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ABSTRACT

Analytical engineering methods are developed for use in predicting the static

a'.d dynamic stability and control derivatives and force and moment coefficients of
lift-jet, lift-fan, and vectored thrust V/STOL aircraft in the hover and transition
flight regimes. The methods take into account the strong power etfects, large
variations in angle of attack and sideslip, and changes in aircraft geometry that are
associated with high disk .0aded V/STOL aircraft operating in the aforementioned
flight regimes. The aircraft configurations studied have a conventional wing,
fuselage and empennage. The prediction methods are suitable for use b desis;u
personnel during the preliminary design and evaluation of V/STOL aircraft of the
type previously mentioned.

This report consists of four volumes. The theoretical developmeat of the
prediction methods is presented in this volume. The methods are applicd to a number
of V/STOL configurations in Volume II. Details of the computer programs associated
with the prediction methods are given in Volume III. The results ot a literature

survey are presented in Volume IV,
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SECTION 1 !

INTRODUCTION' o ‘ !

i : x
The problem of specifying the in-flight behavior of an aircraft can be considered
as one of determining the effect the dynamic motion of the craft has on the fluid through
which it {8 moving and, hence, or. what forces and moments are impressed on the
vehicia due to this motion The forces and moments thus impressed on the- vehicle
together with thrust and inertial response completely determine the aircraft behavior,
The determination of the forces and moments experienced by an aircraft is, therefore,
of importance for determining aircraft: performance and stability and control require~
ments, Methods for predicting the aerodyna.mic behavior of conventiona,l aircraft have
been established and are documented in a form suitable'for use by the preliminary
designer in Reference 1. V/STOL aircraft of the lift jet, lift fan, and vectored
thrust type pose aerodyna.mic problems which are siénificantly different from the
aerodynamics of conventional aircraft. New problem areas arise mainly through .
the interference of the lifting jetor far efflux on the relative mainstream flow due to
aircraft forward speed or natural wind. Also, due to its particular form of propulsion, |,
a V/STOL vehicle is likely to fly at large angle of attack and/or sideslip during some
part of its flight path so that nonlinear aerodynamics become an important factor in
determining the aerodymamic forces and moments on these vehicles

To date no satisfactdry methods for estimating the power induced aerodynamics
of the lift jet, lift fan or vectored thrust V/STOL aircraft have been established. The
subject of nonlinear aemdynamice has received little attention and no generally accepted
prediction methods exist at this time. This study has been concerned with obtaining .
the air induced forces and moments on V/ STOL aircraft cf the lift jet, lift fan and
vectored thrust type in a convenient forin to allow motion stndies to be made This
requires that the magnitude:of the force and moment components be determined as
functions ;of a consistent set of flight variables. | '

These force and moment components are treated as being functions of the flight
variables, a consistent set of which are «, B,U,a , B, p,q,r and any higher
order of terms such as 2 which may be considered pertinent The basic problem :

of any aerodynamic stability study thus reduces to obtafning accurate functional

] 1
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relationships between the forces and moments and the flight condition, for example,

L=L{aB,U,aBpar.,...}
These functional relationships then permit all the necessary aircraft motions to be
obtained assuming the thrust and inertial characteristics of the vehicle are known.

A complete functional relationship such as the above equation is seldom obtain-
able in practice. However, the effect of the most significant parameters on given
-components or parts of the aircraft is usually obtainable. These effects are added
together and assumed to hold for the complete airplane.

1. PURPOSE

The purpose of this investigation was to develop analytical engineering methods
for predicting the static and dynamic stability and control derivatives and force and

 moment coefficients of lift jet, lift fan, and vectored thrust V/STOL aireraft in the

hover and transition flight regimes. These methods were to take into account the
strong power effects, large variations in angle of attack and sideslip, and changes in
aircraft geometry that are associated with high disk loaded V/STOL aircraft operating
in the aforementioned flight regimes. Where appropriate, use was to be made of high‘
speed computers to obtain solutions having reasonable time periods for implementa~-
tion. The aircraft configurations studied were to have a conventional wing, fuselage
and empennage. The methods developed were to be suitable for use by design

| personnel during the preliminary design and evaluation of V/STOL aircraft of the

: type previously mentioned.

2. TECHNICAL APPROACH

This investigation has been concerned with the development of theories for
predicting the forces and moments on 1ift jet, lift fan and vectored thrust V/STOL
aircraft. In general, due to the complexity of the interaction between the propulsive
system and the airframe, it has been found necessary to use computer prograins to
enable the forces and moments to be calculated. Some of tile methods developed are
‘simple enough to be reduced into a handbook procedure. Examples of such methods
are those based on slender body theory and the viscous cross flow hypothesis.

This investigation has followed the conventional procedure in a manner most
suitable for the treatment of V/STOL aircraft.

|



A basgic assumption, for the methods developed in this investigation, is that
the power induced effects can be treated separately from the unpowered aerodynamic
effects and the two sets of solutions added together to produce the total aerodyanmic
effect.

A second assumption is that the aerodynamics can be treated component by
con'nponent and the results added together for the total aircraft. This assumption
holds for both the power~induced and unpowered effects. Whenever possible,
mutual interference between components has been taken into account to obtain a more
accurate solution. This approach is essentially the procedure used in Reference 1
and is considered to be most suitable for use as a design tool.

The technical approach used in developing the prediction methods was based on
theoretical and semi-empirical analyses. It was thought that correlation of wind
tunnel test data, in terms of geomet.:ic and flow variables, would be an impossible
task without theoretical and semi-empirical methods to indicate correlation vari-
ables.

An extensive literature search was'conducted to identify available test data’
and areas for which further data was required to develop and validate the prediction
methods. As a result of this literature search, two wind tunnel test programs were

conducted.

In the first of these test programs, a flat plate model containing up to three
nozzles was tested to assist in the development and validation of the jet flow field
theory. The results of these tests have been documented in Reference 3. In the
second test program, a complete configuration model was tested in the NASA
Langley Research Center V/STOL tunnel. This model consisted of two wing-mounted
vectored thrust engines and a lift-jet engine embedded in the fuselage. The vectored
thrust nozzles were designed for exit positions at two longitudinal locations. For the
aft lo¢ation, two nozzle exit diameters were available. Data from this test has
been used to verify the prediction methods. A data report for this test will be
published by NASA at a later date.

3. REPORT ORGANIZATION

The report consists of four volumes, entitled:

Volume I - Theoretical Development of Prediction Methods
Volume II -  Application of Prediction Methods



Volume III - Manual for Computer Programs
Volume IV ~ Literature Survey

In Volume I, the aerodynamic prediction methods are developed in a form suit-
able for application to each aircraft component. The applicable theoretical analyses
or semi-empirical bases are presented. Empirical coefficients are determined,
where necessary, and then extensive comparisons of calculations with test data are
made.

Volume II gives detailed examples of the application of the prediction methods
to the determination of the aerodynamic forces, moments, and in some cases, surface
pressure distributions, on the aircraft wing, fuselage and empennage. In each case,
a sample problem is given to illustrate the application of the methods and method
limitations are also discussed. Also discussed in Volume II is the wind tunnel
test program conducted in the NASA Langley V/STOL tunnel and the use of the

resulting data to validate the applicable prediction methods.

Volume III contains a detailed description of the compuier programs developed

in this investigation.

Volume IV documents the results of the literature survey conducted to identify
existing test data and theoretical methods relating to this investigation.



SECTION @I
JET FLOW FIELD THEORY

A fundamental problem in the development of methods for predicting aerodynamic
characteristics of lift-jet, vectored thrust and lift-fan V/STOL aircraft is that of for-
mulating a mathematical model to estimate the effects of the propulsion system efflux
interaction with a crossflow. During the transition flight phase, this efflux is directed
at larg. angles to the freestream and has a significant influence on the aircraft aero-
dynamic performance as well as on its stability and control characteristics.

A number of analytical formulations of the problem of a single jet exhausting into
a crossflow exist, and details of the different approaches may be found in Reference 2,
An approach to the problem of a single, normally exhausting jet, which appeared to
offer possibilities of treating more complex configurations, is given in Reference 4.
In this reference, an entrainment model was developed from dimensional analysis and
physical considerations. The force on the jet boundary as a result of the pressure
differential around the jet was accounted for by a crossflow drag. The geometry of the
jet cross section was represented by an ellipse. Assuming constant and equal density
for the jet and the crossflow, the continuity and momentum equations were solved for
the jet path. The jet-induced velocity field was then determined by replacing the jet
by a distribution of sinks and doublets.

The analytical model described above has been further extended to treat jets
exhausting into arbitrarily directed freestreams as well as multiple-jet conﬁgurgtions.
Multiple-jet configurations are treated as combinations of discrete jets, with leading
jets assumed to develop independently and downstream jets assumed to exhaust into a
freestream of reduced dynamic pressure,

To generate data which would substantiate these assumptions and also provide
information for further refinements to the analytical! model, a wind tunnel investigation
of jets exhausting into a crossflow was conducted. The test configuration consisted of
a four-foot diameter circular plate, containing up to three circular jets, which was
elevated 12 Inches from the tunnel floor and aligned with the air flow. The plate con-
tained pressure taps to determine the surface static pressures. Jet centerlines and
decay characteristics were obtained with a total head rake.- Data from this investiga-
tion have been presented in Reference 3.



Data from the wind tunnel investigation have been analyzed and used to verify
some of the assumptions made in the deve[opment of the analytical approach. The
mathematical model has been refined using data from the wind tunnel investigation.

The single jet i8 considered in Sections II. 1 and II, 2. The details of the analyti-
cal model are presented. Refinements of the empirical parameters, based on analysis

of the experimental data,are discussed. Extensive comparisons between theory and

experimental data are presented.

Two-jet configurations are treated in Sections II. 3 and 11.4. An expression for
the effective dynamic pressure which the downstream jet ''sees" as a result of the block-
age of the crossflow by the upstream jet is derived. The test data are used to verify
that the upstream jet develops independently of the downstream jet. Calculations of
jet centerlines and induced surface etatic pressures are compared with test data for
a number of two-jet configurations,

Applications of the analytical model to more complex configurations are pre-
sented in Section I1.5. Computations of the induced pressure distribution around a
two-jet configuration, with the jets at different thrust levels, are compared with test
data, The extension of the computational procedure to the treatment of more complex
jet arrangements is carried out for a three-jet configuration. An empirical relation-
ship for the reduction in crossflow dynamic pressure for the third jet, as a result of
blockage by the two upstream jets, is given. Comparison between theory and data for
the variation of surface static pressure induced by a three-jet configuration is shown,



1. SINGLE JET ANALYTICAL MODEL
a. Normally Exhausting Jet

Consider a circular jet exhausting at a right angle into a uniform mainstream
as shown in Figure 1. When a jet exhausts at an angle into a mainstream it is deflect-
ed partly by viscous entrainment and partly by the force on the jet boundary resulting
from the pressure differential around the jet. It is assumed that the flow is incom-~
pressible and viscous effects other than entrainment are neglected. Dimensional con-
siderations then suggest that the entrainment of mainstream fluid per unit length of
jet may be written as

pE2 (U)~tho 51n8) C

£ = & UsodcasO + )+ Es U €036/ (1)

A fluid particle approaching the jet near the plane of symmetry will be more
easily entrained by the jet than a particle that is moving away from the jet. The sus-
ceptibility of the approaching particle to jet entrainment is accounted for by the term
pE,Uxdcosf in Equation (1), Particles moving away from the jet or to its side, with
momentum not directed toward the jet,are less tolerant to jet entrainment. The term

QE:(U(—%,?/_;Q)C
!+ £L3cos6 g;

takes this into consideration while satisfying the Ricou-Spalding solution for the freejet
case when U, = 0. The net force acting on the jet boundary, as a result of the pressure
differential around the jet, is accounted for by a crossflow drag. The force on a jet
element of unit length is

Fp= Cptplscos@d @

where CD is the cross flow drag coefficient of the jet.
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(1) Equations of Motion

The entrainment of mainstream fluid into the jet and the pressure forces on the
boundary of the jet govern the equations of motion which can now be written, using the
coordinate system defined in Figure 1. '

The continuity equation may be written as
p dids (AjU) = £ (3)

The only tangential forces acting on the jet are the viscous forces resulting in
entrainment, so that the momentum equation for the jet flow in the tangential direction
is

Qo a/ds (AUt = Elosmb (4)

The deflection of the jet is due to the centripetal action of the pressure force on
the jet boundary and the entrainment of mainstream fluid with momentum in that direc-
tion. The force equation governing the curvature of the jet may now be written as

PAUYR = Elkocas + (pb plhscos’dd ()
= PAYXT L1 ey ]2 |

where R is the radius of curvature of the jet centerline and the primes denote differen~
tiation with respect to Z. Replacing d/ds by cos 6 (d/dz) in Equations (3) and (4)
reduces the problem to one of finding d, Uj and X as functions of Z, the entrainment
parameters E 1 E2 , E3 and the cross flow drag coefficient Cp. However, a func-
tional reiationship between the cross sectional area Aj, the circumference C of the

jet and the jet growth must be established.

Experimental observations show that there is a region in wkicl: the jet deforms
from its initial circular cross section into a kidney-shaped one (Reference 8). Once
this shape is attained, the jet cross section remains relatively similar (Reference 7).
Since it did not appear possible to tireat the exact jet shape, a simplified jet shape, an
ellipse, was chosen. Correlation of data for a normally exhausting jet indicates that
the extent of this region, in which the cross-sectional deformation occurs, is a func-
tion of the jet exit to mainstream velocity ratjio U jo/U°°‘ The extent of this region may

9



be expressed by 0572/do%. 3Uj,/Uxs. When Z/do.3Ujo/Uw, observations show that
the best fit of the jet cross soction with an ellipse is one with a ratio of minor to major
axir of 1/4. Experimental data further indicate that, in the development region, the
ratio of minor to major axis decreases linearly with distance from the jet orifice
(Reforence 8). Therefore, the geometry of the jet may bo treated in two reglons:

e A region In which the jet deforms to an elliptical cross section and the ratio
of minor to major axis decreases linearly with Z from 1 at Z/do: 0tol/4
at Z/do =H=.3 UJO/UOD

D = ratio of minor to major axis
- A(Z/d) + B

Substituting boundary conditions above, yields

=/ - 1572 (z’lo)(ux'/q,o)l

then

C = nd [1r L= B (Z/duzl"‘

0=Z/dosH  (6)

{
- 7d [/f[l—5/z(3/a'o (U-o/%)l_] &
A = l

/- 2 27 (2/d )] &
_ 2
= 7 |/- 22 (F)Yelo)) 4
From the preceding expressions it can be scen that if Uj,=0, as Ux=0, the development

region becomes 05Z/ 4 5o and the jet retains (ts circular cross section, which 8 to
be expected since the jet is now exhausting into quiescent surroundings.

® A region in which the jet retains a similar cross section

QD = /4
C = 2724d ’ 7/do> H (7
Aj =  md*i6 ‘
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(2) Integration of the Equations of Motion

The left hand side of Equation (3) may be rewritten as

pa/ds (44) = pdids (4 2,

now
p aids (AiU?) — p dfds (4iy?) +pdU;?)dids(-L)
Y dj 4
where from Equation (4)

pd/ds (4/ q}z) = ElUao 5B

then
dlds (AiUY) = _| Elwsmb —(R4IUT) dids (U))
© s (Agh) = o EosnO-(R4L) ’
substituting into (8)

"0," E U 56 - p 4j dfds (Uj} = £
]

Substituting for Aj, C and letting d/ds = cos 6 (d/dZ)

pr (-2 2 %)g’ cosO didZz (U]) w

{95 Ues dcos 8 4 &(U-lUonb) nd [/ # [ 1- %2 (Fedo) (Gl ] ‘] v }
2

X _Um,slﬂg—f}
Y

11

(8

9

(10)

(11)

(12)

(13)



Dividing by pdUg and letting Z* = 2/do, Uj* =Uj/Ujo, and m = Ujo/Ug

w4 (1- %2 d cas® dfdZ (U;) = (14)

{ Eicos@ + L2 (mUt~smB) i [H(ﬁ-%%’)‘]"’} {,st-me
/ + &3<cas8/U*m 2 j| mys*

if d/dZ = (1/do) d/dZ* and d* = d/do then the left-hand side of (14) becomes

/4 (1- 922\ d* case dfdz* (Ui/Us)

or

m/a1- %2 ) d*osé m djdz* (U’

Equating and solving

AU _ | Eicosd ¢ 2 lmut-snb)T l/ Hi-TE )‘J"‘
dz* /+Ezcos8/y,'m 2 (15)

x sinb-mu’*
74 (1- 52 Z7) dm* U eos®

The equation for de*/dZ* applicable for the developed region is obtained by substi-
tuting Equation (7) for Aj and C in (12)

g . /6
rr

X (16)

Ecos® ¢ Lz (ml*-=sm6)224

in@-my;*
[+ Ex s/ m [.s ! ]
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Substituting Equations (6) and (7) into Equation (3) and again letting Z*= Z/d,,,
d* = d/do’ Uj* = Uj/Ujo and m = Ujo/U“’ yields

dd* - {Eavséﬁé'z{mq;f_émg)” ﬂ%jllz} .

2¥ maosO
dz* < an
K4 +Z ¥ ¥ - .+ ., Z*
v 5l 1d" Y - ) 4% | [ -2 &)
and
5 cos0 + L2.mUi-sm8)2.24 _ £ measBd* dy’
.dd_; = [+ E3cas8/U'm /2 dz*
a2 (7/8) mcos@ U;* (18)
Substituting Equations (6) and (7) into Equation (5) leads to
5/2
Xt _ | e gk
ol 2** (dZ * ) . (19)

(£ +.5Cp) cosO + _Lz(mU,sinb)i [ | +(1-5/z%'£-]
/t£3cos8/Y’m 2 66

me(iyd* (- 572 )

and

X = | (LY
dz2* aZz (20)
(6cosO (Ei+.5Cp)cosO 4 £3(my, *-5mb) 224 )

rméa*y*? /+Ezcase/Y’m I

Equations (15), (17) and (19) are applicable to the development region of the jet and
Equations (16), (18) and (20) are applicable for the developed region, that1s, when

Z*/m>, 3,
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With the additional substitution

{
cos@ .

(v g

5/’70 = dX’/'dZ" _
Li+ (X2 ]"

the preceding equations are seen to constitute a set of differential equations to be
solved for Uj*, d*, and X*as functions of Z* and the parameters E1 . E2 . E3 » and Cp,.

Initial conditions at the jet exit are
Z*=0., X*=0., Up*=1,, and dX*/d2* = 0.

It has not been possible to integrate these equations in closed form, but they
have been integrated numerically with the aid of a digital computer. The system of
first order differential equations is solved by means of a fourth order Adams
predictor/corrector method using a Runge-Kuttz starting solution.

(3) Determination of Empirical Parameters

The parameter E, is determined by considering the results for a freejet, since
E, is the only parameter remaining in Equation (1) when Ug = 0. From the data of
Reference 6, Eo was originally determined to be .08, on the basis of measured entrain-
ment rates in the fully developed region of a jet exhausting into a quieacent environ-

ment.

The entrainment of ambient fluid into a jet in the development region will gener-
ally be a function of the exit characteristics of the jet and therefore will usually vary
from test to test. The entrainment characteristics of the jet of Reference 3 are shi:wn
in Figure 2, It is observed that entrainment of fluid by the jet increases in the devel-

opment region and approaches the asymptotic value of Reference 6.

The variation of entrainment with distance from the jet exit has been incorporated
into the jet model hy allowing E2 to vary in the development region. Knowledge of the
entrainment characteristics for the static case is, therefore, used in determining

crossflow effects. For the calculations presented in this report, the variation of Eo

14
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in the development region to its asymptotic valae of .08 is based on the information of
Figure 2.

Cp is also varied in the development region to take into account the change in the
cross-sectional profile of the jet in this region. The relationship between Cp and the
cress section of the jet which is employed in the computations has been obtained from
an inves..~tion of the data presented in Reference 25 and is given by

"y = - 1 6.6 .4
¢p ['5;*—2‘* J/6

where 2 is the ratio of minor to major axis of the ellipse representing the cross sec-
tion of the jet in the development region. This expression for Cpy was derived from
subcritical test data and thus the range of Reynolds numbers for which it can be con-
sidered valid is approximately 10’s Re £10° . Variations in Cpy do not appear to have
a great effect on the predicted values of jet-induced velocities, so that use of the ex-

pression outside the Reynolds number range defined above is not expected to lead to
significant errors.

The parameters E; and E; were chosen at values giving good correlation bet-
ween experimentally and theoretically determined jet centerlines and jet-induced sur-
face pressures. The details on the test data utilized are presented in Section II. 2.
This approach led to a final set of values of E; =. 45 and E3=30.

(4) Calculation of the Inducea Velocity Field

To obtain the velocity field due to the jet interference, the entrained fluid is
represented by a uniform sink distribution along an axis normal to the mainstream
and the jet blockage effect by a doublet distribution along the jet centerline as shown
in Figure 3. The strength of the doublet distribution is obtained from the 1/Z term
in the complex velocity potential expansion W(Z) for the two-dimensional flow past an
ellipse. In effect, by replacing the jet with a doublet distribution, the flow past an
equivalent circular cylinder is being considered.

