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SABSTRACTr

i ~ Designing and testing damage-resitant Navy si,•.a requirb measurement

Iof absolute sp motion caused by attacks from mibars, depth chps torpedoes.

etc. This report gives a method of designing (4ctronic Lntegration systems,

stabilized by feedback, which may be used to obtain absolute ship motion by

integrating accelerometer outputs. Design data are given for several variations of

the general integration method presented, and an example of each variation is

demonstrated by obtaining displacement from acceleration by double integration.

ADMINISTRATIVE INFORMATION

The work presented in this report was begun under Defense Atomic Support

Agency Project Number K-IIBAXN, Task Area XS01 and was completed under Navy

P.Rciect Number S-F35.422.110, Task 15050.

INTRODUCTION

BACKGROUND

Navy ships and equipment must be designed to resist dariage from underwater
explosions due to mies depth charges, torpedoes, etc. The design of damage-resistant
ships and equipment which meet Navy shock and vibration specifications requires know-

ledge of the relationship between underwater explosions and damage. To obtain this

knowledge, dynamic measurements of such mechanical parameters as displacement, velocity

and acceieration must be made durhig underwater explosion experiments on ships. The

severe shock environment in which sensing devices must operate and the lack of con"rni-

ient stationary references for measurements of absolute mocion during the experiment

create unique instrumentation problems in underwater explosions work. This report deals

with the problen of absolute -notion measuremen! during explosion experiments and

presents a solution to critical aspects of the problem.

During past underwater explosion tests, velocity and displacement measurements

at various locaticz-, on the target ship have been made inertially by seismically correcting'
I. Wamker R.R., "A Procedure for thc Concmtio. f Velocity Meter Recotdz," David Taylor Model asia Report 1980

Oiun 1965).
A coaplete fis&4 of refenmices gtrvea on pap 51.
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I
and integrating the output of velocity meters2 and photographically by using fixed refer-

ences. The limited displacement range of velocity meters and the problem of providing

a stationary camera and reference for photographic measurement have shown a need for

de-eloping better methods for making these motion measurements.

Until recently accelerometers have not been available that have characteristics

suitable for accurately sensing ship motions. However recent improvements in available

accelerometers allow their use in many situations. These accelerometers provide a voltage

output proportional to the sensed acceleration. Velocity and displacement may be obtained

from the measured acceleration by integration and double integration, respectively. For

the time duration required in underwater exnlosions work, the dynamic ranges of most

general purpose instrumentation tape recorders are not large enough to record acceleration

with the accuracy needed for acurate integration and double integration. Therefore the

integration process used must operate directly on the signal generated. Since the acceler-

ometer hbs a voltage output, it may be dire'fly integrated using electronic integrators.

Velocity and displacement initial values and the acceleration component due to gravity

are unknown because target motion priot to the test is present. Therefore open loop

operation of the integration system, which requires starting the integrators with correct

initial values immeiiately before the test, is not practical. A pracacal integration system

must be capable of being started sometime ahead of the test so as to automatically

determine velocity and displacement initial values at the beginning of the transient

acceleration integrated.

OBJECTIVE

The purpose of this report is to present and demonstrate a practicable method

of performing multiple integration of a transducer output signal that will be applicable

un'der field-test conditions. To meet this objective, design data are given for several

varL.tions of the general integrition method presented, and an example of each variation

is demonstrated by obtaining dLiplacement from acceleration by double integration.

2. Gordon, J.D., "Analysis and High Frequency Conection of the Bar-Masnet Velocity Meter Reqions," David
Taylor Model Biad Report 2187 (Apr 1966).

A complete itnag of rdefltces is giveM O pale 51.
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APPROACH

Initial value and -startup problems w'll be surmounted by providing the integration

system with feedback so that steady-state motion will be reproduced at the integration

system output with the loss of very low frequency components only. The feedback

arrangement and parameters will be chosen so that transient motion due to the test will

be acwrately reproduced for a finite time after the beginning of the transient. The

steady-state requirements necessitate analysis of the iategration system from the viewpoint

of stability, and the tranuient requirements dictate the nature of the feedback used to

stabilize the integration system. If the stabilizing signal being fed back is the integrator

output delayed in time, the integral of a transient signal will be exact for a time interval

measured from the beginning of the transient and of duration equal to that of the feed-

back delay. After the duration of the delay, an exaggerated error is produced in the

integrated result as the output signal goes on to meet the requirements of stabity.

