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if' NOTATION

.[C] matrix relating stress coefficients and local nodal
displacements

liD] elasticity matrix

[Fm) flow matrix defined by

H instantaneous slope of unaxial stress versus plastic

strain plot at beginning of time increment

Iitime increment

K]. hybrid stiffness matrix
[Ld axes transformation matrix relating to a node

[M] consistent mass matrix

[N] compliance matrix
SNELEM total number of elements in idealization

NC•P•1S number of Gaussian quadrature points per element

I NN DES total number of nodes in idealization

N WE number of nodes per element

SP vector of applied nodal loads

S[QI matrix relating elastic stress components and coefficients
vector of nodal displacements, velocities and accelerations,

444 respectively

T ,; vectors used in accumulating incremental nodal displacements

V and velocities, respectively
vector of nodal pseudo-forces accounting for plasticity

vector of accumulative nodal pseudo-forces incorporating

effects due to straining and large rotation from initial

configuration
[T • axes transformation matrix relating to an element

t time co-ordinate

MW-i matrix of Gauss weights and co-ords over area of element

-IV] " " " through thickness
? X, ,: rectangular space co-ordinies

vector of stress coefficients

YC work hardening parameter

proportionality constant in flow rule

L • vector of stress components

CiI uniaxial stress at first yield
C5• equivalent stress at a station

Y(70 uniaxial yield stress subject to work hardening

vector of strain components

Sequivalent plastic strain at a station

IT uniaxial plastic strain
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Subscripts

Se elastic

f) effective (i.e. uniaxial)

L relating to local axes
0 original

p plastic :
R revised I
6 relating to additional straining effects

& relating to large rotation effects

Superscripts

e elemental

at a Gauss Point

nodal

fl time step counter

S¶ matrix transposition

[
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1. INTRODUCTION

The capability of large modern computers makes it
possible to solve physical problems that defy a rigourous

mathematical approach. One such problem of interest in

engineering is the behaviour of thin plates subjected to blast

loading. Obviously, the analysts of military systems have

a keen interest, as do the engineers concerned with explosive

forming.
The Finite Element method of stress analysis is ideally

suited for large-scale computer systems and many successful

analyses of complex structures have been reported. Steady

progress from static to dynamic situations is apparent, and,

more recently, the non-linear behaviour of both material

and structure has commanded considerable attention.
Since elasto-plastic analysis is heavily dependant on

stress prediction, it is essential to use a type of finite

element formulation which has a good reputation for quite accurate

stress analysis, without incurring excessive computer time by

L dealing with a fine element division. Such a formualtion is

the "Hybrid" technique, developed by Pian, which falls between

the strictly displacement methods and the "stress-mode" methods.

Thus, the present research is centred on a well tested

"hybrid" element, which may be triangular or quadrilateral

in planform.

However, very considerable adaption of the element has

proved necessary due to revised integration schemes through

the volume in order to account for the partial plasticity

within each element. The ; i-. Jeformations are taken into

account by psuedo-forces acting at the nodes, and the non-linear

equations of motion integrated by a Runge-Kutta predictor -

corrector scheme.

4'



2 A Survey of Solution Methods for Elasto-Plasticity Problems

This survey looks at recent work performed on the solution

of structural problems involving non-linear material behaviour,

and is restricted to elasto-plasticity. Other material non-

linearities, such as creep, are not included and the reader

:.,s referred to the text .'y Zienkiewicz (M)0 for discussion

of these phenomena.

Firstly we shall briefly consider some of the latest

I experimental work performed in this area. A number of investigators

have turneK* their attention to beams under blast loading. For

example, Humphreys (2) has tested straight cbamped beams, and
Florence and Firth (3) have subjected both pinned and

clamped rigid-plastic beams to uniformly distributed impulses.
Grid frameworks have been investigated (4) as have perforated

plates in plane-stress (5). Recently Jones et al. (6,7)

performed tests on the dynamic behaviour of fully clamped
rectangular plates and compared their results (6) with the

theories of Martin (8) and Haythornthwaite and Shield (9).

