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ABSTRACT

Designing and testing damage-resistant Navy shiys requires sncasurement
of absolute ship motion caused by attacks from raives, depth charges, torpedoes,
etc. This report gives a method of designing ciectronic integration systems,
stabilized by feedback, which may be used to obtain absolute ship motion by
integrating acczlerometer outputs. Design data are given for several varistions of
the general integration method presented, and an example of each variation is
demonstrated by obtaining displacement from acceleration by double integration.

ADMINISTRATIVE INFORMATION

The work presented in this reponi was begun under Defense Atomic Support
Agency Project Number K-11BAXN, Task Area X501 and was completed under Navy
Pioject Number S-F35.422.110, Task 15050.

INTRODUCTION

BACKGROUND

Navy ships and equipment must be designed to resist damage from underwater
explosions due to mines, depth charges, torpedoes, etc. The design of damage-resistant
ships and equipment which meet Navy shock and vibration specifications requires know-
ledge of the relatiouship between underwater explosions and damage. To cobtain this
knowiedge, dynamic measurements of such mechanical parameters as displacement, velocity
and scceleration must be made dusring underwater explosion experiments on ships. The
severe shock environment in which sensing devices must cperate and the lack of con2n-
ient stationary references for measurements of absolute motion during the experiment
create uniqae instrumentation problems in underwater explosions work. This report deais
with the problem of absclute motion measurement during explosion experiments and
presents a solution to critical aspects of the problem.

During past underwater explosion tests, velocity and displacement measurements
at various locaticzis on the target ship have been made inertially by seismically correcting’

i }‘Vo!k:;.sg.)k., “A Procedure for the Correction nf Velocity Meter Reconds,” David Taylor Model Basin Repont 1980
Jun A

A complete listing of references is given on page 51.




and integrating the output of velocity meters’ and photographically by using fixed refer-
ences. The limited displacement range of velocity meters and the problem of providing
a stationary camera and reference for photfographic measurement have shown a need for
developing better methods for making these motion measurements.

Until recently accelerometers have not been available that have characteristics
suitable for accurately sensing ship motions. However recent improvements in svailable
accelerometers allow their use in many situations. These accelerometers provide a voltage
output proportional to the sensed acceleration. Velocity and displacement may be obtained
from the measured acceleration by integration and double integration, respectively. For
the time duration required in underwater exnlosions work, the dynamic ranges of most
general purpose instrumentation tape recorders are not large enough to record acceleration
with the accuracy needed for accurate integration and double integration. Therefore the
integration process used must operate directly on the signal generated. Since the acceler-
ometer has a volitage output, it may be dirertly integrated using electronic integrators.
Velocity and displacement initial values and the acceleration component due to gravity
are unknown because target motion prior to the test is present. Therefore open loop
operation of the integration system, which requires stariing the integrators with correct
initial values immediateiy before the test, is not practical. A pracucal integration system
must be capable of being started sometime ahead of the test so as to automatically

determine velocity =nd displacement initial values at the beginning of the transient
acceleration integrated.

CBJECTIVE

The purpose of this report is to present and demonstrate a practicable method
of performing multiple integration of a transducer output signal that will be applicsble
under field-test conditions. To meet this objective, design data are given for several
varintions of the general integration method presented, and an example of each variation
is deinonstrated by obtaining displacement from acceleration by double intvgration.

2. Gordon, J.D., “Analysis and High Frequency Cormection of the BarMagnet Velocity Meter Response,” David
Taylor Model Basin Report 2187 (Apr 1566).

A complete listing of references is given on page 51.
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APPROACH

Initial value and startup problems will be surmounted by providing the integration
system with feedback so that steady-state metion will be reproduced at the integration
system output with the loss of very low frequency components only. The feedback
arrangement and parameters will be chosen so that transient motion due to the test will
be accurately reproduced for a finite time after the beginning of the transient. The
steady-state requiresnents necessitate analysis of the integration system from the viewpoint
of stability, and the transient requirements dGictate the nature of the feedback used to
stabilize the integration system. If the stabilizing signal beinig fed back is the integrator
output delsyed in time, tl:e integral of a transient signal will be exact for a time interval
measared from the beginning of the transient and of duration equal to that of the feed-
back delay. After the duration of the delay, an exaggerated error is produced in the
integrated result as the output signal goes on to meet the requirements of stability.