The feedback delay may be obtained in either of two ways or through a combi-

nation of both. The first is to interpose between the output and the feedback a network

having capacitors which must be charged by the output before the output signal may be

led back. Charging the capacitors requires time, resulting in a delay effect characterized

by a gradual increase in integral error. The second approach utilizes a tape-recorder

transport delay. As field-test results are usually recorded on magnetic tape, an efficient

use of equipment would be to use the tape recorder transport delay between the record

and reproduce heads to provide the feedback delay. This second method of obtaining

feedback delay introduces error only after the duration of the delay. A combination of

tape transport delay and capacitor network delay results in exact integration for the

auration of the tape delay, followed by a gradual deterioration in integral accuracy.

The ideas developed thus far are qualitative. Laplace transform transfer-function

techniques are used to derive numerical values for all parameters in the design of the

stable integration system. The basic design technique is to determine all design parameters

so that a transfer function appearing in the mathematical analysis will have the overall

characteristics of a unit delay. This transfer function is called the unit-delay approximation

and contains the transfer functions of both the network delay and the tape delay as well

as the integrator feedback parameters.

3



Through an investigation of a physical system described by a stable trainfer

Sfunction possessing a zero at the origin, it is shown that stable multiple integration may

be obtained, having any desired degree of accuracy for a finite time. Several integration

system deagns differing in the nature of their error will be presented. Two system deskns

exhibiting unidirectional error are fully treated; whereas, a thiud system design exhibiting

ripple error is discussed, and an example is given. The systems are investigated, using sn

analog computer, and the practicability of the integration method is then demonstrated

by fsing it to obtain displacement from an accelerometer. The double integration

involved is understood to take place simultaneously with the generation of the acceleration.

THE STABILIZING TRANSFER FUNCTION

PROBLEM OF INSTABILITY

The transfer function of nn initially quiescent linear system is def'med as the

ratio of the Laplace transform of the output to the Laplace transform of the input. The

system is stable if the output due to a finite-step input remains finite for all tkne and

is unstable if the output increases without limit.

The transfer function of the system accomplishing multiple integration is

El (s)

F2(s) s' (1)

where F (s) is the transformed signal to be integrated, and El(s) is the transformed

result of i integrations. The system described by Equation (1) is unstable. This instability

is the basic problem with integration.

Let the transfer function

- = F(s)
E1(s) (2)

possess a zero of order i or greater at the origin of the s-plane. With suitable selection

of F(s), the problem of instability may be eliminated without sunificantly affecting the

result of the integration of a transient by constructing an integration system which

possesses an overall transfer function. The transfer function is the product of correspond-

ing sides of Equations (i) and (2). Thus El(s), the transformed result of exact integration,

4



is imilnated. This elimination results in

Eo(S) 1

EI(s) s(3)

where Ej(s) is tui, vansformed signal to be integrated, and Eo(s) is the transformed outpuLt

The system described by 1quation (3) is stable because the zero at the oriin inhiereuo in

F(s) cancels the pole at the cz-iin contributed by I . Therefore F(s) is called thesi
stabilizing transfer function.

Equation (3) is not to be interpreted as describing two 'tinct systems in cascade.

Equation (3) is the trane-- finction of one system havino -, charac.teristics oi

two systems described by Equations (1) and (2) as ;f they were in cascade. The system

described by Equabon (3) may be regarded as performing the integration described by

Equation (1) and then passing the result through the sys',"n described by Equation (2).

However, these two operations are performed simultaneously, not individually. The form

oA' parameters of F(s) will be determined to meet the requirement that transients be

integrated as accurately as possible.