Although progress was being made in the mathematical
theory of plasticity (10,11) it was not until the advent of

the high-speed digital computer, and in particular the

application of the Finite-Element method to elasto-plastic
materials, that the analysis of complex problems of this type

became anything but very approximate. We shall, however,

postpone discussion of this approach until we have considered

some non-Finite-Element solutions. Usually major simplifying

assumptions were made - often elastic effects were neglected

(12,13) and perfect plasticity assumed (14.15). Prager (16)

reviews the state of the art in the mid 1950's. At about
this time Hopkins and Wang (17) had analysed circular perfectly

plastic plates and compared results obtained using Tresca, von
Mises and Parabolic (von Mises) yield conditions. Good

agreement, especially for the simply-supported condition,

between Tresca and von Mises was obtained. Ang and Lopez (18)

such numbers are references

-5-



employed a grid analogy method and the usual sandwich

plate assumptions in deriving their plate analysis. Deformable

nodes represented average flexural and axial resistance,

torsional elements modelled the in-plane sheer stresses and

rigid bars transmitted the transverse shear forces induced by

the flexural stresses. Results were given for the progression

of the elasto-plastic boundary in square plates under various

edge conditions.

Dynamic analyses of elasto.-plastic plates have also

been performed (12, 13). In 1959 Cox and Morland (19)

considered a simply-supported square plate subjected to a

pressure pulse, and later Florence (20) analysed clamped,

circular plates under a rectangular blast pulse by assuming

a rigid-plastic material yielding at the Tresca hexagon.

Recently problems of combined material and geometric non-

linearities have been tackled. Gerdeen et al.(21) have

analysed shells of revolution under these conditions and

Symonds and Jones (22) have investigated the behaviour of

2 fully clamped beams composed of materials (particularly

steels) which were strain-rate sensitive.

The Finite Difference approach has been used for some

time to analyse elasto-plastic problems (e.g. 23, 24) sometimes

in combination with large deflections. Balmer and Witmer

(25) performed such an analysis on impulsively loaded beams,

and, with high-energy metal forming in mind, the extension

to thin shells has been made (26, 27). Leech et al.(26)

presented results for a cylindrical panel and compared them

with experiments, and Lindberg and Boyd (27) considered

clamped, rigid-strain hardening shell membranes. It is

however, evident that further work nee'.s to be done in this

particular field.

So far the Finite-Element method has been mentioned

only fleetingly. Now we come to consider its application

to the analysis of elasto-plastic structures. Although the

Force approach (28, 29) has been used in this context, notably

by Denke (30) and Lansing (31), the vast majority of workers

have used the stiffness (displacement) method (32). It is



applications of this approach which will now be considered.

One of the most basic ways of solving the non-linear

equations is by the Direct Iteration procedure. In this

method the total load is applied to the structure and using

the initial values of Young's Modul~is, E, and Poisson's
Ratios. V the elastiL stresses and strains are computed.

New values of E and V are calculated according to the stress

levels reached in each element, and then another full "elastic"

analysis performed using these values. This procedure is
repeated until the solution has converged. Figure la) shows

a diagrammatic representation of this process as applied to

a material with an elasto-plastic stress-strain curve which

may be represented adequately by two straight lines. In

1963 the method was applied by Wilson (33) to 2-D structures

and later used by Clough (34). These workers demonstrated

that the Direct Iterative approach usually converges

satisfactorily after 3 or 4 iterations. A completely different

direct solution has been demonstrated by Mallet and Schmit
(35). They use an-Energy Search technique for a large deflection

analysis and emphasise that the process is equally applicable

to elasto-plasticity, although this point is disputed by

* Hofmeister et al.(50).

