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ABSTRACT

Analytical engineering methods are developed for use in predicting the static

a'J dynamic stability and control derivatives and force and moment coefficients of

lift-jet, lift-fan, and vectored thrust V/STOL aircraft in the hover and transition

flight regimes. The methods take into account the strong power effects, large

variations in angle of atta&ck and sideslip, and changes in aircraft geometry that are

associated with high disk :oaded V/STOL aircraft operating in the aforementioned

flight regimes. The aircraft configurations studied have a conventional wing,

fuselage and empennage. The prediction methods are suitable for use bh desi.,-;l

personnel during the preliminary design and evaluation of V/STOL aircraft of the

type previously mentioned.

This report consists of four volumes. The theoretical development of the

prediction methods is presented in this volume. The methods are applind to a number

of V/STOL configurations in Volume II. Details of the computer programs associated

with the prediction methods are given in Volume III. The results o1 a literature

survey are presented in Volume IV.
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hemispherical control surface and the plane containing the inlet

1 inlet dynamic head recovery factor

p density

o angle between radius from inlet centroid to control point on
hemispherical control surface and freestream velocity as
measured in the infinite plane containing the inlet

SECTION VI

ae ellipse semi-axis in direction of cross flow velocity
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a n'th coefficient of mapping function

Af coefficient of compkx potential wrinen in body plane coordinate, Z

Ain coefficient of conple potential written in circle plane
coordinate, Z

be ellipse semi-axis normal to cross flow velocity

B coefficient of log term in complex p~ential written in body
plane cordiw,•e Z

ey characteristic bodyv dimension upon which CDy is based

c characteristic body dimensiou, upon which CDz is based

CDo crag coefficient of elliptical cylinder

Y
CD cross flow drag coefficient of body cross section in z direction

y

Cf laminar skin friction drag coefficient

D coefficient of term in complex potential independent of Z
F complex potential of body cross section
H coefficient of log term in complex potencial as obtained from

boundary function
I body length
L normal force in z direction

L' rolling moment about x-axis
M pitching moment about y-axis
N yawing moment about z-axis
P rolling velocity

q pitching velocity

r yawicig velocity

rc radius of the mapping circle

R complex velocity in the cross flow plane
S body crobs sectional area

t time
TN complex potential induced by changing body cross section

U0  component of freestream velocity in x direction

U freestream velocity

XX



U Ppotential part of cross flow velocity at separation line

U r vortex induced cross flow velocity at separation line

V magnitude of local cross flow velocity at point on the body

V0 component of freestream velocity in y direction

WO component fo freestrea.m velo'.ity in z direction

W1 complex velocity at vortex center

x axial distance along body

Xcg body center of gravity location

y real axis in cross flow plane

Y normal force in y direction

z imaginary axis in cross flow plane

Z complex coordinate in t'ody cross flow plane Z - y + iz

ZB complex coordinate of point on body cross section

Z C centroid of body cross section

resultant angle of attack

r vortex strength

Scomplex coordinate in circle plane • = reie

ýc point on the mapping circle

ýo separation point on cylindrical body

location of vortex center

* angular distance in mapping circle plane

p freestream density

roll angle

(-) complex conjugate

derivative with respect to x

(') derivative with respect to time

R real part
imaginary part

SECTION VI

a, b, c parameters defined in Equation (123)
A, B, .... I parameters in Equation (124) derived in Appendix HI
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A, B, D, I, W, r matrices in downwash Equation (126)

o airfoil chord

Cml/4 section pitching moment about 1/4 chord

CN section normal force coefficient

CNIND circulation normal force coefficient

(CN)a = 90 normal force at a = 90

di increment of vorticity

hi h2 positions of lifting lines relative to 3/4 chord position (see p. 131)

p rolling velocity

P x, y, z) downwash control point

q pitching velocity

r yawing velocity

R distance from vortex element to downwash control point

U mainstream velocity

VL, Vt velocity vectors due to lifting line and trailing vorticity
respectively

wt wt downwash due to lifting line and trailing vorticity respectively

Wt circulation weighting function [= rl Ar+ + r2)]

R chordwise position of center of pressure for viscous crossflow
force

Xc.g" X - coordinate of wing rotational center

Zc.g. Z - coordinate of wing rotational center

x, y, Z coordinates defined in Figure 63

Xl' YI coordinates defined in Figure 64

a angle of attack

a o effective angle of attack

fle effective angle of sideslip

r circulation strength

r'1 , r2  circulaton strength of two lifting lines

0i swoepback angle of lifting line

,, 97, coordinates defined in Figure 63

r7o, 171. t7n circulation control points
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SEC TION VIII. 1

CL lift coefficient

C P pressure coefficient

d vtt exit diameter0

F jet induced force

r radial coordinate in plane of jet exit

R constant value of radial coordinate in plane of jet exit

S. jet exit area

S planform area

T jet thrust

U. jet exit velocity3

U freestream velocity

w downwash velocity compoTient

x chordwise coordhitate

y spanwise coordinate

jet deflection angle (from horizontal, degrees)

AL lift increment due to jet operat!on

E downwash angle (degrees)

angular coordinate in plane of jet exit (degrees)

SECTION VIII. 2

Fi component of force vector in i-direction

m source strength

1M component of moment vector in i-direction

n i component of a unit vector in i-direction

p pressure

qi velocity component at F" induced by all causes except the
singularity there

r a position vector of point a
a

S, dS surface and surface elemert of an infi-Atesimal sphere

uP, u. velocity components in i- and j-directions

3
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U0 freestream velocity

xi, x cartesian coordinates in i- and j-directions

a angle of attack

J; p 1  doublet vector and i-component of doublet vector ,u

v, 9, w elliptic coordinates

p density

* velocity potential

Subscripts

a conditions at point a

o conditic is at body surface

SECTION IX

A. jet exit area

D drag

Dv drag due to unit impulse of v
2

D 2 drag due to unit impulse of v

.1angular mean diameter of plate

,d diameter of jet exit

G load induced on plate

h height. of jet exit over ground plane

Laplace transform

p ambient static pressure

Pts p plenum total pressure

(Ix maximum jet impact pressure at x

S planform area of plate, includes jet

s variable of Laplace Lransform

T jpt thrust

t time

V velocity

X distance normal to jet exit

X. point of maximum rate of impact preasure decay
1

dummy variable

xxiv



Subscript

0 out of ground effect or steady state

f value at end of test
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PECTION I

INTRODUCTION'

The problem of specifying the in-flight behavior of an aircraft can be considered
as one of determining the effect the dynamic motion of the craft has on the fluid through
which it is moving and, hence, on what forces and moments are impressed oni tle
vehicvt due to this motion. The forces and moments thus impressed on the vehicle
together with thrust and inertial response completely determine t1-e aircraft behavior.'
The determination of the forces and moments experienced by, an aircraft is, therefore,
of importance for determining aircraft:performance and stability and contr9l require-
ments. Methods for predicting the aerodynamic behavior of conventional aircraft have
been established and are documented in a form suitable for use by the preliminary
designer in Reference 1. V/ST6L aircraft of the lift jet, lift, fan, and vectored
thrust type pose aerodynamic problems which are significantly different from the
aerodynamics of conventional aircraft. New problem ateas arise mainly through
the interference of the lifting jet or fan efflux on the relative mainstream flow due to
aircraft forward speed or natural wind. Also, due to its particular form of propulsion,
a V/STOL vehicle is likely to fly at large angle of attack and/or sideslip during some
part of its flight path so that nonlinear aerodynamics become an impoitant factor in
determining the aerodyna'mic forces and moments on these vehicles.

To date no satisfactory m~thods for estimating the power induced aerodynamics
of the lift jet, lift fan or vectored thrust V/STOL aircraft have been established. The
subject of nonlinear aerodynamics has received lttle attention and no generally accepted
prediction methods exist at this time. This study has been concerned with obtaining
the air induced forces and moments on V/STOL aircraft of the lift jet, lift fan an4
vectored thrust type in a convenient form to allow' motion studies to be made. This
requires that the magnitude, of the force and moment components be determined as
functions of a consistent set of flight variables.

These force and moment components are treated as being functions of the flight
variables, a consistent set of which are 6 , B , U , d, p ,q , r and any higher
order of terms such as 7 which maiy be considered pertinent. The basic problem
of any aerodynamic stability study thus reduces to obt~fning accurate functional
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relationships between the forces and moments and the flight condition, for example,

L = L{f •,U,,,p,q ,

These functional relationships then permit all the necessary aircraft motions to be

obtained assuming the thrust and inertial characteristics of the vehicle are known.

A complete functional relationship such as the above equation is seldom obtain-

able in practice. However, the effect of the most significant parameters on given

components or parts of the aircraft is usually obtainable. These effects are added

together and assumed to hold for the complete airplane.

1. PURPOSE

The purpose of this investigation was to develop analytical engineering methods
for predicting the static and dynamic stability and control derivatives and force and
moment coefficients of lift jet, lift fan, and vectored thrust V/STOL aircraft in the

hover and transition flight regimes. These methods were to take into account the

strong power effects, large variations in angle of attack and sideslip, and changes in

aircraft geometry that are associated with high disk loaded V/STOL aircraft operating

in the aforementioned flight regimes. Where appropriate, use was to be made of high

speed computers to obtain solutions having reasonable time periods for implementa-

tion. The aircraft configurations studied were to have a conventional wing, fuselage

and empennage. The methods developed were to be suitable for use by design

personnel during the preliminary design and evaluation of V/STOL aircraft of the

type previously mentioned.

2. TECHNICAL APPROACH

This investigation has been concerned with the development of theories for

predicting the forces and moments on lift jet, lift fan and vectored thrust V/STOL

aircraft. In general, due to the complexity of the interaction between the propulsive

system and the airframe, it has been found necessary to use computer programs to
enable the forces and moments to be calculated. Some of the methods developed are

;simple enough to be reduced into a handbook procedure. Examples of such methods

are those based on slender body theory and the viscous cross flow hypothesis.

This investigation has followed the conventional procedure in a manner most

suitable for the treatment of V/STOL aircraft.
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A basic assumption, for the methods developed in this investigation, is that
the power induced effects can be treated separately from the unpowered aerodynamic

effects and the two sets of solutions added together to produce the total aerodyanmic

effect.

A second assumption is that the aerodynamics can be treated component by

component and the results added together for the total aircraft. This assumption

holds for both the power-induced and unpowered effects. Whenever possible,

mutual interference between components has been taken into account to obtain a more

accurate solution. This approach is essentially the procedure used in Reference 1

and is considered to be most suitable for use as a design tool.

The technical approach used in developing the prediction methods was based on

theoretical and semi-empirical analyses. It was thought that correlation of wind

tunnel test data, in terms of geometi-ic and flow variables, would be an impossib!e

task without theoretical and semi-empirical methods to indicate correlation vari-

ables.

An extensive literature search was-conducted to identify available test data'

and areas for which further data was required to develop and validate the prediction

methods. As a result of this literature search, two wind tunnel test programs were

conducted.

In the first of these test programs, a flat plate model containing up to three
nozzles was tested to assist in the development and validation of the jet flow field

theory. The results of these tests have been documented in Reference 3. In the

second test program, a complete configuration model was tested in the NASA

Langley Research Center V/STOL tunnel. This model consisted of two wing-mounted

vectored thrust engines and a lift-jet engine embedded in the fuselage. The vectored

thrust nozzles were designed for exit positions at two longitudinal locations. For the

aft location, two nozzle exit diameters were available. Data from this test has

been used to verify the prediction methods. A data report for this test will be

published by NASA at a later date.

3. REPORT ORGANIZATION

The report consists of four volumes, entitled:

Volume I - Theoretical Development of Prediction Methods

Volume II - Application of Prediction Methods



Volume MI - Manual for Computer Programs

Volume IV - Literature Survey

In Volume I, the aerodynamic prediction methods are developed in a form suit-
able for application to each aircraft component. The applicable theoretical analyses

or semi-empirical bases are presented. Empirical coefficients are determined,

where necessary, and then extensive comparisons of calculations with test data are

made.

Volume II gives detailed examples of the application of the prediction methods
to the determination of the aerodynamic forces, moments, and in some cases, surface

pressure distributions, on the aircraft wing, fuselage and empennage. In each case,

a sample problem is given to illustrate the application of the methods and method
limitations are also discussed. Also discussed in Volume II is the wind tunnel

test program conducted in the NASA Langley V/STOL tunnel and the use of the
resulting data to validate the applicable prediction methods.

Volume III contains a detailed description of the compuier programs developed

in this investigation.

Volume IV documents the results of the literature survey conducted to identify
existing test data and theoretical methods relating to this investigation.
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SECTION 1I

JET FLOW FIELD THEORY

A fundamental problem in the development of methods for predicting aerodynamic

characteristics of lift-jet, vectored thrust and lift-fan V/STOL aircraft is that of for-

mulating a mathematical model to estimate the effects of the propulsion system efflux

interaction with a crossflow. During the transition flight phase, this efflux is directed

at larg,, angles to the freestream and has a significanit influence on the aircraft aero-
dynamic performance as well as on its stability and control characteristics.

A number of analytical formulations of the problem of a single jet exhausting into

a crossflow exist, and details of the different approaches may be found in Reference 2.
An approach to the problem of a single, normally exhausting jet, which appeared to
offer possibilities of treating more complex configurations, is given in Reference 4.

In this reference, an entrainment model was developed from dimensional analysis and
physical considerations. The force on the Jet boundary as a result of the pressure

differential around the jet was accounted for by a crossfloiv drag. The geometry of the

jet cross section was represented by an ellipse. Assuming constant and equal density
for the jet and the crossflow, the continuity and momentum equations were solved for

the jet path. The Jet-induced velocity field was then determined by replacing the jet

by a distribution of sinks and doublets.

The analytical model described above has been further extended to treat jets

exhausting into arbitrarily directed freestreams as well as multiple-jet configurations.

Multiple-jet configurations are treated as combinations of discrete jets, with leading
jets assumed to develop indepcadently and downstream Jets assumed to exhaust into a

freestream of reduced dynamic pressure.

To generate data which would substantiate these assumptions and also provide
information for further refinements to the analytical model, a wind tunnel investigation
of Jets exhausting into a crossflow was conducted. The test configuration consisted of

a four-foot diameter circular plate, containing up to three circular jets, which was
elevated 12 Inches from the tunnel floor and aligned with the air flow. The plate con-
tained pressure taps to determine the surface static pressures. Jet centerlines and

decay characteristics were obtained with a total head rake. Data from this investiga-

tion have been presented in Reference 3.
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Data from the wind tunnel investigation have been analyzed and used to verify

some of the assumptions made in the development of the analytical approach. The

mathematical model has been refined using data from the wind tunnel investigation.

The single jet is considered in Sections II. 1 and II. 2. The details of the analyti-

cal model are presented. Refinements of the empirical pararmieters, based on analysis

of the experimental data,,are discussed. Extensive comparisons between theory and

experimental data are presented.

Two-jet configurations are treated in Sections Hi. 3 and 11. 4. An expression for

the effective dynamic pressure which the downstream jet "sees" as a result of the block-

age of the crossflow by the upstream jet is derived. The test data are used to verify

that the upstream jet develops independently of the downstream jet. Calculations of

jet centerlines and induced surface static pressures are compared with test data for

a number of two-jet configurations.

-01 Applications of the analytical model to more complex configurations are pre-

sented in Section 11.5. Computations of the induced pressure distribution around a
two-jet configuration, with the jets at different thrust levels, are compared with test

data. The extension of the computational procedure to the treatment of more complex

jet arrangements is carried out for a three-jet configuration. An empirical relation-

ship for the reduction in crossflow dynamic pressure for the third jet, as a result of

blockage by the two upstream jets, is given. Comparison between theory and data for

the variation of surface static pressure induced by a three-jet configuration is shown.
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1. SINGLE JET ANALYTICAL MODEL

a. Normally Exhausting Jet

Consider a circular Jet exhausting at a right angle into a uniform mainstream
as shown in Figure 1. When a jet exhausts at an angle into a mainstream it is deflect-
ed partly by viscous entrainment and partly by the force on the jet boundary resulting
from the pressure differential around the jet. It is assumed that the flow is incom-
pressible and viscous effects other than entrainment are neglected. Dimensional con-
siderations then suggest that the entrainment of mainstream fluid per unit length of
jet may be written as

E/= ,o E d/ (1)

A fluid particle approaching the jet near the plane of symmetry will be more
easily entrained by the jet than a particle that is moving away from the jet. The sus-
ceptibility of the approaching particle to jet entrainment is accounted for by the term
pEI U00dcoso in Equation (1). Particles moving away from the jet or to its side, with
momentum not directed toward the jet,are less tolerant to jet entrainment. The term

I/ -0 6, e 610

takes this into consideration while satisfying the Ricou-Spalding solution for the freeJet
case when U., = 0. The net force acting on the jet boundary, as a result of the pressure
differential around the jet, is accounted for by a crossflow drag. The force on a jet
element of unit length is

Fw= CCD 'D.thLros fo (2)

where CD is the cross flow drag coefficient of the jet.
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(1) Equations of Motion

The entrainment of mainstream fluid into the jet and the pressure forces on the

boundary of the jet govern the equations of motion which can now be written, using the

coordinate system defined in Figure 1.

The continuity equation may be written as

p dids (Aj ) - (3)

The only tangential forces acting on the jet are the viscous forces resulting in

entrainment, so that the momentum equation for the jet flow in the tangential direction

is

p d/d6 (A•iUj E")Uo :51v 6 (4)

The deflection of the jet is due to the centripetal action of the pressure force on

the jet boundary and the entrainment of mainstream fluid with momentum in that direc-

tion. The force equation governing the curvature of the jet may now be written as

PA~jLj4,/1rz = EL41ocs61 t 6o--4 pWLeows~d

poAjL`Xý/Li I jI112

where R is the radius of curvature of the jet centerline and the primes denote differen-

tiation with respect to Z. Replacing d/ds by cos 9 (d/dz) in Equations (3) and (4)
reduces the problem to one of finding d, Uj and X as functions of Z, the entrainment

parameters E1 , E2 , E3 and the cross flow drag coefficient CD. However, a func-

tional relationship between the cross sectional area AV the circumference C of the

jet and the jet growth must be established.

Experimental observations show that there is a region in w!ich the jet deforms

from its initial circular cross section into a kidney-shaped one (Reference 8). Once

this shape is attained, the jet cross section remains relatively similar (Reference 7).

