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I. INTRODUCTION

A. Phenomenology
The critical temperature of a binary liquid (a twc-
component system) is the temperature above which the iiquid
exists in equilibrium as a homogeneous mixture of the two
components in any specified concentratiod%i ?When the liquid
having the critical concentration of each component is cooled
below the critical temperature it begins to form two phases,
separated by a well defined meniscus.
< };.”N-Tﬁe”equiiiﬁrium sﬁate «f.the two phases can be described
by the temperature, pressure, and chemical pot=zntial of each
component. However, it is more conveniept to take the
pressure P, temperature T, aid concentration c, as independent
variables. Near the critical point the equilibrium curve
has the form shown in Fig. 1. Points within the shaded region
represent those states in which phase separation takes place;
the concentrations of the two phases are determined by the
intersections of the curve with the horizontal line represent-
ing the temperature or pressure of the system. Points ougside
the shaded region represent states in which the system exists
as a single phase in equilibrium. Near the critical point
there are states for which the two phases can be in equilib-
¥ rium with arbitrarily close values of the concentration, c
and ¢ + de. If p is the chemical potential of one of the

components, then the equilibrium condition demands that
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(Eﬁ‘) = 0. (1)

It can be shovnl that the equal time autocorrelation
function of the concentration fluctuations is proportional
to {%E)-l. Therefore, the concentration fluctuations tend
to have very large amplitudes near the_criticai point. If
we consider the concentration as a local variable, which can
vary in space and time, then it is convenient to define the
order parameter s(;,t), which in this case is the concentra-
tion fluctuation of one component about the equil:brium

value:

where c(T,t) is the concentration at space-time point (¥,t),
and <c> is the equilibrium, or ensemble average value of the
concentration.

Light scattering measurements on binary liquids exhibit
the phenomena kaown as criticsl opalescencez, and critical
slowing down3. Critical opalescence refers to the abnormally

large amount of light scattering that occurs in the critical

region. This is caused by the large regions of inhomogeneity
that exist in the liquid. The size of these regions is
characterized by the correlation length £. At temperatures
far from the critical temperature Tc, the correlation length
is very small, and of the order of magnitude of the molecular

sizes. However, near Tc, the correlation length becomes very
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large, typically in the range of wavelengths of visible
light. These large regions of inhomogeneity then act as
scattering centers for incoming plane waves of light, and
the liquid acquires a bluish tinge, characteristic of
Rayleigh scattering, and £hen becomes murky, as it starts to
separate into two phases.

Critical slowing down refers to the abnormally long life-
times of the concentration fluctuations. This phenomenon
is reflected by the vanishing of the particle diffusion
coefficient at the critical point, as will be shown later.
Thus, i1f an inhomogeneity arises, there will be almost no
tendency for the molecules to move to the region of low
concentration, gnd so, it will take longer for the system to
return to equilibrium near the critical point.

We can, therefore, think of the critical region as a
region where the ordef parameter fluctuations not only grow
large in amplitude, but also become very long ranged, and
very long lived. We will study how these phenomena affect

various transport properties of the fluid.

B. Mean Field Theory

Mean field theory4’5 presumes that the free energy
density F can be expanded in a power series in the order
parameter s(f,t). The first order term will be -yus where y 1is
the field conjugate to s. In the case of the binary liquid

M 1is the difference in the chemical potential per unit mass
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of the two components, that is

A M .
M= m, m, ’ $2

where mi is the molecular mass of the ith component, and
Wy is its chemical potential. 1In the absence of a conjugate
field {i.e., u=0), we presume the free energy density to be

symmetric in s, and write

F - ‘}isl - _5 - HS . (4)

leeal

Minimizing the free energy demnsity gives the equilibrium

equation of state

M= as + bs® (5)

and the susceptibility x:
= &m (9s !
X=sh(zr)=a . (6)

We know that at the critical point, the susceptibility becomes

infinite; therefore we presume that the parameter a is temper-

ature dependent, and positive for T>Tc, and negative for T<Tc.

We will, however presumes that the parameter b has negligible

temperature variation. Therefore, if u=o, the quadratic term v
in Eq. (4) is stable if T>Tc, and becomes unstable, correspond-

ing to phase separation, for T<Tc’ as shown in Fig. 2.

w———-

RN
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For an inhomogeneous liquid, however, we must also consider

non-local terms involving gradients of the concentration.

S ) R A e A ALl o

- Since the fluid is isotropic, the first derivative enters as
a scalar term proportional to (Vs)z. A term proportional to
st transforms to an insignificant surface.term when integrated
over the volume. Similarly, svzs transforms into the integral

of (Vs)z. Thus, we add to the free energy density the term

-1
Ei_ (Vs)z, where Z is a positive constant. Therefore,

-z 2
= 5-;«!&( J‘— % (VS)
; a 2 -! W2
: RSO LA (8)

We ignore all higher order terms.

All the thermodynamic properties of the system can be

deduced from the partition function

— -p(Fd?
Z.n. = Z—— ¢ pgt ] > S
{st

where @ is the volume of the system, and B=T-1 in a system of
units in which the Boltzmann constant is set equal to unity
(knzl).

At this point, it is convenient to expand the order

parameter in a Fourier series over all possible wavenumbers,

as follows:
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| l Y
f s t) = g ) Syl e , (10)
j g
f Then, .f u=o, and we ignore the gt term, ' .
_ 3 .._L.—_. _a__-z" , . (E n., x> v
; F=[Fér =52 2 (2 FHE)SS [ d®FT
3 g .
_ } 2
i = %Z(M-Z ‘éz) ]Sr} s (11)
&

and the Boltzmann factor Yecomes

Y4 Z
e.pjj-’.f,— Q-g_g_(afz k)1s,|

_Ba+ZB)is 1?
= (IT ([ 2 & (12)
;g .

Thus, by the equipartition theorem we see that the fluctua-
tions of different wavenumbers are statistically independent,

and that

> (13)

ZT
2 =

where we have defined the inverse correlation length

il

) y
k= B = (&) . (14)

The vanishing of a at the critical point thus implies an

infinite correlation length. If we define the spatial correlation v
function
G, = S@)sad)y | (15)
6
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the2: translational invariance derands that

and, therefore,

3 Y
~, _ [d'k ¢Re2
Gl = JEET.-S-" §e € >
where
2 = -

If we subhstitute Eq. (10) into (15) we obtain

| ] APE 20l

GY==272 £s.s.)e
Q e v

. -3
LE-Q,

(
=g 2<ig e .
B g
Making the transformation

| L%k
sy — I8

(2w

we can identify

§p = ISV

Using Egq. (13), a special case of Eq. (19) 1s just:

fluctuetion - susceptibility theorem:

N = (3 e £
T (éb’ T A5, L8 Sy = PO @

(16)

(17)

(18)

(19)

the
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Gr
! -z —
X== ij, {s@)sY> . (20)

This 3uggests the obvious generalizaticn

3

o (g siRE
x&"' ST le -1:34'3:3 REI NI (21) .

Finally, 1f we¢ aubstitute Eq. (13) into Eg. (16), then

Gle) = [k, €T 2D L 2L g .
(2x)* vl AT € ) o
vhaich is just a screened Coulonb iype potential with a
screening length equsl to n-l, the correlation length of our
syctem. Thus we see that in the critical region where the
correlacion length becomes very large, the range of the
correlation function tends to infinity. Eq. (22) is a result
first arrived at by Ornstein and Zernicke6 in 1914,

We recall that the above resultg are oculy valid when we
can neglect the fourth order term in the fiee energy demnsity.
However, ags we get closer to the critical temperature, the
coefficient of the quadratic tarm will tenc to z2ro and the
fourth order term will start to dominate. We ubgerve that a
change of scale by a factor A in the order parameter induces
the transformations b+bA® and Z-1+Z-112, so that the quantity

bzz, which has uunits of reciprocal energy times length,

remains invariant. Thus if we define a length

-4 1 4

f_c = (b;EzTe) , (23)

then we expect that the above results of mean field theory

8
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should hold when jL<<1, and start to break down when £ becomes

3

o
larger than Eo-
C. Hydrodynamics

It 18 necessary to employ hydrodynamic equations of mo-~
tion in ¢2lculating the time dependent correlation functions7
of concentraticn and veloecity. ThLe time dependcence of the

concentration3 i8 derived from the continuity equation

?2S >
-+ . = O (24)
R A )

where J is the particle currenr, given by

T@Et) = stV (25)

3

where';(?,t) is the fluid velocity at space time point (t,t).
It 18 also possible to write a constitutive equation, analogous

to Ohm's Law in electricity:

—

F=-aVu , (26)

where A 18 the particle conductivity. If we make use of the

definition of the susceptibility, then we can write

V . = -b—s-— = —-— v‘s 5 2
/ {E) X
and Eq. (24) becomes
95 2 (28)
== dv's
(29)
9
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——

This 18 just the diffusion equation, with D equal to the
particle diffusion coefficient. More generally, we have the

equation for the wavenumber dependent ccncentration fluctuation

d 30) v
' L5 ) = -0,8.¢) (
: dt "€ G
E where Pi-is the decay rate of the ﬁig mode, given by
Ae- 2
: D £ = X i (31)
: e X,
% The solution of Eq. (30) is just
3 -t
| o) =e s e, tre, (32)
and
| it
9 tta) = (Sp) 35,8603 = <1S Ye (33)

To determine ithe velocity autocorrelation function, one
makes use of the equipartition theorem to calculate the egual
time value, and the Navier-Stokes equation to calcuvlate the

time dependence. First, we Fourier analyze the velocity field,

- ) kT
Vint) ~=ﬁ-.,,f§vﬁ_<t,-e (34)

2

and resolve gf(t) into orthogonal components

V, (t) = ZE . (35) .
£ /;-l }‘ é
We have only two directions of polarization, since we will only v

be interagted iu the transverse velocity modes, with eﬁh

representing a unit vecstor along the direction of polarization,

10
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such that

A
N A = =1 2. (36)
k Egu =0, 47,

We can write the kinetic energy of the fluid as

E; = jé;;’vz<13f

‘Binetic

Q/‘ (Au i’

o f ¢ NN e 2% 5 T
= 2 } ¢t e 'r
2Q) ' j

Ku & u

3 e
o0 22 el

The equipartition theorem then implies that

2 <|VE’,1&11>
or
(|v.‘,“> = :'5 (38)

where p is the mass density of the fluid. Again we have the
situation that different velocity modes are statistically
independent. To determine the time dependence of the vel&city

modes we make use of the linearized Navier-Stokes equation:
SV t)= T Fre) (39)
Pag VILEI= VI IE0ES,

P
where J is the stress tensor, whose cartesian components are
b

given

1




modes will decay much faster than the concentration modes in
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f’ 1 “Na ] g (S‘ _,()(\7 V) , o)

wvhere p 1is the hydrostatic pressure, and n and § are the
shear and tulk viscosities, respectively. If we separate out
the transverse components of the velocity, that is the part

for which

V-V (Ft): © (41)

then Eq. (39) becomes

Sy =1 2 .

- (L) —-FV Vi(FE) (42)
or

4 = -1 ¢ )

5o v&%(t) 7k \(&:“L : o

and thus we can write the velocity correlation function as

T -—-% it,, |

(v#_/‘(tz) £)) = (44)

We note that the velocity equal time correlation function is
not k-dependent, whereas the e25ual time concentration correla-
tion function has the k-dependent, and alco temperuture depend-

ent Ornstein-Zernicke form. We alsc note that the velocity

the critical region, because we expect that D will go to zero ¥
strongly while % will either have a weak divergence or stay
finite.

In thig chapter we have developed the tools of mean field
12

-l R
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theory and hydrodynamics, which will be indispensable in our
analysis of the critical variation of transport coefficients.
In each case we will relate the transport coefficient to an
jategral over all space and time of a correlation function of
the relevant fluctuating quantitiesa’g. To evaluate these

integrals we will need to use the concentration and velocity

autocorrelation functions, which we have just derived.

13




NOLTIR 72-208

II. CRITICAL SHEAR VISCOSITY

A. Fluctuation-Dissipation Formula

The wavenumber and frequency dependent shear viscosity
nq(m) can be computed from a fluctdation-dissipation formula
relating the viscosity to the Fourier transform over space and
time of the autocorrelation function of the local, time

dependent, off-diagonal component of the stress tensor
10,11

3;z(€;t) . That is
o 3 ~ i 6 o "‘(it(:::'“"‘"tu)
g = 5= [dh, dt, 4T, G0 Tty e W

where T is the absolute temperature in a system of units

in wvhich the Boltzmann constant is set equal to unity (kBEI),
and where E}l-Fé—?i and t,,=t,-t; are relative space and time
separations.

To calculate the excess viscosity in the critical region
it is necessary to relate the local time dependent stress tensor
to the order parameter fluctuations, which become very large
in amplitude, extremely far ranging, and very long lived.
This is accomplished by identifying the Ginzburg-Landau free
ehergy density with a Lagrangiau density, and using a
canonical expression relating the stress tensor to the
Lagrangian density.