Probably the first method used for Finite-Element

elasto-plastic analysis was the incremental Initial Strain
approach introdude y Mendelson and Mason (36) in 1959.
Padlog et al(37) considered inelastic structures under

cyclic, thermal and mechanical loading in 1960, and other

pioneer work was performed by Gallagher et al.(38), Argyris

(39) and Jensen et al.(40). The procedure is to apply the

load incrementally and at each load step to treat the plastic

strains produced as initital strains for ihe next increment.

In this way pseudo-loads account for plasticity and it is

-7-
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therefore necessary to modify only the right-hand-sides of
equilibrium equations. This means that the elastic stiffness
matrix is used throughout and thus needs to be built-up and

inverted once only. Using the usual Finite-Element notation

we may write the linear elastic stress-strain relationship

for a material as

S= . [D] (

4 In this approach it is the initial strain vector,

which is adjusted to achieve a solution of the equilibrium

equations

^" (ii)

where , represents the vector 6f all forces due to

external loads, initital strains, initial Ltresses etc.

The procedure is shown diagrammatically in Figure ib). If

large increments of load are taken it can become necessary

to iterate at each step in order to achieve high accuracy, but

this can easily be avoided by taking the increments sufficiently

small (39). A major disadvantage of the Initial Strain approach

is that it breaks down for perfectly plastic materials because

the strains in this case cannot be uniquely determined

for prescribed stress levels.

A central problem in an Initial Strain analysis is the

method used to compute the pseudo-forces. This is a much

more crucial point in plate-bending than in 2-D analysis.

Many non-Finite-Element plate-bending analyses assumed that

at all points on the plate the entire thickness was either

fully elastic or fully plastic (23, 18), and whilst this is

the case for a plate of sandwich construction it is a very

crude approximation for a solid plate. Using the Finiw'-

Element method less drastic assumption can be made to

overcome this problem. For example, Armen'et al,(41) for

their initial Strain analysis employed a triangular plate-

beading element with quintic displacement functions and

assumed thc plastic strain to vary linearly from the upper

and lower surfaces of the element to elastic-plastic

boundaries within the cross-section. They further ass.,ed

a linear variation along the edges between adjacent nodes

with a corresponding planar distribution throughout the area



of the element. Nodal strains were found by averaging values
from surrounding elements. In this work the Romburg-Osgood

stress-strain relationship (42) is employed, and so that the

Bauschinger effect could be included for cyclic loading, the

authors chos he Prager-Ziegler kinematic hardening theory of

plasticity (16, 43, 44). However, recently this group of
researchers have favoured numerical integration techniques

both along the length and through the thickness of their shell

of revolution (45). They have found 3 Gauss points generally4

adequate along the length. Through the thickness Simpson's

integration employing up to 21.station was selected - the

large number being required for the cyclic loading being
considered in this work. The choice of Simpson's integration

allowed the first, surface yielding to be detected, whereas
Gaussian quadrature would have required yielding at interior

points to take place before any contribution was registered.
The strains at the integration points are now found by

taking derivatives of the assumed displacement functions.

L •At present the most popular method for Finite-Element

elasto-plastic analysis is the incremental Tangent Modulus

or Variable Stiffness approach. This was initiated in 1965

by Pope (46) and Swedlow and Yang (47), and further developed

for 2-D problems by Reyes and Deere (48) and Marcal and King
(49) amongst ..;hers. In this method the load is again applied

incrementally but now it is the matrix[D]in equation (1)

which is updated at each step to its tangential value, [D41 ,
obtained from the effective stress-strain curve and corresponding

to the stress state reached. This means that a new set of

coefficients for the equilibrium equation (ii) must be found

and a new inversion of this matrix performed at each load
step. A diagram of the process is given as Figure 1c).