Since it did not appear possible to treat the exact jet shape, a simplified jet shape, an

ellipse, was chosen. Correlation of data for a normally exhausting jet indicates that

the extent of this region, in which the cross-sectional deformation occurs, is a func-

tion of the jet exit to mainstream velocity ratio U jo/Ua. The extent of this region may

9



be expressed by O'Z/dog. 3Ujo/UcO. When Z/doz. 3Ujo/UcO, observations show that

the best fit of the jet cross soction with an ellipse is one with a ratio of minor to major

axis of 1/4. Experimental data further indicate that, in the development region, the

ratio of minor to major axis decreases linearly with distance from the jet orifice

(Reference 5). Therefore, the geometry of the jet may be treated in two regions:

* A region in which the jet deforms to an elliptical cross section and the ratio

of minor to major axis decreases linearly with Z from 1 at Z/do 0 to 1/4

at Z/do II = .3 Ujo/UW

.) ratio of minor to major axis

-A (Z/do)ý- B

Substituting boundary conditions above, yields

75 (Z/1o)
H 0/ -

then

2 .1

- ird L51 [.-/z(Zldo)(d./li)Jz 0,(
L 2 0[% Z/(do/d)H)

1~4 /7 [-
= n [ 5- 1/z (/7do)•(U•o/djo),Ci

From the preceding expressions It can be seen that if UjoO, as U3--O, the development

region becomes OSdZ/doigand the jet retains Its circular cross section, which is to

be expected since the jet is now exhausting into quiescent surroundings.

* A region in which the jet retains a similar cross section

S= 1/4
2.24 d Z/do> If (7)
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(2) Integration of the Equations of Motion

The left hand side of Equation (3) may be rewritten as

pdid5 (4j IJ) (a dd6 (AL2)
Uj. (8)

now

p d/ci,(-i2): "- d/dl (4IjUj 2),,p- 'L9;U) d//,s (4-) (9)
U4  U4  U

where from Equation (4)

p d/dls(4jL~ Uj gu0 0oo s (10)

then

~d/c -4 A Eloo O A./I d/d--J-) (11)

substituting into (8)

i EUJ,$ _p~jdid5(Q) .zk (12)

Substituting for A), C and letting did. - coo G (d/dZ)

p SOw5 61d/dZa (13)

PF (J de o -s 9 A(k iiOtv/ ) Id 04 11 5/ (21)(w) 1f2j

K {i~inQ~i

SIM



Di'viding by pdUm and letting Z* = Z/do, Uj* = Uj/Ujo, and m = UJo/Uo

•'4 - i-•)d Ca51 d/dZ (• IJ (14)

(14

2O Z2 ( rl(_*

if d/dZ = (l/do) d/dZ* and d* = d/do then the left-hand side of (14) becomes

or
• ~ ~~ri4 .- d/ c.) d o.50 M dl~d Z •'

Equating and solving

Ii dU_;L = t 5o~g L-Z(fl "i-%VO),r /#.(i'l-5 •'

dZ* 1. ,(15)jI

l/ 4(- z-11 ) dnz l*m j, o6

The equation for dUj*/dZ* applicable for the developed region is obtained by substi-

tuting Equation (7) for Aj and C in (12)

/6 (16)

Lco5O Zz- (1Thnj- t _-s ) 2.24 1+4 -mij)
12 + 5?/c4•/ ,",,
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Substituting Equations (6) and (7) into Equation (3) and again letting Z* = Z/do,

d* = d/do, Uj* =U./Ujo and mi = Ujo/Uoo yields

.A4*eo. 6 z- ~L (m 5 m 9)ffirit (1-512& CI
d -- "fm tnaxiO (17)

.I 51s rld*.- ,ý4*'Z(1/5/z 1dOJ i

and

Ld,* A 2,4 -16- mWCC5P d zd

dZ(AT/8) 77CO-519 1 (18)

Substituting Equations (6) and (7) into Equation (5) leads to

I() ~ *~zIzz (19)

[ ax

M-"(1514) mCo.'O 4' Z118)Sub (stiutn Equations 6)nd(7 .t Equatind (5,)7 led to I~~J

and

z = (r) z (2)

dZz

.6. 060 $ (, E .5•(:)cO)CO - Ez (rn), *tj.,4) 2.24
r *Z,*6dJ1 i / + #3 C C25/qNI

Equations (15), (17) and (19) are applicable to the development region of the jet and

Equations (16), (18) and (20) are applicable for the developed region, that is, when

Z*/m >. 3.
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With the additional substitution

I

[ii (d')dZjI'rz

the preceding equations are seen to constitute a set of differential equations to be

solved for Uj*, d*, and X* as functions of Z* and the parameters E 1 , E 2 , E 3 , and CD.

Initial conditions at the jet exit are

Z*=0., X* =0., Uj*=., anddX*/dZ*=0.

It has not been possible to integrate these equations in closed form, but they

have been integrated numerically with the aid of a digital computer. The system of

first order differential equations is solved by means of a fourth order Adams

predictor/corrector method using a Runge-KuttE starting solution.

(3) Determination of Empirical Parameters

The parameter E2 is determined by considering the results for a freejet, since

E2 is the only parameter remaining in Equation (1) when Um = 0. From the data of

Reference 6, E2 was originally determiued to be .08, on the basis of measured entrain-

ment rates in the fully developed region of a jet exhausting into a quiescent environ-

ment.

The entrainment of ambient fluid into a jet in the development region will gener-

ally be a function of the exit characteristics of the jet and therefore will usually vary

from test to test. The entrainment characteristics of the jet of Reference 3 are sbown

in Figure 2. It is observed that entrainment of fluid by the jet increases in the devel-

opment region and approaches the asymptotic value of Reference 6.

The variation of entrainment with distance from the jet exit has been incorporated

into the jet model by allowing E2 to vary in the development region. Knowledge of the
entrainment characteristics for the static case is, therefore, used in determining

crossflow effects. For the calculations presented in this report, the variation of E2

14



2.5 Asymptotic Value.5Ref 6)
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1.0 ( Test Data (Ref 3)
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Distance along Jet Centerline, I/do

FIGURE 2. ENTRAINMENT CHARACTERISTICS
FOR THE JET OF REFERENCE 3
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in the development region to its asymptotic value of .08 is based on the information of

Figure 2.

CD is also varied in the development region to take into account the change in the

cross-sectional profile of the jet in this region. The relationship between CD and the

cres section of the jet which is employed in the computations has been obtained from

an invesL. tion of the data presented in Reference 25 and is given by

{- ')

where 0) is the ratio of minor to major axis of the ellipse representing the cross sec-

tion of the jet in the development region. This expression for CD was derived from

subcritical test data and thus the range of Reynolds numbers for which it can be con-

sidered valid is approximately 102 Re 910'5. Variations in CD do not appear to have

a great effect on the predicted values of jet-induced velocities, so that use of the ex-

pression outside the Reynolds number range defined above is not expected to lead to

significant errors.

The parameters E1 and E3 were chosen at values giving good correlation bet-

ween experimentally and theoretically determined jet centerlines and jet-induced sur-

face pressures. The details on the test data utilized are presented in Section I. 2.

This approach led to a final set of values of El =. 45 and E3 = 30.

(4) Calculation of the Induced Velocity Field

To obtain the velocity field due to the jet interference, the entrained fluid is

represented by a uniform sink distribution along an axis normal to the mainstream

and the jet blockage effect by a doublet distribution along the jet centerline as shown

in Figure 3. The strength of the doublet distribution is obtained from the 1IZ term

in the complex velocity potential expansion W(Z) for the two-dimensional flow past an

ellipse. In effect, by replacing the jet with a doublet distribution, the flow past an

equivalent circular cylinder is being considered.

Consider an element of the jet, length 6s, centered at (X, 0, Z). The sink

strength per unit distance in the q direction will then be given by

/" ~ / J(21)
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FIGURE 3. SINK AND DOUBLET MIrTRIBUTIONS

v / U I -'

Y=-¥- 0
Y=do

r-.Y= 3,6

4 ~X/4 0

FIGURE 4. JET-INDUCED DOWNWASH VARIATION
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Mw velocity pages" for a sis gkne of kmg A

The iodwoed ecity at a pair P (I Y Zp) doe tIo at sk ekemlJ o le"b &V
Ppp

wil be

(22)

= - •_0_ d

art,

4h- [CZ-Zpf 4-(XJ..u)z (f(@ypr]

The -elocity component in the X direction is given by

Lis-I - <30/61,r -(.O/Cr)(Ovla)rC )

Performing differeutiation with respect to Xp

= - i (23)

Similarly the induced velocities in the direction of the axes Y and Z are obtained

V1 = Fn dri ( Yp * __) (24)

**ff[L (Zp)Z(-XP) (Yo q)Z ]3 J"

VS -dg Z-ZP) (25)

4T(Z~pz f_ (X XpY y,,) ]I

41'r( Z-P #_l) z] 31



E05200M (M MMMMS the Velocity Copeuem =s the X-&rectiae 6w to a in
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Sub-stituting in Equation (26) and eraiuating from -4d 2 to d/2 yields

jin X-XP (27)

Yp -cIZ Ypt-dij
4zZ (X-XP)Y t(YF4(uzYP [(I R -4zp)zt(%Xf -Zt 'Z

Equations (24) and (25) can also be integrated to yield

- - a? I(28)
417,~ f(12p)-t-(~X-Xp+ (Yp>d/zY]Y

[(z-z4)Z+x (xp'L + Yei- d'7-z)-j'"

--S (Z ) p (29)

Yp-izYp-I
1 ~~ ~ L( )~~~~~~p4~I~ c-g(X) ytZj12z

uz-p) tx-)p) _2Y+X-P)19p
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2 L a +3Y

for flow along a, t•e _pl5or semi-axs. Rotating flow 90 degree-s makes a the minor

zerni-a2 _ b the ra-rs~-~s

'3(2+b)I + c LCZy + 2 (Zic

From binomial expansion, the leading two terms in a series of inverse powers

are

z

the coefficient of the 1/Z term is equated to the strength of the doublet,p

In the coordinates of Figure 1

U-= U'cosO

a = minor axis of jet

b = major axis of jet
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With the notation of Figm-re 1 he i2Plucd velocity held at giver point P $1, 7,.

dis to a doables of saremingt o at ( t, j o, 0, W~ nay boe evaluated

The seilocity po:.ezt•iaI of a dx-iblet is gi•en by

,,e•re ," L 92 +,q', 11]=o 0 = !r

COSO /r

then

_ _ _ _ (32)

with the induced velocities in the j, 7 and 4 directions being given by

V, =

"V, C)02-



t34

t Frcm the relea.ioship between 2,'p, and X, Y, Z in Figure 1, it can be seen that

,UZQ -- G,

W6 U. C-X5

where #UB, 6V B, 6 W B are the induced velocities at P tXp, Yp, Zp) due to a jet element

of length 6s centered at (X, 0, Z), and u is obtained from Equation (31).

The total interference velocity at a point may be determined by integrating Equa-

tions (27) - (29) and Eqaati 3n (36) over the extent of the jet, giving the total induced

sink and doublet component velocities. These component velocities are then summed

to give the total interference velocity. In treating a jet exhausting from an infinite

wall, ar image system of the singularity distributions is utilized to satisfy the bound-

ary condition at the wall. The flat plate pressure coefficients shown in Section 11. 2

were computed in this manner. Boundary conditions for a wing or fuselage in the

presence of a flow exiting from a nozzle are discussed in Sections IV and VIII.

In the treatment of the biockage effect discussed above, the jet curvature does

not contribute anvth!:.g qo the doublet strength. Three-dimensional effects are
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accoued for tfrowg the doltlet pmsicm and orientation and by caculatdmg the

icdm rvelocity field from the three-dimaesional counterprts to the demblets.

For the lower velocity ratios 0:6wtjo), where the je -rvatare is qsrite small,

this model can be eWcttd U, be a good reprsentafion of the sysical situation. As

the jet curv-a:re increases wit increasing velocity ratio, th quas•--two dimensional

approach becomes less valid. Calculatioes of induced sarfac- static pressures for the

higher velocity ratios (1ý'.jo = -250) did noa correlate with test data as well as did

calculations for the lower velocity ratios Wmrjo .125).

Attempts were made to improve the correlationby changing the entrainment

expression of Equation t1), without success. This suggested that some other

mechanism was responsible for the lack of correlation between calculations and test

data. It was thoutght that jet curvature had not been c-equtately included in the model.

Also, it was argued that this curvature %ould allow relief for the crossflow fluid

ahead of the jet and might be accounted for by applying a distribution of sources

along the jet centerline. Ope would e3pet th-e strength of the sources to be a

monotonically increasing function of the jet c. terline curvature. Subsequently, it

was learned that Werner and Chang (Reference 50), using a slender body matched

asymptotic expansion technique, had deduced similar results. Calculations of jet-

induced static pressures, using a source aistribution, displayed markedly improved

correlation with test data.

The source distribution has been made proportional to jet curvature and best

correlatii - with test data, over the range of velocity ratios . I<Um!U. <. 3, has been

obtained b) taking the source strength equal to three times the jet curvature.

The formulation for the induced velocity components at arbitrary points given in

Equations (21) to (36) is, of course, not valid for points inside the jet. Figure 4 shows

schematically, the variation of the downwash component induced in the plane of the jet

ex;:t by a flow exhausting from a nozzle located at Y = 0. The large variation across the

jet in the freestream direction is typical of the computed downwash distributions. Thus,

a certain amon'nt of care must be exercised in choosing the control points at which in-
duced velocities are to be evaluated for use with the methods of computing forces and

morn e".rs in Sections IV and VIII.

b. Arbitrary Jet Direction

Although the equations of motion for the jet mo•el developed in the preceding

discussion are written for a jet exhausling normally "ato a cross flo,,, ýf.ev are valid
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for any jet in a local coordinate system, oriented with the X'-axis in the direction of

the mainstream flow and the X'Z'-plane defined by the mainstream flow vector and the

jet exhaust vector. The direction of the mainstream, the location of the center as well

as :he initial direction c f the exhausting jet, and the position of the control points at

which induced velocity components are to be evaluated may be arbitrarily specified in

a general, fixed coordinate system as shown in Figure 5.

A local coordinate system, centered at Xi, Yj, Z is then established as shown
At

in Figure 6(a). The direction cosines of X' with' respect to the fixed coordinate system

are a , )6 o and the direction cosines for Y' and are determined from the follow-
00

* ing elationships.

Z, = , X' Y'
A

where Vj is the unit vector in the initial jet exhaust direction, obtaii.ed from 0 and 0,

the jet exhaust angles.

This establishes the co-planar relationship between the mainstream flow and the

jet centerline required by the equations of motion formulated for the normally exhaust-

ing jet.

Initial conditions at the jet exit (shown schematically in Figuire 6b) are now

Z*=o., X*=O., Uj*=l., d*=1., and dX*/dZ* = 2where cOSoVj'Z'

Both 0 and the angle 6P the angle specifying the exhaust direction in the exhaust

plane, are shown in Figure 6(bQ,.

Observations during the experimental investigation of Reference 3 showed that a

jet exhausting into the direction of the crossflow, Aj >900, appears to deform from its

initial circular cross secdon more rapidly than a jet exhausting with the crossflow,

6j<900 , Consequently, the development region, in whic t the jet deforms to an ellip-

tical cros2 section with a minor to major axis ratio of 1/ 4, has been made a function

of the jet exhaust angle 6j. For 6j >96°the extent of the dmevelopment region is defined

to be H'= H (cos 00) and for 6j<90' the development region becomes H'-- H/cos 0

where H - . 3 Ujo/U00 is the extent of the development region for a normally exhausting

jet, defined previously.

The gecmetry of the jet and the jet-induced velocity components can now be

computed in this local coordinate system, utilizing *Lhe equatiors developed for a jet

eyhaustitig normally into a crossflow.
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2. COMPARISONS OF SINGLE JET COMPUTATIONS WITH TEST DATA

a. Jet Centerlines

Figure 7 shows a comparison between computed and experimentally determined
centerlines for normally exhausting jets, with velocity ratios of U /Uo = .125, .250
and Uoo/U.o = .123, 233. The correlations shown in Figure 7 were instrumenta•l in
the determination of the entrainment parameters E1 and E3 .

Extensive computations were carried out for jets at various velocity ratios and
exhaust angles. A comparison of computed jet centerlines with an empirical equation

for the centerlines of jets exhausting at angles other than 90 degrees to the mainstream
is shown in Figure 8(a) through 8(d). These correspond to Figure, 12(a), 13(a),
14(b), and 15(a) of Reference 9. The solid curves represent centerlines computed for
the specified conditions. The broken curves represent the empirical equation

X ______U6Lb~ __Z -~l 5(7

d4 4 2 6~ do a

The curves superimposed on the photographs of Figures 12 through 15 of Refer-
ence 9 show the fit of this equation. It should be emphasized that the broken curves

reoresent an empirical rather than experimental determination of the centerlines.
They are included in Figure 8 primarily to aid in orienting the computed centerlines
with respecL to the photographs of the jet wakes in Reference 9.

Figure 9 shows a comparison of experimental and theoretical jet centerlines for
a jet of velocity ratio Uo,/Ujo = . 120 exhaustiig at various angles into the mainstream.

Since, in this figure, the agreement between theory and experiment is not a,4 close as

might be desired, a comment regarding the differences is in order. It is neted that
the theoretical curves in Figure 9 employ values of entrainment coefficients based

partly on correlation with the experimental data of Reference 7 (Figure 7). Compari-
son of the experimental centerline tor the normally exhausting jet of Figure 9 with

the test data of Figure 7(a) reveals differences which appear to be inconsistent with

the small change in velocity ratio. In view of these experimental differences for the

normally exhausting jet, the correlation for the jet centerlines shown in Figure 9 is

considered to be adequate.

A further comparison of theory with experiment for jets exhausting at an angle
other than 90 degrees is presented in Figure 10. Good agreement between theory and

experiment can be observed.
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b. Induced Pressures

Extensive computations to determine induced surface static pressure distribu-

tions due to single jets exhausting into a crossflow wete carried out. Comp risons

between theory and test data from References 3, 1, 13, and 14, are shown in Figures

12 through 18 for a number of jet configurations. Figure 11 is a schematic of the

single jet arrangement, with surface pressure taps indicatid, employed in the tests of

Reference 3.

The surface static pressure variations with X/do at Y/do = 0 and 1.5 are shown

in Figure 12 for a jet with a velocity ratio UO/Ujo =. 125. Test data from References

3, 12, and 13 are plotted for comparison with the calculations. At Y/do = 0, the dif-

ferences between the test data of References 3 and 12 are within experimental accuracy

ahead of the jet, whereas the data from Refereace 13 show significant differences.