The most probable configuration of a system is that

'which maximizes the partition function ZQ, or equivalently,
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‘minimizes the total free energyj.'r'd:,r, since

E . ' 3 '
S o ~ z -pfFdLlr 2
- : Z,= 2 e ’ , .
. f is}
.where :E .denoteslthe sum over all possible configurations in

s} | ‘ |
space of the order parameter s. Thus, if we consider the free

energy density F to be a functional of the order parameter

and its gradient, i.e.

fF = TLS,S“] N ¢=1,2,3, (3)
where
- 95
S‘ - DX, ) (4)

W

then the problem of the most probable configuration of the
system ig equivalent to minimizing the free energy, and, thereby,
becomes a problem in the calculus of variations, where the vari-

ation of the integral over all space of J 1is zero:

3
(S‘Sdrfrl.sas.] = O 2 (5)
or, the functional derivative of F with respect to s vanishes:

53
. §s

Bq. (5) then becomes

§S(dir Flss, 1= [ {Flse8s,5 +65,]- Fls.s, 1§

2 Q . (6)
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If we note that

¢

Ps 2 _ o ] , .
85. = Séxi (S JS)" S = ax‘(&&) R (8)

and if we i~ie¢grate the second term im Eq. (7) by parts,

ignoring surface terms, we get

J— 2 9F —
sdr L(IS a - "ax as ] - O ¢ (9)

For arbitrary variations 6s, this leads to the Euler-

Lagrange equation

2s =X, °s ' S

Therefore, /e can employ a canonical formalism, with the

free energy density analogous to the Lagrangian density in

scalar field theorylz.

We can, therefore, use the absence of explicit coordinate
dependence of the free energy density J° to derive an expression

for the stress tensor le' Under an infinitesimal displacement

X: = X. + €, (11)

the free energy density changes by the amount

& . F ar 12
5F - ZC. ox; - (12

)

\

If. however, F has no explicit coordinate dependence, then
[
L 4.

. ¥ 1
§F = 154 + 7 5%, 5 (13)

i L

o)
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where

8s

2 2s
<) - ) = E. - = c
S(PC) - S(F) g‘;ax& :_;G“SJ . (14)
But, by the Euler-Lagrange equation, Eq. (13) becomes

3 2F \ <
55 = 2 12 )8s « LG5

S 3 o o
S Sa ¥y LS (X
Z:I"‘"i(?: gs) T baex; l\"S‘ JZ__-*,GJ ¥
23 o (9T .
- ZZ_C,Q;‘ s, Si) : (15)
§= (=1

1f we equate Eqs. (12) and (15) we obtain

3 3 q= :
212 7] = ¢
PAXTIR S N i
or
2 C
LT, = O, an
(3]

where we identify T.. with the stress tensor, which we define

by

= ¥ S
oS, 54 S‘J

N (18)
In particular, let us now consider the Ginzburg-Landau

equation for the free energy density

3 - z b _4
Fls,vs] = %Sz»f %— (Vvs) + &S M3, (19)

17
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where, in the binary liquid we identify the order parameter

8 with the excess local concentration, and 4 with the chemical

potential, then the Euler-Lagrange equation provides us with

the "equation of motion," or in this case the equation of v

gtate:
-h z.
/‘f_asrbsa—-z Vs, (20)

and the off diagonal component of the stress tensor:

ey . F o _ 2o
3:2 (f,t) = ,‘5—5“; SZ = L S‘ SA
49 o, = 2 ;'t)' (21)
== 2{ [5; S(r,t) ’31:3( ) .

We note the us term in the diagonal components of the stress
tensor, so that the divergence of the stress tensor will contain
a term V(su), which is recognizable as the force per unit
volume caused by the gradient in the chemical potential density.
This, in turn is equal to the time rate of change of momentum
density, or momentum densiitv flow, in a region of fluid. Thus,
we can justify the choice of unity as the arbitrary constant
factor involved in the definition of the stress tensor, Eqs. (16)-
(18).

From now on it will be convenient to work in wavenumber -
space, rather than configuration space. This is accomplished

by Fourier transforming the order parameter as follows:

18
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.E.,-'—__->
S(#t) = Q,,Zs @e (22)
k>
S ()= =% jd’r s@tre'® i (23)
E'( ﬂ'/z ) | 5

where @ is the volume of the system. In the thermodynamic
limit it is possible to transform the sum over K into an

integral over K by the prescription:
%,
! d k (
== J— 24)
Q_Z = ( y)
2i7)
wvhere the upper limit of integration is a Debye cutoff.

Similarly, if we Fourier transform the local stress tensor:

. J B
Ta(Ft) = }:—-J_ Tiw e’ (25)
' R
i -lé,
Jee () = ﬂ/z dr T (Ft)e (26)

)

then by Eqs. (21) and (22), (26) becomes

sz(t)’ h" Zf (k,- Lg)s @)S ( - (27)

We can now rewrite the fluctuation~dissipation formula

for the shear viscosity, Eq. (1):

m)t —~ (FF:fﬁt'E" ’?é’.)
'li'(‘“):él nZZQE’(t )T, (t))Jd e ’ " (2

19
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Translational invariance of the stress tensor demands that
:F- -f; so that Eq. (28) becomes
iwty, o B 3 E-3)-T,
e = ejee, e g LEre TN [4,
L

>

; -2
-zl L e T Sy

9 t . - _—-)
RPN e

To calculate the anomalous part of the shrar viacosity
in the critical region, we auﬁatitute the contribution to
F;Zq(t) of the concentfation fluctuations, namely Eq. (27),

so that Eq. (29) becomes

U D ]otu _ : '
Mg =~ g [, €7 T L 4G @) 4 (10 6)

X <SF(t,)Sg._r(tz) SF“:')S-"{_E-“‘)) , (30)

At this point we have to consider the correlation

~ function in the above equation. We must correlate two com-

pouents of the order parameter at time t with two other
components at time tz. We will make a decoupling approximation,
which we will justify later. This approximation suggests that

we treat this correlation function as the sum of all possible

20
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products of teo correlation functions of the form
<s, (tz)sk (t1)>. In Feynman diagrzw notation, this is
1 2

equivalient to considering only graphs of the form:

.t‘ t N

Later we will show that higher order graphs do not coantribute

to the shear viscosity. Thus we will write

<s¢.(t;z ) Sx:(.(tz) Sl,,(t. )S, - 8)) =

3

(Si,(tl) Sp (t,))(si_.z.(t‘ ) Sy ) +(§2~(t2)_5_’.{_ g:.)>($‘,,¢,(tz) S; )

o 5% .J Pt ] t -a ta
§ o SFED SIS 8IS, (20D

»

_m
+ Si,‘_%,'?{sl,(t,)s_ f(c.)xs_g_z,(t,)s.z’i( )y

=<S_¢,(t;)$.i,(t.)> <sf°i’(t")§f’?(t')>(§?.7 ‘- S‘,.:__-i'_?:). (32)

If we assume that the order parameter fluctuations decay
exponentially with a wevenumber dependert lifetime P%} we cau
write each time dependent correlation function as the equal

time correlation function times a decaying exponential as

follows:
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Mot b

{§te35,60) = 15,4y e ! , (33)

If we sabstitute Eqs. (32) asd (33) into {30) we obtain

‘Aqf(w)—_— —.ms"n };;l:l Q8§ €) s 1')(!51,_&,!1)

(34)

(wt,, -(r + 02 )le, )
X S + § ., ( [ 4 f“{ g
(I;"? S‘,’g ) dt e
-0
In the above equation we will take K to be along the z-axis,

80 that Eq. (34) becomes

\
A'li’(“’) = 2Tzzﬂ;l’x(zi?£)[e,(%{(z)_.(' ¢, ]
: o AT+ frp)
X (lS;-\ )(\si’ji >‘oz‘_(f}*%.f)1 (35)

To exhibit and meke use of the symmetry in the above expression

it 1s convenient to make the substitution

1 = %‘2 F 3
L= G L e Lx (36)
= "lx ‘
then

\ 7 pt ’
Aqpw) == 70 };el:z,;z,_mi-lexns‘,:l)(.st,ﬁ)

2“‘1 '»l"‘-.)

(37)

QJ"* (f;-v * r'f, )t
22
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If ve note that ve can write

S L= -+ 52+ 8;) (38)

3 then only the first term will contribute to Eq. (37), because

the second term will antisymmetrize (37). Then

fpou)

ZM(R &)(13 s, R £ 69

4-(-‘-1' f'a.,) .

M) = 33720

f

Now we are in a position to apply the above formula to
a few special cases.
B. Temperature Dependence at Zero Frequency and Wavenumber
-l

At zero frequency and wavenumber, L = 421 w=0, and

Eq. (39) becomes

(\",\ ) (40)

where K-l is the correlation length. 1In the critical region

A (k) = Anled= rzﬂz—

we will use the Ornstein-Zernicke formula for the wavenumber

dependent order parameter correlation function, namely

(41)
31 ' j> <+ l o )
For the linewidth of the order parameter fluctuations we will
S use a modification of the l(awasakil3’14 formula:
2
- T4L 2 22 4
L= K-ri) = 42

where n, is the non-anomalous, background shear viscosity,

which is the component of the shear viscosity not influenced

23




NOLTR 72-208

by the critical fluctuations. The Keswasaki scaling function
K(z) is a slowly varying function with a minimum value, K(o0),
of 1, and a maximum value K(«) of — (-l 18), explicitly given

by:
K@) =%(hz’)!‘[éi+('z'")h , (43)

Experimentally, it has been found that the linewidth behaves
as 1f the scaling function were constant and equal to its high
wavenumber limit, ég, and no replaced by an experimentally
fitted parameter n, about 292 larger than the background

viscosity no. Therefore, we assume that

o= it (44)
£ l(aq )
Substituting Eqs. (41) and (44) into (40) we get
2
A _ 16 5 Al
= T (45)
— ﬂ ; Lz(KiE )s/l R
We first calculate the angular average:
. ~ o
'exl-Q: { ) 2 2
< 7 > = ;;Ssaneae 4¢»[5m‘e cos ¢ cos‘e]
‘c’ 9," o (-4
' rin
{ . %
oy (056 Sin'8 ABS cos ¢ de¢
7] - °
- -‘-j -pdp =5 (5-5) =1z (46)
4 H =2\3 5 ) 050

so that Eq. (45), upon transforming the sum to an integral

24
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through Eq. (24), tecomes

An(x) 4T\ 0 5 otk
A } T— 2 cmrenat—
--L——-;{ = "a(‘;;‘) (2“)5'5’ (K1+,Qz /2

&
I 8 ’ £4d e__ : (47)
= ——-—-lsrr 1 '("Kz* ‘Q?. )5'!2-

[+

To evaluate the above iategral we make the trigonometric

substitucion:
£ = Ktan© (48)
sc¢ that
&>
...___ -0
ép “ .tﬁl ® " ”_&—’
/ lall_ =j -&“QJO J szé)css 1 o
J (Kl+ ez)ala. J &c‘se ) PP ¢ S‘O
-l -0 R’
tan'%L 1au':;
.2
»-_-j b o — 6 cos © dPf
o Cos @ Ve
b
.3
‘[—Sine +Qntun(%,'-+—,2—)'r'53m 9] ~ (49)
o . '
* In the critical region, where the correlation length becomes
k
/ very large, 1? >>1, and
- (1
tan %-L = "i"" - . (50)
K k)
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Therefore:

Bl S N e

> 4
4L ~ _4 T
j mz ~~-—3-4—ﬂn{an(§~2'%j)

o

~ _A4 : %fél - 51
31"/(",( ()

to the lowest order in ﬁL . Thus for zero wavenumber and

D
zero wavelength, we have:
an(xy 3 2f, YOU
= S 2 v C (52)
1 15w K 1 2
with
)
C,l = —%— > -1.333 , (53)
Assuming that x vanishes like
! T-T (¥
K (54)
T >
then
Aq(x) 3 —_ :
i~ Te
—_ B == -y £n - l + CcnS‘th‘tJ (55)
1 5wt Te y
An(xk T-T
Therefore, 1if _ﬂé_l is plotted against 1n T » the slope
n c
of the line that results should be __QEE 15’16.
157

The critical shear viscosity of the binary system
3-methylpentane-nitroethane has been investigated by Stein,

Aller, and Allegra17, who found a slope of -.039. The

26
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crfitical expoment v for the divergence of the correlation
length has been found to be equal to .616 for the 3-methylpen-
tane-nitroethane system, which would yield a theoretical slope

of -.033, a value 15% lower than experiment.

C. Fourier-Laplace Transform of Critical Shear Viscosity

In the calculation c¢f the correction to the Rayleigh line-
width due to the anomalous shear viscosity it will be useful
to know the Fourier-Laplace transform of the critical shear

vigcosity, defined by

. - —

A’.'* = L "th‘ ‘ 3 ".6'(;.: ~ o e~ | >
L (P) = Tt e ™ [dre” KT )T, @ t,)) | se)

This will only modify the frequency factor of Eq. (39) as
follows:
2 . 4
2 1S, >LIs >

. > i 4 i
oy = > 0,0! (64 o !
A'lf(f’) ZTZJQ 7 fJ\Q)(( Fd CZ) F A l}, . /},’ 0 (57)

We will calculate this quantity at the critical temperature

T=T , where
c

_— 2 —
ZF = <IS£”' > = "—-—. -z , . (58)
T 3
Pﬁ" = ;;‘%'_.( _ (59)

If we convert the Laplace frequency to wavenumber units,

by the equaticen
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Q= 4(1—) : (60)

and insert Eqs. (24), (58), (59) and (60) into (57), we obtain

£,
1"09) - .l_ dif l; ([}
1 Vet . f's-'-@ : (61)
Let us now consider the important special case {=0.