A refinement occasionally employed to improve accuracy is

described by Hofmeister et al. (50) in the context of a

2-D, large strain analysis. Here an equilibrium check is

performed at each load step (or less frequently) and thus the
nodal point equilibrium error reduced by using a Newton-Raphson

interation procedure. A comparison between Initial Strain and

-9-



Tangent Modulus methods was given in 1968 by Marcal (51).

He demonstrated that a larger load increment could be taken

P for a variable stiffness approach, but as the modifications

to the equilibrium equations required at each step are

considerably more extensive with this technique the overall

efficiency for the two methods remains similar.

Constant stress and strain elements have often been

used .with the Tangent Modulus method for plane-stress elasto-

plastic analyses. Richard and Blacklock (52) reported on f
such an element, whereas Felippa (53) described work using

quadratic functions for both displacemeris. A linear variation

of [Or] over the area was taken with values calculated at the

vertices using average stresses from the elements at each

node. The problem of evaluating the matrix [of for the Tangent

Modulus approach is equivalent to the problem of computing

the pseudo-forces for the Initial Strain approach. Recently

Bergen and Clough (54) considered the Felippa approach for use

with a quadrilateral plate-bending element, but concluded it

to be over-complicated ±or this application. In addition,

they expressed concern about assuming a continuous J•
variation when this is frequently not so within the element.

The approach selected by Bergen and Clough was to use 12

subtriangles per element and to take values of stresses

at their centroids. Strip integration was used over the area

and Gaussian quadrature through the thickness. As with

the Initial Strain analysis by Levine et al.(45), the strains

were obtained from the derivatives of the assumed displacement

functions.

A good deal of work using the Tangent Modulus approach

particularly applied to shells of revolution has been

performed by Marcal (55, 56, 57, 58). He used the incremental

theory of plasticity and the von Mises yield criterion.

Isotropic strain hardening was assumed and a linear incremental

elasto-plastic stress-strain relation obtained. Marcal (58)

evaluated the stresses at the midway point of his axisymmetric

shell element and used 11 numerical integration points through

the thickness. In 1971 a dynamic analysis of beams and ring

-10-



was presented by Wu and Witmer (59). They assumed an elastic-

perfectly plastic material and used a mechanical sublayer

model. The equations of motion were solved by a time-wise,

central-difference, numerical integration "•rocedure using a
time-step of 1 micro-second.

A further Finite-Element elasto-plastic method has recently

been introduced by Zieniewicz et al.(60). This is known as

the incremental Initial Stress approach, in which plasticity

is accounted for by adjustments of the initial stress vector,

of equation (1). The approach is basically a modified
Newton-Raphson procedure with the original value of the

stiffness matrix being used throughout. Therefore most of
the advantages of the Initial Strain approach are retained;

X indeed the two methods are in many ways parallel. However,

the ability to analyse perfectly plastic materials is a notable

additional advantage of the Initial Stress approach. For
both these procedures, convergence may be accelerated by over-

K adjustment at each step. Such an accelerator for use with
the Initial Stress approach has been developed by Nayak and
Zienkiewicz (61). Another possibility is to occasionally

update the stiffness matrix to its tangential value.
Although the Initial Stress approach has been demonstrated

to be convergent and efficient in plasticity problems (60),

it may not be as suitable for problems involving large

deformation (62).

Finally, we shall mention a very recent elasto-plastic

analysis performed by Stricklin et al.(63). in which Finite
Element and Finite Difference methods are combined. In

this formulation the effect if the non-linearities are

evaluated by means of Finite Difference expressions, but
the general set-up of the analysis is Finite Element. The

authors present results for shells of revolution and claim

the computational procedure to be an order of magnitude

faster than other analyses.

t



3. MATERIAL NON-LINEARITIES

3.1 General Theory of Plasticity

Firstly we will develop a general theory of plasticity

to be used in the analysis. A yield surface can be defined

by the general equation

F())0 (1)

whereTC is a work hardening parameter. Yielding can only

occur when the stress components,,0 , satisfy this criterion

for the instantaneous value ofh.Theparticular yield surface

which will be used is that proposed by von Mises. For a
plate or shell where the normal-to-plane stress component, 99)

is negligible, this is given by

FEz;t+ 
(2)

SwhereY~is the corresponding value of the uniaxial yield

stress.

