:	
F. S	23,82 in
W.L.	0.00 in
B. L.	0.00 in

JET EXIT LOCATION TABLE I-II. .

	(/(b/2) <u>r</u> x/ c <u>AZ/D</u> degreés <u>AX/ c</u> <u>AZ/D</u>
2.949 .743 .938	42/D 2.949 .743 .938
112 .068	^ X / δ 112 .068
.000 ±.251	Y/(b/2) 000
06 0 17 10 10 10 10 10 10 10 10 10 10 10 10 10	degrees 90 0
	Forward
2.25 (5.72) 3.67 (9.32)	in. (cm) 2.25 (5.72) 3.67 (9.32)

dX — Distance aft of leading edge of mean woodynamic chord
dZ — Distance below wing
D — Nozzle diameter Note:

=

4

:

	The set of the set			1 4	
×	aghter a l	DIRHOIL	9	11 TT 111	D
^L f	ln.	۳o	0	1.25 (3.18)	2.00 (5.04)
5285	26.425	67.120	æ		
5510	27.550	69.977	170	174	175
57.15	28.675	72.834	176		
5960	25 000	75.692	177		
6135	30.925	78.550	178	179	180
6410	32.050	81.407	181	-	
6635	33.175	84.265	182	183	144
6860	34.300	87.122	đ		
.7085	35.425	89.980	1×6		
7310	36.550	92.837	197		
.7535	37.675	93.154	198		

	e	2.00 (5.04)			130				147	150	153	156	159
	utt Lir	1.25 (3.13)			129				146	149	152	155	158
ers	Ā	0	ಷ	ದ	128	131	ಹ	144	145 ^b	148	151	154	157
ort Numbe	Station	сm	18.542	29.972	38.545	44.260	47.117	49.975	52.832	55.690	58.547	61.404	64.262
Ρo	Fuselage	in.	7.300	11.800	15.175	17.425	18.550	19.675	20.800	21.925	23.050	24.175	25.300
	×	L, t	.1460	,2360	.3035	, 3485	.3710	.3935	.4160	,4385	.4610	,4835	.5069

TABLE I-III. LOCATION OF PRESSURE PORTS ON LOWER FUSEI.AGR

Note: a - See Figure I..7. b - Not present when lift jet is mounted.

- -

TABLE I-IV. WING PRESSURE PORTS

1

- -

~ .		Port Numbers								
Chord	Surface		Spanwise Lo	cation Y/(b/2)						
76		0.25*	.39	.52	.80					
0.0	-	1	24	47	70					
1.0	U	2	25							
1.0	L	13	36							
1.6	υ			48						
2.J	L			59						
0.5	U	3	26	49	71					
2.0	U	14	37	60	81					
5.0	U	4	27	50	72					
	L	15	38	6:	82					
10.0	U	5	28	51	73					
10.0	L	16	39	62	83					
	U	6	29	52	74					
15.0	L	17	40	63	84					
	U	7	30	53	75					
25.0	L	18	41	64	85					
40.0	U	8	31	54	76					
40.0	L	19	42	65	86					
55.0	U	9	32	55	77					
55.0	L	20	43	66	87					
70.0	U	10	33	56	78					
10.0	L	21	44	67	88					
85.0	U	11	34	57	79					
00.0	L	22	45	68	89					
95.0	U	12	35	58	80					
50.0	L	23	46	69	90					

Note: U - Upper Surface L - Lower Surface * - Nacelle Centerline

Velocity	Angle of Attack	Angle of Sideslip
Ka:10	Degrees	Degrees
Unpowered	0 to 20	0
0.3	0 to 20	0
0.2	0 to 20	0
0.1	0 to 20	0
0 to 0.3/0.5	0	0
0 to 0.3/0.5	10	0
Unpowered	0	-12 to 12
0.3	0	-12 to 12
0.2	0	-12 to 12
0.1	0	-12 to 12
0 to 0.3/0.5	0	-8
0 to 0.3/0.5	0	8