Consider an element of the jet, length s, centered at (X, 0, Z). The sink
strength per unit distance in the n direction will then he given by

m = £, Ueo decos® 4 Ez (U)-Unsing)C J _Z_b_ 1)

|+ £3cos8/U,
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FIGURE 3. SINK AND DOUBLET UISTRIBUTIONS
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The velocity poteatial for 2 sink element of leagth é8
0= L

mmma:mvapﬂv.z’,)uwaumawu
will be

(22
v( = - w/al’
= =~ m d7
qar*
i [(Z-Zp) + (X-Xp)* +(7+Yp)]
The v=locity component in the X direction is given by
us = - odfaor = -/or)(Or/ox)
Performing differentiation with respect to Xp
4, = - _M o (23
? 4ar? dq oK
do = m dg (X-Xp)

41 | (Z2-Z0) + (XX + (Yprp)* ¥

Similarly the induced velocities in the direction of the axes Y and Z are obtained

Va = - __ i dg(Yerp) @9
41| (2-20) + (x-xp) + (Yp#p)" 1
Wg mdlp ( Z-Zp) (25)

41[( Z-2pY +(X-XpY +(Yp +)* 1>
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Egsation (23) represests ke velocily compnpery i the X-directioe duc 1o 2 sink

elemen: dr.  Integration over lbe rasge -gsﬁsgﬁﬁmﬁcwmmh’zﬂ
element of lemgth 8s.
Inlegratieg Gg:
/]
m (X-Xp)dp =
45 L (2-Zp)" 4 (x-Xp¥ +(Ypsp} 172 28
-d
_ az
A (X-Xp) 2/ i
4ir [(Z-2p)° +(x-Xpi" 4 (Yp+)*]
_¢2

Substituting in Equatior (26) and evaiuating from —d. 2 to d/2 yields

Ou, = -_m X-Xp < o)
27 [(2-2pY+(x-XpY ]

{ Yo-~-diz _ Yo rdl2
{ [GZ-2pF + (x-Xp)* +(Yp=dl2)*]¥  [(Z-Zp)*+(X-Xp¥'+ (Yp+diz)*]"™

Equations (24) and (25} can also be integrated to yield

ONs = —_m ___ N (28)
47 | [(2-ZpY +(X-XpV*+ (Yp~djzY]*2
|
LE-Zp)+ (X-X%pY + (Yp+d2) "
dwy = - @ (Z-Zp) (29)

i l (Z-ZP)I + (X’Xp)t.i

é Yo -drz ) Yp + 9z
UZ-Zp) +H(X XY + (Yo 2R ]It |@-ZoF +(X-Xp) +(Yprcyzl ™

L
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Eqgzznions (27), (23, aad (29) give the mdwced velocily compoments 31 Xp, Yp, amd
Zp due io replacieg a jet element of lesgifc §s Oy the simk distribairom,

To thes the bicckrze effect must be added. The stremgth of the docbiet dostribr-
toe citiized 10 represer! ibe blociage effect of the jet :s cblumed from the complex
velocily potemzial for tne two-dimensior2l Bow past z2n eilipse By equating the
sireagik of the dorhie? lo the coefficient of the i/ Z term, the fiow past 2n equevzjemt
circalar cylinder is being copsidered.

For the two-dimensiomzl flow past an eliipse

WZ) = 1, U (afb)r |z 2t )] . e*|z- (z% %]
2 [ Q+D a—-b (3)

for flow along 2, tae major semi-axis. Rolatisg flow 90 degrees makes z the minor

semi-axis, b the maior semi-axis, 2: ¢,

Jd+b I-b

From biromial expansion, the leading two terms in a series of inverse powers

WE) = Uz + L U(atb)(b) (/)

the coefficient of the 1/7 term is equated to the strength of the doublet,p
In the coordinates of Figure 1
U- U cos ¥

a

minor axis of jet

o
"

major axis of jet

JTR Uso cos@ (3tb)(D)
2
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Comsuicring the tuo peomsetne regons of the jet described i3 EQuabons (§) ad

(P yieids
o= X lGodfcosE I-§._Z_$]
: 4 4 d Yc
GsZ%/m.5.3
135)
Y7 S5 bog d?ccz @

32

Z2%/=>.5
With the notziion of Figure 1 the izduced velocity held 21 2 grven point P (¢, 5, 1)
due to 2 double: of sireagth # a1 (£, 7, 0) = {0, 0, () may be evaluzted

The ielocity poteztial of 2 dorblet is givea by

&

F
3
@

where r - [g‘%;y,?‘]"z
cosQ = /r
then

P = 22U s (32)
27 [Feqie 5052

with the induced velocities in the £, n and { directions being given by
u = -3¢/0f

vV, = —<>¢/37

w, = -0g/05
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Egmtios (32 is differentiated o yreld

W = -GETUf4T(Fieqie$i) (33
v, = —Ggsufsr (£ +p% g2y 39
7 ($ept SP* {! (§5+47+5°) [ 33

From the relationship between §,%,, 2nd X, Y, Z in Figure i, it c2n be seen thal

SUg = u, sn@ * ¥ cosS )

< (35)
éV5 = - Wy s

AWy = U,coslB - wy s~

£ = (XpX) sin6 + (Zp-Z)casE

Z = ~Y
g = (Xp-X)cosO + (Zp‘Z).fmé

where JUB, 8Vp, W4 are the induced velocities at P(Xp, Yp, Zp) due to a jet element
of length s cantered at (X, 0, Z), and # is obtained from Equation (31).

The total interference velocity at a point may be determined by integrating Equa-
tions (27) - (29) and Equation (36) over the extent of the jet, giving the total induced
sink and doublet component velocities. These component velocities are then summed
to give the total interference velocity. In treating a jet exhausting from an infinite
wall, ar image system of the singularity distributions is utilized to satisfy the bound-
ary condition at the wall. The flat plate pressure ccefficients shown in Section II, 2
were computed in this manner. Boundary conditions for a wing or fuselage in the

presence of a flow exiting from a nozzle are discussed in Sections IV and VIIL

In the treatment of *he biockage effect discussed above, the jet curvature does

not contribute anyth::.; tn the doublet strength, Three-dimensional effects are
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accounied for tkrough the doublet pcsition and orientation and by calculat’g the
indoced velocity field from the three-dirmensional counterparts 1o the deablets.

For the lower velocity ratios mjo)- where the je2 2rvature is quite small,
this model c2n be expected W be 2 good representation of the , “ysical situation. As
the jet curvzmre increases with increasing velocity ratio, th quzsi-twc dimensional
2pproach pecomes iess valid. Calculatiors of induced sarfac? static pressures for the
higher velocity ratios (l'@/‘l:jo=.250) did not correlate with test data as well as did
calculations for the lower velocity ratios ‘u"tjo: -125).

Atlempts were made (0 improve the correlation by changing the eatrainment
expression of Equaiion (i), withouat success. This suggested thzt some cther
mechanism was responsible for the lack of correlation between calculations and test
data. ]t was thought that jet curvature had not been zrequately included in the model.
Also, it was argued that this curvature woald 2llow relief for the crossflow fluid
abead of the jet and migit be accounted for by applying a distribution of sources
aiong the jet centerline. One would expect the strength of the sources to be a
morotonicaily increasing functior of the jet conterline curvature. Subsequently, it
was learned that Wemer and Chang (Reference 50), using a slender body matched
asymptotic expansion technique, had deduced similar results. Calculations of jet-
induced static pressures, using a source cistribution, displayed markedly improved
correlation with test data.

The source distribution has been made proportional to jet curvature and best
correlatici. with test data, over the range of velocity ratios .17 L'm/Ujog .3, has been
cbtained by taking the source strength equal to three times the jet curvature.

The formalation for the induced velocity components at arbitrary peints given in
Equations (21) to (36) is, of course, not valid for points inside the jet. Figure 4 showe
schematically, the variation of the downwash component induced in the plane of the jet
exit by a flow exhausting from a nozzle located at Y=0. The large variation zcross the
jet in the freestream direction is typical of the computed downwash distributions. Thus,
a certain amount of care must be exercised in choosing the control points at which in-
duced velocities are to be evaluated for use with the methods of computing forces and
mon ens in Sections IV and VIII.

b. Arbitrary Jet Direction

Although the equations of motion for the jet model developed in the preceding

discussion are written for a jet exhausting normally “ato a cross flow, ey are valid
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for any jet in a local coordinate system, oriented with the X'-axis in the direction of
the mainstream flow and the X'Z'-plane defined by the mainstream flow vector and the
jet exhaust vector, The direction of the mainstream, the location of the center as well
as ihe initial direction cf the exhausting jet, and the position of the control points at
which induced velocity components are to be evaluated may be arbitrarily specified in
a general, fixed coordinate system as shown in Figure 5.

A local coordinate system, centered at X Y Z is then established as shown
in Figure 6(a). The direction cosines of X' thh respect to the fixed coordinate system
area ,p , 7, and the direction cosines for Y and 2' are determined from tie follow-
ing .elationships.

— A A,
Y!' = VJ x X
2 = X xY'

A
where Vj is the unit vector in the initial jet exhaust direction, obtained from ¢ and ¥,
the jet exhaust angles,

This establishes the co-planar relationship between ihe mainstream flow and the
jet centerline required by the equations of motion formulated for the normally exhaust-
ing jet.

Initial conditions at the jet exit (showr schematically in Figure 6b) are now

A

Y
1 - cos?, A
——=p. | where cosfy=Vj-Z'

2
cos 90
the angle specifying the exhaust direction in the exhaust

Z*=0., X*=0., Ug*=1., d*= 1., and dX*/dz* = l

Both 9, and the angle dj,
plane, are shown in Figure 6(t}.

Observations during the experimental investigation of Reference 3 showed that a
jet exhausting into the direction of the crossflow, £j>90°, appears to deform from its
initial circular cross seciion more rapidly than a jet exhausting with the crossflow,
$j<90°. Consequently, the development region, in whic . the jet deforms to an ellip-
tical cross section with a minor to major axis ratio of 1, 4, has lseen made a function
of the jet exhaust angle 4j. For §j>9(°the extent of the evelopment region 1s defined
to be H'= H (cos 6,) and for §j<90° the development region becomes H'= H/cos 6,
where H = , 3 Uj O/Um is the extent of the development region for a normally exhausting
iet, defined previously.

The gecmetry of the jet and the jet-induced velocity components can now be
computed in this local coordinate system, utilizing ihe equatiors developed fer a jet

exhausting normally into a crossflow,
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2. COMPARISONS OF SINGLE JET COMPUTATIONS WITH TEST DATA

a. dJet Centerlines

Figure 7 shows a comparison between computed and experimentally deterinined
centerlines for normally exhausting jets, with velocity ratios of Uco/Uj o = +125, .250
and Um/Ujo = ,123, 233, The correlaiions shown in Figure 7 were instrumentat in
the determination of the entrainment parameters Ej and Eg.

Extensive computations were carried out for jets at various velocity ratics and
exhaust angles, A comparison of computed jet centerlines with an empirical equation
for the centerlines of jets exhausting at angles other than 99 degrees to the mainstream
is shown in Figure 8(a) through 8(d). These correspond to Figure, 12(a), 13(2),

14(b), and 15(a) of Reference 9. The solid curves represent centerlines computed for
the specified conditions. The broken curves represent the empirical equation

X = = (Ua/is) ( Z ‘)5_ Z ot S (37
de

do 4 2t S, do

The curves superimposed cn the photographs of Figures 12 through 15 of Refer-
ence 9 show the fit of this equation. It should be emphasized that the broken curves
reoresent an empirical rather than experimental determination of the centerlines,
They are included in Figure 8 primarily to aid in orienting the computed centerlines

with respec. {0 the photographs of the jet wakes in Reference 9.

Figure 9 shows a comparison of experimental and theoretical jet centerlines for
a jet of velocity ratio Uo‘,/Uj 0 120 exhaustii.g at various angles into thc mainstream.
Since, in this figure, the agreement between theory and experiment is not az close as
might be desired, a comment regarding the diffevences is in order. It is neted that
the theoretical curves in Figure 9 employ vatues of entrainment coefficients based
partly on correlation with the experimental data of Reference 7 (Figure 7). Comgari-
son of the experimental centerline tor the normally exhausting jet of Figure 9 with
the test data of Figure 7(a) reveals differences which appear to be inconsistent with
the small change in veiocity ratio, In view of these experimental differences for the
normally exhausting jet, the correlation for the jet centerlines shown in Figure 9 is

considered to be adequate.

A further comparison of theory with experiment for jets exhausting at an angle
other than 90 degrees is presented in Figure 20, Good agreement between theory and
experinient can be observed,
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b. Induced Pressures

Extensive computations to determine induced surface static pressure distribu-
tions due 190 single jets exhausting into a crossflow were carried out. Comparisons
between theory and test data from References 3, 12, 13, and 14, are shown in Figures
12 through 18 for a number of jet configurations. Figure 11 is a schematic of the
single jet arrangement, with surface pressure taps indicatéd, employed in the tests of
Reference 3.

The surface static pressure variations with X/do at Y/do = 0 and 1.5 are shown
in Figure 12 for 2 jet with a velocity ratio L’m/L’j 0° " 125, Test data from References
3, 12, and 13 are plotted for comparison with the calculations. At Y/do = 0, the dif-
ferences between the test data of References 3 and 12 are witi.in experimental accuracy
ahead of the jet, whereas the data from Refereace 13 show significant differences.
Behind the jet there are discernible differences in test data, due in part to the unsteady
nature of the flow in this region. At Y/do = 1.5, the test data of References 3 and 12 are
seen to be in good agreement. There is some discrepancy between these data and the
data of Reference 13 in the region behind the jet.

The same static pressure variations for a jet with velocity ratio U/ L'j 0° «250
are shown in Figure 13. At Y:/do - 0, the lata ¢i References 3 and 12 are in good
agreement ahead of the jet, while significant differences are noted for the data of
Reference 13. Differences in the test data behind the jet are again evident. All three sets
of test data show good agreement at Y/do = 1.5.

The purpe - of making these comparisons was to determine whether there were
discrepancies among data from different tests and, if so, the reasons for these dis-
crepancies. The data of Reference 3 are in good agreement with the test data of
Reference 12 except in the wake region behind the jet, where discrepancies might be
expected because of the unsteady nature of the flow in this area. The differences
between the data of Reference 13 and the data from the other tests could be due to
boundary layer effects. The plate boundary layer was thicker for tests of Reference
13 than for the others. Boundary layer thickness has been shown to have a significant
effect on the surface static pressure distribution (see Figure 5 of Reference 13). The
correlation among the sets of test data also gives confidence in the data of Reference

3 for inchined jets and multiple jet configurations for which there are no other data

available for comparison.
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The theoretical pressare variations show good agreement with test data in
Figures 12 and 13 for the regions ahead of the jet exit. ™ m.ght be noted that the
agreemen! between theory and test data for the velocity ratio of . 230 was greatly
improved by utilizatioe of the socurce distribation to account for the carvature of the
jet, whick was discussed oe page 23.

There are significant differences betweer: theory and test data in the wake
regions behind the jet. The sirgularity representation of the jet used to compute the
jet-induced pressere distribution sssumes potential flow in the areas extemal to the
jet. Physically maaningful results can cniy be expected in regions where the flow
outside the boundary laver is potential. It is possible that a distribution of sources
along the jet boundary may be used to represent the wake =ffects and to achieve better
correlation with test pressures in the wake region. Also, it should be noted that the
wake region is usually small with respect to the tota! area being investigated (see
Figure 15 for example).

Figures 14, 15 and 16 show the pressure disiributions in the plane of the jet
exits around jets exhausting at angles of 4j = 120°, 90" and 60° into the freestream.
When the jet is directed against the crossflow ( §j = 120 ) extensive regions of negaiive
pressure result primarily ahead of the jet. As the jet -xhaust angle changes to 90
degrees and then to 60 degrees, these regions of negative pressure are observed to
move dovnstream (Figures 15 and 16). Agreement between theory and test data is
uoted to be better for the éj = 90° and 8j = 60° configurations than for the &j = 120°
configuration. In all three cases, discrepancies between theory and test data exist in

the wake regions of the jets for reasons discussed pr¢ viously.

Additional comparisons between computed and e :perimental induced pressure
distributions around a single jet exhausting normally into the freestream are shown in
Figures 17 and 18, for velocity ratios of .125 and .089. The experimental data of
Figure 17 provide additional confirmation for the correlation between theory and experi-
ment observed in Figure 15. They also indicate that the theoretical results lie within
experimental differences. Very good agreement between theory and experiment is
evident in Figure 18.
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3. MULTIPLE JET ANALYTICAL MODEL

The basic single jet analytical model has been applied to the computation of the
interaction flow field due tc multiple exhausting jets. A multiple jet configuration is
treated as a combination of discrete jets, with each jet (including jets resulting from
the coalescence of other jets) being replaced by its representative singularity distri-
bution to obtain the induced velocity field. In the development of the two-jet model

described in detail in this section two assumptions were made
e The leading (or upstream) jet deveiops independently of the downstream jet

e The downstream jet exhausts into a freestream of reduced dynamic pres-

sure which it sees as the result of blockage by the upstream jet.

Data from the wind tunnel investigation of Reference 3 have been analyzed to
substantiate these assumptions and to establish quantitatively the empirical relation-
ships utilized in the two-jet computations, Details of this analysis ~re also given in
this section,

a. Two-Jet Computations

Figure 19 shows the planform of three jet configurations in r:lation to the main-
stream flow, Arrangements (a) and (c) represent limiting cases, The arrangement of
(a) allows each iet to develop independently to the point where the growth of the iets in
the direction normal to the flow causes them to intersect, The configuration shown in
(c) places the downstream jet entirely in the zone of influence of the upstream jet. The
downstream jet is located partially in the zone of influence of the upstream jet in the
arrangement depicted in (b).

Although Figure 19 shows the relationship of the jets in the plane of the jet exits,
as an illustration, the determination of the degree of influence of the upstream jet
(JET1) on the downstream jet (JET2) can be carried out for each element of JETI,

as shown in the general case of Figure 20.

Plane L, cefined by the mainstream flow vector and the diameter of JET1, iden-
tifies the element of JET2 influenced by a given element of J ET1. Plane M, which
contains the mainstream flow vector and the local jet velocity vector of the given
element of JET1, is then establ’shed. The intersection of the plane M with the jet
diameter of the appropriate element of JET2 is computed to determine the exteni to
which the two jets overlap.
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An expression for the effective dynamic pressure which the downstream jet
usees" as a result of the blockage by the upstream jet, based on analysis of experi-
mental data will be derived in the following subsection. Configurations with complete
overlap between the two jets (jets aligned in crossflow direction) and partial overlap
will be considered, and the extent of overlap between the two jets will be a principal
parameter. Thus the influence of the upstream jet on the downstream jet is intro-
duced into the computations as a reduced freestream velocity, Ue/Ucw= [ac/ ool in the
continuity, momentum and force equations governing the development of the down-

stream jet.

When calculations of the distance bewteen the two jet centerlines indicate that
the jets have intersected, initial conditions for the merged jet which results are deter-

mined from the continuity and momentum considerations:

AI q” f AZ [—é.: - A.3 %3
(A hy #(A2U2)lex = (F3Us) Uy @)
(AI[JJI)L_/IIH +(Az(jz)ljz y = (A?:UJ_;)\ L!/S_!j

(Ah)lig +0Aellis) Yz = (Asls) Usz
where

Ags A2, A3 = area of JET1, JET2 and resulting merged jet, respectively
Uj1, Uja, Ujg = Jjet velocity of JET1, JET2 and resulting merged jet, respectively.

Initial conditions for the coalesced jet, in the local coordinate system centered

at the point of intersection of the two jets (taken to be an average of the coordinates of
the centerlines of JET1 and JET2 at intersection), are now

Z* =0., X* =0., Uj* =1., d* = 1. and dX*/dz* =Uj3xv/Uj3z|

with the velocity ratio being given by Ux/Ujq = U/ Uj3.

Subscripts X' and z' denote components in this local coordinate system.

These initial conditions are employed in integrating the set of differential
equations for U*, d* and X*,

The cross-sectional area of this coalesced jet is not taken to be circular as is
normally specified for an exhausting jet at Z* - 0, Experimental observations and cor-

relation with test data were instrumental in establishing the geometrical features of the
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initial cross section of the coalesced iet for different jet configurations. Details of
the initial geometry of the merged jet will be discussed in the folluwing subsection.

The velocity field induced by a two-jet configuration can now be determined by
replacing each jet (including the coalesced jet) by its representative singularity distri-
bution. The induced velocity components due to each singularity distribution are addi-
tive at every control point,

b. Determination of Empirical Parameters

Analysis to substantiate the assumptions made for the two-jet computations and
to establish quantitatively the empirical relationships for the computational procedure
described above was based on the experimental data from Reference 3.

(1) Effective Dynamic Pressure for Downstream Jets

The blockage effect of the leading jet in a two-jet configuration may be deter-
mined from the test data., The centerline of a single jet exhausting into a crossflow
at a velocity ratio Uy/ Ujo = 125 together with test data from References 5 and 12 are
shown in Figure 21. The data from the three tests are seen to be in close agreement,
This is significant since all three tests were carried out using different values for the
jet-exit dynamic pressure.

Data for the two-jet configurations, aligned in the crossflow direction, are
plotted in Figures 22, 23 and 24 for the three different spacings between the jets.
These data, together with the single jet data, may be used to derive "effective velo-
city ratios' for the downstream jets, making use of a similarity relationship derived
in Reference 15. It was determined in Reference 15 that centerlines of single jels
with different velocity ratios are similar and that for a given displacement in the
crossflow direction, Ax/dg, the penetration into the crossflow normal to the jet
exit is inversely proportional to the velocity ratio (Um/Ujo‘;. By applying this
similarity relationsbip to a number of displacements, Ax/d,, of the downstream
jet, it is shown in Figure 25 that the centerline of the downstream jet in a two-jet

configuration is the same as the centerline of a single jet exhausting into a crossflow
of reduced dynamic pressure.