Then we can say E;-Jf, and Eq. (61) becomes

AR 4 j é’ﬁ £201
G e rores

= 2 47 % ,610(,(’
s (---)

~ =— fn = (62)
~ 5wt " K

for small enough Laplace frequency to consider Q<<kD. Again
ve get the I%;y times a logarithm term, with the inverse
correlation length replaced by the frequency in wavenumber
units, as we would expect from the principle of dynamic scalingls’lg.
Because of the convenient definition of Q, we have no additive
constant to the logarithm, as we had in the case of zero wave-

number and frequency. Equivalently we can say that (1? K-Céo))

-c(o
is to be replaced by In Q, or that Q scales as ke n, i.e.

28
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C(O) _,,/
K—=Qel = Qe = = .24& (63)

Returning now to the more general case, where E’- f?i‘,

or graphically:
'
2
{ L
i

A ’

it is convenient to transform the integral over i = cosf, to

an integral over %' through the law of cosines:
,2 2 2 . .
L = &+ ¢ - ZZ(I,L , (64)
or '
/L - fz—,lf’z'-.-jj (65)
282
/ [
d# - - ez_-é—g (66)
[4
2 .
,L’xz = A 'sin’e ccs'¢p = ,6260524‘ (lv-.,llz) R (67)
] - /a'l = [ = ok H*fq""uzf.'l’zifi.lf _.ij:f..z

43?21

(68)

L 2T gt (06%)"
| 43‘2"
2 % L2

.f’—_f.a - 6—ZELL _ CE__ _{:___-'-_Z. — (”____Z | 69)

2

29
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Noting that the integration over the aximuthal angle gives a

2%
factor of J cosz¢d¢ = %, and nubstituting Eqs. (64)-(69)
o
into (61), we find:
* ' (*0 2 .2\2
A (a) dﬂtj Sy gﬁ;zﬁ@m') -2 (e e) o
_:‘",‘"""'r‘- 0% Lad) et .
1 0 tg" TAgEUR e 56Y) 08
If we transform to dimensionless units, where
71
[' ? , (71)
- e _ 4P
P= Ty 773/1671 > (72)
then Eq. (70) becomes
_ '%b (uer)
A * P 2 -
g (M =L [ dujdu ulﬁ(u%u")ﬂ-tu"u’)ﬂ (73)
T 47w | u' adewLP) g
° -

where the region of integration is shaded in Fig. 6.
The double integral in Eq. (73) is more readily evaluated by

a 45° rotation of the axes; letting

xva’+u‘

74>
K”‘ u" u ’ ¢
[} 1] ¢
u'= zg(x»x)
¢ , (75)
T (x-Xx")
30
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then, the Jacobian of the transformation is

\’)(u,u') _ ri -4
20x,x') i 3

i
2
and

u' = (- %)

2 2 g
wW-u? = (u-ww'+u) = xx’

[2(u? W) -1—- WieY] = x3x't- - xtx?

i

OG- x?)

)]

w+u- = —‘!’_"(xa-f- 3xx’2) .

Substituting Eqs. (75)-(80) into (73) we obtain

2k ,
*—
M — _L—J%j'jibdx' e ’z(x NG-x2)
gl i JHEXD 503 3 P)
2ks o,
4 (8 - x2)
= ] dxxt(xh dxt (‘_ X .
f pd (’“X' Xx3+3xx‘ “+P)

IETTz i-(%

where the function f(q,P) is defined by
2k

—-

dx 'x'z(l x?)
f{z P) = dex(x ')[

) (R3%3xx"eP) -
¢

31
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(77)

(78)

(79)

(80)

(81)

(82)
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Noting that the double integral im the above equation
ranges over values of x larger than unity, and values of x'
;naller than unity, we can approximate it by neglecting x'
and unity when added or subtracted from x, so that a first 2

approximation to £(q,P) is:

- by ' '
{: (%?) jz X*A; dex’z(l-)('z)
§

=-£n <%§2)3“r P.
. .+ P

2k»

~ (fl££—_;57§é .

(83)

Again we recover the logarithmic dependence. If either
the wavenumber or frequency is very large, such that q and Q
are of different orders of magnitude, then the ratio of the
excess shear viscosity to the total shear viscosity iIs
equal to 8/151r2 times the natural logarithm of the ratio of
2kD to the larger of q or Q.

We note that £(q,P) depends on q only through the upper‘
limit of the x integral in Eq. (82). Thus, if we subtract
fo(q,P) from £(q,P), then at least to order i%; we can extend
the limit to infinity, having subtracted ~aut the divergent

part. If we definme

AR =P - RGP =)
32
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then the scaling function 0_ will only be a function of P,

n
which is proportional to the ratio of the Laplace frequency
to the cube of the wavenumber. Therefore, if we subtract

Bq. (83) from (82) and extend the integral to infinity, then

we have

(x*=1) o
GEXDOA3X T P) 3+ P

G',i( = ‘% dxx jdxx o-x*

2

Jd ‘Sd ‘z)[ (-x*) . 3ax
¥ Ydx x’ Q X G- (%3 -3)0\1"?) ng)(ﬂa*SAx'er (85)
It is possible to perform the x' integration if we let

a() =03 PY? (86)

bx>= (3x)2 | (87)
then

[ 2
s ' 2 u-x*) + .__l_______bzx T

AU '{dexzialx XXk B e D) Q@ +B R

" ”°2 2, 2 2,2 .2 2\ :¢
—ﬁ‘(MXl dex’z(h\(‘z)[g—x ) + by )(1) + b(a+b>\.)x
2

eEXD (@ EX?) @it |

2 .
b .2
“dxx {fd*‘i'z(t-x")l jdx'x'z(’ K0+ @ Xx") 3
’5 i —_— ’ ’
'“?;[ A xt J (- x'*) 3 (‘g—: + x*)

= o8 {I(x) “+ ]—Z(X)S R (88)

2 a+bx"

33
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where,

dx'x"2G-x*)* )
(89)
xX¥—-x? >

J, 0

]
OG—-—~.__

and
4 ', 2 *_E_ 2. 42
2 ) %; - x,z

To evaluate Jl(x), it is convenient to make a hybarbolic

gsubstitution:

= )(ta"k-e’ )
Xt = - tank’€ ) = Xsech’® (91)

dx’ = xsech & 46

so cthat .
t‘,‘ x I
g X SECH € xztdnhze(l:j(l&nh 9)1:4&.\:0
J, &) = -‘ 25ech’e
tanh X
=X | tanh®® (- 23 tank?® + X tanh 6)d @ | (92)
Noting that:
Jtanh*e d© = [G-sech’e)de = © - tanko )
Jt2ah'646 = [tamh'®(-sech ©)d® = & - lanh © ~Fia k0 T 3

J @ik 40 = [tanh"® (- Seek’6)d0 = 6-fauh®- §Tadk’® - shudie
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we compute

)= 0-x) (xtaak’ % - 1)+ 5@-%) - 5
o () Cxtank 5 -1) + 56-x") + 5 98)

{ L

To evaluate Jz(x), it is convenient to make a trigonometric

substitution:
1 _ 2
X = kﬁme
. 2
%t+ x'z =-a-:-:_()+“tm:16) = %; sec’ € (95)
d ':%Seczéda
so that
i, 4 tan oI~ Tn 9)(I+xtd 0)49
e -2 tan n
J;(x)=J B5eC [t e - (96)
o -ﬁ;SGC E?
Tan-i

2 .
%hmn &- ( - ¥)an'e - G tan‘e | de
°
Noting that

[tan'e d6 = [(seco-1)d6 = tan® - €

' - o T (97)
Jtnn“ede =jt4nz£»> (sec’e-1)de = -(tamb-6 )+ 5l 6 s

[tan6 d6 = [tau’e (seco-1) 46 = (tan®- ©)- 5lan’® + 4 1ar’E -

35




NOLTR 72-208

we compute

2 . P ] 2 k3 1
2 Q a -1 a Q” 2 b L X .
J;(x) = ‘.l-r '.;a', - x"_ —éx7]b--;tdn %—} [E—x bx }333' =

2.2
- G-x)ie )0 Sta) - 56)s FEEL o
Therefore:

T Z0 = G- )t 1) + (1 G Xi- S Tei' )]

2x*
+ 2 \ L~. x ) (99)
g and by Eq. (88)
4
' o= (P) = _‘_3.J x‘b( {(,- 2)[(0 X )(xtdnk‘ '; = ')
4] 2 )43, P

+(,+X§P)(' (“")’a ))] 's(qx WP } (100)

x3+ P

To study the behavior of on(P) for very large values
of P It 18 simplest to refer back to Eq. (85), and rote that
fo- large enough vaiues vf P, we can neglect the term 3xx'2

compared to x3+P, so that Eq. (85) becomes, approximately

(- ) 3}0('2 "
0'[?) = °-dex jdx x%0-x* )[ z(:\* P) (,@_,p)z ]
b
' R ;2 % 3d x
‘%Sdnx?" {"‘ )J J&ET)‘S
o
36
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=15 (g0 02 L2 ayl dx  __ ay? } (io1)
> \dx'x ux){(wlx )_‘ e P Sx P(X+P)

We can see that the above expressiom will vary as P-ZI3 to
lowest order in p~l. 1In fact if we define
o=
- d x
M=) 575 , (102)
]
then
3 |
X d -
j———-—-a = - = 0P) . Qs
g o3Py dP
Evaluating I(P) we find:
3 ‘I I3
d" 5 =2/31, P =P+l W ' AZ'P )]
P =555 T 5Pl Lo Lt + (7"t
PR 2P
~ 2m P'—le .
303 , g
and
JF .L(P) =~ 330 P . (105)

Thus Eq. (101) becomes

[2“ th 1 '(l XX+ 2xt) - %JJ"’( 6-x*) ]

=_L5_P/32r 26 _ 12]
2 3{'3‘_45-7 15-7

. -2
_am g 209 P (106)

B, O Y E R R
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The scaling function was calculated for various values of
P, by numerically integrating Eq. (100). 1In the process we .
transformed the infinite range of integration to a finite one

by the tramsformation

x=Ttland (107)
and
0 L//3
fz(x)dx -=jz(mn¢-)sec‘¢ d¢ (108)

e

The results are plotted in Figs. (3)-(5).

We note that for the special case P=0, we have

GleO) == jdx {(t ;‘){u ) (xtank % 1) *U"'}SL)('” tan ?s 'J cgs}

= ~0.633, (109)

Eq. (85) was also used to calculate the initial slopz2 of the

gcaling function, as follows:

— |
] - 5 L . '—.—- = (x = .)
G, (03 = -z-sdx x"_!dx x G-X 1)[ X T - x")(xl+3x")xz]

] |
tb((x ! )
= %s%idx'x'z(‘-x'l) - JAKX (I-X ).S lxx 3 41)

2
= -é— - fj;x'x'z(l- 'I)J ox x"{,)(((::;z'z) |
°
. ' O | (3)('0-’)“‘ dx
=3+ Z‘!d xio-% ){ x ,4 Iﬂ TRk 31]* AxE 0\*3*‘)}
38
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! z ' '}
R | ) e U S L

* - ) L .2 1 P IR
z»x"LB'x'(B‘ N7 -la5m "'B :

X 0.254 ) (110)

Therefore, for small P

G (P) x-0.633 r 0.254P (111)

The integrals in Eqa. (109) and (110) were evaluated
numerically. Details of their evaluation, along with the
general evaluation of on(P), Eq. (100), can be found in the
Appendix.

The wavenumbef dependence of the critical shear viscosity

in the low frequency limit can now be written as

4n.. (o) k
T =— 2 2—2 — O : 3
'_]_ = 5wt -en Z .63 , (112)

or equivalently we can say that x and q scale as

~fn v = 1.333 «>—(n - 0.633

or
-0.700
K «*ze
K<—¢’.4‘i7z_. | (113)
In this chapter we have calculated the critical shear
viscosity by use of the fluctuation dissipation theorem, and

have verified the experimentally observed logarithmic divergence.
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We have also shown how the correlation length, wavenumber,

and frequency scale with respect to each other.
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III. WAVENUMBER DEPENDENCE OF THE CRITICAL RAYLEIGH LINEWIDTH

A. General Formalism
The Rayleigh linewidth Pafis the decay rate of the q-
wavenumber mode of the concentration fluctugtions. It is

given by the formula
2
Do (1)
TE

where D;-is the q-dependent diffusion coefficient. The
diffusion coefficient is equal to the ratio of the conductivity
Aq to the susceptibility xq. The susceptibility is proportional
to the equal time value of the correlation function of the z-

mode of the order parameter,

\ 2
=5 == IS-'»l 5
Xy = 7 <15 b (2)
By the use of a fluctuation-dissipation formula, we can relate
the conductivity to a space-time integral of the correlation

function of the solute particle currentla. That 1is,

. - -

jdtz, j V"'(J GRAN ‘T'iﬁ*t'» . ®

where Jﬁ(r,t) is the component along the Q-direction of the
local solute particle current, which is equal to the second
order product of the concentration fluctuation s times the local

fluid velocity :,

NGOE = ()G V), ()
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Therefore, any simultaneous fluctuations in the concentration
and velocity fields lead to nonvanishing contributions to

the current, according to Eq. (4). Such fluctuations in

the current in turn give a contribution to the conductivity by
Eq. (3).