FORM AND PROPERTIES OF THE STABILIZING TRANSFER FUNCTIkN

Thrvee closed-loop systems, each consisting of one or more integrators with feed-

back; an adder, a tia3p Aport delay; and a network delay having poles only afe shown

in Figure 1. The' number of integrators with feedback shown for each system is j, and

the differential order of the system is k. The tranfer function of the tape-transport

delay is exp(-Os), and te transfer function of the network delay is

G(s) - J.
k
'Y J n5 -j
U~j

For each system shown in Figure 1, the transfer function between the input and
output of the adder is given by

k

Eo(s) R ;
- = F(s)

j.i k 4)]•l~s) exp(-8s) Jsae + 2 J~sp 4

W- heke 1,

e is the delay time of the tape transport, and

Jare coefficients to be determined.
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Equation (4 is the stabilizing transfer function. The numerator of Equation (4) his

a zero of order j at the origin of the &plane which cancels the 91 in the denominator ofi

k Equation (3) for values of i through j.

e-es G(s)

j 2

-E, (t) E0(t)

J3 3

Figure I The Analog Simulation of the Stabilzing Transer Function
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Assuming that the system described by Equation (4) is stable, application of the

final value theorem of the Laplace transform to the transformed step response of the.

system described by Equation (4) shows the characteristics of: the step response which are
independent of the values of the coefficients in Equation (4). Application of thistheoremn

shows that the step response and its integrl through the (j-)th integral approach zero as

time grows infinite. In order for the integral conditions to hold, the step response must

have appropriate amounts of positive and negative area. These areas are produced by an

oscillating response. The minimum number of oscillations possible in the step response

is that nwe sry to produce the minimum number of positive and negative areas so that

the integral conditions just described will hold. The minimum number of oscillations is

therefore determined by the order of the zero at the origin of the describing transferI •function.

When the number of oscillations present in the step response is equal to the

minimum determined by the value of j, the system will be called very stable. When

the number of oscillations is greater than the minimum but finite in amplitude, the system

will be called oscillatory. Since unavoidable oscillations occur in the latter time response

to an input step, the stcp may not be reprodu•ced at these latter times, wid atinition

must be focused on stop reproduction in the interval of dme immediately after the occur-

rence of the step.

COEFFICIENT DETERMINATION

Equation (4) may be given in the form

Eo(s) i- J

E( n=o j - k
XJ'sP + exp(Os),J~s' (5)

7



From Equation (5), it is seen that the output of the system described by Equation (4)
is equal to its input minus the responses of the input and iss first j-I consecuitive deriv-

atives (each weighted by--!. ) to the system described by the transfer functioer

Jo

E(s) Jo

EN(s) j-1 k (6)
2 JO + exp( os) J,
*,, gui

If the response of the system described by Eqation (6) to the input of the system

described by Equation (5) and its j- 1 consecutive dcrivatives is delayed in time. the out-

put of the system described by Equation (5) will be equai 1o its input for the duration

of the delay. Therefore the J coefficients will be deLermined by a criterion of approxi-

mation, which gites the system described by Equation (6) the essential character of a

unit delay. A variable delay may be obtained by time s,-aling

Equation (6) will be called the unit-delay approximation. It contains the tape

and network-delay transfer furetions a& wel as the integrator feedbac, parameters. When

all quantities in Equation (6) a3e specified, the stabilizing transfer func:tion is completely

determined. The criterion for unii-delay approximation will now be established.

After some manipulations with the MacLaurin series of the naturad log of

Equ, iimn (6), Equatijn (6) becomes

E3(s) exp__'•C~m" (7)E 4 S- • = e x p C s2 e x p N ' -- , I _~ w s r'-

where the C coefficients are functioms of the j coefficients and 0. By making C1 unity

and the next k-I consecutive odd-subscripted coefficients zero, k J coefficients are

determined, and Equation (7) may bt approximated by

E3 (s) [Pp ( C s2m) exto(-s)(

Es) jM

Since exp(--) is the transform of a unit delay, the unit imipulse response of the system

approximated by Equation (8) is the inverse transform of the function of s in the

brackets, shifted to the right one unit of time.