The feedback delsy may be obtained in cither of two ways or throvgh a combi-
nation of both. The first is to interpose between the output and the feedback a network
having capacitors which must be charged by the output before the output signal may be
fed back. Charging the capacitors requires time, resulting in a delay effect characterized
by a gradual increase in integral error. The second approach utilizes a tape-recorder
transport delay. As field-test results are usually recorded on magnetic tape, an efficient
use of equipment would be to use the tape recorder transport delay between the record
and reproduce heads to provide the feedback delay. This second method of obtaining
feedback delay introduces error only after the duration of the delay. A combination of
tape transport delay and capacitor network delay resuits in exact integration for the
duration of the tape delay, followed by a gradual deterioration in integra! accuracy.

The ideas developed thus far are qualitative. Laplace transform transfer-function
techniques are used to derive numerical values for all parameters in the design of the
stable integration system. The basic design technique is to determine all design parameters
so that a transfer function appearing in the mathematical analysis will have the overall
characteristics of a unit delay. This transfer function is called the unit-delay approximation

and contains the transfer functions of both the network delay and the tape delay as well
as the integrator feedback parameters.
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Through an investigation of a physical system described by a stable transfer
function possessing a zero at the origin, it is shown that stable multiple integration may
be obtsined, having any desired degree of accuracy for a finite time. Several integration
system designs differing in the nature of their error will be presented. Two system designs
exhibiting unidirectional error are fully treated; whereas, a third system design exhibiting
ripple error is discussed, and an exsmple is given. The systems are investigated, using an
analog computer, and the practicability of the integration method is then demonstrated
by using it to obtain displacement from an accelerometer. The double integration
involved is understood to take place simultaneously with the generation of the acceleration.

THE STABILIZING TRANSFER FUNCTION
PROBLEM OF INSTABILITY

The transfer function of =n initially quiescent linear system is defined as the

ratio of the Laplace transform of the output to the Laplace transform of the input. The

system is stable if the output due to a finite-step input remains finite for all tiinz and

is unstable if the output increases without limit. R
The transfer function of the system accomplishing multiple integration is

El (s}
E,(s)
where E,(s) is the transformed signal to be integrated, and E,(s) is the transformed
result of i integrations. The system described by Equation (1) is unstable. This instability
is the basic problem with integration.
Let the transfer function

i
T

(1

E,(s)

r— ()

E1s) @
possess a zero of order i or greater at the origin of the s-plane. With suitable selection
of F(s), the prublem of instability may be eliminated without siynificantly affecting the
result of the integration of a transient by constructing an integration system which
possesses an overall transfer function. The transfer function is the product of correspond-
ing sides of Equations (1) and (2). Thus E,(s), the transformed result of exact integration,

4
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where E (s) is the *ransformed signal to be integrated, and E,(s) is the transformed cutput
The system described by Yquation (3} is stable because the zero at the origin inherent in
F(s) cancels the pofe at the crigin contributed by-:-i . Therefore F(s) is called the
stabilizing transfer function.

Equation (3) is not to be interpreted as describing two ditinct systems in cascade.
Egaation (3) is the iransfer fisnction of one system having oveszll characteristics o1 i
two svstems described by Equations (1) and (2) as *f they were in cascade. The system
descrited by Equaion (3) may be regarded as perisrming the integration described by
Equation (1) and then passing the result through the sysic:n described by Equation (2).
However, these two operations are performed simultaneously, not individually. The form
304 parameiers of F(s) wil be determined t:: meet the reguirement that transients be
integrated 2s accurstely as possible.

FORM AND PROPERTIES OF THE STABILIZING TRANSFER FUNCT:ON

Three closed-loop systems, each consisting of one or more integrators with feed-
back; an adder; a {ape-txansport delay; and a network delay hav.ng poles only are shown
in Figure 1. The number of integrators with feedback shown for each system is j, and
the differential order of the system is k. The transfer function of the tape-transport
delay is exp(-0s), and the transfer function of the network delay is

G(s) = -— Ji
k
¥ Jsmi

asj

For each system shown in Figure 1, the transfer function between the input and
output of the adder is given by

k
3 8"
Eo(s) ‘Zgj *
=Fe) = i1 k
Ey(s) exp(-0s) z I I Z 3, 4)
aso o=j

where J, =1,
g is the delay time of the tape transport, and
J, are coefficients to be determined.