Behind the jet there are discernible differences in test data, due in part to the unsteady

nature of the flow in this region. At Y/do = 1.5, the test data of References 3 and 12 are

seen to be in good agreement. There is some discreparcy between these data and the

data of Reference 13 in the region behind the jet.

The same static pressure variations for a jet with velocity ratio Uc/Uo . 250

are shown in Figure 13. At Y,, do - 0, the lata of References 3 and 12 are in good

agreement ahead of the jet, while significant differences are noted for the data of

Reference 13. Differences in the test data behind the jet are again evident. All three sets

of test data show good agreement at Y/do = 1.5.

The purpt . ef making these comparisons %as to determine whether there were

discrepancies among data from different tests and, if so, the reasons for these dis-

crepancies. The data of Reference 3 are in good agreement with the test data of

Reference 12 except in the wake region behind the jet, where discrepancies might be

expected because of the unsteady nature of the flow in this area. The differences

between the data of Reference 13 and the data from the other tests could be due to

boundary layer effects. The plate boundary layer was thicker for tests of Reference

13 than for the others. Boundary layer thickness has been shown to have a significant

effect on the surface static pressure distribution (see Figure 5 of Reference 13)., The

correlation among the sets of test data also gives confidence in the data of Reference

3 for inclined jets and multiple jet configurations for which there are no other data

available for comparison.
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The theoretical pesswre variations show good agreeme with test data in

Figures 12and 13 for the regis ahead of the jet exit.- n- =4 be no that the

agreement betmeen theory amd test data for the velocity ratio of -. 5 as greatly
improved by utilizaIon of :be source distribution to account for the curvature of the

jet, which was discussed or page 23.

There are significant differences betwees theory and test data in the ake

regions behind the jet. The singularity representation of the jet used to compute the

jet-induced pressure distribution a.ssumies potential flow in the areas external to the

jet. Physical.y meaningful results can only be expected in regions where the flow

outside the boundary layer is potential. It is possib~e that a distribution of sources

along the jet boundary may be used to represent the wake effects and to achieve better

correlation with test pressures in the wake region. Also, it should be noted that the

wake region is usually small with respect to the total area being investigated (see

Figure 15 for example).

Figures 14, 15 and 16 show the pressure distributions in the plane of the jet

exits around jets exhausting at angles of 6j = 120', 90' and 6Wf into the freestream.

%hen the jet is directed against the crossflow ( 6j = 120 ) extensive regions of negative

pressure result primarily ahead of the jet. As the jet xhaust angle changes to 90

degrees and then to 60 degrees, these regions of negative pressure are observed to

move downstream (Figures 15 and 16). Agreement between theory and test data is

aoted to be better for the 6j = 90: and 6j = 60' configurations than for the 6j = 120-

configuration. In all three cases, discrepancies between theory and test data exist in

the wake regions of the jets for reasons discussed pr( viously.

Additional comparisons between computed and e ýperimental induced pressure

distributions around a single jet exhausting normally into the freestream are shown in

Figures 17 and 18, for velocity ratios of .125 and .089. The experimental data of

Figure 17 provide additional confirmation for the correlation between theory and experi-

ment observed in Figure 15. They also indicate that the theoretical results lie within

experimental differences. Very good agreement between theory and experiment is

evident in Figure 18.
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3. MULTIPLE JET ANALYTICAL MODEL

The basic single jet analytical model has been applied to the computation of the

interaction flow field due tc multiple exhausting jets. A multiple jet configuration is

treated as a combination of discrete jets, with each jet (including jets resulting from

the coalescence of other jets) being replaced by its representative singularity distri-

bution to obtain the induced velocity field. In the development of the two-jet model

described in detail in this section two assumptions were made

"* The leading (or upstream) jet develops independently of the downstream jet

"* The downstream jet exhausts into a freestream of reduced dynamic pres-

sure which it sees as the result of blockage by the upstream jet.

Data from the wind tunnel investigation of Reference 3 have been analyzed to

substantiate these assumptions and to establish quantitatively the empirical relation-

ships utilized in the two-jet computations. Details of this analysis -re also given in

this section.

a. Two-Jet Computations

Figure 19 shows the planform of three jet configurations in rlation to the main-

stream flow. Arrangements (a) and (c) represent limiting cases. The arrangement of

(a) allows each jet to develop independently to the point where the growth of the Jets in

the direction normal to the flow causes them to intersect. The configuration shown in

(c) places the downstream jet entirely in the zone of influence of the upstream jet. The

downstream jet is located partially in the zone of influence of the upstream jet in the

arrangement depicted in (b).

Although Figure 19 shows the relationship of the jets in the plane of the jet exits,

as an illustration, the determination of the degree of influence of the upstream jet

(JET1) on the downistream jet (JET2) can be carried out for each element of JETI,

as shown in the gener'al case of Figure 20.

Plane L, defined by the mainstream flow vector and the diameter of JETI, iden-

tifies the element of JET2 influenced by a given element of JET1. Plane M, which

contains the mainstream flow vector and the local jet velocity vector of the given

element of JET1, is then establ'shed. The intersection of the plane M with the jpt

diameter of the appropriate element of JET2 is computed to determine the extent to

which the two jets overlap.
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An expression for the effective dynamic pressure which the downstream jet

"sees" as a result of the blockage by the upstream jet, based on analysis of experi-

mental data will be derived in the following subsection. Configurations with complete

-overlap between the two jets (jets aligned in crossflow direction) and partial overlap

will be considered, and the extent of overlap between the two jets will be a principal

parameter. Thus the influence of the upstream jet on the downstream jet is intro-

duced into the computations as a reduced freestream velocity, Ue/Uoo= 1qe/q 0 ] /2in the

continuity, momentum and force equations governing the development of the down-

stream jet.

When calculations of the distance bewteen the two jet centerlines indicate that

* the jets have intersected, initial conditions for the merged jet which results are deter-

mined from the continuity and momentum considerations:

A,/V, fAz 1.j, = A.3 j3

(AiJ,)5, (Ad~)L2 ~= (A3 &1.3) aJ.. (38)
(ALj,)L4j,, +(AzOJU)L/jz = (A /J JL .

(Ar1Jj1)Oj,1 ,'-AzO12 )Y I = (- A)Lj~

where

A1, A2, A3 = area of JET1, JET2 and resulting merged jet, respectively

Uj 1 , Uj 2 , Uj3 = jet velocity of JETl, .IET2 and resulting merged jet, respectively,

Initial conditions for the coalesced jet, in the local coordinate system centered

at the point of intersection of the two jets (taken to be an average of the coordinates of

the centerlines of JET1 and JET2 at intersection), are now

Z* = 0., X* = 0., Uj* = 1., d* = 1. and dX*/dZ* = Uj3x,/ Uj 3 z,

with the velocity ratio being given by Uoo/Ujo = Uo/Uj3.

Subscripts x' and z' denote components in this local coordinate system.

These initial conditions are employed in integrating the set of differential

equations forU., d* and X*.
J

The cross-sectional area of this coalesced jet is not taken to be circular as is

normally specified for an exhausting jet at Z* - 0. Experimental observations and cor-

relation with test data were instrumental in establishing the geometrical features of the
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initial cross section of the coalesced jet for different jet configurations. Details of

the initial geometry of the merged jet will be discussed in the following subsection.

The velocity field induced by a two-jet configuration can now be determined by

replacing each jet (including the coalesced jet) by its representative singularity distri-

bution. The induced velocity components due to each singularity distribution are addi-

tive at every control point.

b. Determination of Empirical Parameters

Analysis to substantiate t~le assumptions made for the two-jet computations and

to establish quantitatively the empirical relationships for the computational procedure

described above was based on the experimental data from Reference 3.

(1) Effective Dynamic Pressure for Downstream Jets

The blockage effect of the leading jet in a two-jet configuration may be deter-

mined from the test data. The centerline of a single jet exhausting into a crossflow

at a velocity ratio Uo0/Ujo .* 25 together with test data from References 5 and 12 are
shown in Figure 21. The data from the three tests are seen to be in close agreement.

This is significant since all three tests were carried out using different values for the

jet-exit dynamic pressure.

Data for the two-jet configurations, aligned in the crossflow direction, are

plotted in Figures 22, 23 and 24 for the three different spacings between the jets.,

These data, together with the single jet data, may be used to derive "effective velo-

city ratios" for the downstream jets, making use of a similarity relationship derived
in Reference 15. It was determined in Reference 15 that centerlines of single jets

with different velocity ratios are similar and that for a given displacement in the

crossflow direction, Ax/do, the penetration into the crossflow normal to the jet
exit is inversely proportional to the velocity ratio (U/U jo). By applying this

similarity relationship to a number of displacements, Ax/do, of the downstream
jet, it is shown in Figure 25 that the centerline of the downstream jet in a two-jet

configuration is the same as the centerline of a single jet exhausting into a crossflow
of reduced dynamic pressure.

The information in Figure 25 has been used to obtain an empirical relationship

for the dynamic pressure qe which the downstream j(t "sees, " as the result of
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crossflow blockage by the upstream jet, in terms of the crossflow dynamic pressure,

q. and spacing between the two jets, s. It is given by

5_ - 1 (39)
"- /dc, *. 7.5-

The expression for r,,/n~1'/2 given in Equation (39) is now used as a limiting value

when the two jets are aligned in the crossflow direction, whet. complete overlap

between the two jets exists.

The above expression has been derived from test a ±ta for which the Reynolds

number, based on freestream velocity and jet exit diameter, was approximately 2x 103 .

Comparison with jet trajectories from References 7 and 12, in Figure 21, indicates

that there is no measurable change in jet trajectory in the Reynolds number range

103_c Re; _2x 103. However, it is possible that a large change in Reynolds number

could affect the jet path and consequently influence the formulation for effective dynamic

pressure given in Equation (39).

When the two jets are not aligned in the crossflow direction, an effective cross-

flow dynamic pressure, q,,, which is a weighted mean of qe and qw, is utilized. The

weighting of the dynamic pressure is determined from the degree of overlap between

the upstream jet and the downstream jet (see sketch below)

UOD x

d 2

T'hus
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(2) Jet Decay Characteristics

The decay characteristics of the single jet and the three two-jet configurations

are shown in Figures 26 through 29. The information, obtained by analyzing the data

of Reference 3, is presented in terms of the Jet dynamic pressure rather than the

impact pressure which has customarily been used. The reason for this is that the

decay of jet momentum is due to entrainment of ambient or crossflow fluid. Thus,

for jets of differing pressure ratios, the jet momentum flow parameter should be

invariant rather than the impact pressure parameter. This observation is supported

by the data presented in Reference 16.

Figure 26 illustrates that, in the presence of a crossflow, a jet decays at a

greater rate than when it exhausts into a quiescent cnvironment. Figures 27, 28 and

29 show the dynamic pressure decay for the two-jet configurations at three different

jet spacings. The dynamic pressure has been obtained from the impact pressure by

assuming that the static pressure throughout the jet is constant and equal to ambient

pressure. Small variations in static pressure are expected but they should not affect

the general cotclusions. The distance, s, along the jet centerline is measured from

the center of the jet orifice with the downstream jet exit used as the origin for the jet

resulting from the coalescence of the upstream and downstream jet.

From the data in Figures 27 through 29 it is deduced that the rate at which down-

stream jet dynamic pressure decreases with distance along the jet centerline, increases

with increased spacing between the two jets.

The decay characteristics of the upstream jet in each of the three two-jet con-

figurations, together with data for the single jet, are shown in Figure 30. It is deduced

that the decay of dynamic pressure for the leading jet in a two-jet configuration is inde-

pendent of the spacing between the two jets. Since the centerline of the leading jet is

also independent of the jet spacing (see Figures 22 through 24) and identical to that for

the single jet, it is concluded that a leading jet in a two-jet configuration develops

independently of the downstream jet.

This result, along with the finding that the downstream jet behaves as if it were

exhausting into a crossflow of reduced dynamic pressure, is important in ,he applica-

tion of the analytical model to the multiple jet problem since it permits a two-jet

configuration to be treated as a combination of three discrete jets.
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(3) Geometry of Merged Jet

Test observations seemed to indicate that the downstream jet, being the stronger

jet at the point of intersection, due to shielding by the upstream jet is the dominant

jet.

This feature of the two-jet interaction is readily discernible in Figure 31. The

dominant influence of the downstream jet on the characteristics of the coalesced jet

results in the high degree of penetration exhibited by the coalesced jet. This same

feature may be noted in Figures 22 through 24. As a result of these observations,

geometrical features of the initial cross section of the coalesced jet are treated as a

function of the jet orientation angle, 1l. The jet orientation angle is defined as the

enclosed angle between the freestream vector and the line joining the centers of the

two jet exits.

For the jet spacings of the experimental investigation, it appears that best

correlation betwaen theory and test data is obtained by employing an initial circular

cross section for the coalesced jet for jet orientation angles up to 20 degrees. For a

jet or4-nftati-)n angle I = 900 (the jet configuration shown in Figure 36) the geometry

of Cae jet •ross section of the Loalesced jet is initially represented by an ellipse,

with - rinnni to major axis ratio of 1/2.

At this time the functional relationship of the coalesced jet cross st "tior. with

orientation anple has not been established for the range 200< SI < 90". It should also be

noted that, while the above discussion is limited to jet configurations with a maximrm

spacing of 7.5 jet diameters, the importance of establishing a relationship between

orie -ttion angle and coa.esced jet cross section decreases for large jet spacings, since

the ect of the merged jet on induced pressures in the plane of the jet exit diminishes.
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4. COMPARISON OF TWO JET CALCULATIONS WITH TEST DATA

Computations ,for a range of two-jet configurations were effected. Comparisons

between theory and test data from Reference 3 are presented in Figures 32 through

42.

Comparisons between predicted and experimentally determined pressure distri-

butions in the plane of the jet exits around two-jet configurations with spacings of

2.5, 5 and 7.5 jet diameters are shown in Figures 32 through 34. In the computations

shown in Figures 3? through 34; "effective velocity ratios" of .058, .087 and .098

were utilized for the downstream jets at the respective spacings! of 2.5 do, 5 d and

7.5 do. These are based 6n an actual velocity ratio of. 125 and the relationship

between crossflow dynamic pressure, q., and the reduced dynamic pressure experi-

enced by the downstream jet as given by Equation (39). For the splcing of 2.5 diaw-

eters it may be noted that the pressure distribution is similar to that induced by a

single jet exhausting into a crossflow, although the regions of negative pressure are

more extensive. As the jet spacing increases, the downstream jet is seen to have its

own, discrete effect on the pressure distribution.. 'Isobars of Cp,= -. 3 are noted

around the leading jet and the downstream jet in Figure 33; and in Figure 34, which

shows the larger jet spacing, isobars of Cp =-. 2, -. 3, are noted around each jet.

Generally good agreement between theory and test data is discernible for all

three jet configurations, It should-be pointed out that'relatively small differefices in

measured pressure coefficients at stations of constant Yid0 , when the variation with

X/d is small (i.e., when the curve is very flat) can lead to what appear to be much

larger disciepancies in the position of the isobars shown in the figures.

Theory and test data for the centerlines of the three two-jet configutirations above

are shown in Figures 22 through 24. Generally, the prediction for the centerline of

the coalesced jet does not achieve the degree of penetration exhibited by the experi-

mental data.

Figure 35 shows a sketch of a two-jet configuration, indicating the location of

pressure taps, and defines the sideslip angle fl. The variation of induiced pressure

with anyje of sideslip for this configuration is shown in Figures 37 through 39.

Figure 37 shows comparison between theory and experimental data for induced

pressure variation with X/d 0 at Y/d - 1.5 aad 3.0 for zero sideslip. Figure 38 shows

the same comparison for a sideslip angle . = 20'. The effects of positive sideslip

are seen to be an increase in the magnitudes of the ir.duced pressures in the region
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ahead of the leading jet exit and a decrease in the region immediately behind it.

Figure 39 displays the effects of a sideslip angle P = -200 on the above pressure dis-

tributions. Negative sideslip is seen to reverse the two effects discussed. It results

in a dlecrease in the magnitudes of induced pressures in the region ahead of the leading

jet exit and an increase in the region immediately behind it. These trends in the test

data are also evident in the computed 'results. For both positive and negative sideslip,

the downstream jet is discernible as a more discrete influence on the pressure distri-

bution when compared to the zero sideslip configuration. This feature of the induced

pressure distribution is predicted quite well by theory.

SThe correlation between theory and test data in Figures 37 through 39 and the

effects of positive and negative sideslip are representative of results obtained for a

two-jet configuration with a jet spacing of 7.5 diameters also. Figures 40 and 41 show

the pressure variation with X/d 0 at zero sideslip and at P 200 for a two-jet configu-

ration with a spacing of 2.5 diameters. The correlation between theory and test data

is seen to be very good for the zero sideslip condition of Figure 40. Noticeable differ-

ences between theory and test data exist for the P z 200 case of Figure 41.

At zero sideslip, Jqci/q~oo2 .46 for the downstream jet, as computed from

Eq. (39) with s = 2.5 d0 . This means the downstream jet "sees" a low cros0flow

dynamic pressure and, consequently, does not exert a strong influence on the induced

flow,field. The assumption that the upstream jet develops independently of the down-

stream jet Is therefore justified, despite the close jet spacing. The good agreement

between theory and test data in Figure 40 supports this conclusion.

At 8 = 200, .qc/qo,]"/ =.93 for the downstream jet, as given by Equation (40).

The jet now has a stronger influence on the induced flow field. This strong influence,

together with the close jet spacing, makes the assumption that the upstream jet

develops independently of the downstream jet no longer representative of the physical

situation. Further mutual interference effects between the two jets must be included

to improve correlation between theory and test data.

Figure 36 shows a schematic representation of a two-jet configuration with a

spanwise jet spacing of 7.5 diameters. Theoretical and experimental pressure varia-

tions with Y/d are shown for five stations of constant X/d in Figure 42. As expected,
10 0

correlatioh between computed answers and test data is better at stations ahead of the

jets than at stations immediately behind the jets. The wake region of the two jets is

gleafly defined at station X/d° = 1.5 in Figure 42(d). Correlation again improves

farther behind the two jets where the importance of wake effects tends to diminish.
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5. APPLICATIONS TO MORE COMPLEX CONFIGURATIONS

As outlined previously, the computational procedure treats each jet in a multijyo

arrangement as a single jet, with shielded downstream jets exhausting into a cross-

flow of reduced dynamic pressure.