At this point, it is useful to make a decoupling
approximation, separating the concentration fluctuations fro@ '
the velocity fluctuations. We can do this 1if we noté that the
transverse ve.ocity fluctuations do not lead to any concentration
changes in the liquid, and as a result have much lower frequency
components than the longitudinal modes. Consequengly; the
transverse velocity modes make a much greater contribution to
the integral inm Eq. (3). Therefore, we can ignore the 16ngi-
tudinal velocity modes, and decouple the transverse modes from
the concentration modes. This assumption now lets Qs write

the integral in Eq. (3) in factorized.form, as follows:

el =l

" ';.l -4 b -» A o .
)\? d*z.j {S@E,t z)S(r.,t.»(-i-V(r,,t',)%-vcr.,t.)), (5)

It will be convenient for us to work in wavenumber and
frequency space. Therefore, we will Fourier transform the

concentration and velocity fields as follows:

(7wt )
sGt) = -(-)7,,25‘“’ S (v)é | (6)
l P
. dew —~ W P=cot)
V(L t) = ‘c‘i-hZfrr V@) € (7
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If ve make use of the translational invariance in space and

time of both the concentration and velocity modes:

<s (u)s W) = zn&wv)&' <|scw;|‘) . (8)
{ "’(w)i '\'/;,(w )= ZTS(wow)S )i If;(wnz) (9)

)

_and we recail the Fourier transforms of the delta functions

jdt "'(ww)t = ’27.‘5(0.”») , (10)
> -y =>
3 T E-F)-T (an
Jore = Qdprp
then Eq. (5) becomes
Ap = 5-7-5 Sd“’ <I5g. MBI AN (i2)

For the concentration fluctuations we will use the

Ornstein-Zernicke form, with a decay time of I'. That is,

o Wt
Ig, @1 = Jndtz,e‘” “S () Sy 80

® wt, =l 1t,,l
=Is ,lz):[.dtuew e ¥
< (US> [(w; ) (13
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vhere<4o?.|2> is the equal time correlation function, and
J[(w;rf.) is the Lorentzian function of the frequency w with

a half-width of Pfy, given by:

' a |, ar .
Leiry= fTrde™ v L o ”»
-~

C+(w f-w rtrw

We can resolve each velocity mode into its two components
of polarization:
2 A _
——yy
V) = 7 € v e (15)
a= Eu Ep
A
where 3&1 and eg.2 are two orthogonal unit vectors in a plane
which 1s normal to the direction of k as shown in Fig. 7.

If q is an arbitrary direction, and 1if a'ﬁécose defines the

~—p
-

angle between § and K, then since Vi 18 normal to k, then we

can pick one direction of polarization normal to both k and a,

say eiz, and then write
A A
€. = Sin®
T e " ) (16)
and thus
A -y 2 I 3 ]
13-V, ) = sin'8 {lvy @) . (1n)

We can write <|vg1(w)|2> as the Fourier transform of the

time correlation function of vtl(t) as follows o

o iwt
<|vt'(w)lz> = jdtz' € ‘<Vt’l(t‘) Yﬁ‘)(t')> * (18)
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The equal time correlation function is given by the equi-~

partitior theorem of statistical mechanics:

. N I
<y 1) = e (19)

where p is the equilibrium mass density of ;he liquid. The
tiié dependence of the transverse velocity modes is given
by the Navier-Stokes equation, which states that they decay
at a rate equal to %kz, where n 18 the shear viscosity.

Therefore:

, —_ ﬂb&2
| -~ \t u'
(V0 Vp 80y = - € f ) (20)
and
2 T . 'lfi'(w) ﬁi
- — Q)5 === (21)
<|YEN(OJ)| > P Jf( P ) Y

where we have inserted the wavenumber and frequency dependent
value of the shear viscosity for n.
If we insert Eqs. (13), (17) and (21) into (12), we

ob%ain

@ "y
‘ZPQ qui ‘,|2>[1 (ﬁ ‘&) j%——‘t(w;[;:t),t@)}k%_)_). (22)

In the above equation we essentlially have the product of

two Lorentzians, 1if niﬁw) has a weak frequency dependence.
Since the first Lorentzian has a much smaller width than the
second one, we can replace the second one by its variation in

the neighborhood of w=o0, that is we make the approximation

| T W R




NOLTR 72-208

Z(w; 1< (w)& )= d(o; Mg« (w)ﬁz)c _2p

'lﬁ.,(w)éz ’ =
and, therefore:
A 2 dw “Q_EEQ
)\.‘. QZ&‘<'Sft' >“ (3 E)]j'):r 'l w) . (24)

B. Kawasaki Theory
Let us now investigate the important special case, where
the shear viscosity is independent of frequency and wavenumber,

and we can write

Tt = . (25)
Then
‘I;'lf,"..-l(w) Gez) = Jm J Jut g J;téﬁtr'tir(o)=1,(zs)
- B

Ay ™ § g OU-G81  on

If we assume an Ornstein-Zernicke form:

: 2\ _ T

then BEq. (27) becomes:
|

”
2T dul-p2)
= -——?i"ZﬁlLdk.I‘Za_ngrﬁi_zz&}t

v
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Id/"(‘ /“z)f(z % kt)- ZI,u ey

- R-gu k=
- qwqjdﬂ(.- z)[ z, ’(u,a)tu‘“\'l*'z (“/‘z)] -

_ 2T ‘[ ) [.. tM~M—-]

lﬁrq m) {r* +g’(l-ﬂ‘) (29)

The second term in the brackets of the above expression does
not ccat:ibute because it is an odd function of u. To evaluate

the above integral, we substitute:

w=t1-u* *

. G-w)" ; (30)
dw :

du = = Fewr

then

! wdw

Z :
):f = —9?‘{ io-w)‘hmgw)’*

wel

_ 2T ((t-w)""(xk?;‘w)'h (5 k') Lta--g(l-w) Y ?)IW)/"

- e

Py
\

<0
~N
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wvhich is just the Kawasakl resu.t, where RK(x) %8s the

13,14

Kawasaki scaling function s given by:

2 /W -1 ~
Ke)= Fuex)? |5+ (- Jtan'x ] . 2) :

C. PFirst Order Effect ¢f Critical Viscosity
Now let us return to the general case of Eq. (24), and

aggsume that we can writ.
,lt‘(w) = tlo + Ar,"(w) , (33)

where An§{m) is the critical wavenumber and frequency dependent
viscosity, and n, is the background, or ideai viscosity. 1If
the anomalous viscosity is a small part of the total vi-cosity,

then to first order we can wvrite:

- - a1,.6)
)" = W] - [_ Bl
N> [101' A gt 1 [ . . (24)
We will now consider the wavenumber dependent conducti-
vity at the critical temperature where k=o0. Thus to lowest
order
xls>) ET
- (=
g 611'»1.‘6
_ET (35)
‘(s'l.‘&

and the first order correction is, then by Eq. (24):

g(oo)

-—
-

) aalldws, o o
A)‘f = - rl:‘[(l };:;-;;i <| si'r\ >[l“(t£)]“£‘%«-’1(w) 'iiﬁ")A?éw) » (36)

48
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By Eq. (39) ¢f the previous chapter, ue have

A= g RYEL)IL 30 ), (37
wvhere
r-r=% |
and
ye, )= —;#:t;;, [,f:(f;—fz)lésrl’}(lS,,,t‘) i (38)

Therefore, Eq. (3%5) beccues

mg=-gia Sl G DRI s )

(39)

But

“ o> e x colt+t’) i) _y, 1t'l

I s Ll 3) w3 X,) = -,I—j dtdt e & °

~Qs -0 -

w 2 RATI AY ® _(¥+N)itl 2z

:[ fdtdt'é(ut)e e ' = jdteu‘ Wl ,  (40)
—on =00 -0 f.*rz

so that Eq. (39) becomes:

A)f - zﬂz&z[l &)]<Isﬁ,l‘> ZW(! ?)ILJ *!1- C(41)

[l (&Q\zlﬂ KE,") A’l? ) , (42)
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vhere An*E(PELE) 1s the Fourier-Laplace transform of the
anomalcus skzar viscosity, evaluated at the Laplace frequency
equal to the relaxation rate of the azifconcentration mode.

Pxevisusly, we have found thatc .

gi; ng }

* i -~ -

A’l‘,(P) = is,d,z {anlkz’ @4&]73 tl( T_&S ) (43)

At the critical temperature Tc we can uece the formulae:
<'5{x‘ > = (§- gy ) (44)

and

. (45)

7 " '&F

Inserting Eqs. (43), (44) and (45) into (42) we obtain

ozt & v < -gEY] 3 1, 2k
A){'—-—;‘:-T“HZ’%—’_‘—:?“V"(&‘ PPEIN 1( ]“6)

{7(’— k,’ — i‘) . (4.,)

If we choose the polar axis to be aiong the direction ofja:

and convert the sum in Eq. (46) to an integral, and change co
dimensionless variables, according to the transformation: ‘

&
% )
g _

(48)

’
’

W= g = (w1~ 2un Y*

50
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then

- _ET i 3 ' dul-4°) E__fo,_ ‘nl’_’ A ’3)]
TR T mi“ T SOk KOO

Only the first term in the brackets of the above equation
has any dependence on q. When integrated, the other terms will
give constsnts. Therefore, let us first examine the coefficient

. 2
of the 1n —;- term:

f; d"‘(.-}‘) Jdn(t—h )j _______du
>

(v »l-&u,u) uuo-u

o

u=co

- ' a1 - -t
= JJ;:(:-}: ) [U__ﬂi)h n Gy

: v ) R 172. 2
‘Sdlu(l-/ﬂ'fl[";‘-+ Sin/u]-: TJ%h(._ 1)/t= "I&.nzede: '%" (50
2 J

4]

Therefore, we can write the first order correction to the

conductivity as follows:

27 8 1 2k,

where CA is just a numerical constant given by

&= ”z I‘Agi—)[ )* 30 (u3+‘fu‘3)] . 2

)}

Thus, to within a constant Eq. (51) is the result we would

have obtained if we had inserted

= 1" My (53)

51
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into the Kawasaki fornula for g¢>>k:

T
Ai’ = ,—‘?:l-i— . (54)

We will evaluate (:.A thxough the use of two successive

transformations. Firs¢ we will transform the integral over u

to an integral over u' by

M= E‘I(uhv- u*)

_ _ u'du
du = =
) (55)
2 ute 1w e 2u®-2u- '
I"/A = |- qal
L P S - ( ,zuz)z] J
= o [ u)- 1 - -
so that Eq. (52) becomes
P (“*') q 3
e,= ?rii 4u_‘; j‘;‘%[ﬂu&w‘)-a-(u"iu‘)j[";(% )'-éen(u3+'fu")] , (56
© Ju-1i

where the region of integratiocn is the diagonal scrip shown
in Fig. 6. Noting that the term involving the viscosity

scaling function depends only on the ratio of u' to u, we

transform to polar coordinates so that the unavoidable numerical
integration be a single integral instead of a double integral.

We let
U= veos ¢
u'= vsin ¢ ) (57)

dudu'= vdvdeé

52
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then
vié)

== E-T%Wj 3 |27 1-veos 2¢][0'(‘ltan $)-4fa(ecs'd + Yand)-(n v]

(58)
where vl(¢) is the intersection of the ray ¢ = constant
with the line u'4u = 1, and v2(¢) is the intersection of the

same ray with the appropriate one of the two lines Iu'-ul =1,

or,

-1
v(d) = (cosd+Sind) , (59)
V() = lcosp-Sindl . (60)
We can rewrite Eq. (58) as follows

2

.- %7.[ d¢ {\y (¢ )[0'(‘!tan @)~ 3{nlcest - ‘Isin%]— (Pl(b)} ) (61)

n¢¢os
°

where Wf¢) and W2(¢) are the radial integrals:

v,wé
2
\.lzl‘((*)__:-! 7”.5 [sz—l—v4CoSZ¢J ’ (62)
vid)
v¢(¢) veost 24
— - VoS £ . .
Y(ﬁ?) L ﬂnv‘_Zv —1- V Co J (63)

We will first evaluate Wl(¢).

(P
V@) = J“"‘)Vl"‘ oveos'2d |

| ,."__ | ; 2 kY c«.z‘ g
2l |- gl | ale ez
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cosd + sin ¢ 3 s 2 L 2’
= 2€n \ cosd —Sind - 2‘_('105* sing ) - (Cos¢ S.n&)J

(cosd+Sind) 2 teond-sind) D
2[ (cosbrond )i (Cosd-sind)? ](Ccsdnbm ¢)

. | cos ¢ + Sind ' '
=2£n(cos+-s::¢ p— 400$¢ S'Ln4

(64)

v
- &\fn‘t&n (%""6” — Sn 24"]

To evaluate ?2(¢), we will first establish a fcw integral

{dentities, namely:

£nv, . 9D €nv
Jv’ 02 d J 2’(ﬂﬂ)x [.xcum)x Lot ] *
Vidavdvy = | X€ X = |- —_— ——
" £n¥, (e (ne)" L, v,

tnM) (n+-) . 1 (n+) (nch

which is true fcr n ¥ -1, and

Qnv,
! vanV = dex = —;‘[ﬁnzv,— (’nIV.]