8



It can be shown that the doutble sided nyvee transfotm ofr -xp !2C~smS,(9)

where D.is chosen so that the area under the time fanction is unity, and the remaining

D coefficients are detennined stom the C coefficient. Expression (9) is similar to theI standard normal curve. Therefore the unit-impulae response of the system approxinated.

by Equation (9) may be regarded as a normal type of curve, centered about unit time.
As the order of the unit-delay aprimto increams, the norrnal type of curve becomes
higher and narrower, apprsaching a unit impulse delayed one unit of time. Thus it is

seen that use of the criterion selected to determine the J coefficients gives the system

described by Equation (6) unit-delay properties.
The J coefficients are readily evalluated in terms of n,0, and k if a set of linear

equations is solved which guarantees that conditions put on the coefficients of the odd

powers of s in Equation (7) are met. Me derivation of this set of linear equations follows.
Let the MacLaurin expaMnsion of the reciprocal of Equation (6) be given by

1-i j. k T c
X~!SO+ exp (es)2X

-O"o 2 JO " (10)

Combining Equations (!0) and (7) yields

00

'5 B~sa = ej M(11)
8=0 )

where Bo= 1. It may be shown that when C, = I and the next k-I odd-subscriped

C coefficients are zero,

-~=B2-B 3
I=B

- 3-3B4+3BS
Is

I Za-

-- =• (-l)r&-A 2 .,, 3 .- B.

=1,2, ..- , k (12)

wher', the A coefficients are seen to be the Bessc Polynoaial coefficientsW and are given by

2Pa (20-a)!

keftance 3 - Kird ILL aad Or" Frink, -A New COSa of OtdhogosI ?elyumF "i The Po 5 yFiOiR
Ttrmtiow of te America Mathema.tir Society, VoL 6S, No. 1. pp. 100-107 (Jt 1949).
A complet list of refeves is gShen a papl 51.
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lbe Bcoefficignts may be Siveminterm of die J codl defIs ad by

J4,k
'06-T j (13)

Sablutitomd of Eqain(13) in Equalioux (12) gives
2n-1J

A,, , .- t I~

The excpeimo of Equaftmo (14) *ves k lis~simnitalneots equationa in k unknown J

coeffciet ratims After spsaiyig a pardfrular vWlue of 8, thme equations nay be solve

for the J awofficiesits comiePorAinS to that vAIue of 9.-

MAC LAURIN SYSrEM

A system designed freo a unitd""a appVoximation having zero 0 will be called a

MacLmurin syst-m. Solution of Equations (14) for zero *ies the J coeffiacieuis forMwactwin

systemi dire*-y Thoy wre

.1,= A,~, 28(2&-n)! (S

Tabie 1 lifts the i coefflcimnts for MacJAunrin systenis A~th k rnging from I to t0.

TAPE-DELAY SYSTEN

A system designed from a unit-delay approxilration havng 0 greater tha zeo

vii be calle a tape-delay system. The .tolution of Equation (14) with 0 varied Jhows

that if (k~j) ig odd. Jk!Jo Pm~as thOungi zero 8onug negtive n 0 is icmaed. The

system i s very stable until insftablty -ccuns with the chaW ng Sm spOf Jki~o- Tbrfr

9 masy not be fulthe incresed For the -ujue of k and 9 pru~haw* zero/e-t

to



remaining J coefficient ratios are equal to the J coefficient ratios calculated for the next

lower order and the same vadui of 0. Th•s tvro adjacent orders give the sone unit delay

approximation for a certin value of 0. As 0 is increaed from this value, the lower of

the two orders becomes oscillatory. Therefore the value of 0 producing zero Jk/Jo for

(k-j) odd is the optimum value of 0. Fqr 0 optimum Table 2 lists 0 and the correspond-

ing J coefficients for the first three values of j with k ranging from j to 10.

STEP RESPONSES

Now that the J coefficients have been determined, and the stabiliz 14• •mrer

function of Equations (4) and- (5) is completely defined, the characte-istics of the stabi-

lizing transfer function will be studied through an"og simulation.

Figure 1 shows the analog simulation of the stabilizing transfer faw-tion for

the fust three values of j. By recording the output of the adder, or magnetic tape, and

by sinultaneously playing the output back into the input of the simulation of G(s), a

signal delay equal to the time required for the tape to pass from the record head to the

reproduce head will be obtained. Further delay in the MacLaurin sense is obtained with

the simulation of G(s). For convenience in simulation, G(s) aray be factored ani given

ui the form

L [±2_W2
G(s)=- -(i,6)

s+L 2=1  s2+24Tcoas+ca (6

where ;he brackets indicate fractions are dropped. Table 3 gives the parameters of

Equation (16) for the MacLaurin systems of Table 1 for the first three values of j.