The information in Figure 25 has been used to obtain an empirical relationship

for the dynamic pressnre q, which the downstream jet "sees, "' as the result of
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crossflow blockage by the upstream jet, in terms of the crossflow dynamic pressure,
Qe and spacing between the two jets, s. It is given by

ﬁ; = .3[dc--1 {5/do>|} 39)
Geo

S/de +.75

The expression for fon/axnl”? given in Equation (39) is now used as a limiting value
when the two jets are aligned in the crossflow direction, when complete overlap

between the two jets exists.,

[ The above expression has been derived from test a.ta for which the Reynclds
number, based on freestream velocity and jet exit diameter, was approximately 2x 103,
Comparison with jet trajectories from References 7 and 12, in Figure 21, indicates
that there is no measurable change in jet trajectory in the Reynolds number range

10°s Res2x10°. However, it is possible that a large change in Reynolds number

l f could affect the jet path and consequently influence the formulation for effective dynamic

L pressure given in Equation (39).

When the two jets are not aligned in the crossflow direction, an effective cross-
"5 flow dynamic pressure, q g° which is a weighted mean of q, and qq, is utilized. The
weighting of the dynamic pressure is determined from the degree of overlap between

1 the upstream jet and the downstream jet (see sketch below)

Thus

~V_C-{‘(; = x19e + ;dz -x) ¥Quo (40)
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(2) Jet Decay Characteristics

The decay characteristics of the single jet and the three two-jet configurations
are shown in Figures 26 through 29. The information, obtained by analyzing the data
of Reference 3, is presented i terms of the iet dynamic pressure rather than the
impact pressure which has customarily been used. The reason for this is that the
decay of jet momentum is due to entrainment of ambient or crossflow fluid. Thus,
for jets of differing pressure ratios, the jet momentum flow parameter should be
invariant rather than the impact pressure parameter. This observation is supported
by the data presented in Reference 16.

Figure 26 illustrates that, in the presence of a crossflow, a jet decays at a
greater rate than when it exhausts into a quiescent environment. Figures 27, 28 and
29 show the dynamic pressure decay for the two-jet configurations at three different
jet spacings. The dynamic pressure has been obtained from the impact pressure by
assuming that the static pressure throughout the jet is constant and equal to ambient
pressure. Small variations in static pressure are expected but they should not affect
the general corclusions. The distance, s, along the jet centerline is measured from
the center of the jet orifice with the downstream jet exit used as the origin for the jet

resulting from the coalescence of the upstream and downsiream jet.

From the data in Figures 27 through 29 it is deduced that the rate at which down-
stream jet dynamic pressure decreases with distance along the jet centerline, increases

with increased spacing between the two jets,

The decay characteristics of the upstream jet in each of the three two-jet con-
figurations, together with data for the single jet, are shown in Figure 30, It is deduced

that the decay of dynamic pressure for the leading jet in a two-jet configuration is inde-

pendent of the spacing between the two jets. Since the centerline of the leading jet is
also independent of the jet spacing (see Figures 22 through 24) and identical to that for
the single jet, it is concluded that a leading jet in a two-jet configuration develops
independently of the downstream jet.

This result, along with the finding that the downstream jet behaves as if it were
exhausting into a crossflow of reduced dynamic pressure, is important in ‘he applica-
tion of the analytical model to the multiple jet probiem since it permits a two-jet

configuration to be treated as a combination of three discrete jets,
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(3) Geometry of Merged Jet

Test observations seemed to indicate that the downstream jet, being the stronger

jet at the point of intersection, due to shielding by the upstream jet is the dominant
jet.

This feature of the two-jet interaction is readily discernible in Figure 31. The
dominant influence of the downs‘ream jet on the characteristics of the coalesced jet
results in the high degree of penetration exhibited by the coalesced jet. This same
fezture may be noted in Figures 22 through 24, As a result of these observations,
geometrical features of the initial cross section of the coalesced jet are treated as a
function of the jet orientation angle, Q. The jet orientation angle is defined as the
enclosed angle between the freestream vector and the line joining the centers of the
two jet exits.

For the jet spacings of the experimental investigation, it appears that best
correlation betwzen theory and test data is obtained by employing an initial circular
cross section ior the coalesced jet for jet orientation angles up to 20 degrees. For a
jet ori~mtatinn angle © = 90° (the jet configuration shown in Figure 36) the geometry
of \ae jet cross section of the coalesced jet is initially represented by an ellipse,
with 2 minm to major axis ratio of 1/2.

At this time the functional relationship of the coalesced jet cross se “tion with
orientation angle has not been established for the range 20°< © < 90°. It should also be
noted that, while the above discussion is limited to jet configurations with a maximim
spacing of 7.5 jet diameters, the importance of establishing a relationship between
orie ation angle and coa.esced jet cross section decreasss for large jet spacings, since

the .ect of the merged jet on induced pressures in the plane of the jet exit diminishes.

ot
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4. COMPARISON OF TWO JET .CAL;CULATIONS WITH TEST DATA

Com;'mtations for a range of two-jet configurations were effeeted. Comparisons
between theory and test data from Reference 3 are presented in Figurés 32 t}irough
42, : ;

Compamsons between predicted and experlmentally determmed pressure dxstn-
butions in the plane of the jet exits around two-jet configurations with spacings of
2.5, 5 and 7.5 jet diameters are shown in Figures 32 through 34. In the computations
shown in Fxgures 32 through 34, "effective velocity ratios' of .058, ,087 and 098
were utilized for the downstream jets at the respective spacings'of 2.5 d '5 d and
7.5 d_o. These are based or an actual velocity ratio of . 125 and the relatlonshlp :
between crossflow dynamic pressure, q.. and the reduced dynamic pressure experi-
enced by the downstream jet as given by Equation (39). For the spacing of 2.5 diam~
eters it may be noted that the pressure distribution is similar to that induced by a
single jet exhausting into a crassflow, although the regions of negative' pressure are
more extensive. As the jet spacing increases, the downstream jet is seen to have its
own, discrete effect on the pressure distribution. 'Isobars of Cp = -.3 are noted
around the leading jet and the downstream jet in Figure 33; and m P igure 34, which

shows the larger jef spacing, isobars of Cp=-. 2, -.3, are noted ..round each jet.

Genera_lly good agreement between theory and test data is discernible for all
three jet configurations, It should be pointed out that relatively small differences in
measured pressure coefficients at stations of constant Y/d " when the variation w1th
X/d is small (i.e., when the curve is very flat) can lead to what appear to be much

larger disciepancies in the position of the isobars shown in the figures.

Theory and test data for the centerlines of the three two-jeé configurations above
are shown in Figures 22 through 24. Generally, the predicticn for the centerline of
the coalesced jet does not achieve the degree of penetration exhibited by the experi-
mental data,

Figure 35 shows a sketch of a two-jet configuration, indicating the locaticn of
pressure taps, and defines the sideslip angle 8. The variation of induced pressure
with angle of sideslip for this configuration is shown in Figures 37 through 39.

Figure 37 shows comparison between theory and experimental data for induced
pressure variation with X/do at Y/do - 1.5 and 3.0 for zero sideslip. Figure 38 shows
the same comparison for a sideslip angle 8= 20°. The effects o pesitive sideslip

are seen to be arn increase in the magnitudes »f the ir.duced pressures in the region

1
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ahea"d of the leading jet exit and a decrease in the region immediately behind it.

Figure 39 displays the effects of a sideslip angle 8= ~20° on the above pressure dis~
tributions. Negative sideslip is seen to reverse the two effects discussed. It results
in a decrease in the magnitudes of induced pressures in the region ahead of the leading
jet exit and an increase in the region immediately behind it. These trends in the test
data _:;lre also evident in the computed results. For both positive and negative sideslip,
the downstream jet is discernible as a more discrete influence on the pressure distri-
bt'xtion when comparcd to the zero sideslip configuration. This feature of the induced
pressure distribution is predicted quite well by theory.

, The correlation between theory and test data in Figures 37 through 39 and the
effects of positive and negative sideslip are representative of results obtained for a
two-jet configuration with a jet spacing of 7.5 diameters also. Figures 40 and 41 show
the pressixre variation with X/do at zero sideslip and at 8 = 20° for a two-jet configu-
ration with a spacing of 2.5 diameters. The correlation between theory and test data
is seen to be very good for the zero sideslip condition of Figure 40. Noticeable differ-
ences between theory and test data exist for the 8 = 20° case of Figure 41.

At zero sideslip, [qc/ qm,]'/2 =, 46 for the downstream jet, as computed from
Eq. (39) withs =2.5d 0 This means the downstream jet ''sees’ a low crossflow
dynamic pressure and, consequently, does not exert a strong influence on the induced
flow.field. The assumption that the upstream jet develops independently of the down-
stream jet is thereiore justified, despite the close jet spacing. The good agreement
between tl;eory and test data in Figure 40 supports this conclusion.

At B=20°, [qo/qwl”? =.93 for the downstream jet , as given by Equation (40).
The jet now has a stronger influence on the induced flow field. This strong influence,
together with the close jet spacing, makes the assumption that the upstream jet
develops independently of the downstream jet no longer representative of the physical
situation. Further mutual interference effects between the two jets must be included
to .in:xprove correlation between theory and test data.

Figure 36 shows a schematic representation of a two-jet configuration with a
spanwise jet spacing of 7.5 diameters. Theoretical and experimental pressure varia-

' tiong with Y/do are shown for five stations of constant X/d0 in Figure 42. As expected,
correlatioh between computed answers and test data is better at stations ahead of the
jets than at stations immediately behind the jets. The wake region of the two jets is
qleai‘ly defined at station X/d 0= 1.5 in Figure 42(d). Correlation again improves
farther behind the two jets where the importance of wake effects tends to diminish.

58



]
-—— Theory
Uoo ~--Test Data (Fief 3)
I

|
Cp=

i

FIGURE 52. PRESSURE DISTRIBUTION AROUND TWO JETS
AT A SPACING OF 2.5 DIAMETERS
(Usw/Tjg - . 125)

.- 2
i
£

; <

! i

5 T
s




.
—— Theory
-~- Test Data (Ref 3)

FIGURE 33. PRESSURE DISTRIBUTION AROUND TWO JETS
AT A SPACING OF 5 DIAMETERS
(Ux/Ujo = .125)

60



-~ Theory
--- Test Data (Ref 3)

\L

FIGURE 34, PRESSURE PISTRIBUTION AROUND TWO JETS
AT A SPACING OF 7.5 DIAMETERS
(Uos/Ujo = . 125)

61




Pressure
Taps

FIGURE 35. TWO-JET CONFIGURATION WITH SIDESLIP

teve Pressure
Taps

pett— 3do—<———.—-——3do-—-’1

FIGURE 36. SPANWISE TWO-JET CONFIGURATION

62




i I
— Theory
O Test Data (Ref 3)
~1.0 ][
& -8
o
2
2
o -.6
g
Q
£
P
‘g ~.4
Se
e
-2
0.
-4 -2 0 2 4
Distance in Freestream Direction, X/do
(a) Station Y/do = 1.5
T T [
— Theory
O Test Data Ref 3)
6‘- ~.6
g
2
2
= -4
2
(3]
&
=
@ -2
2
=9
0.

-4 -2 0 2 4 6
Distance in Freestrcam Direction, X/do

(b) Station Y/dgy =3

FIGURE 37. INDUCED PRESSURE VARIATION FOR A TWO-JET CONFIGURATION
AT ZERO SIDESLIP (Spacing = 5do, Uw/Ujo = .125)

63



| ]
-~ Theory
& Test Data (Ref 3)

o o
-1.0
-.8
Q
&)
§ -.6 i/ —
F i
&)
£
§ O
o
©
-2
&
0.‘ | -
~4 -2 0 2 4 6
Distance, X/dg
(a) Station Y/dp = 1.5
! 1 |
-~ Theory

¢ Test Data (Ref 3)

104

Pressure Coefficient, Cp
] 1
N L3
|
/<>
O
|
_O.
193
O,

0 Z H 6
Mistance, X/d

(b) Station Y/dg = 3

FIGURE 38. INDUCED PRESSURE VARIATION FCR A TWO-JET CONFIGURATION
AT SIDESLIP B - 20° (Spacing 5do, Uw/Ujo - .125)




T !
o0 — Theory
O Test Data (Ref 3)
-1.0
(Si- -.8
-}
[
8
s -.6
2
o
2
3
@
&
-2
0.
-4 -2 0 2 4 6
Distance, X/dg
(a) Station Y/do = 1.5
] |
— Theory
O Test Data (Ref 3)
S -6
g © o
! o © o
& 4 /-\J o
&
&) O
&
3
@
2 -.2 - -
(o} /
0.
: -4 -2 0 2 4 6
Dustance, X/d,
E (b) Station Y/dg = 3

FIGURE 39 INDUCED PRESSUKE VARIATION FOR A TWO-JET CONFIGURATION
AT SIDESLIP B - -20° (Spacing - 5do, Uee/Ujp - .125)




I l 1
,'\o — Theory
© Test Data (Ref 3)

]
[~}

Pressure Coefficient, Cp
]
S
20

: &
t o
§ -2 102
o
f ©
| . ~o )
1 OO 000 O
! .2
: -2 0 2 4 6 8
i Distance in Freestream Direction, X/d,
f (a) Station Y/dgp = 1.5
j
i | I T I
: — Theory
} o) “ O Test Data (Ref 3)
! e
) o -.4 o
G
g 9 N
e >
&
2 10
8 0 o -
iy o 1o o
.2
-2 0 2 4 6 8 10

Distance in Freestream Direction, X/d,

(b) Station Y/dg - 3

FIGURE 40. INDUCED FRESSURE VARTATION FOR A TWO-JET CONFIGURATION
AT ZERO SIDESLIP (Spacing - 2.5dy, Ux/Ujo - . 125)

aR




l |

o - Theory
© Test Data Ref 3)

$
—
N

Pressure Coefficient, Cp

. (a) Station Y/do = 1.5

3 FIGURE 41. INDUCED P'RESSURE VARIATION FOR A 'fWO-TFT CONFIGURATION
AT SIDESLIP B =20° (Spacing = 2.5do, Uw/Ujq = - 125)

67




1 i l
— Theory
{ Test Data (Ref 3)
-.8
©
©
-.6 <©
S
. T

=

2

o -4

b O/ ~+©

&

O

£ @
. 2

3 &

¥

0. ™~ —
‘ —~OLOe IO

{ .2 |
! -2 0 2 4 6 8 10

Distance, X/d,

(b) Station Y/dp = 3
FIGURE 41. (Concluded)

08




I i
6:. ~— Theory
& Test Data Ref 3)
g -4
2
2
o J
0;9 -2 -0
w0
n
»
St
a
0. .
-6 -4 -2 0 2 4 6

Distance Normal to Freestream, Y/do

(a2} Station X/d, = -3

| |

-~ Theory
O Test Data (Ref 3)

S -6

3

2

9 Q\

= o4

8

(@]

& )

3

2 2

3 B

&

0. T
-4 -2 0 2 4

Disfance Normal to Freestream, Y/d,

(b) Station X/do = -1.5
FIGURE 42. INDUCED PRESSURE VARIATION
FOR A SPANWISE TWO-JET CONFIGURATION
(Spaciﬂg =17, Sdo, me/Ujo =. 125)




(ponunuo)) 'z IYADI
0 = Op/X uoyeis (9)

Op/A ‘wiLaajsscaq 0} [CWION IDUTISig
8 9 v e 0 g- v- 9- 8-

Y i @

™
+

ige]
&
.v
8- £
= o
o -
(@]
. 2
0t~ 5
@ g
(@}
] - <
i ] ¢ I-
' H
" _ i
1 ' ] ;
' ! ' H
' ! ' "
Q ] H ! Fri-
' N ' ]
' ! '
_. © g o
'
] i " ’
' ! ; '
' ! o. ] 9°1-
1 ! ' )
3 -— ! ]
'

(¢ j9y) eieq 1891 ©
Arooyy —
i |

- ) ” ‘ " s ot
yoro 2 ANL AL BIAREL e € s Warn v v iy IR S P B i LD e SN, B AL s R "




e A T aan s e apcr st STV

A
)

T O R A M
[]
<N

o
A

R
34

Pressure Coefficient, Cp

Y |
— Theory
} O Test Data (Ref 3)
.2 1 s
-4 -2 0 2 4
? Distance Normal to Freestrean, Y/dg

(d) Station X/d, = 1.5

T l l

2 — Theory
O O Test Data (Ref 3)
£ -4
2
2
3 o
&)
p -2 N
: U7
w
2
: |

0

tx

Distance Normal to Freestrcam, Y/dg

: (e) Station X/do = 3
FIGURE 42. (Concluded)

71




TSN
N

5. APPLICATIONS TO MORE COMFLEX CONFIGURATIONS

As outlined previously, the computational procedure treats each jet in a multijet
arrangement as a single jet, with shielded downstream jets exhausting into a cross-
flow of reduced dynamic pressure.

This approach does not restrict jets in a multijet arrangement to have the sar'»
velccity ratios. Figure 43 shows the computed pressure distribution around a tve .
arrangement with the leading jet at a velocity ratio of . 215 and the downstream jet ai
a velociiy ratio of .150. Test data are also shown for comparison.

The extension of the computational procedure to the treatment of more cor plex
jet configurations was effected for a three-jet arrangement. In the three-jet contigu-

ration sketched below, s_ is the distance between Jet No. 1 and Jet No. 3 and s, is

1
the distance between Jet No. 2 and Jet No. 3.

Jet#1 Jet #2 Jet#3
UC!)
= ) O \
B g R—
| o 1

The effective freestream dynamic pressure into which Jet No. 2 exhausts is

obtained from the relationship for the two-jet configuration given by Equation (39), where

s is the spacing between Jet No. 1 and Jet No. 2 above. The crossflow dynamic pres-

sure which Jet No. 3 ''sees' is given by

Qe = |3/do-l | sulde-l ] (SZ/C;O;-HS @
Qo | s/ag~75 || Saloe v 75 :

Equation (41) accounts for shielding by both of the leading jets on Jet No. 3. If
s, is very large, there is effectively no shielding and [qe/qm]‘/2 ~1. If s; is very
large, only Jet No. 2 provides shielding, and

\’_ﬂg — _Sz/dg -1
qw 5.:/dc .75

Both jets contribute to the reduc’:on in dynamic pressure when Jet vo 1 and Jet No.

2 are close to Jet No. 3.
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(Downstream Jet, Uw/Ujo = .150)
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Figure 44 shows a sketch of the three-jet configuration tested in Reference 3.
The computed centerlines for thie jet arrangement are shown in Figure 45. A com-
parison between predicted and experimental pressure variations at spanwise stations
of 1.5 and 3.0 jet diameters is presented in Figure 46. In the computations shown in
Figures 45 and 46, "effective velocity ratios™ of .058 and .069 were utilized for the
two downstream jets spaced :it 2.5 do and 7.5 do from the leading jei, respectively.
These are based on an actual velocity ratio of . 125 and the relationships for reduced
dynamic pressure of Equations (29) and (41). Good correlation between theory and
data is noted.



SECTION III
MAPPING METHOD FOR ARBITRARY CRCSS SECTION

To use the transforriation method and the nonlinear body aerodynamics method
which are described in Sections IV and Vi, it is necessary to have a method of mapping
an arbitrary wing or body ~ross section irlo a unit circle. It is the purpose of this
section to describe the m.thod developed curing this investigation to obtain such a
mapping.

There are numerous methods available 1o map specific shapes into a unit circle
such as the Joukowski transformation for wings. It is also possible to map polygons
by the Schwarz-Christoffel tran=formation, but this transformation maps the polygon
into a straight line, not into a circle.

The only suitable transformation for mapping an arhitrary section into a ".nit
circle is that developed by Skulsky in Reference 46. This method uses a procedure
similar to the Schwarz-Christoffel transformation. Tkhis method would be suitable for
the mapping required by the programs developed during this study except for the
following restrictions on the method. First, the method replaces the cross section by
one made up of straight line segments giving only an approximation to the desired
shape. Second, the mapping precedure is an iterative one and the question of con-
vergence in the iteration arises. Third, a large number of terms in the mapping are
required.

These restrictions are not so severe as to prevent the use of the Skulsky method
for the present study program methods, but the method is restricted to symmetrical
shapes and this restriction means that generwl airfoils could not be treated. Fou this
reason, it was decided to develop a mapping function which would be more suitable
for the present study. .

The mapping method developed in this section presents an alternative approach
to the compuziation of a mapping function. This method is not restricted to symmetri-
cal sections and does not require any iterative procedure. The mapping is obtained
by finding the potential for an arbitrary section which corresponds to a simple vortex
flow about the corresponding circle. The potential is equated to that for a circle
and equivalent points ace located on the mapping circle. Knowing the point-to-point

correspondence, the mapping function is then obtained.
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1. COMPUTATION OF COMPLEX POTENTIAL FOR VORTEX FLOW

The method used to obtain a mapping function is to develop a potential function
about an arbitrary shape which satisfies the boundary condition of no flow through the
body and behaves as a simple vortex flow at large distances from the body. This
expression is written in body plane coordinates (see Figure 47) and is compared to
a similar flow about a circle expressed in circle plane coordinates, which is a well-

known function.

The complex potential of a vortex flow about a circle is

42
W:¢ aiw =it (42)
The velocity in the circle plane is
aw _ ., . oL 43
d: UC'PL Ve ¢ ( )

To obtain the co-responding velocity about an arbitrary section it is necessary
to obtain an analytic function of Z which satisfies the boundary conditions at the body
and behaves like i/Z at large distances from the body. It is possible to obtain such a

function by writing the velocity in the body plane

daw . ]

gz " Uprive=g c(7) (44)
where f(Z) is some function which approaches : a4t Z approaches infinity and which is
chosen to satisfy the boundary conditions at the body. By writing the velocity in terms
of polar coordinates i.e.,

I e~ - L f(2) (45)

satisfying the boundary condition at the body reduces to finding a function f(Z) which

matches a specified variation of a around the section.

