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ABSTRACT

A theoretical and experimental study is made of the phenomenon in-

dicatad in the title. It is shown that for inertial waves, just as for
gravity waves, there are discontinuities in the tangential particle
velocities at the interface in a real, two-component liquid, a fact
implying the existence of a vortex sheet. For the case where the two
liquids completely fill the cylinder, other results are obtained that
are analogous to those for gravity waves. In particular, if the liquids
are nearly of the same density, there are two sets of frequencies, one
set characterizing oscillations of the liquid mass as a whole, the other
set characterizing very low frequency oscillations at the interface.
For the case in which the two liquids have markedly different densities,
there are again two sets of frequencies, one set characterizing oscilla-
tions of the inner liquid as though the outer liquid were a solid mass,
the other set characterizing oscillations of the outer liquid as though
the inner liquid were absent. Fcr the general case, physical interpre-
tations are difficult; hence, a table of frequencies versus composition
is given.
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imner radius of free rurface %
l -
b radius of surface separating the two liquids % 1
c outer radius of cavity % :
d cne-half cylinder height z
H
i o) :
1 .
J Bessel function of first kind i
i
K g2a/s2 [1 + (20/8)%) §
3
i
K, 201/S 3
s
K, (25 + 1) wi/2d)/Y1 + (29/8)% 1
]
P pressure i

3
1,0,z cylindrical coordinates 1 X
S frequency 3 :

H .
t time i :
u perturbation velocity ;

H <
Y Bessel function of second kind 3 -
p density § :

EY A

angular speed of liquid
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I. INTRODUCTION

Lambl* notes some interesting facts about gravity wave motion in
inviscid, incompressible, superposed liquids of different densities,
e.g., the diminution of the speed of a wave from the value it would
have in a one-component liquid, the long natural period of oscillation
of the interface of two liquids of nearly equal density, the mathe-
matically possible but experimentally unobserved 'breaking'" of the
waves at the interface, the independent oscillations of the two liquids
if the densities are markedly different, and the presence of a vortex
sheet at the interface., This note investigates mathematically and
experimentally whether that class of internal waves now commonly
termed inertial waves (Bjerknessz, and Fultzs) exhibit such phenomena

when confined in a right circular cylinder.

II, ANALYSIS
A. Mathematical

1. The Governing Equations. Consider Figure 1. Following

Stewartsons, we initially assume that the inviscid, incompressible
liquids are spinning uniformly as a rigid body, that 22b2 and 02c?
are much greater than dg, and that p2 > pl. Then in this steady state,

we have:
p Q2
0=-V alﬂ-- > (r2 - a?)] ,a<r<b (D
1
and
P pp 0% Q2
0=-79 Eln--a-lf-(bz-az)-?—(rz-bz) ,b<r<c 2
2

where P10 and on are the ''static' p~essures in the uniformly spinning

liquids, and where the coordinate system has the angular velocity
Q= (0,0,0).

*References are listed on page 21.
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After a momentary disturbance of the container that generates a
§ "perturbation" velocity u = (u,v,w), the linearized Euler equations in
k the two regions are:
=
: 3 u +22xu =-9"; - Q2 (r2 - a2 3

3w u T1- 22 ) (3
it p 2
- 1
] and
: 3 ou +2xu =-9v",.° at ®2- a2 - 02 (2 - b2 (4)
ot 2 2 p2 p22 2

where Pl, EH and Pz’ 22 are the two pressures and perturbation velocities

in the two regions after the disturbance.

Subtracting (1) from (3) and
(2) from (4), we have

P!
-V_k_,k==1,2 (5)

Pk

Ly +2xy =-V Pk'Pko
ot pk

where P; and P; may properly be termed perturbation pressures.

Again following Stewartson4, we seek normal mode solutions of

equation (5). Hence, letting all time-dependent terms have the same

functional eSt dependence, one gets (Miless, 1959} :

P T P

=[2x-1-2428. VP (6)
LS 55 s I+ (20/9)2]

From the continuity equation V u = 0, one gets:

2
2 3R, = (
v pﬂ*(s v) Pl =0 (7)

We solve equation (7) by the usual separation of variables process,
g ' getting:
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A
[ coshTz+Dks1nh-§-] (8)

where the J's and Y's are Bessel functions of the first and second kinds,
respectively, where the A's and m's are separation constants, and where
Aps Bk’ Ck’ Dk are integration constants.