TABLE I-V. RUN SEQUENCE

- -- - -- -- --

Ţ

î

TABLE I-VL TEST CONDITICNS

EJECTORS 3.67-inch D Nozzles 4.5-inch D Nozzles 2.25-inch D Noz-le

EJECTORS LIFT JET

HIGH THRUST LOW THRUST

of Endrandsh

Statution and a second statu

serf bad bad

and the state state of the state of the state

and the

** -*** * *

v/v _j	Q	Т	V
	psf	lb	
0.00	0.00	140	0
0:10	4.76	140	0
0.15	10.71	140	0
0.20	19.05	140	0
0.25	29. 76	140	0
0.30	42.86	140	0
0.40	60.00	110	0
0.50	60.00	70.5	0
			0

/v _j	Q	T
	psf	њ
.00	0.00	90
.10	2.86	80
.15	6.43	80
.20	11.40	80
.25	17.86	80
.30	25.70	80
.40	45.60	80
.45	58.00	80
.50	71.40	80

v/v _j	Q	T		v/v _j	Q
	pef	lb	ΙC		psf
0.00	0.00	177		0.00	0.00
0.10	4.00	177		0.10	14.43
0.20	16.00	177		0.15	32.60
0.30	36.00	177		0.20	57 .9 6
0.39	60.0 ()	177		0.20	26.67
				0.25	41.66
				0.30	E0.00
				1	

v/v _j	Q	T
	psf	lb
0.00	0.00	80
0.10	14.43	80
0.15	32.60	80
0.20	57 .96	03
0.20	26.67	37
0.25	41.66	37
0.30	E0.00	37

LIFT JET WITH EJECTORS, 3.67-inch D Nozzles

	TOTAL		EJE	CTOR	LIFT JET	
v/v _j	Q	Т	v/v _j	Т	v/v _j	Т
	psf	16		lb		Ъ
0.00	0.00	188	0.00	140	0.00	48
0.09	4.76	188	0.10	14u	0.07	48
0.14	10.71	188	0.15	140	0.11	48
0.19	19.05	188	0.20	140	0.15	4 8
0.24	29.76	188	2.20	140	0.19	4 8
0.28	42.86	188	0.30	140	0.22	48
0.38	-0.00	143	0.40	110	0.32	32.5
0.50	60.00	84.2	0.50	70.5	0.49	13.7

	VEHICLE COMPIGURATION									
POSER CONFIGURATION	BODY	BODV-WINU	BODY-WING-TAIL	BODY-WING-FLAP	BODY-WING-TAIL & FLAP					
lipt jet	AB	AB	AT							
FOR VECTOR DEF 0° 45° 90°	AB	А А Ат	A A ABT	A A	A					
AFT VECTOR DEP 0° 45° 90°		A Ab		A	A					
AFT VECTOR 4.5" 90 ⁰		A								
LIFT & FOR VECTOR DEF 90 ⁰		AB								
LIFT JET & AFT VECTOR DEF 90 ⁰		AB								
note: / F - T -	note: A - longitudinal data F - lateral data T - stabilator effectiveness									

. A david i ožavida prizve

and the second
errendentat sonan danta). Da si isha karyang da higi ushigi uparatikon karya shirina tara shuatkan ya kara taratu uta datatika

b the second
webship way down

and without

í,

TABLE I-VII. TEST PROGRAM SUMMARY

FIGURE I-2. WING-BODY-NACELLE WITH TAIL FLOW ANGULARITY RAKE, POWERED BY SMALL FORWARD NOZZLES

FIGURE I-3. WING-BODY-NACELLE-TAIL WITH FLAP, POWERED BY AFT SMALL NOZZLES

いっちょうちょう ちょうちょうちょう ちょうちょう

FIGURE I-4. WING-BODY-TAIL, POWERED BY LIFT JET

and be to be a supported on the second state of the second state of the second state of the second state of the

A LEBOR

and the state of t

FIGURE I-5. EJECTOR OPERATING CHARACTERISTICS a. FORWARD SMALL NOZZLES

Ć

A Comparison of the second
With the state of the second state of the seco

FIGURE I-5 (cont.) EJECTOR OPERATING CHARACTERISTICS b. AFT SMALL NOZZLES

and a state and reactions of the state of the

FIGURE I-5 (concluded). EJECTOR OPERATING CHARACTERISTICS c.AFT LARGE NOZZLES

FIGURE I-6. TYPICAL EXIT PROFILES ALONG LONGITUDINAL NOZZLE CENTERLINE

and a substant of the state of

.....