The following incremental flow rule of plasticity is

employed in the analysis:-

X (3)
Here k6p represents the vector of incremental plastic strain

components and X is an unknown proportionality constant.

Equation (3) is often referred to as the Normality Principle

as it may be interpreted as the requirement that must be

normal to the yield surface in n-dimensional stress space.

Explicit formulations of the incremental plastic stress-

strain relations have been derived by Yamada et al. (66) and

Zienkiewicz et al. (60). They assume that for an infinitesimal

* stress increment the corresponding changes in strain may

be divided into elastic and plastic parts, as

#-*-- ----- ~*(4)4
or

LI(97F (5)
-12-



By differentiation of the yield surface and the definition of

b'it J- (6)

we can obtain the matrix equation

IF

LF JJ L.2. J L

This type of relationship has been used with success by Marcal

and King (49) in their Incremental Tangent Modulus approach.

For our purposes however, it is more convenient to eliminate
* X• as demonstrated by Zienkiewicz et al, (60). to give

(8)
where

and

(10)

Here H is the slope of the uniaxial stress versus plastic

strain plot at the value of the initial effective stress.

In the present case, using the von Mises yield surface

given by equation (2) we have

-13-



where

whr Fm] - y YM t. 1

57 -L I I
0 0 3

H? 0 3 (12)

0 o o o 031

If we define

[D][ (13)

equation (10) becomes

,S- H(14)

and we can re-write equation (9) as

[ [D] D] ý (5

3.2 Finite Element Elasto-Plastic Procedure

The method chosen to account for plasticity effects is

the incremental Initial Stress approach suggested by

Zienkiewicz et al. (60) with adaptions to give compatibility

with both the hybrid stiffness formulation and dynamic response

analysis. The principal advantane of this formulation is

that the original elastic material properties are used
throughout the analysis witn plasticity being included by

means of a system of pseudo-forces acting at the nodes.

For each finite element, e, the subroutine ELPL is called

I
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e
by the master programme to compute these forces, R , from

the nodal displacements accumulated during a time increment.
Gaussian quadrature (*67) is used to obtain RL from

residual (initial) stress values computed at discrete stations

throughout the volume of the element.

In the original Initial Stress procedure proposed for
static analysis, iteration wis performed within each time

increment until the pseudo-forces became negligibly small.
This is, however, believed to be unnecessary for dynamic
response analysis where these forces ma,:" be carried over

to act during the next time increment.

3.3. The Elasto-Plastic Subroutine ELPL

A flowchart for this subroutine is included in Appendix

I and the operations it performs will now be described. The

process is represented diagramatically in Fig. 2.

Step 1

From the nodal displacements, accumulated for

an element during a time step nn4+ the change in the stress

coefficients can be found as

4 KL (16)

Here the matrix [C] has been derived during the normal hybrid

stiffness computations.

Step 2
For a Gauss point, g, use the hybrid stress assumptions

to obtain elastic increments of stress and strain,

5 [oil
~iq~ =jQ]~~(17)

Add to the existing stress components,• , to give c.
- 15 -

I



S.tepD 3
Test whether

t (19)

Herelt refers to its value at the start of the increment. If

expression (19) is not satisfied then the increment is

entirely elastic. Therefore up-date stress and strain

components as

,_., - .•,e( 20 )

= ~ -b (21)

and proceed to next Gauss station.

If expression (19) is satisfied, test whether

> 0 (22)

using the stresses at the start of the increment. If expression
(22) is also satisfied proceed to next step; if not interpolate

for proportions of elastic stress and strain occuring above

yield, revise cS and §!& to these values and update 6

and 0 to the yield surface.