(66)

54
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Therefore:

v,($

)
Goy=] L% pmves sl
2

AT T S B

- L[y, - VitV Jei2d + 1% V' [eos’z

Cosd + Sind |
et ———————————
cosd - Sind

=~ Laleos$-sin'd | Ln ‘
_ii,{(('.os'*‘ Sind’)l»en |cos¢-sind | —(cose+ Siml‘)l‘&:/a'sd' +Swn d:/}

"’l; (cosd +Sind ) — (cos ¢ - s;u¢>)2s

o { 4n |cosd-sact] ﬁnlcosé+sim¢l} o R
*25 (cond—snd ) (cosd+sap)? (cost-Sing(end rSud)
"‘"'{——"'L*—— — -—-—,—-————l (Cosd>- S é)z(cOdeS{n d)L

“) (osd-%nd)*  (cosd+sind ) ) e .

coset + sindd
cosg - sin@

= —Lnleosid-sw’d) Ln |

r 25ingcos bujevsd+sind [+ 2Sind cos¢ Lu [Cosg-sind |

c.{-l,,[ttm(iz-+d>)l+ Sim 24 Lo Jeos 24 ] . (67)
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We note that the integrand in Eq. (61) has a logarithmic
singularity at ¢ = % . Therefore, we will subtract out the
singular part of the function, and integrate the remainder
numerically, while the singular part can be integrated

analytically. In other words, if we wriie

s
e, = &(s)14¢ (68)
where

$#) = 5 (sndeos?s Y U@ O W) Snleostr 4si)]- P8I} (69>

and let 3(¢) be some function that can be analytically

integrated such that

PE)-d&E)=0 (70)

then we write
/3 _ T2
CX=I[¢(¢)f¢(¢ Y]dé +_! P($)dd (71)

where the first integration is performed numerically, and
the second analytically.

To construct $(¢), we expand the singular parts of 9(¢)
about the singular point, ¢ = %, and evaluate the non-

singular terms at ¢ = %. Thus using Eq. (69), we can write

() = #‘a{@,(é)[ﬂi(#)— é‘ﬂn(‘f}:ﬁ)]— q_’z(d')} . (72)

Around ¢ = %, we can write

56
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/Cos 24 | -

P PYV T
L sil2ie-5i{ = VZI¢-51 . (73
(cps¢+&n¢) iz l "] ¢

Jeosd - sind]| =

Therefore,
, o d)fStlﬂd‘v . .
q}.(é)f— zlinlcwssd‘—————:ml—- Sin 2¢J (64)
becomes

‘E((b) = Jlfn;;fg - ,] :—-2[]4— fnl¢'-"£lJ , (74)

and

‘Pz(d) 1 fnl‘(:t'r?n‘:|,,sm24~]£,,lco,2¢l (67)

b7 (1 ln2) nld-Tl+ £’ lF-F ] (75)

Noting that
o) -5m(EVE) ~-.48%5 (76)
we can insert Eqs. (76), (74) and (75) into (72) to obtain

HORE- {z(qms)[ncnu :]-[.(,?3:”.4?310"/4-75:-+(,,2;¢.’5/]}

e 7—{,!1{(-17%-.@?3:) +(9790- 16331 uld-5 |~ bn'14- 51 }

£
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-—--?r—{ 2859 —. 141 Ln|d- T | ~ £n* |- 777;‘/} . (77

To integrate $(¢), we note that

%

f dd _7%’ ‘ (78)
o
iy T "4
J4n1d-Fldd = 2] Loxdx = 2]xbox -x]
0 o o

= (fn%‘l)g: == —(1.24/6)727" ) (79

% "
f,f/)z/f /J¢ = zjfn x dx = J[anx ngnX*-Zx}
0

~(62Z - 26, +2)T = (2591¢)F . (80)

Therefore, by Eq. (77)

f Feo)de = L2957+ Cro291e) - 2.5 |

- %_{,/,347/} = —0.8716 (81)

A graph of ¢(¢) - 8(¢) vs ¢ 1is shown in Fig. 8.

Numerical integration gives (see Appendix)

58
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/2
: j[é(‘f’; — Q(¢)Jl¢ =~0.3747. (82) ]
4 ]
- Therefore,
and
: - _ 2T 1. %8 {, 2%
| Mg =iy T amll 125
Thus, to first order, this is equivalent to writing
)\z_, /é7ef}g , (85)
where
; g7 26 :
'l;:{ = 79 -+ ;}%‘ [én ZD' " /4251 (86)

Experimentally, it has been found that Eq. (85) is well

satisfied if

'ZZ, = Fz" , (87)

where

.:‘.. = 129 . (88)

ff

Thus, if we replace n: by n in Eq. (86) and solve for 7,

we find that

_’?.. = []—;%z(,fné-'lzf)] (89)
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To check the above result with the linewidth méasurements

20, it is first ﬁeceaaary

of Chang, Sengers, Keyes, and Alley
to determine the value of the parameter kp, the high wavenumber

cutoff. This is dome by using the measurements of the temperé- o
ture dependent viscosity of Stein, Allegra and_Allenl7. Both
investigated the binary mixture 3-methylpentane-nitroethane.

The critical vircosity was found to have a temperature

dependence of the form

Arl = alneg + b , (90)
where
. T-Te
€= — , (91)

and the best values of a and b were

-4
a=-1.84~ 10 jm/cm-sevc.

) (92)
b=-47«5" Jm/Cm--SeC
with a background viscosity
= 3.9~/6" gm/cm-sec (93)
70 ' 8 '

The linewidth measurements produced a fitted effective value

for the viscosity c
7= 43 x/633m/cm— see (94)

Assuming that the correlation length obeys a power law of

the form

60
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T-Te

= &, | (95)

then we predict a temperature dependence for the critical

vigscosity as follows:

ST

Arz = "thn(zé £)- /.333]

((a” )fns * ,5-~z)[1)62é€ )—-/333]

/
= @'fne + b , (96)
wvhere _
a' =~ L
1577
y = 2L (k5. - 1333 o7

The linewidth measurements were best fitted by the values

E = 2.56 A
(98)
y = .6l6
Using these values we get
a = ~/.é3x/o'4jm/cm-5éc ; (99)

or ap 112 difference from the value given by Stein, Allegra and

Allen.

I1f we assume that our predicted value of b' is the same as

6.
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the value by given by the viscosity data, then

Ln (k) = ’5" 2L p + (1-333-0.693)
=-[.158

‘én = 00/23A._’ . | aOO)

The wavenumber used in the linewidth data was dependent

on the scattering angle of the laser light, and was given by

477n
1= Sin 5 z ) (101)

o
where A = 6328A was t'e wavelength of the laser light used,

and n = 1.38 was the index of refraction of the liquid. Thus

% = (2.7‘/,:/0'3,4’"') sen ‘2€ ’ (102)
and
‘.z_ﬁ‘? = 8_7'2’; . (103)
¢ sin g

Using the fact that
4n 89.8 = 4498 (104)

and inserting it into Eq. (89) we obtain

-—

.:%_ — é - .__8._ [-4,254— 4.50 — kn S(n %]}“

ISm?

e !
= -{.828 + .124 l°3,as‘"'_§} . (105)




NOLTR 72-208

The scattering angle ranged from 30° to 130° leading to

%) = (.32 (106)
o "MmMoax

(1) = 1.22 (107)
10 m.n .

whereas, the observed value is

—

(L) = .29, (108)
\fl., obs
which, within experimenta; uncertainty, is in very good agreement

with theory, considering that Zt is only a first order theory.

D. Viscosity-Diffusion Self Consistency

In this section we will demonstrate that self-consistency
of the viscosity and the diffusion coefficient demands that
no power law divergen: 2 occur in the critical viscosity. We
will do this by examining the Fourier-Laplace transforms of
both the viscosity and the diffusion coefficient. We can
adequately express the Fourier-Laplace transform of the
diffusion coefficient as

e A7 (p)

Do (p)= 1 (109)
¥ Xz ‘

8

where we neglect the frequency dependence of the susceptibility.
This is justified because we know that in the critical region
the decay rate of the concentration fluctuations becomes

vanishingly small, while the decay rate of the velocity

fluctuations remains finite, and possibly diverges. To study

the Laplace transform of the diffusion coefficient we put a
63

R B N LTy o ¢ A 0




NOLTR 72-208

~pt23
into 2q. (5) and change the limits of

factor of e
integration to (o,®), and substitute it into Eq. (109),
to obtain
De (p) = .,:- jat fa Jeee ¥ Ss@siegagingineny,
' (110)
where we neglect the time dependence of the concentration

fluctuatione. If we Fourier transform in space

N | (8T
() = o7 ;, %€ (111)
- - BT
V(G = = 7 Ve , (112)

then

x _ Lzer, T ‘
D{(f)— Q_; —%'5’5[' (&&)1 P* 'lw(f’)kz (113)

Similarly, by Eq. (39) of the previous chapter we have

|
#x Ry (R~ e )35 K, pr ok DEJLP)P‘

(114)

* |
AP =-ma

Let us now define twc characteriretic frequenciles

Fee 1,

associated with the critical Rayleigh linewidth a2nd viscosity,

Pr and p_, respectively. They are obtained by replacing all

|
wavenumbers by Kk, the reciprocal of the correlation leagth,

as follows:

(115)

11* Ea]x:(f%)“l

il s

- |
RTINS T i
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X
'P = 'lk (?‘l) K'L , (116)
1 ¢

and we know that pn>>pr.

We assume that the critical behavior of the shear viscosity
disappears at frequencies larger than pn. fhus 1if we look
at the frequency denominator in Eq. (113), we see that the
most important contribution 18 from wavenumbers smaller than

1

K, so that we can replace all lengths by k¥ ~, and the

hydrodynamic value of D is of the order of magnitude

D’l:(f’\) ~ K . (117)

However, from the frequency denominator of Eq. (114) we see
that the critical frequency behavior of An cuts off at Prs

a frequency much smaller than pn. Thus nz(pn) can no longer
have any critical behavior. Therefore, all the power law
behavior on the left side of Eq. (117) is taken up by D, and
as a result the shear viscosity cannot have any more diastic
behavior than a logarithmic divergence, as was previoucly
demonstrated by Swiftzz, and Kawasakil3.

Equation (117) is a general equation for all fluids. That
is,it can be used to determine the critical variation of the
transport coeifficients v and n. The liquid-gas phase transition
18 very similar to the binary 1liquid phase tramsition, with the
dénsity difference betwern the liquid and gas phases replacing

the concentration fluctuation as the order parameter. The

65
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transport equations are also similar, with the pnarticle

diffusion coefficient D, replaced by che quantity B%— in .
P

the liquid-gas, where A is the heat ccnductisity, p the density,

and cp the specific heat at comstant pressure. However
A
DCP
possible to use the same arguments leading up to Eq. (117) to

s llke D, vanishes proportionately to k. Im fact, it is

show that the shear viscosity canmot have a power law divergence,

only a logarithmic divergence at worst, and that the decay

rate of the order parameter varies ag the third power of the

wvavenumber, a result previously found by Kadanoff and Svift21.
The situation is more complex in the superfluid phase

transitionls. However, to the extent of the validity of mean

field theory and dynamical scaling, it 1is still possible to

use Eq. (117) to predict the behavior of the critical shear

viscosity. In the superfluid we have a complex order parameter,

with the superfluid density related to the square of the ampli-

tude of the order parameter, and the superfluid velocity propor-

tional to the gradient of the phase of the order parameter.

The diffusion coefficient D of 1liquid helium in a porous

medium leads to the anomalous increase in the thermal conduct}-

vity in the high temperature region, and describes the anoma-

lous attznuaticn of secomnd sound ip the low temperature region. <

~1/2

It can be shown the D diverges as K , 8o that Eq. (117)

3/2 in the |

would predict that the shear viscosity vanishes as «
hydrodynamic regime, and varies as the wavenumber k raised <. the

3/2 power for k>>k, if we assume the validity of dynamical

scaling.

Wik
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In thias chapter we have shown how the critical shear
. viscosity decreases the value of the relaxation rate of the

order parameter predicted by the mode-coupling theory of

-~

Kawasaki. We have also explored tte self consistent nature of
the critical diffusion and viscosity, and its extension to

other fluids.
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IV. PERTURBATION THEORY

In this chapter we will explore the effect of higher
order pertubations on the critical shear viscosity and
Rayleigh linewidth. We will present an equal time justifica-
tion for the decoupling approximation in the calculation of
the anomalous shear viscosity. Finally we will examine "vertex
corrections” resulting from time dependent perturbation theory,
and show that they are very small effects in the critical

Rayleigh linewidth and shear viscosity.