10.00

195

194

FIGURE I-7. CIRCUMFERENTIAL FUSELAGE PRESSURE PORTS

a start and a start of the start

A A A A

denen

36

alman St.

FS 18.55

ŝ

i

FS 19.675

FIGURE I-7 (concluded)

and the second second and when a second states of

n git det en i verse het bestande en de se statiget i nie en en en en et er en
and strategies when the second second

To start a back of the cost of the start of the start of the start

added and an analysis and a second the second states of

ž

the state of the second state of the second states of

۰.

FIGURE I-10. EFFECT OF MODEL HEIGHT, $\alpha = 6^{\circ}$

abata farman an

FIGURE I-12. INLET WEIGHT FLOW FOR UNPOWERED EJECTOR SMALL NOZZLES

FIGURE I-13, THRUST DUE TO FREE FLOW INLET SMALL NOZZLES

FIGURE I-14. EFFECT OF OPEN INLET ON POWER MODEL LOADS WING-BODY-NACELLE, SMALL FORWARD NOZZLES DEFLECTED 90 DEG.

5 40 M M M

FIGURE I-15. UNPOWERED AERODYNAMIC COEFFICIENTS WING-BODY-NACELLE, SMALL NOZZLES $\alpha = 0$

209

Course Substants

FIGURE I-16. EFFECT OF FREE FLOW THROUGH INLET ON WING PRESSURE LOADING

a starting a start of a starting the second starting as

FIGURE 1-17. EFFECT OF FREE FLOW THROUGH INLET ON SECTION PRESSURE LOADINGS

4

THE PARTY AND A

:

FIGURE I-18. EFFECT OF FREE FLOW THROUGH INLET ON FUSELAGE PRESSURES WING-BODY-NACELLE, FORWARD SMALL NOZZLES, $\delta_{j} = 90^{\circ}$

.

Carlowed Street

DARSON PERSONAL

and the second second second second

and a second

FIGURE 1-18 (cont.)

* * *

400

\$ •

No. of Lot of

American T

1

and they are a

FIGURE I-19. EFFECT OF FREE FLOW THROUGH INLET ON NACELLE CENTERLINE PRESSURES

hang pada uga pengangan na natara Uning pengangan dan pengangan karang karang dapat dan pengangkan dari karak b

Wing Body Nacelle, Forward Small Nozzles, $\delta_i = 90^{\circ}$

FIGURE I-21, EFFECT OF FREE FLOW THROUGH INLET ON DOWNWASH AT THE TAIL FLOW ANGULARITY RAKE

der for sond diversion of the second second second second second a second second second second second second s

FIGURE 1-22. FREE FLOW INLET EFFECT ON LOWER FUSELAGE CENTERLINE PRESSURES

APPENCIX II

BALANCE CORRECTIONS AND CALIBRATION

Calibration of the basic balance was performed by NASA- Langley using well established procedures. The effects of the air supply line, which spanned the balance, were determined by loading of the balance both with and without the airline using the e^{i} ume series of loads. A matrix of correction coefficients was then derived which caused the corrected airline-on loads to match the measured airline-off or applied loads. The loads were applied through the use of a complex device utilizing a system of weight pans, fulcrums, and levers. The resulting correction factors are shown below. The 6 x 6 matrix indicated in Appendix I is shown here as two 3 x 3 matrices as longitudinal and lateral components were not found to interact.

$$\begin{cases} Corrected \\ Loads \\ \end{cases} = \begin{cases} Correction \\ Matrix \\ \end{cases} \begin{cases} Measured Loads \\ Airline-On \\ \end{cases}$$
$$\begin{cases} N \\ A \\ M_{y} \\ C_{1} \\ \end{bmatrix} = \begin{cases} 1.0 & 0 & -.0021 \\ -.0019 & 1.092 & -.0014 \\ .056 & -.0115 & 1.107 \\ 1 \\ \end{bmatrix} \\ \begin{cases} M \\ M_{z} \\ Y \\ C \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{cases} M_{x} \\ M_{z} \\ M_{z} \\ Y \\ \end{bmatrix} = \begin{cases} 1.025 & -.0181 & 0 \\ -.0592 & 1.085 & 0 \\ .0008 & -.0014 & .9960 \\ \end{cases} \\ \begin{cases} M_{x} \\ M_{z} \\ Y \\ \end{bmatrix} \\ \end{bmatrix} \\ Bal$$

Because of initial difficulties in obtaining the longitudinal corrections shown above, a second loading of normal force and pitching moment was made with the use of a bar and moving weight pan. This resulted in a different set of longitudinal corrections. Interactions due to axial force were taken from the previous loading.

