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ABSTRACr

A very important problem in mathematical statistics is that of finding the

best linear or nonlinear ngression equation to express• the relation between a

dependent variable and one or more independent. variables. Given are observations,

earh s'•Uject to random error, greater in number than the parameters in the re-

g1 ission equation, on the dependent vaxaable and the related values of the

independent variable(s), which may be knam exactly or may also be subject to

random error. Related probl ems are those of choosing the best mea'ures of central

tendency and dispersionn of the observations. The best solutions of alK three

problems depend upon the listribution of the random errors. If ome assumes that

the values of the independent variable(s) are !nown exactly and that the errors

in the observations on th2 dependent varia.be are normally diLtributed, then it

is well known that the mean is the best measure of central tendenc;, the standard

deviation is the best measure of dispersion, and the method of least squaras is

the best metfiod of fitting e regression equation. Othex assumptions lead to

Sdifferent choices. Most practitioners have tended to make the assumption of

normality an not to worry about the conseqiences when it is not justifiel. An-

other problem arises when the data are -:on aminated by spurious observations

S(outliers) which :e from distril-ati Ls w.th di-fferent me'rns and/or larger

standard deviations. Many methods have teen proposed for rejecting outliers or

modifying them (or their weights). After summarizing (dhrenolugically) the

volunmious literature on measures of central teniency Wid dispersion, the method

of least squares and nunerous alternatives, the treatment of outliers, and robust

estiination,the author recrmiends a siple and reasonably roLLc3t set of prr:xdtures.

The reader who seeks a more sopiistizated solution cani choose one frca among the
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many given in the literature cited or devise one to fit the special :,nditions

of his problem.
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I. INTRODUCrION

Since very early times, people have been interested in the problem of

choosing the best single value (average or mean) to sum. arize the infor-

mation given by a number of independent observations or measurements, each

subject to error, of the same quantity. Eisenhart (1972) presents evidence

of the use of such averages as the mode (the value occurring most frequenly;

and the midrange (the value micday between the largest and smallest obser-

vations) by the ancient Greeks and Egyp~isns and by the Arabs during the

Middle Ages. The median (the value such that there are the same nunber

NS of observations above as belai it) and the arithmetic mean (the sum of all

the observations divided by their number) seem not to have comie into use

intil early in the modern era.

The problem of determining the constants in the equation of the

stra.ght line which best iits (in some specified sense) th.ree or more non-

collinear points in the (x,y) plane whose coordinates are pairs of asscciated

values of two related variablks, x and y, dates back at leas,. as far as

Galileo Gali'.ei (1632). This problem can be generalized in two ways: (1)

Instead of finding the best linear equation in two variables (best line in

a plane), one may wish to find the best linear equation in three variables

(best plane in three-dimensional space) or in more than three variables

(best hyperplane in a hyperspace);(2) One may drop the requirement that the

equation be linear, aid find the best curve in a plane,the best surfare in

three-dimensional space, .)r the best hypersurface Ln a hyperspace. Statisti-

cimas splak oi these problems as those of linear and nonlinear regression.



The problems of determining the best average or measure of centrae

tendency and the best linear or nonlinear regression equation are related

to each other and to the problem of choosing the best measure of variability

or dispersion. The solutions of all three problems depend upon the distri-

bution of the errors or residuals (deviations of the observed values from

those predicted by the regression equation). The body of statisti cal theory

which treats all these related problems is colled the theory of errors. In

the following sections we shall trace the development of the theory of

errors from. the time of Galileo co the present day. We shall see that,

almost froa the time early in the nineteenth century when it was first pro-

posed, the method of least squares has enjoyed a pre-eminence over other

methods in the theory of errors. We shall examine the question as to the

conditions un&-r which this pre-eninence is deserved and when other methods

are theoretically superior to the method of least squares.

2. PRE-LE•sI-SQUARES ERA (1632-1804)

Galileo Galilei (1632) considers the question of det-rmining the distance

from the earth of a new star, given observi.tions on itz maximum and miniinn

elevation (in degrees) and the elevation of the pole stIr by thirteen ob-

servers :t different points on the earth's surface. I F the observations were

exact, the distance could be determined from the observations of any two

observers, and the 78 determinations made by pairing the observers in all

possible ways would all give. the same result. Since the observations are

subject to error, 78 different distances of the L.tar from c center of t-e

earth are found, ranging from a value less than the radius oF the .ýarth to
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infinity and beyond. Both extrmes are mwifestly impossible. Galileo

statr.s (p. 290 of the Riglish tranmlatian): "Then these observers being

capable, and having erred for all that, and their errors needing to be

corrected for us to get the best possible information fram their observa-

tions, it will be appropriate for us to apply the Wniumhn amendments and

smallert corrections that we ca,---just enough to remove the observations

from impossibility and restore them to possibility "'." In this statement

we see the beginnings of the 'Ah ry of errors, which attempts to determine

the tnrth from incon•istent observations by minimizing var'ous non-decreasing

fnmc•ims of the errors.

Roger Cotes (1722), in his last paragraph (page 22), considers four

observations p,q,r mad s, which may not be equally reliable, of the position

of a point. He proposes, as the most- probable tru, position, a weighted

average wit.i weights P,Q, R hnJ S %iiich are inversely proportional to the

spread of the errors to which the respective observations are subject. This

proposal represents ,one of the earliest attempts to determine an average

which uses all the observations but does not assign equal weights to all

of them.

Leonhard Euler (1749) and Johann Tobias Mayer (1750), working inde-

pendently, developed what has come to be lo-iown as -the Method of Avz.ages

for fitting a linear equation to observed data. In this method the

observatio.nal equation5 are divided into as many subsets as C'ere are

coefficx.ents to be determined, the division being made according to the

v-le6 of (one of) the independerit variable(s), those having the largest

values of this variable being grcg.r'd together, then the next largest in

3



wsother group, etc. Then the equatIons in eaci group are added together,

which is equivalent to applying to each subset the condition of zero sui

of residuals inherent in the method of Cotes for equal uncertainties of the

observations. The resulting equations, whose number is equal to the nunber

of coefficients to be detenrined, are then solved simultaneously. Mayer

gives a numerical example in which he uses twenty-seven observations on the

position of a moor. spot to write twenty-seven equations each contaiining three

iunknown quantities (the coefficients in the equation to be fitte• ), which he

divides inco three groups of nine equations each. Then he adds all the

equations in each group and solves the resulting three equations simultane-

ouslv to obtain the three unknown coefficients. A drawback of this method is

that the results depend on the way in which the observational equations are

divided into subsets, and are therefo.e sunewhat arbitrary and subjective.

Euler (articles 122-123 of the cited work) is also credited with being the

first to use the minimax principle (minimization of the maximunm residual

error) for solving a redundant system of linear equations.

Christopher Maire & Roger Joseph Boscovich (1755) report on the results

of an expedi. ion undertaken by the two authors under the auspices of Pope

Benedict XIV to measure two degrees of meridian and correct the map of the

Papal State. Or7 pp. 499-501 the author (Boscovich) atteimpts to determine

the best, value of the ellipticity of the earth from five measurements of

degrmes of meridi n (the new one by ?iaire and himself reported earliur in

the voluL1 and four others) which he considers most reliable among a large

number of available measur:ments. If the earth were exactly an ellipsoid

of revolution vnd if the measurements were perfectly accurate, any tw-)

4



mewsurewats of deg-rees of Rridian made at different latituiles would

determine its ellipticity exactly. But because the easureients are subject

to error, each of the 10 *,r5 of wasurements yields a differzhnt value of

the ellipticity, -which is inversely proxortional to the excess of the polar

degree over the equatorial. If the eliipticity is computed from the arith-

metic mean of all ten, excesses, the result is 1/255, but if the too most

discrepant values of the exces3 (one of which is actually negative) are dis-

carded and the ellipticity is computed from the arithmetic mean of the eight

remaining ones, the result is 1/195. Boscovich gives both of these results,

but is not satisfied with either.

Thomas Simpson (1756) points out that the practice of taking the mean

of a number of observations, while comwn xmmg astromcmers, has been ques-

tioned by aane persons of considerable ncte who have maintained that a single

observation, takeri with due care, is as reliable as the mean of a great

nunber. In order to refute that position, h9 d-termines the distributions

of the mean errors of n indepmndent observations from a discrete uniform

(rectangular) distribution and from a discrete isosceles triangular popula-

tion. ILe then conpares these distributions w• th those of single observations

from the sm populations, and shows that the probability is less that the

error of the mean of n observations equa)s or exceeds a given value than

that the error of a single observation e,4uals or exceeds the same value, the

mere so the greater the value of n.

Boscovich "1757) sumnarizes the measurement of a meridian arc ,iear Rome

and reevaluates t~e data on this and previous measurements given by Maire aid

Boscovich (1755), tie proposes for the first time two criteria for determining

S



the best-fitting straight Line rsabx throug three or act points: (i)Tbe sums

of the positive md nagatiw residuals (in the y-direztim) sWll be nuuri-

catty equal; Ad ([2) the sun of the absolute values of tOw residuials shall

be a minimm. His first -riterion requires that the best-fitti;g straigh--

line pass thrumh the oentroid (f,fl of the observatimis, whiose coodnatet-

are t+& aritimetic means of the x's imd of the y's, respectively. Mwe secw-.d

criterion is then applied subject to the restriction imposed by the first.

He proceeds to apply these criteria to the data of Maire and Boscovidi, but-

gives no i~ndicatiorn of the mthod of solving the resulting equationi for the

best value of the slope b.

Simpson (1757) -repeats the material of hi-as earlier paper, wuith two not-

able additions. At the beginrding he states explicitly for the first. tine the

assumptions that the error iistribution is (1) symetric (positive ad

negati-e errors of the same agit-. are equally lixely)and (2) limited ir.

extent (with limiits depending on the gocamess of the ins-trut~eit and the skill

of the observer). Four pages of new material at the end are devoted to extension

to a continuous isosceles triangular error distri.ution of the results previously

given for the corresponding discrete distribution.

Boscovich (1760) gives (pp. 420-4125) a gecmetric method of soling the

equations resulting from the criteria stated in his earlier paper to the

problem of finding the straight line y-a+bx of best fit to a numbter of point>!

-hich- are •ct collinear, and applies this method tn thc saime fiei me.ridial

arcs, obtaini:ng the value 1/248 for the ellipticitv of the earth.. Tis ,vthox

is based on the ordcred slopes bl >b2b- b of the lines coitnecting the fiw

observational points Yi,v,), i= , " tc their certroid ,
obsevati'1a 1 '*n



ACCozgiing tD Synin (1966), three unks of :kiu flinridah La~efl

(1760, 176Sa, b), meof widch the presfnt author has seen, contaip: (1)

the first, genral outline sin= Gulilei (1632l) of th properties of erros

of observwtXcMs; and (2) a rule for estimting the precision. of teass

by coreing the meaw talmk with and witihit the most extri 1 _sex 4zm

In the first work 17,60), !Ldxrt uses the principle of aximm likaelihood,

for whichd he gives a graphaical mnethod of solution; Sbeynin notes, howevr,

ealso toit In thprw okf76&,Luets acj d.thceojetie

of te teor ofexro ar toEndthe elaio g beweean tsking, their on

antes ofgravity inRstead of the original observations. ia the thirt; MCAk

(17Sb) Lmertgives a justi ication for preferring in arithmetic man to

sigeobservation, a derivatio of a semicircular piaba)ility density

function frtedistribution, of errors, and a statemet cf the- minimax

principle (zrnnizirg thae =j==~ residual error), but confesses_ that he does

niot knowhok to ue this principle in a generall and straightfo~rward manr

Atrsolving several probicas oucernihig averages of observationis

havng isceteerror distributiaon-s, which are reminiscent of SiW~c~i (17-56,

A-75), osehLouis Lagraiý,e (1.774) states and solves his Problem X: "Onie

suppses hateach observattion is subject to all possible errors between the

7



tw limits p ad -q, d thaz the fadliJ-y of eah error x, that is, the

ber of cses in which it cam occur, divided by the ttal m*er of cases,

is ipresimted by any fzrztu %hatever of x desipiaed by y; moe quire

the probaility that the mean error of n abservatius shall be included be-

Stm the limits r md-s.'He applies he result to two exmples: (1)y-K

(a mtant) [aifour or rectanrular distribution of error]; (2)yI(pz2 x2),

(-P 0) (parabolic distribt±im of error]. He r, Irk Cp. 2-2) that the latter

ea to be nthe simplest ari most imatural which cne can miagie." He alsn

oasiders a Prcblen XI, %hich is essntially a third exale of Pftblea X -"ith

y-1 cos x, (-,I2,,IZ) [ cosine dist.ilr.tion of error]. In aach case the mm

erro of n observations has smaler dispersion (the more so the largir n) that

the error of a single observation.

PLrre Siam LapLz (1774) crosiders the prmble of deten, ingw the best

average of three observations. He priposes two criteria: (1)l1h a-wrage should

be such that it is equally likely to fall aov or below the true value; a-.4

(Z) the awverage shotld be such that the sua of the products of the errors

md their respectiv probabilities is a minima. He demonstrates that the

two criteria lead to the sa average. Let X1X42 -, be the three ooservations,

and let p-x 2 -x and q-x3 -x. Suppose that the irue value is xl+x; then the

probability (density] that the three observations (assumd to Ism co from

a synmtric distribution) will fall at the poin':s xlx 2 , and x3 will be f(x)

f(p-x)f(p+q-x), where f(x) is the probability [density] that a single obseria-

ti-,n will fall at a distance x from the truie valie. Now construct a curve

-I whose equation is y-f(x)f(p-A)f(pjq-x). In order to satisfy Laplace's criteria

it is necessar/ to find the value of x such that an orinate erected at the

abscissa x(measured from xl) -:'ides the area i-nder this curve equally.

8



The solutio depnds, of ourse, an f(x). Laplace takes f(Y)-(x2)e e

[the density fnction of what we rnw call Laplace's first distributiom] •nd

finds the solutian x-p C1/n)4.(1*/3)e-aP- (Vl3e-tJ, -Aich ;v..romdas the

arithmetic en (Zp.oq)13 as *-0 and the median as m*-; fur Nm<-, it lies

betem the aritmetic new and the deWzi

D1iel Demoulli (1778) qtastions the practice comm to aFtr ers

of rejecting cmpletely observtimns judged to be too wide of the truth, but

assigning equal weights to all dhose retained- He evocates rejection of

oservatious only if an adcident occ=.ed idiih d erdered ai obsen'ation open

to question. He procs a semicircular distribs.iom of error, and discusses

the dhice of dieter. As limiting cases, the choict vf an infi'.:te diinter

leads to takirj the arithmetic mae as the &'arage of the observatioms, whie

dininishing the diwter as much a possible witht.,:t coztrat;_m leads to

taking the midrange. He prcposes what has core to be knom as t.h ethod

,if m.Lm lik;l-ibod to determine the avrage of ;- "_tber of o&ervatims.

For ubr observatirvi,, the result is equal to the aritetic rT-. For three

observations, X1 aLX 2 .c result is greater .tlhmequal to, or le than

the arithmetic mea (xl+ ;. + x3)/3 according as the _m-an x2 is less thw.,

eqw.l to, or greater than GLe midrmang X .* ,)/2. For oe than three

observations, the mthod hecoms uwieldy. since for n obsr-eions it requires

solution of an equation of degree (2n-l). In coanting on Bernoulli's paper,

Euler (1778) proposes maximizing th-i sum of the fourth powers of the prob-

ability densities of the errors of the observations instead of maximizing

their product (the likelihood function). He advances certain tuco-vincing

arguments, for the use of hds criterion astead of Bernoulli's, and works

9
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j w two exz les based cc real dbservatiws. The really vulnerable part of

Smoull'i-s wthod,as Isamc Todhmtber (1865) has pointed out, 3s nor the

principle of nwdu likelihood, but the particular 1w of probgbility assuwmd.

Laplace (1781) extends the theory givn in his earlier papr to aWy mmer

of observations and gzerahizes it to the case in which each obseriation nay

hme a different 1w of ficility of error. :.e states at. we cm in=1 ja-

finitely amy dhices of an avrge accoru4ng as one irposes varic•r critrria.

of which he enumerates four: (1) One we require that average such that the

sun of the positive errors equal the sun of the negative er.•s f f arithmetic

zm]i; (2) one my require that t.a sum of the pocitive errors adtiplied /

by their res-ecti pbabilities eca3 the sum of the w-gative errors nlti -

plied by their i•spective protlbilities; (5) ue may re-cme that the avei-ke

be the nost probable true ralue [1Mniel ermouili's =axim= Aikeliiood ci o-

icn]; or (4) mne my require that the error be a minimt , i.e. that the sun

of the products of the errors (taken ldthout regard to sign) -d their respec-

tiv probabilides be a winina. He shows that ct-fterion (4), which he regards

as the fd one, is equivalent to criterion (2). He also shows that

criterion (41 leads to the arit1wtic eant, and hence agrees with criterion

(i), -aim the following oditions are satisfied: (1) The lw of facility

of erxtor is the sam for all the o&-iervations; (2) positive "-d negative

er-rors of t1e same magnituade are equally probable; and (3) errors can be

iniinite, but the probability cf an error x tends to zero as Ix-,-.

Jear, Bernoulli III (1785), in a. ai.icle on averages, refers to the

Mathoxis of Bascovich (1757,1760) and Lambert (1765a), and gives fulle! accounts

of the mewirs of Lagrange (1774) and Daniel Bernoulli (1778), the i.tte.-

10



differing s d.- from the ptisehbwi version. The d is appa y

Sammted for b7 the fact that the ary giv is : on & preliminary

1769 version in which a sezicircular distribution of errcr is assumed s- in

thee yion pidilished in 1178, but the --tý.od of naaalikelihood is not

- t* eployed. Instead, the folla.rii? -•tzrativw proced&e is used: Pirst take the

new of all the dbservaticms as the center of the samicycle and detemine the

center of gravity of the area cirespcxid!ý. to the ;ý4-rraticns; take this

joint as the cmter of a new semicircle, and repeat the operation until the

center of fsvity and tae center --f the semicircle coincide.

Laplam (.736), givn three or am nem-collinear pairs of observations

of ti-o variar-les, x and y, prases testing the adequacy of the linear relation

I-a+lax by first determining a and b so as to uiniuize the amwwr -.-bs.oate

deviation frem the fitted straight line, then deciding smbjerotively whether

a &.-..atica of tls magnitude is consistent with the liaits of t.a errors to
tvich the observatiors are susceptible. He gives a prn-edure for determining

the. required values of a and b. In a later paper, Laplace (1793) gives a

p edz a :.dich he says is .rh simpler. He ýýserves -that when the absol-..e

value of thi largest deviaticn is nad. a muini==, there are actually three

observations whose devl ions,two with we sign ail oe with the other, have

this sar. absolute value. He offers another method of treating trJ observations,

based on le criteria that (1) the sua of the deviatiora, should be zerc id

(2) the sum o-" the absolute deviations sho-:id be a jminimv. These criteria

were first pr-uosed by Boscovich (1757). Lai'iace develops an analytic proce-

di.Le -, zi.- d on these c-ri teria while the j:,cedure used by Boscovich (1760)

was geomet-.c. LK.atace applizs both his methods to data on lengths of degrees

of meriaian and an ! igths of thL seconds pendulum., !,nth of whbl . he -ises

;• I 11



to detemine the earth's ellipticity. In the secrd wlume of his w-volume

treatise oa celestial chanics, Laplace (1799) stimrizes the results of his

earlier papers, agaiii proposing the sa to methods for detemining the

straight line y-a~bx which best fits threfe or more points (xI-yi) ihose

coordfiates are pairs of related observations: (1) Minimizing the inxim

residual; ani (2) minimizing the sm of the absolute residuals sbiject to the

restriction that Vie sums of the positive and negative residuals shall be

numerically eqml.

Gaspard Clair Fraa-ois Marie Riche Prouy (1804) gives a geometric inter-

pretation of the two nethods of Laplace (1799), applies them to actual data,

and copares ese reslts witI, those obtained ty a third method (his own) based

on the idea that the deviation to be eipected should be prow.ortiona1 to the

independent variable x, or almost so.

Jean Trembley (1804), after brief mention of zhe work of Lambert, Lar-Iace,

and Daniel Bernoulli on the most a&ztageous method of taking averages of

observations, turns to the work of Lagrange (1774) on the same prohlem. He

states that his purpose is to use cobinatorial theory to obtain the sme

results which Lagrange obtained by the use of integral calculis. He succeeds

in using combinatorial theory to obtain results for discrete error distribu-

tions wiich Lagrange ýF-,und wit: rhe aid of differential calculus and Simpson

(1756, 1757) by series exr _sions. He does not treat the case of continuous

error distributions, which is the only on,: for which Lagrange employed

integral calculus.

3. EIDY YE4R OF LEASI SQUARES (1805-1384)

Adr: mn Marie Legendre (1305), while i 1ot the first to use the method of

12
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least squrams, was the ihrst to Pblish it. KI starts with the liUGar form

E -a• x*cy" , where a,bc, are kwm coefaicieuts thich vary ftm

one eqwtim. to mKother and x.y,"- are i which mist be detemired

by the condition that the vlue of E redues, for each equation, to zero or a

ry small nmber. He derives the normal equations without the explicit us

of calculus L' =nltiplying the linear form in the siknaez by the ffidt

of each of the mmkmawms aid suing over all the observations, thie setting

the sins equal to zero. If the results, when stistitutod in the normal

equations, produce cue or more errors juded too large to be admissible, he

Team rejecti h .he equations which produced them, and determining the

uPaMukams frm the ren• mng eq, .tiwi-s. Though he offers no atenmatical proof

of the method of least squmaes, Ixsendre makes the following clair for its

superiority: "Of all tl: principles which one can propose for this object, I

think that none is more ganeral, amre exact, or easier to apply than the one

which we have used in the preceding research, which c'-iists in making the

sin cf the squares of the errors a minimu. By this means, a sort of equili-

brum amng tie errors is established which, preventing the extrems from

prevailing, is r-ost proper to make known the state of the system nearest to

the truth." [Transla*ion by present w-ritei of statements on pp. 72-73].

Puissar-t (1805) gives a theoretical discussion of tiw =thod of least

squares, followed by an application to the determination of tie ellipticity

of the earth frcm measures of degrees of meridian. Hd mentions the method

of conditional equatims [method of averages•] proposed by Maaer and t;,.- [Bosco-

vich] ma.thod (preferred, he says, by Delanbre) which gives "tne least errors

of latitude, half positive, half negative." He also applies the method of

13



*1 'I
least squares to the deteninatiin of the elipticity of the 4nth fro the

langths of secnds pen&iln , and compares the results with those obtaned by

Mithize by minbizinig the amkMi discref.acy betwem observed and fitted

values, as -'roposd by Lanlace- (1799).

Svzzbrg (180S), in the preli.ina.ydiscowse of a book describing the

M eS t of % meridian arc in Lapland by Svonberg and three colleagues,

caPareM the resilis obtained by applying the two zetJ'ods proposed by Laplace

(1799) to the ¶efiation of the earth's ellipticity frm fifteen measure-

mats oe tie lengths of secands pedulues and of &grees of meridian by various

obserers at different latitudes. No mention is made of the method of least

squares', it is re-asonable to assume that, at the time of *Tting, the author

had not he.ard of it. Tv- same rjsmpt~an is probably malid in the case of

v= Zach (1805), who expresses ".!e opinim that little reliance can be placed

on the arithmetic mean when it &-s- not stand eqally fir from the extremes.

He reviews the work o- Lasbert (1765a) mad Daniel Bernoulli (1778), but

expresses a pniference for the modiicatiui of Bernoulli's procedure due to

Euler (1778), wmich he applies t.o data on terrestrial refraction and barometric

p".e-- sure.

Jean Bapt 4ste .I-scph Delambre (1806-10) gives a three-volume report on a

vast undertaking, carried out under the auspices !f the Acad&4 mui des Sciences

with. t'. -Wxr-t of the French governrmnt, to establish the base of tne metric

system (1 meter - one -en-mi-Iionth of the distan-%- from the Equator to the

North Pole) by megs-aring the meridian arc L!tween the parallels of Dunkeir"e

End Barcelona (ore- 9o). On pagi 117 of the first volume, Delambre places

hidself squai-cly cn the side of those who never stppress an observation or

14



assip it a mualler weight simply because it deviates from other observa-

tions of the sam kind. CA pages 92 and 110 of the third volume, he coupares

values of the earth's eccentricity (ellipticity) calculated from the

observations of Delmbre and W thain by Laplace (1799), by Legendre (1805),

and by h•,self. Laplace [by rinimiizng the maximum deviation] obtained the

value 1/150; Legendre [by the method of least squares], 1/148; and Whlambre

(by an unspecified method, probably that of Delukbre (1813)], 1/135•. How-

ever, by coubining the observations of Delambre and Mchain with those made

by Bovguer in Peru about 60 years earlier, the task force obtained the value

1/334, whic, agrees much better with results cbtained froa measurements of

the length qf a pendulum of known period and with those predicted by the

theory of ntrtation and precession. This latter value was used in determin-

ing the len' th of the standard meter.

Carl Friedrich Gauss (1806) claims priority in the use (though not in

the publication) of the rethod of least squares in the following i'ords

(p. 184): "I still have not seen Legendre's [(1805)] work. I have purpc-lely

not taken tle trouble to do so, in order that the work on my method snall

remain entirely my own ideas. Through a few words, metho•d of least squaras,

which de Lalmade let 5all in zhe last History of Astronon , 1805, 1" arrive

at the supposition that a fundemental theorem, which I myself have already

used for twelve years in many calculations, and •hich I will asso use in my

work [Gauss (18309)], whether or not it belongs essentially to my method--

that this fundamcI, .•- t0er, is also employed by Legendre.: [Tr&a!ation of 4

portion quoted by Merrimaii (1877), pp. 162-163].

Bernhard August von Lindenau (18061 states Laplace's (1799) an&lytic N

15



form of the method of Bosco'lch (1760), as well as Legendre's (1805) meth~t

of least squares, and Wlplies both Ln the determination of the elliptic

meridian. He does not comient as to the relative merits of the two methods,

but reports that, in at lerst one instance, they yield very nearly the sai•

results.

Robert Adrain (1803), apparently unw.:a. vf the work of Legendre (1805)

and of the (as yet unpublished) work of Gauss, independently develops the

method of least squares and uses it to solve the following problems: (1)

Supose a,b,c,d, "' to be the observed measures of any quantity x, the most

probable value of x is required [Ans. the arithmetic mean of the observations];

(2) Given the observed positions of a point in space, to find the most

probable positimi of the point [Ans. the center of graVity of the observed

positions]; (3) 1o correct the dead reckoning at sea, by an observation of

the latitude [the answer differs from all rvIes previously used, which he

hopes will be abandoned]; (4) To correct a survey. The author mentions that

he has also used the same principle to determine the most probable value of

the earth's ellipticity. These last results were not published until ten

years later [Adraln (1818a)].

Gauss (1809) ieduces the normal (Gaussian) law of error fr.•m the

postulate that when any number of equally good direct cbservations cf an

unknown quantity x are given, the most probable value is their ari'thmetic

mean. He shows that the method of least squares, used by him since 1795,

but named by Legendre (1805), follows as a conseqtvnce of the Gaussian law

of error. If one does not assume this law, he might minimize the sum of the

2ntll powers of the errors for n-1,2,3" , but Gauss poitts out that

16
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_inilizing the sum of their squares (r-l) is simplest. Letting no- [Laplace's

method of situatoim] is equivalent to minimizing the maximum errors (one

positive and ex regative, equal in magnitude). Guss also mentions Laplace's

other principle, first proposed by Joscovich, of making the sum of the abso-

lute values of the deviations a minimum. He was .pparently unaware that

Bescovich proposed to minimize the sum of the 3bsolute values of the deviations

subject to the restrictics that the sums of the positive and negative devia.-

t.ions shall be equal, since he speaks of this restriction as one added by

Laplace. He does not mention the fstct, though he may have been aware of it,

that this restriction results in minimizing the sum of the absolute deviations

from the arithmetic mean kistead of from the madian. The same is t:rje of

the fact that minimizing the sum of the 2n! !powers for n*- results in the

choice of the midrange a- an average Instead of the arithmetic mean.

Laplace (1810) shows that if random samples of size n are drawn from

a distribution with mean p and known dispersion, then the distribution of

saple means ha- mean p and dispersion 1/ times that of the pareat

distribution; moreover, under. very gereral conditions [which LaplaLe does

not state exi licitly] on the parent distribution, the distribution of Sample

means tends to normality as the sample size n increases. As Eisenhart (1964)

has pointed out, these results greatly strengthen the justification given

by Gauss (1809) for the use of the method of least squares, especially when

dealing with a large number of cbservations. In a supplemwnt, Laplace shows

that when the law of error is the normal law, his own most advantageous

method" [Laplaco (1781)], the method of maximum likelihood[Bernouli (1'.778),

SEuler (1778?) and Gauss (1809)], and the method of least squares [which he

introduces without reference to either Legendre (1805) or Gauss (1809)] are all

17



equivalmt and lead to the choice of e aritb ic me as th average of

a niger of observations.

Friedrich Wilhelm Bessel (1810) uses the method of least squares to

determine the orbit of a comet and Gauss (1811) uses it to determine the

orbit of the asteroid Pallas. Gauss obtains twelve equations involving six

umkmnwn corrections to the elements of the orbit. Because the nature of the

observations which furnish the tenth of these equations does not inspire

confidence, he discards that equation and determines the unknmons from the

cther eleven. Merriman (1877), p. 166, notes: 'We find here for the first

time the notation [a bi- a'b'+ a!"b+ a*bTM + and also the algorithm for

the solution of normal equations by successive substitution, since univers-

ally followed in lengthy computations * ."

Laplace (1811a) considers, in his Articles VI and VII, the problem of

choosing the average to take of n observation, in order to correct an

element already kniown approximately. He finds that the normal (Gaussian)

law is the only one of the form f(x)- Ke-g(x 2), where g(x 2) is continuous,

for which the arithmetic mean is the 'most advantageous" in the sense of

Laplace (1781). However, because of tle rudimentary form of the central limit

theorem given by Laplace (1810), choice of the arithmetic mean is advantageous

when the number of observations is large or when one is taking the average of

results each based on a large number of observations, and heuce in these

cases one may use the method of least sq,,ares, which Gauss (l1309) developed

from the postulate that the arithmetic mean is the best aver;,ge of a number

of observations. In his Article VIII [reprinted as Laplr e (1811b)), Laplace

extends these results to the case of correcting two unknown elements (regressioa
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c cimasJ. His uulAsiS is already uite laborios for this cae, but

he Indicates that ite results bold for y Wm r of utnmonm elmets whatewr.

Lqimlaw (lhl2), in Uis uunomwtal work on the uaalytic: dbwozy of proba-

bilities, susrize; the results of his study spanning aboat fma a F .

Articles 20-24 of his Rxk II, Capter iv, whici is entitled ,Tf the proba-

bility of errors of the mae results of a large nmber of oe&rv e4!i=s, and

of the most advantageous m results," contain ost of the relevant material.

Articles 20 and 21, which deal r.e ectively with the correction of one or tuo

elments, already known approximately, by the aggregate of a large mnmber of

observations, and which contain Laplace's'Ipro" of the method of least

squares, follow closely the treatment of Laplace (1811a,b). Article 22, which

deals with the case in which the facility of positive errors is not the same

as that oC negative ones [the distribution of errors is not symitric] follows

Isplace (1810). Article 23, unlike the preceding ones, deals with the case

in w•idich the observations have already been made. The idea of the 'most

"advantagmous" average as the abscissa corresponding to the ordinate which

divides equally the area under the [joint] probability [density] curve [like-

lihood =aww] of the observations goes back to two of Laplace's earliest

moirs [Laplace (1774, 1781)]. The author also smarizes the results of

the supplement of Laplace (1810) and gives a more straightfcrward proof

th•an that of Lkplace (1811a) of the fact that the normal law of error is

the only one of the form f(x)=Ke for which the arithmetic mean is

m=;t advantageous. In Article 24, the author mentions various other methods

of averaging observations, including the cne proposed by Cotes (1722) and

app.tied by Euler (1749) and Mayer (1750), and the one based on minimizing
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n.sun '- f the- 2,-"o) rS ofth deviaV thESa sioh for a,, is eqrnuant to

u eiai te maxim= detriatice, ast prop sed by a (12 -10). B

CM iie at: ! best ewice of the o i1 Of nserror wM

"the lenr of obserutidn is. smaU but -Uhe wt-• ths of ast sguns
pro by athendre (18051s in (s e ie 9) o in use iwlhmm h an'-r - of

IbseestatI is large. In the seco l su1 o (firrst ncli in es13),
Laplace explairs bth thod proposedror, Dwxmihn a (1757, 1763) [see also

Lapl (c1e e7d%, M )] base on - - - -a the sm of the negaite rab is of

the deosiations subjectars thatte resritior, eraps -thoit alerahicns it, zi

Sadwhichtn the givs tviheLalam e '-3 thod off -ituaton. the restrfictio *at c the

and 3 ftexplorsitive andnegaitive o f vin tioa bae •ate i merage fftht w.ldch

is amre recise than eitheT.

