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The rceport describes, in some detail, a proposed

computer programme for the dynamic analysis of elasto-plastic,
thin, isotropic plates of rectangular planform. Specific dynamic
loading is considered which is appropriate to a blastwave, namely,
a spatially constant pressure with infinitesimal rise time,
decaying rapidly to a suction peak and finally to ambient
conditions., Account is taken of the large deformations.of the
plate, and fixed or simply-supported boundary conditions. (¥)

Much of the pirogramme has been coded anad step—by-otep
testing of the various subroutines is currently progressing. A
flow chart of the main programme is given in-Appendix I, and a
statement of the subroutine testing completed as at the
publication dalte is given in Appendix II.
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NOTATION

matrix relating stress coefficients and local nodal
displacements

elasticity matrix F
flow matrix defined by g?) = [F "\] §4

instantaneous slope of unaxial stress versus plastic
strain plot at beginning of time increment
time increment
hybrid stiffness matrix
axes transformation matri« relating to a node
consistent mass matrix
compliance matrix
total number of elements in idealization
number of Gaussian quadrature points per element
total number of nodes in idealization
number of nodes per element
vector of applied nodal loads
matrix relating elastic stress components and coefficients
vector of nodal displacements, velocities and accelerations,
respectively
vectors used in accumulating incremental nodal displacements
and velocities, respectively
vector of nodal pseudo-forces accounting for plasticity
vector of accumulative nodal pseudo-forces incorporating
effects due to straining and large rotation from initial
configuration
axes transformation matrix relating to an element
time co-~-ordinate
matrix of Gauss weights and co~-ords over area of element
" " " " " " through thickness
rectangular space co-ordintes
vector of stress coefficients
work hardening parameter
proportionality constant in flow rule
vector of stress components
uniaxial stress at first yield
equivalent stress at a station
uniaxial yield stress subject to work hardening
vector of strain components
equivalent plastic strain at a station
uniaxial plastic strain

!
i

L S iA— s p—— )

[o—

sl 'W%%Mww.mumwww




R R R

,
B A s S R

i i
il ea At L S

o5 o

s e b R S L e S e S

Subscripts

4

Y
T N

o™ X5 O T 0

©

elastic

effective (i.e. uniaxial)

elasto-plastic

relating to local axes

original

plastic

revised

relating to additional straining effects
relating to large rotation effects

Superscripts
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nodal

time step counter
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The capability of large modern computers makes it
possible to solve physical problems that defy a rigourous
mathematical approach. One such problem of interest in
engineering is the behaviour of thin plates subjected to blast
loading. Obviously, the analysts of military systems have

a Xeen interest, as do the engineers concerned with explosive
forming.
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The Finite Element method of stress analysis is ideally
suited for large-scale computer systems and man§ successful
analyses of ccmplex structures have been reported. Steady
progress from static to dynamic situations is apparent, and,
more recently, the non~linear behaviour of both material
and structure has commanded considerable attention.

Since elasto-plastic analysis is heavily dependant on
stress prediction, it is essential to use a type of finite
element formulation which has a good reputation for quite accurate
stress analysis, without incurring excessive computer time by
dealing with a fine element division. Such a formualtion is
the "Hybrid" technique, developed by Pian, which falls between
the strictly displacement methods and the "stress-mode" methods.
Thus, the present research is centred on a well tested

“hybrid" element, which may be triangular or quadrilateral
in planform.
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However, very considerable adaption of the element has
proved necessary due to revised integration schemes through
the volume in order to account for the partial plasticity
within each element. The .. .~ <eformations are taken into
account by psuedo-forces acting at the nodes, and the non-linear
equations of motion integrated by a Runge~Kutta predictor =
corrector scheme.
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2 A Survey of Solution Methods for Elasto~Plasticity Problems

This survey looks at recent work performed on the solution
of structural problems involving non-linear material behaviour,
and is restricted to elasto-plasticity. Other material non-
linearities, such as creep, are not included and the reader
i.s referred to the text .y Zienkiewicz (1)* for discussion
of these phenomena.

Firstly we shall briefly consider some of the latest

T e ket P o T MW R,

»
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experimental work performed in this area. A number of investigators

have turner. their attention to beams under blast loading. For
example, Humphreys (2) has tested straight clamped beams, and
Florence and Firth (3) have subjected both pinned and

clamped rigid-plastic beams to uniformly distributed impulses.
Grid frameworks have been investijated (4) as have perforated
plates in plane-stress (5). Recently Jones et al. (6,7)
performed tests on the dynamic behaviour of fully clamped
rectangular plates and compared their results (6) with *he
theories of Martin (8) and Haythornthwaite and Shield (9).