A. Static Perturbation Theory

In static perturbation theory we employ the fourth order
term in the Ginzburg-Landau equation for the free energy
densitys. If Féo) denotes the total free energy of the

quadratic terms, *then the partition function can be writcen

e T e g7 8 faerat]
51
- T epf-pR ) 2 (i Jdkdns@t s
i '

Because F is a diagonal quadratic form in wavenumber space,

(o)
Q
it does not induce any cross-correlations. Thus, to first

order in b we can calculate correiaticn functions just as before,

except that we must introduce, within the expectation values, a

factor
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Bb(,3 4 ég "Z s
- FMrs(r) =- ZZ kS wmte - (2)
’fa‘:rﬁ:‘z'z,c ﬁ, t’ ‘3 E:

Proceeding in this spirit we will examine the effect of
the above factor on the critical shear viscosity, which by

Eq. (30) of Chap. 11 can be written as

9t2'
R A R AT e, ¢
x<s X5 )sz,z,(t,) Spe (t,)S_i_Z-,(t.» : (3)

If we insert Eq. (2) into the equal time value (t21=o\ of
the time integrand in Fq. (3) then we obtain a term proportional

to

L - Voo NS 2 2 2 2
n,z:;a(g, VTN R AT EN DL Misp 12 <i5p, 01
which conveniently splits up into the product of two sums, one
over wavenumber iﬁ and one wvver wavenumber‘f'. However, because
q is taken to be along the z-axis both sums turm out to be
antisymmetric in the x-direction and as a result are zero as

shown below:

"? ( Ql) /&(8 12)
= C
;[ (z 1)‘ Z ‘(8 »! 2303) (3)

A (G e) A (fr 4e) g
2,777y 2 ° ‘©

L ’(fmi 2312' )
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Thus we see that from the standpoint of static perturbation
theory, the decoupling approximation entering into critical
shear viscosity is justified. It is worth noting that the
decoupling approximation is valid to all orders of static
perturbation theory, because to all orders the double sum in
Eg. {4) will be split into a product of two sums, leading to
the zero result of Eqs. (5) and (6).

Unfortunately, the above result dves not show up in the
calculation of the critical bulk viscosity. The bulk vis-
cosity 7 is proportional to the space~time integral of the
correlation function of the trace of the stress tensorlo.

If we employ the canonical formalism of Chap. II, then it is
easy to see that the trace of the stress temnsor has a term
proportional to the square of the order parameter. Thus to
calculate the temperature dependence of the hydrodynamic

bulk viscosity it is necessary to cope with a term of the form

[ o)
)~ 2 LTI 0ps 605050603ty 5 )

where f(lfl,liﬂl) has no angular dependence, depending only on
the magnitudes of the wavenumbers £ and '. We see that we no
longer have any angular dependence in the integral to save us;
as iun che case of the shear viscosity. When we substitute
Eq. (2) into (7), we find that the equal time value of the

integrand in Eq. (7) becomes proportional to

— - ® P
-~ T‘?‘FZZ FUTLE DS ) SUSp 12D
vr
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2
Z T ~» o 2 . -
=- bn. ;er(m,w’l)(ﬁ s2) (et s)" (8)

In other words, the equal time value of the integrand is
multiplied by the product of two correlation functions. It
is easy to estimate the relative values of Eqs. (8) and (7)
by replacing all factors of wavenumber by E_l, and the volume

Q by 53; in this manner, we find that

As‘:‘(%)) = (gi,) @

where Eo is the charactzeristic length defined in Chap. I, as

et |
E,“—‘(bzl') , (10)

and CO(K) is the zero frequency and wavenumber value of the
critical viscosity using the decoupling approximation in

Eq. (7), and AzZ(k) is the value obtained from Eq. (8). There-
fore, as the critical point is approached the accuracy of

mean fileld theory becomes considerably diminished. 1In fact,

each order of perturbation theory will predict a larger

divergence, so that mean field theory is obviously not applicable

to the bulk viscosity.

B. Time Dependent Perturbation Theory
To formulate the principles of time dependent perturbation
theory it 18 necessary to consider relevant non-linear terms

in the hydrodynamic equations, and how they effect the decay

g ek a et
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of concentration and velocity modes. We will only consider
how a concentration and velocity mode yield amother concen-
tration mode, and how two concentration modes yield a

velocity mode. These vertices are characterized by C

v

:’)S_.T : (11a)

and

e (11b)

The vertex (lla) is easily derived by considering the
convective term V;(SV) as a perturbation to the time rate of
change of the concentration fluctuation. In wavenumber space

the hydrodynamic equation is

4, L iee
(Jt ri’)sf‘t) = ﬂ"‘;?'v{—:ﬁ’u)sﬂ(t) ) (12)

where we treat the right hand side as a perturbation. We can
think of the zeroth order value séP)(t) as the solutiocn to
the homogeneous eguation, and sqjl)(t) as the first iteration
of Eq. (12), that 1s for t>o:

S

S_(:)(f;) = Sza(o)e )

g (13)

anc

e = = S " - (-t ) oy v () e
T @)= ththe B TS0 e e ) L s
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To derive the vertex (11b), we must consider the
canonical form of the stress tensor. If J(f,t) 1is the part
of the stress tensor at space time point (f,t) due to con-
centration fluctuations, then we can write the hydrodynamic

equation for the transverse velocity as follows:

? — 2y o =, .
f;;if’(r,t)—'zv viFt) = 7-5 *t), (15)
where in Chapter II we showed that
—_ ~?£E__~ C g :
I = 3 35, %7 (16)
and
Fl L, 25 g2
S,S‘-]-:: za-r—i‘k /3 (17)
=
with
25 _ o
§, = ox, ~ (V3), . (18)

In Eq. (17) we neglect fourth order terms, and also assume
that u=o0. Then

v 3
7 - 2"5;53 -3, [% ¢ 2 kz s&f] , (19)
and |
3 3 - . 3
3?»753 = Zz- lsﬁsj +S£Sl.J J—assj—gz JS& séj (20)
so that
I - F(-w)Ts
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where
fa
k= (¢Z) . (22)

Transforming to wavenumber space, we find that the 6’

-
component of V-J 1is

BTG ) TT s -

Since we are only dealing with transverse velocity components,
it is necessary to subtract out the longitudinal components,
that is the components of ('V.-.‘j:) along the direction of the

wavevector G, so that

-—) =
=

vt L L) (- =+ )suos ¢ (24)
(x‘f-:r){~ .m'h;” zzg)(xz. 1%:;)?)2._?).

Using Egqs. (15) and (24) we can write the hydrodynamic equation

for the transverse velocity modes as
d v - ._.‘_ 7o H“’ ! ¢
e+ 8 ele) = zem;eZU- = § )% X’g“_f)sr(t)sj’_}) (25)

The solution to the homogeneous equation 1is just
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— (0) (o), . -'LB‘t (26)
for t>0, and the first iteration is
I”a,
—-v(') = s ——
«-t) .
7 Z So )& () e

Having evaluated the vertices (lla) and (11lb) we are
in a position to examine the vertex corrections to the

critical Rayleigh linewidth and shear viscosity.

C. Vertex Corrections
To examine the wavenumber and frequency dependence of
the critical Rayleigh linewidth, we write the fluctuation

dissipation formula

Fotwd= 7 [af jut (- :'r;(t)(-g)ifz,(o)) ) .
where
Y 2
so that

a(w) TXT')ZZ—]J“ {5 (t)g (t).S‘ (a)(»Z’) \_/_8.,_&,,(0)>_ (30)

Thus we must correlate a concentration and a velocity mode
at time t with a concentration and velocity mode a2t time O,

a8 shown below:
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(31)
¢ —~‘\:>t
< =
Just connecting the lines to form the bubble
> (32)

correspouds to the decoupling mode approximation of Ferrellla,

13

discussed in Chapter III, Section B, and yields the Kawasaki

result.

To calcuiate the
velocity mode at time
centration modes, and

time t and presume it

verrex correction we trace back the
t and presume it was caused by two con-
trace back the concentration mode at

was caused by a velocity and a concentra-

tion mode. We willl also assume that the concentration mode

was formed first, so that the intermediate state consists of
three concentration modes, and no velocity modes, otherwise
we obtain a correction of a smaller order of magnitude, as we

will later show. Therefore, we need to calculate the following

diagram:
tl / "
° e ’ t , t >t , (33)
=

We insert Eqs. (14) and (27) into (30) and obtain

/ ! e CEEICEEIr .
["u)(w) . = 7 Z 2__ I_l - (- & ]l —X-:.I“ '__’. *
AT 55 5 I SLENNE L~ &
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t - (.2&.)“"!) ¢-1") R I
I:f wJ %3 er (3 &)S. (t)s (t)s (o)) x

S !l

o e J

"(FV (t)’-’g’) ‘—f}r“’)> . (34)

To evaluate the above equation we take the coupling of the
concentration mcdes shown by the lines above the equation
and double it, since by symmetry it must give a contribution
equal to the coupling denoted by the lines underneath the

equation. Therefore, we presume that as far as Eq. (34) is

concerned
' ' 2 pt) -Fog o’
()% WISt 0) = 2T Xp X 2 € € X
¥ %‘;-r Ss’&—%“r&? ’ (e
and

> £ 1)
KE-V,, ., &)ep) 8"'“)) [?g__gii)l-i——ij

0?5-1”)1
T -%{E??)HV
¢ S ptk S
Note that
B2 )F (R 2) (tzr) i N
- ot ) cleey)-garpy] . o

The time integrals then become
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e Ay geergtd g LT Palt ) .t
Jar it g OV gy e et
] < ©

- % (E>r)¢”

X e

. » g’ «© 2‘“,'__/”_/",__./"2 ) ’](lit.) ~
} ﬁ(t—t')e[w S Gerlet) ﬁ(tit")el =t~ Tt r

b w - Loy e
x!k??f)e[“ £ J

- ] . P o - Y i? 2’)1"‘/
=L."¢,,,%(8’_p)‘] [-mu-/#f/r+/3,_ﬂ£’] [Fiw + gl 1. @

In the above integrals .c neglacted concentration decay rates
with respect to velocity decay rates. Therefore, if there

had been any velocity modes propagating in the intermediate
interval, then all thr:2e frequency denominators would contain
velocity decay rates, and since the velocity decay rate is
proportional to the square of the wavenumber, while the concen-
tration decay rate is proportional to the cube of the wavenumber,
the sum in Eq. (34) would have an extra wavenumber factor,

thus reducing the order of magnitude. If we substitute Egs.

(35)-(38) into (34), we obtain
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o P EE, Yoo 1Y
%o ( ) T2l DR T s

ARt o S i ol e ST 39

There 13 another contribution to the vertex correction.
It i3 devived by tracing back Che velocity mode at time t,
and assuming it was formed by two concentration modes at time ¢',
and further assuming tlwt one of the concentration modes was
formeéi by a concentrcotion and a velocity mode at time t". That

is, 1if

: - PEENTTE)y
§ Vo () = 2—95;;;[153- (g"ﬁ')* Hi

B P z‘."—xi':t-_t,]x

(3’ ) ttt)
jdt € L TR (40)

then we split up one of the concentration modes at t':

, y (t t") -
-}(f)-"" (;/.Zfd e 5,,,0")1’- Vo 7). (41)

If we substitute Eqs. (40) and (41) into (30) we obtain

3% (? Ej , £) - e
P Il TG 4 )

7 P

s bt s o

f‘t Zd’tjdt, - ( *£7) 1(t t‘.)/ <ilt)5 (t')s “”)S&”(U)>
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(t r) - -4, 1 277
X R [ﬂff’) i’/’l’)][wr",‘(”t) ] [Ia'f/-'f */ft'f] Jaw ,,((t:g]
Therefore the total vertex correction to the decay rate of the

concentration modes 18 given by

I%f Y = 2wy + I (e)

4 £
(I} e KX ke il | PGREGE)
Ga) 22 - Fee [P = lpr- P20

>, B> . e : . P Y -

« [Flos 4T, + 1_] [w ' p(t’d') ] (47)

The above result is the same as that found by Kawasak123.

According to him the abcve amounts only to a 2.4Z‘correction

if g>>k, and 0.4% if q<<k, both in the zero frequency limit.
Actually, it is fairly simple to see that the vertex correction
to the Rayleigh linewidth 's very smail compared to the z;roth

order value

'g/o)( )= 2k Z_z_é’[g _(f_-;:)lﬂﬁgw,«%—/e‘]q, (48)

because we can write

Preceding page blank
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ver-75 L F I S i ] ey,

where we have multiplied the integrand of Eq. (48) by the
correction function Vq E{m), which by Eq. (47) is given by

4

£ —75(8-

(i’ i’)’ l[{t,p) f’(ii’)}[ﬁf—*%—‘—- J 'MH sl ff (:].-'['ILH’%’(“"I”JJ..

T (50)

IS5 e X
ar=ga Zl- I

VE;E(M) is a completely dimensionless quantity. It is also
not very difficult to see that it is very small for all

ranges of k and q. If we examine the integrand we see that

it varies as k/.‘\’.4 if 2>>k, in both the very small and very
large region of q. If £ is very small, then the integrand
varies as the inverse cube of the greater of q and k. XIf 12
and k have the same magnitudes or the same direction, the inte-
grand is zero. As a result we expect PS.)(m) to be of smaller
order of magnitude thau lé.)(w), although it has essentially

the same wavenumber and frequency dependence.