Delaire (1813) retuxns to the questicm [see De~Umre (1e 1) f

determqinin the eccaricit o t he earth fro itistent, rser tcmnsoc

2Z•

probably th -n he ueinhis earlier wrin the f-11,.% iing.-I

seems that one should -seek neither the least sum of errors w.7 the least

sum of squares, but the least errors, lalf negative, half positive." Since

the least sum of absolute deviations is achieved uidm the deviatizans are

take.v fron the necdian, in which case h1alf the deviations are negative and

half positive, it appears that the author, perhaps without realizing it, is

advocating the Boscovich- Laplace rithod urithout the restriction that the

:UthS of the positive andi negative daviatioms be equal in magnitudle, whdich

requires that deviatim~s be taken fromx the aritheetic meari rather than from
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;he ro - (k P- GW7-6.A, Drabr w ý I ids Reo to dod

Of rwl 0 =fi's eicmidtr' ftut t~eblmr~wi b a a

1eeae (114) the stap fic a qwarim frn pc 72-73 of Uis

ewmdertiam kesd ca th calzul= of pzimbd1ities tht th nb of

least sqaes shoud be und in wexefmw to all r 6w to En theam

CC ~ 2I1A Va2 Of CMOr Of SeeM& ?tuum e1OMWS -MM a11

i&are Ziwabq dizffuvat &sz tips -s Im -ccdoizg, be ovrstates, as

mum latr witerias d, fm e grality of 4ut lwilme acunny, pi abou

the meo of 2emst sqwe, %kic is thmte 1 P of least s q- rsP is

Jbest fo h in1r err~r lw md bes~tcl~ t (25 the u.rof

obse ai~ a-) for other error Ion satisfyisv certaim cxitims

Jam Fredrik wan 3eck r~ko (1316) discusses the amr~ value of':1 ~a certainmber of qiniti tie cc of sevrat'-- rvt~ For sei'eral

jobseivatices of a single quaritif4, he aftocates the use of th £rithnetic

j~=3 11 we of the cbserticmums differs frm tw e w by an ammt gmett

thnthe assumed limit of errar, diat ' -a~c is discarded, andi tbhe

arithmtic mea ef the rateining onsis takt.m. -or obseirvatioms on two

relrted crm~tities, he proposes tweo methiods of de-terwining the best- fitting

straight line. 7be first, %ieiid he attributes to Lauber (1765a), involves

dividing the points repsesenting the pairs off observed (x~y) vab-es into

tw g~oups (3s nearly ;z, possible aqua1 in nucer), one cmaining the points

with the snailes-, abscissas and the otheT those wiith- the largest abscissa-,

ari joining the z.enters of graity of tre two sets- of point:;. The other

method is bassed on the use of the Bosccrwich criteria, whii thc aut~-or



attribte to Lla 2 (17m). 2ý ?CL, ýXzk tam r ~ X as Lre irde-

- riAbul Th Cba= zriiez - -aVssim equaia-SC of

tmf= !'c*u- EL ~a~tas msiz :=zt var- c x mmen- givaes te -net fit

3mtm me = the sm v--te sawSOe derixtica ~e- tecsrdvar-

frm the fitd is smllest, sdject to ith cnitimn tB th aliePrmzi

Sa is Mao.. It is immstin to t~th n rn eff4Cnd4

of least ý nmPmaltbm th -bi- e;- legere C-35 , s (in), am-

I4ml~ (MZ1) %M afreatr WiMeiy R .

appy thie mthrz of least sa&es, a ezth exm -- tmeionC-F

*1 ~t~e TesI21ts to fttat off the %JserraI s Cm ae~~ bfh.ut ~thm the rabe

* ~of h is itselIf irt~reti d He thremmprce to griP v ar-icxs

methodsof d~et-elmniing hi, inclubi~ mtred based ms the --wt, of the sum

Often- ?mm of the absolute errors (dvie-ticrs from tbe tre -.Alme)

for n4I,2,3,4,S:6, and mi alternate nethod basedi m the nedian. M of the

absolute values of teerrors. he snows that toe metbod bas-ed cm a-2 gives

the greatest precision for san~les frcui a normal population, 14IJ ezra ms

for n-2 yielding the same precisicn as- 114 fmx n-1, 10)9 fo-r ii=3, 133 for -.z4,

178 for n-S, 2-51 for 3-6, or '249 [actually 272--see cocients --eelcw] for the

alternate nethad based mi M, but notes that the last method az%-i thee amt based

4 cxm n-1 are arithnetically more convenient. Althcmgh he gave the correct

matjematical expressionl for the probable error osf th e dian absolute error

34, Gauss sade a mistake in calculatintg the value of the ni~erical coefficient.
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hmeziT2 b1 izlm k i is Teu S-' -t L--

ffL-SI two,__ 4et ~!gteu---e" 5 - rtr-

fi itm:c ~idt h -ezth pm--m T.:%ze;r svm?- -

results and his ow- is due tD tihose erros. -!e ca v.tce~ ei it of ~y~

theBocvichLala e ntho, based cm winimnzii the sun~ of theioit

valus o-- he rsidls ubjet t :h Tesricicn tha te algebraic 5!s-ai

the resiazal shl be zrdfebyless t-hen It fruM those c&,tainaeVb

the nethod -9 e stqures. In anof-&r pzpper, kdýrai (18M' t=.e the neth-

of least squares to find tbe Alime of the sphe- M,918.? 1idles' --&-ich mat

nearly chincides in var-ious streci-ied peculiarities with the actual ter-restrial

Il~erliod, given neasurenets of degrees of neridian.

In 1821 there appeared an anmyaous paper idiase authorship CzuberT (18-0la,

189-0) attributes to Svanherg. Mhe author gi%-es a discussiori, -aich is as s~d

philosophical as ucabh-atical, of the problem of finding the best av-erage of

a ntuberT of oscervatiorts. Ik iistinguishes between two case-s, ome in wiche

the observations are all made cmn the sarze identical object and thus differ

only because of errors of observatin and the other in which observation-s are

madee mi a q-antity -which is itsE-lf variable. He traces the history of th-e
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!! t ~e v~ ee.- i~ sudts of th zbey e. e I': ey (an

IMhe Raz &ScW'nAM M Ldj1 *i~r Lnnr*-:) T'asticcm

itS Me, tSo M& tiMe -- n. e f th Mehe of least qq=ws

&-T-Iptdb, S.egmre (L1S5) and :;aus tMM) led to the belieff t=a the

2elbW-I 3In S irdeed tb- 3ut 5-rWzIe -CIZke ik Vki fbor fthr

exýU=t2sr: 0,-- tb- cuesi, ra r obeztiOSS tO tbP, US- OSf thE aritSmtiC

Ae' Imennatme are Mat CI- -el b nbe, especially if they 2re s

zvhai t ht~em 2re z2=-f r cmcm side a-- the 2ritdnwtic ne -

M~ the Other-, wr U-.f there i.res to beii-eve that t~yare roat all acally

reliabe. Sý Mminicr a eue. of heer -s-sible zrezagsir -% a2s the

the midrange-, and Ube a3n eztic ne ofte-; renainLng after discardin the

(crne c- wre)ý lzrgest wdr snaflest observatices. -;- ccrInes that toe urcblezi

e.th 5 est a-.-rage &---ends m the h-w of facility of-- eror an~d bmeh2s r;;

-vnrad sutixn. 'Avertbless, at the end of the paer he proxs-es 3a --'tena-

tive v.-c-c -reýi starts frmi tVe aithme-tic anm (or saw other reasoa~ble

value), then tUes the reciuroz-als ef the resiAd'! (or their scruae-s) as

uLeelghts of td-e correspondiin~g oser-ati~ns zod obta-is a secmdx aproxi-

nat1 c ch gives new residual.-s, after -*+dch the Process is repeated imtil

it cGmwer-ges.

Ca-ss (1823) cciupares his earliLer forimilatimi of the method of lzast

sqtmre.- [G s (190)' -.ith that of Laplace (1812), and csncltxes that neither

is en'd.rely sat-isfactory. The form~er is b-ased on the as. t~tion. that the-

erro;-s of observatic'i follow; a norna1 (Ga..ssian) distri-bution-, u-hich. fol1cu-5

fran hi..- postu1..te that the best average of thc oi-servatimis is their aritbaetic
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3EM ;apM] show. tha the inet~ of lawst sw yiekIs a res~zt it

is bemt asytaticeaiy (in the sam ef ~irizie s off Vae ifbwbsTej

vahms of the TzsJi*=1ss4_-,ct to the resuni-cTim tat the algebrziz sm of

the sizLl l be zero, siim th mer- af osemrmt iS ffie-ay

1url.3), %teztewr ~ ithe T~i of er.~ws [tmdr vny general ccaiti~

It Imt stated byr 12plam)J - M= l!fft a Zap ioixi the witd3w nm proes to

-i

BU il, ft.- ti- cas of a s=--I or mdraft mmer of obser wa i hos er ros

are wt re om1v distribuze. Gamss beins by cargi the sitsatic 1 to

a go in itiy there is et gain to hwe sfor, bat a ,; to fear, toe pro1bo
eiJng ei w to ainiWiz the loss, i~zidi is assase to be the sav for poitive

Ian ne gativ'e errors of eqniual agitude. 7his assumption ca be ux-t by dioosing

I

,a lros, fi m prapatimaorials to the sum of the absobife values of the errors

as Lapace did, or -o tr. sin of theior n pcvers, n being a Positive evi

integer. In the h e s .ery, but inoie th u Latin text, Gaoss paints out.

zs Laplace had already dc,, that the 1amner the ex!ev -t n becahts, the

Sr eiror o .e cos to the situation erethe mo the pextre errors a. i ser sben

as a mesue of precisixL Gauss chooses n-2, ;.iich besides being thue si-mlest

of A's type also possesses certain desirable properities [see Gauss (1816) for

I a proof, a-tsuwmig a ino-ml distribution, of these properties, -whidhiunfor-

ttImately for his arf~ment, do not hold for certain other com distributions1..

On the basis of thi-; choice -he justifies the use of the method of least

squares, whateveT the -uxzer of c*bservaticos and whuatever the distributi =, of

their errors. Gauss' second exposition semis to thwe present urriter ttý_ be Po

mre satisfacuori than hi's first. In each case he starts from a postulate,

pL-u'zible but not universally valid, which le-ds rexorably to the forego.e
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cociim eerhlss i argaet apreumaly cadc his ntgr

aries, since the literatuw of the --~ few inc]i~ mwy writirms

an least s es bu only a fee m rival intiads.

A%%ti-- -- s Cauchy (1824, gije a large amber off oserv Ui of

tma variables, x a- d- (poits the gx-plae), seeks to dtemmine the values

of tw elemems C.•f -Bts el 2 the linear.regressim equim y-mabx) such

that the absolte value off the largest residal is a minimu aH e ishe

this u azatica by me s of an iterative sch•e. lie Ifr s that a lin n

the plea my be Rih hiat one, two, or thre of the givn points deviate

frca it by the maa:njria - t, Wt r, ttat fo- the line ihich is the -miqi

solution off te prblea there are three such points with te mxiua resibal,

two residuals of me signi an of the other jcf. Laplac (1793)]. ie pr'wes

four theorm concerniag tie possible systee -)f val•us of the eLmnts, and

gives a geometric interpretation of ea-d in term of r 'ier of facrs, edges,

and vertices .-f a oex polvhedromu Is paper is a co -nsatirm ;if a mcir

presente in lF14; the entir-e newir,w&hich was pdilished later [Ca;hdi (1831)],

inclues a generalizaticn of the theory in two directicns, c•sidriN the

case in iudch the funmtioa of the elements which represents the errors is a

power se-ries and the nmber of elements exceeds two. Cauchy shows that the

number of residuals wihose ab.solute value is equal to the maxiwa alwa-y

eyzeeds by 7t least one the umber of variable elements.

Two memoirs by Poisson i1824,1829), large parts nf whiai arc reproduced

in a later work [Poisson (1837)] are, according to Merrizan (1877), pp. 175-

176, a comentary on the fourth chaptex of Laplace (1812). MerriýLaM quotas

Todhuxter (1869) to the effect that Poisson confines hims.4lf to the case in
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ih cme eIea is to be deteraim-i frc a large nmber of Vo5e rai ,

biut --rest- -it in a wie generai1 naer tm~ Laplace, 4!rt~phV the assuiais

that positive and~t1 neTv owe equally likely ~ ats!ý the law cf

facility of 6rroz is the sa for every oservan--.

Jams iTmgy (1825,1 "-6) giv -fmw d trmUi-= of the nheth of least

s.wes. His fhst pawez iss iviied into three parts. in the first par" be

! gi -1, two of h d rSatios, weither ,f which is based ci the theory of

I-o•-_±ty. iich be crsi&r•s ir"-levmt. In the secori nart, be dis•csses

the pt!A,-bl1i~r. of -r a, hg to recognize that the proability of any

Sde•,ite •.v.- or a c•mtinaus distribution mst b-_ an infinitesinl, and

! -. inog be aot_•• ie. e t- eirm w and iesiduals. in the third part,

he attempts c zaaw that the eiwod of least sqares camot give the most

aiv'aztage3 or priaoble resul*i !nless the 1° of facility of error is the

norma :,. # (x)-c e . On page 16., he Pkes the follUring statemer.t

conce-rni-g the decastraticn of ILplace ('i812), Book II *(. iv, Art. 20:

'.. tever z;rit it =, h,-e in otlher respects, fit] is neither more nor

less general " the other solutions of the problem." Later authors have re-

garcjk. !vvery's demonstrations as unsatisfactory, and the presej:t writer shares

this opinion. Glaisher (1872) has •aalyzeO Ivexy's criticism of Laplace,

whizh )v regarded as a res,,t of Ivory's failure to m-&-rstand the demontra-

tiCz of Taplace. it appears to the pres•ent writer that Glaisher was guilty

of the same faulL. In modern terminology, what Laplace actually prove,, in

"the article cited by h'ONry [(zee .' Lplace (1810,1811a)] is that the method
J. least sqares is aspcoti.&Lly most .-iv-antageous for an.' error distribution

which is well enough behaved so that its mean is asyi--totically normally

27

U. .



distrib-uted He did not claiu to have shai that it is mest ahdvantageous

[best, -or ay finite mnber of observadcms from a non orml er-.or distri-

xbtiom, but Ded itas a antag [good] and cwzuatinana y

con =ent whd r the mmber of observations ; large. Ivory's -. ecod paper

contains l'is fr.h det stratim, regar,ýd by -Ilis (1844) as no more

satisfctaory and by Merriman (1877 as still mere absurd tian the previous

ICurg 'Wilhelu Mmcke (1825) gives ai expositi.m of the method of least

-ares based Largel:" on the demwnstratim of Gais (1823). He proposes the

use of the aritimetic man :f the observations remaL•nig after those farthest

:1 from the mean have been excluded. 3auss (1828) gives a wthod of solving the

normal equations unich, arise in carrying out the method of least squares.

1 hittaker & Robinson (1924) state that this method is substantially equivalent

to reduction of a quadratic form to a sum of squares.

Carl Friedrich Heiiuer (1830a) extends the work of Gauss (1816,1823) on

the estimation of the precision of observations to the case of s observations

arising from poplations having (possibly) different dispersions. The situation

ir which all come from the same population is included as a special case. He

comsiders estimators based on the ,quare root of the mean of the squares of

the erroz ,the mean absolute error, and the median -bsolute error. He can-

pares the precision of these estimators when the law of the facility o. error

is the normal (Gamsian) law. The mathematical expressions which he obtains

agree with those given by Gauss (1816), as do the nauerical results for the

root-mean-square error ax.d the mean absolute errvr. For the probable error

"of the median absolute error M he gives 0.78671 w/i9 (where w -.s the true

value of H), which he approximates by 0, '8671M/9s, without mentioning that
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Gaus- incorrectly calculated the nmmrical coefficient (for which he gave-2

the- rect mat ical epression x/,where p-0. 476 9 36 3 ) i 0.7520974.

[Halber's value is correct to within a uit in the fifta decimal place.]

HIn-er states as an advantage of the median absolute error that it is inde-

pendent of the law of facility of error. TlY.s i3 true in the sense that it

is unbiased for any law cf error. As for most so-called "distribution-free"

estiiatoirs, however, 4ts precision and its efficiency relative to other i

estimators do deper/1 m the law of error. Hauber (1830b) extm,,ds the results

of Poisson (1824,1629) to the case of two or more quantities to be determined.

Hijber (1830-32), La a six-part article, discusses the theoye: of averages.

In the first three parts he deals with arithmetic nmans, both population means

(expected values) and sample meants, along with the root-memn-square error and

probable error of the latter and various applications. In the fourth he dis-

cusses cases in which the values of the qantities of interest are not given

by the observations, but functions of these cuantities. In the fifth and

sixth parts he deals with methods of solving the set of observational equa-

tions, greater ii, number than the number of quantities to be determined. He

gives three methods: (1) the method of averages, which he attribntes V,

Tobias Mayer; (2) the method of least, squares; and (3) a hybrid method in

which the number of equations is reduced by Mayer's method to a manageaile

number (still greater than the number of quantities to be determined), which

are then solved by the method of least squares.

C. von Riese (1830) summarizes the result.,, of the paper by Gauss (1823),

which contains Gquss' second "proof" of i.he method of least squares, and the

1828 supplement thereto, which contains his algorithm for solving the normal

29



equations. The author mentions the earlier "proof" by Gauss (1809) based on

the postulate, which von Riese attributes to Cotes (1722?)that the arith-

metic mean is the best average of a number of observations. He also refers

to the work of Laplace (1810,1811a,1812) on the me'thod of least squares and

on the rival method b.sed on minimizing the sum of the absolute errors, as'

well as the earlier work of Boscovich (1757?) on the latter method 4id the

articles of J. Bernoulli (1785) on various averages and of Muncke (182S) on

the method of least squares.

Johann Franz Encke (1832-34) gives an exposition, in three parts, of

the method of least squares. The first part contains the "proof"' by Gauss

(1809), an attempt by Encke to demonstrate that the arithmetic mean is

necessarily the best average of a nmmber of observations, a discussion of

waghts and probable errors, and two tables of the probability integral

/fet . In this part, the author also gives a proof, which he credits

to his colleague DirichLet, of the expression for the probable error of the

median absolute deviation, which Gauss (1816) had:given without proof. He

gives the value of the numerical coeffic•int In tids expression"'as 0.786716

[correct to six decimal places], as compared with-the values 0.78671 [Hauber

(1830a)] and 0.7520974 [Gauss(1816)], neither of which he mentions`,as 'well

as a nuinerical exn*.Ple of ajplicntlon of this Mnthod to actual data. The

second part of the article contains Gauss' algorithm for the solution of

normal equations and his method of determining weights, while; the third deals

with conditioned observations.

Cauchy (1837) states the following problem (pp. 460-461 of th0 English

translation): " I suppose that a function of x represented by y is developed
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in a converging series arranpd arording to the ascending or descending powers

of x, or according to the sines and cosines of w arc x, or, more generally,

according to other functions of x wtich I shall represent by #(x) -u,x(x) - v,

#(x) -w; so that we have (1) y- au bv+ b + -" where a,b,c, " are

,.astant coefficients. Now the question is, 1st, how many terms of the second

member of the equation (1) ave to be employed, in order that the difference

between it and the exact value may be very small, and capable of being compared

with the errors to which the observations are liable; 2adly, to deternmne in

numbers the coefficients of the terms retained, or, in other words, to find

the approximate value just mercioned." The data consist of n values of y

represented by yi (i-i, "' ,n) and the corresponding values of x, (and hence

Sof ui vi)wi, " elt't! I y n equations (2) yi- aiui+ bivi+ ciwi+ " The

authrr proposes successive upproximations based on neglecting all but one, two,

"'" terms on the right-hand side of equations (2), the process continuing

until the residuals are comparable to the inevitable errors of observation.

Caudcy's method must be considered as one of the alternatives to the method of

least squares.

Gotthilf Heinrich Ludwig Hagen (1837) advocates the use of the method of

least squares [Legendre (1806), Gauss (1809,1823)], which he explains in

considerable detail. He does mention, however, the use by Prony (1804), before

the method of least squares was known, of the method of Laplace (1799) based

on the criteria of Boscovich, as well as the work of Lambert (1765a). He

also discusses the suppression of outlying observatioms, which he strongly

opposes unless there is some reason other than the fact that they deviate

considerably from the remaining ones, and the assignment of weights to
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individua! observations. Friedrich Wilhelm Bessel (1838) discusses the prob-

ability of errors of observation and the method of least squares as developed

by Laplace (1812), Gauss (1823), and others. He shows that the normal law

of error is not to be regarded as an a priori rule, free frm exception, and

throws new light on the conditions under which it holds. Bessel and Johann

Jakb Dawyer (1838) join Hagen (1837) in taking a firm stand agains- the

rejection of outlying observations, which had been advocated and practiced

by such earlier authors as Boscovich (1755, 1757), Lambert (1760,i765a), and

Legendre (1805). S. Stmaipfer (1839), on the other *Mad, has no qualms about

rejecting observations. Of nine determinations of the ratio of the lengths

of the Vienna fathom and the meter, by various methods, he rejects the two

smallest on the grounds that both were obtained by comparisois with the

French standard half toise, which leads him to suspect a constant error in

the standard half toise. He is still not satisfied with the result, and

proceeds to discard also the smallest of the remaining values, apparently

for no other reason than its discrcpancy from the six still remaining.

Christian Ludwig Gerling (1843) gives an excellent treat~rnt of the method

of least squares. He recommends great caution in discarding obser;.itions,

but says even so that "there remaiin observations which we must discard after

the fact, because we hold it to be more probable that a gross blunder has

occurred thdn that an unavoidable error can produce such a large deviation.,."

William Fishburn Donkin (1844) starts from the assumption that the

weight of an observation is proportional to the square of its precision

(inversely proportional to its variance) and, as one would expect, he reaches

the same coaclusion as the one Gauss (1823) reached by assuming a squared
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I
error loss function, namely that the method of least squares should be used,

inly of the law of facility of error. Pert ieslie lli (184)

examines in detail the dmmstratims of the metho of least sqres by

Gauss (1809), Laplace (1812), Gauss (1323) and Ivory (182S,1826). He cowcbdes

that Laplace's objecticn to Ganss' first denrnstration, based on the postu-

late that the aritetic mean is the best average to take of a mober of

observatims, is justified. He regards Laplace's dmmstration and Gas"

second as somwaut mor satisfactory, bit eneavors to show that n of the

three tends to prove that th results of the method of least squares are the

most probable of all possible results. He ftinds Ivory's desccstrations, hidch

are not based on the theory of pi•obilities, not at all lv.eusive,

Laabert Adolphe Jacques Quetelet (1846) gives an elementary expwition

of the theory of means and of the laws of error, in which he advocates use

of the interquatile distance as a measure of the probable error. He uses

this method of estimating the probable error of the right ascension of the

North Star [repeated measurements of the same quantity] and of the chest

measures of Scottish soldiers [measurements of related quantities].

Augustus Ele Morgwan (1847) gives an extensive treatment of the method

of least squares whidc consists largely of a translation of and comments on

the treatment of Laplace (1812). In cases in which the relative precision

of the observations is in doubt, he proposes an iterative procedure in which

one makes the best possible initial estimate of the weights, finds the most

probable result, then adjusts the weights accordingly, and repeats the process

until assumed and deduced weights agree.

Sir JMMn Frederick Willia. Herschel (1850) gives a demonstration of the
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wft o f lebs t sM , Sizs D t.em of &Aimr ("am" 5_sed s* f

as nitha t the ssof i n-w •m -a•o c, tcag aft is am-.

in.ma . in m t•er! work of QuIftet (lW, be Gsbms

by %tat mri pratircess t lztert cocaz med.s mzvers oF t • o

-esa af Smuh sOIT a---saj- ý eg of -7--m c~civs pciz-r~

out tbat his •a•s & te rmted, with of either te• arits!c new

or t fe resi Ellis (lo8) dis.a ses y e rscel's mf Off .s-:;res oe

leas -; whid he regnrc as umsatisf~z=-y, wdex- l a mddfes

lap]ases methd-r - kaie n V-9311) aff-fleSc) aitical dentical r- th thiss .

off least s Per, and espreoiolyses the irerst f EJis. Btei ors that

Hersetl's Proof "se ion, be treated with respect" and that the ^of

least sqhoumd be rt fed i foroter reasi , ecmte sit is averTy

gwdx metdxd", as show bCy Gss (MT2).

Jzle Biena)yae'(sn) revieGc -.;x &deiae1t o-f the ticory- of- Least

s~e f-rm the early work o--, iegemdre (1t5, Gwuss (I M~,lS2M) am?-

Laplace (1811a ,1812). He cmnsi&-ers the iw~dfi-catimxs amd geajeralizat-ios

reaqw-red -6&n the olbservatims arre not all equally precise g4d i~n mat me

bait several variabIP- are to be estieated, with particular caphasis on the

precision of the results of aopiying the- nethod of least squares to these

cases. A later pwter of Bienayme' (1858) L practically identical with this

Benjamin Peirce (1852) proposes the first objectLIve criteri-ii for the

rejeztior.ý of observations, based or, the principle that observations in

question should be rejected when the probab'ility of the syste-,t of errors w&hen

they are retained is less than that of the system of errors obtained by their
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- -. - -- ifi e- fmt =Ltm5 -d= rcT

e- ento SI Idi fr:."- as2~r-2 yte=Z of lezy-

UO metho =el Cm ast IT.I

of leat S~te. can:Ly (1!3SY) -1iu ~tit 1ms mehd is tý) ivz-ýst, -:d

ceztain cm~bti-ms, mi-Ach zave, avmzing v-- CmaLy (18=55i,e), tht the law

of facilitrv or-- error is the sam fro a-'- the errrs moa !m3dts cmibs

assigned 'ýo the nagnitm~ o-- am error. -r. that th -.7r cbbility of amero

is DT tI'~e to e.hx Cazcrhy (185) sbos th~at the not mrbable

value~s nay saw~tiices difffer from! those -found b th& inthod of least squares.

Bienaymg (18S3b)' reviews saw of Czachn's artisies 'C&.3:hby 1857d,e, f)3 and

maintains teat the anem of the sini of squares of the errors is Lnder all

circumstanes a neasure off precisicn of the obs-ervations. Cazhyý, (1853g)

showrs that the sys ten of ukeights w'hich nakees the largest error to be feared

in a nean as smill as possible often differs considerably, frr thtgU nb

the xethod. of least square--,

Joseph Bertrand (1955) offers certain historical and criticalrrk

on presentin-g a copy of his translation into Frenc-h of the Latin. r-emoirs of
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figjv - i- -.m=r t. SZeCwl- ani e) cm

'AC;j arw- x~m- 2 j5 a ~

z Qr-im-- me -erm' (PF d ~ de iaor-

LjP: (IS)35-m"Sti s&c- I d:_Tg

aa Ftirt-' S -teia f%7- tb rejt~ztd ef -be~r

iities fails iL al qmtia_ toerosoryieanggitre

N. JQ, crzr .Zs rtions Of the i~ta±OF iei e-7707 Sker US--!! i'zstify

tst in ~c~ a result. 3. We jm-riuft1:ii a rejectdng a read crily

iUibs, frc(w the besst estinate tha-t -.C- Cam foit elf the exten--t of actian of- the

-i varians causes -.,Eu-& cn vrodr"e -error, we find that tbe zcabinna ticz of those

fCaUSe4IS o-c error ca'-inot pss ibly Proaluze the dzscor.da.-me in q'q.estica; --4. n

I il±en we perc-eive that sther cmauses, my~ i.ave inteve-ned, ui'ose ratm C is such
thate'I canr-t bee recoDnized as occi.-Trg in thee ordinarv series of

observaticris.- Joseph 1Winlock (1?56* ansuvrs Airy's -criticisms of Peirce's

critf--icn, sturting up the case in its fa-vor as fcl1ts: K?,egarding the



I-o

-m tta vlz Cf3 zrrnra erzr!s, MEb s 2ais

af i m y Mb~w Adat o-jC- zee im %dft

owe f th Cri-ftetmr we ca ldtf s Iiudts. %6edr--

f-ekQ-TiC f cr- ar *ialr-smt is lesee tTteda ~ r-

Jbe*Pezr-! (I-M) th-tenZd afr leat is Mae

ft ap~s bemase ed th sa h rlbylbtg assumpim

Va pai-tTwe a&-; Mtzeva-- ers ef 0=1 Avg t e a--e-IM11 vrw-2

thes do ie swi S.. --. =s imstea l= be call~ *--th

Me2±v cff Mzumicalb' -. =1 Moim arod Riiz" J- -ýId tie of the

abolute- 12ws Off tn- r-e~s-id=s is 3MMaz&e. ;L wuts G=z t~at VAis is

emiyalemt to zinbzig the sa off the bA r whnCf the residm3s, A~re-

a is =i inteMe i~idcht to infirity as a limit.

C. CG. 'VMr Anft (l"jS)stalies the VrCbd~~i of db~aing we', two, three,

...of a series jrf n equally reliaý)le c~e-aizsto be used instead of all

n otse, vaticns in deteridning ti-- nst advantagjecs value of the masuee.

qtwxtity. In choosing a single czbs-ervaticei, he uses the principle [Iapirc

(1799)] of air-inizing the sua of' the absolute vahizes of the errmr, dropping

the Boscaovich ccxditicxi that 'lie su of positive and negative errors be

equal in magflittLO.e. Hence he ch'ýýses the median, -which he defines, forr a

sa~le of size n, as the Ac-rdered observation, --here ri-nI2. By, analogy,

if s observations are to be used, he dhooses &,e ordeeretC observations
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Ca-4mx- =s -mhdt-atl aerrm b

! Of ~~ of ~rebt- ;2dm

Samaes. nl zmf=r H-S==Sss ='e~~ -i-mmc fizz th rejectiam of rtimt-

f'ce Ser-37tacrs San C r 5s =-S ao- ieriatd for rejeztiL-. a single-

O:S-_rrZ WSa. Tj-e Utt.- is M.-d the peinzi that, sminrm th-- nvi~er of--

enrrs nmmyer-cally rettT - ti~at may be eetato occur in ai cb~ser-z

varicms is 2wr u-~d nvd), --&---e *,'t)- e-t 2 2/2IT, an observaticn

c~vatig r-m the iran by m~ wmm g-reater than cchol be rejected if

th q.,mtitv no (r) exceeds `J2, iince such. sn error ".d1 have a greater

probability, against, it than for it." 1--e aprDmix and related tables were,

reprinted separataiy ..: 1W6.

fia~gstus Devzrga (8A.64) declares that the arithmtic mran. is the best

average of a serics of observaticms becauise the most probable result i-s the

arthmtL- rmazi plus corrections of whiich wehven lede, either as

to sign ar value, and no -,-xis of getting mny, so that thsere is- no reason

for svpposiiig that t-hee me v---, e I -;es on one side of the arithmtic mean



ism= E? ("W5j, im ?is MSI of Wdbitiy., C te

Su g (Z)as we'l -, am ri mmun~s ef Lalc (1774 ,VIMl ,76

14L, .I,,$1) lwIas fvo- e. ela1 pzinvilymlit the mto

of j--Mt bu, t T0zztzr nksit Clow that gIAD] neer emtirely

aboka of his earier mebos

Bard Jam Sww (1868 A--te nk- e cal I a im&d1s off calessnes,jx, iwiic±, far a Zii= obwrvwr --4 a givem, clas off tervzims, e~resses

the awrm ragbez~ of CbsrV0.-An--- -Ab2I~ tht Dersm jaim vidtbn zictake.

St= propoEs a critedwm f-or 'evjet)ý of obseivaticr vzidc, viti a-2zi,

mbee ni is the mumbr ef obs-ervztia~s is eqaiv&1Lat to QOzmrvet's.

'Erhels Jartla (1869 exteo Gan I tab] e of ftctors; for c rxim Iing the

Vprobable elro LU =d its prcbsible .x.vertainty frwm the r oot of tn Wa of

th W6rk ps cf -be absolute values of deewdatkazs ftcuu the tr-j valt2 up

th-1b andb corrects Gr~ass 'factors for the ndian, ~i~id ,e- shows to

give a slig~tly less (r~tb*er than w.r ) precise estimate thazi the other nethad

for n-6.

Tobdter (186S) develops Laplace's treat ent of the method of ',ea-:t

squares ail! dewastrates that scoe of the results which LVplace obtained for

j ~the case of tw- elzments hold for the case of W numbiiier of elemnts.

Clev-elaad Abbe (1871) give r. historical note oni the rrthod of least

squurr~ in which 'he Points out that although Legendre (18OS) was the rirst

trpbihtemto n ms a s,:i ic 75(huhh i o
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publish it Lnti-l 1809), it was independently developed by Adrain (1808)

in America. Tle author reprints a portion of Adrain's original investigation,

gives interesting biographical notes mo Adrain, and sumnarizes the results

of two of his later papers [AMrain (181a,b)] in which he applies the method

of kast squares. G. Zachariae (1871) gives an excellent textbook treatment

of the ,i"thod of least squares.

James Whitbr,.d Lee GIaisher (1872) gives a history of the method of

squares, including an account and a critical evaluation of the contributions

of L-eger:ire, Adraln, Gauss. Laplace, Ivory, EllisDe Morgan and others. He

offers an alternative to the rejection of observations in the form of an

iterative procedure in which the we.ights of the observations are adjusted

after each iteration as proposed by De Morgan (1847). Last, but not least,

he proves that if errors are distributed according to Laplace's first law

[f(x)=(m/2)e-m1x 1, the iedian of the observations is the most probable true

value. He does this by showing that the probability [density] of the true

value x is proportional to exp [-m(the sun of the absolute values of the

deviations of the observations from x)] and that that sum is a minimum when

taken about the median [the middle one of an odd number of observations or

any value between the middle two of an even nmber of obserr.-tions].

Friedrich Robert H1elmert (1872), in the first edition of a book rrn the

adjustment computation by the metlda of least squares, gives a proof, f Llowing

that of Gauss (1816), that the probable error can be determined more precisely

.rom the mean of the squares of the errors of a number of observations (assumed

to have come from a normal distribLtion) than from the moan of the absolute

values of the errors. In later editions, he .Ads a sectiTn on the theory of
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th inzihn f2tmT= its ý=V In the e.b5UIM Off rcbsew -tU M",

-rai~nVr-ms;- n is elz-. mr ~ ifr~. He aiso exizes the

ctro-im promcser by Strfe (IMP! ic ~7jc~o ilig~~evtC5

w cziticls it grou-: (1.1 M rejec-im criterrim basedi an the

itLi of -* rAudity off the arit tic MM-_ is 4= ist t: (2) &M

hz criteria St~m's is irt the no_- desirable we a is Jiu=racticaa

becase of the -iractical " rdssilinty deter _wt nr the vzixr of r. It

being assma that the obser mae a-r. nistake in n obse. 4ta In tw

erqm peshed the sae year, St-e (173,b) Jst-Ifies the use off the

arithmtic ne md th~e norin'I ls of error mn the basis of the axip ~Ihat

all direct aures are off equal v aluand em in detail the objections

aised by Glaisbr (173) to the author's criterion [Stue (1868)]. He poirts

out that his criterion is relatively insensitive [robust, as modern statisti-

cimans would say] to moderately large variations in n. 1H isists that even if

Glaisher's assuptians &-"e graxtedl, Glaisher has not axinized the right

expression, and hence has not found the correct weights for the observations.

Futher notes by Glaisher (1874) and Stone (1!74) gapear to have generated

more heat than light.

Todhmter (1873) reviews the -work of various authors, especially Boscovich

and Laplace, on methods used to find the equation y-a+bx of the best-fitting

straight line involved in the deterdnation of the ellipticity of the earth

from measureaents o-" t-igrees of meridian and lengths of a seconds pendulum at

wideiv separated points on the earth's surface. He writes: "T presine that

neither of the methlods which Laplace [(1799)] discusses would now be practically
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V
useC in smdh Wculatiows, but Cz-mthod of least sqwres".

Gustav 7eodr Femer (1874) shows that, while the sua of sqares of
deviations is a mnimm u- taken from the arithmetic man, the sum of the

iEabsolu2te desiz-. is a ini~m when taknro •m the mdia. He mes a

r-.-wk which leals to the coclmion that he was mnanre that the latter

fat was imam to van MAnr (18M) and was proved by Glaisher (1872). He

also discsses poer mms, wich he defines as values such that toe sums

of posers of ieviaticas are =nmal when taken fra t•em, and probability

lass wmer which, such pter mems are valid averages.