Although progress was being made in the mathematical
theory of plasticity (10,11) it was not until the advent of
the high-speed digital computer, and in particular the

' application of the Finite-Element method to elasto~plastic

materials, that the analysis of complex problems of this type
became anything but very approximate. We shall, however,
postpone discussion of this approach until we have considered
some non-Finite-Element solutions. Usually major simplifying
assumptions were made -~ often elastic effects were neglected
(12,13) and perfect plasticity assumed (14.15). Prager (16)
reviews the state of the art in the mid 1950's. At about

this time Hopkins and Wang (17) had analysed circular perfectly
plastic plates and compared results obtained using Tresca, von
Mises and Parabolic (von Mises) yield conditions. Good
agreement, especially for the simply;supported condition,
between Tresca and von Mises was obtained. Ang and Lopez (18)

* such numbers are references
-5 -
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employed a grid analogy method and the usual sandwich
plate assumptions in deriving their plate analysis. Deformable
nodes represented average flexural and axial resistance,
torsional elements modelled the in~plane sheer stresses and
rigid bars transmitted the transverse shear forces induced by
the flexural stresses. Results were given for the progression
of the elasto-plastic boundary in square plates under various
edge conditions.

Dynamic analyses of elasto~plastic plates have also
been performed (12, 13). In 1959 Cox and Morland (19)
considered a simply-supported square plate subjected to a
pressure pulse, and later Florence (20) analysed clamped,
circular plates under a rectangular blast pulse by assuming
a rigideplastic material yielding at the Tresca hexagon.
Recently problems of combined material and geometric non-
linearities have been tackled. Gerdeen et al.(21) have
analysed shells of revolution under these conditions and
Symonds and Jones (22) have imnvestigated the behaviour of
fully c lamped beams composed of materials (particularly
steels) which were strain-rate sensitive.

The Finite Difference approach has been used for some
time to analyse elasto-plastic problems (e.g. 23, 24) sometimes
in combination with large deflections. Balmer and Witmer
(25) performed such an analysis on impulsively loaded beams,
and, with high-energy metal forming in mind, the extension
to thin shells has been made (26, 27). Leech et al, (26)
presented results for a cylindrical panel and compared them
with experiments, and Lindberg and Boyd (27) considered
clamped, rigid-strain hafdening shell membranes. It is
however, evident that further work neeis to be done in this
particular field.

So far the Finite~Element method has been mentioneéd
only fleetingly. Now we come to consider its application
to the analysis of elasto=plastic structures. Although the
Force approach (28, 29) has been used in this context, notably
by Denke (30) and Lansing (31), the vast majority of workers
have used the stiffness (displacement) method (32). It is
-
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applications of this approach which will now be considered.

One of the most basic ways of solving the non-~linear
equations is by the Direct Iteration procedure. In this
method the total load is applied to the structure and using
the initial values of Young's Modulus, E, and Poisson's
Ratioy ¥, the elasti: stresses and strains are computed.

New values of E and v are calculated according to the stress
levels reached in each element, and then another full "elastic"
analysis performed using these values. This procedure is
repeated until the solution has converged. Figure la) shows

a diagrammatic representation of this process as applied to

a material with an elasto~plastic stress~strain curve which

may be represented adequately by two straight lines. 1In

1963 the method was applied by Wilson (33) to 2-D structures
and later used by Clough (34). These workers demonstrated

that the Direct Iterative approach usually converges
satisfactorily after 3 or 4 iterations. A completely different
direct solution has been demonstrated by Mallet and Schmit
(35). They use an-Energy Search technique for a large deflection
analysis and emphasise that the process is equally applicable

to elasto~plasticity, although this point is disputed by
Hofmeister et al.(50).

————r,

Probably the first method used for Finite~Element
elasto~plastic analysis was the incremental Initial Strain
approach introdudeqby Mendelson and Mason (36) in 1959.
Padlog et al.(37) considered inelastic structures under
cyclic, thermal and mechanical loading in 1960, and other
pioneer work was performed by Gallagher et al,(38), Argyris
(39) and Jensen et al.,(40). The procedure is to apply the
load incrementally and at each load step to treat the plastic
strains produced as initital strains for the next increment. i
In this way pseudo~loads account for plasticity and it is
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therefore necessary to modify only the right~hand-sides of

equilibrium equations. This means that the elastic stiffness
matrix is used throughout and thus needs to be built~up and

inverted once only. Using the usual Finite~Element notation
we may write the linear elastic stress-=strain relationship
for a material as

¢ -5 = 0l(e-&)

In this approach it is the initlal strain vector, ég )

01)

which is adjusted to achieve a solution of the equilibrium

equations

Klg = L

K14 "
where 13 represents the vector 6f all forces due to

external loads, initital strains, initial ¢tresses etc.