We can use the same techniques to examine the vertex cor-

rections to the critical shear viscosity. Bv Eq. (30} of
Chap. II, the critical part of the shear viscosity cen be

written as

Ar}{(w)'-z::ﬁ lé'zé (g k)b, (G k; )]Llf? < l“:b"(ﬂs (u)q (")) (51)
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Here we have two concentration modes at time t correlated with

tvo concentration modes at time U. as shown below

o\c ___/ € (32)

Joining the lines to form the bubble

O (53)

corresponds to the decoupled mode approximation of Chapter II.
We will examine the vertex correction caused by a velocity
mode propagating in an 1ntermediate state, as illustrated by

the diagram:

N (5%)

To calculate the above diagram, we assume that bocth concentra-
tion modes at time t were produced by a concentration and

velocity mode at some previous time. Therzfore, we let

N 2 20 G
S't‘(t.)-:- - .{ZZ}#' e ORC pY »:Q,_r(i ) | (55)
and
) P r(t t")
S‘..P(t)‘: - (;_'hzxdt “")Cf r) -g»i. [»!“t ) .(56)

and substitute into Eq. (51) to cbtain the vertex correction

A'l%)(“-’)— 1-0. Z;%’Zé (Kg la)é (giff )th tldt ' -Ir(é.tl) x

+
- B pt-t?) .
fae B s e 5005, 1050 Y ETOGEIT, 49
o
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Yy ’ / o B -C)Fe)E T,
- L L1k Ky g0~ S

] (S i@*r t-t)
I‘& ot I‘ft e‘t‘“ t)j({te | 3 e P ) <5;,[t)%r(t S (°)s?.‘( )

(57)

Using the decoupling approximation, and setting‘a along the

z~-a s as in Chapter II, we obtain

o T SS Ll . EETDeEn)],
A'ZB,, (k') he ?‘Zﬂh’l%%”'k‘(Z'&z )eg(E”Zﬂl)xI,Kzﬁr{ﬁ(&'c’) (E" l»)‘

*Lioslpe Fé""]"[‘im%w'rf]_‘ [-icc 4T r’é"-r’] ) . (58)

Recalling that th: uncorrected critical shear viscosity can

be written as

-1
@D vo U SE (el L SIVAT 3 Y L
A= %E‘(g b2 X L et e ], 599
we rewrite Eq. (58) in the form of Eq. (59) with a vertex

factor in the summand as we did with the Rayleigh linewidth,

as follows:

M) 3 QZé (ke Vulg 2 )X g o P00 T o Wi ),

(60)
where Waufﬁw) is the dimensionles:c quantity given by
]

L (g-243)
,r pQZJé éf—i [““F *"’f’]
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(- 4 W A -1
X l_i'(g’— ) - &,(i,(:_t?}fz) T2 _h""*’ * %(F— f’)‘] . (61)

Because of the proliferation of angular factors we expect
that the above term should be very small, although, it may
i ntroduce aln(kD/q) term, since it is necessary to cut off
the integration over £ in order to insure convergence. As
in the case of the critical Rayleigh linewidth, the vertex
correction to the shear viscosity has essentially the same wave-
nunber and frequency dependence as the uncorrected value, but
reduced greatly enough, so that its effect is negligible.

In this chapter, we have justified the use of the de-
coupling approximation for the shear viscosity and diffusion
coefficient. We have found that static perturbation theory
has absolutely no effect on the critical shear viscosity,
even though it produces a aivergent series for the bulk viscos-
ity. After formulating the relevant techniques for time
dependent perturbation thecry, we examined the effect of

vertex corrections on the shear viscosity and Rayleigh linewidth,

and showed it to be negligible.
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V. CONCLUSION

A. Summary and Discussion

The fluctuation-dissipation theorem was a very useful
tool in obtaining the results of this paper. It related tramns-
port coefficients, quantities which are proportional to the
dissipation rate of fluctuating internal modes of the system,
to the correlation function of the strengths of those fluctua-
tions. It is intuitively clear that since a fluctuation of
any internal quantity is a deviation from the equilibrium con-
figuration of the system, the stability criterion, or the
principle of miniwization of free energy, demands a returm to
equilibrium. Therefore, the larger the fluctuation, the
greater the restoring force. One manifestation of the fluctua-

tion dissipation theorem is the Kubo formulaa’g’24

» which

equates the transport coefficient to the time and space integral
of the correlation function of the relevant flux. In both the
shear viscosity and diffusion coefficient, the flux was found

to be the second order product of two fluctuating quantities.
Therefore, in the calculation of the correlation functions it‘
was necessary to use a decoupling, or factoring, approximationlé,
which transformed a correlation function involving four fluctua-
ting quantities into the product of two correlation functions,
each involving two fluctuating quantities. The expiicit

equations for tine correlation functions were derived from mean

field theory and linear hydrodynamics.
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~

These methods were first used by Ferre1114 in calculating
the critical temperature dependence ¢of the diffusion coeff.-

cient. He verified the result of Yawasakil3, namely ;

D= /u§ ’ | (L
where
M = (érrrl E) ; (2)

is Stokes' formula for the mobility of a sphere of zadius £
moving through a liquid of viscosity n. This result suggests
an intuitive picture of the phase transition, as consisting

of a binary liquid with regions of large concentrations of

solute. These regions can be thought of as rigid spheres
having radii equal to the correlation length. As the critical
temperature 1s approached, the correlation length grows; that
is the size df the inhomogeneities grows larger, corresponding
to a decrease in the mobility of these regions, thus accounting
for the sluggishness of the system, and its laci of haste in
returning to equilibrium. When the correlation length grows

larger than the wavelength of the concentration fluctuations,

i.e. when q>>§-1, the above formulae are no longer valid,
because D becomes a function of q corresponding to "non local"

diffusior. This change is carried out by the substitution

EH"—"’ (lz, > (3)
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where a is some numerical constant of the order of unity.
Eq. (3) illustrates the principle of dymnamical scalingls’lg,
that all temperature dependence be expressed in terms of the
correlation length £, and as T+Tc all factors of & be replaced
by the wavelength of the fluctuations. In the case of the

diffusion coefficient a = 3n/8, s0 that in the limit T+Tc we

obtain

Dot TH-
'TT:DTZ' = % . (4)

All of the above equations assume a constant value of
the shear viscosity. However, recent experiments have clearly
established a critical temperature dependence in the hydro-
dynamic shear viscosity n. It was the purpose of this paper
to theoretically derive the temperature, wavenumber, and
frequency dependence of the excess shear viscosity, and deter-
mine how it affects the critical diffusion in coefficient.

In other words, what value of 1n should be used in Eq. (4)?

A Kubo type formula relating the shear viscosity to the
correlation function of the off-diagonal component of the
stress tensorl0 was employed. A canonical formalism identify-
ing the Ginzburg-Landau free energy demnsity with a Lagrangian
density established that the off-diagonal component of the
stress tensor due to concentration fluctuations is proporticnal
to the product of two orthogonal components of the gradient

of the concentration. To evaluate the csrrelation function,
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it was necessary to employ a decoupling approximation, whose
validity was later confirmed by perturbation theory. The
rest of the calculation was rather straightforward and pro-
duced a logarithmic temperature divergencels. By the princi-
ple of dynamical scaling a logarithmic wavenumker and frequency
dependence was predicted and actually calculated, and for the
shear viscosity the factor a in Eq. (3) was found to be .497,
confirming the general rule of thumbzs, that when factoriza-
tion introduces the correlation length twice (via the equal
time correlation function), a is close to %.
The above scaling factor is not directly valid in che
diffusion problem because it is only applicable in the static
limit. Therefore, it is not correct to blindly insert the
wavenumber Jependent viscosity into Eq. (4) in determining
the critical Rayleigh linewidth. The diffusion process

depends upon the relaxation of current fluctuations, which are

the produc* of concentration and velocity fluctuations. The

finite concentration relaxation rate forces us to study the
viscous damping of velocity fluctuations at non-zero frequen-
cies. This results in a kind of "retardation" correction to
the effective critical viscosity used in the calculation éf
the critical diffusion coefficient. It is manifested by the
increase in the scaling constant ALff to Se used in the shear

viscosity which is to be inserted into Eq. (4). The result is

@ - 8—('.33-5.).5) — e-aoa

- G
e{‘- - 00/2-

(5)
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The self-consistent nature of the viscosity and diffusion
was then studied. It was found that the product of the
diffusion coefficient and excess shear viscosity should have
_the same temperature behavior as the inverse of the correlation
length. Making use of the fact that the characteristic fre-
quency assoclated with viscous damping is much larger than
the characteristic frequency associated with diffusion, it
was deduced that the critical shear viscosity cannot have a
temperature divergence more drastic than a logarithmic onezlzz.
The self-consistency was then applied to other fluids, namely
the gas, and the superfluid.

Finally, we applied the results of perturbation theory to
test the reliability of the previous results on the critical
shear viscosity and diffusion coefficients. The fourth order
term of the Ginzburg-Landau equation serves as the perturbation
in the static case; it is found to have no effect on the shear
viscosity, even though it produces a divergent perturbation
serlies in the case of the bulk viscosity. Non-lineur hydro-
dynamics serves as the basis for time dependent perturbation
theory, which was used to study the effect of vertex corrections
on the critical diffusion and shear viscosity. Although, the
vertex corrections had similar temperature, wavenumber and
frequency behavior as the uncorrected quantities, their sizes

were diminished by at least an order of magnitude.

90

:
3
F
f
’
1
K
i

e ettt g g
RO TR N R B T

é
;
'fE
y




E

ST T peey

Bil it 2

TR £Y 1 e

NOLTR 72-208

B. Areas of Further Study

At first glance, it seems that the techniques developed
here would be suitable for studying the critical bulk viscos-
ity and sound attenuation in the bimary liquid phase transi-
tion. Unfortunately, it is difficult to treat the correlation
function of four concentration fluctuations because of the
failure of the decoupling approximation. Therefore, it wiil
be important to learm how to treat higher order correlation
functions, and apply the results to the bulk viscosity.

A more promising area of research is the non-Lorentzian
behavior of the frequency spectrum of the concentration modes.
This behavior will be manifested in the frequency dependence
of the diffusior coefficient. The most important contribution
to the frequency dependence will probably arise from the fre-
quency dependence of the excess shear viscosity, which we have

already derived here.
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APPENDIX

In this appendix, the computer programs that were used

for rnumerical calculations are presented. They were rum on

the INTERCOM system of the CDC 6400 computer at the U.S. Naval

Ordnance Laboratory.

Program FLV283 determined the value of the viscosity
f scaling function at zero frequency, given by Eq. (109) in
Chap. II.

Program SLP283 determined the initial slope (minus 1/3)

of the viscosity scaling furction, given by Eq. (110) in
Chap. II.
Program SCL283 was used to plot the viscosity scaling
function for various values of P, given by Eq. (100) in
Chap. II. Simpson's Rule was used in the numerical integration.
Program DIF283 was used to plot ¢(¢)- 3(¢) for various ¢.
$(¢) is defined by Eq. (569) and 3(¢) by Eq. (77) of Chap. III.
This program used the results of SCL283, and employed linear
interpolation to calculate intermediate values of the scaling
function. By integrating ¢(¢)-3(¢) by Simpson's Rule, the

program was able to calculate CA'
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L18T

FLves) 13.41. 4. QI/0V/ 18

10 PREGPAN FLVRS3 (INMJT,BUTPUT?

20 ATANH(Y) = S0ALBG(( 107 /L }.~Y))
30 @H(X) = 1, - X&X

20 GJICX) = SHCXOSCXSATANKS jo /XD =44}
S0 6C(X) = 1. ¢ XX/ 3.

60 5Q03:X) = SERT{3.)/X

70 GIECY? = BLEXIFC1+~ATAMCIGITXI I/ SQICXD)
B0 FIX) 3 ~€1%./7(8.0X))S(QHIXI0C o) 1S{NI+GIL(XII*(Ber154))
90 GCA) = F(TANCAY)/CES(A)®»P

100 N2 = 50

1035 PI = 3.741592633¢

110 4 = 2% FLBAT(NR)

120 N = N2/2

£EIO N2 « N~ 1

140 PRINT &0

150 Al = .25 ¢ A

160 61 = S(PIsAl)

170 PRINT 50» A1,61

180 S ® 4«86l - Bo

190 D® 20 1 = 1, NI}

20U Al = .§5 + ASFLBAT(Re1)

210 6 = G(PIcA})

220 “RINT 50, Al, GI

230 A2 = Al ¢ H

240 G2 = GC(AZ2sPI)

2 50 PRIMT 590; AR,G2

260 S ® 2.3G]1 + 4Ae%62 ¢ S

270 20 CONTINUE

300 S = PlsHsS/3.

310 PRINT 60« H»3S

320 a0 FORMAT(/ 12X, %A%, 18Xs 3GCAYS/)
330 50 FORMAT(S5X,F103,10X2E15.8)
340 60 FIRMAT(/% WITH H = %,F10:.3,%, C = ¢,E]15.8)

330 STeP

3 60 END
A GCAY
<255 =+ 187232B0E+ 01
«260 =+180188528+01
«265 -»17217608E+01
<270 =«16491373%+01
275 =+ 15823742+ 01
«280 =«15203807E+01
«285 =+ 14623735E+01
«220 =+ 14077605E401
«295 +«13560775E+01
300 =+13069505E+01
«305 =212600709E+401
«310 «+12151800£+01
«315 =¢11720574F+01
«320 ~+11305135E+01
«325 =«10903920E+01
«330 =«10515181E+01
«335 =+10137926E401
«340 «+97709037E+00
. 345 =+$ 4130832E400
«350 *+90635334E+00
+355 ««87214120E400
+ 360 =+83859527E+00
«365 =«8U564576E+00
<370 ~+77322392E+00

~ «375 *<74128645E+00

<380 «eT70976492E+00
«385 ~+67861542E+ 00
«390 +e64779314E+00
«395 «+61725708E+00
« 400 =+58696979E+00
«4C5 =«55689717E+00
<410 =~+52700820F+00
<415 =« 4972748 6E+ Q0
. 420 =« 46767192E+00
« 425 =+ 43817680E+00
* 430 =« 403769 48E+00
« 435 *+37943233E+00
« 440 =«35015001E+00
. 445 = «32090933E+00
+ 450 =«29169917E400
« 455 =+26251028E+0C
« 460 ~+23333521E+00
e #65 =+20416813E+00
«470 =+ 17500467E+ 00
« 475 =«14584181E+00
« 480 =«11667763E+00
485 ++87511123E-01
-0 =+ 58335250E-01
+ 495 *+28657729E-0)