Herv Augste Etime Albans Faye (187S) discusses various justifica-

ticns of the metbod of least squmres. He points out that Gauss mad legendre

deduced it frcz the accepted opinion that the most probable value of a

quantity if which a mnber of observations have been made is their arithmetic

aeam, while Laplace and others justified it on the basis that the errors are

due to a largen nber of causes each centributing mly a small part of the

res-Utmit error. He insists tat t)w law of probability of errors cannot

be established a priort, cr the b3sis of a hypothesis or of a generally

accepted opinion, in spite of the extreme elegance of the proof of Gauss,

but must be established a posteriori, from a direct study of the fects. He

giivs an example in which, because of a systematic error, the method of

least squares gives an extremely misleading result; qite rightly, ha~iever,

he does riot blame this result, on the method but on tb2 observations. Hermanmi

Laurent (1875),comwnting cn the same question, says that the Gaussian law

of errnr should never be accepted a priori; on the contrary, one ought to

reject it, because it assigns positive probabilities to impossibly large errors.
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'Io is Ift astrvDmT, he inquires, "iho ukes an error of 361 degrees in

Set ang angle?" He makes a st* of 1444 easuremnts of' an angle of

Vprwcuately 160, and concludes that the observations cmt doubt on tl&

exactess of the Gatzsian law, aid that therefore one ouht to roject the

method of I t squares when one has only a small number of observations.

Francis Galton (1875) proposes the use of the median as a measure of

central tendency wA of the difference between the -nadian and me of the

qu•adiles, or the average distance between the median mnd the two quartiles,

as a measaem of dispersion (probable error).

Truman Henry Safford (1876) gives rules for good observation based on

tfe metho" of least squares, and 'hints for abbreviating computations. Mcnsfield

Merriman (1877) gives a dironological bibliography, containing 408 titles and

covering the eriod 1722-1876, on the method of least squares and rival meth-

ods, with valuable histur cAl and critical notes.

Benjamin Peirce (1878) gives a 5iller explanation of the criterion which

he proposed over a quarter of a century earlier (Peirce (1852)]. Charles A.

"1riott (1878) makes favorable remarks on Peirce's criterion, based on twenty

years of use in various investigations.

Francis Ysidro Edgeworth (1883a) questions the umiversal and indiscrim-

inate use of the normal (Gaussian) law of error iii the following words:

"The Low of Error is deducible from several hypotheses, of which the most

important is that every measurable (physical observation, statistical number,

&c.) may be 'egarded as E function of an indefinite number of elements, each

element being subject to a d&terminate, although not in geniral the same,

law of facility. Starting from this hypothesis, i attempt, _int, to reach
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the itsual conclusion by a path which, slightly diverging from the beaten

road, way afford soae interesting views; secondly, to show that the excep-

tional cases in which that conclusion is not reached are more important than

is conmoaly supposed". (pp. 300-301). Later in the same paper (pp. 305-306),

he writes: "I submit, in the absence of evidence to the contrary, that non-
exponential [non-Gaussian] laws '" do occur in rerun natur9, that the'ancient

solitary reign' of the exponential [Gaussian] law of error should cane to

an end." Edgeworth (1883b) begin- a pa-?er on the method of least squares

with a philosophical discussion of the differencer between the approaches of

Gauss and Laplace, between most probable results and most advantageous results,

and between minimizing mean square errors and mean absolute errors. He pro-

ceeds to the question of how to treat outlying observations. He proposes a

method of weighting the observations which is the same as that proposed by

Stone (1873b). In a later paper [Edgeworth (188 7a) , p. 373 (footnote)], he

acknowledges Stone's priority, of which he was unaware at the time he wrote

this paper.

The year 1884 saw the publication of two books on the adjustment of

observations by the metho" of least squares. Both authors aiso consider the

question of the rejew:tion of outlying observations. Merriman (1884) advocates

the use of Chauvenet's criterion, but he also discusses two other criteria--

Peirce's and a new one based on Hagen's deduction of the law of errox. More-

over, he states (p. 169): "In general, it should be borne in mind that the

rejection of measurements for the single reason of discordance with others

is not usually justifiable unless that discordance is considerably more than

indicated by the criterions. A mistake is to be rejected, and an observation
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giving a residual greater than 4r cr Sr [r - probable error] is to be regarded

with si.sp.cion, and be certainly rejected if the notebook shows any thing

wfavorable in the cirumtances under which it was taken!'. Thorns Wallace

S•tight UIS84) advocates rejecting an observation whose residual is greater

than five tbes the probable error (or three times the mean, square error); in

the second editim. [Wright & John Fillmore Hayford (1906)], this rule is

restated in slightly modified form.

4. Th1 A (ENI1 (1885-1945)

Edgevorth (1885) discusses the choice of measures of central tendency

and of variability. He insists that, while the arithmetic mean and the root-

SI mean-square deviation from it are most accurate for samples from a normal

population, other measures (median and mean absolute deviation or quartile

deviation) are more convenier.t and little less accurate, while for other popu-

lations they may be moiv accurate as well as more convenient. With regard to

measures of variability he writes (pp. 188-189): "'"When the observations

4 j retlly confo.rm to a [normal] probability- :rve, there are several formulae

for the modulus [c-cv", where o is the standard deviation] which are little

inferior to the above [root-mean-square error] int respect of accuracy, and

two of them which are superior in respect of convenience. If we call the

preferential method the method of mean square of errors, one of the rival

methods might be called the method of mean first power; the other the method

of mean zero powers. "'" [The last] method is that described by Mr. Galton

[(1875)] ; the same in principle as that which was employed by Quetelet

[(1846)]. The essence of this method is to note the points between which

4°4



are comprised quarters (eights or other fractions) of the total number of

observations, and then to equate the distar,;e thus given by observations i
to the corresponding multiple of the "modulus as assigned by theory. For

example, if we take two points so that between them there occur half the

total number of given observations, and outside each of them a quarter of

the total number, the distance between these two points ought theoretically

to be equal--is equatable--to twice the modulus x 6.476." On pp. 190-191,

Edgeworth discusses the use of the median. He finds that the fluctuation

[the sqv*9re of the modulus c(or twice the variance 2)] of the distribution

of medians of sets each consisting of m observations is equal to the recip-
rocal of Z 2y, where y is the maximun ordinate of the probability curve

I divided by its area.

Edgeworth (1886) explores in detail the relative advantages of the

arithmetic mean, the median, and the mode, with less attention given to

other possible means. On the grounds of precision, he declares the arith-

metic mean to be superior to the others for the normal law and others near

it, but says the median is better "when tile apex of the curve is very high

SanA its extremities very much extended." (p. 167). "In respect of convenience,

[the Mode] has a considerable advantage over the Arithmetical Mean and a

less marked advantage over thu Median." (p. 168). The author makes passing

reference to the use of the quartile deviation by Quetelet (1846) and of

quartiles and deciles by Galton (1875) in estimating the probable error, and

to the method of situation aad the most advantageous method [Laplace (1799,

1812)].

Simon Newcomb (1886) considers the problem of combining a number of
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!I
observations of the sam quantity so as to obtain the best result. He raises

two objections to the criterion for rejection of douwtfbi obser•aticns pro-

posed by Peirce (1852): (1) It disregards any a pjrjori kImwledge of the

probable error of the observations and seeks to determine it from the obser-

vations themselves; and (2) It does not take account of the fact that the

a pri.or probability of an observation varies from one observer to another.

Given n observations assumed to have co from a generalized law of error

which is a mixture of m normal laws, with proportions pi having precision

Newcomb says the best result is a weighted mean (with the

weights proportional to the probabilities of the hypotheses on which they

depena) of mn weighted means of the observations, each mean being obtained

by making a hypothesis concerning the distribution of the m measures of pre-

cision among the n observations.

Edgeworth (1887a), in discussing the diversity of methods for the treat-

ment of discordant observations, makes the following statement (p. 365):

"Different methods are adapted to different hypotheses about the cause of a

discord-ant observation; and different hypotheses are true, or appropriate,

according as the subject-matter, or the degree of accuracy required, is

different." He specifies three hypotheses and divides the different methods

of treating discordant observations into four groups. He rates the first

three types of method on their appropriateness under each of the hypotheses,

deferring discussion of the fourth method (use of the median instead of the

arithmetic mean) to a later paper LEdgeworth (1887d)].

Edgeworth (188T7) drops Boscovich's Condition (I) [that the sums of
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POSitiVe m negative &cviant be et1 in naitrade] -a- uses only his

Ccniitinn (II) [that the sin of the absolute vales of the devizaims be a

ziniJ], ifidi, as w have already seen, req-ires the dwice of the sdian

rather than the arithmetic m . Bdgewgrth gives the 5olladmg description

(pp. 279-282) of his procedure: "'It is prposed here to treat those difficl-

ties in the reducion of observatiens i&ich are peculiar to the case of plural

quaesita. Consider, first, the simple case in ihich there are only two

-uaesita. lot the given equations be of the form alx+by-wi4,ai4b2FizO,•c.,

where wl,w,, &c., are observations subject to equal error. According to the

usual procedure we obtain for one locus (of the sought point ry) the'normal

equation' a1 [alx+b1 y-w1 .a 2 [ax+b2 y-w2 ]+ &c.=O; which may be thus interpreted.

Substitute any assigned value for y in the original equations. Of the n values

for x thus presented, the (weighted) Arithmetical Mean is given by substituting

the assigned value for y ia the 'normal' equation. The analogous procedure

is to find a locus such that if we substitute any assigned vlue of y in the

original equations, the Median of 'Cae corresponding n values of x may be given

by the locus. The series of points, which in the case of the Arithmetical

Mean is obtained by a single stroke of analysis, must, in the case of the

Median,be traced one by one. That is, we must substitute in the given equa-

tions suc'7essive values of y(e.g. 0,6,26, &c.), find the Median value for x

corresponding to each assigned y, and plot the series of points. A second

Median Curve is afforded by the Medians of the y components; and the inter-

section of these Median Curves gives the Median Point. The method is perfectly

general. As an illustration we may take the case of two quaesita, x and y;

the equations fur which involve only one of the variables. The Mean loci are
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in this case Ii wuralle! to te mns. An it flU from a sidiratias

wichi I beeuskbem [Btageanth (187d)] put together, t! the )mim,

as cpared with e Aridu-tical H em, a solution mowly as good

An the typical [nmnl] pv baili-ty-cnwe prenails, and better Am the

obervation are 'discoz~at'". 7eauthor (p. 280) calls th Descvid1-Laplac

method [La.pae (17,99), Sec. 40] a "remrkale bybrid betwen t 1thod of

least Sq es ad the Method of Situtio' bece loscovi's Caitim (1)

requires that 6eiatidms be ti= frm the arithetic nero,as in the method

of least squar, instead of fro the =dian, as in Edgworth's versio of

the nethod of situatim, bre that coditim has been drped.

Bdgwo-th (1887c) writes as follws (pp. 222-223) concerning the thod

devloped in the preceding paper: 'Th e thod my be thas described in the

case of to variables, x and y. Find an -app rte soluti.m by some rough

process (such as simply adding together several of tie equations so as to form

two independent simwltaemos equacicms). Take the point thus determined as a

rm- origin, and substirtAte in the n (transformd) equations for me of the

variables x a series of values ± 6, ± 26, &c. Corresponding to each of these

substitutions we have n equatims for y. For each of these systems determine

the adimn according to Laplace's Method of Situation. This series of Medians

forms one locus for the somight point. A second locus is fcund by transposing

x and y in the directicns just given. The intersection of these ici: is the

required pxoint. The me&tod may be extended to any number of variables. * The

advantages claimed for the new method are that, *while in the typical case of

the law• of facility being all [normal] Probability Curves, the generalized

Nthod of Situation is ovly slightly less accurate, and considerably less
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I ~riis, tim tme Metd of wte-c. in ie a•d a cme of Disc t

fbeyt~ he pros& wntho is se- 'ly =- z mim, abte.I

is mo to be wisbe ihat sme pm tic ast r r w=11 dgiwe this w ft o a

traiu by yiif_ it in s bhori= ma hirtmt c ati -

Edrarth flSSd) consizim tbe questki of tbe. cboice off mes in toe

seial case of discrdt r ti. ( Onp. 20 be writes: -" citerim

iw thic Media or Aritletic Me)6 is the better refactii is pzesily

the charater of the correlated Pr iity-Curve. 1h e&acim widr cores-

pamds ta the smaller xHzbu is presuoly the better; since am we obtain

a smaUer 1probale' error M. i•hd c the reductis will have the maller

Wdulus il dpen c e chaaacter of our faility-curv. For [inoma]

Probaility-Ozrves, and presumbly functions in their neigborhood, it is show

by Lap1ac [(1812), Sapplment 2] that the Arithmtic Mean has the advantage.

But for auws 'whose head reaches high, while their extremities strech out

far, the Median has the advantage. Now the grouping of Discoriaut (bserva-

tions is apt to assume this form. Accorcngly the Median is proposed as the

Me-- proper to this class of observations. If we have been dec!eived by the

qipaarance of Discordance "'" ad the facility-curve was really a normal Prob-

ebility-Qzrve, yet we shall have lost little by taking the Median instead of

the Arithmetic Mean. For the error of the former is of the same order as

(only 1.3 [tires] greater than) the error of the latter. And, if the observa-

tions are rea.ly discordant, the derangement ame to the larger deviations will

rot be serious, as it is for the Arithmetic Mean." The author gives three

nmerical exarples.

SEdgeworth (1887e) giv-,s two tests of synnetry, one based on a couparison
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of the .of doJ• Islz an u v aitims frt th lknezzt is

ma aldorthetb ,Ca: a Co mer _m s oftezritic WM a • ,benoia o

te he critical vahi , 1dief b zhe far 1 a st

ere ol osa the aritkon m e d Ikeeuolta are cxreatead, the

roice of ohetir e i the isinarh seure ofhr van = imxes, bluti , t m

tiep Maode by tirhe eir ca naxi et

iH EL 1m er C1M le)st as foalo eqpt. 466-4M,) an !be method;of

s tom (1e88tM c): t ae'"rth invites attenetim tor thad of eduis g

of ervatie s felatiz to seeral quoaTiies, xidi he has suggested as a

sdstitane for the ordinary piocss of ut, npai of Least Sqounes'. I bane

plied this metyd to ab es le for a particular case of a variwles, and

j ~ VW to offer th fbiflwing rmaks abd sq~gstifms :57- U~~iezin

[Herle follows a quotation from Z~wrth (1887c) .] Swe of the laix= of this

Promss, s d sadtions the prelionfary seardi for sian g xrate solution, my

be avoided by the use of a graphaical mthod ['viichi the auther describes].***

In the an thooi el least sqaires the normal equations have a uique solutim;

but the in~te-.secdon ,f tw broken Iiz~ may be a series of points, and the

two mediar loci may also hawe a como portion. The solution then beauoes to

sow extent indeterminate. - * I t is possible that the ma.s-er and distribution

of these points of intersection afford real information as to the value ond

accordance of the observations. But, in practice, a single solution, although

its singularity may be saw tat fictitious, is preferable to a variety; and

unless sme additional crite-,im for extracting a single solution fron the

* imedian loci can be obtained, it is to be feared that we have here a somwhidat
serious objection to this method ot, *he sco- ,s aQovenience. Mr. Edgeworth



IS as ff t 1 CI (1) It il 7 vi z ý k"

]*ad do • •of lastSI . { a the case (f As

Ch P i -d~ it is A ra ticafly bette~r. Sa fa asm sligkt - .zi em-

tites me to me I az m qdlim am - pit, I should m that (1 is very

doctft. Ta tryi a wm P dhtm is limbI* to be masted- but there

V a a I al' T., ner be Ze the saesr - igjiI - Iis foet m

Smetho mbidi= &es the me-•A•o of least squs so easy, althau samm lmg.

(2) is s=Mz i 1 ialaa'e bjy the famile to give a miu solutia37,¶

BIgwothb (1W) restates (p. 184) the etbod he proposed a rear earlier

[E.igemorth (1887,c)]: "A sthstitaie for th -Method of least §9E has been

-proposed by m, based up the fo11l - g priwzrnile. 7D2 data being off the formIaj4b•xy" - -o-0; a " , (i-m v,,vZ, &c- are ctsert

of equal worth), a solution is obtinable by taking xy -suc that the sm

of the residuals (the left-amnd mers of the aove writtea equatms), each

zesial taken positively, should be a minim1. In a footwote (p. 184-18&P

he writes: "This rule is derivable from the hypothesis that the Lm of error,

the facility-acrve mer uhih the observatios range, is of the form y-(m/2)e-hx

j x taken positively in both directioms [L.place's first law of error; see

Laplate (1774)]. But the use of the rule does not cocit us to th•e ass-,tim

of the hyputhbeis. The Method of Least Stm is in this respect exactly on a

par with the Method of Lsast Squares. 7he rule of the latter Method is--Deter-

mine x and y so that the sum of the squares of the residuals may be the least

possible. Ths rule is derivable from, amd specially correlated with, the

hypothesis that the lw of facility is the [normal] Probability-curve. But it

is thought legitimate by Laplace and other eminent authorities to apply tde
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rule eim adme the irpodesis is 2at assmed- IG dc t t: th e of either

- P iVO•ed fru th IM Of fility qI rn-3xIft to it is o lo 0a6 l

buc~ t tj; df Fi C ltes -X-T sr~azr for mw- tit~ M b for the

be ce of m, or •re, loc •aic to the Ym, l equatims of the

nei~z thod. -Accordim-gi-3r the iizrersection off the 94dian loci, was at

first proposed by me as the sc-ltion. Eut Mr. Tuter [(18- ] has shrnm thatI these loci are apt to hbZe in asum, .'t only se,'eral points, but even TLhs

and spaces. .. oIn this ermt cse teadhes us that we sJoild adot

the Middle of the i- te nate tract as the best point; and this presuption

is confined by a fornl cala,1.tion of utilit)" such as Laplace [0312)], in

the sixpiest case of a single tmhKii quantity, has eWc dd to discer he

'nst advantageous point'." *Having th•s disposed of one of Turner's criticisi,

* Edgeaoth er ,oeanrs (sczeiat less successfa.;1ly, it seem to the present writer)

to answer the other, neJy that the nethcd is not less laborious than the

method of least squares, as FAgedorth [(1S8Th,c)] had asserted.

Joseph Bertrand (1888a) states that the Gaussian law of probability is

the only one for which, amng several observations made under the sme condi-

tions, the mean value is the most probable. Given any other law for the

probability of errors,it is possible to specify the corbination of a series

of measurements which will give the most probable value. The converse is not

true; given a combination of observations, in most cases there is no probability

law for which that ccrbiration gives the most probable value. For example,he says,

there is no probability law for which the geomitric mean or the harmonic mean

of a number of observations is the most probable ralue. The latter part of
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te Per d•t ls in the srejectis v Of farre it is Bertrta

(ISM) pronases a ne critici. Te a.-thr repeats an el orftes l t= e

results in his book [Bertrana (1889)]1.

Faye (lSM) poants out that the greatest discrepmxy fran the nem of

a seet o-f observation~s is Bat likely to be co~ntey-balsanced ty a discrepancy

of nearly the sav nagninidee but of opposite sign, and hen tzless the- miiier

o te_ vtin in the set is v-ery Large it is lilkely to hare an unduie

influence on the arithmetic w-ia, so tiat the arithietic nemi Of all the

observations is not the mot probable value. Given forty observations, he

crutes the arithetic means of the largest and smallest obseratiis, rthe

second largest and second smallest, and so on (the midrange and the quasi-
,idranges). The forner has the value 4.315 Wad the latter range from 3.815

to 3.995. He attributes this discrepancy to the fact that the largest devia-

tion from the arithmetic mean, 6.35-3.93 = 2.42, is not matched by a comparable

deviation in tie opposite direction. He therefore recommends rejecting the

largest observation, uhich changes the arithmetic mean from 3.93 to 3.87, a

value which he comsideis to be nore probable. In general,however he holds

that observations should be rejected only if they are considered doubtful

at the time they are made, or at least before any computations have been

Smade. Otherwise the calculator can too easily make the results agree with

his preconceived and sometimes erroreous opinion.

Galton (1888,1889) advocates the use of the median as a measure of cen-

tral tendency and the quartile deviation as a measure of dispersion. In the

latter publication, he writes: "The median, M, has three properties. The
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BTSt fOUMS idiat*ly f3M its rMSt M jm, nm ly, tht the ft uic is

= l ec= n, of aw pre zmly umwa mease in th gru exceediza or

fallig Shrt of .31 e sew is, that the WS proble Vlue of my
KpreviiDly MkOW ME-2 e in the gr is HL "" e third Pperty is tat

-4*Imw the LAU of the Sd~mm [of distributichin is symetrically disposed

on eithea rii of M "", then M is identical with the ordinary AritImtic

Mean or A•erg.- n. 41). "As the .4[indiu] -esures the Average Height of

the curved bowy of a &-zi- e, so the Q[quartii2 deviatiu] mesures its

general slope. """ Our Q has the 2--ather writ of being practicaly he s

as the value which •theaticians call ., 1Probable Error' "." (p.53).

manuel Czuer (1890) advocates the mth.a of axdim likelihood to find

I the Most probable systm of values of m unknown elesm.es p,q,r, in the law

of error #(Y) or specified fom, given that X1 ,X2 ,"" Xn are the errors of n

observations. He attributes this method to atuss (1809), but we hove already

seen that it was used even earlier by Lambert (1760) and by D. Bernoull

(1778). The author enumerates three conditions under which the usual method

of finding the maximum likelihood estimates, based on solving likelihood

equati-ios formed by equating to zero the partial derivatives of the likelinood

fbnctim n .(xJ.(x)"'.(x), fails.

J. B•. .stienne (1890) endeavors to prove that "the best value to adopt. as a

measure of a quantity of which experience has furnished values tainted by

acci lental errors, is, in e Eiscase, the median value ." In Chapter I, he

proves the following theorem (p. 241): "The most probable value, detendined

by the rule of the median ialue, is that for which, the arithmetic sum of the

devr ations is a minimum." Chapter I1 is devoted to the proposition that the
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rule of the media veIM is indeuw&ait of the lw of erros amd should be

applied to th emcizsim of ewy other rule, uhatever be this 1w. hprter

III deals with the rms c quiPs oft law of the uediai valnu, of iiddd

a r gives severall. b1uding the ue of the method of least first powers

in solving n inxmsustnt equatious inn imzovs (n;s). An exmple dealing

with artillery fire is given in the aendix. The amutr is, of course, in-

correct in declaring the uniwvrsal superiority of the median, but no m-e so

'1 earlier authors -who insisted on that of the aritimetic mean.

Czdber (1891a) gives a detailed study of the theory of linear cbserva-

tional errors, the method of least squares, and the theory of errors in the

plme and in space. TIh first six sections of Part 1 deal with laws of error

[with particular emphasis on the normal (Gassian) law, though Laplace's

first law and others are mentioned]; the early work of Simpson (1756,1757)

and Lagrange (1774) on the advantages of taking averages, of Laplace (1774,

1781) m his '"ost advantageous method", and of Daniel Bernoulli (1778) on

the method of maxims likelihood; the work of Legendre (1805), Mrain (1808),

Gauss (1809), Laplace (1812), and later writers on the method of least squares;

and the problem of the choice of means and its relation to the choice betweeniJ the method of least squares and rival methods. Sections 7 and 8 deal with

estimatien of the precision of a series of observatiomn frora the tru errors

and the apparent errors (residilu), respectively. Section 9 compares the

(normal) error law with experience, Section 10 deals with f'e smallest and

largest errors in a set of observations, and Section 11 deals with the treat-

ment of outlying observations. P"4rt 2 is concerned uith the details of the

ca-9putational procedure for the method of least squares, and Part 3 deals with
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the tbeory o.5 errors in the plave and in space.

Cztiber C-189Th) exuines th ueproposedbyEte (80anis

czsequeaces, nd shows that the median end the method of least absolute first

powers, far from being valid whatewr the Iaw of error, as asserted by Estienme,

are, as pointed out by Glaisher (1872), tied just as firmly to the first l•w

of error of Laplace (1774) as are the arithmetic mean and the method of least

squares to Laplace's second (Gauss') low.

P. Pizzetti (1892) gives a useful siumery of ,vrh to date an the theo•y

of errors, with a bibliograhy of 503 items, but presents few ii any new results.

Edgeworth (1893), in comection with a study of averages of correlatedI observations, proposes to principles of hider application: "(l)When observa-

tions are combined according to a system of weights different from that which

is kno to be best, it is in general advantageous to reject a certain class

of the given observations. (2) When, as usual, the observations range under

a [normal] probability curve, the median m corrected by the quartiles q, and

q, affords a formula for the Mean, viz. (1.2m + ql,. q2) + 3.2, which is more

acurn-ate than that method of combining such observations which has hitherto

been supposed to be the most accurate, viz. the Arithmetic Mean. The principle

may be applied with great ease and advantage to Discordant Observations." The

author's statement that his new formula gives a result more accurate than the

arithmetic mean for observations from a normal error law is incorrect. The

source of his error lies in the assumption that the quartiles are independent

of each other and of the median, whereas they are actually considerably corre-

lated, as Karl Pearson (1920) has pointed out.
0

P. J. Ed. Goedseels and Paul Mansion (1893) discuss the theory of errors,
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GoedseelU' observes that in reality no one has ever established the method of

least squares in an absolutely, conclusive manner, and that one should avoid

assigning too great objective value to the results to which it leads. Mansion

is of the same opinion. In reality, he says, the only definition which w3

can give of accidental errors is this: They are the errcs which are elimi-

nated by the method of least squares. But it is just to recall that Gauss took

care to express himself with precision on what is arbitrary in the theory to

which he gave such a perfect form. The great advantage of the method of least

squares is that it allows the ccmb.,.ittion, in a sivple and reasonable manner,

of the results of observations of iuiequal value in a codensed form. This

discussion is of interest because the budding dissatisfaction with the method

of least squares expressed here later led to stkstantial contributions by the

authors to the theory cf rival methods.

Karl Pearson (189S), in connection with the first exposition of the

Pearson system of frequency curves, discusses the relative position of mean,

median, and mode of sa.r 's from a Pe.rson Type III distributicn. He finds tiat

the mediar, lies about one third of the way ftrc the mean to the mode,

Henri Poincare (1896) discusses the theory of errors and the arithmtic

mean, justification of the law ef Gavss, errors jn the position o" a point, and

the method of least squares. He expresses doubt as to the umiversal validity

of the Gaussian lav of eiror (and with it the arithmetic mean and the method

of least squares),but offers no specific alternatives. Wice he raises the

question is to whether one should reject outlying observations, but offers no

definitive tuswer.

Fechner (1897) discusses various laws o&• erTor and various averages
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(aritluetic mea, median, and node), as ue1 as the largest and smallest
valmus, th.Ar diffene (the range) and their sun (twice the midrange), mid

ccpares theoretical and observed vabues for several of these statistics.

Czuber (1899) applies the theory of probability to the results of measure-

mts. Hr discusses the arithmetic mean and other averages, including the

ndmiu and the power means [Fedmer (1874)], and the estimation of the pre-

cision of a series of observations on the basis of the true errors. He mentions

the meth oi situation of Laplace (1793,1799), based on the two conditions of

Boscovidh, as the first attempt at a systematic solution of the problem of

solving an inconsistent system of observational equations. He devotes several

I sections to demonstrations of the me'lxi of least squares based on the work

3 of Gauss (1809), Laplace (1812), and Causs (1823) and related material. He

also discusses measures of precision based on apparent errors and differences

I of observations, the ccmparisom of theoretical and observed distributions,

ti'e largest and smallest errors in a series of observations, and the treatment

c,f outlying observations.

Goedseels (1900) mentions three methods of solving a set of simultaneous

equations greater in number than the number of unknowns--the method of Tobie

Mayer (1750), the method of least squares, and the method of Cauchy (1837).

He makes a detailed study of the method of Mayer and establishes the four

following propositions: (1) The method of Mayer used in our days differs

appreciably from t&e original method; (2) The modem method is susceptible to

an important simplification; (3) 1here is room for returning, in certain cases,

- to the primitive procedure; (4) Both the primitive mad modern procedures offer

certain advantages not previously pointed out (especially in .he ca-e of only

two unknowns).
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A. A. Markoff (1900) devotes a dapter of his book m the calculus of

pxobabilities to the metbod of least squares.

Goedseels (1901) proposes a simplification of the method of Cauchy (1837)

for solving a system of m linear equations in n umknowns, u.>n. Goedseels (1902)

proposes an application of Cauchy's method to least squares.

Czuber (190) discusses the theory of errol's of observation, including l.as

of error, various measures of precision (including the mean absolute error, the

square root of the mean square error, the probable error, the A root of the
Smea of the mth powers of the absolute value of the error, sand the mean differ-

ence, of all pairs of observations), and the method of least squares.

J. C. Kapteyn (1903) develops the theory of skew frequency curves fron a

different point of view than that of Pearson (1895). He discusses the median

and the method of calculating it for his theoretical curves, and compares its

values in several axamples with those of the moda and the arithmetric mean.

S. A. Saunder (1903) advocates the use of Peirce's criterion for the

rejection of doubtful observations, for which he gives a new table of critical

values. He also discusses the alternative to rejection of observations pro-

posed by IeMlorgan (1847) and Glaisher (187M).

Mansion (1906) sumiarizes important contributions to the history and

the critique of the method of least squares contained in extracts of letters

and papers of Gauss in the eighth volume of Gauss' collected works (published

in 1900) He makes brief mention of the theory of combination of observations,

introduced by Laplace (1786) [see also Laplace (1793,1799)], in which the

largest error (in absolute value) is smaller than for any other system. He

N-ints out that Gauss (1809) criticized tl-is method on the grounds that it

uses for the final calculation of the unknowrz only a number of equations

60



equal to the nmuber of unknowns; the other equations are ised only to decide

the choice which mie sh.ould make.

Goedseels (1909) proposes two methods, which he calls the most approxi-

.ative method and the method of minimum approximation, for solving a system

of n equations in p unknowns (n>p). In the most approximative method one

assumes that the intervals (Ai,Bi) containing the respective residual errors

ri are known, and seeks to determine for each unknown (say x) the smallest

interval (T,,S) containing that unknown, i.e. an interim1 such that for every

value of x less than I or greater than S, one or more of the residues ri

lie outside the given interval. If all observations are equally trustworthy

and if positive and negative errors are equally likely, then A.0= .='22

AC= A, B17 B2= = B2= B, and -A=B=M (say). Consider a series of equations

in a single unknown of the form x-m, having the same approximation M, and

suppose the equations are arranged in order of increasing values of rs : x=;l+

r1, x = m2+ r2 , **, x = m+ rn. Then the most approximative value is the

midrange, (ml+ mn)/2, and the approximation of this value is the differeice,

M-(m,-ml)/2, between the given approximation, M, and the semirange,(mn-ml)/2.

Mn M-(mn-ml)/2-0, the midrange (ml+ mn)/2 is the exact value of the unknown.

When M-(mn-ml)/2.c0, the e:-- are absurd. Mhen the limits of the errors are

not known, Goedseels advocates :se of the method of minimum approximation,

which is the same as the method of Laplace (1786,1793,1799) in which the

maximum absolute deviation (residual) is minimized; in the case of a single

unknown, the result (average) obtained is the midrange. Goedseels discusses

variotis other methods, including the method of least squares and the empiri-

cal methods of Mayer (1750) and Cauchy (1837). In sumary, he states that
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he prefers the most approximative method when the limits of error are known

and the minjim approximation otherwise, especially in very important

questions, even though the calculations become quite laborious for p>2; in

questions of lesser importance, he says the method of least squares or even

one of the empirical methods may be used to save labor.

Charles J. de la Vallge Poussirn (1909,1911) states and proves the

following theorems concerning the minimum approximation, whicdl ass"ue that

any n of the first members of the system of equations (1) asx +biy+".*Liu

-mi = 0(i=l,2,"" ,m; m>n) form a system of linearly independent expressions:

I. The values of the uaknotn which provide the minimum approximation M of

the system (1) give at least n+l residues attaining this limit M in absolute

value. II. The minimum approximation and the corresponding values of the

unknowns, for a system of n+l equations in n unakowns, are obtained by general

formulas. III. If m>n+l, the minimum approximation of a system of m equations

in n unknowns is that of a certain system of ndl equations which are part of

the proposed system. One can deduce from these theorems an iterative pro-

cedure for determining the minimun approximation.

Goedseels (1910) summarizes the results given in his book [Goedseels

(1909)] on the most approximate method, tie method of mininru approximation,

and the method of least squares, and applies all three methods to a nimerical

example involving the compensation of the coordinates of the vertices in

a topographic survey. He insists that the method of least squares is not

as good as the other two methods, evren in the case of normal ly distributed

errors, f'or which it gives the most probable values, since these values are

inadmissible if they lie outside the interval (I,S) of the most approximative
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method. In the mnerical exaple, he first ascertains the the wdum error

c specifl-ied by the observer is admissible, i.e. that it is not less than

the mini== aticn m. Then he proceeds to copensate the z-coordi-

nates of the data points by the most approAmative method and by the method
of least squares. He rejects the results of the latter method as inadmissible,

since the z-coordinate it gives for one point lies outside the interval given

by the most approximative method. Finally, he ignores the maximun error

stated by the observer and copmensates the z-coordinates by the method ofl in approximation. The resulting values lie within the intervals given

by the most approxima.tive method, and the author shows that this must always

be true if any admissible value eWM (where M is the minimum approximation)

is designated as e by the observer.

Goedseels (1911) calls attention to an interesting study of the method

of ;Ainirmn approximation, includiing a simplification of that method, proposed

by de laVallee Poussin (1909,1911). He proposes, in turn, two other sirnpli-

fications applicable both to that method and to the most approximat9 e method.

These simplifications apply only when there are only one or two ,mknowns,

of which at least one is positive. The latter is really no rzstriction at

all, since the data can be transformed so that at least '.ae unknown is positive.

The restriction to one or two mnknowns is less seir;As than one might think,

since one always proceeds by successive elir•.nP'ion of the unknowns, and the

number of them is always eventually less than three; moreover it is in the

final stages, where this condition is satisfied, that the methods in question

become most complicated. In an abstract reprinted as a footnote on pp. 351-

352, de la vallge Poussin states that, with the simplifications proposed by
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himself and by Goedseels, the calculations for the method of minimu apprd-

Mation are even sipler than those for the method cf least squares.

G. Ukdy Yule (1911), in a textbook that has gone through many editions,

. Idiscusses averages rincluding the median (Yi) and its relation to thf- arith-

metic mean (M) azA the mode (Mo)], measures of dispersion [the range, the

mean deviation about the median, and the quartile deviation Q0(Q3 -Q1)/2, where

Q, and Q. are the quartiles], and measures of skewness [(M-Mo)/S 3 3(-MeI/S

(Pearson's measure, where S is the standard deviation) and (QI+ Q3 - 34i)/2Q].
Ho also discusses the standard errors of quantiles (median, quartiles, deciles,

etc.) and of the semi-interquartile range (quartile deviation Q), as well as

the correlation between the errors in two quantiles.

L. Tits (1912) states and proves three theorems wMch embody further
simplifications, beyond those of de la Vallee Poussin (1911) and Goedseels

(1911) ,of the most approximative method and the method of minimum approxi-

mation. He uses these theorems to simplify the soiution of a numerical

example given by Goedseels (1911).