The procedure is shown diagrammatically in Figure 1b). If

large increments of load are taken it can become necessary

to iterate at each step in order to achieve high accuracy, but
this can easily be avoided by taking the increments sufficiently
small (39). A major disadvantage of the Initial Strain approach
is that it breaks down for perfectly plastic materials because
the strains in this case cannot be uniquely determined

for prescribed stress levels.

A central problem in an Initial Strain analysis is the
method used to compute the pseudo-forces. This is a much
more crucial point in plate~=bending than in 2-D analysis.
Many non~Finite-Element plate-bending analyses assumed that
at all points on the plate the entire thickness was either
fully elastic or fully plastic (23, 18), and whilst this is
the case for a plate of sandwich construction it is a very
crude approximation for a solid plate. Using the Finiv~=
Element method less drastic assumption can be made to
overcome this problem. For example, Armen ‘et al,(41) for
their initial Strain analysis employed a triangular plate-
beading element with quintic displacement functions and
assumed thc plastic strain to vary linearly from the upper
and lower surfaces of the element to elastic-~plastic
boundaries within the cross-section. They further ass..aed
a linear variation along the edges between adjacent nodes
with a corresponding planar distribution throughout the area
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of the element. Nodal strains were found by averaging values
from surrounding elements. In this work the Romburg-Osgood
stress-strain . relationship (42) is employed, and so that the
Bauschinger effect could ke included for cyclic loading, the
authors chose the Prager-Ziegler kinematic hardening theory of
plasticity (16, 43, 44). However, recently this group of
researchers have favoured numerical integration techniques
both along the length and through the thickness of their shell
of revolution (45). They have found 3 Gauss points generally,
adequate along the length., Through the thickness Simpson's
integration employing up to 2l.station was selected -~ the
large number being required for the cyclic loading being
considzred in this work. The choice of Simpson's integration
allowed the first, surface yielding to be detected, whereas
Gaussian quadrature would have required yielding at interior
points to take place before any contribution was registered.
The strains at the integration points are now found by

taking derivatives of the assumed displacement functions.

At presert the most popular method for Finite-Element
elasto~plastic analysis is the incremental Tangent Modulus
or Variable Stiffness approach. This was initiated in 1965
by Pope (46) and Swecdlow and Yang (47), and further developed
for 2-D problems by Reyes and Deere (48) and Marcal and King
(49) amongst :.chers. In this method the load is again applied
incrementally but now it is the matrix[D]in equation (1)
which is updated at each step to its tangential value, U>1] ’
obtained from the effective stress-strain curve and corresponding
to the stress state reached. This means that a new set of
coefficients for the equilibrium equation (ii) must be found
and a new inversion of this matrix performed at each load
step. A diagram of the process is given as Figure lc).
A refinement occasionally employed to improve accuracy is
described by Hcfmeister et al. (50) in the context of a
2-D, large strain analysis. Here an equilibrium check is
performed at each load step (or less frequently) and thus the
nodal point equilibrium error reduced by using a Newton~Raphson
interation procedure. A comparison between Initial Strain and

T I—e————— Y
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Tangent Modulus methods was given in 1968 by Marcal (51).
He demonstrated that a larger load increment could be taken
for a veriable stiffness approach, but as the modifications
to the equilibrium equations required at each step are
considerably more extensive with this technique the overall

L]
IETE RO P T e

efficiency for the two methods remains similar.

ot u.Mv,l‘ e

Constant stress and strain elements have often been
used .with the Tangent Modulus method for plane~stress elastoe
plastic analyses. Richard and Blacklock (52) reported on
such an element, whereas Felippa (53) described work using

quadratic functions for both displacements. A linear variation
of [D,-] over the area was taken with values calculated at the
vertices using average stresses from the elements at each ;
node. The problem of evaluating the matrix DJJ for the Tangent
Modulus approach is equivalent to the problem of computing

the pseudo-forces for the Initial Strain approach. Recently
Bergen and Claugh (54) considered the Felippa approach for use
with a quadrilateral plate-bending element, but concluded it

RN e e e e e e O g s i L b e i et

to be over-~complicated ftor this application. In addition,

RS T

they expressed concern about assuming a continuous U);]
variation when this is frequently not so within the element.
The approach selected by Bergen and Clough was to use 12
subtriangles per element and to take values of stresses

at their centroids. Strip integration was used over the area
and Gaussian quadrature through the thickness. As with

the Initial Strain analysis by Levine et al. (45), the strains
were obtained from the derivatives of the assumed displacement
functions.