Assuming temporarily that the section to be mapped is smooth, that is has no
corners, the log of Equation (45) can be taken to give

iw Vy-ta=-LT-tn 2+ tnt (2) (46)

and In \'b ard o are conjugate functions. Thus, if In f(Z) is taken to be a Laurent
series with no nonnegative powers, i.e.,

it,  ayeiby  ay.ib
§(Z) =t f (B)=i5" » PP T1ip By e o
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the coeffi~ients of this expansion can be chosen to obtain any desired variation of a
about the be-ly,

This give: the expression for the complex velocity ir ' « section plane as
it o 9(2) 48
Vpe ~=-5e (48)

When the section to be mapped has corners o will be discontinuous and it is necessary

to chtain an expression which has similar discontinuities. Assume tbat a corner exists

Zm km
on the section to be mapped at Z = Zm. Then, the factor -5
where

- 1.7, 2
‘ 1r+A¢m

will have a singularity at Zm wi h a discontinuity in angle of Aam. This can be shown
by comparing the limits on the ¢~ <ides of the corner. Letting Z = Zm -4Z

(-3 (o e T

L. —%": =A,,,1m(7‘§f~)+u,, (a_-T-w)

Again, letting Z = Zm + 47

()= ()= [z "
b (1-Z0) <k () 1 8, (y-a)
l"—z- - m 'ﬁ;‘)“f{.ﬁ; a.'."w
subrracting these two expressions gives
iR (a,-a_+T)=-idam (49)

which is the result sought. The magnitude of this factor gives an infinite velocity for
an outside corner and zero velocity for an inside corner which is to be expected.

30




The complex velocity for an arbitrary section can thus be written
. . M A (g)
-t L - g.ﬂ'.) ", 9
Vpe Z IT ( -3 e (50)
m=/

where M is the number of corners. This expression, being written wholly in terms of
the section coordinate Z, can be evaluated directly.
Defining,
iBy

: Z
A /_-E—:ﬂme

=4
the log of this function can be written
M M
wlfy-ix = ZI Ry Iyt Ry + i ("Zl A ﬂ,,,-”-w)-fg(Z) (51)
The imaginary pait is
M
mas

The left hand side of this equation is a confinuous and periedic function of s and can be
evaluated at any point on the body. This makes it possible to evaluate the coefficients

of g(Z) to satisfy the boundary conditions to any degree of accuracy desired.

Letting

-, M
e=x-M-w +"Zlkm3m+.7m(g(z))

where

N ,
.. bp C0S Nw —A@p Sin nw
‘ In (@) =3 B
E nel Rb

and setting
- E= f e*ds

E represents the least square error in fiiting a. Differentiating with recoect to each
of the a's and b's and setting the results to zero

-13
2t _o
aaj
_a_E.. =0
abj

— T T O S Yo P I
R e i) 3 . ’

gives a set of linear equstinns sclvable for the a's and b's,
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Once these coefficients are determined, the rea! part of Equation 1) can be
evaluated and Vb obtained. Then, comparing the potential fimctions in the circle plane
with that about the section gives

§ Vpds (53)

where 6 is the angular distance about the circle. This gives a relationship between the
points on the section and points on the mapping circle which permits a mapping to be
obtained.

2. COMPUTATION OF DERIVATIVE OF MAPPING FUNCTION WITH CORNERS

Once it is known which point on the section maps into which point on the circle
it is relatively simple to obtain the mapping function, and this relationship has been
obtained above.

7 he derivative of the mapping function can be written as a Laurent's series in ¢

as

dz d, dn

-———=’+ ces s 00 ——— seee .

dé e’ e (54)
the 1/¢ tern being zero for a closed section. It can also be shown that

d& _ds _ i@-98- n/e)

dt  rde°® (55)

when the mapping is evaluated ai the mapping circle. Then the ¢oefficienis of the
mapping can be evaluated as follows. The radius of the mapping zircle can be deter-
mined by 3etting,

fci 92 gg-2m

or
¢ frg O — 1
2 =f;c—z'—ez§e‘("‘ ° 7'/z)g-gd(rce‘ )
2 = ;f;—fe i(a-0-1fe) ;o
or

re=3hj fo (@O gs 56)
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similarly

f:”” 9Z dg =277.4,

2Midy=Pr e SN0 Lo HaONR),, i0gq
d, = %_;_7_'_ f ifr(n-08-112] 57)

Since it has been shown above how to evaluate 6 as a function of s it is possibie to
obiain the derivative of the mapping functicn.

It is possible at this point to integrate dZ/ds directly and to obtain the mapping
funclion. When the section to be mapped has cormers, however, the region in the
vicinity of the corners is not mapped accurately unless an extrem :ly large number of
terms in the mapping function is retained. For this reason, it is desirable to rewrite
dZ/d¢ in such a manner that th- corner singularities are expressed explicitly. This
requires that dZ/d’ be wntte'x as

dz -n'(" ;'") 7’ (1 2’!. (58)

ms=]

~N

It is now possible to expand the product factors of Equation 58 by binomial expan-
sion, complete the expansion by further multiplication and the terms equated with like
terms of Equation :54). This results in a set of expressions which can be solved for
the A's. Equation (58) allows a satisfactory mappring near the corner points with a
limited number of terms but cannot be integrated directly to give the mapping function
analytically. It is possibic to integrate (58) numerically, howev: r.

3. COMPUTATION OF MAPPING FUNCTION

The computer programs written for the transformation method and the nonlinear
body aerodynau..c~ method do not permit the use of the derivative of the mapping func-

tion but require that the n..»ping function itself be known and be written in the form.

C
Z:;*Cof—!—-f..Olvof—- (59)
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To obtain the mapping function in this form, ihe expression of Equation (58} is expanded
to obtain the derivative of the mapping by expanding e2ch of the terms

Ly,
(1-5m)77
4
by a2 binomial expansion. These expressions zre then mukiplied together and also

multiolied by the summation term in Equation 58). This resilts in an expression for
dZ/d. which can immediately be integrated analytically into the form of Equstion (59).

A This integration allows calculatior: of all the coefficients of Equation (59) except for -

To obtain % it is necessary to compare the original and the mapped section and shift
tke mapped crrve to best reprodece the original cross section. The amount of shifi
recuired is then the value of <,

4, SAMPLE CALCULATINNS OF MAPPINGS

This method has been used to map several sections. Figure 48 fo1 example is a
mapping of an extremely thick Joukouski airfoil which was mapped since the exact point-
to-point mapping correspondence could be determined. Shown on the figure are both a
complete mapping from the physical coordinates of the airfoil giving 2n excellent repre-
duction of the airfcil with the exception that some error is introduced near the trailing
edge, and a2 mapping starting /ith the true 6 distributin which shows even better
agreement. In the compiete mapping twenty terms of the expansicn for g(Z) were used.

Figure -9 shows a mapping of a 65~-010 airfoil usiag the above method. In this
case cnly ten terms of the expansion were used so that the agreement in this case is
not quite so good, zlthough still satisiactory. To ottain this mapping it was necessary
to place a singularity within the airfoil at the center of the leading edge radius. With-
out this additional singularity an unsatisfactory mapping was obtained.

Figure 50 shows a2 mapping of a muc’ more difficult section, the section being
that of a T-38 section in the region where the ‘et inlets are adjacent to the body. This
section, which is symmetrical, has five discontinuities on each side. The mapping
was made using twenty terms in the expansion for g(Z). The resultant agreement

between the true section and the mapoed section is very good.
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SECTION IV
TRAXSFORMATION METHOD
1. INTRODUCTORY REMARKS

Under the assumption of inviscid flow, the force and moment on an immersed
body arise from the pressure alone. Thus, the problem is that of determining the
pressure distribution on 2 wing or fuselage witk ore or more jets exhaust-
ing into a unifoim crossflow. Tke flow 1s assumed to be irviscid, incompressible
and irrotationzl. The wing or body coziigu-ation car be fairly general as long as its
cross secticnal profile can be mapped into a circle on a two-dimensicnal space. The
governing differential equation for the motion is the three-dimensional Lagplace
equation (viscosity has been implicitly included in the jet model). The boundary
condition is the usual flow tangeacy condition.

In addition to these assumptions, we further assume that the presence of the
body has negligible influence on the jet. Thus, the jet flow field, -i_., mav be computed
1ndependently and used in the formulation cf the boundary conditions for the present
p.vblem.

The total velocity vector, ? , may then be written ac-

7:600?-?;-7-?.‘4-72 (60)

where acis the freestiream velocit_v.d ? , the perturbation velocity due to the presence
of the body in the freestream. and §, is the perturbation velocity due to the body

2
presence :n thz jet induced flow field. Thiprfblem of determining § is here termed
the power-or. frozlem, that of determing U 7.‘ , the power-off problem and that of
determining ';‘; 12. the power-efiect problem. Emphasis will be placed on deter-
m’ning the power effect since we assume that methods alreadv exist for determining

th2 power-off pressure distribution,




Tiess, the problem is reduced to that of solving for the perturbation velociiy
%, . in tac presence of 2 body and a given jet induced flow field, "'.;. The governing
differential eguation, as mentiored above, is the three-dimer:sional Laplace equation
1 o N
3¢ 3¢ 3¢ _
Sempmte 0
where x, 7 and z are body-orieted coordinates (Figure 51) and @ is the perturbation
velocity poiential. The perturbation veiocity compcnests are i, = ~ 9 o -_20

P X" "2 2%°
“w, - 33 - Thke perturbation velocity vector may then be written as:

i:asz c;;f%z (62)

Tke problem is ther to find a solution of Equation (61),subject to the boundary
conditions that

-

(7,}. ~ grad ¢ )-R=0 on the body surface, (e3)

and grad @ van:shes at infinity. The vector it refers to the body surface outward
norm:al.

It is possible to obtain a namerical solution to the preblem by applying Green's
Theorem using distributed singularities on the body surface. The basic formulation
of the problem wouid be similar to that given by Hess a=:d Smith in Reference 17.
This approach, althcugh giving a numerically exact soiution, is not convenient for
the precent investigation fo- two reasons. The first reason is that a large amount of
computing time is required to generate solutions for practical problems. The second
reason is that a large numbYer of control points are required to describe the body
geometry.

Thus, in this investigaticn a quasi-two-dimensiona! method has been developed
which is ar approximate solution to Equation 61 and satisfies the boundary conditions
in an approximate way. The teckaique consists of essentially twe parts whicn corre-
spond to two steps in the computation and are ralled the segment method and the
three-dimensional modification. Step (i). «r the segment method. consists of
obtaining an approximate three-dimensional relocity potential by deter mining exact
soiutions of the two-dimensional Laplace Equation at a number of t «jv stations. In
Step (9. tkis velocity potential is modified to better satisfyv the three-“imensional

Laptace Equation.

X




Step (1), or .bs segment method, is an application of slender body tueory in
which the x-derivatives are neglected in favor of derivatives iz the other two direc-
tions. Thus, the governirg differential equation reduces to

2 "3
¢ _

The boundary conditions are then

—%%’-2; on each v - z s=ction (65)
and gradzotb vaniskes at infinitw. where ; is an sutward normal to each v-z section.
This boundary value protlem may ncw be solved by first mapping *he contour of
every y-z section inwo a circle ard then using the me'hod described in the following
subsecticn. The potential so determincd involves X as 2 param=ter and may be
written symbolically as ¢ (v,z:x). These poteniicls could, however, be consolidated
to form a three-dimensional velocity potential. This latter potential will mot, in
general, satisfy the three-dimensional Laplace equaticn. To remedy this, a techni-
que is developed as Step (.

Step (2 is, in effect, an alternative method of inciuding some three-dimensional
effects in the problem in place of the usuai pivcedure esmpisyed irn the siender-body
theory. (A general description of the slender-body thecry may be iound in

Reference 18.) The present technique is based on the fact that failure of the consolidated

potential to satis{v the three-.imensional Laplace Equation implies lucal violation of
: aservstion of mass. To reme-sy this deficiency, a distribution of residual sources
«1¢ sinks are included.
Inclusion of these residual sources and sinks supplements the old velocity field,
?} - gradZD ¢ly, z:X), and is denoted by i The existence of the body will also
have to be recognized in this suppiementary field. To do this, we again use the

segment method. The new flow field after Step (2) may then be written as:

Y

? = i} - 3T¢J23 ¢(#’3;1) *7: - }radzod;(’)}}l) (66)

This process could, in principle, be repeated, Each time when the process of three-
dimensional modificaticn is invoived, two move terms, similar to ?sar.d grad,,D 4’5 )

would be added to the above expression.
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2. COMPUTATION OF FUSELAGE ¥RESSURE DISTRIBUTION

As stated above, the present techmique comprises two steps, the segment
method and the three-dimensional modification. The former can be used inde-
pendext};, whereaz the latter, being a modification ~rocedure, must be used in con-
junction »°t* :he {irst step. Some details of these two steps will now be discussed.

2. Segment Method
(1) The Boundary Function

The mzthod is, is effect, a2 numerical extension of the procedure described
in Reference 19, The problem considered in Reference 19is that of determining
the comaplex velocity potential for a cyH nder moving two-dimensionally in
infinite flcid at rest at infinity. The motion of the cylinder is described by a
velocity of translation U and an angular velocity w. Let C be the contour of

the cyiinoer cross-section and O the origin of coordinates about which the
cylinder is rotating.

{ -plane

y

/)

PHYGICAL PLANE MAPPED PLANE
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Suppose the regivn outside C in ihe Z-plane is mapped corformally on the cutside of
the unit circle Igl =1 in the §-plane by the relation

Zz = f(s) (67

with the points at infinity in the z and §-plane corresponding. Again, following
Reference 19, the normal velocity of the cylinder along the outward normal is

(Ucasx - 40) 510"~ (Usina + zw) cos 6’

in which @’ is the inclination of the tangent to the x-axis. Thus,
d ) dz
.._g_.;.’ = (Ucosa -—gw)a-g - (Usinax +1w)z§ (68)

Integrating along the cylinder houndary, we get

. i " % .l_ z_
y= Uzslna-l!gwsa f'zal(l’jl)‘f’a ©69)

where B is an arbitrary constant which, without ioss of gererality. may be set

equal to zero.
Thuo, ¢ is equal to the im2ginary part of the function
- & g7
f(z'z) = ~{Jze e -é-swzz
so that finally, on the boundary of the cylinder, the stream function { is such that
Y7 SR S -
2[‘P=-UZC" +Uz2e +iw2? (70)

Let d= e‘a denote a general point an the unit ciccle in the ¢-plane. Then, on

the unit circle, Equation (70" gives

209 = Blz)=-UF@) e+ UR(F)e v iwf ) R )

This 'unction, B(4), is callr’ the boundary function by Milne-Thomn:son.
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If the boundary function is expanded in a power series in 6 , we can write

8(7) = B(7) + 8.,4d)

where B;(g) ontairs the negative powers of ¢ only so that 8,(s) is holo-
morphic ( B,(¢) is finite, single valued ard has a finite single valued differential
coefficient) outside the unit circle and vanishes at infinity.

Thus, in terms of the complex velocity potential function W (¢), Equation(71)

may be written in the form

wWi(s) - w(z) = B/(c)+8,(d) (723

Let 7 be the circumference of the unit circle. Then Equation 72 may be used
to obtain

1| wwdd _ [ W(;)do' YO ]’ ] (2149
an
7 7

2n¢ q-3 2m @8
7 H
—
Now, W(4) and B($) are holomorphic outside 7, while W (3 ) and By(¢ )
are holomorphic inside 7. Therefore, if § is outside ¥, application
of Cauchy's Theorem shows tha. the second and fourth integrals vanish and
the first and third give

w($) = B,(6) (73)

Thus, Equation (73) gives the complex velocity potential as a function of § .

Elimination of § between Equations 67 and 73 yields the complex potential
as a function of Z .

In suminary, to determine the complex potential W(Z;, it is necessary to
know the mapping function of Equation 67 and the siream function on the
houndary of the cylinder (Equation (70)). The boundary function in the circle
plane may then be determined and, hence, that part which contains only
negative powers of § . The complex potential is then immediately deter-

mined.



(2) Application of Boundary Function to the Segment Method

Although a cylinder under translation and rotation was given as an example
of the boundary function, this appreach may be uscd to solve more general problems
in which 3 may be determined around a contour “»r which the mapping into a unit
circle is known.

Consider an elongated body with its longitudinal axis aligned in the direction
of the freestream (Figure 51). Let the velocity components in the x, y and z
direction be denoted by u, v, and w respectively. The body is divided by cuts as
shown and the volume adjacent to each cut represents a segment.

From the computation of the jet flow field (see Section 1), we know what the
jet induced velocity components of u, v and w along the cross sectional boundary of
each cut would be if the body were not present. Due to the presence of the body
segment, we must satisfy the boundary condition that no fluid penetrates the surface
of the body segment. In the method of segments, this boundary conditior is not, in
general, satisfied exactly. It is satisfied approximately by moving the cross section
of each cut in such a way that the velccity component normal to the cut is equal and
opposite to that induced by the jet. Thus, application of the boundary condition does
not account for growth of the body in the x-direction,

The method developed in Section III may be used to determine the mapping
function of Equation 67 so that the problem of obtaining the complex potential and,
hence, velocity and pressure distribution, is reduced to ene of determining the
stream function on the given boundary.

Following the procedure for determining a boundary function, we first transform

the cross sectional area of each cut to a circle by the mapping function

Z:f-rbo +—-§'—+

where Z =y + iz (physical plane), ¢ = relo (mapped plane).
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The complex constants bO’ bl' e bn, which signify the geometry of the cut,
are determined by the procedure discussed in Section III of this volume. The complex
potential on the inapped plane due to the motion of each cut is assumed to be

w=dt+¥Y= a?ﬂnt"’ g, f"‘*‘?}, g (74)

To compute the boundary function for every cut, we write
dy = d r + 54 a de

When we perform the integration of this formula along a circle where the variable

r remains unchanged, it reduces to

Putting ¢ :n a forzt convenient for computation yields

-8
, 2y _
Y= J(s%f“% + 2 2)d -‘J(W;'g% w2)de, s
0 (4]

where vj and w, are the jet induced velocity components.

j

If we set the upper limit to 2 7, this integral gives the net flow of fluid
through the boundary. This may not be zero, due to the fact that only two velocity
components have been accounted for instead of three. This source or sink inside the
boundary is accounted for by the logarithmic term in Equation 74 .

We first determine the coefficients a a, in Equation (74) by consider-

1
ing the periodic part of Equation (75). Thus, we form

2

) bl 02
Y=+ j( )y 24 - 92 ) do

)
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‘The boundary function ilmir)wbeapandedinﬁneformofal?ouﬂerseries
3 by the usual method

n . n
7 =_Z A, Cesnb fZ g, Sinné .
2=0

=y

The boundary function may now be used to determine the coefficients a, - - -

a in Equation (74. and, hence,determine the potential for the flow which will.

cancel the normal component of velocity calculated by the jet program.

The first term in Equation (74) represents the source and circulation potential, and
will be considered later. The coefficients, ay, a5, - . -2, of the remaining terms

may be determined by eguating them to An and Bn. Setting a,= a'1 +1i aj, 3, = a'2 +
a'é, . .., we obtain
i a; - . ﬁu: ) . a; (76}
? A=T 0 B="%, A= r"Bl T
"; or a;='rb8.*i'2)A:)
2, -2 ‘

2= =T BT A,
3 n 1A
J On= =Yy Bp ¥ thp An,
Jl where ry is the radius of the mapped circle.

To evalvate the coefficient of the logarithmic term in Equation (74), we write

Oy tnt = dylnr + 100 .

°: For a body without circulation, a is real and is given by
! an

3 G = ay = '2l ("‘3% };'a'}')

<
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Thus far, the complex coefficients in Equation(74)bave all been determined,
which sets the flow through every cross sectior of the cut to zero in a predetermined
externzal flow field. The c~mplete complex potential is then the summation of Equa-
tion 74 and the poter*ial induced by the exhausting jets. Once this potential
is known, it is a relativeiy simple matter tv write 2 computer pregram to calculate
the pressure distribations aiong the boundary of every cut, whick result in the power
effect by the segment method. Sample calculations a— discussed in Volume I

b. Three-Dimensicna! Modification

By establishing the real part of the complex potential in the physical plane, we
obtain the velocity potential at every point exterior to the body on the planes passing
through the cuts. These velocity potentials all exhibit the same form except that
their coefficients are different from one plane to another. In other words, every
coefficient is actually a function of x. To show this parameter x expiicitly in
Equation 74, we write the velocity poteatizl at station x, witr: the help of Equation (76)

P(4.3;2) = a,a)far + Iﬁ,‘,l—)[A,u)sine-B,(x)cxo]

Yzll) rn‘z) (77\
+ 22 (A, 5in26 - Bx)cos26] + -+ 2 [ A,423 51006 -B,0) coxa6]

in which r and 8 are functions of y and z given by tie mapping function. By consoli-
dating these expressions from every station, we could construct a three-dimensional
velocity potential. This potential does not, however, satisfy the three-dimensional
Laplace equation. To remedy this deficiency, we proceed to Step (2).

In Step (2), we first divide the region of the flov, field into a network of small
parallelepipeds whose ""centers" are situated on the planes passi..g through each cut
(Figure 52) and then compute the flux through the surfaces of each parallelepiped by
using the available velocity potential. To account for this flux approximately, we
have

Q= (%3 *35) v

in which the partial derivatives are ¢-aluated at the center of the parallelepiped and
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DY refers ic its volame. Unoe lemotivg the potentizis af this and its meightwring
statiors wbe @ .¢., ¢, . 2 the vedonty comgoments to be z:—l’:..’z-g

a=d r--%t_ . WE obtaim

X

? 4..
-2 + = ov
[ .7, )(L -2- ,,) (2_.-ZNz-2.,) (L. 2. )2-2.)]