Equation (4) is the stabilizing transfer function. The numerator of Equation (4) has

Equation (3) for values of i through j.

gt R Gt A L e i A A

‘E; t) Eo(t)

TAPE NETWORK
% OELAY DELAY" |
e-Us G(s)

3 Ejt)y  Egt)

NE‘IWORJ
|| DELAY

Gts)

a zero of order j at the origin of the s-plane which cancels the & in the denominator of!

E(M  Ev)

TAPE NETWORJ
DELAY DELAY

eOs GLs)

Figure 1 - The Anslog Simulation of the Stabilizing Transfer Function




Assuming that the system described by Equatior {4) is stable, application of the
final value theorem of the Laplace transform ‘to the transformed step response of the.
system described by Equation (4) shows the characteristics of; the siep response which are
independent of the values of the coefficients in Equation (4). Applicati&n of this .theorem
shows ﬁat the step response and its integrals through the (j-1)tb integral approacht zero as
time grows infinite. In order for the integral conditions to hold, the step response must
have appropriate amounts of positive and negative area. These areas are produced 'by an
oscillating response. The muumum number of oscillations possible in the step response
is that necessary to produce the minimum number of positive and negative areas so that
the integral conditions just described will hoid. The minimum number of oscillations is
therefore determined by the order of the zero at the origin of the describing transfer
function.

When the number of oscillations présent in the step response is equal to the
minimum determined b)} the value of j, the system will be called very stable. When
the number of oscillations is greater than the minimum but finite in amplitude, the system
will be called oscillatory. Since unavoidable oscillations occur in the latter time response
to an input step, the step may not be reproduced at these latter times, and atizntion .
must be focused on step reproduction in the interval of tme imx.nediately after the occur-
rence of the stép.

COEFFICIENT DETERMINATION

Equation (4) may bé given in the form

E,(s) _ i1 Jn‘ 58 I
O S et explos Y Ias )
a=0 ) n=j )




From Equation (5), it is seen that the output of the system described by Equation (4)
is equal to its input minus the responses of the input and its first j-1 consecutive deriv-
atives {(each weighted by ;L) to the system described by the transfer functiow

[}

E3(S) _ I,
Es) i K (6)
TS 5+ expl g9 I8
aA®0 =}

If the response of the syst:m described by Eqi.ation (6) to the input of_ the system
described by Equation (5) and its j- 1 consecutive derivatives is delayed in time, the out-
put of the system described by Equation {5) will be egual io ixs input for the duration
of the delay. Therefore the J coefficients will be deiermined by a criterion of approxi-
mation, which gives the system described by Equation (6) the esszntial characier of 2
unit delay. A variable delay may be abtained by timc scaling.

Equation (6) will be called the unit-delay approximation. It contains the tape
and network-deiay transfer furctions as well as the integrator feedbac« parameters. When
all quantities in Equation (6) are specified, the stabilizing transfer function is completely
determined. The criterion for unii-delay approximation will now be established.

After som:e manipulations with the MacLaurin series of the natural log of

Equziin (6}, Equation (6) becomes
E(

5) oo -} AN
= - 2m -5 2m-1
B P\, G )e"p( = Camar ) (7

\m-‘-l

where the C coeliicients are functions of the ! coefficients and § . By making C; unity

and the next k-1 consecutive odd-subscripted coefficients zero, k J coefficients are

determined, and Equatior (7j may bc appro<imated by

E,(s k
3 ~lexpl =3 €y, 2™ -] exp (-s) (8)
EA(S) el J !

Since exp(-s) is the transform of 2 unit delay. the unit inspulse response of the sysiem

approximated by Eguation {8) is the inverse transform of the function of s in the
brackets, shifted to the right one unit of time.