A good deal of work using the Tangent Modulus approach
particularly applied to shells of revolution has been
performed by Marcal (55, 56, 57, Sé). He used the incremental
theory of plasticity and the von Mises yield criterion.
Isotropic strain hardening was assumed and a linear incremental
elasto-plastic stress-strain relation obtained. Marcal (58)
evaluated the stresses at the midway point of his axisymmetric
shell element and used 11 numerical integration points through
the thickness. In 1971 a dynamic analysis of beams and ring
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was presented by Wu and Witmer (59). They assumed an elastice
perfectly plastic material and used a mechanical sublayer
model. The equations of motion were solved by a time~wise,
central-difference, numerical integration “rocedure using a
time~step of 1 micro-second.

A further Finite~Element elasto-plastic method has recently
been introduced by Zieniewicz et al,(60). This is known as
the incremental Initial Stress approach, in which plasticity
is accounted for by adjustments of the initial stress vector,
Oo , of equation (3, The approach is basically a modified
Newton-Raphson procedure with the original value of the
stiffness matrix being used throughout. Therefore most of
the advantages of the Initial Strain approach are retained;
indeed the two methods are in many ways parallel. However,
the ability to analyse perféctly plastic materials is a notable
additional advantage of the Initial Stress approach. For
both these procedures, convergence may be accelerated by overe
adjustment at each step. Such an accelerator for use with
the Initial Stress approach has been developed by Nayak and
Zienkiewicz (61). Another possibility is to occasionally
update the stiffness matrix to its tangential value.
Although the Initial Stress approacih has been demonstrated
to be convergent and efficient in plasticity problems (60),
it may not be as suitable for prcblems involving large
deformation (62).

Finally, we shall mention a very recent elasto~plastic
analysis performed by Stricklin et al,(63). in which Finite
Element and Finite Difference methods are combined. In
this formulation the effect af the non-linearities are
evaluated by means of Finite Difference expressions, but
the general set-up of the analysis is Finite Element. The
authors present results for shells of revolution and claim
the computational procedure to be an order of magnitude
faster than other analyses.
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3. MATERIAL -NON-LINEARITIES

3.1 GCeneral Theory of Plasticity

Firstly we will develop a general theory of plasticity
to be used in the analysis. A yield surface can be defined
by the general equation

Fle,®)=0 | .

where IC is a work hardening paraméter. Yielding can only
occur when the stress components, & , satisfy this criterion
for the instantaneous value of N.Theparticular yield surface
which will be used is that proposed by von Mises. For a
plate or shell where the normal-to~plane stress component, O;)
is negligible, this is given by

F 'q:>n> = [0;5 +0';-'0',‘ 0.3 + 3(’[:53 "‘I:x ‘f’[lg)]%" \/(h)

where)ﬁQis the corresponding value of the uniaxial yield
stress.

(2)

The following incremental flow rule of plasticity is
employed in the analysis:-

2F
dep = x(av) (3)

HereAézrepresents the vector of incremental plastic strain
components and X is an unknown proportionality constant.
Equation (3) is often referred to as the Normality Principle
as it may be interpreted as the requirement thatégfmust be
normal to the yield surface in n-dimensional stress space.

Explicit formulations of the incremental plastic stress-
strain relations have been derived by Yamada et al. (66) and
Zienkiewicz et al. (60). They assume that for an infinitesimal
stress increment the corresponding changes in strain may
be divided into elastic and plastic parts, as

%:is¢+rd~re" (4)
or
-1
= |D A[2F
de =17 2 (ag) ()
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By differentiation of the yield surface

and the definition of

A=§{;d“§ | (6)

we can obtain the matrix equation
1T bae 7 [, ]
dé | 20% dre
| 2F N
_Aéﬁ | 20y 4 d
- 2F
A%, D) | PTxy dlxy| (1)
2F
d 2z b 5Tax AdTax
| 2F
A%y 4 Ty dlzy
2F 2F oF 2F 2F A X\
|0 00 o0y ATy Tex  Dlay ] .
with success by Marcal
(49) in their Incremental Tangent Modulus approach.
For our purposes however, it is more convenient to eliminate

X as demonstrated by Zienkiewicz et al, (60). to give

This type of relationship has been used
and King

o = [Dlep de

(8)
where

., = 01 - + 1% (32) I

(9)
and

2F\" 11 (2F
s= W+ (&) DZ

!
Here H is the slope of the uniaxial stress versus plastic
strain plot at the value of the initial effective stress.