WiTH H = «00S, C = <~.63260654E+00

13.39.20.5TeP

®EREADY .
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B S
s i

SLP283 14¢ 44456+ 04712772
10 PROGKAM SLP2B83CINPUT,2UTPUD
15 DIMENSION G(50)
: 20 DATA Pl, S3/3.1415926536, 1.7320508076/
5 € 30 HYP(X) = 0eS5kALBGCCL1e+Xd/C1e=X)I/X
40 CIR(X) = (PI/2¢=ATANCi+/(S3%X)))7(S3%X)
SO0 FH(X) = 1le = Xx%X
60 FCC(X) = 1o + 3JexX%X
70 BRI(X) = FHCOX)®(HYPC(X)-CIR(X))/(C16e¢%X%xX)
80 BR2(X) = (FC(X)*CIR(X)=1e)/(24¢%X%X)
90 FCX) = T«SkFHC(X)®(EKI(X)-EF2(XY)
100 PRINT 100

E | 110 N = 20
1 120 D2 10 I = 1,N
4 130 Y = FLAATCII/FLZATIN)
: 140 GCI) = F(CY)
; 150 PRINT 110, Y» GCI}
\ 160 10 CONTINUE
E 170 100 FORMATC1SX,*X*, 14X, *F(X)%)
: 180 110 FORMATC2C10X»51045))
3 190 S = 4.%GC1)
200 N1 = N/2 - ]
3 210 DD 20 J = 1N}
; 220 S = 2.%0G(2%J)+4*%G(2%xJ+1)+S
- 230 20 CONTINUE
240 XINT = (S+GIN))I/Z(3«*FL3ATIN))
250 PRINT 120, XINT
260 120 FIFMATC/SX»*INTEGRAL OF FC(X) = *,F10+5)
270 STI2P
280 END
**READY o
FFeTN
SLF283 146 46e55¢ C4/ 12772
X FCX)
« 05000 -+00248
« 10000 -+ 00969
« 20000 -+03540
« 250CO0 -+(5178
« 300CC e 06E9S
« 35000 -e08577
« 40000 -e10125
» 45000 -e11458
«5C0CO “e 12512
«55C0C -+13236
. 60060 ~+«13595
¢ 65000 -» 13561
« 70000 -elul13
« 75000 - 12231
«8G00C -« 10%95
85000 -« 09675
90000 -e 06729
295000 -« 3774
100000 C«CO0Q0O0
INTEGKAL OF FiX) = -« 790K
1 40 47+13eSTOF
* *hEADY o

a7
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SCLe83 14e41.36. 0412772

10 PROGRAM SCL283 CINPUT,OUTPUT)

20 ATANNH(Y) = 0.SSALBG(C(1.+Y)/(1.-Y))
30 GHIX) = 1o = X8X

40 GUICX) = GH(XISCXSATANH(L+/X)=14)
50 ACX,P) = SGRY(XSXSXeP)

60 B(X) = SQRT( 3J.eX)

70 GCIXLP) = 1. + (A(XsPI/BEX))osQ
80 GJ2(X,P) = GCIXSF)ISCLe=CACX,PY/BCX) ) SATANCBCXIZACX,P)Y) )
90 DIXsF) = ACX,P)82 ¢ (X$B(X))seQ
100 BRCCX,PISGHIX)ISCGIIIR I SBIR(XIPII*2.oDIX,P) 7C15+3ACX, P 82)
110 F(XsP) = ~T.58X8X8BRC(X,P)/D(X,P)
120 6CT-P) = FC(TANCT)»P)/Ca85(T)es R
130 N2 = SO

140 Pl = 3.1415926536

150 H » +25/FLOAT(NZ)

160 N » NR/72

179 Nl = ¥ - )

180 PRINT 100

190 D@ 30 1 = 1,50

200 P = 10+98¢(1-20.57104)

210 T1 = +25 ¢ H

220 Gl = G(PI1sTI.P)

230 S =3 4,851 ~2e7C1.¢P)

240 D@ BO J = 1,N}

250 TY = 425 + HsFLOAT(PsD)

260 Gl = G(PIsTI,P)

270 T2 = «25 + HsFLAAT(29Je1)

260 G2 = G(PI8T2,P)

290 S = 2.8G% ¢+ 4.#G2 ¢+ §

30C 20 CBNTINUE

310 516 = PIsHe G/ 5.

320 PRINT 110. P» 516

330 30 CONTINUE

e

e U

T e AL T IO T 4

PR Ut e R e

340 100 FIRMATC/ 20X, sPs,28X,851G(P)s/)

350 110 FORMATC2C10X,E15+8))

360 STOP
375 END
S SREADY .

F

«12589254E~01
« 158489 32E+01
119952623E-01
«25118864E-01

S16¢(P)

= 629 42y SGE+00
~+628614 |E+0Q0
=« 627593 TE+00
~+626314.0E+00

«316221777E-01 =+ 6247156 2E+00
«39810717E-01 =+ 62272C17E+00
«50118723E-01 -« 62023444E+00
«63095734E-01 =« 6171 A6T6E+OO
+79432823E-01 =+ 61332375E+00
«100000G0E+00 ~+60860916E+00
«12589254E+00 =+ 60282375E+00

«15848932E+00
«19952623E+CO
«25118864E+00
+J1622777E+00

~«595764155+00
=+ 58721%75L<00
~«576951287400
=+ 56474323E+00

«J9810717E+00 ~+550393C5E+00
«50118723E+00 «¢53374507E+00
+63095734E+00 ~+51471358E+00
«79432823E+00 ~+49330666E+00
«10000000E+01 ~+ 469 64341E400
+12589254E+01 =+ 4439 6236E+00
« 158489 32E+01 ~e 41 661444E+00
«19952623E+01 ~+3B80A418E+00
+ @51 18C64E+0] -«35875678%+00
«J1622777E+01 ~+32928187E+00
«398107t1TE+C1 =+30013327E+00
+50118723E+01 =+271776%36E+00
«63095734E+01 -~ 28460628BE+00

«79432823E+01
«10000000E+02
«12589254E+02
+ 158489 32E+02
«19952623E¢02
«25118B64E+02

~+21892826E+00
=«19495950E+00
~«17283178E+00
~+ 15260081 E+00
=« 13426075E+00
=+«11775693E+00

+ J1622777E+02 =+10300045E+00
«39810TI TE+40E ~+«89R T8408E~01
501 18723E+02 =+ 78265445E-01
s 63095734E+02 ~+68029655E-01
«72432823E+02 ~+59029367F-01

+10000020E+03
«12589254E+03

~«51166899E~-01
-« 44290852E-01

« 158 489 32E+03 ~+38298733E-01
«19952623E+403 ~+ 3308 6989E-01
+2511B864E+03 ~e2B56141258-01
«31622777E+03 =+24637326E~01

«39810717E+03
«50118723E+N3
+ 630957 JAE+CY
«79432820E+03
« 100CG0000E+Q4

14¢39.41.57T0P

# $READY »
L1ST

92

=+ 21239211E-01
~+18299635E-01
=+ 15759154%-C1
=+ 13565504E-01
=+ 11672572E-01

e ——

et r—
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DIFeR3 17.31.23. 03713/70

10 DIM X(1007, Y(100)s $4C100)

20 LET N = S1

30 FOR | = |} TA N

40 READ X(1), YCI)

$0 NEXT 1

60 LET P1 = 3.1215926536

70 PRINT

80 PRINT “ANGF(RAD/PI)”, INTEGRAND"

90 PRINT

95 LET L =0

96 LET P4 o LOG(PL/4.)

97 LET S4(0) = -4, PB59-.T1218PA-Pat2)I/F1 12

98 PRINT L, Sa(0)

100 F2R ™ = 0.01 TQ 0.50 STEP 0.01

162 LET L =L ¢ 1

104 IFL =25 G0 To 230

106 IFL = SO GO TO 240

113 LET A = V= P}

120 LET X0 = a*(TAN(A))*3

136 63SYB 650

140 LET Ti = CBS(A) + SIN(A)

150 LFT T2 = ABS(L8S(&)-SINCA))

16N LET T3 = AGS(TAN(&*0.FSsF1))

165 LET T4 = ABS(COS(2.3A))

17¢  LFT J1 = 2.¢(LOG(TI) - SIN(2.%A3)

180 LET J2 = LOG(T2)1R-LOR(TI) 124SIN(R.8A)sLBC(TA)
196 LFT 0 = SINCA)I*CAS(A)*+3

200 LET L1 = COSCA)*3 ¢ A.sSINCAYT3

210 LET S1 = JIs(Y0=C1/DSLOG(LI)) - J2

220 LFT S2 = S1/(D*P112)

P2 LET TS = LOG(ABS(A<.25¢F1))

225 LET S3 & 4.%(.2B59-.T1218T5-T54T5) /P12

227 LFT S&(L) = §2 - 83

228 G0 T P50

230 LFT SaL) = 0.0

235 (@ TB 230

240 LFT S&CL) = 2.%84(L-1) - SA(L-2)

245 €3 10 ~%0

250 PRINT M, Sa(L)

260 NEXT

270 LET C = S4(0) + 4,%828(1)

P80 FBR J = | TO (L-2)/2

290 LET C = 2.#54(28J) ¢ 4,%S4(PsJel) + C

300 NFXT J

310 LET C = .01%PI#(C+84(L)) /3. = LRTIE

320 PRINT "CC(LAMBDA} = "C

350 STeP

650 IF X0 >z XC1) GO TA 490

€60 LET P & (X0=X(133/¢(X(2)=X(1)>

€70  LET YO = (1-P)*Y(1) & P#Y(P)

&R0 (R TO 760

€90 FOR K = 2 T@ N

€95  1F X0 >= X(K) CM TO 740

710 LET P = (XOX(K=1))/(X{K)=X(K=]1))

TP0  LET YO = (1-P)#Y(K<1) + P4Y(K)

730 GO TO 760

746 NEXT K

750 LET YO = -.9BAR#X0¢(~, £4P)

W0 RETUPN

#O0  DATA 0.0, =-,3P6

BO5  DATA 01259, -0 %P9, 01585, ~. AOKK, s 01995, =4 62TF
10 DATA OPS5125 - kP63, 014D, = kD87, 0397 1,227
815  DATA L(SO1Ps=s&P02, 0310, =0 £1T15 07942, -0 £123
RPO DATA (.10, =.f0RE

H#PS  DATA 1259, =0 K028, 58S) «0 S95K, 2 1998, =0 GK TP
B30  DATA 2512, =057T70:e21 6P, =2 SFLT, JA9R] 5= S6N4
B35  OATA .5012,-.5337,+6310,-.5187,.7943, -, 2922

R 40 DATA .00, =-.4£96

BAS  OATA 1.05KS, =edAd0, 1SR LD, =0 2] £€,1,9953, o, JRRE
850 DATA 2.5119,~.3588,3.1627, =,3293,3,9811,-.300C1
855  OATA 5.0119,~¢2718,6.30960+P28€5 709433, . P1RY
B60 DATA 10.000s =+1950

B65  OATA 12.5H9, = 17PR,15eRAY) =0 1526, 19,953, =4 1242
70  DATA 25.1195=e117R, 31623, - 1030,39,5811, -, 0RIRK
875 DATA S0+119,~+07R2T, 62,096, =u04K00, 79, 833, = 08900
R0 OATA 100.000, =.0%117

e DATA 12%5.89,=0018429, 150 &Y, = "M, 199,53, «, N2E
RYQ DATA 2514195 =eNP2RSE, TR P, PPLAL,0 %], »eNP]128
HYs DATA SOL .19, =e01E0, FAN .96, =s 01 5T& 79433, = 11 AT
°0n DATA 10000, -.011£7

999 Fap

sHCFADY.
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ANCGLEC(RAD/PI) INTFGRAND
o -+.162133
=01 -+ 1656418
- . «02 -2 16B48B6
3 003 ’o|70593
' e 04 -.171789
«95 ~«171917
] .06 -. 170812
3 «07 -« 168294
: 008 "016Al13
;' o 009 "0‘5824d
1 ol -+.150283
‘ 11 -, 140045
- .13 - 111639
3 o1 4 ~9.30346E-2
«15 -7.10009E-2
16 -4, 53502E’2
« 17 =1.58554F=-2
, .18 <01758
: .19 S.47647F -2
2 9. 4BRB46FE~2
E «21 « 136435
1 22 «1 75817
( .23 204802
24 « 200509
=25 0
026 ‘0252907
27 ~e331934
«28 =« 377598
29 ~e 407413
3 -, 82TR9 !
031 e AA?“E’
« 32 ~o £52 43
«33 -+ 459595
034 '0A64047
« 35 -e 466359
« 36 -s 466996
«37 = 466243
« 38 e 46451 4
« 39 ~e 461997
o4 "06586
4] -+ 45453
042 ".ASOIA"
« 43 -+ 445387
044 -.AAOSBl
. 45 ~e 435251
« 46 =+.430174
047 ‘04?518
. 48 =e 420374
. 49 -+ 415882
5 ~+411388
C(LAMBRDA)Y = -1.24804
*AREADY,
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FIG. 6
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