Step 4

Call the Subroutine HDASH to calculate H and hence

evaluate the scalor, S, from

S '[ (23)

and the elasto-plastic matrix

JDJ L -- (24)

Now the elasto-plastic stress increments may be calculated

from

•/ •n.e"D P (25) l

-16-



As equation (25) is valid for infinitesimal strain' increments

only, it is possible that for a finite step the stresses

calculated will slightly exceed the yield surface. If

this occurs the stresses,Sa are scaled down to the yield

61surface.

Step 5

Calculate the residual (initial) stress vector

L9 = (26)

and update the stress components as

L7 5) (27)

and the strain components as equation (21).

Step 6
Repeat Steps 2-5 for each Gauss station, hence evaluating,

by Gaussian quadrature, the nodal pseudo-force vector in

local co-ordinates as

R. • (28)

The derivation of this expression is presented in Section 6.

Step 7

Transform pseudo-forces to global axes by performing

R LU RL
EI L (29)

and accumulating to form

4. GEOMETRIC NONLINEARITIES

As soon as the maximum transverse displacement of the

panel reaches about one-half the panel thickness the non-

linearity caused by the large displacements should be accounted

-17-



for. An incremental process originated by Argyris et al.

(68, 69) is employed. The element stiffness matrices

are systematically re'ised throughout the analysis by

transforming the original matrices [1,)e to the deformed

orientations using the equation

FIKt  TI' XT (3(")

This transformation accounts for gross movement of the whole

element as a rigid body. In addition, the original equilibrium

of each element is disturbed by the effects of straining

and large rotations from the initial configuration, and to
balance this a vector of cumulative nodal pseudo-forces,

S, is included in the equations of motion of the system.

At the end of each step, the forces due to additional

straining, ss+ may be evaluated as

R ~Y (31)

Here [•IR is the xrised stiffness .t the half-step and its
significance in the solution procedure is explained in Section
5. In addition, forces incorporating large rotation effects

and acting on each element are found by transforming the

local pseudo-forze vector, S . at the beginning of the time

step as

(32)

Hence I

Thus it is now possible to include both material and geometric

non-linearities into the analysis without entering the

-18-



necessarily time-consuming elemental stiffness routines more

than once.

5. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

The equations of motion of the system can be written as

[Mj.+[c +[iJ~ ~)(

To represent the non-linear system it is necessary to

adopt a step-by-step procedure taking linear conditions to

prevail throughout each small time interval. Thus during

a particular time-step n)•ht we ca& write.

[M] + CT + Ell],,
5. -1 (35)

The scheme selected for the numerical integration is an

incremental predictor-corrector procedure using Runge-Kutta

extrapolation techniques of 0(h 5 ) truncation errror. This
formulation conveniently permits the inclusion of both the

material and geometric non-linearities present.

For transient response analysis damping has very little

effect on the general solution and for the present will be

excluded from the analysis. If, however, in the future it

is desired to include damping, only very slight modification

of the programme would be required.

During one time-increment the following scheme of

operations is performed:

Step 1
Compute the acceleration components vector at the I

beginning of the time step as

N (36)
and hence evaluate storage vectors4 V h

S(37)

- 19 -



Step 2
j Extrapolate for incremental displacements at the half-time

interval as

(38)

and hence compute the corresponding accelerations as

I ( •(39)

Evaluate "

#-"a (40)

and update storage vectors as

(41)
and

z (42)

Step 3

Extrapolate for revised incremental displacements at the

half-time interval as

+ 0 Iz(43)
Hence compute h• R h j (4 4)

and R(

Evaluate - _-6)SVN 4R (46)

and update storage vector ,4 to its final incremental value as

~ii~ 4 A ~V3J(47)

and update A as

0720 (48)
•- - 20 -
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Step 4

Extrapolate for incremental displacements at the end

of the time-step as

V(49)

hence compute

L- (h-s"t t (50)
Evaluate

V4=
(51)

and update storage vector t4"Lo its final incremental value as

+ v+ ) (52)

Step 5

Update the displacement vector

,~+ +
(53)

retaining in store

Update velocity vector

Step 6

Compute the nodal pseudo-forces incorporating geometric

non-linearities, S as described in Section 4.