2. The Frequency Equation. After the disturbance, the container
has only the angular velocity (0,0,R); hence, the boundary condition
on all solid surfaces is u * n = 0, where n is an outward directed unit
normal, On the end face , then, we have:

BP'i]

from which there follows Ck = 0, and

L
o

(9)

A=A = (2 -’%, i=v/"1,3§=0,1,2,. .. (10)

Hence, redefining our constants, we rewrite (8) as:

1mk6 mz
P! = J (Kr) + B' (Kr)| sin (25 + 1) 55
k ?0 o f1 [Ak 5t % Yo ] 34
(11)
where \
2
K =@+ % /1 *6‘2‘) (12)

On the lateral surface r = ¢, the condition u . n = 0 gives:

12
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P! o P!
-—1-‘-9-—1 =o
or Sr 36
r=2¢
= A'PK J' (Ke) +K B0 J (K e
2[3m(3c) 2—zm(3c)
2 c 2 -
+B' 7K Y (Fe)+K By (Ko (13
2‘:sm(s) ZE?‘“‘(3C' (13)
2 2 _
where
K2- S (14)

In section B we outline how we search for the liquid eigenfrequencies
experimentally by adjusting certain physical parameters until the -gyro-
scope undamps. Inferring that this undamping is due to resonance between
one of the liquid eigenfrequencies and the nutational frequency of the
gyroscope (see Stewartson4, 1957), one can determine that particular
eigenfrequency. Though the validity of this procedure is well documented,
it nevertheless affords a determination of only those modes for which

m2 = 1, tor one can show that coupling between the liqud and shell
motions occurs only for that value of mz. Hence, the form of equation

(13) pertinent for this study is:

K

A'l1 K J' (Kc) + J (Kc

2[3 p (K -52‘1(3)]

sk vk + Sy kel = 0 (15)
231 3 =13

On the inner free surface (at r = a), the kinematical boundary
condition is % =0, where F= r-a-n (6,zt) 0, and n (8,34is the

free surface elevation. Hence, to first order, the kinematical boundary
condition is

13
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ul-g_ﬂ =o=u1-8y] (16)

T=a+n T=a+n

The dynamic boundary condition on the inner free surface is P = 0.

In terms of P;, this is:

P'] = - P :] - o 92an, Hence:
1J r=a+n 100 r=a+n !

SP' + p Qzau] =0 (17)
1 1 T=a+n

which, in terms of (11), is:
A? K - K J! K K
i [?m- ( 33) 1 {K3 n ¢ 33) 2 m ( 333}]
1 1 a 1

' - ' m =0
+ B! [le ka2 -k {K le K2 + K :le “38)}] (18)

+

~
L

Gy

where
K = a%a

' sz [( 2] 2

At the interface r = b, continuity or the pressure and normal

velocity yield two dynamic boundary conditions6} From the continuity of
the normal velocity we have:

14




[x3 {A; J’;‘I (Kb) + B! Yy (x3b)}

1

{A; Jm1 (K p) + B! ymlcx b)}]
a %J;[Ka {A; 3! (Kb) + B) Y (Kab)}
+ K % {A;_ J (Kb) + B Y (Ksb)}] (20)

Hence, ml =1,

From the equality of pressures at the interface, we have

3 (P) =<P) ,or(P'+P ) =(P'+P> . Hence, to
' * Vrsban 2/r=b+n 1 10/pzp+n 2 20/rspen

first order in n, we have: (P!-F}) = b‘l’ﬂa( Psr = P,) » from which
172 b 2 1

sl b b

there follows: [SP' +p 2%bu = SP' +p szu] . Substituting for
111 2 2 2lppen

- P', P', u, and u , we have:
B! 2 1 2

':' ' [ '
Al [JI (kb Kb {K I} (Kp) + gl 3 (Kab)}]

+ B! [\'1 (X b) - xlg {K3 Y!(KD) ;1 Y, (Kab)}]

' =4 [chxab) ) Kl% {Ks Ty K ;&JI (Kab)}:]
+ B! [Yl (Kp) - Xb {x, ¥ ®b) + ;2_ Y (xab)}] on

15
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Equations (15), (18), (20), and (21) are a set of four homogeneous
equations for the determination of A;, B;, A;_, and B', For convenience,
2

we re-write these four equations in the fomm

A; * 0+ B; + Q0+ A;za(c) + B;zh(c) =0 (22)
A;zl(a) + B;R,Z(a) + A; -0+ B; 0 =0 {(23)
A;pzza(b) + B;pzzu(b) - A;plzs(b) - B;plzu(b) =0 (24)
Ainl(b) + Bizz(b) - A;El(b) - B;zz(b) =0 (25)

where the definitions of the several &'s are obvious.

gl s i L R

From the above set of equations one can express P; and P; in terms

of A’. Then, £ 1 208, 1¥9
E . en, fromv = s i, = - =
& 1 ’ 1Y Tl 20 B or T 98 ] an
4 P8 [1 * (?s")z]
3 2 9P 9P

v = . 1 [—8—5—1 T 33&] , one can show that

‘ 2T

4 P s[l + ZQ)Z_]

E VI.L-— # vsz- . Hence, as is the case for gravity waves in superposed
+ b —

liquidsl, one infers that for inertial waves in a real liquid there

would be a vortex sheet at the interface.