—




It can be shown thar the double sided inverze transform of

k
X C,¥%) is D, exp D, _9m
p(-z-x o ) ’ \2:1 = ) )

where D, is chosen 50 that the area under the time function is unity, and the remaining
D coefficients are determined srom the C coefficients. Expression (9) is similar to the
standard normal curve. Therefore the unit-impnlse response of the system approximated.
by Equation (&) may be regarded as a normal type of curve, centered abeut unit time.
As the order of the unit-delay approximation incresses, the normal iype of curve becomes
higher and narrower, apprcaching a unit impulse delsyed one unit of time. Thus it is
seen that use of the criterion selecteC to determine the J coefficients gives the system
described by Equation (6) unit-delay properties.

The J coefficients are readily evaluated in terms of n,0, and k if a set of linear
equations is solved which guarantees that conditions put on the coefficients of the odd
powers of s in Equation (7) are met. The derivation of this set of linear equations follows.

Let the MacLaurin expansion of the reciprocal of Equation (6) be given by

L (9$§ Y. . E
— exp —3=) B,s*
-zo o az=j ’0 n=0 * (10)

Combining Eguations (10) and (7) yields

20
Ysﬁ—exp ZCS) (an

f=e a=1

where B = 1. It may be shown that when C; = 1 and the next k-1 odd-subscripted

C coefficients are zero,

1=8,
! .
3= BB
1
L= B;-3B,+3B;
201
—_— =Z ('n=-.A2!!-l--,-~18-
o,n - S
=1, 2.k (12)
wher= the A coefficients are seen to be the Besscl Polyno.iial coefficients’ and are given by
_ 2%(2pa)!
Agg =
Pat(Ba)!

Reference 3 - Knall, H.1. and Orrin Frink, “A New Clax of Orthogoast Folynomials: The Bessel Polynomisls,”™
Transactions of the American Mathematicd Society, Vol. 65, No. L. pp. 100-107 (Jan 1949).

A complete lList of references is given om page S1.
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‘the B coefficients may be given in terms of the J coefficients and 0 by

% .
B, = -i-—' oe<u<jl

k ¢ )
. gey 3, (13)
B o et uzv s
Substitution of Equations (13) in Equations (12) gives
1 2a-} I, .
———u) 1" A i, ael N I<3
on L ]
) =1, -o-oi" (l‘)
k 2a»-1 .
e
""}""gz Z {-1)*# AZI-l'U.lol_—_' L
A.,‘ ¥xj p=a !,
2%, ...k 3>y

mwﬁmﬁm(!4)mkMMMmﬁmhknmons
coefficient ratios. After specifying a particular value of 0, these equations may be solve
for the J coefficients correspording to that value of 4.

MAC LAURIN SYSTEM

A syster designed from a unit-delsy approximation having zero 0 will be called 2
MacLsurin syst=m. Solution of Equations (14) for zero gives the J coefficier:ts for MacLaurin

systems directly. They are

2{2k-a}!
fmAgy s TE2E
* Zal{x-n) (i5)

Table 1 lLists the J coefficisnts for MacLaarin systemss with k ranging from 1 to 10.
TAPE-DELAY SYSTEM

Asysmddgnedfmm&unit-ddayappmximaﬁonhxﬁ!gegmwth:nm
will be called a tape-delay systen. The solution of Ecuations (14) with @ varied shows
that if (k§) i odd. Ji/J, passes through zero, going negative a8 0 i increased. The
system is vesy stable untl instsbility accurs with the change in sign of Ji/ly- Therefore
9 may not be furthes increased. For the value of k and ¢ producing zerd Ji/l¢. the

10




i S TR Rk A A s

f
i
i

v
AR AT B

remaining J coefficient ratios are equal to the J coefiicient ratios calculated for the next
lower order and the same valus of §. Thus two adjscent orders give the same unit delay
approximation for a certsin value of . As @ is increased from this vaine, the lower of
the two orders becomes oscillatory. Therefore the value of 6 producing zero Ji/J, for
(k-j) odd is the optimum value of 5. Fer & optimum Table 2 lists § and the correspond-
ing J coefficients for the first three values of j with k ranging from j to 10.

STEP RESPONSES

Now that the J coefficients have been determined, and the stabilizisg trasfer
function of Equations {4) and (5) is completely defined, the characteristics of the siabi-
lizing transfer function will be studied through analog simulation.