Transform the incremental nodal displacements to local

axes for each element using

•_ .- LL] (55)

S-21-
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and hence update the vector of pseudo-forces for each elemeat as

S I- (56;

For each element call the subroutine EL.pL to calculate
the nodal pseudo-forces accounting for plasticity,

from AQ. as described in Section 3.3.

6. Derivation of Plasticity Pseudo-Force Expression

It has been demonstrated by Zienkiewicz (.60) that,

for an aelement, the vector of nodal pseudo-forces due to

residual (initial) stresses can be expressed as

R L (57)

It 
V

where LBJ is the matrix relating strain and nodal displacements as

For the Hybrid approach we have

E.0 L~'JLJ(60)

and [_ [

(.61)

Hence by comparison with equations (58) and (57) we can write

C, T (62)

•-22V
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7. Mass Matrix

It has been shown by Dungar et al. (65) that in order to

achieve improved results in dynamic problems, the mass and

hybrid stiffness matrices should be consistent with respect

to assumed generalized displacement patterns. In the hybrid

stiffness matrix these are taken along the element boundaries

only, so it is necessary, when formulating the mass matrix,

to extend the functions to cover the whole area of the element.

If q. and u are respectively the vectors of generalized

nodal and boundary displacements then they may be related by

a matrix[v]as in the equation

S LY % (63)

If, also, the vector of generalized displacement within the

element, d, is related to u by:

I: g L~i~(64)

then the element mass matrix may be written as:

LMf [TfJ] )4 (65)

whereS= mass density of the material of the element.

If we put

f (66)

then

[M~~]T3j] (67)
The degrees of freedom at each node follow the ordering

w, the transverse displacement and the two rotationsa and

Oy about the x and y axes respectively. For the general

triangular element orientated with respect to the local axes

as in Fig. 3, theLV~and[J 2 lmatrices are as shown in Fig. 4

and 5 respectively. Transformation to global axes is achieved

by the same process as the stiffness transformation.

-23-
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8. BLAST-WAVE REPRESENTATION

The subroutine IMP calculateS the loading vector,

at time increment, n, from the impulsive forcing function,
P(t). A number of different functions have been tested for

their ability to represent the pressure-time curve for blast

loading (fig. 6). Firstly, polynomial curve fitting was

tried. This gave low root-mean-square errors for the higher

order polynomials, but the representation of available experimental

data gave alternatively over and under estimates along the

length of the actual curve. Secondly, an exponential

function given in Ref. 70 was tested:

a p(68)

intercept with the time axis. Fig. 3 shows that this function

overestimates the absolute value of pressure throughout.

Finally, a modification was made to the expression (68) to

give - */f) -

(69)

This function is seen to give much better agreement with

the actual curve, and has been programmed as subroutine IMP.
When values for po, t, tfand te are input the subroutine will

calculate the value of the load.ng vector P at the time, t.

9. RECOMMENDATION FOR FURTHER WORK.

Whilst no directly applicable results have been obtained

to date, the authors have been encouraged by the rapid develop-

ment of the various subroutines, see Appendix II. The algo-

rithmns employed for numerical integration are well known for

thqir numerical stability, and the progressive nature of the

spread of plasticity through each element should improve or

other elasto-plaztic methods.