(10)

In the present case, using the von Mises yield surface
given by equation (2) we have

- 13 -
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o2 (11)
where | e "
[FM] = S’Z‘:‘) 1 | SYMmM, ;g
o 0 3 :
o 0 0 3 (12) g
o 0 0 0 3 |
If we define ] !

g =) e

(13)
equation (10} becomes

-
[

s=H+g [l 2

(14)

and we can re-write equation (9) as

[0~ D) -<[P) 2 7 (15)

3.2 Finite Element Elasto-Plastic Procedure

The method chosen to account for plasticity effects is
the incremental Initial Stress approach suggested by
Zienkiewicz et al. (60) with adaptions to give compatibility
with both the hybrid stiffness formulation and dynamic response
analysis. The principal advantaae of this formulation is
that the original elastic material properties are used
throughout the analysis witn plasticity being included by

means of a system of pseudo-forces acting at the nodes.

For each finite element, e, the subroutine ELPL is called

b
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e
by the master programme to compute these forces, R , from
the nodal displacements accumulated during a time increment.
. e
Gaussian quadrature (- 67) is used to obtain R. from

residual (initial) stress values computed at discrete stations
throughout the volume of the element.

In the original Initial Stress procedure proposed for
static analysis, iteration was performed within each time
increment until the pseudo~forces became negligibly small.
This is, however, believed to be unnecessary for dynamic
response analysis where these forces ma‘' be carried over
to act during the next time increment.

3.3. The Elasto~Plastic Subroutine ELPL

A flowchart for this subroutine is included in Appendix
I and the cperations it performs will now be described. The
process is represented diagramatically in Fig. 2.

Step 1 e

From the nodal displacements, &894,
an element during a time step n,n+!
coefficients can be found as

é;?e = [C]Q é\q;,z. (16)

. -
Here the matrix I;] has been derived during the normal hybrid
stiffness computations.

accumulated for
the change in the stress

Step 2

For a Gauss point, g, use the hybrid stress assumptions
to obtain elastic increments of stress and strain,

égﬁ - [0]55:9

(17)

§e= [V go°

(18)

9 9 9
Add éé, to the existing stress components,ji y to give 122.
-~ 15 =
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Step 3
Test whether

F(QE ) >0 (19)

Here Il refers to its value at the start of the increment. If

expression (19) is not satisfied then the increment is
entirely elastic. Therefore up-date stress and strain
components as

g,g’m‘ =02 (20)
BRSSO @
and proceed t; next Gauss station.
If expression (19) is satisfied, test whether
F(Q,b,h) 20 (22)

using the stresses at the start of the increment. If expression
(22) is also satisfied proceed to next step; if not interpolate

for proportions of elastic stress and strain occuring above
yield, revise fgs and §¢ to these values and update 9’,’5
and 5} to the yield surface.

Steg 4
'
Call the Subroutine HDASH to calculate H and hence
evaluate the scalor, S, from

- 4 3)1 S)T 9
S= H 4 Eg [Fr\] ,? (23)

and the elasto-plastic matrix

[pl=ID] - & 277 (28)

]

[

Now the elasto-plastic stress increments may be calculated -
from 3
¢ [ ] ;-% 3

§o. = |D € 3

~<r &~ (25) 3
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As equation (25) is valid for infinitesimal strain  increments
only, it is possible that for a finite step the stresses
calculated will slightly exceed the yield surface. If

this occurs the stresses,fg,_?,,are scaled down to the yield

surface.,

Step 5

Calculate the residual (initial) stress vector

9 9 3
Ne'= dg - 0 Fep (26)

and update the stress components as

S,Y'H\

= geﬁ- 1;\99 (27)

~

and the strain components as equation (21).

Step 6

Repeat Steps 2~5 for each Gauss station, hence evaluating,
by Gaussian quadrature, the nodal pseudo-force vector in
local co-ordinates as

g mere)ar o,

The derivation of this expression is presented in Section 6.