This approach does not restrict jets in a multijet arrangement to have the sar"t,

velccity ratios. Figure 43 shows the computed pressure distribution around a t'-,,' ",,

arrangement with the leading jet at a velocity ratio of. 215 and the downstream jet a..

a velocity ratio of. 150. Test data are also shown for comparison.

The extension of the computational procedure to the treatment of more con plex

jet configurations was effected for a three-jet arrangement. In the three-jet contigu-

ration sketched below, sI is the distance between Jet No. 1 and Jet No. 3 and s 2 is

the distance between Jet No. 2 and Jet No. 3.

Jet#1 Jet#2 Jet#3

The effective freestream dynamic pressure into which Jet No. 2 exhausts is

obtained from the relationship for the two-jet configuration givei, by Equation (39), where

s is the spacing between Jet No. 1 and Jet No. 2 above. The crossflow dynamic pres-

sure which Jet No. 3 "sees" is given by

q.,J I 1 56-Z/do- 6,/J .7 (41)

Equation (41) accounts for shielding by both of the leading jets on Jet No. 3. If

s2 is very large, there is effectively no shielding and [qe/qoo]'/2 • 1. If s, is very

large, only Jet No. 2 provides shielding, and

E Ita-e -I
Si5.,./C3 ý r , 75

Both jets contrlbutc to the reduc',on in dynamic pressure when Jet No 1 and Jet No.

2 are close to Jet No. 3.
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Figure 44 shows a sketch of the three-jet configuration tested in Reference 3.

The computed centerlines for thiE jet arrangement are shown in Figure 45. A com-

parison between predicted and experimental pressure variations at spanwise stations

of 1.5 and 3.0 jet diameters is presented in Figure 46. In the computations shown in

Figures 45 and 46, "effective velocity ratios" of .058 and .069 were utilized for the

two downstream jets spaced at 2.5 d0 and 7.5 d from the leading jet, respectively.

These are based on an actual velocity ratio of . 125 and the relationships for reduced

dynamic pressure of Equations (19) and (41). Good correlation between theory and

data is noted.
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SECTION III

MAPPING METHOD FOR ARBITRARY CROSS SECTION

To use the transforrm 2tion method and the nonlinear body aerodynamics method

which are described in Sections IV and Vi, it is necessary to have a method of mapping

an arbitrary wing or body cross section inro a unit circle. It is the purpose of this

section to describe the mjthod developed during this investigation to obtain such a

mapping.

There are numerous methods available to map specific shapes into a unit circle

such as the Joukowski transformation for wings. It is also possible to map polygons

by the Schwarz-Christoffel tran-f-rmation, but this transformation maps the polygon

into a straight line, not into a circle.

The only suitable transformation for mapping an arbitrary section into a -,nit

circle is that developed by Skulsky in Reference 46. This method uses a procedure

similar to the Schwarz-Christoffel transformation. This method would be suitable for

the mapping required by the programs developed during this study except for the

following restrictions on the method. First, the method replaces the cross section by

one made up of straight line segments giving only an approximation to the desired

shape. Second, the mapping procedure is an iterative one and the question of con-

vergence in the iteration arises. Third, a large number of terms in the mapping are

required.

These restrictions are not so severe as to prevent the use of the Skulsky method

for the present study program methods, but +he method is restricted to symmetrical

shapes and this restriction mip ans that gener-l airfoils could not be treated. For this

reason, it was decided to develop a mapping function which would be more suitable

for the present study.

The mapping mathod developed in this section presents an alternative approach

to the computation of a mapping function. This method is not restricted to symmetri-

cal sections and does not require any iterative procedure. The mapping is obtained

by finding the potential for ar. arbitrary section which corresponds to a simple vortex

flow about the corresponding circle. The potential is equated to that for a circle

and equivalent points are located on the mapping circle. Knowing the point-to-point

correspondence, the mapping function is then obtained.
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1. COMPUTATION OF COMPLEX POTENTIAL FOR VORTEX FLOW

The method used to obtain a mapping function is to develop a potential function

about an arbitrary shape which satisfies the boundary condition of no flow through the

body and behaves as a simple vortex flow at large distances from the body. This

expression is written in body plane coordinates (see Figure 47) and is compared to

a similar flow about a circle expressed in circle plane coordinates, which is a well-

known function.

The complex potential of a vortex flow about a circle is

W=#ik h~(42)

The velocity in the circle plane is

dW . (43)

dC LV
To obtain the corr'esponding velocity about an arbitrary section it is necessary

to obtain am analytic function of Z which satisfies the boundary conditions at the body

and behaves like i/Z at large distances from the body. It is possible to obtain such a

function by writing the velocity in the body plane
i ~dW

dZ• Ub - iVb -•.() (44)

where f(Z) is some function whi½i, approaches ,. Z approaches infinity and which is

chosen to satisfy the boundary conditions at the body. By writing the velocity in terms

of polar coordinates i.e.,

SdW. Vbe _-*f(2(4 S(45)

satisfying the boundary condition at the body reduces to finding a function f(Z) which

matches a specified variation of a around the section.

Assuming temporarily that the section to be mapped is smooth, that. is has no

corners, the log of Equation (45) can be taken (o give

.l'lA, I/lc= --7-.# la -FltJi (Z) (46)

and in Xb arvd a are conjugate functions. Thus, if in f(Z) is taken to be a Laurent

series with no nonnegative powers, i.e.,

2" ('7)
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the coeffi.•ients of this expansion can be chosen to obtain any desired variation of a

about the beWy.

This give% the expression for the complex velocity i. ' ,e section plane as

Vbe -icc_•e ,(E) (48)

When the section to be manpped has corners a will be discontinuous and it is necessary
to ebtain an expression which has similar discontinuities. Assume that a corner exists

on the section to be mapped tt Z = Zm. Then, the factor - )

where

A,=- dam"lr÷+,dr•

will have a singularity at Zm wJi h a discontinuity in angle of•a In. This can be shown

by comparing the limits on the t"-- qides of the corner. Letting Z = Zm - A Z

(In).() E).(. s~e im.. S C 7Am
i,_ _ý. q,_ e_ .

b)R

Again, letting Z = Z + AZ
m

Li~/~~/ Rb I

subLracting these two expressions gives

i -AM (a;+,- a-._-) m -1 Aam (49)

which is the result sought. The magnitude of this factor gives an infinite velocity for
an outside comer :nd zero velocity for an inside corner which is to be expected.
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The complex velocity for an arbitrary section can thus be written

Vbe M j. e ( (50)T F

where M is the number of corners. This expression, being written wholly in terms of

the section coordinate Z, can be evaluated directly.

Defining,

/ -, -- = i P I

the log of this function can be written

The imaginary pat is
M

-i.r- w iim *mF-A. -A ( (4)) (52)

The left hand side of this equation is a continuous and periodic function of s and can be

evaluated at any point on the body. This makes it possible to evaluate the coefficients

of g(Z) to satisfy the boundary conditions to any degree of accuracy desired.

Letting

e- a:- ?r-w *, AM OM*An (9(W))

where

Nbn cosnw -dn sinflw
n ut R b

and setting

E represents the least square error in fitting a. Differentiating with resoect to each

of the a's and b's and setting the results to zero

•+3 aj
S•-o

+ a._IE 0
a bj

gives a set of linear equimons solvable for the a's and b's.



Once these coefficients are determined, the real part of Equation (51) can be

evaluated and V obtained. Then, comparing the potential functions in the circ! e plane
b

with that about the section gives

2 W~fVbds (53)
f fVbds

where 0 is the angular distance about the circle. This gives a relationship between the

points on the section and points on the mapping circle which permits a mapping to be

obtained.

2. COMPUTATION OF DERIVATIVE OF MAPPING FUNCTION WITH CORNERS

Once it is known which point on the section maps into which point on the circle

it is relatively simple to obtain the mapping function, and this relationship has been

obtained above.

7 he derivative of the mapping function can be written as a Laurent's series in

as
dZ •-I-+ d+ ...... -. .....

(54)

"the 1/ý terni being zero for a closed section. It can also be shown that

d Z -; dsc o (55)

when the mapping is evaluated at the mapping circle. Then the c)efficients of the

mapping can be evaluated as follow.i. The radius of the mapping circle can be deter-

mined by 3etting,

or

J j6 elede

2 = e --

or

e" 7r/)2d,
-C 4r,7 e (56)
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similarly

,,-1 d2. di;

2 Vi dn X= ( c,-e i(.n-d e ds ei[a-e- 7r/a)i c 'de

d 11 E iftf(n-,)e-rIfd 157)

Since it has been shown above how to evaluate 0 as a function of s it is possible to

obtain the derivative of the mapping functicn.

It is pos.ible at this point to integrate dZ/ds directly and to obtain the mapping

function. Whien the section to be mapped has comers, however, the region in the

vicinity of the corners is not mapped accurately unless an extrem Aly large number of

terms in the mapping function is retained. For this reason, it is desirable to rewrite

dZ/d& in such a manner that tt:, corner singularities are expressed explicitly. This

requires that dZ/d, be written as
M M ham N

_ =7T(1-cm ) -r (/ + ±a (58)

It is now possible to expand the product factors of Equation 58 by binomial expan-

sion, complete the expansion by further multiplication and the terms equated with like

terms of Equation .54). This results in a set of expressions which can be solved for

the A's. Equation (58) allows a satisfactory mapping near the corner points with a

limited number of terms but cannot be integrated directly to give the mapping function

analytically. It is possible to integrate (58) numerically, howevw r.

3. COMPUTATION OF MAPPING FUNCTION

The computer programs wTitten for the transformation method and the nonlinear

body aerodynaw,-..; method do not permit the use of the derivative of the mapping func-

tion but require that the rz.:_ring function itself be known and be written in the form.

* C0 C...qnC� •n (59)
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"To obtain the maping function in this form, the expression of Equation o5s) is expanded

to obtain the derivative of the mapping by expanding each of the terms

by a binomial expansion. These expressions are then muliplied together and also

multiplied by the summation term in Equation (58). This results in an expression for

dZfdZ• which -an immediately be integrated analytically into the form of Equation j59).

This integration allows calculatior. of all the coefficients of Equation 459) except for c .0

To obtain c it is necessary to compare the original and the mapped section and shift0
the mapped curve to best reproduce the original cross section. The amount of shift

remqired is then the value of c
0

4. SAMPLE CALCULATIONS OF MAPPINGS

This method has been used to map several sections. Figure 48 fox example is a

mapping of an ertremely thick Joukouski airfoil which was mapped since the exact point-

to-point Piapping correspondence could be determined. Shown on the figure are both a

complete mapping from the physical coordinates of the airfoil giving an excellent repro-

duction of the airfoil with the exception that some error is introduced near the trailing

edge, and a mapping startinL, uth the true 9 distributi.n which shows even better

agreement. In the complete mapping twenty terms of 'he expansicn for g(Z) were used.

Figure 49 shows a mapping of a 65-010 airfoil using the above method. In this

case only ten terms of the expansion were used so that the agreement in this case is

not quite so good, although still satisfactory. To oLtain this mapping it was necessary

to place a singularity within the airfoil at the center of the leading edge radius. With-

out this additional singularity an unsatisfactory mapping was obtained.

Figure 50 shows a mapping of a muc"- more difficult section, the section being

* that of a T-38 section in the region where the -et inlets are adjacent to the body. This

section, which is symmetrical, has five discontinuities on each side. The mapping

was made using twenty terms in the expansion for g(Z). The resultant agreement

between the true section and the mapped section is very good.
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SECTION IV

TRANSFORMATION METHOD

1. INTRODUCTORY REMARKS

Under the assumption of inviscid flbw, the force and moment cm an immersed

body ari-se from the pressure alone. Thus, the problem is that of determining the

pressure distribution on a wine or fuselage with one or more jets exhaust-

ing into a unifoim crossflow. The flow is assumed to be iriviscid, incompressible

and irrotational. The wing or body coiigu.-ation can be fairly general as long as its

cross sectional profile can be mapped into a circle on a two-dimensicnal space. The

governing differential equation for the motion is the three-dimensional Laplace

equation (viscosity has been implicitly included in the jet model). The boundary

condition is the usual flow tangeacy condition.

In addition to these assumptions, we further assume that the presence of the

body has negligible influence on the jet- Thus, the jet flow field, 7, may be computed

independently and used in the formruiation of the boundary conditions for the present

p. blem.

The total velocity vector. •, may then be nritten a--

SU10~ +-~ (60)

where i,,Jis the freest ream velocity:, the perturbation velocity due to the presence

of the body in the freestream. and Jis the perturbation velocity due to the body

presence :.n the jet induced flow field. The problem of determining j is here termed

the power-on problem, that of determing Qg • , the power-off problem and that of

determining f. •2 the power-effect problem, Emphabis will be placed on deter-

m-ning the power effect since we azsume that methods already exist for determining

th2 power-off pressure distribution.



! Thes, the pr uem is r to that of solving for the perturbato velociny
•'"in the presence of a body and a given jet indluced flow field, •.The governing

~J
differential equation, as mn,,itioeed above, is the three--dimen.sional Laplace equation

arz all ar (61

vhere x, ; and z are body-orie-Aed coordinates (Figure 51) and is the pe-rtrbation

velocity potential- The perturbation velocity components are -it. 2#_

S2 - -• -The perturbation velocity vector may then be written as:

•2 aL

The problem is then to find a solution of Equiion (61),subject to the boumdary

cinsdifions that

g),-rad#) ~ on the body surface, (63)

aad grad # vanishes at infhnii _ty. The rector it refers to the body surface outward

normnal.

It is possible t0 obtain a nnmerical solution to "he problem by applying Green's

Theorem using distributed singularities on the body surface. The basic formulation

of the problem would be similar to that given by Hess and Smith in Reference 17.

This approach, although giving a numerically exact solution, is not convenient for

the present investgation fo:. two reasons. The first reason is that a large amount of

computing time is required to generate solutions for practical problems. The second

reason is that a large number of control points are required to describe tho body

geom et IT.

Thus, in this investigation, a quasi-two-dimensiona! method has been developed

which is ar approximate solution to Equation 61 and satisfies the boundary conditions

in an approximate way, The technique consists of essentially tw- parts which corre-

spond to two steps in the computatiorn and are ,-ailed the segment meth-od and the

three-dimensional modificatio,. Step (1). (,r the segment method, consists of

obtaining an approximate three-dimensional -'elocity potential by deter mining exact

soiutions of the two-dimensional Laplace Equation at a numner of f Odr stations. In

Step (2). this velocitv potential is m-)dified to better satisfy the three- -imersional

Lapiace Equation.
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Step (1), or Jr segment method, is an application of slender body taeory in

which the x-derivatives are neglected in favor of derivatives iu the other Mo direc-

tions. Thus, the govemrnig differen!W equation reduces to

3k t i# 0 (64)

The boundary conditkns are then

V - on each y - z soction (65)

and grad2D v vanishes at infini". where V' is an outward normat to each y-z section.

This boundary value prollem may now be sol-.ed by first mapping !he contour of

every y-z section into a circle and then using the melhod described in the following

subsecticn. The potential so determind involves x as a parameter and may be

written symbolically as 4 (y,z:x) TLese potenki~s could, however, be consolidated

to form a three-dimensional velocity potential. This latter potential will not, in

general, satisfy the three-dimensional Laplace equation. To remedy this, a techni-

que is developed as Step (2.

Step (2) is, in effect, an alternative method of including s-ome three-dimensional

effects in the problem in place of the usual pirrcedaz capi.ed in. the s!ender-body

theory. (A general description of the slender-body theory may be found in

Reference 18.) The present technique is based on the fact that failure of the consolidated

potential to satisfy the three-,uimersional Laplace Equation implies lca! volation of

z se.rvwion of mass. To reme-jy this deficiency, a distribution of residual sources

•md sinks are included.

Inclusion of thence residual sources and sinks supplements the old velocity field,

- grad2 D (y z;x, and is denoted by . The existence of the body will Jso

have to be recognized in this supplementary field. To do this, we again use the

segment method. The new flow field after Step (2) may then be written as:

Y ratjZ, (t ( Y3J;) + Is - 9r.0-420 S _4L) (66)

This process could, in principle2, be repeat'ýd, Each time when the process of three-

dimensional modification is involved, two mo-.-e terms, similar to Iand grad2D 22 ,0

would be added to the above expression.
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2. COMPUTATION OF FUSELAGE )-.ESSURE DISTRIBUTION

As stated above, the present teWhmique comprises two steps, the segment

method and the three-dimensional modification. The former can be used inde-

pendeat', whereas the latter, being a modification srocedu re, must be used in con-

junction ,.t!!te first step. Some details of these two steps will now be discussed.

a. Segnut Method

(I) The Boundary Function

The method is, in effect, a numerical extension of the procedure described

in Reference 19. The problem considered in Reference 19is that of determining

the complex ve!ocity potential for a cylinder moving two-dimensionally in

infiite fluid at rest at infinity. The motion of the cylinder is described by a

velocity of translation U and an angular velocity w- Let C be the contour of

the cyiinoer cross-section and 0 the origin of coordinates about which the

cylinder is rotating-

Z-plane t-plane

yV

C Ucosar -yW

PHYSICAL PLANE MAPPED PLANE
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Suppose the regicn outside C i. the Z-plane is mapped conformal ly on the cutside of

the unit circle | I in the 5-plane by the relation

= ft () (67)

with the points at infmity in the z and S-plane corresponding. Again, following

Reference 19, the normal velocity of the cylinder along the outward normal is

(U COSM - # W) s"? e'- (0USince t ZW.), n 0

in which e is the inclination of the tangent to the x-axis. Thus,

• Ucosa w - (is 9 (68)

Integrating along the cylinder houndary, we get

where B is an arbitrary constant which, without loss of generality. may be set

equal to zero.

Thu.,, f is equal to the im,,.inary part of the function

so that finally, on the boundary of the cylinder, the stream function W is such that

2i 'q = -Uze * Oze t-L •Z (70)

Let d6=e O denote a general point on the unit circle in the I-plane. Then, on

the unit circle, Equation (70, gives

21i? U 3() -F(d) e-( *O( e •.~'o)•,I. (71)

This 'triction, B(6), is callr' the boundary function by Milne-Th.m-,son.
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It the boundary function is expanded in a power series in o, we can write

I 8() 81(s') t 8 )

where 6i (or) ontains the negative powers of d only so that 8I (i) is holo-

morphic (cr(r) is finite, single valued ard has a finite single valued differential

coefficient) outside the unit circle and vanishes at infinity.