Table 4 gives the parameters of Equation (16) for the tape-delay systems of Table 2.

Figures 2 through 4 are step responses of the MacLaurin system obtained by analog

simulation for j = 1,2. and 3, respectively, with k ranging from j to 10. Figures 5

through 7 are the initial portions of Figures 2 through 4. respectively, with scales

expanded. Figures 8 through 10 are step responses, obtained by analog simulation of

the tape-delay systems given in Table 2 for j=l, 2. and 3, respectively. Figures I I

through 13 are the initial portions of Figures 8 through 10 with scales expanded.
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TABLE 3 - NETWORK DELAY PARAMETERS FOR MAC LAURIN SYSTEMS

L u•

1 2 3.000000

S1 3 g 1 0,77459 3,87298

1 4 5.23548 1 0*53195 4.47833

S1 5 g 1 0*90889 6.20638

2 0.37533 4.95309

1 6 7o47150 1 0.75293 6.99220

2 0*28101 5,33374

1 7 j 1 0.99157 6*49114

2 0022662 5*62449

3 0.60353 7.69695

1 8 9.71062 1 0.85382 9e36765

2 0.19545 5.82274

3 0&47852 8.37620

1 9 be 1 0997008 10075576

a 0&17485 5.94)09

3 0.74550 10.15438

4 0.38222 9.04371

10 11.95128 1 0.90399 11.68398

2 0015848 6.01739

3 0*64199 10o88054

4 0.31245 9.67548

1 11 1 0997971 13.01182

2 0.14466 6o06790

3 0.82407 12052995

4 0.54853 11.56306

5" 0.26397 10.25041
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TABLE 3 - (Continued)

OF

2 3 .600000

2 00 1 0.74535 4,70829

2 5 8.45663 1 094c424 70&75I 6 1 0.90217 9042144

2 0.27415 7#29591

2 1 10.85906 1 0.75660 10011039

2 0.14983 7.49589

2 G o 1 0.94892 11069864

2 0.06739 7o65384

3 0.57991 10.67960

2 9 13.23045 1 0*04635 12973167

a 2 0.01137 7.77140

3 0044868 11.18927

2 10 11 0096873 14.30217

2 -0.02807 7085238

3 0.73319 13.44594

4 0034;50 11.66218

2 11 - 15.50l- 1 0089990 15.21222

2 -0005716 7.90414

3 0062528 14008670

4 0.26137 12.10229

2 12 c 1 0.97892 16.66992

2 -0.07961 7*93525

3 0*81690 16.01552

4 0019806 12.50480

5 0.52815 14.67993
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TABLE 3 - (CouttidW)

3 4 10.00000

3 so 1 0.7319210295

ER 6 12.25375 1 0943126 10914029

3 7 40 1 0.69364 13.07732

2 0.2233$ 10.06909

3 S14.61066 1 0*72696 13.55985

2 0.08637 10.03011

391 0.94736 109.9357

2 -0.01260 106010101'3 0.56596 13#92430

3 10o 16*98404 1 - 0.64183 16031$36

2 -0@06046 10600638

3 0.42662 14.24218

3 10*96791 16.03169

2 -0.12984 9.99882

3 0.72S27 16.90923

4 0.31514 14.53723

3 12 19.35499 1 0o69732 1.7612 -0.16664 9.998431

3 0.61404 17.42477

4 0.22595 14.81309

13 ca1 0.97642 20.43492

2 -0.19541 9.96451

3 0.31221 99.603%3

4 0.15497 15.07403

5 013217.69909
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TABLE 4-NEMWRK DELAY PARAMEFERS FOR TAE4)ELAY SYMI~M

k 0

1 0.37060 2 O2812V 9684169"

*15 0.35000 2 0. 14074 4.04411

2 0945643 11.07394

1 7 0033850 1 0.09902 6.18050

2 0.24384 11.33719

s 0*50021 164.4313

--1 9 0.33110 1 0.07862 6.22178

2 0.16293 11.68626

3 0.35320 14.093??