Figure 1 shows the analog simulation of the stabilizing transfer fan-tion for
the first three values of j. By recording the outpur of the adder, or magnetic tape, and
by simultaneously plzying the output back into the input of the simulation of G(s). a
signal delay equal to the time required for the tape to pass from the record head tc the
reproduce head will be obtained. Further delsy in the MacLaurin sense is obtained with
the simalation of G(s). For convenience in simulation, G(s) inay be factored anl given

m the form
[k-} i
2
L 2 [#;

O S e (16)

where the brackets indicate fractions are dropped. Table 3 gives the parameters of
Equation (16) for the MacLaurin systems of Table 1 for the first three values of j.
Table 4 gives the parameters of Equation (16) for the tape-delay systems of Table 2.
Figures 2 through 4 are step responses of the MacLaurin system obtained by analog
simulation for j = 1,2, and 3, respectively, with k ranging from j to 10. Figures §
through 7 sre the initial portions of Figures 2 through 4, respectively, with scales
expanded. Figures 8 through 10 are step respcnses, obtained by analog simulation of
the tape-delay systems given in Table 2 for j=1, 2, and 3, respectively. Figures 11
through 13 are the initial portions of Figures 8 through 10 with scales expanded.

11
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TABLE 3 - NETWORK DELAY PARAMETERS FOR MAC LAURIN SYSTEMS

|

i k L n $a wg
1 2 3400000 '
1 3 o 1 0077459 3087298
1 . 5423548 1 0053198 4047833
1 5 o 1 090829 6220638
2 0037533 4095309
1 6 Te47150 1 0075293 099320
2 0428101 5433374
1 7 - 1 095157 8.49114
2 0422662 5462669
) 3 0460353 7069698
1 s 9471062 1 085382 9436763
2 0419545 5482274
3 0447852 8437620
1 9 o 1 097008 10475576
2 0017485 3.94309
3 0474550 10415438
4 0.38222 9.06371
1 10 1195128 1 0490399 11,68398
2 0015848 $101739
3 0464199 10488054
“ 0031245 967548
1 11 o 1 0497971 13.01182
2 0e14466 6006790
3 0082407 12052995
4 0054853 11456306
5 0426397 10425041
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TABLE 3 - (Continued)

fn-

et SR L

n wy
2 3 600000
2 5 o 1 Oe76533 $270829 °
‘2 s 8445663 1 Osdo42e 74087359
2 I o 1 0492217 Seu2iae
- 2 0s27415 1429597
2 1 1085906 1 073660 10011039
2 014983 7049589
2 8 o 1 0e94892 11489864
e 2 0e06739 7465384
3 0457591 10467960
2 ’ 13023048 1 0s84638 12473167
i 2 0e01137 Te17140
3 0044868 11.10927
2 10 w -1 0496873 34430217
2 =0¢02807 7085238
B 3 0473316 13044594
. 034358 11466216
2 1 15458141 3 0489990 15021222
2 «0e05716 7490414
3 0062528 16408678
& 0426137 12+10229
2 12 oo 1 0497892 16066992
' 2 ~0+07961 7093525
3 0481690 16401552
. 0419806 12450480
5 0052815 14467993




TABLE 3 - (Continued)

k L L] tn iy
. 10400000
s oo 1 0073192 10026695
6 1225375 1 0043126 10434029
7 o 1 0489864 13407732
2 0022338 16406509
(] 14061088 1 0072694 13495983
2 0008357 10403011
9 o 1 0:94738 19459357
2 =0401260 1001610
3 0056398 13292430
10 16098404 S 084183 16431338
2 «0.08048 10.00838
3 0442662 14026218
11 o 1 0496791 18403169
2 «0412984 999882
3 0072527 16090923
& 0e31514 14453723
12 19435499 1 0,89732 18.87961
2 0016684 9.98431
3 0061404 17442677
I 0022598 14081509
] 12 o 1 097842 20443492
- 2 =0e19541 9496481
] 3 0e31222 19260353
: . 0615497 15007403
; 5 9451362 1789509
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TABLE 4 - NETWORK DELAY PARAMETERS FOR TAPE-DELAY SYSTEMS