Thus, in terms of the complex velocity potential function W(%f'), Equation(71)

may be written in the form

wd) - 7WI0L) = Bi(0)) + Sz( W

Let I be the circumference of the unit circle. Then Equation 72 may be used

to obtain

('~~~~~~~ 1ý~d ! f j7-d.tj..8(d4
J ~-S 2uriJ d- t 6-5

Now, W(•) and 3(5) are holomorphic outside 1, whic VJ j ) and B

are holomorphic inside I. Therefore, if ý is outside I , application
of Cauchy's Theorem shows that the second and fourth integrals vanish and

the first and third give

) "- ,(5) (73)

Thus, Equation (73) gives the complex velocity potential as a function of .

Elimination of S between Equations 67 and 73 yields the complex potential

as a function of Z.

In summary, to determine the complex potential W(Z), it is necessary to

know the mapping function of Equation 67 and the stream function on the

boundary of the cylinder (Equation (70)). The boundary function in the circle

plane may then be determined and, hence, that part which contains only

negative powers of • . The complex potential is then immediately deter-

mined.,
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(2) Application of Boundary Function to the Segment Method

Although a cylinder under translation and rotation was given as an example

of the boundary function, this approach may be ustd to solve more general problems

in which 0 may be determined around a contour ',)r which the mapping into a unit

circle is known.

Consider an elongated body with its longitudinal axis aligned in the direction

of the fre estrearn (Figure 51). Let the velocity components in the x, y and z

direction be denoted by u, v, and w respectively. The body is divided by cuts as

shown and the volume adjacent to each cut represents a segment.

From the computation of the jet flow field (see Section II), we know what the

jet induced velocity components of u, v and w along the cross sectional boundary of

each cut would be if the body were not present. Due to the presence of the body

segment, we must satisfy the boundary condition that no fluid penetrates the surface

of the body segment. In the method of segments, this boundary conditioi is not, in

general, satisfied exactly. It is satisfied approximately by moving the cross section

of each cut in such a way that the velocity component normal to the cut is equal and

opposite to that induced by the jet. Thus, application of the boundary condition does

not account for growth of the body in the x-direction.

The method developed in Section III may be used to determine the mapping

function of Equation 67 so that the problem of obtaining the complex potential and,

hence, velocity and pressure distribution, is reduced to one of determining the

stream function on the given boundary.

Following the procedure for determining a boundary function, we first transform

the cross sectional area of each cut to a circle by the mapping function

+Z+ br,

where Z y + iz (physical plane), r = re io (mapped plane).
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The complex constants bO, b .. b, which signify the geometry of the cut.

are determined by the procedure discussed in Section III of this volume. The complex

potential on the mapped plane due to the motion of each cut is assumed to be

qb V= ajA f-t I+ _ý2 t(74)

To compute the boundary function for every cut, we write

r a dO.
30

When we perform the integration of this formula along a circle where the variable

r remains unchanged, it reduces to

0

0

Putting -!n a forr.t convenient for computation yields

0

where v. and w are the jet induced velocity components.

If we set the upper limit to 2 Ir, this integral give3 the net flow of fluid

through the boundary. This may not be zero, due to the fact that only two velocity

components have been accounted for insta30 of three. This source or sink inside the

boundary is accounted for by the logarithmic term in Equation 74

We first determine the coefficients a. . . an in Equation (74) by consider-

ing the periodic part of Equation (75). Thus, we form

279
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ITie boundary function *1 can now be expanded in the form of a Fourier series

by the usual method

n n

The boundary function may now be used to determine the coefficients a1 ..
a in Equation (74. and, hence, determine the potential for the flow which will

n

cancel the normal component of velocity calculated by the jet program.

The first term in Equation (74) represents the source and circulation potential, and

will be considered later. The coefficients, al, a 2 , . . . an, of the remaining terms

may be determined by equating them to An and B~n- Setting a,= a, + i aW, a2 = aj +

i aý, .... we obtain

r; Az' (76)

orY

o.2=-rB +ujA0.2 -Y tý

where rb is the radius of the mapped circle.

To evaluate the coefficient of the logarithmic term in Equation (74), we write

o , = o~inr +t Lo.oo.

For a body without c:rculation, a is real and is given by

. ro

0
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Ti.. far, the complex coekimicmis in Euabton(74)have all toe deterniad.

which sets the flow through every cross sectio of the cut to zero in a predetermiaed

external flow field- The c-implete complex potentaal is then the summation of Eqia-

tion 74 and the potarial induced by the exhatg jets- Once this potential

is known, it is a relativeiy simple matter tu write a computer program to calculate

the pressure distributions along the boundary of erery cut, which result in the power

effect by the segment metbod. Sample calculations a-' discussed in Volume IL

b. Three-Dimensional Modification

By establishing the real part of the complex potential in the physical plane, ie

obtain the velocity potential at every point exterior to the body on the planes passing

through the cuts. These velocity potentials all exhibit the same form except thal

their coefficients are different from one plane to another. In other words, every

coefficient is actually a function of x. To show this parameter x explicitly in

Equation 74, we write the velocity potential at station x, with the help of Equation (76)

= Q)Lr+ r()[A 1 IU)$iaO-L,(X)CZ38J

+ ) A2(z) SO20 - "
2(z)cIe "- 7. (771

in which r and 0 are functions of y and z given by the mapping function. By consoli-

dating these expressions from every station, we could construct a three-dimensioval

velocity potential. This potential does not, however, satisfy the three-dimensional

Laplace equation. To remedy this deficiency, we proceed to Step (2).

In Step (2), we first divide the region of the flov, field into a network of small

parallelepipeds whose "centers" are situated on the planes passi:,g through each cut

(Figure 52) and then compute the flux through the surfaces of each parallelepiped by

using the available velocity potential. To account for this flux approximately, we

have

in which the partial derivatives are r"aluated at the center of the parallelepiped and
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AV refers to its volmese.rp t~ emtt~g te poterialls at this amd its meigdbpyrix

st*0jo to be # .f' #j-# . tbhe re§%-Y CMV;tE~S to be I - C

and o *weObaimr

The quantities in tt.e bracket represent an appir atim for the partial derivative

g These reduce to the central difference for-m.a for stations of equal

interrals. The sum is al ways equal to zero, since 4- is- the JKoL-.Eti2

obtained iiy the segment mc-tho,. However, the net flux Qf, computed in this mamer. is

not in general equal to zeo.. This implies that fluid has been created or destroyed

within the parallelepiped- In cher words, the Laplace equalit^i has a residual term,

since the continnity equation and the Laplace equation are equivalent. To com.ter-

balance this residual term, a source of the same strength bl! of opposite sense is

placed at the center of the parallelepiped, so that the three-dimeensiona. Laplace

equation is approximately satisifed in its neighborhood. Repeating the process for

each parallelepiped yields a network of residual sources and sinks in the space. These

sources and sinks create a new field which -will modify the old one,

A schematic diagram for the parallelepiped network is shown in Figure 52.

Though there are only two layers and few parallelepipeds indicated, it is understood

that for computational purposes we need at least four or five layers to cover a space

extending several body diameters outward. To illustrate the effects of residual

sources and sinks, let A be an arbitrary point on the body surface (Figure 5-9) with

the coordinates xo, v and zo. Let the centers of the surrounding parallelepipeds

be xi, yi. and zi. The residual velocity components at P'oint A are then given by

11

M

=~

in which 7".. 4-1 and M refers to the total number of the residual singularities whose

presence may affect the velocity dist ibutions at Point A. A schematic arrangement
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Then a new flo~w field em the fictitiouls wing is eo rutre•d by subtracting w" from the
Smo(Efied w compo~nts• in step (2). This constitutes the modification to account for

the spanwise variation of the circulation around the w-ing after inclusion of the residual

source distribution..

S~It is noted here that there are two arbitrary- elemnentz :" ol-ed in the above

procedure. These are:

S~(aj The factor 1/3 in Equation 78 is an a•ided empirical factor to the

S~original equation.

(b) Since only the liftingc line theory is invoked, all the components at any siven

section, regardless of the chordwise position, are redued by an equa l

amount equal to w(y).
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SECTIOM V

ICLIET FLOW FIELD

ldet flow mades are dieoped which allow lift, drag, an monsat estimation

for bodkes coaining inets normal to die free suream. A propusion model for lift-

ing fns is &veloed reating imernal and 3i-ernal flozs.

1. ANALYSIS

The basis of the inlet flow field analysis is dhe 2ssumptiou that the flow about

an inlet normal to ihe free stream may be approximated b- the potential flow produced

by a concenrated sink embedled in an infinite plane 2bo-e which passes a uniform

fl,-w. The f-rcme produced on s!e surface contaming the inlet is assumed to be the

force acting or- that poni :n of ,he infirite plane obtained by projecting the planform of

the surface onto the infinite plane. For purpose- of calculation, the force upon the

affected portion of the infinite plane is divided into two portions: a lip force acting in

the immediate vicinity of the inlet, and a surface force actin. on *be remaining plan-

form area.

a. Lip Forces

The lip forces and moments are calculated by establishing a control surface of

radius R1 about the inlet centroid and applying the law of conservation of momentum

(Figure 53).

The uip force ip the free stream direction is expressed as shown below.

DL=P§4ALmn5 -+j PdSX
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The pressure and velocity at the hemispherical control surface may be expressed in

terms of the sink induced velocity, us.

Un = Us +- (c•. s, n i Cos G

(AX = 0, + us si• cos 1e
UZ = - U's COS)

The velocity us is obtained from the sink strength or fan flow rate.

u.- +/4.7rR
rn : 2Ar4.•

The conditions at the lower control surface are shown below. The corstant K is

defined as shown and the constant 71 is a dynamic head recovery factor for the inlet.

° 2 ,

P n = RU,• ý

UX= KUL

The drag is then found.

DL fA.FUf U.~, I -K)
As the free stream velocity component is reduced to zero or near zero in passing

through the fan, we may calculate the total drag by assuming the turning to take place

in the inlet.

10
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The moment about the centroid, and normal to the free stream is found as shown

below.

-L fj(, A f) U +•>$, ,S.)/2. KA

/M Ll ML cos/

/d L -PL sinfi

As in the drag calculation, the parameter K has been set equal to zero for consistency.

The lift may be calculated from the expression

L A U / + P s

Thus,
L Af ,[U[? (f-A.F141rR, 000-IJr-K

The parameter, K, is retained in the expression as the change flow direction

in passage through the fan does not affect the pressure at the lower control

surface, the source of the term. In the equations for drag and pitching moment,

the parameter K reflects an unremoved freestream momentum flux and later

elimination of this component, in the fan or nc -zle, will cancel the terms

containing K.
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b. Surface Forces

The forces and moments on the remaining effective area are calculated by

integration of the pressure distribution created by the sink. The pressure coefficient

at any point is described by the expression shown below.

V+ A•f Co s )

The lift can then be expressed as the following integral.

r

L~ ~ P, -Lc~5CP rdrdG

Integrating with respect to r yields the intermediate result which may be used in

conjunction with a body description to obtain the force.

L - U (4 - I cc' S 0 O

• 2;7 r )
f~I Ii;• 'r- ) 5/ne ' 19

4- Of 2(A , /2 AR,) [I5 R., /r)Jd

In a similar unp..ner the pitching and rolling moments are found.

Zi"

hrms JU'(1 C5 OICcos4&

R 5) - 1 5 01

/0) ( A 1,/7 z 

c o0

0
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S 1 a/ JO rlR) srin 0e]e

I-l(A/217 5fR(R,/r-1) sin 0-Je

It must be noted that the effects of the body edges on the pressure distribution created

by the inlet have been neglected, and that the forces and moments due to edge effects

are not included in the analysis.

2. LIFT-FAN PROPULSION MODEL

A simple expression has been obtained relating the flow parameters to propul-

sion parameters for lift- fan units. The modrl is based upon the assumption that the

pressure difference across the fan may be represented by the following relation.

If the exit static pressure is assumed to be that of the free stream, and if

allowance is m.de for loss of dynamic head at the inlet and for nonaxial flow at the

fan entrance, the pressure differential may be related to flow conditions.

AP

The fan flow rate may then be described in terms of free stream conditions and fan

speed.
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The fan flow rate is often expressed in terms of flow ratio and tip speed ratio.

u, ut I • C* R- UO; 1( A j•)

The thrust carried by the fan blades may be obtained in terms of fan flow or tip speed

parameters.

TF A rA P

T{ iVAf [P
zZ- ý A fC:U:zfAfCUtj

The effect of the presence of a fan centerbody may be considered by assuming it to

produce a base drag force, or momentum loss.

T Af AP V/z COSci

Af[__ _ _ _ I ()1g.

=,4A 1+ Cosc/ ItCoScA1/Af

where-,

U,/CO 5 C aScA/A[f
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3. COMPARISON WITH PREVIOUS RESULTS

If the preceding relations are applied to #•t' :z-.se of a simple fan in an infinite

plane, having an inlet which turir thp 5,n. by ninety degrees with no flow losses, the

results of the present express'e,-- way be compared with previous work (20, 21).

The lip and surface forces become:

L 0-4Af [u2Z0 j}

The fan thrust reduces to:

Tf = A. [ 2U2-u

And the total lift may be expressed as:

L = f~

a result in agreement with Theodorsen (20).

The express;on for the fan flow rate is then found to be

z z
- U. L4• For Ut = c•,:stant

u•for

.This result i in a..reement w;th Grahame (21), who derived the expression by other

*0means.
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4. DEVkLG'EN'T OF HMADBOOK METHOD

The simplicity of the empirac! model outlined above enae estimation of in-
let effects without resoat to sophisticated computes '.nmiques. The lip force and fan

flow equations are applied in the form given. The integrals usea ic doscribe the sur-

face forces may be easily integrated by finite summation using a work sheet as s,.n

in Table 1. Because the induced forces are concentrated in the immediate vicinity of

the inlet, large angular increments may often be used with little loss o', accuracy.

Semigraphical integration is often a convenient alternate.
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SECTIM • VI

NON'LLNE-AR BODY A.E3ODV•AMIUCS

To evaluate the body contribution to the aerodynamic derivaures of V/STOI. ar-

craft it is necessary to include the range of flight conditions which is likely to be

enmountered in operation. This requires the 2ircraft to operate at extensive angle of

attack and sides•am since the flight astitude near hovering flgbt is no determined by

aerodynamic forces but rather from th. 2pplication of power. There is, however, an

area of flight where !he aerodynawmc and 'ower effects will tend to be of the same

order of magnitude and where neither component cap be safely neglected.

"It is to treat the aircraft behavior in t~re region where both aerodynamic forces

and power are im >ortant in support.ing the aircraft weight that nonlinear aerodynamics

is important.

To obtain the total aerodynamics of bodies at large an-gies of attack and sideshp

it is necessary to treat both tUe potential flo.,: contribution and the viscous effects.

This study has utilized slende.- boe- theory ior the poteutt-2 contributions, while two

methoes of treating the visccs:, eflects aave been examined. The first method using

vortex tracking was found to b unreliable within the present state of the art and to be

too unwieldy for use as a mindbook procedure. The second method, using the viscous

crossflou. conwept appears to be quite suited for a handbook procedure.

1. SLENDER BODY TPEORY

To completely represent the aerodynamic forces and moments on a body it is

r.ecssary to combine both the potential and the viscous contributions. To obtain LiWe

poterititd contribution, slender body theory is used. The development of the equationE
(22)

representing the slender body solutions is an adaptation of the methods of Sacks

The basic equations have been modified to permit large angles of attack and sideslip

to be accounted for. Tf.e ability to handle arbitrary body shapes has been attained by

introducing -, method of obtaining a mapping function for an arbitrary body shape.
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A com wr rog bten uilums =bwb comzes znve cotomam forcted

momest elrxfnals as fabefts O.L nehaMng e 220C. orea ainle, yam Tticczy

and 5rntekb vecity- Fromi these c-A-fficieaas the ardwkdnai ~
easil 0&2nked.

The eialmmai for the forcts aed mxnews givte by Refeaent 22 ubes

to elimiae the roilig veIocity, the effect of uich ca be camsidered aegho~e fer a
body, and the time derivatives, can be a-nuLa in compk- form:

o 0

The eralu~atiori of these equations requires that the comtolex potens~al

be known. When the residue of the potential A,(x) is known, the only diffieculty in eval-

uating the total forces and moments arises in evaluating the first term of ihe moment

equation above:

The rest of the terms are readily evaluated.

Sacks( 2 2 ) has shown th~at

S~(83) ..td
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It remi t ewvsw e coefi~es A,"i since uw cW-ieO Do* is wereguired-

The oeffiewas " a be 2 M crlse bj eepesn Egaptm (Zim term~s
of Me wapxegrde de ew dise •. i.e.,

Refereuce 22, Apeni B, shms that ths eipressi- can Ibe eraliuated from the
Cofficients of the Mappag from the circe pbe.

6 "I (S-)

and is expressible as

'where

,=1-e ie (87)

and T, (Q) is the portion of the pozential required to satis-4 the bounary conditions of
the body and is equivalent to the expression of Equation (25) of Reference 23:

TN(~zmC AV~ (a -(71,4)1).
Na-e :S a" --L'"

(88)

*N ._.•. _ [.d i,,) (_,, aa,7,
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"The coeff"e b• consarm wi the e•ie• hw bJ(4 cm be shim to be

A eomnjuzisxr of thet two eqm-css~ims for F gives :be epress-icon

A,(x)-Ra,-R ,2Z,-P/ L4 t((n- t ' &.., *-I )rc
(90;(WO-q -a-€ jIM-1a .- _ as WjýJk

PIC 2W dx

UO = UM o dc•
(S1)

-th. *s remc- and the deriim --*.f i w.'

at

Rn-f- cosO *,%,sin #j(x -xc,)iLlasingf (%. Cos~ -- sin 0)(X-XCgjj/ (92)

This expression for R has been modified from the definition of ieference 22 to utilize

resultant angle of Pttack and roil angle instead of angle of attack and sideslip.

All of the r-e'essarv information is now available to solve Equations (79) and (30)

if it is assumed that the coefficients of the mappiig function (Equation (85)) are known.

The expression

Rf Fd (Z)

can be evaluated by integration by parts to be

RfFd(Z R '[FZ I251oe iZo7rw 7(

iaoie iwOO z Jc (93)
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sism the first &" of the iegra•,i: by prts is imaginary. On the msrface of the

bod 42 can be rqpresewoed by thke eg~wessima

*:ijis !C nW

and the expression for F can be differentiated wiih respect to ',and the residue of the

integral c-an be obained.