4 0.04154 22.12326

2 4 0.24470 1 0.16144 6*32Z38

2 6 0.25470 1 -0.04430 8001464

2 0.41637 14.48754

2a 0.26100 1 1.-0.12089 7.96906

2 0. 17171 13.80240

3 0.56014 20.41346

2 10 0.24530 1 -0015793 7.94908

2 0.05266 13.94195

3 0.32091 19.21329

4 0.44652 2.685772

3 5 0.17440 1 0.10727 11.41247

3 7C9501 -0.15246 10.32455

I2 0.39593 / 18.45"64
3 9 0.2099C 1 -0.23045 10.01*61

a 0.13032 14.72468

13 0.54732 25.20036

19



C R

200

C.-.

S I I

;- 0 0

_ _F

z:w

%V



__________ ___________________________ _______________

I
I
I

i

I
F

0

PS

0 J.l

I;

0i4 a
II

*1 U,

* A
F

0

U,

if)

e cm cm
0

* I

21



*m 1.09=

-1.0 k3 k! -

02.0 20&

Figure 4 - Step Responses of MacLaurin Systems with j=3
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A comparison of the step responses shows the manner in which oscillations

between the initially flat portion of step representation and the eventual zero value increase

with increasing order of the system transer-function zero at the origin. It has previously

been shown that these oscillations must be present so that the first (j-I) consecutive integrals

of the step response will approach zero with wreaing Sme. The figures show that by

increasing the order of the sy..6m, the duration for which the output follows the step

input is increased. It i& apparent from the f1pres that for a given value of j, improvement

occurs at a decreasing rate as order is increased. However, for a given deviation from the

exact step, percentage improvement between two pin consecutive values of k increases

with the value of j.

THE STABILIZING-SYSTEM RESONANCE

From a study of the unit-step responses., it is seen that the amplitudes of the

excurions'the signal takes grow with order k and order of system zero j, after the

initial intervals of step transmission. A transient response of this nature implies a resonant

buildup of output at certain input frequencies. The stabilizing-system output may be a

steady-state signal such as that produced by water wave motion of a ship at sea. To avoid

resonant distortion of the output, the stabilizing system must be designed to put the

resonance region at frequencies lower than those of interest in the moion. To provide

information about resonant buildup, the steady-state sinusoidal frequency responses of the

MacLaurin stabilizing system for j=1, 2, and 3 are given, respectively, in Figures 14

through 16 for crders j through 10.

TIME SCALING

The duration for which the output follows the step input may be vstied by time

scaling the stabilizing system. Time scating is accomplished by substituting Tp for r in

the describing tramnfer function and simulating the result. The delay time of the resulting

system is the time-scale factor T. By multiplying the time axis of the step responses by

T and by dividing the angular frequency axis of the frequency responses by T, the

responses of time-scaled systems are obtained,
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THE STABLE INTEGRATION SYSTEM

ANALOG SIMULATION

With reference to Equations (3) and (4), it is seen that the transfer function of

the time.scaled stable integration system is

eJn(TP)p

j k(17)
i) exp(-OTp) J,(Tp)U+2 Ji(Tp)n

n=0 -=j

where Tp i3 substituted for s it the stabilizing transfer function. Figure 17 shows the

analol; simulation of Equation (17) for the first three values of i and j. From Figure 17

it is seen that the value of i deterraines the integrator into which the input is fed, i being

less than or equal to j. The value of j-i) determines the final value of the output for

a given constant, i imp, parabolic, etc, input.

When (j-i) = 0, the final value of the output for a constant input is a constant.

When (i-i) = 1, the firal value of the outpat for a constaat input is zero. If the transient

to be multiply integrated has an additive constznt, the output of the integration system

having (j-i) = I will be ind--pendent of this constant.