L. o
} k ¢ " wy
1 3 0437020 1 042812 5084189 -
1 s 0433000 2 0e14076 6406471
2 0445643 11407396
1 7 0033850 | 0409982 6418050
. 2 0024384 1133789
3 0458021 16045313
1 ’ 0433110 1 04078862 6422176
2 0016293 1188626
3 0439320 16009277
. 0066136 22412328
2 . 0026470 1 Oel6244 8032338
2 . 0025470 1 =0006430 801464
2 0041837 16048754
2 s 0026100 1 «0012089 7098908
2 017171 13480260
3 0036014 20061346
2 10 0026530 1 ~0s15783 7496908
2 0409208 13096193
3 0432091 19421329
. 0464852 26085772
H s 0¢17440 1 0610727 1161247
3 7 2e19560 1 ~001326€ 10432685
2 0439593 18045666
3 ’ 002095¢C 1 ~0e23083 1001881
2 0413092 16472688
3 0034732 25020036
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A comparison of the step responses shows the manner in which oscillations

between the initizlly flay portion of step representation and the eventual zero value increase
with increasing order of the system trsasfer-funwtion zero at the origin. It has previously
been shown that these gscillations must be present so that the first (j-1) consecutive integn'ls
of the step response will approach zero with tncreasing iime. The figures show that by
increasing the order of the sysiam, the duration for which the output follows the step
input is increased. it iz apparent from the figures that for a given value of j, improvement
occurs at a decreasing rate as order is increased. However, for a given deviation from the

exact step, percentage improvement between two given consecutive values of k increases
with the value of j.

THE STABILIZING-SYSTEM RESONANCE

From a study of the unit-step responses. it is seen that the amplitudes of the
excursions ‘the signal takes grow with order k and order of system zero j, sfter the
initial intervals of step transmission. A traunsient response of this nature implies a resonant
buildup of output at certzin input frequencies. The stabilizing-system output may be a
steady-state signal such as that produced by water wave motion of a ship at sea. To avoid
resonant distortion of the output, the stabilizing systemm must be designed to put the
resonance region at frequencies lower than those of interest in the motion. To provide
information about resonant buildup, the steady-state sinusoidal frequency responses of the
MacLaurin stabilizing system for j=1, 2, and 3 are given, respectively, in Figures 14
through 16 for crders j ‘through 10.

TIME SCALING

The duration for which the output follows the step input may be varied by time
scaling the stabilizing system. Time scaling is accomplished by substituting Tp for ¢ in
the describing transfer function and simulating the resuit. The delay time of the resviting
system is the time-scale factor T. By multiplying the time axis of the step responses by
T and by dividing the angular frequency axis of the frequency responses by T, the
responses of time-scaled systems are obtained,

32



;3

L e

ity

k=10 6 =0
k 1 thru 10

Amg!itudo
[ ]

0 I %— i i
¥ 4

L]

4
0 8 10 15 20 Y. ]
Frequency - (Radians per sec)
Figure 14 - Ffrequency Respomses of MacLsurin Systems with j=1
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Figure 15 - Freusncy Responses of MacLaurin Systems with j=2
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Figure 16 - Frequency Resporses of Maclsurin Systems with j=3.
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THE STABLE INTEGRATION SYSTEM

ANALOG SIMULATION

With refezence to Equations (3) and (4), it is seen that the transfer function of

the time-scaled stable integration system is
k
" 3 (Tp)»
E o) 1 2,
E@ P i i an
2P expl-0Tp) 3 I (Tp)n+Y 1, (Tp)®
a=o a=j

where Tp ic substituted for s in the stabilizing transfer function. Figure 17 shows the
analo; simulation of Equation (17) for the first three values of i and j. From Figure 17
it is seen that the value of i deterrines the integrator into which the input is fed, i being
less than or equal to j. The value of (j-i) determines the final value of the output for
a given constant, j imp, parabolic, etc, input.

When (j-i) = 0, the final value of the output for a constant input is a constant.
When (j-i) = 1, the final value of the outpat for a constant input is zero. If the transient
to be multiply integrated has an additive constent, the output of the integration system
having (j-i) = 1 will be indzpendent of this constant.