.

$$\begin{vmatrix} N \\ A \\ P \\ M_{y} \\ C_{2} \\ \end{vmatrix} = \begin{vmatrix} .9945 & 0 & -.00198 \\ .01167 & 1.002 & -.00316 \\ .27 & 0 & 1.109 \\ 2 \\ \end{matrix} = \begin{vmatrix} N \\ A \\ M_{y} \\ M_{y} \\ Bal \end{vmatrix}$$

.

This matrix differs significantly from the original in the calibration of corrected axial force and pitching moment. The pitching moment difference would cause normal forces to appear approximately .2 inch farther forward if the second matrix is used in preference to the first. The use of the second matrix would also indicate increased drag with positive normal force and decreased drag with positive pitching moment when compared with data reduced by the first matrix.

The second matrix has been used to reduce the data presented in this report because more experience was available with the method of loading. In addition, the second matrix gave better results on the position of a small test weight and it indicated that the lift jet center of pressure, which was not constant, approached the geometric center of the exit at higher thrusis as opposed to moving away. However, the results of these checks were not conclusive. The matrix below indicates the final matrix of correction coefficients \tilde{K} .

x =	.994 5	Û	00198	0	0	0
	.01167	1.002	00316	0	Ŭ	0
	.27	G	1.109	0	0	0
	0	0	0	1.025	0181	0
	0	e	0	0592	1.085	0
	0	0	0	.0008	0014	.9960

The matrix shown below will convert the longitudinal data presented in this report to the form it would have had if the original corrections were used.

$$\begin{vmatrix} N \\ A \\ M \\ M \\ y \\ C_{1} \end{vmatrix} = \begin{vmatrix} 1.0055 & 0 & -.0001 \\ -.0142 & 1.000 & .0016 \\ -.213 & -.0115 & .9975 \\ M_{y} \\ C_{2} \end{vmatrix}$$

Nominal accuracy of the basic balance is indicated below.

Component	N	Α	Y	M _x	My	Mz
Accuracy – lb or inlb	±2.5	±1.0	±1,5	±5	±15	±10

APPENDIX III

EFFECT OF FORWARD SPEED ON EJECTOR JET ENGINE SIMULATORS

In order to investigate the effect of forward speed on the thrust of the ejector jet engine simulators, the bellmouth used during static calibration was attached to the ejector unit mounted in the test section. The inlet mass flow variation with forward speed was then determined. The effect of forward speed on inlet mass flow is shown in Figure III-1. The changes shown are small, less than six percent, and may reflect changes in the effective area of the bellmouth which was calibrated under static conditions.

a friend for a friend start for the start strategy and the

If the thrust of the ejectors is assumed to vary with the square of the total mass flow, the change in thrust may be computed.

$$\frac{T}{T_0} = \frac{(\rho A_j U_j) U_j}{(\rho A_j U_j) U_j} = \frac{\dot{w}^2}{\dot{w}_0^2}$$

The computed change in thrust due to forward speed is shown below. The maximum thrust change occurs at the highest forward speed.

Nozzle	T _o , lb	$\frac{T}{T_0}$ Max	Q, psf
	136	1.026	0 - 60
Small Forward	105	1.026	0 - 60
δ _j = 90°	80	1.059	0 - 70
	60	1.061	0 - 60
Large Aft ðj = 90°	178	1.001	0 - 60

A greater change occurs at lower thrust levels because of the larger ratio of secondary to primary flow.

The maximum thrust errors are of a magnitude less than twice the nomical accuracy of the normal force beam, and the maximum pitching moment errors are of the same relative magnitude. Correction for the errors would be significant only at the higher velocity ratios tested. At maximum dynamic pressures correction would result in a three percent reduction in velocity ratio and a six percent reduction in thrust nondimensionalized data. As the majority of data show a positive slope at high velocity ratios, the effect is minimized, because the corrected datum tends to move along the established curve.