This, assuming that a mapping function is available, it is possible to solve

Equations (79), (" and -1) for Y, L, X, M and L1 as functions of a, 0, q and r. Also

by direct differentiation or by perturbing either a, 0, q or r, it is possible to obtain

"the derivatives of the coefficients as well. The above analymis can also be readily

extendeJ to include either the rolling velocity or the time-dependent behavior of the

coefficients should these be desired. In the ;reatment of these equations it has been

assumed that the forward velocity can be resolved into an axial and a crossilow com-

ponent which permits the equations to be solved at angles of attack up to 90 degrees.

a. Simplified Method of Obtaining Major Mapping Coefficients

Section III has described the method which has been developed under this study

for determining the coefficients of the -napping function. This solution makes the

problem of solving for the slender body aerodynamics solvable. It is desirable, bow-

ever, to sf '-plify the procedure for treating the __--y aerodynamics by eliminating the

need for mapping the bjdy since this requires a great amount of work.

To obtain a method of using slender body theory for a handbook method, it is

necessary to find an approximate method for esti:mating the most important coefficients

of the mapping function in a simplified fashion. An examination of Equations (79) and

T(80) shows that except for the term A, all the variables are independent of the mapping,

i.e., they can be obtained directly from the body geometry and flight attitude. In addi-

tion, it can generally be assumed that the rolling moment of the body can be considered

negligible. It can also be shown that the eerivativcs of Y, L, N and M with respect to q

and r are dePendent only on the radius of the mapping circle and the coefficient a,. The

other coefficients enter into the derivatives with respect to angle of attack and sideslip
(or resultant angle of attack) through the cos a terms appearing in Equation (90). It

appears from this expression that coefficients other than rc, ao, and a1 may bE

neglected in treating the body. This would imply the simplification of iquation (90) to

Lhe form
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This approximation and a suitable method of estimating r , a and a1 would per-
S0

mit a relatively simple procedure to be outlined for treating the potential contribution

to the body aerodynamics. The most suitable method of approximating these three

coefficients is to treat a° as if it were equivalent to the centroid of the cross section,

and to estimate r ant a, from the maximum vertical and lateral dimensions of the

bod-. If 2a is the maximum lateral dimension and 2b is the maximum vertical dimen-

sion, then by letting

4+b. (96)

C2 b-a (97)

a relatively good approximation for these coefficients is obtained. These approxima-

tions have been made for the T-38 body and their values are compared with those

obtained from an analog mapping method and shown in Figures 54 through 56. Consid-

ering the complexity of the chosen body, it is considered that the agreement obtained

is quite good. The effects on the coefficients of using these approximate values and

neglecting all other coefficients are shown in Figure 57.

It is felt that this is an adequate demonstration of the capaoilities of predicting

this portion of the body aerodynamics.
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2. VORTEX TRACKING

One method of obtaining the nonlinear characteristics of bodies is to treat the

viscous flow as if the vorticity were collecting in a single vortex pair. Under this

assumption the paths of the concentrated vortices are traced and the effects of these

vortices on the body are computed.

This computational model requires several simplifications to the true flow pat-

tern about a body and the degree of success in predicting the aerodynamics is depen-

dent upon obtaining a satisfactory set of assumptions. Reference 23 presents in detail

a procedure which has been used in an attempt to obtain a valid model for arbitrary

bodies at angles of attack. The basic model used is that of Bryson(24) which balances

the forces between the concentrated vortex and a "feeding sheet" to obtain the equation

+ , (98)

which relates the vortex path to the local potential and to the rate of growth of the vor-

tex strength. This equation differs from that for a free vortex (•, w11 in that an addi-F
tional velocity , - o is imposed on the vortex due to the presence of the feeding

sheet.

The Bryson model also postulates the existence of a stagnation line on the body

which in e-fect permits the strength of the vortex to be computed when used in conjunc-

tion with Equation (98).

The method of Reference 23 is a generalization of the Bryson model which per-

mits the introduction of an arbitrary body with unsymmetrical flow conditions in the

crossflow plane. Thi, formulation retains the major features of the Bryson model

but generalizes the method by relating the flow in the body plane back to a similar

flow about a body of revolution by means of a mapping function. Other modifications

are made as required to permit a more general flow pattern and to permit more

flexibility in specifying the stagnation line.

The method was used on the T-38 body, - d doing bo s9.owed several limitations

in the model, the most seriouts of which was caused by the feeding sheet force. This

force at times became e ,ceedingly large which, in turn, produced an unrealistic path

for the vortex.

During the present study, modifications were made to the above model with the

intent of improving the accuracy of the method. The mcst satisfactory modification
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consisted of two changes in the model. First, the effect of the feeding sheet was

neglected. That is, the ior•ices were assumed to move freely with the potential flow

field including the effects o& the other vortex df the pair and both 'image vortices but

assuming no feeding sheet force. The second modification was to relax the stagnation

line requirement. Originally, the selection of a pair of separation lines together with

the requirement that the cross flow velocity went to zero there, permitted the specifi-

cation of the vortex strengths. This condition was replaced by the assumption that the

rate at which the vortex was being fed was equal to the crossflow velocity at the sepa-

ration line. This condition, which may be stated as

d__ ,U (99)

is more realistic as a condition from a consideration of the buildup of vorticity in the

boundary layer. It also has the advantage of permitting a gradual change of vortex

strength buildup regardless of the location of the separation line. With the original

assumption, an abrupt change in the separation line would cause an abrupt change in

the vortex strength.

Figure 58 shows a comparison of the results obtained with this modified model

and test data. The agreement at angles of attack up to 40 degrees is quite good but the

theoretical results begin to act erratically at higher angles. Further attempts to

extend the results to higher angles of attack were unsuccessful. Additional calcula-

tions were made with this model in sideslip. hv sideslip the flow pattern in the cross-

flow plane is unsymmetrical and the path of each vortex is different. Calculations

made under these circumstances showed a very erratic behavior and did not agree at

all well with available test data. The apparent reason for this was the uusymmetric.al

vortex location which tended to exaggerate the asymmetry.'

This model has several drawbacks due to the simplifications necessary to per-.

mit a solution to be obtained. Among these are separation, a quasi two-dimensional

flow field and the assumption that the vorticity behaves as a rectilinear vortex with

the rotation confined to the crossflow olane.

It was decided that it would not be possible to refine the model sufficiently to

allow realistic aerodynamic loads to be computed within the program time limitations

so the alternatiVe viscous crossflow mode! was studied and utilized to account for the

viscous effects instead.
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3. VISCOUS CROSSFLOW

The viscous crossflow concept assumes that the effects of an angle of attack or

sideslip can be estimated by treating only the component of dynamic pressure in the

crossflow plane, and that the forces exerted at each segment of the body are indepen-

dent of those sectioas forward or aft of this segment. This treats the body by what is

essentially a strip theory based on local two-dimensional values of the body drag.

Using this concept, the incremental force on any segment can be written in the

form

-~ ~~cvolvol-i CD awolWoIJ (100)

where (CD cy) and (CDzcz) are local values of the crossflow drag areas per unit

length in te yaw and pitch directions respectively.

To include the effects of pitching and yawing velocity, it is necessary to define

-. the crossflow velocity components V0 and W as

"V0 = U. sin ccsin t-r(X-Xc9) (101)

WO W=-U sin ccsin 0 -g(X-Xcg) (102)

With these definitions and Equation (100), the viscous contributions to thr, forces

and moments can be written

I#

[Y_- SL] [CC lVol, C W(103)

I is 01 ai

IN -Mý]~,~ 4(~g~oC ., eszi W ~Ijdx (104)

0

The above formulations permit the viscous contributions to Y, L, N and M to be

computed as functions of a, 4, q and r. No attempt has been made to include a viscous

contribution to rolling moment since it does not seem to be a significant contribution

to the overall aircraft aerodynamics. Nor is it possible to formulate a model which
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would include acceleration effects of the body. It is believed that the above formula-

tions give the most Aignificant effects due to viscosity.

The values for the crossflow drag coefficients can be obtained by considering

two-dimensioral section data for the shape under consideration or a similar shape.

Calculations made thus far have shown that treating the body as an equivalent ellipse

will give reasonable values for the viscous forces and moments.

Calculations were made for the T-38 body using for the crossflow drag coeffi-

cient Equation (20) of Reference 25, Chapter 1II.

CD = 2 Cf(I(1 ,.Le (Ž) (105

with

C- = .0075

a and b which in Equation (105) are the ellipse semi-axes parallel and perpendiculare e

to the crossflow respectively were assumed to be the maximum dimensions of the

local T-38 cross section.

The results obtained with this equation, together with the slender body values,

are shown in Figure 59 as compared with test data.
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SECTION VII

NNLINEAR WLNG AERODYNAMICS

When a V/STOL aircraft is operating in the hover or transition speed regime,

there will be occasions when either the aircraft angle of attack or sideslip angle are

of such a magnitude as t0 necessitate an investigation of the nonlinear aerodynamics

of the vehicle. This section deals with the problem of determining the nonlinear aero-

dynamic characteriztics of a wing.

The method which has been developed is a modification and extension of the

Weissinger method. Weissinger (26) replaced the wing by a concentrated vortex at

the quarter chord position, and, by determining the downwash due to this vortex and

associated trailing vortex system at a number of control points on the three quarter

chord line, was able to determine the strength of this vortex. To do this he balanced

the downwash due to the vorticity with the upwash due to the attitude of the wing at the

control points on the wing. This procedure is effectively one of taking theoretical

section data and including aspect ratio effects by accounting for the trailing vorticity.

SChoice of the quarter chord line for the vortex implies C = 0 and satisfying the

downwash boundary condition at the three quarter chord line results in a limit of 2 7r

per radian for the lift curve slope for rectangular wings as the aspect ratio is increased

indefinitely. Or equivalently the section lift curve slope is 27? per radian.

The model for the nonlinear wing problem is similar in that nonlinear section data

are used to generate information for finite wings. The variation of the section lift curve

slope throughout the angle-of-attack range is accounted for by locating two lifting lines

at appropriate lodations on the section chord and the relative strengths of the vortices

are determined from test or estimated section characteristics. The problem of pre-

dicting wing lift and pitching moment characteristics is then one of solving for the

induced downwash angle associated with the planform uider consideration and of evaluat-

ing the lift and moment contributions at an effective angle of attack as determined from

* the induced downwash.
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1. !NONMLDEAR SECTION) MODEL

The analytic-. model used to reprez.n mmlinear wing section data assumes that at

an angle of attack of 90 degrees the normal force on the section is entirely dhe to a

viscous drag, and that there is a contrilution to the normal force at an arbitr-ry angle

cf attack r, proportional to sina. The circulation effect of the .vction is rep-esented

by two ,vrtices as illustrated in the sketch below. The boumdary conditio for no flow

through the airfoil surface is set at .75 of the chord.

x

E-lisfying this boundary condition, we obtain

C= UsLnA u. (10 6)

The normal foi ca' contribution due to circulation effects CNIND is given by
NIN

c4 -. (107)

~'Nti'4D - ~rL o(

in which (CN)a 90 is the iiormal force at a - 90'.

131



11The cotrimtiom to the normal force coeffidet daie to crculatimef dfects is assumed

to b, epqresentedby

a-("'V (108)

Equations (106), (107), and (108) may be solved for F1 /Uc,-2 /Uc from given section
data for any combination of hl./C and b2/c- As in he case of the line=ized model of
Weissinger), the positions of the two vortices are found by considering the section

pitching moment data.

The pitdcig moment about the 1/4 chord position C is

t(CN) 9sno.a (109)

in which x is distance on the airfoil chord through which the viscous force acts. Sub-
substituting for F /Uc, F /Uc from Equations (106), (107), and (105) we obtain

1 2

± cN ~oSUI o((2 (110)

The positions of the vortices represented by h 1 and h 2 in Equation (110) are chosen to
give good correlation between the pitching moment calculated from Equation (110) and
the section test data. The strength of the two vortices may then be obtained from
Equatiorc (106), (107), and (108) using the section normal force data.

This procedure has been checked against data from a NACA 0012 airfoil(2 7 ).
With the two vortices positioned so that hl/c = .546 and h 2 /c = .053, calculations of
the pitching moment against angle of attack are compared with test data in Flgare 60.
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The strengths oft' : twvm vortices F and F which will give the required section
1 2

normal force (given in Figure 61' are shown in Figure 62.

The capability of the section model to fit the normal force and pitching moment

data very closely sjggests that this section model may be used to calculate wing

characteristics.
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2. APPLICATION OF TTHE SECTION MODEL TO WING CALCULATIONS

The method used to determine finite wing characteristics involves determining

the effective angle of attack at a number of reference stations on the wing, using the

zection model The weighting of the circulation at these sections may then be deduced,

and from this weighting of circulation, the total circulation around the sectiors deter-

mined by salisfying the no-flow boundary condition at appropriate points on the wing.

Siace the circulation is not a linear function of angle of attack, an iterative procedure is

necessary. r-rst an effective angle-of-attack distribution is assumed. The weighting

of the circulation between the two vortices is then determined. The circulation across

the wing span may then be calculated and a new effective angle-of-attack distribution

determined, and this procedure is repeated until coniv.rgence of effective angle of

attack is achieved.

a. Downwash Due to the Bound Vorticity

It is necessary to determine the dovmwash at the control points due to bound and

trailing vorticity, We first consider the downwash due to the bounr, vorticity.

Consider a bound vortex line of strength friq) extending from (4i, 'I.) to (Qi+'

?)i+l). Let the downwash control point be at P(x, y, o, ). This arrangement is shown

in Figure 63.

f~~~~0 Y, - 17iiril
0 i dl

xt eP(x, y, O)

FIGURE 63. GEOMETRY FOR BOUND VORTICITY
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Let VL be the velocity induced by the bound vorticity frcm (Qi 17,) to (Qi+' Ji+l) at P

then

•.,,T"(111)

in which -r .x Y6 R

and +~ ofSI i 0S4

Thus

- 0 (112)

The downwash due to this piece of the lifting line wL follows as

1L

Now +j.±~~ii~k

so that W
+7r_ toAA

[q- fm (xf13814



Equation (114) enables the downwash to be calculated in terms of Fri) for a oven

downwash control point and wing geometry.

b. Downwash Due to the Trailing Vorticity

Let V t be the velocity induced by the trailing vortex systeui at the point P(x, y, z).

Then with the aid of Figure 64 we obtain
0o

'I r __d

The lower limit in the integral, LL, represents the point on the bound vortex from which

the vorticity df'bas been shed,

when (X-X)+(116)

A A., A,

I , A

x, a1, 
d Q . , 

1 " !( 1

P(x, y, z) d r

Trailing Vortex

FIGURE 64. GEOMETRY OF TRAILING VOR`IiCITY
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If we assume that the trailing vorticity follows the effective angle of attack and sideslip

directions we obtain

c, Cos~e /I,#- C-SO +

d•. : - .•4,L16. /dix. * 1-.. •

COSI/3e S&LD~eILXTt WAfS

Thus equation (117) gives

de-- 4-4 it k,,<,,_iz (118)- COS 04

Substituting for yl, and z,, in Equation (116) we get

PAa -h e (119)

Equations (118) and (119) may be used to deduce

Cosa oe

A. A. A

Writing ~
d Vt+ 0ý-tr, + %WW

we obtain
Li LL

x X , (121)
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in which

ItLSOe CPS C4.

From Equation (122) we may obtain R3 in the form

a. +:•, +- C,'XI (123)

in which

aa

:b~ OX

C

• .LL

The integral J Ž in Equation (121) may be

integrated in closed form and an integral expression deduced for wt. The analysis,

given in Appendix II, results in the following expression for wt

ft I[a, 1 *1, (Ht- (124)

Equation (114) with Equation (124) are the basic expr -ssions for determining the down-

wash at a control point for a given wing geometry and flight condition.
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3. METHOD FOR CALCULATION OF WING CHARACTERISTICS

The downwash at a control point P(x,y, z) due to the bound voricity in the interval

(11, 17i+l) together with the associated trailing vorticity is wL + wt which is given by

the integrals in Equations (114) and (124). By determining similar integral expressions

for the other bound and trailing vortex segments, it is possible to determine a series

of integral3 whose sum will represent the downwash at a general control point. The

problem we are faced with is the indirect ore of being given the downwash at the con-

trol points, and being required to determine che F(17) distribution w'hich will give this

specified downwash. Since F(r/) is to be integrated to determine the downwash we have

an integral equation for Fr(r). The procedure which has been taken to solve this equation

is to choose a number of .Irculation control points, say 70, 171 .......... '/n , and to

"-rite f(rq) as a Lagrangian polynomial in terms of the circulation at these control points.

Thus (1z)= ........ )4 . ..- L2..... (125)n o ...... .- )...

This representation for F(q) permits the integral for WL and W to be evaluated

in terms of the coefficients r(17i), i = 0, 1, ..... n. The total circulation at a given

wing station is distributed between the two lifting linas by weighting the vorticity. This

weighting of vorticity, which is a function of effective angle of attack, is determined

from the section model. An example of the weighting function calculated for the NACA

0012 airfoil is shown in Figure 65. The expression for the downwash may be written

in matrix form as follows:

[AW + BI -W)JI D (126)

in whichA Bare the matrices for the leadirg and aft lifting lines representing the

coefficients of the circulation column vectorf Wand I -Ware matrices which give

the weighting of the vorticity between the leading and aft lifting lines. D is the

downwash column vector.

The procedure has been first checkec for the linear angle-of-attack range.

Calculations of the spianwise loading for an aspect ratio 5 rectangular wing with sweep
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back angles of 0° and 450 are shown in Figure 66. These calculations compare
favorably with the caiculaticm of Reference26and test data of Reference 28. Further
calculations for nonlinear a will be given in Volume IL

2.4 -0 -.-
~ I Sweepback Angle

I.O A = 00

.,) -0 A = 45°

1. 6 F

.8

00

0 .2 .4 .6 .8 1.0

Y/(b/2)

FIGURE 66. SPANWISE LOADING FOR ASPECT RATIO 5 RECTANGULAR WING

'It is possible, using this approach, to maKe calculations for a wing with a flap.,
The section lift and pitching moment would be changed depending on flap deflection
angle, flap chord, etc. The change in section characteristics would, in tur,;.Vnge
the circulation weiF kting function. No calculations have been made for wings with
flaps. I', may be necessary to include two more lifting lines to represent the flap
for more satisfactory correlation with test data.
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SECTION VI.9

EMPIRICAL METHODS USING JET FLOW FIELD THEORY

The computer program which calculates the induced velocity field due to single

or multipli jets exhausting into an arbitrarily directed mainstream, developed in

Section II, may be utilized in the development of handbook methods for estimating

induced forces and moments on supporting structures adjacent to the exhausting jets.