APPLICATION TO MOTION MEASUREMENT

The practicability of the stable multiple integration system way be demoistraied

by using the system to obtain displacement by double integration of an accelerometer

output. The accuracy of the integiation system may be verified by comparing the result

to a direct measutement of the displaicement. Figure 18 is a picture of an accelerometer

attached to a linear potentiometer and constrained to move wvithout rotation along a

guide. The displacement of the accelerometer as it is moved along the guide is measured

directly by the potendometer and indirectly by double integration of the acceleromter

output using an integration system. The integration systems demosstrated will have

i=2 and jP3. Since 4j-i) = 1, the output is independent of accelerometer zeto shifts and

attdrade changes taking place after the electronics start but well before the initiation of

the motion.
36
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Figure 1S - Apparatus for die Direct and Indirect Measurement of Displacement
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MAC LAURIN SYSTEM

Figure 19 is the analog simulation diagram of the ninth order MacLaurin system,

time scaled for T=27.4. Figure 20 shows graphs of displaement obtained simultaneously

from both the potentiometer and the doubly integrated accelerometer as the accelerometer

is moved along the guide. A comparison of these two grapi shows the manner in which

error accumulates in the doubly integrated accelerometer output when a MacLaurin system

is used. Theoretically, for a MacLaurin system, error accumulates starting at the beginning

of the motion. However the error accumulates very gradually and only becomesiri-

cant at later times For a step displacement, the system being demonstrated accumulates

an error of approximately 0.75 percent at S sec.

TAPE-DELAY SYSTEM

Figure 21 is the analog simulation diagram of the ninth order tape-delay system

with 8=0.2095 sec and T-27.4. Figure 22 shows graphs of displacement obtained simul-

taneously from both the potentiometer and the accelerometer double integral. From these

graphs it is seen that discernible error does not ascuimulate untl about 10 sec after initi-

ation of motion. This 10 sec of double integration is the sum of 5.74 sec of exact double

integration, controlled by the tape-transport delay, and 4.26 sec of double integration

with gradually increasing error, controlled by the network delay.

39
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i Figure 21 - The Tape Delay Double lntegration System
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ALTERNATIVE SYSTEMS

PADE' EXPANSION OF exp(-Os)

In the preceding systems, the physical device having the transfer function exp!-Os)

was the tape transport. A completely electronic approximation of exp(-0s) may be obtained

by using the Pade' expansion' of exp (-Os), having numerator and denominator polynomimis

of equal degree. This lade' expansion is given by

exp(-Os) '1t; q io\ (18)

2 A. q S

where q is the degree of the numerator and denominator polynomials of the expansion.

and the Anq coefficients are the same as appear ;-I Equations (12). A.Vhen the right4-and

side of Equation (18) is given as e raised to a power series in s, q-1 consecutive odd

powers of s after the first are zero as in Equation (8). Therefore the Pade' expansion of

exp(-Os), having numerator and denominator polynomials of equal degree satisfies the

criterion of delay approximation previously established.

RIPPLE SYSTMIS

When design data for tape-delay systems are used with the simulation of

Equation (18) replacing the tppe-transport delay, :he resulting integration system has an

output with osciating error in the initial time interval. By increasing q, the amplitude

of the error oscillations are reduced and may easily be made rnegligile. Since the output

recording device is not used as part of the integration system when the simulation of the

Pade' expansion replaces the tape transport, an additional feedback may be made at the

input of the exp(-Os) samulation, resulting ip an increase in the time interval of inteqr-

tion. A system, differen, from the tape-delay system already treated, results from adding

the extra feedback. thus, a new urdt-delay approximation must be derived, andl its vara-

meters must be determined using Equations (12).

RWWWc '- -ThrraI. John G. A-Atonu"ti Fem*b Centr Sysum Synummjs, McGrmuw44 Bsock Co.. Ira
Nflw Yoft, N.Y.I (1966) P.548.

A complete list of references is given on page $I.
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As an exnample of an integration system having ripple error, the system having

the additional feedback will be treated using an output signal delay consisting of the

simulation of the fourth degree Pade' expansion of exp(-Os), followed by a second

order network delay having poles only. Figure 23 is the analog simulation diagram of

the double integration system with j=3. The unit-delay approximation analogous to

Equation (6) for this system is

3(S) Jo
E4(s) Jo+ Js+J 2 s2+s3p 3 +(J4 +J s+s2).eXps

where

Jo = 8.247
J, = 8.247

J2= 3.915

3= .16649
J4 = 129.14
s= -. 8959 and

0 = .2497

are determined from Equations (12). When a delay of 0 seconds is approximated by

simulation of

2 SY +(p )4ex(-s 2o. ( 3) 4O
105 + 0 oS(f 45 ()+ 10

the output step in the initial interval has an oscillating error of only 0.25 percent as

shown in Figure 24. If a higher degree Pade' expansion for the 0 delay had been simu-

lated, the number of oscillations in the interval of step representation would have increased

and their amplitide wouid have decrnased.