Equations (22) -~ (25) are a homogeneous set, and a necessary condi-

& : tion that A;, Bi, A;, and B; be non-zerc is that the determinant of the

coefficients be zero., Hence:

16
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0 0 za(c) zh(c)

v () 2,(a) 0 0

P2, (b} 02 (b) - olka(b) -0, ) -°

g (b) 2 (b) - 2 (b - 2 (b) (26)

which is the frequency equation.

We first consider a special case of (26).

Let the two liquids
completely fill the cylinder.

Then a = 0 and equation (26) reduces to

0 L L
3(C) h'(C)
L (b - L - 2 (b z 0 3= - 2 L (b)2 (¢
e, 3( ) P, 3(b) P l‘( ) (92 pl) 1(b) 3( ) “( )
£ (b -2 (b -2 (b oL 2 (b)2 (b) -~ p & (B)& (b)]
1( ) 1( ) 2( ) 3(C) P 1( ) u( ) P, 3( ) 2( )J
27
We now consider two special cases of equation (27).
C I: 2
ase pz ‘pl
Then, from {27), we have:
K
= K J(K 23 (Kc) = 28
23(¢) X, J1( 301 * 3 J1( 3C) 0 (28)
which is Stewartson's inertial wave frequency equation for a one-
component liquid completely filling a cylinder of radius c.
Alternatively, from (27) we have:
K
-2 (b b) =J (Kb) |KY'(KD Y (Kb
L, 02 (b) - 2 ()2, () = T (KD) [K¥j(KD) + g2 Y (Kb) |
K
~Y (Xb) {K J'(KDb) + J (K bj =0 29
(&b [k 31(kp) + g2 3 (kb (29)

Using the asymptotic expansions for the Bessel functions, one zan
show that (29) is satisfied if K is very large. However, a large K3

17

S - |

Wt T S L ML Bt 812




[t i b

implies a small 3, a result establishing the existence of low frequency
waves at the interface.

ol

T

Hence, we've shown that, if p1 é,pz, there are two sets of inertial

wave frequencies, one set for the liquid as a whole, the other for the

oscillations at. the interface. A similar result holds for gravity waves.

TR IR

Case II: p, > p1

Then, from (27), we have:
K
L z J' (KD J(Kb) =0 30
,®) = K JI(KD) + 2 I (Kb) (30)

This would be the Stewartson frequency equation for the inner liquid if

the outer liquid were a solid mass.

Alternatively, from (27), we have:

4 £, ()2 () - 2 ()2 (b) = 0

E K X

5 - [chxab) . K () {st;(xab) . EJ-JI(xab)}] Ecay;(x3c) ¢ 2 vlcxsc)]
K K

. [an;(xsc) s 2 Jl“‘a‘)] “:Yl(xgb) -k ®) {KYIKD) + g2 Y:“ab)}]

(31)

This is the Stewartson frequency equation for a one component
E liquid, with a free surface at r = b, in a cylinder of radius c.

Hence, we've established that, if 92 >> cl, there are also two sets

[ T

of inertial wave frequencies, one characterizing the inner liquid as
E though the outer were solid; the other characterizing the outer liquid
: as though the inner were absent. A similar result holds for gravity

kW o

waves. i

3 For the general case, where a # 0, and 3 and pz are neither nearly '

;; equal nor far removed, equation (26) does not easily lend itself to such

E: 18
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physical interpretations. Hence, we merely give a table of theoretically
and experimentally determined frequencies versus composition for a par-
ticular density ratio*.

Table I.

EJ. c b a S (Theory) s (Experimental)
Py d d d ) ia

.8 3.127 2.708 0 - ,931 - .936

.8 3.127 2.211 0 - .,927 - .934

.8 3.127 1.564 V] - .938 - .942

.8 3.127 2,752 .98S - .926 - .924

.8 3.127 2.319 .989 - .94 - .,920

.8 3.127 1.783 .989 - .931 - .926

B. Experimental

Two immiscible liquids are placed in a cylindrical cavity inside a
gyroscope. Details of the gyroscope, supporting apparatus, and the
experimental procedure for determining the liauid eigenfrequencies by
resonating one of them with the nutational frequency of the gyroscope,
are profusely documented elsewhere4. We merely note here that the
inertial waves can create an asymmetrical pressure distribution in the
cavity; and the above-mentioned state of resonance merely ensures that
the asymmetrical pressure distribution will 'keep step' with the
nutational motion, thus causing an overturning effect that results in a
growth of the nutational component of the motion of the gyroscope.
Since the effect involves integrals like

2n ime R
f e (cos 6, sin 8) de
o

that are zero unless m = 1, only those modes of oscillation for which

*See Section B.
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m = 1 couple with the shell motion. Hence, it is only such modes that

we can find with the gyroscope,

Since viscosity undoubtedly has an effect, it was essential that
the two liquids of different density have small, equal, kinematic
viscosities. Fortunately, the Dow-Corning Company has just developed
a light oil that has a kinematic viscosity (one centistoke) equal to
that of water, yet with a specific gravity of 0.8, All of cthe
experiments were run using water and this oil, and the results are

given in Table I.
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