APPLICATION TO MOTION MEASUREMENT

The practicability of the stable multiple integration systemn may be demonstraied
by using the system to obtain displacement by double integration of an accelerometer
output. The accuracy of the integration system may be verified by comparing the result
to a direct measutament of the displacement. Figure 18 is a piciure of an accelerometer
attached to a linear potentiometer and constrained to move without rotation along a
guide. The displacement of the sccelerometer as it is moved aiong the guide is messured
directly by the potentiometer and indirectly by double integration of the accelerometes
output using an integration system. The integration systems demo.strated will have
=2 and j=3. Since (j-i} = 1, the output is independent of scrclerometer zero shifts and
attitude changes taking place after the electronics start but well before the initiation of

the motion.




s syttt o A GO R R A
LRl A

gt

Eo(t)
X TAPE
i ' peLav]] &P
T iy
Eg(t)

TAPE

peLay 1 OTol
L,///' T6

TAPE
neLay I ST

T

B 4

Figure 17 - Analog Simulation of the Stable Integration System
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Figure 18 - Apparatus for the Direct and Indirect Measurement of Displacement
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MAC LAURIN SYSTEM

Figure 19 is the analog simulation diagram of the ninth order MacLaurin system,
time scaled for T=27.4. Figure 20 shows graphs of displacement obtained simuitaneously
from both the potentiometer and the doubly integrated accelerometer as the accelerometer
is moved along the guide. A comparison of these two graphis shows the manner in which
error accumulates in the doubly integrated accelerometer output when a MacLaurin system
is used. Theoretically, for a MacLaurin system, error accumulates starting at the beginning
of the motion. However the error accumulates very gradually and only becomes signifi-
cant at later times. For a step displacement, the system being demonstrated accumulates
an error of approximately 0.75 percent at S sec.

TAPE-DELAY SYSTEM

Figure 21 is the analog simulation diagram of the ninth order tape-delay system
with 6=0.2095 sec and T=274. Figure 22 shows graphs of displacement obtained simul-
taneously from both the potentiometer and the accelerometer double integral. From these
graphs it is seen that discernible error dces not accumulate until about 10 sec after initi-
ation of motion. This 10 sec of double integration is the sum of 5.74 sec of exact double
integration, controlled by the tape-transport delay, and 4.26 sec of double integration
with gradually increasing error, controlled by the network delay.
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Figure 21 - The Tape Delay Double Integration System
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ALTERNATIVE SYSTEMS

PADE' EXPANSION OF exp(-0s)

In the preceding systems, the physical device having the transfer function exp!#fs) :
was the tape transport. A completely electronic approximation of exp(-fs) may be odtained
by using the Pade’ expansion* of exp(-fs), having numerator and denominator polyno:nisis N
of equal degree. This Pade’ expansion is given by

0 a
o (4
exp(-fs) ~ = : (18)
9
Z_ An.q ("z"s)

where q is the degree of the numerator and denominator polynomials of the expansion.
and the An’q coefficients are the same as appear °.1 Equations (12). '.Vhen the right-hand

Me

E-2 N

side of Equation (18) is given as e raised to a power series in s, q-1 consecutive odd
powers of s after the first are zero as in Equation (8). Therefore the Pade’ expansion of
exp(-fs), having numerator and denominator polynomials of equal degrze satisfies the
criterion of delay approximation previously established.

RTPPLE SYSTEMS

When design data for tape-celay systems are used with the simulation of
Exyuation (18) replacing the tppe-transport delay, the resulting integration system has an
output with osciliating error in the initial time interval. By increasing q, the amplitude
of the error oscillations are reduced and may easily be made regligitle. Since the output
recording device is not used as part of the integration system when the simulation of the
Pade’ expansion replaces the tape transport, an additional feedback may be made at the
input of the exp(fis) simulation, resulting in an increase in the time interval of integrs-
tion. A system, cifferen? from the tape-delay system already treated, results from adding .
the extra feedback: thus, 2 uew unit-delay approximation must be derived, and its vara-
meters must be determined using Equations (12).

Roference * - Truxal, John G., “Autometic Fradbmck Contral System Synthesis,” McGraw-MHil Book Go., Inc.,
New York, N.Y., (1965) P.548.