Step 7
Transform pseudo-forces to global axes by performing
) Ian Joni) Jont
R = [L] Ru (29)
and accumulating to form Re’h*|

P~

4, GEOMETRIC NONLINEARITIES

As soon as the maximum transverse displacement of the
panel reaches about one-half the panel thickness the non-
linearity caused by the large displacements should be accounted

S

gt
m—

i
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for.

An incremental process originated by Argyris et al.
(68, 69) is employed. The element stiffness matrices

are systematically revised throughout the analysis by

e
transforming the original matrices [K), to the deformed
orientations using the equation

(k"= KD, 7T

e,

(3¢)

This transformation accounts for gross movement of the whole
element as a rigid body. In addition, the original equilibrium
of each element is disturbed by the effects of straining

and large rotations from the initial configuration,'and to
balance this a vector of cumulative nodal pseudo-forces,

§ , is included in the equations of motion of the system.

At the end of each step, the forces due to additional
Nohet
straining, 556 * 4, may be evaluated as

At n+d
é}g# :.[K) Q 4&1&

(31)
2
Here [Ka"*a

g 1s the wvised stiffness ..t the half-step and its
significance in the solution procedure is explained in Section
5. In addition, forces incorporating large rotation effects
and acting on each element are found by transforming the

2n

local pseudo~forcze vector,S;f,at the beginning of the time
P~

step as

e N4y L

" 3 [T L ynte! ,T Se)h '
= = L
So -STedse =TT 8

(32)
Hence
nat Rt Shm*’
= €
S ,.Sﬁ * év (33)
Thus it is now possible to include both material and geometric

non-linearities into the analysis without entering the

- 18 -
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necessarily time~-consuming elemental stiffness routines more
than once.

S« NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

The equations of motion of the system can be written as

(M4 +[614 +[x1g = 2O
To represent the non-linear system it is necessary to

adopt a step~by~step procedure taking linear conditions to
prevail throughout each small time interval.
a particular time~step n,n+!

(34)

Thus during
we cam write.

154"+ 16) 53"+ [<1 3™ < 2"

—~ (35)
The scheme selected for the numerical integration is an
incremental predictor-corrector procedure using Runge~Kutta
extrapolation techniques of O(hs) truncation errror. This
formulation conveniently permits the inclusion of both the

material and geometric non-linearities present.

For transient response analysis damping has wery little

effect on the general solution and for the present will be

excluded from the analysis. If, however, in the future it

is desired to include damping, only very slight modification
of the programme would be required.

During one time-increment the following scheme of
operations is performed:

Step 1

Compute the acceleration componenté vector at the
beginning of the time step as

ee -~ h n h
i =878
and hence evaluate storage vectors

‘n h
9_14:% —*t\,,/,'

(36)

. oo™ (37)
84, =%'= by
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Step 2
Extrapolate for incremental displacements at the half-time
interval as

3 - % "
é@m =‘é1«.;}: +‘§‘)~,\fa (38)
and hence compute the corresponding accelerations as
sontf -1 n n h n htd
0727574 R -1 g™

Evaluate Ve = N .oty
- + (40)

and update storage vectors as

(39)

s 9%’“ :Q%AA\‘(';\’{i (41)
an

' (42)
Step 3

Extrapolate for revised incremental displacements at the
half~time interval as

(i%':* =’.2Liwg;"+'§r1\}g. (43)
nad

n-&__ h
%;_5‘ +éj¢k (44)

Hence compute

and
ce N4t -t n h h h nad
A = [+] (E -1k [1] é‘i’ﬂ ) (45)
Evaluate e nad
Vs = L\’q:k . (46)

and update storage vector éui” to its final incremental value as

B4, = h(2gn+ % 1) an

and update /;lia as
Aga= Rgr + 2\ (48)
- 20 -
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Extrapolate for incremental displacements at the end
of the time-step as

2 h

é\g{j\“: L;t —t—,‘i h Y3 (43)

hence compute

ve n+l -1 h " h n+t hal
+ =[M) (ﬁ -3+ R é% ) (50)

= L ]
Ye= g (s1)

and update storage vector éli”to its final incremental value as

Evaluate

»

4\% = ZL(%A *,‘(ﬁy) (52)

Step 5

Update the displacement vector !
! n |

% :%+é‘1” (52) |

[
retaining % in store

Update velocity vector

* naf ‘h ‘
& =4 + g a (54)