Edward Lewis Dodd (1913) points out that Czuber (18iA) recounted many

of the attempts that have been made to relate th-i principle of the aritlnretic

mean as the most probable value with the Gaussian probability law, but quoted

from Bertrand (1889), p. 180, an example to show that this law and principle

are not strictly comparible. The author endeavors to show this inconpatibility

by other means. Specifically, he shows that, under certain conditions, the

quadratic mean (root-mean-square) of two measurements frcmi a Gaussian distribu-

tion has a greater probability than the arithmetic mean; also, there exist

positive values of b (less than unity) for which the probability of bm is
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greater than that of m (the arithmetic mean). The probability of the median

of three or more measurements from a Gaussian distribution is, however,

always less than that of the arith tic meanthe ratio of probabilities

approaching 42-1 .7979 asymptotically.

Edgewouth (1913) gives empirical confirmation of Pearson's rule as to the

relation between the arithmetic mean, the median, and the mode. He computes

medSan, quartilec. deciles, and mean deviations for sums of 25 and of 16 random

digits, and comares them with the theoretical values.

H. M. Goodwin (1913) discusses the rejection of observations, for which he

gives a new criterion, which involves computing the arithmetic mean and the

average deviation, omitting the doubtful observation, and rejecting that

observaticm if its deviation from the mean is greater than or equal to four

times the average deviation.

Mansion (1913) summarizes the work of various authors on three methods

applied to the theory of errors, whic1 involve minimizing respectively the

largest error, the sum of the absolute values of the errors, and the sum of

squares of the errors. He points out that these methods result in choice of

the midrange, the median, and the arithmetic mean as the respective averages;

also that an order-preserving (or order-reversing) transformation does not

affect the method of minimum sum of absolute values, since the median of the

transformed function is the transforming function of the median of the original

data, but does affect the other two aethods.

David Brunt (1917) discusses the law nf error, making reference to the

work of Gauss, Todhunter, and Claisher. He deduces the 'law of error [Laplace's

first] which results from the assumption that the median is the most probable
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value. He also deals with the rejection of observatio"s. He appears to

favor use of the criterion of Wright & Hayford (1906), but he also states

that Bessel opposed rejection of any observation umless the observer is

satisfied that the external conditions produced some uzustal source of error.

Warren M. Persons (1919) gives reasons for preferring the medisa to any

oter average of link relatives in computing indices of seasonal variation.

P. J. Daniell (1920) discusses various measures of central tendency and of

dispersion. Besides the usual arithmetic mean, median, standard deviation,

mean numerical deviation, and quartile deviation, he also discusses discard

averages and discard deviations. Since the middle observatici (in order of

magnitude) contain most of the information about central tendency and the

extreme observations contain most of thc informatio, about dispersion, he

proposes discarding some proportion (say 50%) of the outer observations in

computing averages and of the inner observations in computing measures of

dispersion.

Karl Pearson (1920) points out that Edgeworth (1893) was in error when

he stated (p. 99, footnote) that the displacements of the two quartiles and

the median are independent; they are, in fact, considerably correlated. The

author detem.rmes the standard errors of quantiles of a sample of size N

(assumed large) frcm any known population and the correlations of pairs of

such quantiles.

R. M. Stewart (1920a) raises two objections to Peirce's criterion for

the rejection of doubtful observations. First of •, 1,, the principle as stated

by Peirce is erroneous when n (the number of observations to be rejected)is

greater than uni.ty. Even for the case n-l, Peirce's argument is based on an
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"umarr:ed assuption, so that the most me can say is that if all residuals

are less than the v-lue obtained fro Peirce's criterion, no observation

shbould be discarded. The author remarks that (havenet's criterion for re-

jectim of a single observation also contains an obvious fallacy. Stewart

(1920b) proposes a new method for the treatment of discordant observations.

Like Stem (1873b), Edgeworth (1883b), and Newcomb (1886), he assumes that the

precision is not the same for all the observations, but he sinplifies matters as

much as possible by restricting the number of values of the precision constant

hto two. He proposes a weighted mean which is a function of the resi.4uals.

He gives a method of finding the weights; once that has been done, the weighted

mean can easily be £foud.

se 2m Jackson (1921) shows that, for each value of p>l, there is a definite

number x-xp which minimizes the sum. S (x) 1 ix-ai IP where als.," a, are
a set of real numbers. For p•-2, xp is the arithmetic mean of the als. The

limit of xp, as p+l, is the median, while the limit of x, as p-*, is the mid-
p frI

range.

Dodd (1922) studies the arithmetic mean, the median, the midrange, and

other functions (averages) of the measurements with reference to their approx-

imation to the so-called true value, by determining which has the greatest

* probability density at the true value. He sunmarizes his results as follrws

(p. 158): "The present exmirnation of functions of measurements is not exhaus-

tive. The general conclusion, however, would probably be that in most cases

where the law of error is synmetrical (the error function even) the erithmttic

mean is better than other functions. The superiority of the arithIetic mean

becomes smtewhat doubtful: (1) When the number of measurements is small.
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(2) V= the probable error is not salU coasred with the aritlmetic mean.

"(3) iemn the error ca"e,--as evideced by t,- ctual distributic of

measure'its--falls away from its mximm with soe rapidity at first, but

nevertheless persists at sae distance fro the maximn,. In this case, the

median may be better than the arithmetic man. """ (4) M=n the error curie

is perpendicular to the axis of errors, meeting this axi& at equal ditCances

from the origin. In this case, the average of the least and greatest smep -

ments [the midrange] may be better than the average of all the measurements

[the arithmetic mean]. 'o "

PRnald Aylmer Fisher (1922) advocates the use of the sample median in

estimating the central value of the Cauchy distribution, pointing out that the

distribution of the sample mean is the same as that of a single observation,

so that the sample mean is an entirely useless statistic. He also touches on

the treatment of outlying observation;, and lays a firm mathematicn1 foundation

for the method of maximum likelihood, here first given that name.

W. L. Cnn (1923), in determining the indexes of seasonal variation in

an economic series, takes the median of a series of link-relatives for a

particular month as the unadjusted indx for that month, as recommended by

Persons (1919). To the observed data he fits (1) a normal curve, (2) a

Qiarlier Type A curve, and (3) a composivion of two nornal curves. He notes

that Yule (1911) has shown that if a distribution may be dissected into two

normal distributions each of half the original frequency, and if the ratio

between the two standard deviations is greater than 2.24, the median has a

smaller probable error than the mean. He endeavors to extend this result

to the case under consideration, in which the standard deviation of the larger

portion, conta:ndng about 3/4 of the total number of cases, is 4.8 times that
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of the smaler portion. He concludes that for this ser-ies and for many (but

not anl) econowdc series, the median is better than tLP mean.

Edgeiworth (1923) restates the rationale of the mrthod which he pr.posad

mich earlier [Edgeworth (1887b,c,1888)] for solviig a redundant systom of

Sequations and amplifies the directions for its apolication givnen by Turner

(1887). He then considers several numerical exanr :es, and closes (pp. 1085-

1088) with the following conclusions: "T1he accul-acy of the double Median

depends on much the same considerations as those which relate to the single

Median. "'" The c•.uparison of the (single or doi3.le) Median method with that

of Lea&st Squares is prejudiced by two misapprehensions exaggerating (a) one

the defects of the Median, (b) the other the mrits of Least Squares. It is

presumed that determination by way of Medians is less exact because it some-

tivies leaves the segment of a line, or even (in the case of the double Median)

a space within which no unique value is distinguished. But the comparativeI definiteness of the Arithmetic Mean is illusory, considering 'chat the deter-

mination is liable to a probable error. "'" The Method of Least Squares enjoys

an undue preference in virtua of its connection with the Normal Law of Error.

For probably that law is not in general fulfilled by observations so perfectly

as to justify the preference given. The preferability varies with the charac-

ter of the observations. "'" When the curve representing the observations is

quite abnormal [non-Gaussian] it is very possible that the Median should have

the preference in respect af accuracy. *"' When the extremities of the curve

representing the crude observations are abnoirnally protruberant, the Median

is apt to be preferable. "'" In short, the use of the Median (single or double)

is often easier, and sometimes more accurate, than the Method of Least Squares.
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Altorether, xe may conclud with Laplace that, in certain cases, the

Method of Situtatitrn is preferable to the Method of least Squares".

Edwin Bidwell W.lsou (1923) re-examines the data of Crum (1923) and

reaches the f,11owing -onclusions (pp. 850-851): •With the exception of the

extreme positive deviations which have not been well fitted by any of Professor

Crum's three suggasticls, these data give internal evidence of following

Laplace's first law of erro.- instead of his second law and should be fitted

to that law. By simple graphical means using arith-log [semi-log] paper an

txtremely good fit [to Laplace's first law] may be had in a very few minutes'

work (all that is necessauy is t. plot the grouped data, draw a straight line,
and read the graph). "'" Professoi" Crum's plea for the use of the median in

certain types of statistics is much reinforced by the behavior of 'cbese data

when discussed in relation to the first lai of error."

J. Haag (1924) studies the precisioti , for samples from a normal distri-

bution, of the arithmetic mean, the median, and the quasi-midrange X=(1/2) (xP+

xn-p+l), which is equal to the midrange for p=l and to the median for p =

[(n+l)/2]. He finds that the mean is the most precise, the median has asymp-

totic relative precision 2/r7" 4/5, and the midrange is the least precise,

with asymptotic relative precision 0.

Jackjson (1924), given a set of p simultaneous equations in n unknomn

quantities (p>n), studies the question of determining values for the unknowns

so that these equations shall be approximatley solved, in the sense that the

sum of the m-t powers of the absolut.e values of the errors is a minimum. For

im2, this is the classical problom of least squares. The author shows that

the problem has at least one solution for every m>O and a unique solution for
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m>l. The limiting case as m-) is equivalent to the problem of mininizing

the maximum error.

Edmund T. Whittaker & G. Robinson (1924) give the probable errorss of
t

the arithmetic mean and the median, as well as those of various measures of

precision, based on the A powers of the absolute errors (m=l,2,3,4,5,6)

and the median of the absolute deviations from the true value, all unde: the

assuption that the samples are drmn from a normal distribution. They Uis-

cuss th!•e method of least squares at some length, giving an account of the

contributions of Legendre (1805), Gauss (1809,1823,1828), Laplace (.812) and

others. They mention three alternatives to the method of least squaies: (1)

the method of Tobias Mayer (1750) ; (2) the method of minimum approximation

[Laplace (1799), Goedseels (1909), de la Vallee PoussL. (1911)]; Wnd (3) the

method of Edgeworth (1887c,1888).

Julian Lowell Coolidgoc (1925) devotes one chapter of his book on prob-,

ability to errors •i observation. In his section on determination of the

"best value" he states the following theorem, which he attributes to Fechner

(1874): "The sum of the numerical values of the divergences of a number from

a given series of numbers will be a minimum if the nu-ber in question be the

median." He also includes sections on the Gaus,;ian law of error, for which he

gives Gauss' first deduction[Gauss (1809)], with passing mention of that of

Hagen (1837) based on the composition of elementary errors, and on doubtful

observations.

J. 0. Irwin (1925a) finds a complicated expression for the exact distri-

bution of the difference the pth_ and (P+I)t-h2 individuals in order of magnitude

(from largest to smallest) of a sample of size n from a normal distribution,
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together with useful approximations for differences between first and second

and between second and third individuals in order of magnitule, which he

tabulates for selected values of n. Irwin (192Sb) proposes a criterion for

the rejection of observations based on these differences. Using the approxi-

mation developed in his earlier paper [Irwin (1925a)], he calculates the prob-

abilities that the differences between the first and second and between the

second mid third individm should be greater than P times th e standard

deviation of the sampled population. If these probabilities become too small,

he advocates rejecting the first (the last) or the first two (the last two)

individuals as not belonging to the same homogeneous group as the remainder, so

that a table oi these probabilities fcr varying values of A provrides a criterion

for the rejection of outlying observations.

Paul Lývy (1925) d&-vot, a chapter in his book on probability to the

theory of errors. One section deals with the determination of parameters of

Sprecision. He proposes using the interquartile distance to estimate twice

the probable error (or 0.95a, where a=a/ 2 and a is the standard deviation).

He gives two methods of determining the quartiles; later we shall present

reasons for preferring a third method. Another section deals with the method

of least squares; the author does not present any alternative methods.

Joseph Reilly, William Ncerman Rae & Thomas Sherlock Wheeler (1925) advo-

cate the use of the criterion for rejection of observations given by Wright

& Hayford (1906): "Reject each observation for which the residual exceeds 5

times the P. E.. [probable error] for a single determination. Examine care-

fully each observation for which the residual exceeds 3.5 times the P. E. and

reject it if any of the accompanying conditions are such as to produce lack of
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Smf Tce. autbors explain the d iam of eqpir-1cal cMstants

by the method of least sqmures; tay do not present any alteative methods.

L. H. C. Tippett (192S) tabulates the mi, standard deviation, andS1

0. (masures of skwess and kurtosis), and value~s occurring with probabilities

5% and It for the distributio of the largest of n i•ividuals in saples from

1 nmoarn popt2ation for selected values of n up to 1000, as well as the mem,

sttmdard deviation, and b1 and '32 for the distribution of the range. ue uses

ids res'lts in deciding whether or not to reject outlying observations. Egon

Sharp PearsoI (1926) Lxtends Tippett's restlts.

Estieme (1926-M,7 proposes replacing the classical theory of erfors of .

observation bsed On the aritImtic mean and the mthod of least squares by

hat he calls a rational theory ba, i- the median .d the mathod of least

.absol:te) first powers, which he derives from the. notion that, for a conz-

scieatio observer, every mea-eý.mnt has the same subjective probability

1/2 nf being too .arge as of being too small. L~terestingly enough, he dae' ý

lnot take the next logical ste.p and propose replacing the Gaussian law of error

by Laplace's first la" of error. Instead, he insists that his so-called

rational theory is consistent with any one of a whole family of error laws,

2ncluding the Gawss'- iL, which may be used to approximate the unknown true

law. He also prroses to treat the case of systematic errors, w-" ih Gauss

(1823) specificaily excltukd from his treatment, by taking the md•an of the

mediads of repeated measurements under each of several conditions. He prooses

a met: xl of cn*,inir- m Linear equations in n nknns (2n>-mn) based on his

rational d" -ry. Even when the restriction mc2n is satisfied, his method does

lo* appear to oe practical. He insists that the izMortance of an error, at
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least in mua cases, is proportional to its absolute value and not to its

square as postulated by Gauss '(1823); that, however mumerous be a set of

seasuremnts take.. ,, die nearest unit, they cannot provide well fo•mded rea-

sons to adopt a value stated to a fraction of that unit; that the ac, uracy of

a set of measurements cannot be judged by their consist.ency,since there my

be systematic errors; and, finally, that time and mney are better spent in

perfecting measuring instrients so as to obtain more rccurate observations

than in increasing the number of observations.

"Student" [William Sealy Gosset] (1927) proposes a criterion for rejectio...

of doubtful observations, bas.1 on the suaple range. He also extends the

work of Tippett (1925) and E. S. Pearson (1926) on the distribution of sample

range.I Arthur L. Bowley (1928) gives a summary and an armotated bibliography

{ .I (74 items) of Edgewm-th's contributicns, including important w rk on the law

of error and the choice of means, with special emphasis on the median. In the

Ilatter cxnection, the author writes (pp.101-102): "'Te median has the disadvan-

tage that its standard deviation of error (l dividod by 2/n times the greatest

ordinate where the area of the freque/y curve is unity) is greater by 25% than

*•:• I that of the arithmetic mean in the normal c,- . This excess is not, however,

I serious in the rough measuremients of credibii.ty with which we are generall-

cmcerned in statistics, and In some non-normal cLrves the median is more

Saccurato than the ar'_tbmetic mean. **0 It has the well-known advantage that it

can be computed Men the measurements away from the contre are known only

rollghly, and ge:ally in graded observations interplatior, is only i.eeded in

thecentrai parts " If no graduaticn is necessary thernedian is evidently
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rj
the easiest mean to compute, and if the maximum ordinate is known its prob-

able error can at once be written down. As is well knownu, the median is

that position vhich makes the sua of the deviations from it (all taken as

positive) a minim=, the test of least detriment suggested bry laplace.

Finally, if a mean is required of discordant observations, where discordance

signifies that the observations are taken from facility curves with different

moduli, there is 'a peculiar propiety in the use of the Median.' . For

these reasons Edgeworth attached great importance to the median in a consider-

able number of p-oblems. His advocacy extends to its use for two or more

unlcawns '" The last statement is xmfplif ied by seven pages (pp. 103-109)

an the method of situation of Laplace (1812) [1818] and its modification (by

eliminating the restriction that the suns of positive and negative deviations

be equal in magnitude) and extension (to twn or more unknowns) by Edgeworth

(1887b,c, 1888j1923).

Jerzy Neyman and E. S. Pearson (1928) give an expression for the prob-

"ability integral of the range of samples of size n and tabulate the mean,

standard deviation, s = a2 and s2= a4 for the standardized range W/o for

samples of size n a 3,4,6,10,20 from rectangular and normal distributions.

Edwin B. Wilson & Margaret M. Hilferty (1929) re-exmine an extensive

series of observations for which C. S. Peirc, ["Theory of Errors of Observa-

tion," t Rport of the Superintendent of the U. S. Coast 9jrvey (for the year

ending Novenber 1, 1870), Appendix No. 21, pp. 200-204 and Plate No. 27. U. S.

Gowermnent Printir; Office, Washington, 1873] concluded that thý. normal law

was verified, and reach the opposite conclusion. Peirce's data consist of

about 500 observations each day for 24 differenc days. The authors give the
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standard deviations of the median and of the mean for each day, and proceed

to caopare them, reaching the following conclusims (p. 124): "T1he ordinary

statement based m the normal law is that the deteriimaticn of the median is

25% worse than that of the mean. A comparison of the standard deviations of

the median and mean shows that ft: these observati'iis the median is better

detemined than the mean on 13 days, werse determined on 9 days, and equally

well determined on 2 days. Roughly speaking, this means that mean and median

are on the whole equally well determined." The results tend to show not only

that the data have not cane from a normal distribution but that for some dis-

tributions the median is more precise than the mean.

E. C. Phodes (1930) gives (pp. 974-978) the following account of troblems

encotntered in an application in a practical situation of the method of mini-

mun deviations: 'The writer recently was desirous of smoothing out the

fluctuations in [a] series of figures '17 pairs of values of x=8(1)+8 and y]"'.

A parabola was fitted by the method of Least Squares. "'" The result was not

considered altogether satisfactory. *." it was considered that the parabola

was a bad fit. Two reasons suggested themselves for this. first, the original

data from ,lich the series was obtained did not involve absoltuly random

fluctuations; second, the rarabola might not be the best curve for =e in

smoothing. "'" It was """ deC ded to concentrate on the first consideration,

which meant that although we had obtained the parabola of best fit by the method

of least squares, yet it might not really be the best parabola which would

smooth out the fluctuations in the series. 1his led us to then question of what

other methods of fitting there were availablc, and Edgeworth's description of

the use of medians in this conaixion led to the attempt to fit by the method of
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Minimum Deviations. This method may be belefly described. Suppose the

equation to the parabola is yna 0+ a1 x+a2x2 , a1 d the given y's are y-8, f.-7

"v y-l' yo " " -0y then instead of, as in the method of Least Squares,

making Sý, 8 (ao+ a, x+a2 x -y.) 2 a minimum, we make S+ 8+a 0+ al x+a2 x2_.1

a minimum. His [Edgeworth's] description of the method and his arguments

in its favour are briefly summarized [by] Bowley [(1928)], pp. 103 et seq.,

and are exposed by Edgeworth [(1888,1923)]. Unfortunately, Edgeworth confined

himself in the working of the method to a reliance on a diagram (he used as

illustrations the problem of two variables), which means in practice a rather

laborious piece of work, and apparently did not notice that the method could

be applied in a more simple manmer. " The simpler method is as follows:--

Suppose we are dealing with a series of deviations, say, involving three

unknowns, ku+Blv+Clw+DlA 2u+B2v"C2w+D2 , ... Ahu+Bnv÷Cnw+Dn, and we want to

find values of u,vw which make e- 1A u+B v+Csw+D I a minimum. Firt, find

for what values of v and w the expression is a minimum w1hen u is given by

-(Br+C )/Ar, i .e. find a local minimum point in the plane Aru+B•*C w+Dr:

0, where r is any one of the values of s frmn 1 to n. Tis reduces the problem

to one involving two variables only, i.e. what values of v and w will make

e_ -ttGtw I a uinimu, where the Es, F's, G's are obtained from thet-1
A's, B's, C's, D's. To solve this, find for what -alue of w the expression

is a minimum when v is given by -(F w+Gp)/Ep, i.e. find a local :6iniun point

i the line E v+p-+G - 0, where p is any one of the values of t fram 1 to

n-1. This reduces simply to the problem of finding a weighted media.

T7h [the] point of intersection of "'" three planes [Apu+Bjv+Ciw+Dg'O,A-u+Bmv

+Cw+Dm - O, Anu+Bnv+Cnw+Dn - 0] is the true mimimum point, and the values u,

1[ 77



v, w obtained from solving these equations make S-.l IAsu+BSsv*sw+Ds I a mini-
]Ulrl." •

Tokishige Hojo (1931) studies the distribution of the median, quartiles,

and interquartile distance in samples from a normal population. He compares

the precision of the median with that of the mean and the midrange, and con-

siders the problem of estimating the population standard deviation from the

interquarti.e distance of a sample. In defining the staple median, M, and

the sample quartiles , Q1 and Q3, of a sample of size n, the author distin-

guishes four cases according as (i)n-4m, (ii) n-4m+l, (iii) n-4m+2; (iv) n -

4m+3, where m is an integer. His definitions for these cases are as follows:

,i) Ql-u(V+ Xm+l)/2, MC(x2m+ x2m+l)/2, Q3  (xCe+ x~+l)/2;(ii)Q'C(n+ x)6+1 )/2

"M'x2,+l' Q37 (x.n+l+ x.3n+2) /2; (iii)Qul Xm+l-' M(X2m+l + x,+ 2) /2,Q 37 x.m+2 ;

(iv)Q1 - xm+1 , M-x2• 2 , Q 3-x+ 3 , -iere xi denotes the ilk smallest observa-

tion. The present writer prefers to define the median and the quartiles so

that they divide the population into four intervals with equal probability

1/4, viz. Q(1 X(n+l)/ 4 ' *IX(n+l)/ 2 . Q3" x3n+l)/4' whcre a fractional subscript

indicates interpolation between adjacent ordered observations. This definition

agrees with Hojo's excpt for the quartiles in cases (i) and (iii) above, for

which it yields, Ci) QI" (IV÷ x3 ,+ )/4v Q3= (x,.+3x.,+ 1)/4; (iii) QfI

C -)n+ •+1)14, Qe" C•x~+2 + -Im+3 )/4.

Richard von Mises (1931), in his volume on probability and its applica-

tions, includes a section on elementary descriptive statistics in which he

discusses the median, quartiles, deciles and percentiles in addition to the

arithmetic inean and the standard deviation. There is also a capter on the theory
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of errors and adjustment of observations in which the author follows the ap-

proach of Gauss (1809,1823).

Karl Pearson (1931) gives tables of criteria (Chamwet's and Ixwin's)

for the rejection of outlying observations and of the distribution of range,

median, and midrange in samples from a noral population. Walter A. Shewhart

(1931) discusses the use of the median and t%.e midrange as measures of central

tendency instead of the arithmetic mean, and the use of the range as a meastue

of dispersion instead of the standard deviation.

Allen T. Craig (1932a,b) proves several useful theorems concerning the

distributions of the sample median, mean, midrange, first quartile, and

range. Harold Jeffreys (1932) offers an alternative to the rejection of

observations. He takes the probability of an error to be given jointly by

two normal [Gaussian] laws, one for the normal and the other for the abnormal
errors, and provides a method of solution for the five unknowns (means and

standard deviations for normal and abnormal errors and proportion of normal

errors), together with an approximate solution by a method of weighting, the

weight of an observation being a continuous function of its deviation.

Willem J. Lwten (1932) considers data on the differences of pairs of

measures of the distance of double stars, and concludes that Laplace's first

error cuve fits the data much better than his second (the normal curve). He

points out (p. 365) that, as a corollary of the use of the first Laplacean

curve, it is ino longer the arithmetic mean and the stmndard deviation but the

median and the arithmetic mean error [mean deviatimi frmn the median] that are

the significant constants of the distribution.

Egon S. Pearson (1932) gives a t4 ,ble sumarizing available results on the
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distribution of nge in snples of 100 or less from a normal population.

He discusses the method of cmputation of the table and experimental checks

on the adequacy of the approximation employed, and gives illustrations of the

use of the table.

P. R. Crowe (1933) proposes a graphical method, based on the median and

the quartiles, of representing the dist7.ibution of monthly .ninfalls. He

compares the median with the mean and the mode, and the quartile deviation

with the standard deviation and the mean deviation, giving advantages and

disadvantages of each from the viewpoint of the climatologist.

A. T. McKay and E. S. Pearson (1933) develop theory which leads to certain

new results regarding the form of the range curve at its terminals mid pro-

vides the exact distributicn of the range of samples of 3 from a normal popu-

lation. They also give the exact distributions of the range in samples of -.

from rectangular and right triangular universes, the former having previously

been given by Neyman and Pearson (1928).

Paul Reece Rider (1933) sumnarizes the history of criteria for rejection

of observations fron Peirce (1852) to Jeffreys (1932), and draws the following

conclusion (pp. 21-22): "From the various methods cited above it is easy to

see that devices for rejecting discordant observations could be iniented with-

out number. The choice of which to use, if any, is largely an individual

matter. If one is willing to subsci-ibe to the hypothesis laid down ta a

given criterion, he should be willing to abide by the result of applying the

criterion to a set of data. In the final -n-iyis iL would seem that the

question of the rejection or retention of a discordant observation rechces

to a question of common sense. Certainly the judgment of an experienced
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observer should be allowed considerable influence in reaching a decision. his

judgwnt can tx4oubtedly be aided by the opplication of me or more tests based

on the theoiy of probability, but amy test which requires an inordinate mount

of calculation seems hardly to be wortwhile, and the testimny of my criter-

ion which is based upon a cmplicated ;ipothesis should be accepted with extreme

Hans M&izner (1934) studies the precision of the absolute moment (4>O)
for the generalized Gaussian distribution fuwtion (#)- [hX2rIl/x)]eh

X1. fie shows that the maximum precision is attained when a-x. He points out

that in the special case x-u2, this reduces to the statement that the standard

deviation is the most precise measure of dispersion for the Gaussian fistribu-

tion, as shown by Gauss himself. Another special case, not emphasized by the

author, is a-x-l, in whlch the result reduces to the statement that the mean

deviation is the most precise measure of dispersion for Laplace's first distri-

bution. We have aLready see n that the mean deviatio v is a ion when taken

jut the median rather thm. about the aritletic mean.

Harry S. Pollard (1934) gives the following results concerning m--ias:

(1) an exact expressiou q. 1/(2/Vi5) for the standard deviation of the mediax

of saples of (2n+l) items (n an integer) from a rectangular population with

proability dewsity iAmctiom f(x)-l ever a unit interval, Which copares with

the classical (large-sample) approximation W-l/[2f(O)1-] where s is the sample

size and f(O) is the value nf the p.d.f. at the population gedian; (2) upper

aod lower limits for the standard deviation of thae median foi s3ples from ay

population, and (3) a mothbo of detemwding tea probable error (or any percentile)

"of the distribution ef the p.dian for samples of size (Znl), for which Dodd
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(1922) has given the p.d.f.

fMarice Prc1=et (193S) copares the precision of the man and the median.

He aduits that th mae is to be preferred to the edian in the mjority of

cases, but insists that it is not always so-median life or median income

provides a more rpresentative value thain the corresponding mean. Certain

statisticians object to the use of 'hemedian on the ronvd that its precision

is less thom that of the man, which is true for the normal law of error

(Laplace' s secon law), but not, as the author shows, for certain other prob-

ability laws. He studies two laws for which the median is more precise than

the man, at least for saples of size three. Let i' be the standard error

of the mean anda " be that of the median. For samples of size three fr la-

place's first law of error with cuamlative di 1'it!r,• function F(x)- eX/2 for
~o, F(T.)-l-e-X/2 for x#O, the medi• n is slightly more precise [p!' ,.,' 1/P],

while for samples of size three frm the probability law F(x)- 0 if x4l, F(x)-a

l-x-mif x-l, -Ath I42,,O" is finite but p' is infinite. The author presents

supporting evidence from a paper by Wilson $ Hilferty (1929).

R. C. Geary (1935) ccusiders the ratio wn of the man deviation to the

standard deviation [V2--Fw for Infinite randcm samples from a normal popeution]

as a test of normality. He Wkes the mean deviation from the mean rather than

from the median. He notes that wo1 is a test of sy&mtry rather then of

normlity, vhile the frequeny distribution of 02 (a measure of kurtosis) is

unknown. E. S. Pearson (1935) compares 02 mnd Geary's criterion. He concludes

that •ere are strong practical grounds for choosing the latter as a test of

whether the pN'1ation saupled is plitykurtic or leptokurtic unles-s the saple

is very large, when o2 wy be used, but that r is the best criterion of

82



slomess, mnd that two tests ( 1 mad either 02 or Geary's criterion) are j

required for &iprtur. from normlity.

A. T. WJay (1935) studies the distribution, for sales frm a na l

distribution, of u-X-1, .where X is the hihest obsermtim and 1 is the mean.

He bus the statistic u as the basis of a criterto for rejectic of outliers,

mad C¢MVG this criterion with thM criterion of Irwin (1925) and one based

an the distrIbution of range tabuated by E. S. Pearson (1932).

Williamn R. Tkhopson (1935) derives the distribution of r-6/s, where s.,is

t 3saMle standard deviation and 6 is the deviation of an arbitrary observa-

tion from the sanple mean, and uses this statistic, for which he tabulates

critical values TO, as a criterion for the rejection of observations doviating

from the mean by more than sr.

Georges Darzmis (1936) discusses the relative precision of the median and

the arithmetic mean of sarpies from various populations, and the related ques-
tion of whether to use t~he method of least squares or the method. of least ,

absolute first powers.

E. S. outayson and C. oandra Sekar (1936) study the criterion for uejec-
' tion of outlying observations proposed by Thoupson (1935). They point out that

it provides coplete control over the probability of Type I error (rejecting
the hypothesis that all the observations have been drawn fro a single norml
population, with unspecified mean and standard deviation, when that hypothesis W

is true). Nevers thateall the servations criterion is quite inefficiento

in the presence of two or more outliers unless the saple is quite large.

Bdi1 J. Gumbel (1937) studies the precision of the arithm tic mean and

of the median, and verifies that the former is more precise for iuifonn,
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Gaussian, and extrem-value distributiLs, and the latter for the symeric

dotble exponeutial (Laplace's first) distribution.

urtis Bruen (1938) considers various methods of combining observations

based on the ccncept of pcner-means, as defied by Fedmer (1874). The pth

order power mean of a set of observations, xi(i-102,, "',n) is that value

x, which makes the sum,,n IIC-XlP. Sa iMuM. It is well known that the
median is the first-order power-mean,, the arithmetic mean is the second-order

power-mean, and the midrange is the limiting value of the p• order power-mean

as p,.. Not so well known is the factwhich the author attributes to R. M.

Foster (1922), that the mode is the limiting value of the ptl- order power-

mean as pO. The author generalizes the concept of the power-mean from the

case of direct observations to that of indirect observations or of implicit

functional observations, for which It leads to tho method of least power-

sums of the absolute values of the deviations. Corresptnding to mode, median,

mean, and midrange one has then the :thods of least number (least sum of
zero powers), least sum of first powers, least sum of squares, and least maxi-

mum (Least sum of infinite powers) of the absolute deviationt. Jackson (1924)
has StLied the existence and the uniqueness of solutions by the method of

least pý- powers (O<p$-) of sets of n simultar..) us linear equations in m

unwnmmswhen Am n. Bruen reviews the contributions to the theory of errors

of Mayer,, Boscovich, Laplace, Legendre, Gauss, Cauchy, Glaisher, rvchner,

Edgeworth, Turner, Goedseels, de la Vallee Poussin, Rhodes and others. He

closes 14th a discussion as to the choice of method, in which he points out

that the choice depends on the presumed distribution of deviations, each

method being best for a particular distribution--the mode in one variable or
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the modal point in two or more variables for a spike distribution (single isolated

vaite), th median or medimn loci for a symmetric feanetial (first Laplawan)

distribution, the mean or mean loci for a normal (Gaussian or second Laplacean)

distribution, and the midrange or midpoint of least range for a uniform

(rectangular) distribution.

E, L. rkdd (1938) reproduces some of the results of Jackson (1923) con-

cerning the median, quartiles, and ohevr positional mwans (quantiles) sd

enumrates some of the properties of these measures.

Jose Barral Souto (1938) shows that the mathematical expression %h-
(i Pi ih ,where the ai are non-negative real nusbers and the pi are

a11  ) i t anth
positive weights whose sum is 1, leads for particular values of h to the

following 'means": kw-a gives the smallest of the ai, h=-I gives the (weighted)

harmonic mean, h-0 gives the (weighted) geometric mean, h-l gives the (weighted)

quadratic mean, and h=- gives the largest of the ai. If the a1 are replaced

by their absolute deviations from a certain value of x, , is transformed into

h) 11h. Souto shows that the values of x which minimize

Mh(x) are the following for particular values of h: for h-+O, the mode; for

h-l, the (weighted) median; for h-2, the (weighted) arithmetic mean; and for

h--, the midrange. The corresponding minimum va&jes of Mh(x) are respectively

the geometric mean deviation (zero), the mean (absolute) dovi.at&'n, the root-

mean-square deviation (standard deviation), and the semirange. These results

are a generalization and extension of thc'3e given by Bruen (1938) and earlier

2UthorS.

Gunbel (1959) stidies the determination of the median, quartiles, and

S' other qua.tiles from small samples. ie takes as tie three quartiles the
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,(n+.)/4]. [ ,n+ /,, - and [3(n+3)/4]9- values from below, where n is the

sample size. In an analogous manner, he takes as the quantile correspondig

to cumulative probability A the [(n~l) A]- value from below.

Jeffreys (1939) discusses the use of the median instead of the mean and

the rejection of observations. He points out that the mean is the best average

only when the underlying distribution is normal, in which case the standard

deviation is the best measure of dispersion; in t1e same way, the median is

associated with Laplace's first distribution and the mean (absolute) deviation.

He offers the opinion tlat tUire is much to be said for the use of the median
when the form of the ls, of distribution is onknown because it is less affected

by a few abnormally large residuals than is the arithmetic mean. He criticizes

Peirce's and (havenet's criteria for the rejection cf observations, and offers

a modified form of the alternative which he proposed earlier [Jeffreys (1932)],

with a table of weights for its implementation.

Niels Arley (1940) gene•'alizes the results of W. R. Thompson (1935). Let

XlX2,"", xn be independent normal variates with mean c (x)- l a- .p'

where the a's are known coefficients and the p's imknown parfmneters. Let the

variance of xi be u? where a2 is unknown but the weights P. are known.
1 Pi

Finmlly let Ci denote the estimate of c(xi) and Sthe estimate of the variance

of xi- 4i, both obtained by the method of least squares. Arley shows that the

probability density function of ri= (Xi- Ei)/Si is given by p(r)= const. (n-m-r2

(n-m-3)/2 for Ir[,<n-m. He applies this result to rbtain a criterion for the

rejection of observations ,which he compares with criteria proposed by various

other authors.