A complete list of references is givea on page S1.
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As an eample of an integration system having ripple error, the system having
the additional feedback will be treated using an output signal delay consisting of the
sitaulation of the fourth degree Pade’ expansion of exp(-Us), followed by a second
order network delay having poles only. Figure 23 is the anslog simulation diagram of
the double integration system with j=3. The unit-delay approximation analogous to
Equation (§) for this system is

Ey(s) J,
Es) 343,541,645, +(_’:L’;i+_sz.)¢exp(es)
1,

where

Jo = 8.247

J, = 8.47

J, = 3915

I, = 16649

J, =129.14

%5 = —.8959 and

9 =.2497

are determined from Equations (12). When a delay of 8 secords is approximated by

simulation of
(/] A 'R 3+ 0 ¢
105--105(-----2 3)'+ 45(—2 S) -10 (z s 2 "’)

2 3 /. W
105 + 105(;294)-! 45 (.g.s) +10 (.z‘?.s) + &.92-3)

exp(-0s) =

the output step in the initial interval has an oscillating error of only 0.25 percent as
shown in Fignre 24. If a higher degree Pade’ expansion for the @ delay had been simu-

lated, the number of oscillations in the interval of step representation would have increased

and their amplitvde wouid have decreased.

Figure 25 shows the results of an acceleroineter double integration test using the
ripple systera example shown in Figure 23 with T=274. From Figure 25 it is seen that
ripple error is negligible for about 9 sec after the initiation of the motion. After the

lapse of 9 sec, the respcnse goes on to meet the requirements of stability in the same
manner as in the previous systems discussed.
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-DISCUSSION
. b :

The success achieved :n obtaining &'-pucmt by doubly integrating an acceler-
oneter output shows that tite stable integration method werks, tising the feedback arrange-
ments tried. Using the tape-vecorder transpert delay in the integration svstem results in
a dispiacemen: record having no error fo. the duration of the transport delay; howewer,
using the network delay alone gives & satisfactosy record, even though error builds up
from the beginning of the motion. This buildup of error is' very gzadual at first and %
kept within acceptable limits by raising system order and by time scaling.

When quasi-periodic transdzces motion is present the integration systera resonznce
must be considered in the system design. This consideration affects the selection of
system order snd timc scaling and, therefore, system error. The resonance of the system
is incresoed when the errue s reduced by raising system order, and the seitling time of
the system is increased when the error is reduced by time scaling. No matter how error
comproxises arc made, e requirements of stability intreduce loag tinae enor.

{rclusion of a tapetrmzportdelayinthefwdbackutmgemehtmaybetcprded
as a mathematical design technique, ossuring zeto error for the duration of the delny.

The actuai traasport delay does not have to be present. It can be approximated dectron-
ically, resulting in an integration system having oscilladng error.

Three of the main factors involved in selecting a particular integration system
design are quantity of electronics needed for fabrication, reliability, and system ervor. of
the three analyzed the tape-delay system requires the imost equipment and the most
maintenance. The tape transport is inherently less reliable than completely electzonic
devices. However, the tape-delay system has the minimum error of the systems discassed
since its produces no ervor for the duration of the transport delsy. The Maclaurin
system requires the least equipment and is the most reliable. The disadvantage is that
it has the smallest ratio of useful-to-settling time of tne systems discussed. The ripple
systems discussed are completely electronic versions ot systems which could also employ
a tape-transport delay. The amount of ripple ertor depends on the feedback arrangement
as well as the quantity of olectronics used to simulate the tapstransport delay. When
simulation of the tape-transport delay is followed by a second order filter, the ripple
error is attenuated to an acceptable level. The feertback srangement of ripple systems
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must be built to closer toierances than are required for tape-delay and MacLaurin sys‘ems.
However, the larger ratio of useful-to-settling time obtained with ripple systems may be
worth the additional effort required to achicve those tolerances.

SUMMARY

Using delayed feedback to stabilize electronic integrators, allows the integrators
to produce an accurate multiple integral of a transient electricai signal without it being
necessary to start the integrators at the beginning of the signal. Although transient eiec-
trical signals of any origin may be integrated, using the integration methed presenied, the
method is particularly applicable to the integration cf electromechanicai transdvcer-output
signals simultaneously with their generation. The bioad range of integration system design
dats given enables the designer of measurement systems to match the most suitable int>-
gration system with the transducer sensing the quantity whose integral is desired. The
most apparent application of the integration method lies in the area of absolute motion
measurement using inertial instraments. The design procedures and techniques presented
herein are directly applicable to measurement systems designed to be used in explasion
experiments and provide solutions to critical problems associated with designing such
systems.
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