Very Condex's

The second s

ALCONDO AND A

FIGURE III-1. EFFECT OF FORWARD SPEED ON INLET FLOW FROM BELLMOUTH MEASUREMENTS

APPENDIX IV

NORMAL FORCE AND PITCHING MOMENT IN THE LIFT JET WAKE

The jet model includes no mechanism which will account for the wake region behind the jet. Consequently, calculations utilizing the jet flow field program are not in good agreement with test data in this region. As indicated in Section III the wake region contributes the major part of the loads on the fuselage so that it is desirable to have some method for estimating the integrated force and pitching moment for this region.

To enable estimates of the fuselage loads in the wake behind the lift jet to be made, it has been assumed that the difference between test data and calculations in this region is the same as the difference between test data and calculations for the component model of Reference 99.

Thus, for example, if the fuselage is at zero degrees angle of attack and sideslip, the wake contribution to the interference lift, ΔL_i , is given by

$$\frac{\Delta L_{i}}{T} = \frac{2}{\pi} \left(\frac{U_{oo}}{U_{jo}} \right)^{2} \iint_{WAKE} \left(\left(C_{P} \right)_{test} - \left(C_{P} \right)_{caeculation} \right) \frac{\delta WAKE}{d_{o}^{2}}$$

in which T is the jet thrust. This double integral has been evaluated for a range of position along the test fuselage and is shown in Figure IV-1.

The wave contributions to pitching moment may be determined in a similar manner. The results, for the three velocity ratios .125, .2, .3 are shown in Figure IV-2. The moment axis has been taken through the center of the jet.

In Section III adjustments to the calculations have been made to account for the jet wake effect. The jet wake contributions were obtained from Figure IV-1 for a wake length of 13.5 jet diameters.

arra.

Short-

2

ないたちにないたけできる

et C.

REFERENCES

- 1. Danek, G. L., "Body Jet Interference Lift Data," NRL-A-769, Northrop Memo No. 3744-67-33, Northrop Corporation, Norair Division, 1967.
- Gregory, N., Raymer, W. G., Love, E. M., "The Effect of Forward Speed on the Inlet Flow Distribution and Performance of a Lifting Fan Installed in a Wing," Aeronautical Research Council, R&M 3388, June 1962.
- 3. Aoyagi, K., Hickey, D. H., Desavigny, R. A., "Aerodynamic Characteristics of a Large-Scale Model with a High Disk-Loading Lifting Fan Mounted in the Fuselage," NASA TN D-775, October 1961.
- Hickey, P. H., Hall, L. F., "Aerodynamic Characteristics of a Large Scale Model with Two High Disk-Loading Fans Mounted in the Wing," NASA TN D-1650, February 1963.
- Margason, R. J., Gentry, G. L., "Aerodynamic Characteristics of a Five-Jet VTOL Configuration in the Transition Speed Range," NASA TN D-4812, October 1968.
- Trebble, W. J. G., Williams, J., "Exploratory Wind Tunnel Investigations On a Bluff Body Containing a Lifting Fan," Aeronautical Research Council CP 597, 1962.
- Anon, "Wind Tunnel Test Report, Lift-Fan Powered Scale Model," G. E. Report No. 137, November 1963.
- 8. Sacks, A. H., "Aerodynamic Forces, Moments, and Stability Derivatives for Slender Bodies of General Cross Section," NACA TN 3283, November 1954.
- 9. Hoerner, S. F., Fluid Dynamic Drag, 1958.

المرابع المستعمل والمستعمل وال

- Loftin, L. K., Jr., and Smith, H. A., "Aerodynamic Characteristics of 15 NACA Airfoil Sections at Seven Reynolds Numbers from 0.7x10⁶ to 9.0x10⁶," NACA TN 1945, October 1949.
- Heyson, H. H., "Use of Superposition in Digital Computer to Obtain Wind Tunnel Interference Factors for Arbitrary Configurations, with Particular Reference to V/STOL Models," NASA-TR-R-302, February 1967.
- 12. Stevens, J. R., McDonald J. W., "Subsonic Lifting Surface Design and Analysis Procedure", Northrop Report NOR 64-196, April 1964.