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A theoretical and experimental study is m'de of the phenomenon indicated in the title.
It is shown that for inertial 4aves, just as for gravity waves, there are discon-
tinuities in the tangential particle velocities at the interface in a real, two-
component liquid, a fact implying the existence of a vortex sheet. For the case
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of the same density, there are tgo "ets of frequencies, one set characterizing
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frequency oscillations at the interface. For the case in which the two liquids have
markedly different densities, there are again two sets of frequencies, one set
characterizing oscillations of the inner liquid as though the outer :iquid were a
solid mass, the other set characterizing oscillations of the outer liquid as though
the inner liquid were absent. For the general case, physical interpretations are
difficult; hence, a table of frequencies versus composition is given.
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ABSTRACT

A theoretical and experimental study is made of the phenomenon in-

dicat,.d in the title. It is shown that for inertial waves, just as for

gravity waves, there are discontinuities in the tangential particle

velocities at the interface in a real, two-component liquid, a fact

implying the existence of a vortex sheet. For the case where the two

liquids completely fill the cylinder, other results are obtained that

are analogous to those for gravity waves. In particular, if the liquids

are nearly of the same density, there are two sets of frequencies, one

set characterizing oscillations of the liquid mass as a whole, the other

set characterizing very low frequency oscillations at the interface.

For the case in which the two liquids have markedly different densities,

there are again two sets of frequencies, one set characterizing oscilla-

tions of the inner liquid as though the outer liquid were a solid mass,

the other set characterizing oscillations of the outer liquid as though

the inner liquid were absent. For the general case, physical interpre-

tations are difficult; hence, a table of frequencies versus composition

is given.
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LIST OF SYMBOLS

a inner radius of free !,irface

b radius of surface separating the two liquids

c outer radius of cavity

d cne-half cylinder height

J Bessel function of first kind

K n 2a/S [ 1 2L/s)]

K ~ 21li/S2J

K ((2j + 1) iri/2d)/l F+ (2SI/8)2 
•

14

3

p pressure

r,B,z cylinerical coordinates

S frequency

t time

u perturbation velocity

Y Bessel function of second kind

p density

angular speed of liquid
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I. INTRODUCTION

Lamb notes some interesting facts about gravity wave motion in

inviscid, incompressible, superposed liquids of different densities,

e.g., the diminution of the speed of a wave from the value it would

have in a one-component liquid, the long natural period of oscillation

of the interface of two liquids of nearly equal density, the mathe-
matically possible but experimentally unobserved '"breaking" of the

waves at the interface, the independent oscillations of the two liquids

if the densities are markedly different, and the presence of a vortex
sheet at the interface. This note investigates mathematically and

experimentally whether that class of internal waves now commonly

termed inertial waves (Bjerkness , and Fultz ) exhibit such phenomena

when confined in a right circular cylinder.

II. ANALYSIS

A. Mathematical

1. The Goierning Equations. Consider Figure 1. Following

Stewartson , we initially assume that the inviscid, incompressible

liquids are spinning uniformly as a rigid body, that 112b2 and fl2 c2

are much greater than dg, and that p > p. Then in this steady state,

we have:

0 =-V L- (r 2 - a2) ,a < r < b (1)

and

P2

wher 10 20

where P and P are the "static" p-assures in the uniformly spinning10 20

liquids, and where the coordinate system has the angular velocity

a = (o,o,f).l)

J*References are lis ted on page 21.
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After a momentary disturbance of the container that generates a

"perturbation" velocity u = (u,v,w), the linearized Euler equations in

the two regions are:

a V S12 (r2 - a2) (3)
~~1

and

8 u + 0xU V P 1 b 2 2(2-b (4)

2

where P, u and P 2 u are the two pressures and perturbation velocities

in the two regions after the disturbance. Subtracting (1) from (3) and

(2) from (4), we have

D xV k +ko -V Pk , k = 1,2 (S)

where P' and P may properly be termed perturbation pressures.
1 2

Again following Stewartson , we seek normal mode solutions of

equation (5). Hence, letting all time-dependent terms have the same

functional est dependence, one gets (Miles5 , 19S9):

uk x l- 2 . _ k' (6)
S k [1 + (2 Q/S) 2 ]SPk 1

From the continuity equation V• -k =0, one gets:

V2 P• + V) •q= 0 r7)

We solve equation (7) by the usual separation of variables process,

getting:

11
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• cos h-- z + Dk sin h-z] (8)

where the J's and Y's are Bessel functions of the first and second kinds,

respectively, where the A's and m's are separ-ation constants, and where

2. The Frequency Equation. After the disturbance, the container

has only the angular velocity (o,o.1); hence, the boundary condition

on all solid surfaces is u • n = 0, where n is an outward directed unit

normal. On the end face , then, we have:

BpJi = ± d = 0 (9)

from which there follows Ck = 0, and

= = (2j + I) - i, i = 4-T, j = 0,1,2,... (10)
1 2

Hence, redefining our constants, we rewrite (8) as:

P e L [A J' (K ) + B Y (Kr sin (2j +1 )1
=0= Mk 3 Mk 3 k

where

in ,.I Nf'2

K (2j + 1) -ri / + (12)3 Td (12)

On the lateral surface r = c, the cnndition u • n = 0 gives:

12



aP',

[_ Sr ;;L] 

I
r= C

= AI2[K 2 c) + (2K -- (K
2 C 2

+ 8' K Y; ( + c) K Ym (Kcl (13)
2 3 3 2 c 3

2 C 2

where

2Qi
K -= (14)

2 S

In section B we outline how we search for the liquid eigenfrequencies

experimentally by adjusting certain physical parameters until the gyro-

scope undamps. Inferring that this undamping is due to resonance between

one of the liquid eigenfrequencies and the nutational frequency of the

gyroscope (see Stewartson 4, 1957), one can determine that particular

eigenfrequency. Though the validity of this procedure is well documented,

it nevertheless affords a determination of only those modes for which

m = 1, for one can show that coupling between the liqud and shell
2

motions occurs only for that value of m 2 Hence, the form of equation

(13) pertinent for this study is:

A; [KJ (Kc) (K
3c 1 3]

+ B[KY' + Y = 0 (15)
::2 3 1c 1 3 -

SOn the inner free surface (at r = a), the kinematical boundary

DFcondition is 7= 0, where F r - a - Tn (O,z.,t) 0, and n (6,;.Jis the

Dt

free surface elevation. Hence, to first order, the kinematical boundary

condition is

13



u anf =0 U~ (16)
r=a+Tn r=a+

The dynamic boundary condition on the inner free surface is P = 0.

I1

-1 - P 0 fl2afl. Hence:
r=a+n 10 r=a+n 1 1

Sp, + p f2au] = 0 (17)
1r=a+Tl

which, in terms of (11), is:

A' (Ka) - K {K (K a) + K 1 m (K 3a)}]

+ B' a) - K (Ka) + K _.Yr K a0 (18)
1 3 1 ý3 m 1 2  1Sa 1

where

K fl2aKn 2
1 s2[ +(~)](9

At the interface r = b, continuity oi the pressure and normal
6.

velocity yield two dynamic boundary conditions . From the continuity of

the normal velocity we have:

u1 = ,or:

r=b+r r=b+ri

14
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I

im ti

+XK L lJ (K3 {b) + B; Y (K b) b)
2 3

b4

ioi

im J (Kb) + B' Y;(K b)

+ o +A'J J 21nb. to

K+ K1b)r 2

Hence, ni = 1.

From the equality of pressures at the interface, we have

r=b+n (2)r=b+ (P 1 ) =b+n )b+ n

first order in n, we have: (P'-P__ b ( p2 " P9 . from which
r-ab+11

there follows: p, + p + 2bu Substituting for

thereI folos [se S flbu= + 2'2U 2]r-b+rifo

pt, P', u1, and u ,we have:
1-2 1 2

At (K b) K.b {K J (K b) + K J1 (Kb)

+ B [Y (Kb) -Kb {fK Y' (K3b) + KI YI (K b)I1
3 3. 1 3J~

=A'FJ (Kb)- Kb{K J' (K b) + K J (K b)}
2 L-13 3 32 1 3J

[ B'[Y (K b) .Kb {fK Y (Kb) Y (K b)']t K (K3 3 s. (21)

1s



I
Equations (15), (18), (20), and (21) are a set of four homogeneous

equations for the determination of A, B'1, A'2, and B'. For convenience,

we re-write these four equations in the form

A' ' 0 + B' • 0 + A'l (c) + B'I (c) = 0 (22)
1 1 2 3

A'. (a) + B'9 (a) + A' 0 + B' • 0 = 0 (23)
1 1 12 2 2

A'P 2.(b) + B'P 2 (b) -A'P2. (b) - B'PI2.(b)= 0 (24)
123 1 24 213 21

PAli (b) + B'I (b) - A'f (b) - B'1 (b) = 0 (25)

11 12 21 22

where the definitions of the several I's are obvious.

From the above set of equations one can express PI and P' in terms
1 2

of A'. Then, from v =u -i = 11an
IP S [ I- - + r B

1 1 -12 __ P S 1+Q__ L

2 - p' rp '

v=u •i =.r r 3 , one can show that

v v Hence, as is the case for gravity waves in superposed

liquids1, one infers that for inertial waves in a real liquid there

would be a vortex sheet at the interface.