The quantities in e bracket represent an approximzation for the partial derivative
$9%/4> These reduce to the central difference formala for stations of equal
intervals. The sum gg,%’ is always eq! to zero, since ¢ is the potantial
obtained vy the segment motho’. However, the met flux G,. computed in this marner, is
not in general equal to zero. This implies that fluid has been created or destroyed
within the pzarallelepiped. In cther words, the Laplace equation has a residuz! term,
since the continuity equation and the Laplace equation are equivalent. T counter-
balance this residual term, a source of the same strength but of opposite sense is
placed at the center of the paralleiepiped, so that the three-dimensiona. Laplace
equation is approximately satisifed in its neighborhood. Repeating che process for
each parallelepiped vields a network of residual sources and sinks in the space. These
sources and sinks create a new field which will modify ii-e old one.

A schematic diagram for the parallelepiped network is shown in Figure 52.
Though there are only two layers and iew paralielepipeds indicated, it is understood
that for computational purposes we need at least four or five layers to cover a space
extending several bodv diameters outward. To illustrate the effects of residual
sources and sinks, let A be an arbitrary point on the body surface (Figure 52) with
the coordinates X5 Yo and z,- Let the centers of the surrounding paralielepipeds
be x,, i and z,. The residual velocity components at roint A are then given by

m(2.-2,)

A
a(zc;g;,}a) = ‘I-”Z;' l(l,-,“l‘)xf(9.»‘%)“*(3;'3‘)1]%

M (4,4 )
[ 2734, P+3,-3) ] %

v (7 y. "c)

3 __'._ ™; (3) '3‘)
w(%.4.4) = 45 Z (3 etg,-4.0'4(3,3.5] ¥
t =4

in which m - -Q and M refers to the total number of the rosidual singularities whose

presence may affect the velocity dist ibutions at Foint A. A schematic arrangement
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s showr pr Fagroe S5 xof the arrows mdébeate fae mifinemces of nengainrung sagudizer-
hes o Pontt 2.

Ounrg & v 301 fut Mfes o5 2 Imegr pmdl-ar, e cax soive the resatieg & o4d
segarately. wibel cowr SuCeTIRETINE Wit e ve oeity potentina? cdtained oy Sep B
gives 2 modifred neinermy potentrr. The rompucatiteal procedire o esyentizliy the
Sproe 235 v Rem (B, <Eope Iy pever ©o Step (F we cainpite fne welvemy cooymiments
tofinred By foe residoe! sowrees m sk afiorg e doumbery of epe® eug.  Thes stap
agEr resalts im ¢ set of veloeny potentizis defimed or The piuves pessorg Eroagh the
cuts. Comsclidzing rfese poterwiziz o 2 sinrifzr memmer 26 ot r Egortion TH gives 3
rhree-dimersions! potentiz! doe to the residret sowrces ant sizks. This potemiipt
adided 1o tioe potertiz! foume im the cegrment moethnd (orms 3 miw potentizi. Thie mex
potextiai shonld better satisfy the three—Emersiorsi Lagiace egration. K the srcuraey
is stilf mo¢ accopizdie, we czr nswaiiy reprs Neps (B zad B 1o perion: z second
iteratioz. This procedore caz be, iz principie. carried o indefinitely. pomever,
imasmmuch 25 this is 2 guasi-two-dinvemsiomai method and the How field imvoives
inaccurate guartities iz zmd ear the extansting jet. Righer iterziioms mzy Dot be
very mezminmgfapl

2. COMPUTATION OF WIXG PRESSURE DISTRIBLUTIOX

A finite wipg is 2lso z three-—dimensionz! body. but 1 has 2 Esunct properiy of
generating iift ip 2 uniform flow. Consegueptiy. the zhove procedure is appiiczbie
with the a4ditiona. reguirement that the Kutta-Joukowsky condition be satisfied a1

the trailing edge. To accomplisk this, oconsider the foliowing:

dw _ 9 _ & _  __nd
df, ; ;2 snn
n
_ a 38; as(y+i) - de : 36, 5in(4+1)6
= —r—CO.se T}'+' - l—r-SanB + ¢ SyEY
]! 3=t

If it is assumed that the trailing edge occurs at ¢ 9. 1t hecome: ; ~essar: n €21

the tangenual velocity component equal to zero here. :.e.. to set the imaginary part
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of the egrative 5o rero 22 § = ¢ m:% to the ivragtarrs port of 2 . we duTE

Th.s the Hirse erve iz Eometioe () is defimed.

Séace fae coopriations] procednr - in suep (i) disregerds the veristiom of dee
circxlation alomg foe wing spow cme to the wing plavforer, he cornpated 125 os ifkedy
] 10 be lzreer tham it shoxld be. Yo better estimute the wing i we zpoiy the lifting
line theory ix 2 reverse mzrmer. I ofher words, we mnate Sorne TTeToN v redute
the rragwimde of fhe “dosmuash” comrpomerss (aromeliy wpuesk for foe vemz! adverse
lift cacsad b the extansiing 0. so & the over-predicsion in step (1) oocid be parsa’ iy

compensaied for. The procedere is to represess the circniztion . chizined ik SteD
(1) in 3 Fourier series in the wing spemicse Erectioe. We next use the eguaton
‘ d /
2 _ 1 I r d s
“Y=3@m| a 471
b
2
i to compute the downwash componenis 2: every section. The symbol b demozes the
. span lergth or that portion of the span lenzgth over which the power effect is significant.

Then a pew flow field on the fictitious wing is constricied by subiracting % {rom the
modified w components in step (2). This constitutes the modificztion to 2ccount for
the spanwise variation of the circulation around the wing after inciusion of the residual

source distribution.

It is poted here that there are two arbitrary elements *:. olved in the above
prccedure. These are:

(3 The factor 1/3 in Equation 78 :s an added empirical factor to the
original equation.
(b) Since only the lifting line theory is invoked. all the components at anv given

section, regardless of the chordwise position. are reduced by in equai
amount equal to w(v).




€. COMEPUTATIONS AXD RESI T TS

. O the dases of e above mizsis. conrparer progrzms here been writien to
3 calimfage tx pressure Asommoiom: on 2 Wimg o Boafy.  These pressare dostnibations
i e b ctegritedt v prve foree 2mf mvownent o e simp o Body.

To recagemize. the semmemre of fhe corrouirami proeedivre vs:
Sever Fr wvms or codiy mEs 2 Auevter of SecToms.
Chexiz the rmgpeae Swetror for eack sectzor.

Tramsiore e sectiom’ copnoe” oo 2 chreie.

28 3 ¢ B

Arupire e yelonity dsinBuetion dicar e JoamErry of exthk sectiom Sy

merms of the 2t Fow Teict progrers.
fey Fim? the bompdery frometion 37 emch sextaorm.

M Faxmead these bermderrs Sootices iz Fane? series.

"y

{5y Deermine e coefficients of the compiex potemn=al 2= eath sectiom irom

the Forrier coefficiems.
&) Compele ihe pressure Gsiriouion from the complex potentizl.
1} Determ:ne the lorce zmd maermen: by irsegrating ihe pressure disiribation.
If the three—dimersiona! modificztion is preded we skip step ) znd inviude the joiow-
ing steps:
; (" Form 2 petwori of peralielepipecs :p the exterior spece.
k) Comrpule the pet flux in each parzilelepiped.
(1) Place 2 source of tke same sirength bt of opposite sense at the center of
each parallelepiped.
(m) Determine the velocity distributions along the sectional boundaries induced
1 by the residual sources and sinks.
k: (n) Repeat steps (e) through {i) to ohtain the for-e and moment.

Extensive ca!culations have been carried out for two wings and two bodies
with lifting jets in a uniform crossflow. The parameters involved 1n these computa-
tions are: freestream to the jet velocity rauo . angle of attack. sideslip angle.
location of the jets and the number of hiting jets. The calculated results have

p been compared with wind tunnel test data. The agreement has been fairly

3 1023




satisfacticry. Souve exampies zan 3¢ found ie Volumve il. A general featur= froar these
izvestigations indicates that "he power iffect is 2 stroag fasction of the vefocity vatio
but is rather imseasisive to angie of attack.
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SECTION YV

INLET FLOW FIELD

Inlet flow models are deveioped which allow lift, drag, and moment estimation
for bodies comtaining inlets normal to the free siream. A propulsion model for lifi-
ing fans is developed relating imernal and external flows.

1. ANALYSIS

The basis of the inlet flow field amalysis is the zssumption that the flow about
an inlet normal to the free stream may be a2pproximated by the potential flow produced
by a concentrated sink embeddied in an infinite plane zbove which passes a uniform
Bow. The force produced on (3e suriace coniaiaing the inlet is assumed to be the
force acting op thai poricn of :he infinite plane obtained by projecting the planiorm of
the suriace onto the infinite plape. For purposes of calcuiation, the force upon the
affected portion of the infinite plane is divided ints two portions: a lip force acting in
the immediate vicinity of the inlet, and a surface force actipe on the remaining plan-
form area.

a. Lip Forces

The lip forces and moments are calculated by establishing a control surface of
radius R1 about the inlet centroid and applyinz the law of copservation of momentum
(Figure 53).

The :ip force in the free stream direction is expressed as shown below.

D, =/>5uxu,, dS + 5 Pd S,
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FIGURE 53. COORDINATE SYSTEM FOR INLET MODEL
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The pressure and velocity at the hemispherical control surface may be expressed in
terms of the sink induced velocity, u.

= P-/3 (Uoe2u, Ugsin g cos© + U5 )

Up = Ug *Um smf cos ©
g = U, +Ug singcos©

Uz = —ug cos &

The velocity u s is obtained ."rom the sink strength or fan flow rate.

u.= m/ 4w R,a

-~

The conditions 2t the lower control surface are shown below. The corstant K is
defined as shown and the constant 7 is a dynamic head recovery factor for the inlet.

P o= B U -BCul ru)

u,, = —Uf
u,= K,

The drag is then found,

D = pAg Up s ( I-K)
As the free stream velocity component is reduced to zero or near zero in passing

through the fan, we may calculate the total drag by assuming the turning to take place
in the inlet.
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The moment about the centroid, and normal to the free stream is found as shown
below.

MLz/aj(U XF)un‘JS *SP(BAF)AS
ML:/DAFUQDU.{:(R,/Z + KAZ)
ML:/JA,:U&,U.;: R,/Z

MmL= ML COS/@

gL =M. Sm/B

As in the drag calculation, the parameter K has been set equal to zero for consistency.

M

The lift may be calculated from the expression

L_‘_=/>‘5uzun<15 s Seas,

Thus,

Ll. :fé‘ A.F[UFZ([“Af./4ﬂ'R;Z> +U°32('Z_K2) J

The parameter, K, is retained in the expression as the change flow direction

in passage through the fan does not affect the pressure at the lower control
surface, the source of the term. In the equations for drag and pitching moment,
the parameter K reflects an unremoved freestream momentum flux and later
elimination of this component, in the fan or nczzle, will cancel the terms

containing K.
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b. Surface Forces

The forces and momenis on the remaining effective area are calculated by
integration of the pressure distribution created by the sink. The pressure coefficient
at any point is described by the expression shown below.

Us Ag

. Us A
CP"‘(’};; gos@/j) td f)

2
o_) 17,

The lift can then be expressed as the following integral.

l.p'r

2/3 55CP rdrd®

Integrating with respect to r yields the intermediate result which may be used in
conjunction with a body description tc obtain the force.

7
! As ) r
L.=73 U~U_'['c Inl= | ces@d4 6
S 2/0 o ;_77 cs/éju nR, ces

27 .
r
t Sln/ﬁj /n/‘R') Smeale]
0 I .
n

UL (A,c/,z;;rﬂ,)2 50 [1-CR,/) |40

In a similar 2 ..er the pitching and rolling moments are found.

Mns =/z to s [C"V’j(ﬂd coc"ew
*Sm/@j(R / cosesmede]

2
(As /R
+/z U;"AER/'—L) 5(" Ro/l‘)(.ose de
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Ag¢ R
Mys =/Z Vo Us “;r—"'[

cos/ﬁj(l r/R,)cosesme 46
F sin j(l P/R Sm 9&9]

i-/% U:MS(R /r- I)smOdG

It must be noted that the effects of the body edges on the pressure distribution created
by the inlet have been neglected, and thai the forces and moments due to edge effects
are not included in the analysis.

2. LIFT-FAN PROPULSION MODEL

A simple expression has been obtained relating the flow parameters to propul -
sion parameters for lift- fan units, The modrl is based upon the assumption that the

pressure difference across the fan may be represented by the following relation.

‘Q

AP‘-’;Z"'/oCtUtZ

If the exit static pressure is assumed to be that of the free stream, and if
allowance is made for loss of dynamic head at the inlet and for nonaxial flow at the

fan entrance, the pressure differential may be related to flow conditions.

ar=gp[Ufe (K0 ) ]

The fan flow rate may then be described in terms of free stream conditions and fan

speed.

2 2 2
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The ian flow rate is often expressed in terms of flow ratio and tip speed ratio.

Ves = U“-[ . ! ]
Uf Ct ¢ ('l Kz)(Uo_,/Ut;\

The thrust carried by the fan blades may be obtained in terms of fan flow or tip speed

parameters. ,

Te.- ‘%_‘/oAi;[U,sz(Kz-lL)Uu?]

t 2
i Ag Cp U
The effect of the presence of a fan centerbody may be considered by assuming it to

produce a base drag force, or momentum loss.

T = Ag AP -4 pU CoSco

- ok [ Ce ] 2 p (Q-Kz)Co'Sce U2
27 ! + CpSc B/Af- 2 |+ CpSch /Ag i

where:

2, I 2 L .2
= ( " <
Us [+ Ci:Sca/Af[Ct(.}‘E ) ¢ )U‘”]
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3. COMPARISON WITH PREVIOUS RESULTS

If the preceding relations are applied to the Zz5e of a simple {an in an infinite
plane, having an inlet which turns the 5o by ninety degrees with no flow losses, the
~ results of the present expressions may be compared with previous work (20, 21).

The lip and surface forces become:
2l ya
LLrS 2/% Asg [Uf + U ]
The fan thrust reduces to:
2 2
T{. =/’i Af [Uf —UQ._ ]

And the total lift may be expressed as:

L

L + Tf

L+S

2
/nA;U.;

a result in agreement with Theodorsen (20).

The express.on ior the fan flow rate is then found to be

A
= U’F fUQ;, f'cr‘ Ut = Ccnsfanf
Y,

This result is in agreement with Grahame (21), who derived the expression by other

means.
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4. DEVELCDPMENT OF HANDBOOK METHOD

The simplicity of the empiricz! model outlined above enmables estimation of in-
let effects without reso.t to sophisticated compute: o~hniques. The lip force and fan
flow equations are applied in the form given. The integrals used ic escribe the sur-
face forces may be easily integrated by finite summation using 2 work sheet as sixcen
in Table 1. Because the induced forces are concentrated in the immediate vicinity of
the inlet, large angular increments may often be used with little loss of accuracy.
Semigraphical integration is ofter a convenient alternate.
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SECTION VI

NONLIXEAR BODY AZR0ODYNAMICS

To evaluate the body contributioe to the aerodynamic derivatives of V/STOL. air-
crafl it is necessary o incluode the raecge of flight conditions whick is likely to be
encountered in operation. This requires the zircrafi tc operate at exlensive anzle of
attack and sideslip since the flight aitituce near hovering flight is not determined by
aerodynamic forces but rather from th+ application of power. There is, however, an
area of flight where ihe aerodynmam:ic and nower effects will tend to be of the same
order of magnitude and where neither component car be safely neglecied.

It is to treat the aircraft behavior in the region where both aerodynamic forces
and power are im>ortant in supporting the aircraft weight that nonlinear aerodynamics
is important.

To obtair: the total aerodynamics of bodies at large argies of attack and sideshp
it is necessary to treat both tkz potential flow contribution and the viscous effects.
This study has utilized slender bods theory ior the pctertiz2l contributions, while two
methoCs of treating the viscaes eftects 2ave been examined. The first method using
vortex tracking was fouad w te unreliable within the present state of the art and to be
too unwieldy for use as 3 aandbook procedure. The second method, using the viscous

crossflow concept aprears to be quite suited for a handbook procedure.

1. SLENDER BORY THECRY

To completely represent the aerodynamic forces and moments on a body it is
reccssary to combine both the potential and the viscous contributions. To obtain tne
potenti:i contribution, slender body theory is used. The development of the equations
representing the slender body solutions is an agacjpiotion of the methods of Sacks(zz).
The basic equatior.s have been modified to permit large angles of attack and sideslip
to be accounted for. The ability to handle arbitrary body shapes has been attained by

introducing = method of obtaining a mapping function for an arbitrary body shape.
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A compuier program ias beer writles winck computes {ive conxposest force and
momext coefhicienls 25 fancthions o esxliant angle of aftack, rodl angle, yas vedocsty
and pitchrng velocily. From these cwfficients the acrodyramic derivatives cax be
easily obtarmed.

T egualion for the forczs aad maents given by Reference 22 wher modified
1o eliminaie the roiling velocity, the effect of which cam be comsidered megligible for 2
body, and the time derivatives, can be wrinizs ia complex form:-

V-it=2Mpy,A, +pU, [sR+ ts;";-’-‘-'ic)],, , (79)

y 4 p 4
8A - -
N=iM=-2TPUp [(x-xcg) 55 dx-2U, [(x-icq) 2SR+ o2k (SE)ax 15
(] 9

£ ¥ 4
U=% pu,Rf;., Fd(zi)-ZﬂPy RA, dx-ﬂl.l/l-?j‘i (SZc)ex 81)
o [
The evaluation of these equations requires that the cowwolex potencial
-
FeB(dnZ+ L An(u)fZ"+ DR #2)

be known. When the residue of the potential A,(x) is known, the only difficulty in eval-
uating the total forces and moments arises in evaluating the first term of ihe moment
equation above:

R de(Zé)
The rest of the terms are readily evaluated.

Sacks(zz) has shown that

B =53 43 (63)
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The coefficients A lx) can be evakuated by re-expressing Equation (32 i» levees

of the xapping circle plase coordizate Z, i e.,

=B S+ S Ay (5" 9

Refereace 22, Appeadix B, shows that this expressioa can be evaluated from the
coefficients of the mapping from the circle plane.

and is expressible as

F=§§' ap[s™-R +3T +Ty(8) (%6)
where

{=re® (87

and T\. () is the portion of the poiential required to satis\v the boundary conditions of
the body and is equivalent to the expression of Equation (25) of Reference 23:

N ~(n+l)
Tw (8)=r20p{- Y (ah-2n ;':.’ a,) -5
Nz

Y nel
(88)
N XN (n-m)
S amln-dman’) # n( ' 3y -anam)]
4'"230 ﬂZSO[M(rC dmdn dman)+n( re anam anam) (n-m)rcz(-n,.l)}
mn
+HLn §




The coeficiest H by comparisos xiik the coefhiciest B {x) car be shone Lo be

<% d5 .
H=3% o= +35)

A comparisos of the two expressions for F gives the expression

A,(x)=Ra,~Rr.2-1.2 U, [5 fZ {-( fmf)rc’ ».,5.,-,-a.§;..,)_/,c¢-

(90;
Y b L \ 2m}f_ de% dS
Uy =Ug cosa
E2Y)
with this expression and the definiticn of P (again with #= 811 =6

R=— rcos¢+g$m¢_](x-xc9) [U,smczf(g.cos¢-rsm¢)(x- 9)] 92)

This expression for R has been modified from the definition of {eference 22 to utilize
resultant arngle of attack and roil angle instead of angle of attack and sideslip.

All of the recessary information is now available to soive Equations (79) and (20)
if it is assumed that the coefficients of the mapping function {(Equation (83)) are known.
The expression

R f £d(23)
can be evaluated by integration by parts to be
¢(27T+w°)

Rfriz2)-R [anl -2z dF

=“R[§.;='2df]

=-R[$z(21Z2()% 45

(93)
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since the first term of the istegration by parts is imagisary. Oa the surface of the
body Z can be represenied by lae expression

— . N3, 'cz _ N _¢»n
Z,‘gcfd, oy’ ?s ?:4&. ',g ay %. (2]

and the expression for F can be differentiated wiik respect to I ang the residue of the
integrzl cam be obtained.

Thus, assuming that 2 mapping functioe is avaiiable, it is possible to solve
Equations (79), (50) and :81) for Y, L., X, M and L’ as functions of @, ¢, g and r. Also
by direct differentiaiion or by perturbing either a, ¢, q or r, it is possible to obtain
the derivatives of ithe coefficients as well. The above analysis can also be readily
extendcJ o include either the rolling velocity or the time-dependent behavior of the
coefficients should these be desired. In the ireatmest of these equations it has been
assumed that the forward velocity can be resolved into an axial and a crossflow com-
ponert which permits ihe equations to be solved at angles of attack up to 99 degrees.

a. Simplified Method of Obtaining Major Mapping Coefficients

Section III has described the method which has been developed under this study
for determining the coefficients of the mapping function. This sclution makes the
problem of solving for the slender body aerodynamics solvable. It is desirable, how-
ever, to si~plify the procedure for treating the tody aerodynamics by eliminating the
need for mapping the body since this requires a great amount of worx.