Frechet "1940a) compares certain measures of dispersion of the sample
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ndian and the saple mean for large samples from nimidal distributions with

finite variance. Let X be a random variable with imixodal distribution, ax

its standard error, e0 its sean absolute error, and E its quartile deviation,

and let M be the median and V the arithmetic mean of a sample frau this distri-

bution. Frdchet shows that for sufficiently large n, (i)rMgl.74ax/v,,(ii)eM

*l.60ex/,a,(iii)F*1.35 B./vg. For V, there is the equality or= ox//i"corres-

ponding to (i), but there are no inequalities for V corresponding to (ii) and

(iii). Frtchet concludes that the sample median should be more widely used

except when the distribution is known to be such that the sample mean is better.

Pr~dhet (1940b) obtains the following inequalities for the measures of disper-

sion of the rand=m va~able X itself, the notation being tne same as in the

preceding paqer: O*ex/cYxl;0_<E/ek2, OE/<VaXo. If ax is the upper bound of

the wan probability density of X between xI and x2 : Probfx,<X<Y2 1/(x 2- xl)

when cl, x2 vma, then he shows that the followng inequalities hold: O<l/aex

s4; 01Aal!<,2/3_ - 041/AE.<4. Moreover, he shows that none of the twelve in-

aqualitie;7, amxg a Ex and Ax can be replaced by a sharper me.

Edwarn Paulson (1940) finds the distribution of the median of a random

sanple of size (2n+l), where n is an integer, from a symmetric population (whose

mean and median are both zero) in terms of the incomplete Beta function, which

has been tabulated by Karl Pearson. He suggests that his results are especially

useful in sampling from populations suc-h as the Cauchy distribution, for wvhich

the mean is not a consistent statistic.

Robert R. Singleton (1940) points out that the method viven by Rlho&.,s

(1930) for estimation of the parmeters in a regression equation by minimizing

the sum of absolute valus of deviations is iterative and recursive, and is
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presented without proof. He uses geometric methods and terminology to deelop

proofs for various methods and to obtain a new method which reduces the labor

by elii g the recursive feature.

Abraham Wald (1940) consider; two sets of random vriable xY. (i-1,

N;N own). Neither the true values Xi,Yi nor the coefficient % and 0 of the

linear relation [Yi - aXi++] between them is known. As an estimate of a [cf.

Lambert (176Sa)] he uses a ,a2/a1 , where ala[(xl++xm)-(xh..ll.*+xN)]/Na

(ye 41M)and m-N/2. He points out that the greater jall

the more efficient is the estimate a of a, and thatja 1 j is a maximum when one

orders the observations so that xl," "4*-x,.

E. B. Wilson (1940) points out that the usual formula for the standard

error of the median of random saples of . ze n,abrl/2rn, where # is the

value of the probability density function at the medi-,7 unlike the corres-

ponding formula o/A for the mean, is not universally valid. ILe explores

various pathological cases for which it gives incorrect results. He then sets

out to find a true expressimi for aM, restricting himself to samples of odd

size n='k+l(k an integer) from a population that is symetrik about the origin,

with probability density function #(x) and cumulative distribution fumction

#(x) [not the author's notation]. The probability density fuzction of the

wdiLau is then *(x)=[-2k+l) I/(k1) 2] HO(x)]k[11-(x)jk#(x), its mean is zero, and

its variance is giv i by 2 =fx2,(x)dx, where the integration extends over

i I the whole range of the function #(x). The author applies this result to show

that the standard jrror of the median of samples of size n from the Cauchy

distribution 4(x)- 1ir(l+x2) is infinite for n-3, but finite for n-5,7,".

R. J. Drookner (194.) shos that, for a rardoa sample of size N from a

88



nectaWular poIUla•t-in of length 1 aroud an t&j.ivn value 0 [thar is, f(x)-

1 if e-1/2s;Lge+l/2,f(x)-O otherwiso], the variance a.f the saiple vidrange

t is I[2(N+1)(N+2)]. MTis cpares with a variance of 1/12N for the sample
man I. Both the mean and the midrange are unbiased estimators of e. The
ratio of the variance of t to that of ! is 6N/[ (NN+) (N+2)], which is less

than ome for N>2 and approaches zero as No., so the man. is a poor estimator

of central twndency for a rectwa ular population.

Maurice Frchet (1941) exz-fites two methods of dmImstrting the valid-

ity of the nomal law of error--the method of Gauss (1809) based on the

pVatulate that the aritlmetic mean is the best aorage of a set of equally

reliable observations and the method [due to Hagen (1837), whom the auxor

does not mention basod oa the caqosition of a large number of small ele-

mentary errors. We does Rot find either mthod covino-ing, and concludes that

zverfication is possible only experimentally, by comparison with actual data.

-his can be accomplished in various ways--by comparing theoretical and obser-

wd frequewcies in the various classes of a grouped frequency distribution;

by computing the Pearsonian measure of kurtosis o2 cg4 p a4/p 2 , Where p, is the

Aumment about the mean, for the data and v-mparing it with the theoretical

value [3 for the noiual (second Laplacean) law, 6 for the first Laplacea

law]; or by computing the ratios D-(q 2 -ql)/(d2 -dl) and C=(q 2 -q,)/(c2-cj),

where q, and q2 are the first and last quartiles, 41 and d2 are the first

and last &cAr.les, and cI and c2 are the first and last centiles, and com-

paring them with the theoretical values [D-0.5263 and 0-0.2899 for Laplace's

second law, D=0.4307 and C-0.1772 for Laplace's first law]. The author

applies the latter method to data on artillery fire. Returning to theory,,
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he shows the corresponde;e between leis of error and measares of centralItd mcy ad dispersion, the arithmetic mea and the standard deviation

cOrreXspoming to Laplace's second Ia and the median and the man absolute

deviation(frwa the median) to Laplace's first 1w, etc. He extends this cor-

dac to the adtivari~ate m~e (two or more dimensi n).
H. 0. Hartley (1942) writes the probability integral-of the range N

in random samples of size n from a population with probability density fmnc-

tio. f(x) in the form P (W)= n f.f(() (f 4i f(x)dx)n-l dg. Hartley and E.

Pearson (1942), using umerical integration, tabulate Pn(N) to 4 decimal. p.&.es

for sples of size n-2(1)20 from & standard normal population at intervals

of 0.05 in W.

K. Ruahavan Nair and M. P. Shrivastava (1942) propcse a simple method

of curve fEitting by grouping the residuals into as many groups as there are

akncown coefficients to be estimated, and using the group averages to estimata

the coefficients.

George A. Barnard (1943) studies the use of the zdixan in place of the

mean in quality control charts.

Samuel S. Wilks (1943) gives an excellent textbook treatment of order

statistics and fwnctions of order statistics, including the largest or smallest

sample value, the saple median, and the sample range.

R. C. Geary (1944) caivares the mean, the midrange, and the median as

measures of cantral tendency for a rectangular population with known range 1.

E. J. Gumbel (1944) studies the moment characteristics of the distribution,

in a smple oi size n, of the A largest and mA smallest values and of their

sum [,,2] and diftfrence, the A-- midranrge and mA- range. He assumes that n is
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£i V

so0 larp twat th two u-values may be regariled as ineedn.For a-1,

M= MV adA M [o u wm&W a quasi yange~, ws they are

nmo cmmnly calledW m siply the xidge and the range.

IHerert Iibbins (1944) detemines the expected values of the dif~irce

between the largmt aid wUest order statistics jthe rge R) ml of the

differemce F between the values of the cUwlative disfrib•tiM fMction

evaluated for the largest and nllast order statisti.cs. The results are

E(F)a(n-l)/(n+l) ad E(R)JL 1_A(t)_-[1-£(t)]n Idt, dere C is the proba-

bility density fuaction [riat the author's notation]. Prom the latter it

follows that the expected value of the range fw. n-3 is akwtys 3/2 that for

a2, since l-f 3_( -f)3 a (3/2)fl--(l-f) 2 ].

E. S. Pearson, H. J. Godwin wd H. 0 Hartley (194S) situy rnd tabulate

the probability integral of the mesa deviation (f'Yo the arithmetic mean) of

samples from a norna1 distribution.

5. UMMOEMZV1~I' ERA (1946-1972)

George A. Baker (1946) studies the distribution of the ratios of sample
te: anple star-AUrd deviation in samples from normal distributions and

froa two differmt cobinations of tvo vzumal distributicas, one symuetrical

but distinctly bimodal and the other weakly biwdal but strongly skewed. He

taLmlates various moment constants of the distribution for various sample sizes.

He finds 'that the correl ation between standard &dviation and range of the same

sample its negligible for suaples of size nlO00 from the noivial population, but

not froM the w•biations,
(Grge W. Brani and John W. Tukay (1946) study the distribution of sample
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mans for saples from various distributions, i5ncuding "long tailed!' os,

for uhich they Lind that the distance beUeen any o w ercentage points of
the mean of a sample of size n is ultimately larger thm a positive power of

n. They claim that these results show that (1) "the use of the ofthe mean of a

sample as a measure of location implies a belief that the tails of the

t-nderlying distribution are not too long; (2) it is probablu that the relative

efficiencies of mean and median are greatly affectedu4y the 1e• of the-t-il".

A. George Carlton (1946) shnws th•,% the range and midrange of a sample

from a rectangular distribution are a pair of sufficient statistics., and

mamnu likelihood estimates, for the true range and true mean. He derives

exact and limiting distributimns of midrange, range, and their ratio, and

calculates the 'efficiencies' of the sample mean and median as estimates of

the true mean. The limiting distributions are non-normal, with standard er-or
of order n"1 instead of the usual n"1/2. For the one-parameter rectangular
distribution f(x)l/1, Ox ., he finds that the largest observation v "is a

sufficient statistic and is evidently the maximum likelihood estimate of 1".

Harold Craier (1946) gives an excellent advanced treatment of the mathe-

matical theory of statistics, including measures of central tendency (location)

and of dispersion and the method of least squares and rival methods. Since all

measures of location and dispersion are to a large extent arbitrary, each

measure having its own advantees and disadvantages in various cases,, and since

the principle of least squares is associated with specific measures (mean and

standard deviation), Cramwr states that there is no logical necessity for

adopting this principle. On the contrary, he says, it is largely a matter of

convention whether we choose to do so or not, the main reason in favor of the
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principle being the relative siplicity of the rules of operation to which

it leads.

Joseph F, Daly (1946) proves that, for samples from a normal population,

the mean wd the range (or any other symmetric finction of the sawple variates

which is invariant under a translation of the origin) are statistically inde-

pendent.

E. J. Guebel (1946) shows that in a sample of size n (large) the m-

observation from one extreme aed the from the other in order of magnitude

may be rega-Wed as independent provided that m and k are small with respict

to n and that the populaticn behaves in its tails in a certain expoz etial

aHmmer.

Maurice George Kendall (1946) gives a thorough treatment of +JI theory of

linear •ec curvilinear regression. He points out that the most t ,,,xant use

of least squares in statistical theory is in estimating the pa~ters (coef-

ficients) in regression equatimis. Hc also ,entions its use in, e.stimating the

parameters of statistical distributions, whid,, will not be cimsidered in detail

in this report.

Frede-rirl, Mosteller (1946) suggests that certain "irvfficienv" statistics

may be useful when data are inexpensive compared with the cost of c-Amputing

"efficient" statistics. In partiocar, he proposes the use of linear combi-

nations of order statistics, which he calls systematic statistics, to estimate

the mean and standard deviation o.E a normal population. He compares the

efficiencies of the estimates of standard deviation with thjose of other estimates

which do not involve s'ms of squares or products, :Uicluding k mean deviations

about the mean and about the median.
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Frank fhraim Grubbs and (halmers L. Weaver (1947) study the use of

group ranges to estimate the population standard deviation fro a sample from

a normal popu.atimn. They tabulate the •mnt costants (mem, standard devia-

tior, ,3 and a4) of the range for samples of size n-2(l)12 fm a nomal popu-

lacion.

E. Lord (1947) proves that the man and the difference betwe thepA

and qth order statistics of a saw..L of size &. (which reduces to the ramne

when p-i, q-n) froa a normal populatim are independent.
K. R. Nair (1947) shows that the standard, error of the mean deviation m'

from the median is equal to or less than that of the men deviation a from the

mem fur samples of 3 or 4 from a nomal population. He suggests that, in

view of greater simplicity in calculation, there would be strong practical

gromds for using m' rather than m if expressions for the mean and variance of

m' and tables of its probability intsgral were worked out and if the efficiency

of m' relative to m for sample size n>4 were foumd to be not appreciably worse

thu fbr n-4.

R. L. Plackett (1947) determines an upper limit, independent of the form
of the distribution, for the ratio dn of the expected range in samples of size

n to the population standard deviation. Ti limit is n {2[(2n-2)1-(n-1)1) 2 j

S /(2n-)! 11/2, &i*ch is approximately n1/ 2 for large n. Plackett finds distri-

butions for which the limit is attained; for n-2,3 the distributions are

rectangular.

Warren B. Purcell (1947) proposes saving time in life tests by rains the

median instoad of tie mean to indicate shifts in central tendency and the

Mrainu value (first order statistic) instead of the range to itdicate shifts

in dispersion, thus making it possible to terminate the test as soon as [n/2]
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÷ 1 failures have occurred, where n is the muber of items placed cm test, and

(n/21 is the largest integer less than or equal to n/2.

Seaman J. Tanenhaus (1947) proposes the use of the lot median or, better

still, the average median of several sublots., as the most typical value of

Sabrasion-resistanxe of yams fr,% distributions which are deciedly positively

skteed, for which the mean tends to be atypical, being unduly affected by the

extremes.
Qurchill Eisenhart, lola S. Deming and Celia S, Marti (1948a) show that

the abscissa of the (one-t.'M" -probabiLity r iiat of the distribution of the

median in random sanples of ' ize n-2,u2l from any ccntinxous distributim is

identical with that of the P Cn- probability Ixpnt of the parent distributicn,

Vu'n I) pk (IP )D-k e and C7- n I/k (n-k) I is the nmbyier of
Lk c,,,.,) /2 Vs

" ba+ s of n things taken k at a time. Eisenhart, IDming and Martin

(1948b) coiare the c-probability points, for various values of £ and n., of

the median with those Gf the mean for samples from normal (Gaussian), Caudty

and double-eipqcential (Laplace's first) distributions and with those of th-

midrange for the rectangular (uniform) distritarion- Their results give

numerical verification of the fact that tne mean is the best average for the

normal distribution, the median for thi. double-enxmential distribution, and

the midrange for the Tectangular dis'.Tibution, while. the median is the best

of the three considered for the Ca rchy distributirAt.

G. W. Housner and J. F. Brennan (1948) consider the problem of biv-riate

regressiom in which both variables are subject to error and have a finite

number of means falliAg on a line and hii which the nutmer of sample observa-

tions taken about each mean is known. They estimate the slope b of ti'e
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regression line Y-a~bX as the total of the differences of all pairs of obser-

ved values of the y's divided by the like total for the observed x's, ad

show that this estimate is ccmsistent. For the case of uagrot4ed data, the

proposed estimate -educes to t -iyi(i- )/i 1 x1 (i-i), -where the x's are

ordered according to magnitude. In a particular numerical example, the authors

show tCat this estimate compares favorably with others that have been proposed.

K. R. Nair t1948) studies the distribution of the extreme devroate from

the sample mean, w-xk- ', where xlx 2 ,*° ,xk are ordered values in a sample of

size k from the unit normal distribution and 3( is their mean~as well as the

distributior of its studentized form, w/s, where s 2 is an indeperdent unbiased

estimator of the population variance. He uses the latter distribution as the

basis of a new criterion for rejection of outliers, which he compares with the

criteria of Irw'u, '.ppett, Student, McKay and Thompson.

K. C. Sreedha ran Pillai (1948) determines the information (as defined by

Fisher) furnished by esch order statistic x. (i=1,2," ,ns iLi a sample of size

P from a nonrmal distribution concern ing the mean 1 and the ;a&.-ance a2 , -d

tabulates resjts 2 n-orn"2.3,*", 12; i-,1,"2 , [nj2]+ 1. Not surprisingly,

these tables show that the central values give -the most information conreaning

A and the extreme value.3 concerning . he author determines a function of

n which,* when multiplied by the semirange (xn- xl)/2, yields an unbias',d

estiaator of a, and studies the distribution of the semirange.

K. R. Nair (1949), in a fociow-up of his previous note [Nair (1947)] on

the mean deviations £raa the mwhain and from the meam, and their use in asti-

mating the standard deviation a of a normal population, shows that the coef-

ficients of variation of the two mean deviations are alm st the sSa for smples

of size n when 2,<a.<10,
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W. L Purcell (1b49) elaborates on the use of the median lif and the

shortest life instead of the mean life and the range, as proposed li Uis

earlier paper [Purcell (1947)1, and gives an example of thfir successf.,1 use

in saving tin in life tests on incandescent lamps.

K. J. Shone (1949) studies the use of the sample range in estimating the

standard deviation of nonnormal populations, Let a, T, ar and N represent the

sample standard deviation, the mean range, the standard deviation of the range,

and the sample size, respectively. Frr N-2, he finds that 2c2 -2+ 02 for allrf
populations whose variance is finite; for N=3, F/i -A 2,10-0.81 ar/F for

eighteen discrete uimodal distributions; for N=4 and N-5, respectively,i/o -

2.29-0.69yr/T an-d f/o 2.41-0.46 Or/] for five selected populations of extreme
il form.

John Wfider Iu•key (1949a,b,c,d) and Theodore E. Harris and Tukey (1949)

report on a study of sampling from contaWnated distributions. Tukey (1949a,

cd) szudies the relative efficiencies and effectivenesses (ins large samples)

of various estimiation procedses when the distribution differs fron normality

in the die-ction of long tails (resulting from a mixture of two normal distri-

butions with the same mean and different standard deviations). Harris and

Ttkey (1949) and Tukey (1949b) consider the relative efficiencies of estim.ators

obtained frct the mean and standard deviation by removing the extreme y % at

each end of the sample, for varying degrees of contamination, both in large

ma in mxlerately large samples.

Wilim.1 John YoudWeu (1949) exposes the fallacy in the common practice of

making tiree measurements, averaging the two values closest together and

discarding the other. Intuition suggests that if two of the three measurements
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are in close agreement while the third is considerably removed from either of

the others, then ?here may be grounds for suspecting and perhaps rejecting the

third value. Analysis shows, however, that for samples of three from a normal

distribution, moe of the measurements will be at least 19 times farther away

from its neighbor than the distance separating the two closest in one saple

out of twelve; hence it appears that measurements that should be retained are

often discarded.
Wilfrid J. Dixon (1950) proposes new criteria, based on the ratio of the

differences of two pairs of order statistics, for rejection of outlying

observations. He compares the performance of these criteria with those of

Irwin, McKay, Thompson, Nair, and Grubbs for detecting contamination of samp-

2 2les from a normal population with mean i and variance a , N(v ,a), by one or

more observations from (a)N(p + x2) or (b)N~pA 2 02).

Grbbs (1950) also proposes a new criterion for rejection of outliers,

the criterion being the ratio of the sums of squares of deviations from the

mean for the truncated sample (with the observation or observations in ques•tioa
omitted) and for the complete stiple. He obtains and tabulates the distribu-

tion of this ratio for one extreme observation and for two extreme observaricns

both at the same end; he does not examine the criterion for oe extreme at each

end.

Theodore E. Harris (1950) gives a simple explanation, with a numerical

example, of a procedure, essentially that of Edgeworth (1923) and Rhodes (1930),
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for fitting regression Lim ¥-a+bX by m•inizing the sum of the absolute

deviations rather than the sun of squares of the 6eviations. He points out

&he relation beftwu this problem and linear programin.

F. M. Henry (1950) studies the loss of prcision fro discording discrep-

Sant date. In particular, he 4.plies the rule oF Gfxxbn (1913): '%ben the

number of observations i-c small, rejnct &Vy observation that deviates more than

4 A.D. from the sample mean,, the mean and A.D. [average deviation] being c~m-

S~puted with the amission. of the doubtful ot seration" to series of five measure-

ments of a time interval with a stop watih, and the "best two out of three" pro-

cedrie to series of three such measurmnts. In both cases he finds that

use of the procedur results in an increased rather than a decreased error;

ki the case of three measurements, not only the average of all three measure-

S~ments, but also the average of the two extreme measurecents (the midrange)

givess better results.

E. S Pearson (1950) investigates the estimation of the standard deviation

of a population from the range of a sample of size n or the nvin range of N

items divided into m groups of n items each. Even when (a) the population is

not normal or (b) the sample includes one or more outliers, he concludes that

use of the range, with adjustment appropriate for a normal populto,

justified provided n;610.

K.C.S. Pillai (1950) finds, in a form suitable for numerical calculations,

Sthe distributions of the midrange and the semirange an., their joint distribu-

tion for samples of size n from a standard nrx.m.al population, N(0,1).

Il
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G. R. Seth (1950) finds the joiut distribution of the to closest obsor-

vations xx'(x'<e') of the set xpx 2,x 3 (xlx2,Ox3), given the distribution of

x1,x2 ,x3 ; he also finds the joint distribution of u-(x"-x') id wi(JI'-x'V)
(x3-x1) in general, and the joint density function of u and w and the marginal

density fnýctions of u and of w, all when the %xerlying distribution. is normal

with mean 0 and variance unity, N(e,l). He also obtains th6 joint -

function of u-3'-x' and v-(x'+x")/2, as well as the marginal density function

of v, which has mean 0 and variance 1/2 +/3/4w.

R. K. Zeigler (1950) shows that, for a randon sample of size 2k+l from a

distribution which has a finite second momi nt and which is continuous at x=O

with f(e)61, 0 being the popula•tio median, the joint distribution of the

sample median and the mean deviation from the sample mdisn is asymptotically

bivariate normal, and gives the asymtotic means, variances, and correlatin

coefficient.

D. H. Bhate (1951) shows that, for symnetri-al probability functions

which are members of lie Pearson famiily, the )wan of two rynuetrically placed

elements in an ordered sanple (a qLasi-median or quasi-midrange) is more

efficient than the median as an estihate of the central value. He demonstrates

by an examle that this statement is not true for all symmetrical probability

functions.

Brown and Mood (1951) propose a method based on medians for determining

the coeffi cients in a multiple linear regression equation. let the dependent

variable y be distributed with mediar t+ 'kcr zr and suppose .4e have . sample

of n sets of associated observations yi, zli, z2i, ""' zk, with i-1,2,", n.

Then the coeffcitints a are estimat .d by the numbers Zr such that med"

ri r
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(Z .)u i i z r ,k, idIher is the nmdian of
r Zri r -u r-

the n observations Zrn.

Mi=o (19S1) finds the distribution of the ratio r-(Xo-Xnj)/(X,-Xi) f:

som small values of i and j, where xljx2,' x are the order statisti$ of

a sample of sizen 30 from a populatiou hich i -- (1) reotwiuar or (2) rinival.

He tab••ates 3-decimal-place percentage points, corresponding tc cumlatiw

probability e=.005,.0l,.0 2 ,.05,.1(.l). 9 ,. 9 5, for r when j=l,2 and i-1,2,3, for

samples of size n- (i+j+l) (1)30 from a normal population. These tabular values

are usefl in applying the criteria for rejection of outliers proposed by the

author in his earlier paper [Dixon (:1950)].

H. ,0. Hartley and E. S. Pearson (1951) tabulate the mment constants of

the distribution of the range in samples of size n=2(l)20 drwn fron a normal

population with unit variance. They note that there are smne discrepancies

between their table and some earlier results of Grubbs & Weaver '1947).

Ray Bradford Murphy (1951) treats the problem of outlying observations

in samples from univariate normal populations as one in linear hypotheses. In

particular, he introduces t-tests for outliers from a single ,universe and

likelihood ratio tests for outliers from several umiverses. He discusses the

problems of testing for all possible numbers of outliers, k, subject onry to

the restriction that 2kcn, where n is the sample size.

J. H. Cadwell (195%) finds improved approximate formulas (polynoiials in

n l) for the ratio of the standard error of the median to the standard eiror

of the mean for r&Widm samples of size n drawn from a normal population. Numeri-

cal examples show good agreement with the exact results of Hojo (1931). The

author shos-. to extend the result so as to obtain the corresponding ratio
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S for any qumitile of a samle frm a coutinuos population.

*1 /Mers Hald (l9S2ab) gives theoy and tables for the distribution of the

rsVg. He also discusses the distributions of the largest observatim and of

its deviations fTrm the population mean and the staple mea, as -e11 as criteria
ifor ts e rejecion of outlying observations.

Tsurochdyo Homo (1952) obtains possible limit lines for the range and

the midrange of samples from a cotinuous populatim, and dkws that the range

and the midrange aze not asymptotically independent.

Norm L. Johnson (1952) gives an approximation, valid for w small and n

not too large, for the probability Pn(w) that the range of n it random

variables does not exceed w. He also gives m approximation for the critical

values w . satisfying Pn (WIM)=M.

Julius Lieblein (1952) investigates the distributions of several statistic-

involving tic. closest pair of observations in a sample of size three from rec-

tangular and normal populations, and calculates their means and standard

deviations. He shows that the ratio of the difference of the closest pair of

observations to the range is a poor criterion for rejecting outlying observa-

tions, and finds the distribution of the outlying observation for a rectangulr

population.

K. R. Nair (1952) extends his earlier table [Nair (1948)] of percmntage

points of the studentized extreme deviate from the saple mean to cover more

sanple sizes and more sign-ificance levels.

Calyampudi Radhakr.-hna Rao (1952) gives examples involviLn the use of

the largest and/or smallest observations to estimate the parameter(s) of a

rectangular population, the asymptotic distribution of quantiles,and the
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efficify of the sa e median a an estimate of the Ma of a nomal popu-

lation

J. H. Cadwell (195M) presents a ethod for evaliating the prbability

d 'nsity fmction of the rt quasi-rapg, wr xr- of a sample of size

n fra a normal populaion, amd tabulates penotage points aid mnts of

w, for n10(1)•0. He investigates the efficiency of quasi-ranges in esti-

mating the population stwdard deviation, id finds w0 (the rane) to be mot

efficient for Znal7 and wI most efficient for 18ai4i3.

Dixon (1953) studies the problem of cation of a sample sposed

to be dram fron a nomal population with vmi p and variance oa, N(s,oa), by

drwi• g a proportion - of the iservatios froa either N(C+Xaa2) or N(uii 2-.

He discusses the estimation of P oy use of the mean and the median, the esti-

nation of 02 (or a) by the smple variance and the range, and gives recimnded

rules for processing data under various onditions of contmintiOn.

Enoch B. Farrell (1953) proposes the construction of quality control

dcarts usiw a ringes and mIdrages within subgroups and medians of these statis-

tics between subgroups. lHe contends that this method gives more useful estimates

of the true population parmeters than tl., conventional method when outlying

observations due to the presence of assignable causes of variation are present,

also that it is more effective in detecting and locating assignable causes, be-

sides involving simpler computations.

Hama Leon Harter (1953) applies the principle Of n.Inu likelihood

to the problem of deterining the regression equation of one variable n p

others. He shows that for a normal distribution of residuals, the maxiimu

likelihood solution is the least squares solution, found by minimizing the
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sm of the sqAuem of the residuals, wbil for a Lplace (first) distdibutin

of residuals, the maxima likelihood solutim is famd by minimizing the sun

of the absolute vaies of the residuals. For distributiws of residuals with

-fite limits, only ortain solutions are ackissible, aml either of the £bove

R~thods may lead to aM inadmissible solution. For a rectxmuar distribution

of residuals, the likelihood fmctiou is a constmt, and there is no -t*-

mmxiii likelihood solution, one adissible solution being jtw!t as likely as

mother.

E. P. King (1953) shws that, when the criteria of Gribbs (1950) and Dixon

(1951) are employed to detect the presence of a single outlier, the eff-ct of

using a test statistic based on the more deviant of the two exutms, thu.

testing a two-sided hypothesis, is approxmately, but not exactly, to dockle

the significance level of the standard test procedure.

EIdn Glemn Olds (1953) studies the problem of finding the coefficients

a and b in the equation of the best-fitting straight line Yma+bX when values

of y are observed corresponding to a fixed set of x-values. He points out that

when y has a normal distribution with constant variance for each ., the solu-

tion can be found either by the method of least squares or by the method of

ulikelihood. %hen y has a rectangular distribution, the method of

maximum likelihood does not, in general, give a unique solution, and the method

of least squares sometimes yields a solution which is inconsistent in that the

residual (the difference between the predicted and observed y-values) for

one or more x-values may lie outside the admissible interval (-c,+c), where

2c is the range of thý rectangular distribution assumed for the residuals. The

p author &dopts the least squares solution whenever it is consistent; when it is



not, -e sh how to fM a modified least squares solution wih uinimizes

the sua of squares of the residuals subject to the restriction that the

absolute vJm of each residual a~st be less than or equal to c.

Frank- frosd•a. (19S3) advocates, for the rejection of utlying observa-

tions, Mimx's criterion based a tn e EUxtrex obervation when no past data

are a•v•lable and Nair's criterion based on the studentized extre-ze deviate

when rast data are available for use in obtaining an dt estimate of

the standard deviati. of an individual mw-asuremet. He tabulates critical

rvales at the 5% and It levels for both tests. j
",'ouden (193) sumarizes available results on the situatiez in which three

measurments are uade and the two showing the best agreemint are selected. The

difference between the selected measurements averages about fcur-tmeths

(3-3472) that of the difference for honest duplicates [Lieblein (1952)]. The

dispersion of the average of the selected pair is 12 per cent larger than that

of the average of duplicates. Let d be the difference between the selected

pair and D the difference between the discarded measurement and the nearer

of the selected ones. The interval D is ten or more times as large as d in

15.7 percent of sets of three measurements. Yore than one-third of the time,

D is at least f= times as large as d. Values of the ratio D/d exceed 32.57

once in twenty times [Youden (1949)].

Cadwell (1954) gives an asymptotic expression for the probability integral

of the range for samples from a symmetric unimodal distribution, and investigates

its accuracy for the case of samples of size 20 to 100 from a normial population.

For this range of sanple sizes the eirmrs are small, and they can Le made less

tharn (.0001 by using a correction based on values given in the paper. The author
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tabulat percentage points of the range for stales of size n-20,40,60,80 and

100 frn a nur populatinn.

David R. Cox (1954) stuuie the mie range ad the cimt of Variation
of the range in .. ames of size 2.3,4, and 5 fri differmt tqes of iaxIla-

"ti~us cowmr.ng a wide rmae of values of OCsaid " 4 ,4 the wautes of

skamness and kurtosis, incluib symitric ad asymetric mixtures of norwau

distributiais, the normal distributim,the rectangular distributim, expoetial

type distrbutons, the Pearson systea, and e's numerical results for five

discrete distributions. He tbulates the normalized w= range and the cotf-

flciait of variation of the range to 3 deciml places for samples of size 2,

3,4 and S 5or 8z=1.O(.2)2.0(.S)5.0(1.0)9.0; 01 is not a detemining facEtor.He

cmiares the distributions of the range for sales frva exponential and nomal

populnia, and applies the results to estimation of dispersion by use of
!•the rane.IHrbert A. David (1954) finds the cumdatve distribution function and

the expected value of the range of samples fron five n-noma1 populations,

and makes numerical coparisoms of the results with the corresponding es for

sale.: from a normal populatim.

SH. A. David, H. 0. Hartley and E. S. Pearsm (1954) approximate the

2 2distribution of utw/srwhere w=ax- xin, (n-l)s •.i(x- an)2 ad

is a r-ad•d sample with mean from a normal population] by selecting a ciwve

from the Pearson system with the proper first four cmuents. For specific values

of n they compare the result with that of an exact altmnative derivation. After

examining certain nom-normal populations, they suggest that u may be useful in

detecting departures from normality.
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Gumel (C954) derives the centinuow c laivw distribution fmncti

with pma md variace .for wdich the expected vlue of the largest

of n independent otbervalis is a unt and the comtiinuou c.d.Z v _ith

spcifled ralamce for whidc the mem range is a zi•a The latter result,

-obtained by a differnt mthod, was previously gin by L. L. Placlett (1947).

be !oimr result, obtained itly,is give by Hartley and David (1954),

who also obtain ma upper bound 4r the epected valm of lIe ntorder statistic

and best upper and lower Lunds of the sample range of x uider the restrictions

that the ma add variance of x are 0 a'- I respectively and values of x axe

restricted to tIr closed interval [a•b], where a and b are given cmstants.

7boy deriv the distributions for which the upper bounds are nttained, and

sIm-h that the lover bomi is attained for a discrete distribution where x may

assme only two values. These results are of i-nterest in assessing the bias

that my result from Sue unwarranted assmption of normality when using the

sample range to estimate the population stladard deviation.

E. S. Pearson and H. 0. Hartley (1954) give tables of ment clstants,

probability integral and perceatage points of the range; also tawles of per-

centage points of the extree starAarized deviate from the population mean and

fra the saple mean, the extrem studentized deviate from the sample meau, and

the ratio of range to standard deviatim in the sawe sample, all for samples

from a nmual population. Various applications of these tables, including the

rejection of outlying observations, are discussed in the intrvduction.

George J. Resnikoff (1954) discusses various rpproximatiois to the distri-

bution of the average range, and tabulates percentage points of the average

range forsubgroups of size five, coamxnly used in quality control work, for
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samples of size N-Sh, uhere a is an integer.

F. Zjtek (1954) discsses variou s.aures of staple dispersion, includ-

ing stadard deviatim, man deviation, and range, which may be used in

estimating the standard deviation of a normal populatim. For n=2(1)l5, he

tabulates normalizing factors which make these estimators unbiased and variances

of the resulting unbiased estimators whenever these are available in t'_ liter-

attue, anI makes sme observations on the efficiency of the estimators.

John T. Miu (1955a) obtains qpper and lower bounds for the carilative

distri.butim function of the median I of a sample of (2n+1) observations on a

randmn variable X from a populatim w-Ah probability cznsity fuaction f(x) aid

unique median g. He sbors that the approach to normality of the distribution

of T is rapid wi&n X is normaidy? distributed, but nuch slower when X has a

rectangular or a Laplace (first) distribution. Cu (1955b) shows that, under

very general conditions, var . >,{4 [f(O] 2 (2p+3) I-1, as compared with the asy-

Pototic variance f4[f(g)] 2 (2n-l)f"1 , with the equality holding for the rec-

tangulp distribution. He shows that the sample mean - is more efficient (has

sm••1%r vac-iance) than - for many symmetric distributions, notable exceptions

being the Laplace and Cauchy distributions.

Ciu and Harold Hotelling (1955) show that, under certain regularity

conditions, the central moments of the sample median are asymptotically equal

to the corresponding moments o2 the asyuptotic distribution, which is normal.