Figure 25 shows the results of ai accelerometer double integration test using the

ripple systemt example shown in Figure 23 with T-27.4. From Figure 25 it is seen that

ripple error is negligible for about 9 sec after the initiation of the motion. After the

lapse of 9 sec. the respense goes on to meet the requirements of stability in the same

manner as in. the previous systems discussed.
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-DICUSSiON

The success achitxed m obtaining displacemet by doubly integrating an acceler.-
omerter outpaut shows that thne stable integration method works, using 2he feedback arrange-

mets tried. Using thne tape-recorer tsansport delay in tihe integration s'stem moults in

a dia~'~record having no error fo.; the duration of the transport delay; however,

wsing the network delay alone gives a satisfactory record, even thoughn asor buMl up

from the beginraing of the motion. 'This buildup oi ~ri'~eygaula fltst and As

kept within acceptable limits by raising system order and by time- scxling

When quasi-peiodic tramuinme motion is present the integration system resonanice

must be coraidered in tihe system design. Tisb consideiration affects; the selection of

system oirder md tie scalfn and, therefore system mwor The resonance of the system

is hxiceawed when the erroc is reduced by raising system order. and the se-aling time of

the system is increased wh--n the a-'or is reduced by time scaling. No matter how error

compromises awe nade, Sv requitetnents of stabffity introduce loag tirw en or.

inclusion of a tspe.Sraqxwot delay in the "e edback araneent may be regarded

as a mathematical design technique. assring zero error for the duration of the delay.

'The actual ftansport deay Ices not have to be pnsent. It can be approximated electron-

ically, resulting in an integration system having oscilladn~ error.

Three of tht main factors involved in selecting a particular integmt~on system

design are quantity of electronics needed for fabrication, reliability, rnd system error. Of

the three analyzed the taoe-delay system requires the raost eq~iment and the most

mntenance. The tape transport is inherently less reliable than conp'ete!y electiotic

dericms However the tape-delay system has the minimum error of the -)ystems discussed

since its produces no erro for the duration of the transport delay. The MacLaurin

system requires the least equipment and is thne most reliable. The disadvantage is that

it has the smallest ratio of useful-to-settling timne of the systems diswussi. The ripple

systemas discussed are completely electronic versions of systens which could also eunpboy

a tape-transport delay. The amount of ripple e-ror depe-nds on the feedback arrnmgemen!v

as well as !hne quantity of %iectronics used to simulate the tapýý.tramsport delay. When

simulation of the tap-transport delay as followed by a s~econd order filter. the ripple

error is attenuated to an acceptable level. The feedback arrangement of ripple sys tems

49



must be built to closer tolerances than are required for tape-delay and MacLaurin sys.ems.

However, the larger ratio of useful-to-sett1rng time obtained with ripple systems may be

worth the additional effort required to achimve those tolerances.

SUMMARY

Using delayed feedback to stabilize electronic integrators, allows the integrators

to produce an accurate multiple integral of a transient elecirical sigW without it being

necessary to start the integrators at the beginning of the signal. Although transient eiec-

trical signals of any origin may be integrated, using the integration method prsented, the

method is particularly applicable to the integration of electromechanical transdtmca-output

signals simultaneously with their generation. The broad range of integmtion system design

dat.i given enables the designer of measurement systems to match the most suitable intW-

gration system with the transducer sensing the quantity whose integral is desired. The

most apparent application of the integration method lies in the area of absolute motion

measurement using inertial instruments. The design procedures and techniques presented

herein are directly applicable to measurement systems designed to be used in explosion

experiments and provide solutions to critical problems associated wit' designing such

systems.
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