In this section, methods for the wing and fuselage aee presented to illustrate the

utility of the jet flow field program for the development of handbook methods.

1. EMPIRICAL METHODS FOR THE WING

Three different approaches, each utilizing the jet flow field program, have been

used to obtain empirical methods for the wing. The first approach taken was to substi-

tute an equivalent area circle for a wing to evaluate the induced forces and momente.

The second approach considered the wing planform geometry (AG method). In the

third method an equivalent plain wing is constructed so that classical methods for

calculating wing force and moment may be used. A discussion of the methods and

results follows.

a. Equivalent Area Circle

The major part of the lift loss experienced by a VTOL vehicle is due to adverse

pressure distributions on the lower surface of the vehicle (18), (29) This suggests

that a good estimate of theselift losses might be obtained by determining the lift

losses on an equivalent circular area of an infinite flat plate from which the jet or

jets are exhausting.

Pressure coefficients computed by the Jet Flow Field Program were integrated

numerically to obtain total induced forces in the plane of the jet exit. Figure 67 shows

the computed variation of the induced force on a flat plate around a normally exhaust-

ing jet with velocity ratio for two values of the parameter a , where Si is the jet

exit area and S the portion of the infinite flat plate area over which the induced force

is evaluated. The lift increment due to jet operation, AL, is defined as AL = F + T

1,45
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FIGURE 67. INDUCED FORCES ON FLAT PLATE AND DELTA WING
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FIGURE 68. INDUCED FORCES ON FLAT PLATE AND RECTANGULAR WING,

x /c = 0.5, EQUIVALENT AREA CIRCLE
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FIGURE 69. INDUCED MOMENTS ABOUT AXIS OF JET
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where F is the jet-induced force and T the static thrust of the jet. Good correlation

with the experimental data of Reference 29 is discernible. Experimental data on

induced forces for delta wings with similar values indicate the utility of the

jet model and the associated computer program in estimating forces induced by

exhausting jets on finite wings. The variation of induced force with velocity ratio

for a range of the parameter LL-j is shown in Figure 68. Figure 69 shows the4$
induced moments computed about the axis of the jet as a function of velocity ratio for

a range of the parameter 4

Experimental data points obtained for a rectangular wing with an aspect ratio

of 3.0 are shown in Figure 68 for comparison with computations for a flat plate with

the same 4 value. Very good agreement for the low velocity ratio data points

is evident. The error incurred in the computed values, by lettiný a circle of equiva-

lent area represent the rectangular wing, becomes significant for the high velocity

ratio data point.

This substitution of an equivalent area circle for the purpose of evaluating

induced forces, as shown schematically in Figure 70(a), disregards induced forces

on the shaded portions of the rectangular wing and replaces them with the induced

forces on the cross-hatched portions of the circle, For the rectangular wing of

Reference 2, this affects approximately 36 percent of the total area of the wing. By

comparison, Figure 70(b) shows the relationship between a delta wing, sweep back

angle of 600, and the circle of equivalent area. The shaded area which is replaced

by the cross-hatched area now represents approximately 16 percent of the total wing

area. The shaded and cross-hatched areas are also seen to constitute a better sub-

stitution, in terms of respective distances from the centrally located jet exit, for the

delta wing configurdtion as compared to the rectangullar wing.

(la) (b)

FIGURE 70. EQUIVALENT CIRCULAR AREAS FOR RECTANGULAR

AND DELTA WINGS
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b. Ae Method

Due to the need for improved accuracy a method was developed which includes

the wing planform in greater detail. The contribution to the

:1 FIGURE 71.. SCHEMATIC OF SAMPLE WING

ratio of total induced force to installed thrust on a wing of the shaded segment of

Figure 71 can be evaluated if R/d.

fcp (r/d.) d (r/d.)
1/Z.

is known as a function of e , for a given velocity ratio and deflection angle of the

exhausting jet. Then the ratio of induced force to thrust ratio on the segment,

E (J2~)• f f C p •. d (127)

e- A /Z ,i/2

ESP& /4 ,

R/c10

ar \L6, J0C
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By employing numerical integration of the ressure coefficients computed by the jet

flow field program in the plane of the jei exit, curves c;
R/40

J•CP (r/d.) ,;(ri4)

versus RI6 0 at constant 0 can be generated for a range ef velocity ratios and et

deflection angles. Figure. 11-1 through 111-6 in Appendix III are examples of sets of

cu-'vcs that can be utilized in the m.•thod.

A -ing of arbitrary planform can be broken do-.vn into a number of segments as

il!.•tsrated in Figure 72. The :atio of induced force to thrust is

(OIiRR.493)

FIGURE 72. SEGMENT.A-TION OF SAMPLE WINC:
•~~~ OiR ,A ;

evaluate-d by .-ibtaining tl.e appropriate valuk: of fc pr/,J d (/d.)
qli

fron the cu~�es and m.itipl:,in. by the approqriat,- Ae ,rod coefficient. The

crnt-lhuti,•ns are then added ,- '-tai, thu -,,tal !-ced !o t,, thrust rati,, wn the

A n ofpar:l exp' -in-,n'a anrd callc. -A ; vaiueS of :urface f: :cc onl a

flat riat' ;. sh -"-.i F:r;-, 7 . h' r-s -'t -'.f a dic;t '-ng ar a r"-tar-.'lar -Aing

ars, S•-A7- Ir FIZor 4 " Tarb 7'
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TABLE 2. INDUCED FORCES ON A REGT.ANGULAR WING (AO METHOD)

J lt Uj/U,0 (A L/T)exp. (A 1/;mLp.
Lecation ,

0.2 5 0.43 0.40

0.2 10 0.70 0.75

0.2 15 0.85 0.89

0.5 5 0.52 0.21

0.5 10 0.66 0.68

0.5 15 0.82 0.84

0.8 5 1.00 0.18

0.8 10 0.81 0.67

0.8 15 0.82 '0.83

I ' a

a *1
.8 -""

.6-:. . . . . "

AL
T

.4
- S

.2
-Theory
0 Experimental (Ref. 29):

0
0 .05 .10 .15 .20 .25

F IVt7RE 74. IDUlCEtD FCKRCES CN A ')FLTA WI!;G.,
A -9 MET-PCD



c. Equivalent Plain Wing

A jet exhausting into a freestream will induce a downwash component of velocity

over the wing plan-form. The surface boundary condition will be satisfied, in a

linearized form, when this downwash velocity component is cancelled by some mecha-

nism. A convenient way of producing a dnwnwash to cancel that produced by the jet

is to construct an equivalent plain wing with an apprcpriate camber distribution.

Classical methods may then be used to calculate the power induced force and moment.

on the wing.

Power induced section choiracteristics may be determined using linearized

thin airfoil theory as follows.

I Consider the problem of determining the lift and pitching moment on a wing

section in the presence of a jet exhausting into a uniform freestream U. directed along

the positi-;e x-axis. Let the jet induced downwash over the wing section, 0 - Y " C

be w(x). Let z be the displacement normal to the x-axis of the equivalent airfoil

section as defined above. Then, dz _ w and so
dx U.-

x
:2 (X) I-i / Jt X (129)

J.u
:Thus, writing

dZ _ Cos a (130)

in which 0 is given by x =c/2 (1 + cos 0), (131)

AII

we obtain 80 f J !y Bi C054 00, hr A" (132)

The section lift and pitching moment coefficients may be determined is functions

of B0, B1 , and B2 (details may be found in Reference 47). Thus,

CL - , (1W3)

and

CM, Z+ C-~ -+ (134)

Finite wing lift and pitching moment coefficients may be determined usLig ,he

methods described in References 48 and 49.

Examples of equivalert section camber lines are shown in Figures 75, 7r) and 77.
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d. Application to Calculations of Downwash at Tail Surface

The jpt flow field program may be used to compute the velocity components in-

duced by exhausting jets at arbitrary points in space. Thus, the program has the

capability of determining tho jet induced downwash in the vicinity of the horizontal

tail. The power induced contribution to the pitching moment due to the preserce of

the horizontal tail may then be deduced.

The results of a typical calculation are shown in Figure 78. The jet induced

downwash, E, is shown for two tail stations.

S...-r--- '-• ... .. . .. T- r-- - ... ; .... .

P l a n e 
e t o

7 - 'Plane 1.5 do Above Jet .--

---" 
-" -

4 -- 2. ........... . .r-

0. , I

0 2 4 6 8
I y/do

13 Jet Diameters Aft,6 = 900, U /UW = 5

FIGURE 78. JET EXHAUST EFFECTS ON TAILPLANE
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2. BODY METHOD

a. Applioation of Lagally's Theorem in Relation to the Present Problem.

The most fundamental information in the present study is the knowledge of the

induced velocity field due to the powered lift system. Based on this, alternative

procedures may be found to predict the power induced forces and moments on an

immersed body. Such alternative methods provide not only competing approaches

but often an understanding of the problem derived from taking a different viewpointL

The end result of the present jet model is a distribution of sinks and doublets

along the jet path. A source, a sink, or a doublet will all induce a force to attract

the submerged body towards the singularity on the basis of incompressible inviscid

flow theory. This explains in part the loss in lift of a V/STOL aircraft in the presence

of a downward jet. If instead of a single source, a system of sources (sinks are con-

sidered to be negative sources) and doublets is introduced, the total force and moment

are the additive forces and moments induced by individual singularities. This is, in

effect, Lagally's theorem and holds true in two-dimensional as well as in three-

dimensional cases (References 30 and 31). it applies, in principle, to a svbmerged

body of arbitrary shape in a uniform stream with arbitrary number of sources, doublets,

and higher order singularities. Using this theorem for the present problem, the task

is ther- to determine the velocities and their gradients "induced" by the fuselage and the

image syotems for singularities outside the immersed body, since these velocities and

gradients represent the force and moment exerted on the fuselage by the jet.

For a two-dimensional body, finding such an image system is possible, as long

as it can be mapped into a unit circle on the transformed plane. Thus, the power-effect

forces and moments may be calculated for a general class of bodies. Unfortunately,

there is no corresponding procedure for a thrce-dimensional body. The image oi a

singularity in that boundary is usually a complex one. Only for the special case of a

sphere, may the image system be found conveniently and exactly. Since a fuselage is

a three-dimensional body of complicated geometry, it is virtually a hopeless task to

determine the image system for this kind of body. However, if we can approximate the

fuselage by a prolate spheroid of equal volume, the possibilities are improved. On

the strength of this simplification, we propose to employ Lagally's' theorem as a

possible empirical method for the fuselage.

Before we dwell on the main aspect, some explanation seems to be pertinent in

regard to th. justification of this simplification. Lagally's theorem is derived by
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means of the integral equations in which the force and moment are expressed in terms

of momentum flux through an enclosing control surface. The process of integrating the

detailed surface pressure has in effect been circumvented. The details of the fuselage

geometry, which reveals in the form of velocity potential, become increasingly indistinct

as the distance from the surface increases. For a two-dimensional body, the general

complex potential at large distances can be expressed in terms of a Laurent series.

The leading term is proportional to 1/(x + iy), which behaves like a doublet. The

higher order terms signify more refined details. By the same token, the disturbance

potential of a three-dimensional body decays like 1/(x2 + y2 + z2 ) at great distances.

This is recognized to be a doublet. Thus, the total force and moment on an immersed

body by all singularities will be insensitive to the detailed geometry, provided that we

can show that a substantial portion of the forces and moments are derived from the
"induced" velocities and their gradients at positions of singularities sufficiently far

from the fuselage. By examining the outputs from the jet model in which the strength

of singularities increases with the distance away from the exit and using a simple body,

say a sphere, one could confirm this conjecture.

b. Lagally's Theorem and Computation of a Sphere as a Test Case

Since the computation is based on inviscid flow, the forces acting on the surface

of a fuselage arie from the pressure alone. Thus, the components of the force are

given by

Fc- Pnidcip, 1,213 (135)

where p is the pressure, and n. are the cartesian components of a unit.normally drawn1

outward to the element dS of the fuselage surface S. This equation may be reduced

by Bernoulli's equation and Green's theorem to

N F 2 I fIni)dS 1, 2,3 (136)

a=I (Sa)

where the repeated indices j refer to summation, d i are the velocity components, and

8a are the surfaces of spheres of infinitesimal radii whizh surrounds NI singult es
at the positions %a (a = 1, 2, --- N1 ). This ic a general expression. To speci.y Lne

nature of the singularities, we shall make distinction between a source and a doublet.
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For a source of strength m located at the position f , the velocity componentsa raon the surface of the infinitesimal sphere a, after the series expansion, may be written

as

) + A( (Xi -Zi.a. + 7-L+ h ijk
~ia. + a

where the subscript a indicates the position of singularity, and %ia are the velocity

components at the point -a induced by all causes except the singularity there. The

second term represents the .-2locity components by the singularity, in which r refers

to the radius of the infinitesimal sphere. The third, fourth and the rest of the terms are

members of the Taylor series. Upon sLbstitution of this expression into Equation (136),

we obtain

Fee. *7Tm4a -P 7 (137)

This may be looked upon as a force Fa acting on a fuselage in a line through the source

at 1 . Thus, the moment on the fuselage due to ma is the vector product of "' and
-,r a a

Fa and is given by

Mi4a = 4rMay, Zj,• h ½,k, =,2,3 (138)

where (ijk is the permutation symbol, c123 = f231 312 1, £213 =132= 321 = -1, and
ijk = 0, if i, j, k are not all different. For a doublet of strength 1Ab situated at the point

%b, the force and moment may be obtained by a similar but somewhat more complex

procedure. For details, one is referred to the above mentioned references.

The total force and moment on the fuseiage are the summation of individual

contributions and are given by

az= b=1 (139)

N!, M 7 + 2 (1 +

4=1 b 16



The subscripts a and b have been dropped for convenience. The quantities m, IV, Y

are known from the jet flow field program, but the velocity components qi must be

determined according to the given configuration. Thus, to use Lagally's theorem, the

problem is that of determining these components.

As stated above, the quantities qi at the point in question are the velocity com-

ponents induced by all causes except the singularity there. But the contributions due

to other singularities outside the body may be neglected without affecting the final

result, because the force and moment induced at one singularity by another are equal

and opposite to those at the latter singularity by the former. This is sometimes

referred to as the reciprocal relation. Consequently, the relevant induced velocities

q, resulting from a body in a uniform cr ssflow with an exhausting jet may be classified

as: (a) the velocity induced by the body, (b) the velocity induced by the image system

of sources, and (c) the velocity induced by the image system of doublets. These veloc-

ities are all functions of body geometry. A general expression for an arbitrary body

is not known at present. The velocities of type (a) can be determined, if we assume

that a fuselage be replaced by an ellipsoid of equal volume. The solution to this is

known and can be found in many books. Unfortunately, it is still difficult to obtain

velocities of types (b) and (c) even under this assumption. Thus, it appears that some

further approximation is needed. Before exploring possible approaches, it seems

worthwhile to know the magnitude of these velocities and the relative importance of

each type. To do this, we shall work out a simple example.

The only known three-dimensional configuration for which all three types of the

induced velocities can be determined exactly is a sphere. For this reason, we choose

this as our test case. The power effect may be calculated with the singularity distribu-

tion given by the jet flow ficed. It turns out that type (a) contributes roughly 80 percent

of the total effect. For an elongated body such as a fuselage, it is conceivable that

this percentage may be somewhat reduced. Nevertheless, the evidence seems to point

out the fact that the effect of the image system is relatively small as compared to that

due to the body and may be neglected for the first approximation.

Prior to this finding, attempts were made by the trial-and-error methods to get

approximate image systems for a source outside a prolate spheroid, using the image

system of an ellipse and the correspondence between a circle and a sphere as the

guide. This effort did not persist long enough to examine various approaches, out it

appears that some useful approximation should result, depending on the accuracy

required.
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(c) Application of Method to Fuselage

By choosing elliptic coordinates v, 4, co, the velocity potential at a field point

for flows past a prolate spheroid at an angle of attack a is given by

-L I

4P -U, esc 4Vf- U) 'Vn ( 9~) -I1) Cotsw .AV g24 Omi

-A'( I k- c .-2- (-9]'.[

-4=ae, + 2

where Uis the freestream vclodity, a and c are the polar and equatorial radii of the

given spheroid that is a member of the confocal family 0 4 ý. The relationship between

this and the cartesian coordinate system is

X = Avg, = VYCos .

(2 -J2

in which the surfaces 4 constant and v = constant are confocal ellipsoids and hyper-

boloids with the common foci of (±k, 0, 0) as illustrated in Figure 79. By knowing

the velocity potential and this coordinate transformation, we can determine qi and

aqic/ax. at every position of the sources and doublets in the jet flow field. Application

of Equation (139) then gives the force and moment on the given body caused by the

induced velociLies of type (a). Thesc. are assumed to equal approximately the force

and moment on the fuselage. Calculations were subsequently made for the test fuselage

with a lift jet at freestreai. to jet velocity ratios equal to 0. 2 aad 0. 3. The results are

shown in Figure 80, along with the test data and those computf-d by thc transformation

method.
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WITH TRANSFORMATION METHOD AND TEST DATA
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S.7CTI"_)%!j IX

HOVER AER2 DYNAMICS

The hover region of V/STOL flight requires special treatment due to the lack of

steady freestream conditions. Two areas of special treatment for this flight regime

have been studied. The first deals with the powei effects in a state of true hover.

The second treats nonlinear and nonsteady power off aerodynamics at near hover con-

dition. These studies provide a limit point for the transition aerodynamics and permit

an approach to V/STOL hover flight analysis.
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1. POWER EFFECTS IN HOVER

A number of experimental, empirical, and theoretical invesugations have been

devoted to the problem of determining the forces exerted on a stationary body from

which a jet exLausts. Particular attention has been devoted to thrust losses of lifting

jet configurations both in and out of ground effect; a good summary of these efforts

may be found in Reference (32).