It is recommended that the work is continued to fully

exploit these developments.
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APENDIX II - SUBROUTINES TESTED AS AT 31.8.'72

Subroutine EQUIVSTRESS
G!n a vector of stress components, at a Gauss station

this subroutine will calculate the value of the corresponding

equivalent stress, • as

Subroutine DEPS

This subroutine calculates the incremental value of the

equivalent plastic strain,b?,at a Gauss station, based on

a vector of corresponding incremental plastic strain components,

Subroutine UNISTR

The equation of the uniaxial stress (Y(1i) } versus

uniaxial plastic strain ( Ep,1  ) curve is taken to be

6P A Y( - 0-4 (A.3)

where t, is the uniaxial stress at first yield.

When given values for A, BOO and 6-r,, subroutine UNISTR

will calculate the value of the uniaxial stress, /(1C.) . This,

together with the equivalent stress, 0 , is required in the

evaluation of the yield surface function at a point, as

F - ylt) (A.4)
;I
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Subroutine HDASH

This subroutine calculates the value of H', which is

the instantaneous slope of the uniaxial stress versus plastic

strain curve. This may be found from equation (A.3) asiJ ;.5

given by I-B I

H (A.5)

Subroutine MINE

Two matrix inversion routines which are particularly

suitable for the present problem have been programmed and

tested. The more accurate of the two empoys full pivotting,

but requires more storage and computation time that the other

which uses partial pivotting. Both routines wE1l. be tested

in the overall programme and the better one selected at that

time when the accuracy - 'cost' balance can be assessed.

Subroutine TRANS

Here the matrix lL is calculated based on a given set

of nodal co-ordinates. This matrix performs the transformation

from global to local co-ordinates e.g.

Vector algebra is used to form the elements of IL113

Subroutine KTRAN

Using the matrix[Lvcomputed in subroutine TRANS, this

routine sets up the matrix [Tlegiven by
I. C 5 YM f4.

L (A.7)

0 L

for a four noded element.
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KTRAN then performs the transformation of the elemental

stiffness matrix[IIJfrom its original axes to global axes, as

"Me" M e (A.8)

Subroutine ELPL

This subroutine computes the elemental, plastic, pseudo-

force vector, R& , from the corresponding incremental,

nodal displacement vector . A refined flow chart for

ELPL is presented in this report.

The central operation in this subroutine is the integration
0

of the residual (initial) stresses,Ic-at the stations to

yield R. For each station the amount of computation and

storage is great and hence the most suitable quadrature scheme

will be the one which uses the minimum number of stations for

a given accuracy. The obvious choice, therefore, is Gaussian
quadrature, and when we apply it to the present problem we

obtain:
NOT$ T

=A a [l Q '[I (A.9)

where /is the product of Gauss weights over the area and

thioughout the thickness at station,9 ,andA is a factor

adjusting the limits of integration as those appropriate

to the particular element concerned.

Originally it was expected the triangular elements would

be the most suitable for use in the analysis, and that seven

stations over the area, and a Gauss-Hammer quadrature scheme

(71), would be required. However, it now appears that by

usipg quadrilateral elements and just four stations over the

areXL comparable results can be achieved with much

-
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less storage and computation time. This is primarily because
the stiffness matrix , , for a four-noded element is

appreciably more accurate than that for a triangle, and it
therefore follows that the same is true for the residual

stress vector, 0h, at the chosen number of Gauss stations.

Stress variations through the thickness of the elasto-
plastic element are generally more complex than those over
the area, and hence in the first tests seven stations through
the thickness are being employed. As the first yielding of

a panel subjected to lateral loading occurs on the surface,
it is desirable that the extreme stations through the thickness

are near to the surface in order that the initial yielding
is quickly detected. By using seven-point Gaussian quadrature
the distance of the outer-most stations from the surface is

just 2.5% of the plate thickness.

Subroutine KMAT

This subroutine calculates the elastic stiffness of a

triangular or quadrilateral shell element with respect to

a global co-ordinate system. The method used is known as
the "Hybrid" technique, and the element has been well tested

in plate and shell situations.

Subroutine MMAT

This calculates the mass matrix for a general

triangular element and transforms it to global axes. The

theory is given in Section 7.
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