To obtain a method of using slender body theory for a handbook method, it is
necessary to find an approximate method for estirnating the most important coefficients
of the mapping function in a simplified fashion. An examination of Equations (79) and
(80) shows that except for the term A, all the variables are independent of the mapping,
i.e., they can be obtained directly from the body gecmetry and flight attitude. In addi-
tion, it can generally be assumed that the rolling moment of the body can be considered
negligible. It can also be shown that the derivatives of Y, L, N and M with respect to q
and r are dependent only on the radius of the mapping circle and the coefficient a,. The
other coefficients enter into the derivatives with respect to angle of attack and sideslip
{or resultant angle of attack) through the cos a terms appearing in Equation (90). It
appears from this expression that coefficients other than Tos 4 and a, may be
neglected 1n treating the body. This would 1mply the simplification of " quation (90) to

the form
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A, () =Ra,~Ry2-22 U,a.'—s—;—,-u! :—:—f (99

This approximation and a suitable method of estimating .3, and a, would per-
mit a relatively simple procedure to be cutlined for treating the potential contribution
to the body aerodynamics. The most suitable method of approximating these three
coefficients is to treat a as if it were equivalent to the centroid of the cross section,
and to estimate T an: a, from the maximum vertical and lateral dimensions of the

body. H 2a is the maximum lateral dimension and 2b is the maximum vertical dimen-
sion, then by letting

=a+b (96)
fe™"2
b-3
a,=352 (97)

a relatively good approximation for these coefficients is obtained. These approxima-
tioas have been made for the T-38 body and their values are compared with those
obtained from an analog mapping method and shown in Figures 54 through 56, Consid-
ering the complexity of the chosen body, it is considered that the agreement chtained
is quite good. The effects on the coefficients of using these approximate values and
neglecting all other coefficients are shown in Figure 57.

It is felt that this is an adequate demonstration of the capabilities of predicting
this portion of the body aerodynamics.
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2. VORTEX TRACKING

One method of obtaining the nonlinear characteristics of bedies is to treat the
viscous flow as if the vorticity were collecting in a single vortex pair. Under this
assumption the paths of the concentrated vortices are traced and the effects of these
vortices on the body are computed.

This computational model requires several simplifications to the true fiow pat-
tern about a body and the degree of success in predicting the aerodynamics is depen-
dent upon obtaining a satisfactory set of assumptions. Reference 23 presents in detail
a procedure which has been used in an attempt to obtain a valid model for arbitrary
bodies at angles of attack. The basic model used is that of Bryson(24) which balances

the forces between the concentrated vortex and a "feedinyg sheet' to obtain the equation
s r
;I"'(;,';o)F:W] (98)

which relates the vortex path to the local potential and to the rate of growth of the vor-
tex strength. This equation differs from that for a frec vortex (t., = w,} in that an addi-
tional velocity (4, - ;0) IL: , is imposed on the vortex due to tiie presence of the feeding
sheet.,

The Bryson model also postulates the existence of a stagnation line on the body
which in ¢ffect permits the strength of the vortex to be computed when used in conjunc-
tion with Equation (98).

The method of Reference 23 is a generalization of the Bryson model which per-
miis the introduction of an arbitrary hody with unsymmetrical flow conditions in the
crossflow plane. Thi, formulation retains the major features of the Bryson mode!
but generalizes the method by relating the flow in the body plane back to a similar
flow zbout a body of revolution by means of a inapping function. Other modifications
are made as required to permit a more general flow pattern and to permit more

flexibility in specifying the stagnation line,

The method was used on the T-38 body, - d doing so showed several limitations
in the model, the most serious of which was caused by the feeding sheet force. This
force at times became e \ceedingly large which, in turn, preduced an unrealistic path
for the vortex,

During the present study, modificutions were made to the above model with the

intent of improving the accuracy of the method. The mcst satisfactory modification
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consisted of two changes in the modei. First, the effect of the feeding sheet was
neglected. That is, the vurtices were assumed to move f{eely with the potential flow
field including the effects of ‘he other vortex of the pair and botk image vortices but
assuming no feeding sheet focrce. The second mcdification was to relax the stagnation
line requirement. Originally, the selectior of a pair of separation lines together with
the requirement that the cross flow velocity went to zero there, pern;itted the specifi-
cation of the vortex strengths. This condition was replaced by the assuraption that the
rate ai which the vortex was béing fed was equal to the crossflow velocity at the sepa-
ration line. This condition, which may be stated as '

r ' .
57 = UP+UI... (99)

is more realistic 2s a condition from a consideration of the buildup of vorticity in the
boundary layer. It also has the advantage of permitting a gradual change of vortex
strengtih buildup regardless of the location of the separation line. With the original °
agssumption, an abrupt change in the sepai'ation lire would cause an abrupt change in
the vortex strength.

i

Figure 58 shows a comparison of the results obtained with this modified model
and test data. The agreement at angles of attack up: to 40 degrees is quite good but the
theoretical results begin to act erratically at higher angles. Further attempts to
extend the results to higher angles of attack were unsuccessful. Agditional calcula-
tions were made with this model in sideslip, 1r sideslip the flow pattern in the cross-
flow plane is unsymmetrical and the path of 2ach vortex is diffe‘rent: Calculations
made under these circumstances showed a very erratic behavior and did not agree at
all well with available test data, The apparent reason for this was the unsymmeirical

vortex location which tended to exaggerate the asymmetry.’

This model has several drawbacks due to the simplifications necessary to per-
mit a solution to be obtained. Among these are separation, a quasi two-dimensional
flow field and the assumptwn that the vorticity behaves as a rectilinear vortex with
the rotation confined to the croqsﬂow plane.

It was decided that it would not be possible to refine the mudel sufficiently to
allow realistic aerodynamic loads to he computed within the program time limitations

so the alternitive viscous crossflow mode! was studied and utilized to account for the
viscous effects instead,
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3. VISCOUS CROSSFLOW

The viscous crossflow concept assumes that the effects of an angle of attack or
sideslip can be estimated by treating only the component of dynamic pressure in the
crossflow plane, and that the forces exerted at each segment of the body are indepen-
dent of those sectioas forward or aft of this segment. This treats the body by what is
essentially a strip theory based on local two-dimensiona! values of the body drag.

Using this concept, the incremental force on any segment can be written in the

form
dfv_:y =2 ,
(r-it),. = 2 [C,,gcy VolVol-i Cp,Ca wolwolj (100)

where (Cp cy) and (Cp cz) are local values of the crossflow drag areas per unit
YA

length in tge yaw and pitch directions respectively.

To include the effects of pitching and yawing velocity, it is necessary to define

- the crossflow velocity components Vo and Wo as

V, = Uy sina sin @ = r(x-Xcg) (101)

Wp=-Ug sina sin@ -g(x ~Xcg) (102)

With these definitions and Equation (100), the viscous coniributions to the forces

and moments can be written

!
. _p , 103)
[v-u -—f[c ¢, V|V,|-i Cp Ca W, W]dx (
vise 2 Dy ™y ol ol D,"z ol bl
,
. =P .
[N-¢ M‘Z/isc Zaf(x‘xcq)[;o,cg%l"ol"‘ Cp,C; Wolwoi_]dx (104)

The above formulations permit the viscous contributiong to Y, L, N and M to be
computed as functions of a, ¢, q and r. No attempt has been made to include a viscous
contribution to rolling moment since 1t does not seem to be a significant contribution

to the overall aircraft aerodynamics. Nor 1is it possible to formulate a model which
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would include acceleration effecis of the body. It is believed that the above formula-
tions give the most significant efiects due to viscosity.

The values for the crossflow drag coefficients can be obtained by comsidering
two-dimensional section data for the shape under consideration or a similar shape.
Calculations made thus far have shown that treating the body as an equivalent ellipse
will give reasonable values for the viscous forces and moments.

Calculations were made for the T-38 body using for the crossflow drag coeffi-
cient Equation (20) of Reference 25, Chapter HI.

= de be
CDo ZC‘(l+be)+l.l(ae) (105)

with
C £= .0075
a, and be which in Equation (105) are the ellipse semi-axes parallel and perpendicular

to the crossflow respectively were assumed to be the maximum dimensions of the

local T-38 cross section.

The results obtained with this equation, together with the slender body values,
are shown in Figure 59 as compared with test data.
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SECTION VII
NONLINEAR WING AERODYNAMICS

o i Ao B A Y LA A A

E When 2 V/STOL aircraft is operating in the hover or transition speed regime,

’ there will be occasions when either the aircraft angle of attack or sideslip angle are
of such a magnitude as t> necessitate an investigation of the nonlinear aerodynamics
of the vehicle. This sec'ion deals with the problem of determining the nonlinear aero-
dynamic characteriztics of a wing.

The method which has been developed is a modification and extension of the
Weissinger method. Weissinger(zs) replaced the wing by a concentrated vortex at
the quarter chord position, and, by determining the downwash due to this vortex and
associated trailing vortex system at a number of control points on the three quarter
chord line, was able to determine the strength of this vortex. To do this he balanced
the downwash due to the vorticity with the upwash due to the attitude of the wing at the
control points on the wing. This procedure is effectively one of taking theoretical
section data and including aspect ratio effects by accounting for the trailing vorticity.

Choice of the quarter chord line for the vortex implies Cm = 0 and satisfying the
1/4
downwash boundary condition at the three quarter chord line results in a limit of 2~

per radian for the lift curve slope for rectangular wings as the aspect ratio is increased

"t gy i1

indefinitely, Or equivalently the section lift curve slope is 27 per radian.

The model for the nonlinear wing problem is similar in that nonlinear section data
are used to generate information for finite wings. The variation of the section iift curve
slope throughout the angle-of-attack range is accounted for by locating two lifting lines
at appropriate lozations on the section chord and the relative strengths of the vortices
are determined from test or estimated section characteristics. The problem of pre-
dicting wing lift and pitching moment characteristics is then one of solving for the
induced downwash angle associated with the planform under consideration and of evaluat-
ing the lift and moment contributions at an effective angle of attack as determined from
the induced downwash,

o
o 2, B 4 Sererd
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1. NOXLINEAR SECTION MODEL

The analstical model used to represant nomnlinear wing section data assumes that at
zn angle cf afta<k of 90 degrees the normal force on the section is entirely due to 2
viscous drag, and that there is a contrilution to the normal force at an arbitrory angle
cfanad:r.proportionaltosin?'a. The circulation effect of the s~ction is represented
by two vortices as illustrated in the sketch below. The boundary condition ior ro flow
throagh the airfoil surface is set at .75 of the chord.

I'l r2
C;\ _ X
eyt .
by ’

€ tisfving this boundary condition, we obtain

o L _ Usax (106)
ATR, 2k,

The normal forca contribution due to circulation effects CNIND is given by

-3
C - S 1 107

in which (CN)G _gpls the normal force at o = 90°.
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The contribution to the normal force coefficient due to circulation effects is assumed
to b= represented by

A r‘) —
a(’DT + B/ = Cawe oo

Equations (106), (107), and (108) may be solved for I, /Te, r, /Ue from given section
data for any combinaiion of h]/candhzlc. As it the case of the linearized modsel of
Weissixger(zs), the positions of the two vortices are found by considering the section
pitching moment data.

The pitching moment about the 1/4 chord position C is

My/4
szza__’?(&'—,S).’_aE(Ez __’5)
Uc \C Uc \ ¢
.2 %
t (Cﬂ)xmesm“ (25~ ¢ ) (109)

in which X is distance on the airfoil chord through which the viscous force acts. Sub-
substituting for I, 1 /Ue, T, 2 /Uc from Equations (106), (107), and (103) we obtain

)
Cm'/ = (%ﬁ + i‘ —-.5) CNIND -—LI»TTK' K-}SLno(

¢ ¢ c
.2 —
+ (CN) Stn ot (.25 - x/c> (110)
o =90

The positions of the vortices represented by h1 and h2 in Equation (110) are chosen to
give good correlation between the pitching moment calcuiated from Equation (110) and
the section test data, The strength of the two vortices may then be oktained from
Equatior< (106), (107), and {108) using the section normal force data.

This procedurc has been checked against data from a NACA 0012 airfoil(27).
With the two vortices positioned so that h1 c = .546 and h2 e = .053, calculations of

the pitching moment against angle of attack are compared with test data in Figure 60,
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Y

The strengths of ' » two vortices I’ 1 and I 2 which will give the required section
normal force (given in Figure 61; are shown in Figure 62.

The capability of the section model to fit the normal force and pitching moment
data very closely suggests that this section model may be used to calculate wing

characteristics.
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2. APPLICATION OF THE SECTION MODEL TO WING CALCULATIONS

The method used to determine finite wing characteristics involves determining
the effective angle of attack at a number of reference stations on the wing, using the
cection model. The weighting of the circulation at these sections may then be deduced,
and from this weighting of circulation, the total circulation around the sectiors deter-
mined by satisfying the no-flow boundary condition at appropriate points on the wing.
Sizce the circulation is not a linear function of angle of attack, an iterative procedure is
necessary. rirst an effective angle-of-attack distribution is assumed. The weighting
of the circulation between the two vortices is then determined. The circulation across
the wing span may then be calculated and a new effective angle-of-attack distribution
determined, and this procedure is repeated until convergence of effective angle of
attack is achievad,

a, Downwash Due to the Bound Vorticity

It is necessary to determine the dovnwasi: at the control points due to bound and

trailing vorticity. We first consider the downwash due to the bounr. vorticity.

Consider a bound vortex line of strength /() extending from (¢i, 7 i) to (ei +1°
7Ii+1). Let the downwash control point be at P(x,y,0,). This arrangement is shown
in Figure 63.

%6 *P(x,y,0)

FIGURE 63. GFEOMETRY FOR BOUND VORTICITY
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Let V_ be the velocity induced by the bound vorticity frcm (¢ plto 6, 1 patP

L
then
fﬂ,li.n
—V_L = Z’—" P(';) -‘l(-Z_A.,_?._ (111)
R
j&)z‘_ R R a i
in which T = (X‘ )i. +(3-?')J : = '1"
and fdf TR ('{‘Sonqﬁ v o+ COS¢ ]>
Thus
'_uf'un.¢,, v(z O(Z o
1 ¢
s | _ O
dlAT X - § g- 1 N
~ N\ A
‘ f 2

The downwash due to this piece of the lifting line W follows as
l&n
(1) 2 0\ =[x -
L=t [ 7,4[%—1 r°"‘¢:(3 Z) (x i>dz (113)

od

li
Now j?-j"' + (Z_"z‘_)L%J_ fa,p\d)‘;
Zbﬂ
!
so that W, = — |
TP L o T

x[’.fll.' tan @, (§-2) = (x-5. 2 -7‘)1_;1 tan . )] -
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Equation (114) enables the downwash to be calculated in terms of 7 M) for a gveu
downwash control point and wing geometry.
b. Downwash Due to the Trailing Vorticity

Let Vt be the velocity induced by the trailing vortex systemn at the point P(x,y, z).
Then with the aid of Figure 64 we obtain '

[o'8)
— - (AT
dV, = - ;"‘—2{—;—'42 . -4%,-—- | (115)

The lower limit in the integral, LL, represents the point on the bound vortex from which
the vorticity &I has been shed, '

f

when T =(x-x,)t *(d —J,) P+ ,-%,)2 (116)

and A = dx, T + d},J, + oz, ? (117)

- y!yl’n

(€01

\[Bound Vo.tex

¢ dal (€ 3r10M41)
Xy X1,

® P(x,y,2) dr

~— Trailing Vortex '

FIGURE 64. GEOMETRY OF TRAILING VOR1iCITY
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If we assurue that the trafling vorticity follows the effective angle of attack and sideslip

directions we obtain

a

dx, = Cos B, cos oo [Jdx? + a(;," +dz,

o(J, = — §infe /alx,‘lf- d;f +dz?

o dz, = cospe sinxe Jdx'+dy” + dz}

. Thus equation (117) gives ; A .
3 . - A an . A
Al =[c _ tua/ J + fanol, fi] dx, (118)

CoSe
Substituting for Yy and Zys in Equation (116) we get

T o=(x-x,) T4 [oq-z ¥ Tonfe (K, 5)]3-;—@-}-—1-“«‘()(‘—;12 (119)

CuvsSXe

Equations (118) and (119) may be used to deduce

_ Fanfe Lan oo

| ! Cos ol g
0{“,\ :T_' = | X-X, J'Z*’?;ﬁe(xt-f) 2-5-'f“"°(¢(xo‘f)dec (120)
A
< ] ¢
| Writd - A n A
; riting d Vc = y{a.c ¢ o+ O(Ue J + ﬂ(wa
we obtain
LL
L f e _ 0()(,
dw, = IHT[J'Z + c:’;o(e(x f)J‘“-‘f —F? (121)
& o
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R

in which

R = [(x-—x,)aq.(g—z § fanfe o Fanfe X)

coSde CoSote
s
4
+-( ~X + flon g - Fante X, J
2-3+J ) -

From Equation (122) we may obtain R3 in the form

a¥a
‘R3 -..-.{ a +bx, +CX7 (123)
in which
R
4 ".aﬁ ¢ S +
= -y - - ol
a=x + (41 }mee) +Q=_ + § fan e,>
- - - faa ﬁnﬂz ( - . ]
= Jt[x _Czéct(# y - gww) 3+ § Fand {‘anolel
o
C = SCCQﬁc
cos oo
LL
i f dx,
e integral - in Equation (121) may be
o R

integrated in closed form and an integral expression deduced for W, The analysis,
given in Appendix II, results in the following expression for we

L

= @Z*IXFZ+CT) +a, ¢, Hy+T zﬂ AL
. Ji+tal¢:X7" ¢ D1 +E) - ( dy A1BytC

(124)

Equation (114) with Equation (124) are the basic expr ssions for determining the down-
wash at a control point for a given wing geometry and flight condition.
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3. METHCD FOR CALCULATION OF WING CHARACTERISTICS

The downwash at a control point P(x,y, z) due to the bound voricity in the interval
("i’ ni +1) together with the associated trailing vorticity is Wy tw, which is given by
the integrals in Equations (114) and (124). By determining similar integral expressions
for the other bound and trailing vortex segments, it is possible to determine a series
of integrals whose sum will represent the downwash at a general control point. The
problem we are faced with is the indirect one of being given the downwash at the con-
trol points, and being required to determine che /(1) distribution which will give this
specified downwash. Since I'(7) is to be integrated to determine the downwash we have
an integral equation for I'(n). The procedure which has been taken to solve this equation
is to choose a number of circulation control points, say Mg Myevve ooes 7, and to

n
write I'(N) as a Lagrangian polynomial in terms of the circulation at these control points.

Thus Py = (8-2)(00) (2= 1) P10 (zz) ..... (1-2) Mgy @2
- 8)- - (r-2) (ta= 1) (%)

This representation for /() permits the integral for WL and Wt to be evaluated

in terms of the coefficients I'” (ni), i=0,1, .....n. Thetotal circulation at a given
wing station is distributed between the two lifting lines by weighting the vorticity. This
weighting of vorticity, which is a function of effective angle of attack, is determined
from the section model. An example of the weighting function calculated for the NACA
0012 airfoil 1s shown in Figure 65. The expression for the downwash may be written

in matrix form as follows:

[Aw + B(| -w)]r‘ =D (126)

in w‘nchA Bare the matrices for the leading and aft lifting lines representing the
coefficients of the circulation column vectorr\ Wand l —Ware matrices which give
the weighting of the vorticity between the leading and aft lifting lines, D is the

downwash column vector.

The procedure has been first checked for the linear angle-of-attack range.

Calculations of the spanwise loading for an aspect ratio 5 rectangular wing with sweep
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back angles of 0° and 45° are shown in Figure 66. These calculations compare
favorably with the caiculation of Reference26and test data of Reference 28. Further
calculations for nonlinear a will be given in Volume II

2.4 rO===g= ‘_\\[5 Sweepback Angle
S
\\\ D A= 00
o ~
5 O — — — \E)\O A = 45°
- ,.’@—’— ‘®\§ —
-
'{,3; 1.6L.0 Q\
B AN
& \&@
@ o\
g W
E!
= \
O \
Q(D
0 4 6 8 1.0
0 2 :

Y/(b/2)

FIGURE 66. SPANWISE LOADING FOR ASPECT RATIO 5 RECTANGULAR WING

It is possible, using this approach, to muke calculations for a wing with a flap.
The section lift and pitching moment would be chznged depending on flap deflection
angle, flap chord, etc. The change in section characteristics would, in tunai‘i;%mge
the circulation weig bting function. No calculations have been made for wings w;'_th
flaps. K may be necessary to include two more lifting lines to represent the flap

for more satisfactory correlation with test data.

144




Bt g

E
&
¢

SECTION VI
EMPIRICAL METHODS USING JET FLOW FIELD THEORY

The computer program which calculates the induced velocity field due to single
or multipi= jets exhausting into an arbitrarily directed mainstream, developed in
Section II, may be utilized in the development of handbook methods for estimating
induced forces and moments on supporting structures adjacent to the exhausting jets.
In this section, methods for the wing and fuselage are presented to :ilustrate the
utility of the jet flow field program for the development of handbook methods.

1. EMPIRICAL METHODS FOR THE WING

Three different approaches, each utilizing the jet flow field program, have been
used to obtain empirical methods for the wing. The first approach taken was to substi-
tute an equivalent area circle for a wing to evaluate the induced forces and moments.
The second approach considered the wing planform geometry ( A6 method). In the
third method an equivalent plain wing is construcied so that classical methods for

calculating wing force and moment may be used. A discussion of the methods and
results follows.

a. Equivalent Area Circle
The major part of the lift loss experienced by a VTOL vehicle is due to adverse

pressure distributions on the lower surface of the vehicle (18), (29).

that a good estimate of theselift losses might be obtained by determining the lift

This suggests

losses on an equivalent circular area of an infinite flat plate from which the jet or
jets are exhausting.