They give a general approxination procedure for the monents of the median which

involves expanding the inverse of the c;xulative distributLOn function in a

Taylor series; the approxination error can be made arbitrarily small by using

a sufficier.ty large number of terms in the expansion. They apply the mef.,od
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to the normal, Lqgam., arA CaLy" distrUmUs; for the fist t of tiese

tVW cbtain qer and low~ b'x,~i for the raiaice, of the di~m L-y a anc

S ler proce&•ie. "hey otain deteaid results themng die d -sf

saples dram n f a joneal population..

J. Arthur G nood (1955) exresses the diff-'etial of the prleabUity

of the a-th range [quasi-rane] in Uem of Bessel fux-dtii of the third kind,

Md int ates by parts to obtain the distriburtion of the a-th range.

Ma Hakaperi:, Swel V. Greedtouse, Jerm Comfleld wa Julia Zalodw

(1955) tabulawi, to three significant figures, the upper and lower St and 1i

points of the sitized maximm absolute dev-ate dm.axiLxi- RI/s, where the

xi i-, sk) are i peet and eada X¶C,o, and where as/ is disruted

as wý with a degrees of freedom and independent of xi, for k=3(1)10(5)20(10)40,

60 and u-3(1)10(5)20(10)40,60,120. They give exanple to illustrate the use

-o of the tables for various purposes, including a outlier test which is tl.-

tio-sii� �Zvrsion of Nair's test.

George WMlliaa !•pcm (1955) sh1ws that bounds exist fo- w/s, the ratio

of range to standard deviation in the sam sample of size n, for all popula-

ticons with non-zero variance. He tabulates upper and lower bounds for w/s to

three decimal places for n-3(1)20(10)60(20)l00(su)200,500,1000; also lower

and upper 0.1%, 0.5%, 1.0t, 2.5%, 5.Ot and 10.Ot points and the imdiv (50t

point) of w/s to five decimal placos for saples of size n=3 from a normal

population.

Tukey (1955) shows that various characteristics (e.g. percentage points,

expectation, reciprocal standard deviation) of the range of samiples from a

normal population behave asymptotically like the squne root of a log (bn+c)
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uhmer n is the s~ia size umd &,b,c wre appropriate contants. He mses this

fact as am aid in intepoatizg betieen tabular valves of ths ircteristics.

I-. U. Behrens (1956) propse certain factors for use in 3eeiig the

stawxlad &devitiwim txit either frc. the menu deviatiui (tain ftc.

the- mm] or ftc. the raege. He cmpazes these factors with those developed

by other asthmr [Incbluing 71pett (92:5), Plnton (1932) and Pearson, GoQI&zI

& oartley (1945)], =an refers to the diffierent bases of the two kIds of ftztors.

He conten&, that his factors are useful for the objectives generally pursued

£ui (y 61angieit erlpoets.Sceg (x) isnteasy to

obtain, the author introduces the I inear regression, and then the polynomuial

new citericu, bihasd 0in the reangdeviatheneiestiad of otle. he tensqaeste

stationtic is the leamregestio range. H~ et poi nt oaurets divdeab theaulto

snof tedallth rangres.io if heolrves -damn ratinea eeedsptessioncritica valeI~vlbe chic the tablae for inoequalteso and is they~ler closely relatted sto

htatistci the lar est range cutin ksean of'1r whc iesurimentsifided by tnsecto

j and rejected.
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H. A. IDid (1956) gives tdbles of the Wper percmtage points of the

studtized extzzi deviate froa the staple wne like those of Nair (1948,

j ~1952) [reprInted by NAmmon 4 Rartley (1954)1 but corrected by using a better

Akio KU9 (19$56) propoes a ne criterion for the rejection of outlying

obsertions. Giie three sets of iiepeident observations (x): (i) froM

NLU,(o- o iul,,29'" ni; (U) n2 fmx N( (2.) 2); and (iiiM)a fra ((3).to .

One of•. Possible decisions, Di(accept Hi) , is to be made, -iere H :

U . (2), Hi "" M( 2)_ dic~ n' ($Op -, R A. no -'107

1resmits a decision procedure for which: Pr(acc. DolHO) - l-p, Pr(acc. D, IHi)

is mcdinized *'mr W•. Zhe optimm ,ecision procedure involves )V= max fxl,X2,
•, the mela of sampes (i) and (i•); S, the overall st.ndard

deviation usivg I for (i) and (R) and X3 fýr (iii). Me decision rule is:
selt Do if €•- 3 pp, ad select ED if(ýk-)/S,1 . I- a is knwn, S is

replaced by a; in this case set (iii) is not needed, and diffrent are

reded. In each case, the author states that the critical vlo, An are to

be pblished later [see KudS (19S8)].
Harold Ruben (19S6) shows that the product nmw.ts of the extreme o.rder

statistics in samples of even sizes from normal populetions can be expressed

as linear fumctions of the products of the contents of certain hyperspherical

simplices, and uses t-s fact to obtain simple explicit expressions for the

variance of the smple range for sawples of size 2 and 4.

Juan Bejar (1957) gives a method, similar to linear programing, to deter-

mine the regression line y-a+bx such that I yi-a-bx3 I is a mirimm or the

regression plawe z-aebx~cy such that TIz -a-bx -cyjI is a mininu. He gives two



exOAles, in which be arrxas the data to make the shortest calcul stions

Diza (1957) discsses several sipdle estimates of the mean and standard

deviation of a normal population. Estimates of the man considered are the

indian, the midrange, the mean of th4 best Utj (in the sense of minimu

variance), and the man of all but the largest and smallest. Estimates of the

standard deviation studied are various linear combinations of quasi-ranges.

The efficiencies of these estimates are coapared with those of the sample mean

and sample standard deviation and the best linear unbiased estimates for

staples of size .,2(1)20.

A. Ghosal (1957) derives formulas for the distribution of the r-quasi-

rane Wr- Xnrr-Xr+l of samples of size n from rectangular and exponential

distributions; tabulates their first four mument constants for r-0,1,2 and

n-5,10,lS,20; w.dcompares the efficiencies of W (r>O) and W0 as estimators

of the pcMulation standard deviation. For the exponential distribution, he

finds that W, is more efficient than W0 for n>, 9 and V2 is more efficient

than W1 for n,17.

B, .•.h•ley and E. S. Pearson tabulate the probability integrsl and

percentt,,) pkints of the range for saples oi size n11200 from r normal popu-

lation. They ind•cate that the results will be usefu. io connection with a

suggestion by David, Hartley & loarson (1954) that a compaxi.n of the range

and root-r)ean-squaxa oStimators of i.e population standard deviation maf serve

as a test of homogeneity or as a routine check of accuracy in ccputation and

also in c e_-ction with methods of interpolation suW sted by Tukey (195S).

Motosaburo Masuyama (1957) derives upper and lower bounds on the ratios

of the poruiation standard deviation a to the expectatim of the sample range
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and of the population variance 2 to the expectatiort of the square of the

sonple rwge,aid Jggests that the haumoic mean of the appropztate pair of

these bounds may be used for all distributions as a dultiplier of the sople

range or its square in estimating a or a2

Rider (1957)1 studies the distribution of the midrmanes of samples frCM

five syietric populations of limited range and the relative efficiencies of

staple midrng and mean in estimating the population midrange (which is

identical with the population mean and median). He finds that the midrange

is aent efficient than the mean for all of the populations considered (which

have stmUdardized fourth moment a4 - 2.19,2.14,1,91.9,1), and that its

efficiency increases with decreasing *4 .

Massaki Sibuya and Hideo Toda (1957), using an expansion formula given

by Carell (1953), tabulate (to four decimal places) the probability denity

fumction of the range w in normal saples of size n"'3(1)20 for w-0(0.05)7.65.

S. Babcock, A. Beck, A. Davies, B. Goldsmith end E. Torkelson (1958)

introduce the median, quasi-raige method for control of lot average and lot

standard deviation for measurabla lot quality characteristics which are

normuly distributed. They tabulate factors for computing iWper and l1wer

acceptance limits for the median and an tipper acceptance limit for the optimal

quasi-range for saples of size n-S(S)SO.

D. E. Barton and D. J. Casley (1958) propose a quick estimate of the

linear regrission coefficient of y on x in a bivaricze saple (xi,yi), i=l,2,

"" ",a, which they obtain by dividing the difference of the means of the k

largest and the k smallest of the x's into the differe,,e of the means of

the correrponding y's. For large sanples from a bivariate norinl population,
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the modam efficiency (81 per cent) is attained ub k; 0.27h. For man.

ssIes the effifday- lies between 70 per cet id 80 per cmt when k is

Sbeum me-thrd and one-quartr of n.

Philip G. Carlson (1958) obtains a recrrence fomlaa for E(w+ 1 ), the

j expected value of the rage of a staple of sih', 2n+l, in terms of E(W,+i÷I)

for i1-,2,"', n-1.

rerrell (1953) sugests a method for coputing control limits for sples

frm a strongly skewed ituiiee which can be approximated by a lognormal dis-

tribution. Ihe geometric ange - MMn is used in place of the range and

the gemoetric midrange xr4 'x*x ii in place of the mi. The vathor describes

corresponding changes in the coputation of limts. This method acceptr the

skewness of the universe and allows a search for other assignable causes of

variation.

I Harter (1958) discusses the use of saple quasi-ranges in estiiating tbh,

standard deviation of normal, rectangular and exponential populations. For

the nomal population, he tabulates the expected value, variance and standard

deviation of the rA quasi-range for smales of size n for r-O(1)8 mid n=(2r+2)

(1)100. For each pair of values of r and i. he also tcbulates the efficiency

of the uWbiased estimator of popilation standard deviation based on one sap.le

I quasi-range. He < !so considers estimtacs based vu a linear conbination of

two quasi-ranges, and given a method for determniug the weighting factor

which mwaizes the efficiency. The most effi&.ent unbiased estimatols based

on one quasi-range for n=2(1)l00 and on lirýar covibinations of two adjacent

quasi-rges nd of any ro quasi-nanges (r<r g8) for n-4(1)100 are tabulated,

along with their efficiencies. T1hese estimators are capared with those cf
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-Qms ari~s d wre (M97) busd XzotV rigms, adI teir me Is iflustrated

by an uexft. Ibr riectaigula and aqunia cltimus, the most efficient

Wmbissed estimators based on ome qcsi-rup wre tadlu d, together with their

4. ~efficiencies aid the bias when estimatrs uihidi assume normauty wxe used.!I
Bernard Ostle and J. M. W-letsa C1958) express the distribution of the

~ range of a sawle of size n iron a right torimga pcpulaition In toum of th

Topg of the population, and apply the result to an acceptance sa~1Ing problem.
t Plackett (19S5) exmines the metods upsi by the aident ibyloaiia and

Greek astronmrs in estimating parmeters of observational data, and finds no

evidence that they made use of the aritIsetic mwan of a grou of cmparable

observations. He does trace its use as far back as the late sixteemth century,

Amen Tycho Brdie applied it to astxmmical observations in order to eliminate

systeatic errors. the concept of the msai as a more precise value than a single

measurement wis already kamn to de Nbivre, Fimosteed and Mupertius early in

the eighteenth century, but remained controversial mtil the second half of

Sthat century, wm it was demonstrated conclusively by Siqson (1756, 1757)

and ogrange, (1774), both of whoAm muade e of results due to de Moivre. The

author closes with an account of the work of Simpson and Lagrange, ich we

hav already exinined.

Rider (19S8) comsiders the fmily of density fuictions f(x)=c(l+Ix-eOk)-h,

-. xwhere the case hal, k--2 is the well-known Cauchy density fumct_,rr.a, and
ccMpares the efficiency of the saple mean and the saple median as estimators

of@ for various otber values of h ad k.

Jean Geffroy (1959) makes notable contributions to the theory of extreme

valuS, including the proof of various results concerning stability in probtbilitq
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alnd bst amplet. stebiUty of EWdrup, qui-mIdr~mp, mw rmV of sW1es

Quml (1959) P;1es1 fte 7•totc distribuio of te zeme4

W.h icitis acertan 'i tr.Isfoaof ft e rang V , in FtP m of

'theprevousl &-rved sy~tticof 21, time reduced range, and

calculates its mmnts. Ior a cloed to n/2, mhere n is the stple size, he

sbows that the ml range is asyvtoticaly wmlly distributed and giv its

mern md standard deviatim.

Hjrmu Asel (19S9) ariz th results of investims by Tipett

(1925)*, _S. Pearson (1932), Beben (19%) d others m e t se of ruage

for the estimation of measures of variability. le points out that ae of the

S Irange makes possible short-cut mtbods of ascertaining standard deviation with

only a slight loss of accuracy which are qplicable iu eawry branch of biology.

Harter (1959) gives a revised and cmunsed version of the mterial in

his earlier ruport [Harter (1958)] on the use of saple quasi-raees in esti-

mating population standard deviation. He points out that the stanard deViaW,7j.

of On exponential population Whose lower liuit (.ocation parameter) is knom

can be estiated More efficiOntly frm a single order statistic than from a

quasi-range.

Harter and Donald S. Clem (1959) give a description of the coputtimon

and use of tables of the probability integral, percentage points and aUents

of the range for samples frm a nrmal distribution. They include the folloming

tables: (1) an eight-decimal-place table of the probability integral of the

(standArdized) range, W-Wil, at intervals of 0.61, fmo sm1ples of size n-2(1)20

(2) 40 (10) 100; (2) a six-deciml-place table of pe,:certage points of the range

for the same values of n and cmdlative pro.ability P=.0001, .0005, .001, .005,
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.01, ASP5 .05,P .1 (01) 091V .95, .975, .99, .995, .999p .9995, iend o9999; sed.

(3) a table of mmts of dozb [msm to 10 deius places 1 - I5

fiu'SI). vuiamm to UeW(M 's.3 to 3 '"" E) 04 to 7WP(SF] for

staples of size n-2(1)100.

Bensr, Ostle md George P. Steck (1959) prow that the syimtrY of the

paint piuopluaim iplies that the sa.ple mm md the sampl rn are uan-

€o~ ated, and constu:ct an exmpw to Amo tfJt the =trem Ats not truo

They FPesent a necessary d suffic t conditim that the correlatim betmm
the nero nd the range be positive (negative). they also proL that the

sYMUtY of thae Par- t •apulatim iw1ies that the smpe range and midrmo-e

axe corelated.

K.C.S. P111mi and Bmnjmin P. Tienzo (19S9) devlp, in series forn, for

n-3,4,5 md v*1O, the distribution of the s dardizad etrex deviate frmc

the sample mean, u-m (rzxa- V,/0, (I-xl)/oJ and the caresponding stuaentized

dov *t, tn- ax [1x3- 1)/s, (Z - xi)/svJ, I re •i"" is n Mo redI

sample of size n fTm & zorns1 poplation with Varia oa2, 1 is the saple

mam, and s is the squmie root of an *t mmn square estimate of2

based on v degrees of freedca. Pillai (1959) tabulates the upper St and it
points of %fo•r &-2(l)10,12 and v-1(1)10, and discusses the method of pre-

paration of this table.

d-.,B (1959) derives te buon of the r Si-Imgo, Wi- Xnr- Xv,

where Xl4X '"Xn are draWn at rmdm from an exponentially distributed popu-

lation, and gives the mmmt generating fmcim 1md the camlaats of Wr. Frm

these he sho that the mean of Wr slowly divepges .•'l i"r:.easing sw4)le size

while the variance approaches a finite value: for .A21e, /621.6449 for r-O.
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Ja AI I Wash (S9) poposes a large-sayle I t dc riftrica

for rejectim of otlying d•rv•is. Let b•z,', b - r-

vzims ftaconlm ou ppc~latics. 7be nunl hypodmeis, %,, is tWa dwe

devaMP JUI resuite, fx= nimpe it r2mI drwinrs fro the sae ell-

bdaLad popblvl'm-Yth =. eci6 shape. Mw alternaive hypothesis is N:

the i smallest observ.-Ions are too sm (or W: the i largest axe too large)

to be cnsistent with HO, wbere i is a sun nuber which should be specified

Swi io 1 WlUge of he observations. fe al t Hl is accepted if a

statjitic of the fam xi- (l+A)xi++ lar is negative, where A>O, k is tie largest

inftegr contaizwd in i*&2-m and n is sufficiently large. Similarly, the al-

ter•n••ve I is aw-Tted if A %+-Ik is Psitiv. T,-sided

tests are obtained by cebinizwg these me-sided te•s•s. Tdiebycheff's inequality

yields an aprioimt wper bound for the significae lel of the test for A

suitably hosen.

H. Weiler (1959) shows that if a>0 is the sqallest and b is the largest

of n values whose aritietic and harmaic eans axe I and H, respectively, then

0*(i-H)/!(b-a) 214ab, the first equality holding only if ll an values are equal

and the second only if half of thm hawe the value a amd tie other half the

value b. Moreover, since HtgsX, where g is the geometric nema, the sam inequality

holds for (!-g)/g. 7hus I differs little frm H or g if the n values have a

small rge med all are far remved fr. zero.

Prank J. ,nscambe (1960) examines numerous criteria for the rejection of

outliers proposed during a period of more than a century. He suggests that re-

jection runes should not be regarded as significance tests, as has usually been

the case, but as insurance policies. He makes a detailed study of the effect

lie
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of C-ini I plicaim. of "Jectics criteria to 2VUIiR (e cAlly tripli-

,: W 0. Fbr giv C, rject 5 oi (i-1,2,'", v,

a is the anizaI Of MEt) if f as) sf• •rh --, Ii- at 12&'iu-

tv, C, rejec y,, if i o ia, wa M is Ow lue s forliI

anl i: othenivse no zejecis. Eesti u by the us= of tle v2taimed

Rule 1. If in •Tst~ is rejecte, conside the reann ob.rW s as

a s l tI a-leo I again; and so th. Estimate a by th• •

of the retained observatios. he author finds Wo 0 unsatisf ry, since a

single outlier, if it outlies sufficiently, cam caue the entire, smqple to be

njvzeKL He finds Me I satisfa•-try for smal staples (•-w-3 or 4), but

sime Me I ca reject only oni oulier, Rule 2 must be siderd for Iarg

s --la which my contain no than one outlier.

"i•.ma (11960) cuiers various etinitor oi p. ?urton wa and standard
dalitica omri censored norml staples.tAmtg the esf-aors of the eawn

cdrskai are the -ins7rizfi mnsom, in %-ich the iaf tude of an extrem obser-

atim i.hifh is urom or eeorly )eown (or susper ed of being spurious) is

replaced by the next largst (or saullest) obsartioa, as propsed by sMrlesa

P. W r, instead oi rejecting it entirely. Tceon Bns h emti the 6f-icitoe

of liesori7hd mans, htaen balm ce is mintaed by nsorizing the same ur

of obser.,, ons at each extreme, is nire ably high relative tot tha offi he
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best limear systematic statistic.

Hater (,9%0) gives a c vesion of the marial a the rn of

samples fiu a normal popaatic cuntaiwd in the report by linter & C |

aI(1939). Th table of the prdib~ilty integral is oitted, but ~.Oi the

percenta points (abri4ged) an mets of the range are Intbzed, allung with

a sectim an interpolation in the tables whrich is not found in the report.

Robert VInct lU (1960a) efines 6c. catim statistics T mad el

l 1ocon-fr estatisticsS by T( h, x.+ h,'", i÷ h) - T(x 1 , 2 ,"',"

+ h, T(-z 1,,- Y-2 ,*,x -T(x 1 x,r,",xj1 ), S(ac4- h, x2 + h,"', xi+ h) -S

(Xl, ~ Sf- 1 - 2 ~ _V' SNx, x2 ,.vj,') for all zeal values of

h. He pro that the symmet•y of a probability density fmcticon imlies that

I the correlation between an odd lecation statistic ard an ev location-free

statistic is zero. lhis generalizes two special results of Ostle & Steck (1959).
The staple =mz, the staple edian, amd the staple aidrage are odd location

statistics, while the sample variance, the sale range, tLe smple quasi-ranges,
the sampe ema deviation from the saple adian, and amy ratio of two of these

statistics axe even location-free statistics. Hogg (1960b) proves that if the

.istribution is symetric about e and El exists, then EITIS - sle, together

with a multivariate extension useful in obtaining unbiased estimators of 0: e.

g., (R2 M1  I)(R 1 .R2)1 where 1 andM2 are the medians ai R•+and R 2 the

r;nges of random samples from two distributions both of which are s7ymetric

about 0.

William H. L-uskal (1960) gives an exposition of the problea of handling

wild observations, or outliers. He suggests that such observations should be

reported even though they may be excluded from the analysis; moreover, they
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sIjmld nott be discssed simpl im en of the prupriety of9 inlallng thein

in te ,mlysis, of w.id,. the au• nr gives. Mu•t i . , btItreate as

P Oatumiti.. to learn smetif w•. He classifies omt:lime into the cate-

go-ies accordi- as there is (a) a priori mwledgt, (b) a posteriori knolkge,

or (c) no bloweje of a vari at nal pattemn VKwse in t thirdI categvny

wae tUnms wizch cause the trmble, amd the author exresses dissatisfaction

with existing apoChes to hw .llirh td .

Wider (1960a) cavs ezt variuie with the valus obtained by using

the ftmla for asymptotic variace for the &dins of ma samples (n - 1,3,

"S,7) ftc= ,.1ntial, lmm., cosine, parabolic, rectagalar amd imerted

parabolic populatons, hzich have standard fourth mmwt se 9,3, 2.19, 2,14,

1.8 amd 1.61 respectively. lHe firks that the acequacy of the asymptotic ftrnila

increases with q4" Rider (1946b) makes a sizilar commrison for the variance

of the nedian of snples of size 2k + 1, for km0(l)1S, from a Cauchy distri-

buti.I

Takey (1960) surveys smpling from c7ntminated distributios and reaches

a niber of conclusions, of which the following are relevant to the present
study: (1) "In large saples the sples mean is not nearly so safe an indicator

of location as is the man of the obsorvations idich remain after a small

percmtage of the highest, and an eqWil percentage of the lowest, have been

set aside (=e of a lightly trumcated mean)." (2)"In slightly large saples,

there is ground for doubt that the use of the variance (or the standard dvia-

tion) as a basis for estimates of scaling type is ever truly safe." (3)"In

modsrately or very large saples, """ the variance or stazdard deviation is

safely used only [for certaii purposes which the author specifies]." (4) "'*nrly
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I OU sonSM I aitius Ry atON m m l lstiA Offl diawi of

estinasof scal Md 1oMau MadlyV =elms." M5 "Hf li~atima is

a redl posibiit ( fi m is it boo. , midi=arm Mr ariin, is libl

to be a wsaly cbom besis fmor mij estimats frm a lap sup]*." (6) "As

aintr ssm - e, the w of u rime is £HW to be *ute

s ator." (7) "If smaIer stale, te uwe of t l ms &38 my be

a f2 equeetly toeful ari=lip ise".
'AscdI 0961)ccs rs; f= sttstc deige to rea c•ti types;.

of dq e fru the ideal statistical cmitims 11mVt -

distributed iesiduals with zero ne an cmstmt whence) usdr AAA the

lemst-squaes method of esitimat the paramtrs in a regression equatim is

tumelstiauibly satisfazc". . He gives in 6 -W-1 5-.m dxmut the distriutuý Of

these statistics under tbh mail hypothesis off idel mitimos, but states

that a thorough inesti-tiw of the .. r.Inatefess of the least-squares

method would hae to go further, mad would sncomter gr difficulties. He

states that for mst fields of observation, outliers way be expected to occur,

so that significmce tests to detemine whether extreme observatias do in

fact occur with frequmacy laccmttiLle with the ideal cwditlans my be

irrelevant. He writes: "'le day-to-day problem with oirdiers """ is not: is

the ordinary least-squares mezod appropriate? but: bc %i-,Ald [it] be moxifled?

"not: do gross errnrs occur smetims? but: how can we protect ourselves from

the g•wss errors that no doubt occasiimally occur? The type of Imsuraace

usually adopted (it is not the mly kird conceivable) is to rejf-t copletely

omy observntion whose residual exceeds a tolerance calculated accordiuW to

"sme rule, md then atly the least-sqares method to the remaining observation;."
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b sftzs to his e arier lope, [Mscm, e (I".)j a sq tims
For A MiW8 a V Ci r.Jsctim roe Md. to do DqSIM qpom A of do

iEiseurt n.961,1962) ft~i wozk or'f ascmdi on tho Hiatim

of bsnrai5 0 H points cit that Bascvi&h wast ftrst to devise a cm-

pletly objectiw prcedur for uimu•ly defermining the cieffcimts of a

-paramter 13ne y - x from a set of thdam or amn dbservatioal paints.

be also ot that Bkswvich's procur, Ma the edia, is cmratily

"imEssitiwe to the asn extiw of a Wet of bdservatiAm, a dis esPecia

WU1 suited to su lg the limar tred evidewed. by a sore or less heteTo-

Senecs set of data t. ,piWd Lmu vwaius sources, or obtsmd. by a measure-

-mt procede that has a tendmcy to yield occasimal diswrduat values.

Besides Noscovich's geometric alorithm, the author discusses the algebraic

ftmwlaticn of foscovida's method by Laplace and the modificatim~ by Edgeworth,

who advocated unrestrictod wininizatima of the sun of dbsolute inlues of the

residuals, dropping the restriction that their algebraic sus =;st be zero,

tass in effect requiriing that the linet pass th~rough the double Arhani~ point

(,Y) instead of the center of gravity (1,7) of the obsemrvati-. He also

rantions the amrs recent work of Modes, Singleton, Harris, and Dejar, as well

as the classical work en rival methods, including least squares.

homas S. Ferguson (1961a) deries locally best tests, based on :he

staple skmes a3 - atI and the sample kurtosis a4 respecti-vely, of the null

hypothesis H0 that a madber of observations were all drawn at random from the

sne noral population N(p,o2) against the alternatives HA that one or more

outliers c from N(v+xo,o ) and % that one or more outliers came fA
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"1 2
ibi,1 p2). he mua th pomr of' t~ase tests with ti.Proposed by Grad~bs

(,-950) adl D m q1950). Fergiawi (L96Tb) suot s te litermau cm a e rejec-

tion of outliers from the time of VIeic• (1852) to date, with special empasis

om the period after 1950. He dem tes a*e sectim to the relation between.

rejection wA estimation, in idddc be discusses triming and Rinsorization.

Bruno ie ii (I196l proposes a Bayesi aproad to the treatmt of f
aitlying observations in which okservadons are neve rejected, thouh the

influece of ontyizg rVatios m t• e final distribution w,- be wak or

alzsst negligible. He distinguishs three cases,in wbich the errors are (a)

inmwendet, (b) emchgeable, or (c) partially excmgable, ",,re lce

whaens "jaepudece with kno4n error distribution", !xh!tr translates

"ice with tuknom error distribution", and partial ehangeability

translates "independence with an unimok conditional error related to visible

features of the Li-Rividual observations.",

Harter (1961) gives exaples of the ue of tables of percentage points

of the range [Harter & Cleam (1959) and Harter (1960)], including an application

to rejection of ottliers based on use of the test statistic W4- w/o ('he stand-

*ardized range) as proposed by Dixn (1950).

M. G. Kendall (1961) reports the results of a historical stud* of the

work of IDniel Bermoulli on the method of maxi likelihood. He sets th,

stage by reviewing the earlier contributions of Cotes (1722), Euler (1749),

Mayer (175C), [Maire &] Boscovich (1755), Simpson (1756 ,1757), Lagrange (1774),

and LapZ-ce (1774). Kendall's coments are followed by English translations of

the paper by Berr-oulli (1778) and the related one by Euler (1778), which 3

Kendall rogards as less valuable.

C. P. Quesenberry and H. A. Davi'. (1961) point out that one may approach
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Rt

tie problm of testi for outliers differently epending - th object in

viw. If tie priar interest U in d te observations so as to scam r

a mre acuate analysis of what is left (e.g. to obtain the most reliable

estimte of a man) the criterion my be the effect an the standard error of

estimate, whereas if the interest lies in idetifying the exceptionmil observa-

ti so as to create a new insight into the pbmemmew under study, the

criteAon my be the risk of wrongly deciding Mhether an observatior. is excep-

tional or not. Mw autors take the second point of view. 7hWy modify the

test statistics proposed by Nair (1948) and by IAperin et al (1955) for one-

sided and two-sided tests, respectively, by replacing the independent estimate

sv of population variance in the deneminator by the pooled estimate s*

2lnl~' vsJ/(n+v-l) 1 / 2 , which makes use also of the interni&I estimate s2f( (n-1ls ÷ s v ,

from the smple of size n. Te compute and tabulate percentage points of the
nodifted statistics.

Pruiab Kmar Sen (1961a) studies some properties of the asymptotic varianoas

of the staple quntiles and quasi-midrAges and discusses the role of the saple

m1dian. He shows that, among the class of sample quantiles, the smple median

has asyMtotically the smallest variance rely tuder somewhat restrictive

regularity conditions; while umwg the class of siaple quasli-xidranges, the

sample median has asymptotically the smallest variance only for a class of

nen-regular parent densitr functioas. He tabulates the relative efficiency of

the staple median. with reapect to the optlimut quasi-midrange for nrne common

rarent distributions. Sen (1961b) studies the stochasti convergence of the

saple extreme values for distributions ha•ing a finite end-point and the

&sStotic conve,7,ence of their mments to the corresp•oding ones of thir
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limiting, distributimos. He applies the results to the estimation of the popu-

lation midrange ftm the staple midrange.

K. S. Srikantan (1961) treats the general problem zf testing a regression

model against the altevnative hypothesis of a single outlier. He devulops test

criteria widch are generalizations of those of Grubbs (1950) and of Pearson &

humdra Sekar (1936), the latter based on the work of Thompson (1935), and

tabulates their S% and 1t critical values for regression on m variables (a-1,2,3).

J. Tiago de Oliveira (1961) gives a general proof of the asymptotic inde-

pendence of the samle mean and extrms for an absolutely continuous distribu-

tion satisfying the conditions of Gurbel (1946) for asymptotic independence of

the extremes.

Simeon M. Berman (1962) shows, under general conditions, that if tie

standardized largest observation has a limiting distribution, then the s;tudent-

ized largest observation has the same limiting distribution and the studentized

largest absolute deviate has a limiting distribution Z the same form.

Giovaini Cancelliere (1962) gives a new proof of the theorem that the sun

of the absolute valuss of the deviations of a set of observations x1,x 2 ,''', zj,

from a number x is a minlmum when x is the median of the xi(i-1, n).

Odaardo Cuccmi (1962) proposes a criterion for the rejection of outlyhIng

observations from a k-dimensional distribution (k-1,.•.'.0) which is assuimd

to be k-variate normal, but possibly contai~ated by spurious observations. This

criterion is % generalization of that of Thtason (1935), to dich it radumes

for k1-l. 'Ihe criterion is [NI(N-1)] .l[.l(,ij/A)(sxi-mi) (sxj -mj), ,-1,2,,

N, where rXi(I-l,2,°",N; i-l,2,"',k) is the iA coordinate of -t rA observation,

A is the value of the determinant of the matrix whose element (cij= c i) is given

i126 i

126



I

by te sm of tf e products o" the deviations of the rx.; and f r ox their

respectiw uas z- and aj, nd Aij is the cofactor of cij. In order to test

fte hypotesis H that the si- (s-1,2,'" -- N) observation is homgenmus with

f others, ft value of the criterion is calculated and compared with the

critical value rk). The values of r;/•A), obtained from the incomlete Beta

distributim, are tabulated to two decizal places :for 0. 05 ,0.01; k-=1,2,3,4;

and varoous values of N saging from 5 to 100.

Harter (1962), w. part of a study of the ratio of two ranges not otherwise

relevant to the presmtt topic, tabulates (to 8!r') the probability density fuzic-

tion of the standardized range W-w/a for samples of size n-2(1)16 from N(p,1 2),

At intervals of 0.01 in W. This table represents a considerable improvement

over the earlier 4UP table of Sibuya & Toda (1957) at intervals of 0.05 in W.

Harter's values :For W a multiple of 0.05, vh.an rounded to 4UP, agree with those

of Sibuya & Toda except for an occasional discrepancy of one unit in th last

place.

Bruce Marvin Hill (1962) prcposes a test of linearity versus convexity of

a median regression curv-. Specifically, he proposes to test H: Yi7 ,+a Xi+B i
against H1 : Yi=#(Xi)+i#, i-0,1,"" ,n, where a,$ and + are unspecified and +(x)

is a nonlinear omvex fticion, the ci are independent indentically distributed

random variables with median zero and a continuous density function f(e) such

that f(0)>0, and the Xi are fixed and known. The teSt involves estimating a

line from a central subset of the observations by the procedure (using medians)

Sof Brown Mood (1951). making a weighted count of the nuiter of remaining

observations lying above the line, and rejecting H0 if this numvbr, Rh, is too

large. 7he author gives the asymptotic distribution of Rh under Plo, from which
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he obtains critical values of Rn, and the asymptotic distribution of under

fo, ur ihid he obtains the power of the test. the test can be adopted to

two-sided alternatives.

Alex Rosengard (1962) seeks to unify the existing theory of Limiting distri-

butions of the mean and of the extremes of a sample by studyfg the limiting

joint distribution of these three statistics.

Sibuya (1962) examines an asymptotic formula for the expected value of the

median of the ranges of N independent normal samples each of size n. He compares

the approximte values obtained from this formula with exact values obtained by

numerical integration for n-2, N-3(2)17.

0M. M. Siddiqui (1962) makes a numerical study of the method proposed by

Chu & Hotolling (1955) for approximating the noments of th-) sample median by

use of a Taylor series expansion of the inverse of the cunulative distribution

function. He applies this method to various distributions and presents the

results in tabular form. They show that the relative error decreases monotoni-

cally with sample size, and generally support the author's expectations that

properties of the parent population which contribute to ;apidity of convergence

are 4inite range, a low value of ku:rtosis, and symetry.

Tukey (1962), in a study of the future of data maalysis, devotes considerable

attention to "spotty data" resulting from long-tailed fluctiation-and-error dis-

tributions, occasional causes with iatge effects, or irregularly von-constant

variability. He offers a number of possible cures or palliatives, including

trimming and Winsorizing samples, which result in a small loss in eliciency when

the samples come from a normal distribution but a large gain in efficiency when

they come from a very long-tailed one (e.g. the Ctchy distribution). For
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twor-dlaumsional arrays be proposes graphical medwd to be applied to the

residuals, including CO) a immntioWa plot on normal prability papier, (2)

a modified plot of z17 (yi- j)/ai.n against i, Ahere the y(i-l,, ) are the

residuals, Y is their median, and ain is the standard normal deviate corres-

pcnding to the cianalative probability of the i order statistic of a sample

size a, mad (3. an r-ithmetic analogue of the modified plot called FtNJP

(from Fll NOrmal Plot). He proposes a specific procedure called RHMOR-FUN

(HRLL NOrmal ljeciom-RUll NMrmal Modification) because it uses FH) and4 first rejects and then modifies deviations. 7his procedure is a sort of

two-dimensional amnlogt* of trimming and Winsorization, since it first rcjects

(trims) the most extreme deviations (those greater chau AR. a) imd then redues

to BM, ai in" *a the m ipg deviations exceeding the latter value both AR
and Eýbe ng prcosn

Anscombe mid lUpey (1963) emphasize the importance of ex~t•and

analysis of residuals, which may furnish information about the presence of

outliers and/or about inappropriateness of the fitted curve or the scale of

measurement. They suggest use of both graphical &ad analytic techniques, but

suggest beginning with the former, preferably in the form of a scatter diram

in which residuals are plotted against fitted values. Ve the most prominent

sort of misbehavior uf the data has been diagnosed, it is important, they say,

to deal with it before seeking out other sorts of misbehavior. If outliers

are detected they zay be rejected outright or modified by. Winsorization or by

assigning them smaller weights whick decrease smoothly as the size of the

residual increases. If the signs of the residuals show a definite pattern, this

may indicate that the type of curve fitted is inappropriate. If the spread of
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: - I
tl resi*mls is cwrelated idth ti fittld ms, this = Niate, tdot

t, scalU of 1sm is inqiropr'a, rse -it nam ý are, of come,

not IndquIdut; e.g. a strigbt line, my ueIqwftly fit the data resulting

from a tru nfo!.ation of scale. e, taOU? h tM re ws evid of cmvi£lina--

ity on the original scale of 4easw'b t.