The most pertinent results to date are contained in an empirical relation for lift

loss out of ground effect,

0 £ (140)

from Reference (33), or

K (141)--o I

from Reference (34), and in an empirical correlation for the change in force due to the

presence of the ground plane,

T 0.012 [ ] ,RAE data (142)

or,

2. 0 2,(36)

0.02- ,NACA data (143)

co

The preceding results are primarily applicable to single or closely spaced, cen-

trally located jets. Although derived from small-scale, cold-jet tests, Equations (140)

and (141) have been shown to apply to more complicated configurations.(34,37) Equa-

tion (142) has been apnlied with reasonable success to full-scale configurations having

closely spaced turbojet propulsion.( 38)

Equations (140) and (141) differ because of Ilie addition of a jet pressure parame-

ter by a later investigator.
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Equations (142) and (143) vary because different data were used inr determining

the constants. A cursory examination of later NASA data(3 3 ) ind;cadi a preference

for Equation (143) and a brief effort was made to determine if the emy -rical constants

of Equations (142) and (143) could be related to the area ratio, jet dec-, rate, or out-

of-ground effect loss.

The nature of Equations (140) thru (143) indicat'.ýs that know'., e of jet decay

rate, out-of-ground effect loss, and true jet thrust for simple configurations is

required for such an effort. A requirement for this data group g% •atly reduces the

amount of useful data available. As can be seen in the data sum iary of Table 3, only

data from References (33) and (39) remain, and Reference (39) doss not consider ground

effect. References (34) and (37) contain the proper data group but involve more complex

body geometry.

During early attempts to correlate Equaticns (142) and (143), nonlinearities of

log-log plots of G/T - (G/T). versus hid led to the plotting of G/T versus h/d in semi-

log form. One such plot is shown in Figure 81. As the quality of the correlation

seemed remarkable, additional data was correlated in this manner. Figure 82 indi-

"nates that correlation is possible for cii-cular flat piates with an error band of 20 per-

cent. Datum outside this band and much of the scatter within this band may be

attributed to errors in transcribing information from Reference (33).

An expression of the form

T- tTI (144)

is therefore suggested. The value of B obtained from the data of Figure 81 differed

from that obtained from Figure 82; B was found to be 0.97 and 1.23, respectively.

The difference may be attributable to the different jet turbulence levels produced by

a rectangular plenum (Figure 81) and a cylindical plenum (Figure 82). For the two

configurations that have been examined, it is noted that the constant B is inversely

proportional to the square root of the out-of-ground effect loss.

81 [ ,/TLl (145)
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Equation (145) in combination with relations (140) and (141) may be used to relate

the constant B to the rate of jet (impact) pressure decay.

1 0.25

u aj ) /xi/i a.I )A _Y /(/' (146)

Relation (146) in combination with Equation (144) suggests Equation (147).

C -0.257
i-- =j _1]ep f5A/ 147)*

LT J ,L h1d L I4 J l 4

However, further analysis is necessary before conclusions can be drawn regard-

ing the validity of Equatior (14.) which has been developed using limited data for cen-

trally located jets in circular plates.

It should be noted that a correlation similar to that of Equation (144) may be

found in the form

T- e ( , (148)

This suggests that (G/T) is proportional to V7-A,- 1 and not to / -A as indi-

cated in Equations (140) and (141). This seems intuitively correct as one would desire

the calculated load on the plate to go to zero if no plate is pr. dent, S/A.--- 1. A com-3

parison is shown in Figure 83. Thus, VS-/Aj - 1 is a significant parameter both in and

out of ground effect.

It is probable that relations of the type listed above will not be useful for a body

very near to the surface where small details of specific body and jet geometry become

* significant. Additional terms will be required in this region.

*Note: For circular planforms, %/S-k - D/do
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S. PERTURBATION METHOD

To attack the problem of nonlinear and nonsteady aerodyramics at near hover

condition, a study combining theoretical analysis and water tank tests was undertaken

to determine the feasibility of obtaining a method for predicting stability derivatives

under flight conditions.

A small existing water tank was used to try out possibJe techniques of obtaining

test data for further study. This tank and the arrangements used for these tests are

shown in Figure 84. The model was suspended from a beam that was free to roll

- 1across the tank. Motive power was supplied by unbalancing the weights on the two

weight pans. Weights were shifted from the aft side to the forward side, providing

an incremental loading while keeping the total mass of the system constant. An accel-

erometer attached to the beam supplied a force trace versus time plot. Strain gages

were mounted on the supporting rod to provide moment measurements.

Acceleration and moment plots were obtained for the model, and measurements

were inade both with the model in water and in air. Typical plots are shown in Figure

85 for different incremental weight loadings. The initial accelerations in both cases

were plotted against incremental weight, and straight lines were faired through the

points. From these straight lines, it was possible to determine the apparent mass of

the mode, tn water. (The apparent mass in air was assumed to be negligible compared

to that in water.)

The acceleration curves were integrated, and the values of force and moment

versus velocity thdn were obtained for three different incremental weights. The force

due to the acceleration (apparent mass multiplied by acceleration) was svbtracted from

the total force, and a net force was obtained which was assumed to be due to viscous

effects. The results of this data reduction, reduced to drag coefficient and plotted

against velocity multiplied by time, are shown in Figure 86. The shape of the three

incremental weight curves shows good correlation throughout the test range. The

four-pound curve is somewhat low, but this could be attributed to inaccuracies in the

data reduction.

Since both accelerometers and strain gages were not only measuring the linear

motion of the rigid body but also were picking up elastic transients and other spurious

inputs, isolation of the reduced data was somewhat difficult. This problem was fur-

ther increased by the u~e of strip chart recorders which contributed their own noise

and pen-a:m inertia to the riots. Of the models tested - rectangular plate, cylindrical
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tube (see Figure 84), and trapezoidal flat Plate - the latter offered the most clearly

defined data, especially for calculation of apparent mass.

The recorded data were surprising in two more ways: First, the drag coeffi-

cients obtained near the end of the plots were about three (based on the frontal area),

which seemed to be too high. Second, the drag coefficients in the beginning stages of

the run were high, with indications that the drag was more nearly proportional to V
2than to V

The data were analyzed according to the concept of indicial functions. Northrop

assumed that the curve for the particular deilvative or coefficient under consideration

could be built up from a series of step functions. For example, from the tests made

so far it can be assumed that the derivative of the drag with respect to V (or perhaps

V) is a function of time alone. Using velocity as an example. this can be. written as.

C

D JV~ - W'- (149)

where Dv(r) represents the value of the drag for a unit step fr-mction of velocib,. This

equation can be evaluated by taking the Laplace transform of both sides to give

D(• = DV(4) V4(.) (150)

and hence,

Or -) D(6) (151)

Equation (151) was derived under the hypothesis that a Dv(t) could be defined

which was independent of the driving force and, hence, of the velocity history. It was

not necessarily expected that this would be true, but that by examining the test data

and seeing if the resultant curves would collapse, a proper functional relationship

could be obtained which would permit a step function to be defined which could be used

to reproduce the test time histories. As in example of this, two other definitions

which were considered to define the step function were

Dh 7 J_1D1A'vt-) V"Ce -(152)
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and

10/oy, r)V (153)

Equations (149), (152), and (153) together with alternative formulations were

examined to determine which would best collapse the test data for the different weight

increments. Equation (153) show 3d the most promising results of all those tested.

However, the preliminary tesi daýa indicated a discrepancy for the various weight dif-

ferences. While the shapes of the resulting curves were similar, the magnitude dif-

fered. In order to bette-: correlate the data, a step function was added to the solution

to account for data beyond the test period. The wmgnitude of tAe step was set ,•ual to

the last data point, so that

Ai* Vt ON

and, asstioag s>o

A,- (155)

Through tLe use of this modified expression, the parameter Dv(s) was evaluated

for 0< s_5.0 for incremental weights of 3, 4, 5, 6, and 7 pounds, Figure 87. Excel-

lent agreement is shown for the 3-, 4-, and 7-pound test runs, while the 5- and 6-pound

runs did not conform. A detailed examinltion of the testing technique.ý and fie instru-

mentation arrangement revealed that the instrumentation was simply not sensitive

enough for runs with incremental weights greater than 7 pounds.

In spite of the inadequacy of the test data accuracy, an attempt was made to

determine the time-dependent response to a step inpu&. For this purpose the results

obtained by the definition of Equation (153) were used and the inverse Laplace trans-

form was obtained to see if any additional problem areas would be encountered.

A study of the properties of the Laplace transforms ina.',ated that the values of

.he quantity D(s)/V 2 (s), Figure 88, would have to approach a constant for large values

of s. This was required to retain a finite force at the start of acceleration. For this
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I

res, the rlas of tt.e ratic. vre evabinted al large vabes of s as sbwu in Figure

89. Over this Larter "are of s the preriously- oIbtaind cct-relateoff beftetz the test
lOW3 WAS lost- This • s -- suaprisg svce the icreabe of dhe pwwmwrs corre-

sponis to a dw rease n =;e vt paiaeter so tha the satter obuuwd 2t large s •aluce

ca be atributed to errors in mearing the very low forces at the very eari paxt of

the model zceleraton.

A typical curve

(.1 ) - 'I " ÷* 2-.2 1ir

ua- seiectec wifhin the range of the test data scaenr and the drag variation with time

duse to a ste input of V 9 w-.s citzined as sbcwn in Figure 90.

Tbhs study has shown that a possfibiiy eiszs of obeaming the time-dependent

r i in- of forces and monwws of a shape accelerating from rest using a combination

of testing in a relatively simple w,2aer t: and analysis A Ltesce resrlts by using the

indijemi functi oncepm of Reference 45. Although the present study uas resuicted

to the drag 3f rOatively simple models, no secizl difficultes .&vuld be encountered

in eating any force or moment his,.ry for -waci_ more complicated sihapes.

Although no practical and usable results ba% -ý been obkained to enaule the predic-

tion of aerodynamics of ViSTOL aircrait, the procedure described appears very

promising for future refineren'a and ultimate use in obtaining prediction techniques.
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APPEN'DIX I

EFFECT OF ROTARY VARIABLES

In Figtre I p, q and r represent the magnitudes of the ro,.ar- variables defined

in the coordinate system shown. The effect of the rotary variables p, q and r on the

de-oel•opent of the jet may be represented by a change in the mainstream velocity

vector. The perturbed mnainstream velocity vector at a given poi.t alzg the jet center-

line is expressed as

where It, J, a are unit vectors in the fixed coordinate system and R is the position

vector of the given point along the jet centerline.

In evaluating the jet-induced flow field, the computations are carried out for a

number of segments as shown in Figure 2. Each segment is treated as a sep. Lte jet,

with proper initial conditions and the appropriate mainstream velocity. The number
Io integration steps per segment may be arbitrarily specified. The terturbed main-

stream velocit- vector is zssumed constant over the extent of each segment.

In the following discussion, subscripts 1 and 2 refer to jet properties of the

segmients I and II of Figure 2.

The ie+ of diameter do Iis located at Xor, Yol, Zo . Initial conditions for seg-

ment I are

The initial jet exhaust vector is utilized as an approximation to locate the midpoint A

of segment I. At this point is determined by vector addition as shown. where
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do

The- dire 2tfio cosines of the perturbed mainstream velocity vector Up1 are

drtl.rmized and a local coordinate system is established, centered at Xor, Yo 1, Zo1 ,

and a~iged with the perturbed mainstream veloci.ty vector and the jet exhaust vector
I,,ee discussion of arbitrarily directed jet).

S~The effective inverse velocity ratio for segmerAt I is

The equatioes for Uj, d, and X are then integrated nume,-cally over the extent

of segment I.

Point Xo 2 , Yo 2 ' Zo 2 then becomes the origin of the next jet, with a diameter of

do2 = d* dor where d& is the last computed vale. of the odi,-.eLsbi nalized jet dia-m-

eter of segment I.

Other initial conditiozis for segment II are

d" ., U%= L), M_.= U= z- U = Z,,1

where U* is the last computed value of the nondimensionalizod jet velocity in segment
I.

The jet velocity direction after the integration over the exten, of segment 1 isIU I

used to approximately locate midpcint B. At this point *U; s evaluated and te

direction cosines of the perturbed mains!ream velocity vector UP 2 are determined.
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A new local, jet-oriented coordinate system is established, centered at Xo 2,
Yo 2, Zo 2 . The effective inverse velocity ratio for this segment is

The equations for Us', d*, X* are then integrated over the extent of segment 11.

The computations described above continue until integration over the extent of
the entire jet has been accomplished. Although each segment is treated as a separate
jet, the segments nre linked to each other in determining the degree to which the jet

has deformed from its initial circular cross section. This Is done by setting

•- z., , A W

i.e., specifying the initial ratio of minor to major axis for a given segment to be equal

to the last computed value for the previous segment.

The induced velocity componnts at a given control point are determined by sum-

ming the velocity components due to each segment of the jet. Again each segzrgnt is
treated as a separate jet for these computations.

Figure 3 shows the effect of the rotary variable r on the centerline of a jet

exhausting normally into a croseflow at a velocity ratio U./Ujo .125. One curve
rdJ

.r, 0 M 0.0) shows the centerline of the undisturbed jet exbausting into a crosaflow

ait this velocity ratio. It was computed by considering the jet to consist of a number of

segments, as described in detail In the preceding discussion, with V' - 0.0 for each

segment. The conterline computo44n this manner deviates less than I percent from

previously computed results.

The sign convention for the rotary variable r was established in Figure 1. For

r* < 0.0 the perturbed mainstream velocity u pJ<U.. and the jet centerline shown loss

deflection. For r" > 0.0 the perturbed mainstream velocity IUJU >U,, which results
in a greater deflection of the jet centertine.

Induced velocity components in the plane of the jet exit were evaluated for two
values of r*. Table 1 shows the incremental change in volocity components at three

control points as a function of the rotary variable r*. It can be observed that A (u/U)/A r*,
A(v/U)/dr* and A(w/U)/Ar" are not constant at each control point. Since the incremen-
tal changes in induced velocities are directly related to the Induced forces and moments
due to the rotary variable, it is desirable to establish the rar~g over which they could
be considered linear with r*.
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Z/do
7. 6. .4. . 2. 1. 0.

AA -. 5
1.5

Y, v 2.5
3.5
4.5

Xu A 5.5

56.5
.7.5

/Zw 8.5
A 9.5

X/do

r* Point A Point B Point C
Au/U Av/U Aw/U Au/U Av/U Aw/U Au/u Av/tu xAw/U

.002 -. 000866 .000391 -. 000602 -. 000998 .000296 -. 000337 -. 000409 -. 000486 .000017

.004 -. 001898 .001153 -. 001068 -. 001954 .000974 -. 000580 -. 000926 -. 001121 .000043

-. 002 .001036 -. 000494 .006500 .000941 -. 000410 .000256 .000518 .000349 -. 000034
-. 004 .002148 -. 000779 .001115 .002114 -. 000584 .000588 .001144 .000646 -. 000058

TABLE I-1. EFFECT OF ROTARY VARIABLE ON INDUCED VELOCITY COMPONENTS

X=.95, Z=.7 X.55, Z=.7 X =.15, Z=.7
u/U v/U w/U u/U v/U w/U u/U v/U w/U

q = 0. .0180 -. 0307 -. 0411 .0337 -. 0162 -. 0296 .0273 -. 0016 -. 0095
q=.l .0179 -. 0303 -. 0407 .0334 -. 0159 -. 0292 .0269 -. 0015 -. 0093
C/C .0177 -. 0299 -. 0410 .0332 -. 0156 -. 0294 .0267 -. 0013 -. 0094

SX =.95, Z =.I1 X=.55, Z =.l X =.15, Z =.l

u/U v/U w/U u/U v/U w/U u/U v/U w/U
q=0. -. 0131 -. 1073 -. 0239 .1482 -. 1985 -. 1790 .0342 .0159 .0048
q=.1 -. 0130 -. 1070 -. 0236 .1474 -. 1974 -,1784 .0339 .0158 .0050
C/C -. 0135 -. ,1075 -. 0242 . 1498 -.,1985 -. 1793 .0334 .0163 .0049

TABLE I-IL EFFECT OF ROTARY VARIABLE IN A REACTION CONTROL CONFIGURATION
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The velocity components of Table 1 were obtained by considering an equal number
A

of integration s:eps along the ZV -axis In solving for the geometry of the jet. This

means that for every value of r* a different length s of the jet was considered in eval-

uating the induced velocity components. In an effort to separate the effects due to a

change in the rotary variable from the effects due to integrating over a variable length

of the jet, two different approaches to establishing an equivalent length s were utilized.

One approach was to sum Lontributions to each induced velocity component due

to the singularity distribution along the jet centerline until the contribution from a given

segment represented less than. 1 percent of the total up to this point. Further contri-

butions were neglected. The other method utilized a straight line approximation for

the jet centerline to determine an equal length s of the jet for each value of r*.

For both of the methods described above, the axis of rotation was taken through

the jet exit and the behavior of the incremental changes in velocity components at the

various control points was examined. For the range of r* considered, which encom-

passes a variation of r from. 1 to .4 radians/sec, it appears that the incremental

changes in velocity components are small enough, relative to the overall accuracy of
the method, to preclude a meaningful determination of the quantities 6(u/Uy•r*,

4(v/U/r*, A(w/UVAr*.

Cormputations to determine the effect of rotation about an axis other than the jet

exit were carried out. Rotation about the center of gravity in a reaction control con-

figuration for the XV-6 was chosen as an example. Computations with the moment arm

I= 11.2 ft, do = .2 ft, U.o = 400 ft/sec, U,, = 50 ft/sec and q =. 1 rad/sec again

showed small changes in the induced velocities evaluated in the plane of the jet exit.

A check case in which the freestream velocity was assumed to be uniformly perturbed

over the extent of the jet Up = UG- AU, where AD = I x q = 1.12 ft/sec, was also corn-S( p
puted. Table 3 shows induced velocity components at various control points for q = 0.,

q = "1 and the check case. Again, indications are that the effects due to the rotary

variables in a reaction control configuration are negligible.

;
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APPENDIX II

DETERMINATION OF TRAILING VORTEX INTEGRAL

C,-

The integral f in Equation (121) may be

written in the form

&vhere. X =A4-X1, + C1
L4-x

using the same notation as Equation (123)

Now J-rc
06

Let 2

}I

0

then C9 + U
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-As -- 1 ,,+ '-x 4,,

77.

w ohere Ait A, + i4.14'* -

whA,,re _

t = X 4•0.,. .
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I - ~ !! _ _ _ _ _ _ _ _ - _

NOW(Af)4~?4c Y (f j t-? lrF .

where D

and E -9- 41'-t ~;~iiv14>1

!7

Tirs Eqation (121) beomes

Cs -odfe. nalw_._btai

Now +~7 L~In...

'With /ft+ 4

and T = +Qx -%L

1'I
so that finaliy we obtain

J- (i I . C, Ou
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