Pressure coefficients computed by the Jet Flow Field Program were integrated
numerically to obtain total induced forces in the plane of the jet exit. Figure 67 shows
the computed variation of the induced force on a flat plate around a normally exhaust-
ing jet with velocity ratio for two values of the parameter J_S{ , where Sj is the jet
exit area and S the portion of the infinite flat plate arca over which the induced force

is evaluated. The lift increment due to jet operation, AL, is defined as AL =F + T
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where F is the jet-induced force and T the static thrust of the jet. Good correlation
with the experimental data of Reference 2$ is discernible. Experimental datza on
induced forces for delta wings with similar ﬁ values indicate the utility of the

jet model and the associated computer program in estimating forces induced by
exhausting jets on finite wings. The variation of induced force with velocity ratio
for a range of the parameter ¢/_J is shown in jfigure 68. Figure 69 shows the
induced moments computed about the axis of the jet as a function of velocity ratio for
a range of the parameter i

Experimental data pointssobtained for a rectangular wing with an aspect ratio
of 3.0 are shown in Figure 68 for comparison with computations for a flat plate with
the same ¢/—L value. Very good agreement for the low velocity ratio data points
is evident. The error incurred in the computed values, by letting a circle of equiva-
lent area represent the rectangular wing, becomes significant for the high velocity
ratio data point.

This substitution of an equivalent area circle for the purpose of evaluating
induced forces, as shown schematically in Figure 70(a), disregards induced forces
on the shaded portions of the rectangular wing and replaces them with the induced
forces on the cross-hatched portions of the circle. For the rectangular wing of
Reference 2, this affects approximately 36 percent of the total area of the wing. By
comparison, Figure 70(b) shows the relationship between a delta wing, sweep back
angle of 60°, and the circle of equivalent area. The shaded area which is replaced
by the cross-hatched area now represents approximately 16 percent of the total wing
area. The shaded and cross-haiched areas are also seen to constitute a better sub-
stitution, in terms of respective distances from the centrally located jet exit, for the

delta wing configurdtion as compared to the rectangular wing.

(a)

W\

N

/// -5

FIGURE 70, EQUIVALENT CIRCULAR AREAS FOR RECTANGULAR
AND DELTA WINGS
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b. A© Method

Due to the need for improved accuracy a method was developed which includes
the wing planform in greater detail. The contribution to the

FIGURE 71, SCHEMATIC OF SAMPLE WING

ratio of total induced force to installed thrust on a wing of the shaded segment of
Figure 71 can be evaluated if R/do

fc, (r/7d,)d (r/d)

172

is known as a function of 6 , for a given velocity ratio and deflection angle of the
exhausting jet. Then the ratio of induced force to thrust ratio on the segment,

- +aSV2 R/do

- ds
'7‘::" 2 (%9) / / cp (rrds) dlrsde de (27)

J
- a68/2 2

R¢d,
£= £ (_Ug)z Y= / cp (rrd,) d(rzd.) (128)
T ” Uj i72
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By employing nume-ical integration of the ressure coefficients computed by the jet

flow fiel¢ program in the plane of the jer =xit, curves o«
R/,

jc, (rsd,) «i(r/d,)
172

versus R/'éo at constant © can be generated for a range of velocity ratios and et
Ceflection angles. Figures ITI-1 through [{1-6 in Appendix MI are examples of sets of
curves that can be utilized in the mathod.

A wng of arbitrary planform can be broken dovn into a number of segments as
illustrated in Figure 72. The -atio of induced force to thrust is

(61,R1.A6;)

FIGURE 72. SEGMENTATION OF SAMPLE WING

R/,
evaluated by nhtaining the apnropriate value of fc p [(rsd.) a (1 7d.)

irz

from the cu:ves and m.itiplying by the appropriate A€ «nd coelficient. The
crat-ibutions are then added *o obtain the otal mdeced force 1o thrust ratio on the
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TABLE 2.  INDUCED FORCES ON A RECTANGULAR WING (A6 METHOD)

H
Jet . .
Lecation Uj/u‘” ) (a L/T)exp- (A L/'Ilmp.
0.2 s 0.43 ' 1 0.40
0.2 - 10 0.70 0.75°
0.2 15 P 0,85 0.89
0.5 5 . 0.52 0i21
0.5 10 0.66 | 0.68 !
0.5 15 0.82 0.84
0.8 5 . L.00 0.18
0.8 10 0.81 0.67
0.8 15 0.82  0.83
P " 1 ,
LT . . .l
1&0 -
Bh--° = .-
v
06 [ - -3 - ,
AL : )
T :
AR
* :
; i
.2 s .. - |
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c. Equivalent Plain Wing

A jet exhausting into a freestream will induce a downwash component of velocity
over the wing planform. The surface boundary condition will be satisfied. in a
linearized form, when this downwash velocity component is cancelled by some mecha-
ni ém. A convenient way of producing a downwash to cancel that produced by the jet
is to construct an equivalent plain wing with an apprcpriate camber distribution.
. Cias'sical methods may then be used to calculate the power induced force and moment,
on the wing.

Power induced section choracteristics may be determined using linearized
thin airfé)il theory as follows.

, Consider the problem of determining the lift and pitching moment on a wing

section in the presence of a jet exhausting into a uniform freestream U_ directed along
the positive x-axis. Let the jet induced downwash over the wing section, O< ¥ & C

be w(x). Let z be the displacement normal te the x-axis of the equivalent airfoil

section as defined above. Then, dz _ W , and so
dx Ueo
X
Z(x) = r W Ay (129)
J, Uso
: Thus, writing oo
dz _ w Z B, cosnd (130)
dx Uw nzp
in which ¢ is givenby x=c¢/2 (1 + cosp), (131)
T W
we obtain == | W d = 2 | ¥ ¢ d razi (13
B, ﬁ.[LL ¢ ) B, T"J\Uw osag d¢ for n (132)

The section lift and pitching moment coefficients may be determined as functions

of BO, Bl’ and 32 (details may be found in Reference 47). Thus,

c, - -5 (s,+ % 8,) az
and _ ,
Cm=T(8 +8,) ~%C. (134

Finite wing lift and pitching moment coefficients may be determined using .he
methods described in References 48 and 49 .

Examples of equivalent section camber lines are shown in Figures 75, 76 and 77.
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d. Application to Calculations of Downwash at Tail Surface

The jet flow field program may be used to compute the velocity componenis in-
duced by exhausting jets at arbitrary points in space. Thus, the program has the
capability of determining the jet induced downwash in the vicinity of the horizontal
tail. The power induced contribution to the pitching moment due to the preserce of

the horizontal tail may then be deduced.

The results of a typical calculation are shown in Figure 78. The jet induced

downwash, €, is shown for twe tail stations.

....... s g e
i . ,lPlane of Jet =, ]

Plane 1.5' do 'Above_ Jet: = - --;-—-

) .

0
0
& y/do

(o]

13 Jet Diameters Aft,gj =90, Uj/Uoo =5

FIGURE 78 , JET EXHAUST EFFECTS ON TAILPLANE
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2. BODY METHOD
a. Application of Lagally's Theorem in Relation to the Present Problem.

The most fundamental information in the present study is the knowledge of the
induced velocity field due to the powered lift system. Based on this, alternative
procedures may be found to predict the power induced forces and moments on an
jmmersed body. Such alternative methods provide not only competing approaches
but often an understanding of the problem derived from taking a different viewpoint.

The end result of the present jet model is a disiribution of sinks and doublets
along the jet path. A source, a sink, or a doublet will all induce a force to attract
the submerged body towards the singularity on the basis of incompressible inviscid
flow theory. This explains in part the loss in lift of 2 V/STOL aircraft in the presence
of a downward jet. If instead of a single source, a system of sources (sinks are con-
sidered to be negative sources) and doublets is introduced, the total force and moment
are the additive forces and moments induced by individual singularities. This is, in
effect, Lagally's theorem and holds true in two-dimensional as well as in three~
dimensional cases (References 30 and 31). It applies, in principle, to a stbmerged
body of arbitrary shape in 2 uniform stream with arbitrary number of sources, dowblets,
and higher order singularities. Using this theorem for the present problem, the task
is ther to determine the velocities and their gradients "induced" by the fuselage and the
image systems for singularities outside the immersed body, since these velocities and
gradients represent the force and moment exerted on the fuselage by the jet.

For a two-dimensional body, finding such an image system is possible, as long
as it can be mapped into a unit circle on the transformed plane. Thus, the power-effect
forces and moments may be calculated for a general class of bodies. Unfortunately,
there is no corresponding procedure for a three-dimensional body. The image or a
singularity in that boundary is vsually a complex one. Only for the special case of a
sphere, may the image system be found conveniently and exactly. Since a fuselage is
a three-dimensional body of complicated geomsetry, it is virtually a hopeless task to
determine the image system for this kind of body. However, if we can approximate the
fuselage by 2 prolate spheroid of equal volume, the possibilities are improved. On
the strength of this simplification, we propose to employ Lagally's theorem as a
possible empirical method for the fuselage.

Before we dwell on the main aspect, some explanation seems to be pertinent in
regard to th. justification of this simplification. Lagally's theorem is derived by




means of the integral equations in which the fcrce and moment are expressed in terms
of momentum flux through an enclosing control surface. The process of integrating the
detailed surface pressure has in effect been circumvented. The details of the fuselage
geometry, which reveals in the form of velocity potential, become increasingly indistinct
as the distance from the surface increases. For a two-dimensional body, the general
complex potential at large distances can be expressed in terms of a Laurent series.
The leading term is proporticnal to 1/(x + iy), which behaves like a doublet. The
higher order terms signify more refined details. By the same token, ‘the disturbance
potential of a three~-dimensional body decays like 1/ (x2 + y2 + zz) at great distances.
This is recognized to be a doublet. Thus, the total force and moment on an immersed
body by all singularities will be insensitive to the detailed geometry, provided that we
can show that a substantial portion of the forces and moments are derived from the
"induced' velocities and their gradients at positions of singularities sufficiently far
from the fuselage. By examining the outputs from the jet model in which the strength
of singularities increases with the distance away {rom the exit and using a simple body,
say a sphere, one could confirm this conjecture.

b. Lagally's Theorem and Computation of a Sphere as a Test Case

Since the computation is baced on inviscid flow, the forces acting on the surface
of a fuselage arire from the pressure alone. Thus, the components of the force are
given by

F. =_[ bnds |, i=1,23 (135)

where p is the pressure, and n, are the cartesian components of & unit.normally drawn
outward to the element dS of the fuselage surfece S. This equation may be reduced
by Beruoulli's equation and Green's theorem to

N
’ /
F;=Z f’[( Uity = 7 G4 m)ds Lj=123 (136)
@zl (Sa)

where the repeated indices j refer to summation, u, are the velocity components, and
8, are the surfaces of spheres of infinitesimal radii whizh surrounds N, singul:  es
at the positions ?a a=1,2, -~ Nl)' This ic a general expression. To speci.y tne

nature of the singularities, we shall make distinction between a source and a doublet.
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For a source of strength m aQ located at the position i"a , the velocity components

on the surface of ihe infinitesimal sphere a, after the series expansion, may be written

_ ; e 9; o d 37'25 . .
ai—%ia'f‘fﬁ(_x;.s_ﬂ_l)_ +(_3Yj-221 + = )a‘zJ&"'"'; t)}'é-l'}}tk

where the subseript a indicates the position of singularity, and q;, are the velocity
components at the point 'fa induced by all causes except the singularity there. The
second term represents the w2locity components by the singularity, in which r refers

to the radius of the infinitesimal sphere. The third, fourth and the rest of the terms are
members of the Taylor series. Upon stbstitution of this expression into Equation (136),
we obtain

Fio= #7030 ;0 - (137

This may be looked upon as a force F a acting on a fuselage in a line through the source
at fa' Thus, the moment on the fuselage due to m, is the vector product of i"a and
-

Fa and is given by

Mo = 4T, 0604 %0 B+ GF. %= 1.2,3 (138)

where eijk is the perr.utation symbol, 6123 = €531 = €319 = 1 €913 = €1307 €301 = -1, and
‘ijk =0, ifi, j, k are not all different. For a doublet of streungth T‘b situated at the point
‘fb, the force and moment may be obtained by a similar but somewhat more complex

procedure. For details, one is referred to the above mentioned references.

The total force and moment on the fuseiage are the summation of individual
contributions and are given by

W, N,
F = er[ az;mgi + ;’Fj%] , 6j=12,3

(139)

M ”2
M= ¥7PE 4 [ Z Mz ¢ *Z (1 + 24 %%)] ijhl=123
=/ ’

az]
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The subscripts a and b have been dropped for convenience. The quantities m, Z, T
are known from the jet flow field program, but the velocity components q; must be
determined according to the given configuration., Thus, to use Lagally's theorem, the
problem is that of determining these components.

As stated above, the quantities 4 at the point in question are the velocity com-
ponents induced by all causes except the singularity there. But the contribwions due
to other singularities outside the body may be neglected without affecting the final
result, because the force and moment induced at one singularity by another are equal
and opposite to those at the latter singularity by the former. This is sometimes
referred to as the reciprocal relation, Consequently, the relevant induced velocities
9 resulting from a body in a uniform crc ssflow with an exhausting jet may be classified
as: (a) the velocity induced by the body, (b) the velocity induced by the image system
of sources, and (c) the velocity induced by the image system of doublets. These veloc-
ities are all functions of body geometry. A general expression for an arbitrary body
is not known at present. The velocities of type (a) can be determined, if we assume
that a fuselage be replaced by an ellipsoid of equal volume, The solution to this is
known and can be found in many books. Unfortunately, it is still difficult to obtain
velocities of types () and (c) even under this assumption, Thus, it appears that some
further approximation is needed. Before exploring possible approaches, it seems
worthwhile to know the magnitude of these velocities and the relative importance of
each type. To do this, we shall work out a2 simple example.

The only known three-dimensional configuration for which all three types of the
induced velocities can be delermined exactly is a sphere. For this reason, we choose
this as our test case. The power effect may be calculated with the singularity distribu-
tion given by the jet flow fic'd. It turns out that type (2) contributes roughly 80 percent
of the total effect. For an elongated body such as a fuselage, it is conceivable that
this percentage may be somewhat reduced. Nevertheless, the evidence seems to point
out the fact that the effect of the image system is relatively small as compared to that
due to the body and may be neglected for the first approximaticn.

Prior to this finding, attempts were made by the trial-and-error methods to get
approximate image systems for a source outside a prolate spheroid, using the image
system of an ellipse and the correspondence between a circle and a sphere as the
guide. This effort did not persist long enough to examine various approaches, out it
appears that some usefu! approximation should result, depending on the accuracy
required.
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{(c) Application cf Method to Fuselage

By choosing elliptic coordinates v, ¢, w, the velocity potential at a field point
for flows past a prolate spheroid at an angle of attack a is given by

¢ =-U,eosee hvg - U, sina (1~ V)(E l)co.,w Av[zéimgﬂ - 1]

% 2 €+l €
~ A=) (E-1) ["g!'ﬂng._; ~ g e

A= UaokCOSO( A:_ ~Uy % nina
§zo i% §o+! ’ _e" f,,+: €z -2
AN 51 E(6-1)

L
£=ae, 9=§l—,- %(E:-rf:c,

where U, is the freestream vclocity, a and ¢ are the polar and equatorial radii of the
given spheroid that is a member of the confocal family ¢ = 60. The relationship between
this and the cartesian coordinate system is

x:&yg) Y= -Wrinw, 3=wcosw,
L L
w = h(1- 2V (e-1)

in which the surfaces ¢ = constant and v = constant are confocal ellipsoids and hyper-
boloids with the common foci of (k, 0, 0) as illustrated in Figure 79. By lmowing
the velocity potential and this coordinate transformation, we can determine 9 and
¢9qi/6xi at every position of the sources and doublets in the jet flow field. Application
of Equation (139) then gives the force and moment on the given body caused by the
induced veiociiies of type (a). These are assumed to equal approximately the force
and moment on the fuselage. Calculations were subsequently made for the test fuselage
with a 1ift jet at freestream to jet velocity ratios equal to 0.2 and 0.3. The results are
shown in Figure 80, along with the test data and those computed by the transformation
method,
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HOVER AERODYNAMICS

The hover region of V/STOL flight requires special treatment due to the lack of
steady freestream conditions. Two areas of special treatment for this flight regime
have been studied. The first deals with tiie powe:r effects in a state of true hover,

The second treats nonlinear and nonsteady power off aerodynamics at near hover con-
dition. These studies provide a limit point for the {ransition aerodynamics and permit

an approach to V/STOL nover flight analysis.
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1. POWER EFFECTS IN HOVER

A number of experimental, empirical, and theoretical invesugations have been
devoted to the problem of determining the forces exerted on a stationary body from
which a jet extausts. Particular attention has been devoted to thrust losses of lifting
jet configurations both in and out of ground effect; a good summary of these efforts
may be found in Reference (32).

The most pertinent results tc date are contained in an empirical relation for lift

loss out of ground effect,

¢l S [3Cqul Pp-p)/ kI
:'-: = 0.009 [— x,-/d (140)

« J
from Reference (33), or

-0, €4

[G]_ . [Qf 5 3(7,\/5’1;,;‘[))/3()(/:{)]“5
—} = --" - (141)
T' © F AJ XI /C{
from Reference (34), and in an empirical correlation for the change in force due to the
presence of the ground plane,

G [6 b/d-1 7157

- 1=|= 0.012 —_— ,RA 3%

T [T L [ hg | RAEaT e
or,

. - .02
E_- [ﬁ]- 0.025 l' D/d - |1 ] ? ,ﬁACA data ) (143)
T LT ) L KA

The preceding results are primarily applicable to single or closely spaced, cen-
trally located jets, Although derived from small-scale, cold-jet tests, Equations (140)
and (141) have been shown to apply to more complicated configuratlons.(34’37) Equa-
tion (142) has been apnlied with reasonable success to full-scale configurations having

closely spaced turbojet propulsion.t37*38)

Equations (140) and (141) differ because of txe addition of a jet pressure parame-

ter by a later investigator.
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Equations {142) and (143) vary because different data were used in determining
the constants. A cursory exaniination of 1ater NASA data(33)
for Equation (143) and a brief effort was made to determine if the emr :rical constants
of Equations (142) and (143) could be related to the area ratio, jet dec-v rate, ar out-
of-ground effect loss.

indicalea a preference

The nature of Equations (140) thru (143) indicats:s that know'. ¢ e of jet decay
rate, out-of-ground effect loss, and true jet thrust for simple configurations is
required for such an effort. A requirement for this data group g« .atly reduces the
amount of useful data available, As can be seen in the data sum.iary of Table 3, only
data from References (33) and (39) remain, and Reference (39) do:s not consider ground
efiect. References (34) and (37) contain the proper data group but involve more complex
body geometry.

During early attempts to correlate Equaticns (142) and (143), nonlinearities of
log-log plots of G/T - (G/T)ec versus h,/d led to the plotting of G/T versus h/d in semi-
:0g form. One such plot is shown in ¥igure 81. As the quality of the correlation
seemed remarkable, additional data was correlated in this manner. Figure 82 indi-
rates that correlation is possible for circular flat piates with an error band of 20 per-
cent, Datum outside this band and much of the scatter within this band may be
attributed to errors in transcribing information from Reference (33).