Step 6
Compute the nodal pseudo-forces incorporating geometric

n+l . . ;
non~linearities, ;L , as described in Section 4. =

Transform the incremental nodal displacements to local
axes for each element using

é&; = [T]M Q_‘}g: (55)

i
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and hence update the vector of pseudo~forces for each elemcat as

e n+l Se”‘\ [ e e ' 3
= Jr 4R
Sy dr 4 1, Q%n,’. (56
Step 7 ;
For each element call the subroutine ELF to calculate ;

\

the nodal pseudo-~forces accounting for plasticity, ‘{Q’“‘ 9
<

from éu%nﬁ_as described in Section 3.3.

6. Derivation of Plasticity Pseudo~Force Expression |

It has been demonstrated by Zienkiewicz (.6Q) that,
for an aelement, the vector of nodal pseudo~forces due to
residual (initial) stresses cain be expressed as

Ri :j [B:“T 935 dv
-~ v

(57)

where [B] is the matrix relating strain and nodal displacements as

e =[B)g°

(58)
For the Hybrid approach we have
2 e
£=10s (59)
2 e
e g -[a)[9) + (60)
and
e = MBI
(61)

Hence by comparison with equations (£8) and (57) we can write

&) (M) 2s” av (62)

v

T —————
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7. Mass Matrix

It has been shown by Dungar et al. (65) that in order to

achieve improved results in dynamic problems, the mass and
hybrid stiffness matrices should be consistent with respect
to assumed generalized displacement patterns. In the hybrid
stiffness matrix these are taken along the element boundaries
only, so it is necessary, when formulating the mass matrix,

to extend the functions to cover the whole area of the element.

If gq.and u are respectively the vectors of generalized
nodal and boundary displacements then they may be related by
a matrix[V]as in the equation

u = V] % (63)
If, also, the vecégk of generalized displacement within the
element, d, is related to u by:

d=[3)u (64)
then the element mass matrix may be written as:
M~ o097 577 [5) 4 [9] -

where

e = mass density of the material of the element.

If we put [:)_a_] =J‘n [3]7[3) AN | (66)

_—1 Ty -
[M]°- (>[V] [3:3W] . (67)
The degrees of freedom at each node follow the ordering
w, the transverse displacement and the two rotationstk and
©y about the x and y axes respectively. For the general
triangular element orientated with respect to the local axes

8s in Fig. 3, the[V]and[bé]matrices are as shown in Fig. 4
and 5 respectively.

then

by the same process as the stiffness transformation.

- 23 =

Transformation to global axes is achieved

WJMWMMWHMW#M»N el
bl




8. BLAST-WAVE REPRESENTATION

The subroutine IMP calculateS the loading vector,lzﬁ
at time increment, n, from the impulsive forcing function,
P(t). A number of different functions have been tested for
their ability to represent the pressure-time curve for blast
loading (fig. 6).

Firstly, polynomial curve fitting was
tried.

This gave low root-mean-square errors for the higher

order polynomials, but the representation of available experimental

data gave alternatively over and under estimates along the
length of the actual curve. Secondly, an exponential
function given in Ref. 70 was tested:

-t /e

P(E) = po (! - *ee) e (68)

Here P, is the initial (maximum) blst pressure and t is the

intercept with the time axis. Fig. 3 shows that this function

overestimates the absolute value of pressure throughout.
Finally, a modification was made to the expression (68) to

give (l _ t/t{) -t/b(
P(EY = Py ©

This function is seen to give much better agreement with
the actual curve, and has been programmed as subroutine IMP.

(69)

When values for p,, t, tGand te are input the subroutine will
calculate the value of the loading vector'gf at the time, t.

9. RECOMMENDATION FOR FURTHER WORK.

Whilst no directly applicable results have been obtained

Lo date, the authors have been encouraged by the rapid develop-

ment of the various subroutines, see Appendix II. The algo-

rithmns employed for numerical integration are well known for
their numerical stability, and the progressive nature of the
spread of plasticity through each element shculd improve or
other elasto-plastic methods.