Eisenhart, Jnd & Martin (L963) givw tables to aoMMdiy eir earlier

abstracts [Eisemiad t, Dwillg 4 Martin (1948,b)j crning the distrilitus

aof the edian and the mema of saples ftox various poqlatims. Te dwatacts

are reprinted (slightly edited).

Harter (1963) tablates (to S8P) the probability integral of the standard-

ized .. quasi-rage ,r. wr/, at intervals of 0.01 in ,. for r0(1)8 and
saples of size n-,(2r+2) (1)20(2)40(10)100 from a iuorml population with unit

unriAnce, N(yjl), obtained by merical integration. He also tabulates (to

6 MP) percentage points of Nr crresponding to cumulative probabilit P-O.0001,

"0.0005, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1(0.1)0.9, 0.95, 0.975, 0.99, 0.995,

0.9999 0.999S, 0.9999 for the sins values of r and n,obtained by inverse

inteM-olation in the table of the probability integral.

Joseph L. Hodges, Jr. m4 Erich L. lebmum (1963) propose various estimates

of location based or rank tests. Of particular interest is the estimate , which

is the medim of the N(Ntl)/2 averages (z.+ zj)/2 of the ih and l order
lj

stAisAtics (itj) of a sample of size N. The authors show that this estimate,

which we shall call the Hodges-Lehmbn estimate,has, under specified conditions,

certain properties of regularity, invariance, symetry, medim unbiasedness and

asyqptotic normality. For samples from a normal population, it has asymptotic

efficiency 3/w&.955 relative to the sample mean.

1
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:•......... - 963)iLom l In In l toI ti dit, ,

tZ-15/s [amm (1935)] Wwr e is a 9650 1erat from a saa0

ith mea. mds2 is W t ZOOIVt- RV-Wq estib de ti t pop-

lati variac, in case the distrihman ofth ut drly-4g ppulati is

e maial Il discusses its me in obtaiinig =n-nimu variace a d

estimates of fatlarim of !he parameters and the projbabiity VIEStriaxtias Of

the d d der statistic and the re&wd range and in tests for eom.-

tiality or ft presmc of outliezs.

Gerald J. Liebeman and Riert %. Willer, Jr. (L963) in a stu&I of simil-

tamow tolerance intervals in rgressim, incl a section m tectim and

Scorrection of Outliers i simitaoi o nce p.-niples.

B. S. Nii (1%963), recalling that the suple emi awd the sample range

are mcorrelated if the parent population is sy tric [Ustle 4 Steck (1959)

and Hon (L960)J and depdet if it is numd [Lord (1947)--see also Daly

(1946)],giws a method suitable for the calculation of their joint distribution

vien the sample size is small. Sh gives specific results for saples of sizes

threa and four from rectangular and eRpential populatiens, amd recalls [kJWay

SPearson (L933)] that for staples of size 3 fom a normal population, the

distribution of the range may be written in terms of the normal probability

integral.

John W. 7vkey Md Donald H. McLaughlin (1963) discuss trimming and Winsor-

ization. Given n ordered observations ylr/2 '"<yn, thu'ir arithmetic ean is

eY2 + + , their g.tims (syumetricelly) trimed mean is y =

(YC+l + Yg+2+ -+ y.)/(n-2g), and their g-times (symntrically)

Ninsorized mean is yWg-(goyg+l+ yg+l+ yg+2+"'+ ynt g+ gyn~g)/n. Clearly both
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Y'TI aw mW -r ls attant2~iom t i exr me a] P 4, thmdout do

mot di•ert attmdm o the tails of the sample so leftly as does Yr.

rev umerlying d-I tinis whose s wes are ry ncl to cass , the

Iisorized m- we less mriabiii thm the triad meas. Um the under-

lyivg distribut an is Gassian , the eff id y of the rimeans is quite

higb, the fractiowa loss being crudely Zgt/ (coriempmsg to efficiecy of
about 2/3 for t•a medim), but that of the cou spmdint insorized 2meas is

mith highr. Oni the other hand,, trmmd mans e clearly amud mire efficimit

t1mo Ifinsored -eas for sales f-,m , v iey log-tailed distriutions.

nithor raise, but do not anser, the questin as to where th truasiti•_n takes

place. They defne g-ties (symetrica• y) tri nd nd insorized sue of1 deviati, an a ogo, m r: SST . Yg+- yTdg-Z -TgJ
*--.% g- YTg); s,-n- ,•2.6.1- ,,g)+÷Y.'-,,,g)2' v.g- yg)2

+ g(Yn-g Yvg) 2 "

VilUs (11963) deils with %;& problem of iUmtifying and testing a candidate

set of a small nmaer t of extreme saple elmeuts as significant cUliers in

a simple of size n from a k-dimensicnal norva -distribution with unknwn

parmeters. He considers the problem in detail for t-1,2,3,4. He defines

criteria r, and r 2 , respectively, for testing a single observation as a signi-

ficant outlier and a pair of observations as siguificent outliers, small valus

of r, and r, cmstituting the critical regions. Exact probabilities P(rl<r) and

P(r 2 <r) are extremely ccoplicated, but the author gives values of r. for which

the tupez bounds o- P(,'•l<r) and P(r,<r.) have the value a for a0.010, 0.025,

0.0.0, 0.100; %-,1,2,3,4,5" and n-5(1')30(c)100(l00)500.

Victor Ciew (1964) di:;cvs:;es statistical criteria for the rejection of
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doentI im iuys cted to cmtax pXs error, c g the -:.as of cmr

I

~' J ezstiag Peeskwvs Am OF qtxu.wzato. He also tdaI*.s critical 'vuims for

=my itni In the ce of a smple of inpepake t tjrvatios .frc a

siglJe Il ds-idu with uM, M md varace, be xeam s usiag

Jium$s or Grdft' citerioa ad wuiding (1naent's. If m -I mt esti-

st of paplWaiovarm is aailible, he reithe criterio of lair

or that of -- -b-rrzy 4 lavid. For a radI sample fnm a bivariate nomol

distributon, be prposes a procedre based on the z=a=n ralial distmce if

the parameters are know; otherwise, he recmmns VIn 1 crierion. He points

oM that wesidamls frnm a regressimn malysis are not only ,z-.Mlated but [oftm]

also hwae heterogenus vadn ,es. 1ho1 h he aibits that nwt midh work has bea,

done in rids area, he remnds trying the methods of Liebeima and miller

ind of Srikmtza, r ranking that the atter may be re coeient. For g

samples of n it observations each, the method of Dimm or Gnibbs can

be applied to the deviations from the sample wm s, thou& the control dart

approach may be uEie cgvzient for routine applications, especially if saples

ear obtained sequitially.

Cyrs Drmo (1964) shws that, for the tnrwcated Cauxhy distribution with

p.d.f. gz(x) - 1/2(l+x2) tan-lz for -z<x<z and 0 otherwise, the variance of

the mea of a saple of size n is (z-tan'Iz)/n tan'lz, while the asymptotic

variance of the saple '.dian is (tan z) 2n. lHnce the efficiency of the sample

men relative to the saple median is (tan-l z)3/(z-tan-lz), which exceeds unity
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if an inly if zc.3.4P, j stig a truiatica of moe than 96.

Eie t (1964), iR a asossim of the Maing of `Ieast" in leastIr, s a cts uat th m ,,fid of least squams ws dmeloped oz• gally

f-un t distinct pats of vi I&, differ not onY i twi.r 2ims A in

tfw tial 1 LR B, but also in the mem s that they attad•i to the

A MindCal MSults t• tallo anM e. Dse- Vimio M: (L) Least SM

of smsed Asidknls [lsen~dre 1M); (2) ___~mu of 7& _Ero

of Estiindam [Gauws (11S09)1; and (3) least kMea Sqae Error off Estimation

[Gws (1823). He closes with th folloming remarks: "Me roust sumvval
of the Jfkrtd of least Squres as a valuble tool of applied scimce no doubt

ss in part f2M the algebraic and ari• -mtical advantage of Least Sun of

Sqae ________sK and i part f rs th fact this procedure also yields estizte

%.f least Nima S Error in the importat case when the end results are

linear fi'nctivas of the busic observatians. his ame-to-one WrespDmdence

.ien ie m som ftcti of the zesidwls and minim~uing the same

tmctim of Errors of Estimation appears to be a umique property of Least

q uares. And althouh the Nbthod of Least S•.Tes does not lead to the best

available estimates of umkncn paramters when the law of error is other than

the Gaussian, if -the mber of independent observatims available is mih

larger than the nmber of parawters to be determined the Method of Least

Squares can be usually counted on to yield nearly-best estimates".

Friedrich Gerhardt (1964) points out that soe of the many proceduies

that have been proposed for handling outlying observations are based on statis-

tics with the optimmn property of mrninizing, for certain alternative hypotheses,

the probability of the error of the second kind (accepting the null hypothesis
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ih I it is• f -=• gm m mmm tha of tle ero ofi tI Ii kin Inecn H

Of Priorodistrilxtimd.

Nlter J. HINr (1W6) treats in detmail theoawy of r~st estiuatimn of

a location parameter of a atI nbated nmomm] ditribxticmi with c-d~f.

F(t)-C-lc)#(t)c HE(t), Occl, werec is a ]mom m ber, t(t) is the studard

normal c-Lf., and H(t) is = imbww-d~f. Hie seeks an estimatorý, inter-

mediate betwa the saple mer and the sale mdiam, that is •bst against

devistims from rommality. "et X., x2,'"x be a randm saple of size n, and

let the estimaor mTx. ) be dxb- so a to ininizi p(xiý-T1,

there p is a kima fraction. If we take p (t)-t2 we get the usual least-squares

stmftr, the smple mea, while p(t)atI yields the sample median and p(t)"

-Lo0 f(t), where £ is the assumed density, yields the maxim likelihood esti-

maror. liter subo's that the most robust estmator (t& one with the lowest

sqpre.. of the asyptotic varianmce when H ranges ovr all symmtric distribu-

tiows) corresponds to p(t)-t 2/2 for Irt<k, p(t)O•ltl-• 2/ for Itik, where k

and c are related by 4fC(l-c) k e-t '2dt+(2/k)e-k/2. He also consie.rs

robust estimation of a scale paraeter, uhidi he finds more difficult and less

satisfactory.

K. V. Mardia (1964) obtains the exact distributions of extremes, rtnges

awd midranges in saples from any multivar.iate population. He lets (Xl ,---.,rkj),

j-l,'",n,be a random sample from a k-variate continuous population with
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pod.f.fj[,3 • m d the m n mi m Orv ,im• of the

1lk va. bf a nd Y- ay, the AL rmi by k(- Yj-x) and ! e -

i i by V1(u-Yi, Xi /2), 4dre i., ,-- ' Ix n the r of

""k•,a )r(.. '. ad (Vil.. I Vk)I idL redue to the

classical Rma for kl.

Huy G. Natrea (11964) ciam the variaes of the unique medians of

samles of size i (for odd vales of a) with those of the pseudo-iedaias (the

1etlr s of the to central ks-rvatis) for a eve. Se inestigates samples

Lim n mal, n lar, and ext o-vale distribaicm, and finds that Wo
gmeral ciclusion is possible as to wbether it is better to take a odd or ewi.

Albert Stanley Paulsm (1964) givs a prbability basis for the cmtation

of certain measures of effectiveness of test statistics and derivs analytical

expressims for these easures. He coputes these measwnes for sevral test

statistics for the rejectien of outliers a.d e c to show the degree I-

to whidi saw statistics are better than othrs. In particular, he finds th2t

the standardized extiem deviate test is more efficient than the dii-square test

in detecting location error when the population variance is kioM. %en the

populatico variance is unknomn, he finds that the Quesenberry-David statistic

using a pooled estimate of the population standard deviation in the denominator

is more efficient than the studentized extren deviate,

E. S. Pearson and H. A. Stephens (1964) extead the table of percentage

points of the ratio u-w/s of the range w of a sample of n observat-ions from. a

normal population having standard deviation a to tue root-mean-square estimate

s of o derived from the same sample, which was coputed ty David, Hartley &

Pearson (1954), and test the accuracy of the approxination used by those authors.
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Alar (Soi4a,c) estdblibesiresult on t :itive i3eiAmW

of m (qcmutis) ad es x umems wt relaud to the exsten of "-nit-

ing - (reayammd lniting dHstriba Ii) for tese statistics.

mgard (MO6-b) mmi st, when tit wariue ex.sts, the joint distrik-utiom

of ft em mad a qumtile has, as its liiting fom, a *spifs biwariate

1= .J. Ikth~uierg, Fruaklin M. rzisher amd C. B. Mlan C-%4) prqpofe

a class of estimators of the center of the Cmrhy distributio. Each estimator

in the class is the arithmtic ma of a cmtml sitkst of thb sale order

statistics. The sIlx adimi is ammber of thiss class, but it is not the wst

efficiet. Lse average of api duately toe middle qua-ter of the o•ered saple

has the lowest a:-wmpWtvtic variance.

Asit Pr•A Basu (1965) proposes saoe test- for outliers in the case of the

expodtial distribition with p.d.f. f(x)-e= ;' 01" /e,x:.I, A0, e>4. men i

and are krue, the following test statistics, whose distributions are easily

obftaed, my be used to test whether the largest -alue x. of an ordered saiple

of size n is in outlier: B0,- (xn- P)/e, B1-(xN- Xl)/&, B2=(xn- xn1 )/6. Similar

tasts can be devised for the smallest valb x1 . As an overall test of the

preseice of omtliers one mW- use the x- test, since under the null hypothesis

2 ?i j(n-i+l)z./e, where zi x- xi 1 and x0  -- l, 1ows the dci-square distri-

bution with 2n degrees of freedm. Wen ,i -nd 6 are not knowi one can use the

standardized deviate Un- (xn- xl)/I(xi- xl), whose di_,ribution has been derived

by Lauremt (lP663).

G. P. Bha-tacharjee (19(5) investigates the effect of non-normality on the

distribution if range by deriving the probabi'lity integral and the first two
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mts of the I a ofas e dr m pa tica iresetedby Ft
:.rmt fmwu te-m of an dm~warth se'ries. He Sean exm te we of'm••

in place of root.men-.qur dmatim as i estimm a of the s devia-

tion of a nm-norwl po. lsoim.lHed m ht thae range estiao of the

pcpuatim stau d deviis is better for a pll!rfktic parrt population

(nd worse for a OW. cm) tCM t pd g estimae for a normal21 at1c? s mtradicting an Lrreus cwlusian readd by Cmx (954).

eter J. Bickl (1965) states the main res•lts of the asympttic t•eory

of the Ifnoie and trimmed memis and outlines the prof. He d~iscusses an

alte•native meod of trimodig mad i•insorization (not equivalent to that of

•Iuky) which ieanmsses the efficient estimates prciosed by Huber and general-

izes to higher dimesions. He gives the minimm efficiency, with respect to

the fmilies of all symetric and symmetric unimodal distributions, cf

Winsorized and trimmed wms with respect to the meal. He comares the trimmed

mean and the Winsorized mean with the Hodges-Tehum estimate (the median of

avrages of pairs) and the principal estimate proposed by Huber with the -ean

and the Hodges-lehoam estimate. He concludes that although all the proposed

'nonparmetric" estimates of locate.on behave satisfactorily when compared with the

mean, with the possible exception of the Whisorized mean, the Hodges-Le1mmn

estimate scm to be the "safest" amng them.

H. A. David and A. S. Paulson (1965) summarize and extend the results given

by Paulson (1964) on tBh ;4rfonmance of several tests for outliers. ihey note

that such tests "gencrally have one of the following aims: (a) to screen data

in routine fashion preparatory to analysis (the problem of 'rejection of out-

liErs'); (b) to sound an alam that ou.+liers are present, thus indicating the
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need for a er stu* of the uta-senerat proems; W to -pont d -

1wa sv hich micy be of special torest just beczuse fty are ertrm." IhY

do 13t treMt cme (a), wiich is the me of the prizary interest in the presont

study &ut the do cite saw e weow to it.
E. J. Greel, P. G. Carlson and C. I. Mustaff (1965) proi that if the

initial distriiutin (pjaret )ation is umliiteod, diffevatib1s, sya-

metrical and uimodal, the distribution of the aidianige, for my staple size,

is also uMligited, diffrentiable, symetrical and miodal. This extends a

result of Gubel (1944).

Sh& t S. Gupta and Ehupendra K. Siah (1965) derive the exact tmres-icmns

for the aýmits of the order statistics of sales of size n from a standard

logistic distributicai L(0,1), wbere L(to2 ) has the c.d.f. F(y;,,o)- lf[lexp

{ - . /2 ey tabulate the first four exact mommts of the

order statistic X(k) for n-1(I)10,, k~-(1)n. they also tabulate percentage

points of X(k) for n-1(1)10, k=-I3)n and for n-11(1)25, k-l, n and n/2, (n+2)/2

(p even) or (n+l)/2(n odd). Miy also derive expressions in closed form for the

cumalative disuribution function and the density function of the range, both of

which they tabulate for n-2,3. Shah (1965) obtains the distributions of semirange

and .idrang of saples frc.a the logistic population.

K. V. Mardia (1965) gives alternative proofs of the formuilas of Tippett

(1925) for the expected values E(R) ad E[R-E(R)j m , where a is a positive into-

gar z-A R is the range of a sample of size n iro. a mntlnuous population. These

proofs are simpler thaz those given by "ppett and other authors, and hold for

all n, whereas Tippett, in ,i prioof of the latter formua, assumed n to be even.

RE.& author also finds the exact value of the va•ri. .ce of the range of a sample of
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size nw3 from a norma2 population; sftilar results for n-2 and n-4 were given

b~y Ikaiea (1956).

Michael B. Tarter and Virginia A. Clark (1965) show that the cinulative

distribution function (c.d.f.) and the moment generating functioen (m.g.f.) of

the logistic distribution can each be expressed as a Maclaurin series where

the coefficients are Aimple ftnctions of Bernoulli numbers. They give the m.g.f.

of the median, and debermine the variance of the median, Pdso the efficiency

of the median relative to the mean for various sample sizes, as well as its

asymptotic efficiency. 1hey also give the variance of any order statistic and

the covariance of any two order statistics.

Tukey (1965) studies the informativeness of specific order statistics :r

blocks of consecutive order statistics in a sample.

F. 3. Anscombe sad Brtkue A. Barron (1966) consider a particular procedure

for rejecting outliers and also a particular procedure 'or modifying outliers,

for samples of size three assumed to have been drawn from a conuin normal

population, except that one of the three readings may have an added bias. They

give numerical results illustrating the effects cf the procedures on estimation

of the location parameter. They conclude that estimation by least squaxes

should usually be tempered by successive application of both a rejection rule

and a modification rule.

R. P. Bland, R. D. Gilbert, C. H. Kapadia ond D. B. Owen (1966) extend

the res'-Its of McKay & Pe.irson (1933), Lord (1947), lasa-ikoff (1954), Harter

& Clame (1959) arid otiur- authors to obtain exact results for additional cases

of the distributions of the range and mean range for samples fromn a normal

population.
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iorim Feldmn and Howard G. Tucker (1966) study consistent estimates

of non-umique qumitiles of a distribution fmction. As a special case t1y

consider the problem of medims, especially the simple median of tfi set of

awragss of all V'21) pairs of Observations X, P X Xn [the Hiodges-Lebuisim

estimate of the location parmeter]. They prove that this staple median con-

verges almost surely to the center mediar. of the original population, provided

that the original distribution is symti tic about a median; otherwise, this

smile median of averages of pairs need not converge, and even if it did con-

verge, it might converge to a nmber which is not a median of the parent

distribution.

Joseph L. Gastwirth (1966) discusses a procedure for finding robust

estimators, based on robust rank tests, of the location parameter of the sym-

mtric udAodal distributions. Not only can the Hodges-Lolun estimator be

cmnstructed from the author's procedure, but this procedure can also be used

to generate another estimator T, which is the best linear unbiased estimator of

the location parmeter. The best linear unbiased estimator corresponding to

the least favorable distribution of tuber (1964) is tOz trimmed mean.

Priedrich Gebhardt (1966) relaxes the rmt,-riction in his earlier paper

[Gaebhardt (1964)] that the respective variances of stragglers and non-stragglers

be knmown by requiring only that the ratio of these variances be knonm. The

results for a variety of cases which he studies support the suggestion of Tukey

(1962) to trim the saple by all observations that deviate substantially from

the saple man and to Winsorize tnose observations that deviate moderately,

but trimiing exactly two observations is almost always a better strategy than

Winsorizing two.

J. Likel (1966) finds the distributIons of Divxn's statistics for rejection
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of outliers in the cae of a staple from an epoetial population, tabulates

their percentage points, and gives exaqples of their me.

Donald T. Searls (196) proves -that 4f a Winsorized man is fomed by

replacing all s--ple values larger thmn a predetermined cutoff point t by the

value t itself, there exists a region for t for certain comn distributions

sudh that the mean square error of the Winorized mean is saller than the

varlance of the ordinary man. He presents an exule *iich shows that a wide

range of cutoff points can be chosen whidi still resUlt in a gain.

0. B. Sheynin (1966) contends that J. H. Lambert &hould be given preced-

ence over Gauss as the originator of the theory of errors, He gives a concise

sumary of Lmbert's works on the subject, which was the principal source of

information used by the present wri.ter concerning these works [Lambert (1760,

1765a,b)].

Thomas A. Willke (1966) reports the results of a sampling study of the

estimation of the mean a standard deviation from the closest two of three

observations in a sample from a normal population contaminated by slippage of

the man. The results of Lieblein (1952), which indicated that use of the

closest two out of three is not advisable for noncontaminated samples, are

borne out by this study for contaminated samples as well.

J. N. Adichie (1967) defines point estimates a and 2 of the parameters

a and 0 in the linear regression equation Y-a+OX in terms of certain

statistics used to test: hypotheses concerning a and o. He shows that the

least squares estimates are a special case of td..se estimates. He proves that

'"rank score" estimates exist and shows how t- conpute them. He discusses both

the small-sample and asymptotic properties of these estimates. He shows that
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md I we uniased if the underlv is•t off asenmtioms is srn-

aetric. He also- povr that ^ and 8 are Jointly asyMctica1y no=',, aid

that the asys totic efficiency of (as,) is the som as the Pitm efficiscy

of the redo tests on which they ae based, relative to the classical tests,

Finally be comares the effciecies of these estimates it! the Bram-nwd

4ian estimates.

F. J. Ansceome (1967) reviews various topics relevant to the present study,

including the effect of modern caqxners an statistical calculation, "stepedse

regression", testing goodness of fit by exomining residuals, nd p•ssiblo al-

ternatives to the method of least squares appropriate uhan the distrioution of

errors has long tails. He points out that Laplace and Gauss justified using

the method of least squares and restricting attention to linear combinations

of the observation largely on the basis of computational simplcity and

feasibility. In the age of coMputers this justification is no longer valid.

&Vpose one has n sets of observations on a dependent variable and p independ-

ant variables, denoted respectively by yi and ;ir (i1-,2,'", n; r-1,2,"',p).

If it is assumed that the true y is a linear ft•uct-o of the x's, one can set

Y r-l ':iror + ci(il2,""',n), where the c's are independent with zero utan,

so that P,. - ?r-1 xirr I where Pi is the expected value of yi. The problm is

then to estimate the parameters 0r as precisely as possible. In the classical

theory it is assumed that the c's are normally distributed, so that the method

of least squares is optimal. Anscombe points out that it is possible to fit

the O's by stages (e.g., one at a time) and advocates testing goodness of fit

by examining the residuals. He then raises the question as to what should be

done if the distriution cf the c's is not normal. If the distribution is
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] ~skwed, be smUests that it may be symtrra by trumfomfing the y-scale,

usually by raisng suh 7 to am fimed pwmr (or by takig logaritbom); be

points out, bw3vlr, that sMch a Urmsfomtice has other consequenes Ihich

ry or mra not be desirable. If the Won of the c's is synetric but

platykurtic (shrter -tailed than the marail) or ltkrtc(lIogbr tailed,

than the normal), a different remedy is required, involving depart=re frc

the method oi least squames. A"Cc~e studies in detail the case of a long-

tailed distritation of errors. If ones wishes only to find estimtes of the

V's without any indicfAion of their precision, he suggests mdnimizing, instead

2
of i(yi-'i) P Ii*C-v2), where' *(.) is tba square functionfor small values

of the argument but increases less rapidly for larger values and is constant

for very larbe values. Specifically, he suggests choosing as the estimates

Sthe values of (or) that minimize I(,) yi-ui)2 + 1(2)Kl(Zyi-uii-iKl) +

c(3)Kl(2K2-x 1),where K, and K2 are chosen numbers (K2>1O),•(•) denotes

summation over the values of i such that yi- Pi1~llC 2) denotes summation

over e values of i such. that K<1 I yj- ui ,2 il and 1(3) denotes summation

over the remaining values such that Iyi- ui "IA2. If, on the other hand, one

desires evidence fros the data concerning the precision of the estimates

), it is necessary to make some assumption about the true distribution of

the t's. Let the error density function be represented by fMCla,a), where

typically a is a shape parameter and a is a scale parameter. He notes that

apparently the only kind of density f(e ca,u) that permits easy integration
with resýpect to a in closed form is fCEj•,O)-Ca,/O) exp C-c a l/011), where

a and c are functions of a. 11hen a=2 we have normality, mid when 1<a<2 we

have a smooth function of S with longar. tails than the normal density. Vhen
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&-I we have tbe double In] (lqlace's first.) dIstribution, cocerning

Atcd Jeffreys (1939) [2nd edl. (1948),9 See. 4.4] has commted: "Meu interest

,fth l1 is reie smwaat b the fact that thre do not qle to be any

ms iare it is trm." Asc epresses the pinion that th sie rm-rk

cm be made abmt the disf - s-l.S (say). He advocates instead

Jeffreys' form of the Pleason Type VII error distribution, with density func-

'don ff (c j~q.(aWi/v 5vf 2,+2/awhr q- a23/2(R-1/2)3 SW

r(n)/r(a-2/2), which aproaches omlity as m#-, for sme applopriate value

of a. Anscoe suggests um4, for which the Type VII distrbution is equivalent

to the Stdient t distribution with 7 degrees of freed=. He proceeds to in-

vestigate the likelihood S-ction of the Type VII distributio. He points

out that maximizing this likelihood function is rather like mininizing the

expression 1(1) * (3) mnntioned above, For the Type VII distribution,

wl/2; hwever, for negative values of a, the sme density function gives a

4ype II distribution over a finite interval (a distribution with shorter tails

than tf- normal).

Allan Birnbau and Eugene M. Laska (1967a,b) present a general method of

determining efficiency-robust estimation methods, which they use to derive

admissiblo linear unbiased estimators (whose respective variances, over a

specified family of symmetric shapes of the error distribution, cannot be

jointly improved) and maximdn-efficient linear umbiasad estimators (which

maximize the minimun asymptotic efficiency, within a class of estimators, forII a family of densities).

Edwin L. Crow and M. M. Siddiqui (1967) derive robust estimators of the

location parameter which are efficient over a class of two or more forms
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.psocils) of contimmu s•ateric umdA1 ltoi. he penils com-

sidered are th no=' dot~le azu~notdials CuIyICT paabolc, trIuzgular

mld rectawlar. Ike estivators csidered awe twied mesn, moismized

MMr, "linearly waigbtd means, md a cminetto of the mediman md tw other

order statist=,. Asyytoticaly these we coqred with the Hbdges-Jb

estlutor. nhe best trimmed man or linearly wighed imew has an asyqtotic

effciency of at lent 0.82, relative to the best estimator for any single

paxil, over a range of pencils of distributims from the norml to the CAchy.

whil the c:z&±naom, of the imedim and tuo other order statistics is at least

0.80 efficient over the sam range.

Hodges (1967) makes a further study of the Hodges-Iabomi estimate T,

which he recognizes as a member of a class of estimates. He explores this

class for other meabers which are easier to compute, and finds that oe of the

siqplest of these, D, which is defined as the median of the means of pairs of

symetric order statistics, corresponds to the one-sample analog of Galton's

rank-order test. He applies D to the same samples used with T and obtains very

similar results. Finally, he compares a nmber of estimates, including X (the

mean), TD, and the trimed and Winsorized means with regard to normal effi-

ciency, ease of cooputation, and extreme value tolerance. Bickel and Hodges

(1967) derive the asymptotic theory of Galton's test and the related estimate

D, which gives an explicit form to the limiting distribution of D) only for

rectangular and Laplace parent populations. Although the limit is not normal,

they coaclude that the scatter of D is quite close to that of T. Finally,

they give the saall-sanple distribution of D for a rectangular parent. Although

their evidence is incomplete, they conclude that D is robust as well as easy to

compute.
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d nd la ý (167 ca(, for s ls of siw a fre a syaic

db tuiti sa~fyk i-Swithl iugularit4 antizin, M- l~ziina to

the em f O ftie =i&&Tup to of •ardeer I an2 ar ca 41ag

W v- Mtiim tohe effiduq Of" relastiv to the m I L to ur of order

]/h. ror noml and4"•l rect disar ' d t hem, se gia a m clor s Vprox-

matim to theim t efficiy tbm &des the uW asypttic efficiecy. n

au d- pot aa that, to the acwray of their apro micm, one shtwld not

me t =m bansed a ma odd unmer ft -F r'tia since the udim based

Ms the amxt smarter -n nmý- is eqaiily accurate. They extUd thefr results

to other awnrags of v spwftically p Med oxder suftstics (quasi-dians),

ths raking possible, in sm= cases, a furtler re&Y-xti in saple size without

loss of acawacy.

P~bert V. Hogg (1967) finds an estImtor T, Ahich is a weighted man of

TI, 7 29 , T whom T. is a reasoable estimator (e.g., a -ini .= wea squre

error estimator of the parmeter e of the f=mly D. of distritimos, j-1,2,

S" a), such that T has the sae asmtoti,; di b o as that of 'r-, when
•h s sample comes from Dj. lhe weights are functions of th -s•mle itews. The

statstics, respectively, then T-1 tuTi, where I Win 1, is an unbiased esti-

ators of the center of every symmetric distribution, provided certain expec-

tations eist. is fact is rueful in costfructing the weight functi1n, W.. Mhe

Wrtictdar T which the author investigates enpirically is given by T-VI/ 4 for
k<2.0, T-1 for 2.0kj4.0, T-7 for 4.0<kj5.5, A for S.S k, where 1c is the

1/4 4

mean o the [n/4] smallest and the [n/4] largest items in the samplo, (an interior-
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medM), 1 J4 is the sae of the rmjiia inrteior simple itms (a'

exterior-trimmed mewn), Y is the simple mere, n is the stample medim, and

k-)(X/-Ij ~isLe simlekuinis. He th.es ratic of the vuanues

of Y,^,M(the •edges-Lemm= estiate) d T for 200 smples each of sizes 7 and

25 fric fo papzations with kurtosis K-1.9,2.7,3.9,9.9. For both sample

sizes, T has the sllest variawe for 1-1.9, Y for K-2.7, and a for K=3.9,9.9.

Te me- perfom Wry poorly for distribtin with log talI (high I), the

dian-erfonms rather poorly for dt e with short tails (lmr i), and the

overall performnc of both M and T is good.

Fred C. Leone, Toke Jayadhadran td Stanley Eisenstat (1967) report on

an mp-irical study of the performfane of the sample man and the Hodges-Lehmanm

and Huber estimators of the location paraneter when applied to cotaminated

distributions. ney verify Ober's statement that his estimator T and the

lHodges-lamln= estimator are close campe',itors and his conjecture that, for a

sample of size n, the distribution of the ratio of /A tios his estimator T of

the location parameter to the estimator S of the scale parameter can be approx-

mated by a Student t-distribution. They comar the sample variance of n1/2_

T with its maximal asymtotic variance as given by Huber. They also verify,

by means of a chi-square test of goodness of fit, that the distributions of

the Hodges-Lebmanm estimator and of Huber's T can be approximated fairly well

by appropriate nornal distributions when n>20.

Max Ray Mickei, Olive Jean Dunn and Virginia A. Clark (1967) point out

that the examination of residuals is naot always sufficient to identify outliers

in a regression mod&l, AM propose stepwise regression. Their procedure finds

the single observaticn whose deletion causes the greatest reduction in the sum
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of *Wr residuls, thm iw the pro s tne romlning daut. I

sel€ctiom of st dn rules is left open.

X. .. Siiqui sd l. mean (11%7) squppml o the paper of Crow

md SidMid (15%7) by a sutuy of the robwtasss proertis of for estimtors

of location (a wights! average of the mdian d two other symetric order

statistics, t tri d man, Winsozed = , an the Ibdges-leI esti-
ator) with respect to eight distributio types (norml, .01 and .0S A mtmintd

nomIl, logistic, Stuidet's t with 3 and S degrees of fve"m, double expomen-

tial, and ud=I). For eadh of these types the probability diiy fLmCtin is

mtimm and symetric about the mewn and the range infinite. The estimator

with the higast guaranteed efficiency for the entire class of distdritions is

the mean of the middle So0 of the sample. The •tmhors state that the IHdges-
SLelmmu estimator was first suggested by Txuky, but the present writer finds no

evidence of this in the source cited, where Tukef does use the averages of all

pairs of observations, which he calls Walsh averages, bot does not suggest using

their medisn as an estimator of the location parameter.

Chatter Slngh (1967) obtains expressions for the raw moments and the prob-

ability integral of the largest (smallest) value and for the first two moments

of the range of samples from non-normal populations represented by the first

four terms of the Edgeworth series. He gives some conclusions about the nature A

of the effects of parental skewness and kurtosis. The mean largest (smallest)

vaiue is sensitive to parental skewness but not to kurtosis in small samples.