An expression of the form

G [G] QB@%;‘—L

—— ——

T LT

(144)

is thercfore suggested. The value of B ohtained from the data of Figure 81 differed
from that obtained from Figure 82; B was found to be 0.97 and 1.23, respectively.
The difference may be attributable to the different jet turbulence leveis produced by
a rectangular plenum (Figure 81) and a cylindrical plenum (Figure 82). For the two
configurations that have been examined, it is noted that the constant B is inversely

proportional to the square roct of the out-of-ground effect loss,

B [(ﬂﬂw] > s

B~ LG/TY,

168




3snxy3 wnjuaworu 33f pajeINoOIBD ..E.H. 3331 ‘elep pPIITWII - 1
93v1d aeinduviay é3snayy 39f - sso7 33I1 - 9
33l 9t8uyrs - § a8epiasny 10 pcd - 3
93e]d aaenbs 10 aendue3oss - y 3127l IBINVAFD - D
s3af ardpaTnu - 1 .Jead11e - y :STOquAs
X X 1/1 v ‘s €1
X 1 ®1/9 \{ W 71
w
X X X L/l 2 W 11
1 X X d W 01
W
1/1 \AR! W's 6 -
<
o Al
, X X 1/9 4 W2 8
{
; w
w X 1/1 .| S L
ﬁ X X 1/9 v W S
®1/1 L ARAS B! S S
1 1/9 149D S Y
X X 1/9 v R €
1 X X 1/9 18‘D R'S Z
FUNSSAUE | dWal wawq ©9 | imawow| 3owod 130UR ar 434

KLieuwung ©38Q 19A0H 39f ¢ A19VL




——
" o
: BENY I BI51 08305 ERDEN H RPN IR A1 «
TTTT IR A IR 1000 LUNEE MO0 0 N SRR T R vee L‘f.J;. T .
rrf -4 ek T M ' i . ;.w..AT_L_T PRI B sy et ns o 14 U
%..wv_ ﬂ i Hﬁlew +— AR TRINE _LI._ 4_..__. ﬁr“vqlu _ihyv “_b e h
RERNIS I o 4150 0R T3 Sou E LT ET LJERY JRSNY BuNEN N
B e A4id 144 AR RN it 1ibey PhveA RS RN MM ~
_ o T T T 71
1 : RIS SRR (A ¢ A_ it +.wnmx f qﬁm r 1 FURTEOH U SR A W
: i SR i T 155E1 iy T | NI R =
1 eas 201 (5401 PRUSS PN BR RIS I A (]
111 § : . g s &
L - ‘_ i “ i " %
o i PPN S——
pa s smma S S .
! YR N T P e 4 (ENSE l<)) v
(higEagun pustan L Tile v T
1,1 jh_ 11 _,HL ! ! | =
3 Rl MR U e e o o
"Hm.h i w. WAA_ b .wv “1.14 o Q.. _ X_ P m
T g - St
nrRLia Etnnn KRl I St 5
o Y 1% ’ |Lu| [ i w C ~ s
i - _._A,- kIH! H BN R ] x
e B BR! Ll f_- BRI - -
- SaaERn SIRRE ;
T (i ot 4
yisdy - i : P PR ) g
WL NS SRR N >
- A\.ﬂ H {- + ﬁl.ll...l M
PERY ERRNE RN e a
..ﬂ»?.,ﬁ_u - ! -4 f
i Ak m o
I T , —t
4 d .+|~|¢ =TT - [«
dadds b L e [ ' .
HIUER NU Lot | m T ¢
T_m 1. ey 4] e = lTn. o
SN K et < I =)
140 il el - A - — (&)
JNREE ERERS Y {ov - %) [~
H it —4- T e
Hefpied-ify 0 =
L ﬂ,,r._ r.“ . - — _
SRl SRER 1] m
Ha it 44 M I 4 o -4 (e
i . _ { ! ' — e
T ) ! 1 _1H.|0_I1 w)
" ﬁ 4#1 A o 1 w
snsttiisd kndnw = 3
I BB %L;, v T -3
1 7 i ]
Hi il S i P :
1 1] I ' |
S e —
i . 3 -k 4 P~
1 T i
4 -1 1 - o o 4- o
LT TN
J “ aan _,0. -y ” -
Hy f i 1

b gt
-
=
-

FIGURE 8l




—
)
o0
.
Gl
o ]
__.w ﬁ«m T.EF N»Fo*.._r. 1 . o
; T —— A
I i gins Rt
RN R 1t SR IS 5
EBASY n SR o =
[ JI P m_~.~ T 1 nTl.ul —_
! LI - o ! bty (oW
NG LT I IR I
e NI e Tt ~ m
RSN ERE N e T g~ =
JLFT‘1+%1 ”wﬁ AR [ w
+opeiit SANR 1 T
et T ! SREN N i s
1 T *17] T T =
Tt T ~TT ] O
R B e i _
I ORI ! o
IR QR @)
R S M
y * ~
- o b —— n
= +
: _| l, - _n'A ' d T
R v T S~ << —
1 ] < |= — t~
. . I M— ﬁr i ” y ) ol
—.; - — - I|J| w—rx JWW. J]; —
- _r b — 1 i ! B m
T.‘zwi P v L t -— v
+ : : i : . o
HL+.- S A mA«TIU Iu maie aranfn e am O
91 ,LL N YV N FCa] uvq ot =
4 L bioads taadH + 4 — —
Tt togty T " AR o
anian Diuansi 15000 RAnhd N ) ! Tt
+ 1 SR9T1 ¥ T o ARG I
=+ r"tﬁ i1 T MBI o
b e~ 4- 3 tenss Aht T t -
Ay 13 '
] 1191 : wy
: mh | wn
1 11 : ..nlUu
RN ; L+ ¢
L .y 93 P +
, G =
Lt ) 14 &
idabad e R —
t t T =
N 4
L I AT
ey b i H
- 0. :
L Jy ]

FIGURE 82.




Equation (145) in combination with reiations (140) and (141) may be used to relate
the constant B to the rate of jet (impact) pressure decay.

/ !/ 0.25
B _ l )qy/Prp~p)/ (a(q,/P,,P-py )l
B N »/d) /x/d IxA)  /xAll ae

Relation (146) in combination with Equation (144) suggests Equation (147).

-0.25.

c /5/A, 3 (gu/Prp-p) [ 3 )] g
b ol A 927 e " P
Pl ol T R e

However, further analysis is necessary before conclusions can be drawn regard-
ing the validity of Equatior (147) which has been developed using limited data for cen-
trally located jets in circular plates.

It should be noted that a correlation similar to that of Equation (144} may be

found in the form

(148)

[ [_c;_} . B L(GIT) /(hId)]
T T

oo

This suggests that (G/T)co is proportional to \/VAJ ~1 and not to \/ﬁq as indi-
cated in Equations (140) arnd (141). This seems intuitively correct as one would desire
the calculated load on the plate to go to zero if no plate is pr. .ent, S/A =1, Acom-
parison is shown in Figure 83. Thus, \/_87;\- 1 is a significant parameter both in and
out of ground effect.

It is probable that relations of the type listed above will not be useful for a body
very near to the surface where small details of specific body and jet geometry become

significant. Additional terms will be required in this region.

*Note: For circular planforms, S/AJ - D/d.

172




~

P =
i g, p/P =1.32
t 0.010
: /
0.008 }—
E 0.006
( (G/T) o
0.004 o
£ ? -
1
1 0,002
0. 000 -
l ’ ? 4 6 8 10 i
' 0.010
3 /
¥ ’.( o
0.008
/
9.006 /
|
1 (G/T), %
f: 0.004 /o
Y o
.a" /
0.002
1 0,000

\IS/A.-1
0 2 4 6 o " ]
' FIGURE 83. OUT OF GROUND EFFECT LIFT LOSSES, CIRCULAR PLENUM, REF(33)

173




o R e e

o es M

[

2. PERTURBATION METHOD

To attack the problem of nonlinear and nonsteady aerodyramics at near hover
condition, a study combining theoretical analysis and water tank tests was undertaken
to determine the feasibility of obtaining a method for predicting stability derivatives
under flight conditions.

A small existing water tank was used to try out possible techniques of obtaining
test data for further study. This tank and the arrangements used for these tests are
shown in Figure 84. The model was suspended from a beam that was free to roll
across the tank. Motive power was supplied by unbalancing the weights on the two
weight pans., Weights were shifted from the aft side to the forward side, providing
an incremental loading while keeping the total mass of the system constant., An accel-
erometer attached to the beam supplied a force trace versus time plot, Strain gages
were mounted on the supporting rod to provide moment measurements,

Acceleration and moment plots were obtained for the model, and measurements
were .nade both with the model in water and in air, Typical plots are shown in Figure
85 for different incremental weight loadings. The initial accelerations in both cases
were plotted against incremental weight, and straight lines were faired through the
points. From these siraight lines, it was possible to determine the apparent mass of

the mode. 'n water, (The apparent mass in air was assumed to be negligible compared
to that in water.)

The acceleration curves were integrated, and the values of force and moment
versus velocity th.:n were obtained for three different incremental weights. The force
due to the acceleration (apparent mass multiplied by acceleration) was svbiracted from
the total force, and a net force was obtained which was assumed to be due to viscous
effects. The results of this data reduction, reduced to drag coefficient and plotted
against velocity multiplied by time, are shown in Figure 86, The shape of the three
incremental weight curves shows good correlation throughout the test range. The

four-pound curve is somewhat low, but this could be zttributed to inaccuracies in the
data reduction.

Since both accelerometers and strain gages were not only measuring the linear
motion of the rigid body but also were picking up elastic transients and other spurious
inputs, isolation of the rcduced data was somewhat difficult., This problem was fur-
ther increased by the use of strip chart recorders which contributed their own noise

and pen-a m inertia to the rlots, Of the models tested — rectangular plate, cylindrical
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PRELIMINARY HYDROINYNAMIC TESTBED

FIGURE 84,
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FIGURE 35. TYPICAL TIME HISTORIES
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tube (see Figure 84), and trapezcidal flat ylate — the latter offered the most clearly
defined data, especially for calculation of apparent mass.

The recorded data were surprising in two more ways: First, the drag coeffi-
cients obtained near the end of the plots were about three (based on the frontal area),
which seemed to be too high. Second, the drag coefficients in the beginning stages of
the run were high, with indications that the drag was more nearly proportional to V

thantovz.

The data were anaivzed according to the concept of indicial functions. Northrop
assumed that the curve for the particular derivative or coefficient under consideration
could be built up from 2 series of step functions. For example, from the tests made
so far it can be assumed that the derivative of the drag with respect to V (or perhaps
Vz) is a function of time alone. Using velocity as an examp:e. this can be written as.

[ 4

/
D(t) = )2;/ D) Yie-v) A2 {149)

where D_(r) represents the value of the drag for a unit step function of velocity. This
equation can be evaluated by taking the Laplace transform of both sides to give

D(s) = 4D () VW (150)
and hence,

. D (151)
Dy(s) 4V(A)

Equation (151) was derived under the hypothesis that a Dv(t) could be deiined
which was independent of the driving force and, hence, of the velocity history. It was
not necessarily expected that this would be true, but that by examining the test data
and seeing if the resultant curves would collapse, a proper functional relationship
could be cbtained which would permit a step function to be defined which could be used
to reproduce the test time histories. As an example of this, two other definitions

which were considered to define the step function were

<
D(t) = ;‘%—/th(r) vie-t) P Lo (152)
o
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and

/T
o(ve) = ;"-:,;/D,&(’r) Vilve-e) /v (153)

Equations (149), (152}, and (153) together with alternative formulations were
examined to desermine which would best coliapse the test data for the different weight
increments. Equation (153) show>d the most promising results of all those tested.
However, the preliminary tesi data indicated a discrepancy for the various weight dif-
ferences. While the shapes of the resulting curves were similar, the magnitude dif-
fered. In order to bette - correlate the data, a step function was added to the solution
to account for data beyond the test period. The magnitude of tue step was set «qal to
the last data point, so that

S ave c-uk -sve
(6,8 ave =0 ) & "0 = 01 7] (as4)
ol o, (th‘
and, assu.s:3% 8>0
. -(w)fb :
I{o,m)} S i (155)
A

Through the use of this modified expression, the parameter Dv(s) was evaluated
for 0<8<5.0 for incremental weights of 3, 4, 5, 6, and 7 pounds, Figure 87. Excel-
lent agreement is shown for the 3-, 4-, and 7-pound test runs, while the 5- and 6-pound
runs did not conform. A detailed examinotios of the testing techniques and t:e instru-
mentation arrangement revealed that the instrumentation was simply not sensitive
enough for runs with incremental weights greater than 7 pounds.

In spite of the inadequacy of the test data accuracy, an attempt wae made to
determine the time-dependent response to a step inpu.. For this purpose the results
obtained by the definition of Equation (153) were used and the inverse Laplace trans-
form was obtained to see if any additional problem areas would be encountered.

A study of the properties of the Laplace transforms ina.zated that the values of
‘he quantity D(s)/ V2(s), Figure 88, would have to approach 2 constant for large values
of 8. This was required to retain a finite force at the start of acceleration. For this
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reasomn, the valres of tt» ratic ¥_re evaluated at large valzes of s as shcun in Figure
39. Over this larger range of s the previously obl2ined correlatior: betweer the test
load3 was lost. This is nox surprising since the increase of the perameiers corre-
sponds 10 2 decTease iz ike ¥ parameter so that the scatler oblzined 2t large s vaiges
ca be attrilxiied to errors in measuring the very lowx forces at the very early part of
the model 2cceleration.

A typical curve

D(i) P X S (156)
¥ieaj 4+ 20

wa2s seieciec within the range of the test data scztier znd the dr2g variation with time
2
cue 10 2 step input of V- was cbtzined 2s shown in Figure 9.

This study bas shown that 2 possibility exisis of obizining the time-dependent
ciilim- of forces and momen:s of a shape zccelerating from rest using a corbinztion
cf testing in z veiatively simple waler iznk and anzlysis i these resclis by using the
indiciz? function concepis of Reference 45. Although the present study was restricted
to the drag of rclatively simple models, po special difficulties should be encountered
in treating any force or moment hislory for muck more complicaied shapes.

Although no practical and usable resuits kai 2 been obiained to enahie the predic-
tion of aerodvnamics of V/STOL zircran, the procecdure described appesrs very
promising for future refinemen! and sltimate use in obizining prediction techniques.
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APPENDIX I

EFFECT OF ROTARY VARIABLES

In Figere 1 p, q and r represent the magnitudes of the rotary variables defined
in the coordirate svsiem shown. The effect of the rotary variables p, 4 and r on the
developmert of the jet may be represcated by 2 change in the mzinstream velocity
vector. The perturbed mzinstream velocity vector at 2 given peciint along the jet center-
line is expressed as

— A

Up = ﬁ.g~(pi+q'{+r?l)x§

where §, j, % are unit vectors in the fixed coordinate sy¥stem and R 1s the position
vector of the given point alonz the jet cemerline.

In evaluating the jet-induced flow field, the computations are carried out for a
mumber of segments as shown in Figure 2. Each segment is treated as a sepe .ate jet,
with proper iaitial conditiops and the appropriate mainstream velocity. The pumber
of integration steps per segment may be arbitrarily specified. The perturbed main-
stream velocity vector is 2ssumed constant over the extent of each segment.

In the following discussion, subscripts 1 and 2 refer to jet properties of the
segmen:s [ and 11 of Figure 2.

The je* of diameter dol is located at Xol, Yol, Zol. Initial conditions for seg-
ment 1 are

a¥ = i, Uj‘: Qu = L, ™, = an

The initial jot exhaust vector is utilized as an approximation to locate the midpoint A
Cp,!

. . L S . -
of segment I. At this point -I,T:;J is determined by vector addition as shown. where




FIGURE I-1. DEFINITION OF ROTARY VARIABLES
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FIGURE 1-2. COMPUTATIONAL SCHEME FOR ROTARY VARIABLES
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L 4 - A
v = %:(thtq?#rQ)
R* = R

do

The dire:tion cosines of the perturbed maiustream velocity vector ﬁpl are
deicrmined ard a local coordinate system is established, centered at Xol, Yol, Zol,
and aligned with the perturbed mainstream velocity vector and the jet exhaust vector
{see discussion of arbitrarily directed jet).

The effective inverse velocity ratic for segment I is

m.‘“- = U_Pl ‘gw = m|// | GE!
U“ L’P“ Goo

The equations for Uj, d, and X are then integrated nume-ically over the extent
of segment 1.

Point Xo,, Yoz, Zo2 then becomes the origin of the next jet, with a diameter of
do2 =d* d°1' where d* is the last compvted value of the nondiicensionalized je: diam-
eter of segment 1.

Other initial conditions for segment 11 are

4 .
d* =1, U_"zz_l‘:’J_E_= L, mgz= Q)U%_z U_fm.
Mo ?

where U*j is the last computed value of the nondimensionalized jet velocity in segment
I.

The jet velocity direction after the integration over the exten! of segment1 is
IUp, !

used to approximately locate midpcint B. At this point ‘ﬁg‘-‘ is evaluated and the

direction cosines of the perturbed mainstream velocity vector ﬁpz are determined.
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A new local, jet-orfented coordinato systom is cstablishod, centored at XOz.
Yo,, Zoz. The effective inverse velocity ratio for this segment is

X4

The equations for U,‘. d*, X* are then integrated over the extent of segment II,

The computations described above continue until integration over the extent of
the entire jot has hnen accomplished. Although each scgment is treated us a separate
jet, the segments are linked to each other in determining the degree to which the jet

has deformed from {ts initial circular cross section. This is done by setting

Dp,= 2, , Doy» D,
i.e., specifying the initial ratio of minor to major axis for a given segment to bo oqual
to the last computed value for the previous segment.

The {nduced velocity components at a given control point are determined by sum-
ming the velocity components duv to each sogment of the jet. Again each sogrent is
treated as a soparate jet for these computations.

Figure 3 shows the effect of tho rotary variablo r on the conterlino of a jet

exhaus:iing normally into a crossflow at a velocity ratio Us/ Ujo = ,128, One curve
r
t* = T: = 0,0) shows the centerline of the undisturbed jet exbausting into a crossflow

at this veoloclty ratin, It was computed by considering the jet to consist of a number of
sogmeonts, as doscribod in dotall In the proceding discussion, with Ve = 0,0 for cach
segment. Tho centerline computod §n this manner deviates loss than 1 percent from
previously computed results,

Tho sign convention for tho rotary variable r was established {n Figure 1. For
r* < 0.0 the porturbed mainstream velocity |Up|<U.., and the jot centerlino shows less
deflection. For r* > 0,0 the perturbed mainstream velocity |Up| >U,, which results
in a greater deflection of the jet centeriine.

Induced velocity components {n the plane of the jot oxit wero evaluated for two
values of r*. Table 1 shows the incremental change in velocity components at three
control points as a function of the rotary variable r*. It can be observed that 4 (u/U)/4r*,
4(v/U)/4ar* and 4(w/U)/Ar* arc not constant at each control point. Since the incremen-
tal changos in induced velocities are directly related to the induced forces and moments
due to the rotary variable, it {s desirablo to establish the range over which they could
be considered linear with r*, '
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Distance in Freestream Direction, X/d,

FIGURE I-3. EFFECT OF ROTARY VARIABLE ON A JET CENTERLINE
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F T TR T AN TSI JUOATEHT T 58 A < eI, st s 25 e
¥ S A Y

3 Z/do
3 7.6.5.4.2.2.1.0.
4 o A} .5
ki A 1.5
3 Y,v 2.5
d 3.5
A % 4.5
2 1 » U .
¥ By B* To's
/ 7.5
K. Z,w 8.5
._!' 9-5
S A
c X/do
F o Point A Point B Point C
E Auw/U ~ Av/U  Aw/U | aw/U  av/U  aw/U Au/U  Av/U  Aw/U
2 -002 |-,000866 .000391 -.000602 |-.000998 000296 -.000337 |-.000409 -,000486 .000017
: 004 |-.001898 .001153 -.001068 {-.001954 000974 -.000580 | -.000926 -.001121 .000043
E =002 1 061036 -.0004%4 .006500 | .000941 -,000410 .000256 | .000518 .000349 -.000034
=004 | .002148 -.000779 .001115 | .002114 -,000584 .000588 | .001144 ,000646 -.000058
TABLE I-1. ¥FFECT OF ROTARY VARIABLE ON INDUCED VELOCITY COMPONENTS
Al
X=.95, 2 =.7 X=.55, Z=.1 X =15, Z=.7
3 WU  v/U w/U WU v/U WU w/U v/U w/U
: q=0.] .0180 -.0307 -.0411 | .0337 -.0162 -.0296 | .0273 -.0016 -.0095
i q=.1| .017% -.0303 -.0407 | .0334 -,0159 -.0292 | .0269 -.0015 -.0093
3 C/C | .0177 -.0299 -.0410 | .0332 -.0156 -.0294 | .0267 -.0013 -.)094
N
X =95 2=.,1 X=,55, Z =.1 X=.15, Z =.1
| w/U v/U w/U u/U v/U w/U w/U  v/U  w/U
| q=0.[-.0131 -, 1073 -.0239 | .1482 -.1985 -.1790 | .0342 .0159 .0048
q=.1}-,9130 -, 1070 -.0236 | .1474 -,1974 -,1784 | .0339 .0158 .0050
C/C |-.0135 -.1075 -.0242 | .1498 -.1985 -.17$3 i .0334 .0163 .0049

TABLE I-IL. EFFECT OF ROTARY VARIABLE IN A REACTION CONTROL CCNFIGURATION
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The velocity components of Table 1 were obtained by considering an equal number
of integration sieps along the %' -axis in solving for the geometry of the jet. This
means that for every value of r* a different length s of the jet was considered in eval-
uating the induced velocity components. In an effort to separate the effects due tc a
chang 2 in the rotary variable from the effects due to integrating over a variable length
of the jet, two different approaches to establishing an equivalent length s were utilized.

One approach was to sum contributions to each induced velocity component due
to the singularity distribution along the jet centerline until the contribution from a given
segment represented less than .1 percent of the totai up to this point. Further contri-
butions were neglected. The other method utilized a straight line approximation for
the jet centerline to determine an equal length s of the jet for each value of r*,

For both of the methods described above, the axis of rotation was taken through
the jet exit and the behavior of the incremental changes in velocity components at the
various control points was examined. For the range of r* considered, which encom-
passes a variation of r from .1 to .4 radians/sec, it appears that the incremental
changes in velocity components are small enough, relative to the overall accuracy of
tke method, to preclude a meaningful determination of the juantities 4(u/U)Ar*,
A(v/U)ﬁr*,' AWw/U)sr*,

Coraputatious to determine the effect of rotation about an axis other than the jet
exit were carried out. Rotation about the center of gravity in a reaction control con-
figuration for the XV-6 was chosen as an example. Computations with the moment arm
£=11,2 ft, do = 2 fi, Ujo = 400 ft/sec, U, = 50 ft/sec and q = .1 rad/sec again
showed small changes in the induced velocities evaluated in the plane of the jet exit,

A check case in which the frecstream velocity was assumed to be uniformly perturbed
over the extent of the jet, ﬁp = Ugst 4U, where AU = £x q = 1.12 ft/sec, was also com-
puted. Table 3 shows induced velocity components at various control points for g = 0.,
g = .1 and the check case., Again, indications are that the effects due to the rotary
variables in a reaction control configuration are negligible,
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APPENDIX It

DETERMINATION OF TRAILING VORTEX INTEGRAL

ama——

in Equation (121)
r3

[N
| The integral f o(.x,
_’ a

may be
written in the form

(XN

E f Ax where X = a +dx,. + Cx:l
L XTX

using the same notation as Equation (123)

§
2 A, .2l ‘“—f::"_] _
Now J XX Uac-b*)arb§reg

ob

&Jc
(4ac-3")

'
Let a' - —tﬁﬂ"
Cosde

£ - 4”‘ \lq_

@

ke S
3

ol

!

4

i

2 %
then a < x"+0—z—a,;) -r—(j.'-i-b,‘g)
* P = -2 Lx-ﬂ, (.}"?"“:f) ""(‘Z + b, ;)611
’5 C = 1+at 44"
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