Equations (22) - (25) are a homogeneous set, and a necessary condi-

tion that A', B', A', and B' be non-zero is that the determinant of the
1 1 2 2

coefficients be zero. Hence:

16

.-V ~P Z h



0 0 z (c) 4 (c)

z (a) t2(a) 0 0

=0

P2 3(b) p 24(b) "p11 3(b) -pI Z4(b)

11(b) 2 (b) -k (b) -X 2(b) (26)

which is the frequency equation.

We first consider a special case of (26). Let the two liquids

completely fill the cylinder. Then a = 0 and equation (26) reduces to

0 3C(c) 4(c)

jp Z Z3(b) - p 93 (b) - p 14 (b) = O=-(p2 - p ) (b)t3 (b)t 4(c)

S1(b) - 4 (b[ - p p 9b(b) p 3 (b) 2 (b)1 9.b "-9.c(b) 4() 23 2

(27)

We now consider two special cases of equation (27).

Case I: p & P
2 * 1

Then, from (27), we have:

K
S3 (c) K J'l(K c) + C I j (K c) = 0 (28)

S3 31 C 13

which is Stewartson's inertial wave frequency equation for a one-

Scomponent liquid completely filling a cylinder of radius c.

Alternatively, from (27) we have:

K
S(b) Z (b)-I (b)t. (b) -- .J Kb) [K Y (Kb) + 2,c(K b)]

K
Y (K b) [K J'C(K3b) + EaJKb(Ka = 0 (29)1 3 3 3

Using the asymptotic expansions for the Bessel functions, one can

show that (29) is satisfied if K3 is very large. However, a large K

17
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implies a small S, a result establishing the existence of low frequency

waves at the interface.

Hence, we've shown that, if p ;p.0 there are two sets of inertial

wave frequencies, one set for the liquid as a whole, the other for the

oscillations at. the interface. A similar result holds for gravity waves.

Case II: p >> p2 1

Then, from (27), we have:

K

S(b) - K J ( K b) + r2 J (K b) = 0 (30)

This would be the Stewartson frequency equation for the inner liquid if

the outer liquid were a solid mass.

Alternatively, from (27), we have:

2Z (b)2. (c) I (c)Z. (b) - 0
A 4 3 2

K- K
IJ (K b) K (b) JI(Kb) + Jc(K b) 3 YI(Kc) +c-LY-(Kc)

11 3 1 3  ~ 1313 1 3J

K K

[K (K3 JC c) ~JCK c)][ (K b) - K (b) { K3 (K b) + b 1<b

(31)

This is the Stewartson frequency equation for a one component

liquid, with a free surface at r = b, in a cylinder of radius c.

Hence, we've established that, if p >> p , there are also two sets

of inertial wave frequencies, one characterizing the inner liquid as

though the outer were solid; the other characterizing the outer liquid

as though the inner were absent. A similar result holds for gravity

waves.

For the general case, where a 0 0, and p and p are neither nearly1. 2

equal nor far removed, equation (26) does not easily lend itself to such

18
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physical interpretations. Hence, we merely give a table of theoretically

and experimentally determined frequencies versus composition for a par-

ticular density ratio*.

Table I.

P__ c b a _s (Theory) S (Experiment.al)
p2

.8 3.127 2.708 0 - .931 - .936

.8 3.127 2.211 0 .927 - .934

.8 3.127 1.564 0 -. 938 -. 942

.8 3.127 2.7S2 .989 - .926 - .924

.8 3.127 2.319 .989 -. 914 -. 920

.8 3.127 1.783 .989 -. 931 -. 926

B. Experimental

Two immiscible liquids are placed in a cylindrical cavity inside a

gyroscope. Details of the gyroscope, supporting apparatus, and the

experimental procedure for determining the linuid eigenfrequencies by

resonating one of them with the nutational frequency of the gyroscope,
4are profusely documented elsewhere . We merely note here that the

inertial waves can create an asymmetrical pressure distribution in the

cavity; and the above-mentioned state of resonance merely ensures that

the asymmetrical pressure distribution will "keep step" with the

nutational motion, thus causing an overturning effect that results in a

growth of the nutational component of the motion of the gyroscope.

Since the effect involves integrals like

f2e (cos 0, sin e) dO

0

that are zero unless m = 1, only those modes of oscillation for which

*See Section B.
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m 1 1 couple with the shell motion. Hence, it is only such modes that

we can find with the gyroscope.

Since viscosity undoubtedly has an effect, it was essential that

the two liquids of different density have small, equal, kinematic

viscosities. Fortunately, the Dow-Corning Company has just developed

a light oil that has a kinematic viscosity (one centistoke) equal to
that of water, yet with a specific gravity of 0.8. All of the
experiments were run using water and this oil, and the results are

given in Table I.
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