It is recommended that the work is continued to fully
exploit these developments.
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APENDIX II - SUBROUTINES TESTED AS AT 31,.8.'72

Subroutine EQUIVSTRESS
Gien a vector of stress components, at a Gauss station

this subroutine will calculate the value of the corresponding

equivalent stress, O‘? as \

L P PR (A3 (AN A | S

Subroutine DEPS

This subroutine calculates the incremental value of the
. . . 9 .
equivalent plastic straln,ggp,at a Gauss station, based on
a vector of corresponding incremental plastic strain components,

fe3. ‘
SE,? = %[(Sé,o, ) (Se,,:) {( ‘SXI’”‘.‘)) L (A.2)
JB’P,Zx (5)’,9,15) } ]

The equation of the uniaxial stress ( Y(¥) )} versus

Subroutine UNISTR

uniaxial plastic strain (ep,u ) curve is taken to be

€pm = A (7(71)— J“')g (A.3)

where (,, is the uniaxial stress at first yield.

When given values for A, B,0,, and &, subroutine UNISTR
will calculate the value of the uniaxial stress, Y(?‘L) . This,
together with the equivalent stress, ¢ , is required in the
evaluation of the yield surface function at a point, as

F(,‘Zﬂt) =7 - Y(1) (A.4)
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Subroutine HDASH

{
This subroutine calculates the value of H , which is
the instantaneous slope of the uniaxial stress versus plastic

strain curve. This may be found from equation (A.3) and Is
given by

-8
r.o4Ym) _ 1 [€Epu\ B
H A€pu AR\ A (A.5)

Subroutine MINY

Two matrix inversion routines which are particularly
suitable for the present problem have been programmed and
tested. The more accurate of the two empoys full pivotting,
but requires more storage and computation time that the other
which uses partial pivotting. Both routines wi:l be tested
in the overall programme and the better one selected at that
time when the accuracy - 'cost' balance can be assessed.

Subroutine TRANS

3
Here the matrix[LJ is calculated based on a given set
of nodal co-ordinates. This matrix performs the transformation
from global to local co-ordinates e.g.

4 = [L]Jﬂg (A.5)
Vector algebra is used to form the elements of [t]a.

Subroutine KTRAN

Using the matrixﬂJucomputed in subroutine TRANS, this
- =]
routine sets up the matrix LT} given by

ETJQ: L SYMM.
o L
A.7
s o L ( )
0 (o] o L

for a four noded element,

- 47 -

o 1_;;;__1_4 PR T e R e ol ) Sy § S eoe, . St ==




k=

o i S e s i 5

KTRAN then performs the transformation of the elemental
<
stiffness matrixﬁ{}from its original axes to global axes, as

ks = [0 K0, [71°

(A.8)

Subroutine ELPL

This subroutine computes the elemental, plastic, pseudo-
force vector, EZ , from the corresponding incremental,
nodal displacement vector A.:A. A refined flow chart for
ELPL is presented in this report.

The central operation in this subroutine is the integration
of the residual (initial) stresses,ﬁﬁﬁat the stations to
yield ﬁz. For each station the amount of computation anc
storage is great and hence the most suitable guadrature scheme
will be the one vhich uses the minimum number of stations for
a given accuracy. The obvious choice, therefore, is Gaussian

quadrature, and when we apply it to the present problem we
obtain:

=AYy A (N °K) AL

where/ﬁais the product of Gauss weights over the area and
thioughout the thickness at station,g,andlﬁ is a factor
adjusting the limits of integration as those appropriate
to the particular element concerned.

Originally it was expected the triangular elements would
be the most suitable for use in the analysis, and that seven
stations over the area, and a Gauss-Hammer quadrature scheme
(71), would be required. However, it now appears that by
usipg quadrilateral elements and just four stations over the
are comparable results can be achieved with much
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less storage and computat%on time. This is primarily because
the stiffness matrix, [h] y for a four-noded element is

appreciably more accurate than that for a triangle, and it
therefore follows that the same is true for the residual

9
stress vector,ég, at the chosen number of Gauss stations.

Stress variations through the thickness of the elasto-
plastic element are generally more complex than those over
the area, and hence in the first tests seven stations through
the thickness are being employed. As the first yielding of
a panel subjected to lateral loading occurs on the surface,
it is desirable that the extreme stations through the thickness
are near to the surface in order that the initial yielding
is quickly detected. By using seven~point Gaussian quadrature
the distance of the outer-most stations from the surface is
just 2.5% of the plate thickness.

Subroutine KMAT

This subroutine calculates the elastic stiffness of a
triangular or quadrilateral shell element with respect to
a global co-ordinate system. The method used is known as

the "Hybrid" technique, and the element has been well tested
in plate and shell situations.

Subroutine MMAT

This calculates the mass matrix for a general
triangular element and transforms it to global axes., The
theory is given in Section 7.
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