However, parental kurtosis tends to increase or decrease the variance depei'Aing

'on whether 14=a4 -3 is positive or negative. The mean range is quite insensi-

tive to population changes in small sanples, but both skewness and kurtosis have

149



a geater iffect am the v• io e of ther . 11 • aithor caq s his results

with te of earson (B50), Cka (1 ), Ivd (L954) ad others. A

G. C. 1w and Ivin Gatem (1967) point out that a major difficulty

involwd in stetisticai proce&uys, desiped to guard against the c

of outliers or spxtius cbservaticls, which wre based umpw exminiz te

gapItuz of the vesidals, is csed by the fact that the residuals are

correlated. Mwey show hou to aoid this difficulty by adjusting t'e residuals

on the basis of informatit from an auxiliary experimt so that the adjisted4

residual uworrelated. Ths leads to * set of estiatim procedures,,
2

for the unknown man of a normal population. N(tt,a 2) with Ianow a, i which owe

or mire observations for which the magnitudes of the adjusted residuals are

largest wll, be excluded. 7he authors disuss certain properties of. these

procedures, give exact numrical results for the cases of we and two spurious

observations, zd gneralize to the case of unml= variance.

G. 1. htttacharyya (1968) obtains dian and weighted median estimate

for t'he linear trend parmters of a univariate time serbs by applying the

Hodges-kJx.m method to sow well-bna npagrnetri tests for trend. He

exW.to the estimation procedure to tbe multivariate trend model, and studies

its asyMtotic efficiency properties relative to the classical estimates.

G. E. P. Box and G. C. Tiao (1968) consider the problem of outlying obser-

vaticms from a Bayesian viewpoint. They assume that each observation in an

experiment may c from either a "good" run or a "bad" run. They specify the

mcdels correspnding to good and bad runs [N(Cpp) and N(C,k 2 02), respectively] ,

and the prior probability a that a rim is bad, and employ standard Bayeyiian

inference prcledures to derive the appropriate aalysis. They give an example
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of doe ida ct odf their inthd to actmu daft, smo d tie smesiCtivit

of d zinlts te dw sin a m k.

11,1mg int Arr ukI Pfter J, Cislak (19W8) give, in dmosd fain, the

dmsity fwti of de mdisa for odd sized smples ftm the Bur sysm of

distributius [Id idi hIs c.df. F(x)- _(l4xc)-k, Z0, c. b>0; F(x)- 0, xcO

Wd ms almost all of the rgims of the wuin Person lypes IV and VI md

#a Iqpwtont port of at of the uin Type I (Det distribution)]. All finite

I of the mdan Twr la nar combitio of Deta fmdiens. For s@Wes

of size n-3,5,7 and 11 r urr fromons with a3:x- 0,.50, 1.00, 1.50 and,

Correspx0- ag to ed @3:x, two well separated values of a4:x, the a"thors

tabulate the following iqiortant WhraTrIstics od tdo mediain: Bins, OýP @1..,

and efficiemcy relative to the saple man. ihey point out that it

atpears that, for thb system, the median begins to be mr efficient than the

man at about the degree of non-nomality of the exponential distribution. Burr

(1968) tabulates, for saplas of size n-2,3,4,5,8,10 fr populations of the

Burr syteha with 27 different ccbinations of a,:, and 4:x' the folowing

characteristics for the distribution of range R: standardized mn and standard

deviation, a3:R9 "4:R aod coefficient of variation. He confirm that tin

standardized nean range is highly stable for fixed n under varying nm-nmal-

ity,,as has been pointed out in the literast , and finds that the sa is true

of the standardized standard deviation for the poutios studied, Wich have

2.87. He also finds evidence that the range is somasat wore robust and

efficient than hitherto noted.

Theophilos Cacoullos (1968) presents a sequential schma for detecting

outlHiers in a sample from a p-variate normal population N(u,o 2 I) in which
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U3 -min AM I dup.ty mmMll dtrtbztd ViLth thd sme vmWiM
A At thA state 0f dom, t ot .-- the first k obsermtim are

available, the Mgt recabt d Wimti xk is rejected as - outler if and

only if I k,2>t 2skvbm bothha and

the length of x md c. dmotes the upper a point of the x2- distributon with

p degrees of fte m he Mauhr cmsiders the sequential sting re

which stops taking observatioes as soon as the fist outlier is rejected. He

proves that this sdem terminates with probability one after a finite maber

of steps and that the nm,,er of observations N has momets of every order. the

probabiUty P, that the Ac oserton is rejected appears to be monotone

increasing for reasonable critical values of c and approaches a as k"-.

D. R. Cox and E. J. Snell (1968) cmwnrate the following types of depart-

ure, from the usual linear regression Yodel of onw independent variable on

n independent variables with errors c normlly distributed with zero man and

constant variance, which can be detected by an appropriate analysis of resi-

duals: (1) the presec of outliers; (2) the reloenc of a factor omitted

from the model, detected by plotting the residuals against the levels of that

factor; (3) non-lines- regression on a factor already incluMed in the model,

detected by plotting the residuals against the levels of that factor and

obtaining a curved relationship; (4) correlation between different ci's, for

exa le between tits adjacent in time, detected from scatter diagrams of

suitable pairs of residuals, or possibly from a periodogram analysis of

residuals; (5) non-constancy of variance, detectd by plotting residuals or

squared residuals against fa,.tors thought to affect the variance, or against
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fitted. values; (116) narx-nuzzanlty of tbt distribution of thee Li's, datectied

by plotting the order-1 residuals against the expecaed values of the order

statistics from a standard normal distribution. The authcs give a ame

gmeral definition of residuals and find some asysptotic lpvoperties. 7hey

also discuss sow illustrative vxaples, Including a regrassicn problem in-

volving exp ntially distributed errors.

D. . Cox (L1968) makes miscellaneous cm ts oan va sets of

regression analysis, including outlers and robust estimation. He points out

tMat screening of data for suspect observations will often be required. Suspect

values may be examined Individually in order to decide whether or not tc in-

clude them in any subsequent analysis; this is the usual procedure with liiited

data. Often it is necessary to perform analyses both with and without suspect

-values. Ve p rbservations are available for each individuil, the best way

of looking for wtliers will depend on th type of effect expected, of which

the author discwses three. With extensive data, he suggests the use of

methods of robust estimtion, such Ln that proposed by Huber (1964), whih

are insensitive to outliers.

D. R. Cox and D. V. Hinkley (1969) consider a linear regression model in

which the errors are irependent and identically distributed with zero mean.

If the type of error distribution is specified, the asymptotic efficiency of

least-squares estimates relative to maxiud -likelihood estimates of the

regression parameters can be found, and the authors calculate it explicitly

for a Edgeworth series, for a Pearson Type VII distribution [suggested by

Anscoobe (1967)] and for a log Gamma distribution of errors.

A. S. C. Ehrenberg (1968' quotes various authors cm the subject of the
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Justification for adopting the least-squares apmach to regressin analysis.

%) says it qsewrs to be a case of the practical man accepting the theoreti-

cias' judgment that it will give the "best" solution, and the latter assmAg

the %nest fit" is what the omer wants.

Prank Rudolf Hapel (1V68) studies the problem of robust estimation. In A

the one-dimsional case, •e finds the optimal solutions (with regard to

asymptotic variance and sensitivity) for the class of (sufficiently regular)

M-estimators as defired by aaber. The optimal estimators of the location Oarm-

eter in the model of noTmality, tur out to be the BDber estimators and the

trimwd means,

J. A. HwfýIM (1968) defines a Bayes measure of discordance of an obser-

vation x, given a set of observations xl, 12 , xn, to be the distance
between. the posterior distributions of a parameter, iL the presence or absence

of x. He also proposes a measure of dissimilarity beween two observations.

Mmen the number of observal "ms is large, these two mMUres my be approximated

by simple functions of the log lBkelihood, thereby avoiding dependence on prior

distributions.

Arnljot H~yland (1968) studies the behavior of the Hodges-lelnn estimator

of location 9* and the classical estimator O(the arithmetic mean) in a situation 1

where the data occur naturally grouped in n blocks, c observations per block,

with tbe =operimental conditions varying from block to block, thus invalidating

the standard assumption that the observations are nt and identically

distributed. In particular, he studtes the asymptotic efficiency, as n. with

c fixed, of e* relative to t for normal and gross error models. The relative

efficiency is less than I for the former and greater than 1 for the latter in

ali cases studied.

154



Nter J. Dkre. (ISM8), in a surwe piper on robust estimation, begins

by attakng the dopa of normolty and the associated rule of the arittmetic

=nw. He points out that many mathemticians of the nineteenth and early

tumtieth cmturies realized that they were not umiversally valid, but in most

caes cmtinued to behave as if they were, not realizing how bad the classical

estimates could be in slightly non-nomal situations. The tUmnig point did not

cae umtil after World War II, when Tukey and his associates began to emphasize

the srtmn of the classical estimates and propose practicable alternatives

to thm Hiar defines what he means by robust estimutnrs and emerates four

distinct goals to be achieved by then. He gives three methods of constructing

robust estimates: (1) maxim. likelihood; (2) linear combinations of order

statistics; (3) estimates based cm rank tests. He introduces the idea of asy-

mptotic robustness, and attempts to answer criticisms that have been levelled

at asyiztotic theory, restriction to syumetric distributions and miniax theory,

all of which play iiportant roles in robust estimation. He also considers t1v

question of ease of computatiom, pointing out that the Hodges-Iehm estimate,

for a sample of size n, requires 0(n2 ) operations, as compared with approxi-

mately 0(n log n) for Hodges' alternative, Hober's estimate, and the trimmed

and •insorized means. He poiuts out, however, that Hodges' alternative esti-

mate is not asymtotically normal. He closes by mentioning some other problems

(largely unsolved) in robust estimation: (1) estimation of scale parameters;

(2) estimation of location parameters in the multivariate case; (3) estimation

in the absence of translation and scale invariance; and (4) regression and

xnalysis of variance problems.

Masao Kogure and Pajime Makabe (1968) study the non-central distribution
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of the stndardized range and give an application to a process capability

study through a control chart with treand line.

P. Prescott (1968) suggests a simple estimator of the standard deviation

of a norma! population as an alternative to the usual root-mean-square esti-

mator. The proposed estimator, which is one-third of the difference between

the means of the largest one-sixth and the smallest one-sixth of the observa-

tions, has an asymptotic efficiency of 0.956.

Pranab Kunr Sen (1968a) studies the robust-efficiency of the Hodges-

Lehmnn estimator when the n observations are d& n from distributions which

are syrmmtric about their medians and have continuous c. d. f.Is F, (x), Fn(x)

which are not necessarily identical. Sen (2968b) studies a simple robust

Imbiased estimator of tL. regression coefficient 0 based on Kendall's rank

correlation coefficient tau. The estimator is the median of the set of slopes

CY, - YiP/ (Xj -y X. oinbiz Pairs of pont wihXj Sen coM&res its pro-

perties with those of the least squares estimator and some other nonparametric

estimators.

L. de Haan and J. 1h. Rumenburg (1069) study the dis-t•ibutir.n of the

quotient ni xn+l,/(xn+1 - xI) of the sample mdian and the sample range for

a sample of size 2n+1 f=r, a standard normal distribution. They give the c.d.f.

of h1 and the p.d. f. of h2, and show that *- is asynipotically normal. N. Bonma

and A.Vehmeyer (1969) tabulate the percentiles and the. s&cond and fourth moments

(when they exist) for n-l,2,3 ond 4 (sample sizes 2nl-3,S,7 and 9). Their

tabulation is based partly on the theoretical results of de Hawt and amnnenburg

Mate the distribution of hn by a Studnt t distribution with ven 2ZE2(r)/O (r!)
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degrees of freedom.

M. Mahmuuwlu Desu and Robert H. Rodine (1969) point out that the staple

median is a median unbiasLd estimator of the median of a continmo' population

fcr odd sample sizes, but not necessarily for even sample sizes. Par symmaetic

populations, however, the median of a sample of even size, as an estimator of

the population median g, is median unbiased and also unbiased in the usual

smsee, and there is P class of unbiased and medýxi unbiased estimators of g

whic". includes the sawple medicn and the sample midrag. The authors give an

estimator, using a random selection of pairs of symmetrically placed order

statistics, Yr md Yn-r+1 ' which is a median unbiased estimator for any popu-

lation and unbiased' for symratric populations.

Jmes John Fillibon (1969) examines the behavior of various linear esti-

mators of location whean the underlying distribution is known (simple estimation)

and when it is not knovn, but is known to belong to a prespecified set S (robust

e3timation). The estimators considered include best linear unbiased estimators

and various modificatics thereof, as well as trimmed and Winsorized means.

The set 3 consists of 34 symmetric unimodal distributions; optimal linear

robust estimators are foumid for S and vawious subsets of S.

Joseph L. Gastwirth arnd Herman Rubin (1969) consider the problem of finding,

for the location parameters of symmetric unimodal distributions, robust esti-

mators which are linear functions of the ordered observations. In particular,

they study the maximin efficient linear estimators and admissible linear

estimators proposed by Birnbaum and Laska, and obtain asymptotic generalizations.

They demonstrate that within a large class of linear estimators there is a

unique maximir, efficient linear estimator for general families of densities.
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They discuss in detail the special case in which the f£aily of densities

contains the logistic and double expceatial distributions, for which they

fn the maximin efficient linear estimator and, cmare it with the best con-

vex comibination of the bndvidual optiim liear estiwt-,rs and with a Hodges-

Jemum type estimator based on the corresponring mxidin rank test. Because

of computational difficulties, they look for a madvAn efficient estimator in

smaller classes of linear estimators iihich are masy to use, including the

trimmed mens and linear combinations of a few Eample percentiles. They show

that, uader suiteble rerdlarity conditions, am&kin efficient estimator for

each of these classes exists, and give some numer:Lcal examples.

F. E, Grubbs (1969) gives an expository treatment of procedures for

determining statistically whether the highest obsernation, the lowest observa-

tion, the highest and lowest observations, the two highest observations, the

two lowest observations, or more of the observations in the sanple are statisti-

cal outliers. Included are statistical formlae and tables of critical values

for tests of significance to be applied in detecting outliers in single samples,

as well 2s examples of their application.

Irwin Guttman and D. E. Smith (1969) investigate the performance of three

rules for dealing with outliers in small samples from the normal distribution

N(ova,2 ) when the primary objective of sampling is to obtain an accurate estimate

of p. They assume that at most one observation in the sample may have arisen

from either N(p+ao,o 2) or N(p,(l+b)o 2 ), mid measure the performance of each rule

in terms of 'Protection", the fractional decrease in the muan square error

obtained by using the rule when such an observation is actually present in the

sample. Numerical results are given for n410 when a 2 is known, but only for
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r.3 *bw a2 is UmIunhi.

Douglas M. Haddn (1969) deiyves the distributions, under null #nd alter-

native hypotheses, of the statistic prnoed by (rie bey & David (1961) for

detecting the presence of a single outlier.

Louis Alan Jaeckel (1969) considers various robust estimates of a location

parmeter. He definds three types of location estimators: maximuu likelihood

type estimators, linear cobinations of order statistics, and estimators derived

from rank tests. He gives some relationships among the three types, and shows

that Huber's ainimax result applies to all three. He considers two flexible

estimation procedures in which the observations are used to choose an estimator

from a fmily of possible ostimators. The families coinsickred include the trim-

med means and a ',eighted median" of paitwise means derived from an arbitrary

rank test.

C. L. Narayana and M. Subralmanyam (1969) suggest an alternative to the

method of least squares in tho theory of regression, the object being to reduce

the computations to a minimon and still obtain fairly accurate estimates of

the slope of the regression line. They first compute the slopes of the lines

joining each pair of data points, and take (i) a simple average of these slopes,

(ii) a weighted average with weights equal to the denominators of the res*ective

slopes, or (iii) a weighted average with weights equal to the squares of the

denominators of the respective slopes. They prove that (iii) is equivalent

to I, method of least squares, and show by examples that (i) and (ii) are

simpler and nearly as efficient.

P. V. Rao and J. I. Thornby (1969) define a robust point estimator of the

parameter o in the generalized regression model yj=a+gj(O)+zj,j.l,2 ,"'",n, where
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Sand 0 are umknotm parmeters, gl,g2 '', gn are re-val-ed ftmctins of a

real variable satisfying suitable cditions and z1,tz 2 **'" Z are 3t
identicaly distributed randou variables having a distr fmction belong-

ing to a specified class. An important special case of this model is the
reVession ,odel obtained by setting gj(S) xj w.." here the x's

an knwn constants. For this c(1e, 6ichie has proposed a robust estimator o

of s of the Hodges-a(mft type and Brmpe and s ood k ave proposed a median esti-r

tator. A third alternative is provided by the estimator proposed by the asthors,ot

which is also of the odges-Lsa fr type. t

Ram -Swaop, Kenneth A. West and Charles E. Lewis, Jr. (1969) present a

statitiscal tec'hnique, and the related computer aogrm, for identifying the

outliers in coefficie atta. h

Jei Takeschi (1969) proposes an estimator of the location parameter of a

coftinuofs sy onetric distribution of of c te order

statistics of a (fictitious) subsample of size k drmm randomly from the order

stacistins of a sample of size n. He proves that this estimator is Asymptoti-

cally n ficisnt for a wide clsss of distributions satisfying certain regularity

corditions, qnd shows by a Monte Carlo study that a modified version with

symmetric coefficients attains high relative afficiency for several varieties

of distributions even for small sample size (n-1lO,IS,,?O or even n-5).

JOeny Thomas (1969) reports the results of a Monte Carlo investigation

of the effect of non-normality on the distribution of Dixon's criteria for

detecting outlying observations. He reaches the conclusion that Dix,,'is criteria

are not robust and may yield incorrect decisions for skewed distributions.

John E. Walsh (1969) studies the sample size u required for approximate
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indepmne betum the somiple dimn and the largest (or smallest) order

statistic. uhich he maswes by the maxima vaue of the difference between

their trte joint probability and the c irres xoding value assuming i- -e-ennce.

He finds that the followdng inequality holds: 2n~l>-l,+e 2/2rc 2'-l+.0215/e2

(€..02).

Takashi Yanagawa (1969) proposes a now robust estimate of location defined

SF ~ <i~2~ md %X X *

byJKn 1 1 12 (/NPc~i~ n fj
medans, ( )iIn n2u , of P-ti!ples #Xi XXio) obtained from the origi-

nal random sample of size N. He compaves this estimate for p-3 with other esti-

mates for small samples from normal and double exponontial populations, and

finds that it is the most robust in a class including the sample mean, the best

linear unbiased estimate for the double exponential distribution, and the

Hodges alternative to the Hodges-Lehmann estimate.

V. P. Zelenen'kiy (1969) considers methods, based on statistical decision

theory, for the exclusion of anomalous neasutrements of random processes. He

proposes various solutions with differing amounts of information about the

a priori statistical characteristics of the measured processes and the measure-

ment errors.

V. D. Barnett (1970) studies the problem, suggested by a medical example,

of fitting a linear functional model with replicated observations -nd inhomo-

geneous error variances. For a particular error structure relevant to the

example, he finds maximum-likelihood estimators of the paraneters in the model

(slope, intercept and error variances). He obtains simple closed-fom expressions

for the asymptotic standard errors of the estimators, even though the estimators

have no simple explic..t form and must ba evaluated by iterative methods,
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AlIan Birni)MU and YalerimMMb; (1970) develop q Iroximate versions of

optimally robst Piman-type estimators of locatim, and shm that they have

ful asyspwtic efficisc fo a prototype fimily of dstriutts. By meaus

of a Mante Carlo stuly for moderate n (20 to 100), they show that these esti-1ators hae efficiencies of 8S* or m. for normal, logistic, double exponential,

and -atntnatod normal distributions.

ene A. Fuller (1970) investigates simple estimators of the ean of skewed

populations under the assumption that the tail of the distribution is well

approximated by the tail of a Weibull distribution. He considers relatively simple

estimators, in particular those that are linear in the order statistics or that

may be expressed as a linar function cf the order statistic.; Ath weights that

depend on a preliminary test. The loss in efficiency when the proposed esti-

mators are used for populations for which the satple mean performs well (such

as the exponential) is very small relative to the gain for heavily skewed

populations.

J. L. Gastwirth and M. L. Cohen (1970) discuss the small-sample behavior

of various robust linear estimators. They find that for sample size 20 the

variances of rthes3 estimators arc well spproximated by asymptotic theory. If

the observations are a•-umed to came from a family of distributions consisting

of the Cauchy, jouble exponential, normal, contaminated normal and logistic

distributions, then the asymptotically maximin efficient estimator, the 27-1/2t

trimmed mean, is the maximid efficient estimator for size 16 or greater, but

its minims relative efficiency for samples of size 14 is less than asymptotic

theory suggests. If the Cauchy distribution is deleted frci the above family,

the 201 trimmed mewn is the maximin efficient linear estimator for all sample

sizes studied.
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Harter (970) collects in te woolius various results (theory and tables),

from earlier pubications autboxed or co-authored by his, on order statistics

and thefi use in testing and estimation. Yohm 1 includes tables of probability

integral, percentage points and momets of the range of saples from a normal

Populations [first published by Harter 4 Clam (1959)] and a table of the

probability density fAmction of the rang of saples from a normal population

[first published by Hurter (1962)]. Volum 2 includes tables of expec ve vlaem,

variances, standard deviations, probability integral and percentage points of

quasi-ranges of saules from a normal population [previously published by

Hurter (1958,1959,1962)] and for the probability integral and percentage points

of the range of samples from a rectangular population [previously published by

Harter (1961a)].

Huber (1970) considers the problem of studentizing robust estimates. Let

T be a robtst estimate of a (location) parameter e. Huber notes that little

has been written about the estimated standard deviation (e.s.d.) s(T) appro-

priate for T or about the stý,'-entized ratio (T-e)/s(1), beyord the general

philosophy outlined by Thkey 4 McLaughlin (1963): Choose the T in the numerator

to achieve a high robustness of perfoiance; then match it with a deinminator

s(T) to achieve a high robustness of valiaiti oier a broed range of distribu-

tions. As a result of his investigation, Huber draws the following conclusions:

(1) The trimmed mean, scaled by the Winscrized e.s.d., has both excellent small

sample and excellent large sample properties; since it is also easy to compute,

it can be strongly recamended for practical use; (2) 7he trimad mean and a

maxinan likelihood type estimate T devel~,ped by Huber behave well even if th,

unierlying distributti, fails to have a density, but the corresponding estimates

s(T) do not.



D. G. Mabe (1970) expresses the distributons of Di•an's statistics for

the rejection of outlying observations in the case of an exponential population

In terms of finite series of Beta functions, from which the probabilities of

rejection of suspected outliers can be easily calculated on a desk calculator,

ths making tables such as those of LklA (1966) minecessary.

R. M. Loynes (1970) obtains bounds on the asymptotic relative efficiency,

as an estimator of the central value of a symetric distribution, of the power

mean of order q with respect to the power mean cf order p, where l~p<q, which

are (p-1) 2/(q-1) 2 and -, both bounds being the best possible. If the under-

lying distribution is umimodal, the lower bound can be improved to (2p-l)/(2q-1),

again the best possible.

C. Singh (1970) obtains the probability integral of the range of samples

from a population whose distribution can be represented by the first four terms

of an Bdgeworth series. He tabulates the nuawrical values of the corrective

functions arising because of nonnormality. He compares the new theoretical

results with the earlier results of various authors, including Pearson (1950),

Cox (1954), David (1954) and Singh (1967). He concludes that, for Edgeworth

type populations, the effect of parental skewness on the probability integral

and percentage points of the range is comparatively small for samples of size

n<5, but as n becomes larger this effect becomes as prominent as that of kurtosis
~22z

Sexept in the lower tail of the distribution. The effect of x 2 2 OI is

almost always opposite to the effect of A 3 4 - 3, and they sometimes

counterbalance ee':h o'her so that the resultant is close to the normal theory

value.

Paul Switzer (1970) discusses various methods of obtaining robust estimators
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of a locatin paraneter . He proposes cbosbg (say) three reasonable candidate

estiatoms for Vbich ucn-parMttc estinates of the standard error are avadl-

able, then actually comuting each for the data at hand and using the me which

has te smllest estimated standard error. One general procedure is to &suI

that the sMle of size N can be divided into X blocks of er•al size n-N/K,

mpute the * fOr eac blockk, k-ml,2,9", K; il1,2,3; then takb

the overall ti to be the average of the block estimates, Oil' IK and esti-
nre, its st•axlrd error by Sin [•1•i-3•_i)I/X(K'l)]1/2; db~ose that Si for which

the estimated standard error Si is smallest. As a special case he considers a

sample size N divisible by 6; he divides the data into K=N/6 equal groups (at

ramnd). In each group k(of size 6), he computes, as the candidate estimates,

*l X3 X)/2, j (X2+ X5),iz, w"_k - (Xl+ X6)/2., where the X's are the
ordered values in the group. He reports the results of a Monte Carlo study -of

this procedure applied to samples of size N-30,60, and 120 drawn from a short-

tailed (uniform) distribution, a normal distribution, and a long-tailed (con-

taninated normal) distribution. The results are as expected, Wih 13 strcngly

favored by the short-tailed distribution and strongly disfavored by the long-

tailed distribution.

Allan Birnbaum, Eugene Laska and Morris Meisner (1971) determine maxi= n-

efficient linear unbiased estimators (•.MUs), and their efficIe.cies, for ordered

samples of sizes S(S)20 from a family of nine distributions. Singe these

distributions admit simple orderings such that the MLUE over any subset is just-

the MWUE over the extreme pair in the ordered subset, they are able to sumaize

the results coupactly. They also discuss relations to other estimators.

F. C. Ducboth (1971) daostrates that the standard method of least squares
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is msuitable for wanlyzing certain types of data, either because it fails to

apreciate the strong dependence of the predictioa error on the it

variable or because it is umable to allow for any error Introduced by the fitting

of an inepropriate equation. He contends that a sad-subjective graphical technique

may often give more useful results, tbotigh he admits that such a method also has

disadvantages--besides being partially subjective, it is also rather cumbersome

and not easily computerizable, and there is no rigorous method of determining

the error of estimate.

Arthur L. Bards (1971) presents a set of computer subroutines, FITIMR,

PUHG1S, and RUNNY, written for finding linear least-squares fits of weighted

tabular dta with any of several functional forms, and for eviauatlng the fir•al

function at specified values of the Lidependent variable. Provision is made for

several ftuctional forms, Including power series in the independent variable

or its reciprocal, with or without a cc€nstant term, and other functional forms

may be added as desired.

M. V. Johns, Jr. (1971) develops a sequence of estimators, inde.ed by an

integer-valued parameter k, which are •symptotically efficiency-robust in the

sense that, for any k, the corresponding estimator is consistent and asymptoti-

cally normally distributed (as the sample size n increases) for any F In a large

subset 2' of the class of symmetric distributions and, for large k, the corresponding

estimator is (nearly) best asymptotically normal for all F r 2. The simplest

non-trivial estimator in the proposed sequence (corresponding to k-2) exhibits

quite high efficiencies for siall to miderate sample sizes (n-10,20,40) for a

collection of distributions comprising the normal, the Cauchy, the logistic, the

double exponential, and the 10% contaminated normal.

166

4 ý ti ' LSO ___ __ _ M



lmer R. Iinng and R. G. bardick (19n) describe a stepadse cwquter

Procedure for id t i and setting aside extreme values from sets of data
with miiu bias or sifbjetivity on the part of the malyst. Since trwcatlon

of a basically normal distribution causes a domrad bias in the estimated vari-

ance, a graphical mthod is provided to camensate for the bias.

RaM Swaroop and Willim R. Enter (1971) present a statistical techique

and the necessary computer program for editing nultivariate data. The tedmique

is especially useful when large quantities of data are coflected and the editing
must be performed automatically. One task in the editing process is tho identifi-

cation of outliers which deviate markedly from the rest of the saple, The

technique presented, a mltivariate analog of the univariate techmique of .€waroop,

West 4 Lewis (1969), considers the statistical linear relationship between the

variables in identifying the outliers. It is assumed that the data are ftom a

multivariate normal population and that the sample size exceeds +Jhe nmber of

variables by at least two.

John Caso (1972) presents the results of an extensive literature search

in the area of robust estimation techniques. He gives a descriptive analysis

of several robust estimators of the location parameter of symmetric distributions.

These estimators, chosen because they are computationAlly and theoretically

tractable and can be easily ,nderstood by a practitioner, are the trimmed and

Winsorized means, the Hodges-Lehmam estimator, .'ber's estimator, Hogg's esti-

mator and Switzer's estimator. Caso also reports the sasults of a Monte Carlo

study, based on 4200 samples eaich o.. size. 12 and 24 from five symmetric prob-

ability distributions (rectangular, triangular, noial, contaminated normal and

double exponential), of the efficiency of the robust estimators relative to the
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bost estimator for the distribution ander consideration. The results shoe that

thb robust estimators provide a hgher guaranteed efficiency thar the best

estimator for any particular distribution in the family.

Eisenhart (1972) traces the development of the concept of the best mean

of a set of measurements from antiquity to the present da4. He reports instances

of the use of the mode by the Greeks as far back as the fifth certury B. C. and

of the midrange by the Arabs aroumd 1000 A. D, The median and the arithmetic

mean apparently came into use much later, around 1600. By the early nineteenth

century, the prinriple of the arithmetic mean had become widely (though not

universally accept6d), but it met its downfall at the hands of Poisson (1824),

who pointed out that for the CAuchy distribution with p.d.f. f(x)- 1/w(l+x2 ),

-Ocx<+W, the arithmetic mean has the same distribution (for which the moments

do not exist) as a single observation. The author also comments on the theory

of statistical estimation from the time of Laplace, D. Bernoulli, and Gauss to

the present, and closes with some coaments on modern robust estimation, which

he says arose out of World War II argumenth as to whether mean deviation or

st-rzard deviation is a better measure of dispersion in gurmery and bombing

situations.

6. GUN=ICS= AND RECOM MTIaS

1. The best choices of meastwes of central tendency and dispersion and of

methods for fitting linear (or nonlinear) regression equations depend upon the

error law, i. e. the distribution of the errors or residuals. For the three

commo laws of error shown on the accoMpanying graph (Figure 1), the best

cho3cas are as follows:
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lSee glwsay of code letters foll in List of refereces.

2Tak•u fT= the medira, not from the aritlutic mean.

MISccl=vsion fo11s from the theory of power means, as dewloped by Fedmer

(1874), irunm (1P38 and others. The results are aorroborated by the following

Zitios of varianss and asyptotic variances of median, wrA, and -idrange for

the specified istributi•os:

L: A VWr M T . A Vr UN:• Wr 6N
AVar(AM) AVar (AM) Var G4 (N+l) (N+2)

2. For my other meber of the emmential fmily of error lms, with prob-

ability density f-umctiom of the form f(x)- ce-a&[x'Iu/Ojp the oest choice of

M Ue Of central tnde:ncy is the power mem of order p, with which are

associated the measure of dispersion which is the p h root of thc% mean of the

ab- - t pth powrs of deviations fro the power mean of order p and the metod

of fitting the regression equation which alniamis that measure of dispersion

of the residuals. M i p is not an integer or is•&-i integer greater thm 2,

Ws does not, lead to simple procedures.

3. R- error laws W-kch are not new& rs of the expon.tiai family, it is not

c.lear -Aat the best choices are.

4. For the sake o! simplicity, it is recommnder that the choice be restrict•

to the trene sets in paragraph (l) above. For symmtric distObutions (wfise

standardized A = about th a, a3= is equal to zero), the va-ue
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of the standardized fourth moment about the man, %4-p4/e , can be used as a

criterion to decide which of the three sets of choices should be mde. For

s4 near 3.0, the value for the normal distribution, one would obviously want

to make the choices which are associated with that distribution. For those with

substantially higher values of a4 , one would expect the choices associated with

Laplace's first distribution (for which a4-6.0) to give better results. Similar-

ly, for Lse with substantially lower values of a4 , one would expect the choices

associated with the uniform distribution (for which a4=-.8) to give better results.

On the basis of theoretical results of Rider (1957) and empirical results of

Hogg (1967), it is recommended tha% the first set of choices in paragraph (1)

above be made for 04>3.8,the second set for 2.2 <yM4 3.8, and third set for a4

< 2.2. If, as will usually be the case, the population value of a. is u•iknoa,

the corresponding sample value should be used.

S. All three of the above procedures are adversely affected 1- asymmetry in

the distributions of eTrors or residuals, which occurs if positive and negative

errors of the same magnitude are not equally likely. If the deviations from

the chosen measure of central tendency in a one-dimensional array or the devia-

tions from linear or nonlinear regression indicate asymmetry, as evidenced by

a sample value o£f , which differs si.•nificantly from zero (the standard error

of a3 is AU-i), consideration should be given to transfocming the data so as to

reduce the asymmetry as much as possible, and then analyzing the transformed

Sdata instead of the original data.

6. all three of the above procedures are also adversely affected by the pre-

sence of spurious observations whi.rh may have resulted fro g7-oss blunders or

some undetected change in t&e quantity . -ued or in the conditions of

171



inasem nt. ne adverse effect is most pronounced in the case of the pro-

cedure which is appropriate for the niform distribution, which depends heavily

on the extrem observations, and least so for the procedure which is appropriate

for Laplace's first distribution, with the procedure appropriate for the normal

distribution occupying an intermediate position. If there is any reason to

suspect the presence of spurious observations, the procedure based on the uni-

form distribution should never be used, and that based on the normal distribution

should be used only after applying one of the modern criteria for the rejection

oi outliers, most of which are based on normal theory. Outliers at ore extreme

only may produce false indications of asymmetry which vanish when they are

rejected. Cutliers at both extremes are likely to yield high values of a4 ,

which would lead to use of the procedures based on Laplace's first distribution-

after they have been rejected, procedure' based on the normal distribution may

be appropriate. In such cases, it is often difficult to decide whether the

extreme observ..wtions are spurious or whether they are genuine observation, from

a distributi(r (s~vch as Laplace's first) with a high value of a4 .

7. Much cra be learned by plotting the data. In the case of a one-dimensional

array, one can form a preliminary impression as to skewness (as measured by a 3),

knutosis (as measured by a4 ) , and the presence of spurious observations. In the

case of two variables, one can form a preliminary iYression as to whethei

the relation is linear or nonlinear; if the latter, one can get some idea as

to the type of curvilinear relation that should be fitted. After the regression

"esuation has been iitted, the residuals should be plotted against the independent

variable. The presence of any sytttematic pattern may indicate that the wrong

type of relation has been fitted. MenticA storla be made of ivo sys~enatic patterns
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I
that may occur: (1) A correlation between the independent variable X and the

magnitude of the residuals IY-Y my imiicate the need to transform the data

before analysis and find the regression on X, not of Y, but of log Y, YP, or

Y/X; iid (2) If the residuals tend to be of me sign for extreme values of

the ine ent variable and of the oppos.;'•e sign for intezmediate values, this

may indicate the need to fit a curvilinear instead of a linear relation. If no

surh pattern exists, the residaals may then be treated as a univariate array

and analyzed accordingly (for skewness significantly different from zero, kur-

tosis for which the procedure used is inappropriate, or the presence of spurious

observations which may not have been detected on the initial two-dimensional

plot). If any of these conditions is discovered, appropriate steps to alleviate

it can be taken and the resulting data reatalyzed.

8. If a function y - f(x) has been computed (or measured) quite accurately

and rounded values have been tabulated, the distribution of errors in the

tabular values is uniform between -0.5 and + 0.5, in units of the last digit

retained. This shouli be borne in mind in approximating the tabular values by

a linear or nonlinear regression equation.

$1,
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