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13 ABSTRACT -

} very important problex in mat}ematical sta.:stics is that of finding the best
linear or nonlinear regression equation o eXpress the relaticn between a devenaent
variable and one or more t varisbles. Given are observat.ons, each subject
to randos: error, greater in mmber than the parameters in the regression equation, on
the dependent varisble and the related values of the indepcadent v-riable(s), which may
be known exactly or may also be subject to random error. Related problems are those
of choosing the best measw s of central tendercy and dispersion of the observi.ions.
The best solutions of all three: probicms depend upoa the distributior of the random
errors. if one sssumes that the values -f tae indcpendent variable(.) sro known exa.
ly and thet ths erron in the obscovetiuas on the dependent variable are normally
distributed, then it is well Xmows ‘that-the mean is the best msasi.-e of ceatral
tend=ncy, the standard devistion is the best measure of ui:version, and the method of
least squares is the bus* method of fiiting a regression equaticn. Other assuaptions
lead to different choices. Most practitioners have tended to make tie assumption of
normality and not to woriy about the consequences »hien it is rot justified. Another
problem arises when the data acr contaminated by spurious ovservations (outliers)
which come rrom distributions wath d.’ferent means and/or larger standard deviations.
Mary wethods have been p..posed for rejeci:ng -utlisrs or modifying them {(or their
weights) After zimmarizing (chronslogically) the vol'mirous literature on measures of
central tendency and disper.:i.n, the methcd of leas suguares and numerous zlternatives

the treatment of outliers, and robust estimation, the author recommends a simpie and
Teasonably robust sz¢ o proced{xres.
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ABSTRACT

A very important problem in mathematical statistics is that of finding the

REOTRe

best linear or nonlinear regression equation to expresc the relation between a

S

dependent variable and one or more independent variables. Given are observatioms,

ﬁ each s'.cject to random error, greater in nmumber than the parameters in the re- ‘
gi gression equation, on the demendent wvar.able and the related values of the :
E independent variable(s), which may be kamwa exactly or may also be subjact to

g random errur. Related problems are those of choosing the best me2<ures of central

Z tendency and dispersion of the observations, The best solutions of ull three

% problems depend upon the distribution of the random errors. If one assumes that

j the values of the independent variable(s) are known exactly and that the srross

in the observations on ¢ho dependent variable ave normally distributed, then it
ic well inown that the mean is the best measure of central tendenc;, the standard
deviation is the best measure of dispersion, and the method of least sauares is
the best method of fitting a vegression equation. Other assumptions lead to
different choices. Most practitioners have tended to mske the assumption of
normality and not to worry about the conseqiences when it is not justified. An-
other problem arises when the data are on:aminated by spurious observations

{outliers) which ~cme from distritutious with different mems and/or larger

.
e e N T R x i L

stendard deviations. Many methods have teen proposed for rejecting outliers or

modifying them (or their weights). After summarizing (chrcnolugically) the

voluminous literature on measures of central tendency and dispersion, the method
of least squares and nurerous alternatives, the trcatment of outliers, and robust
estimation,the author recommends a simple and reasonably rotist set of pre.odures.

The reader who seeks a more sopidisticated solution can choose one fram among the

i1i
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many given in the literature cited or devise one to fit the special conditions

of his problem.
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1. INTRODUCTION

Since very early times, people have been interested in the problem of
choosing the best single valve (average or mean) to summarize the infor-
mation given by a number of independent observations or measurements, each
subject to error, of the same quantity. Eisenhart (1972) presents evidence
of the use of such averages as the mode (the value cccurring most frequenly;
and the midrange (the value mid.ay between the largest and smallest obser-
vations) by the ancient Greeks and Egypiians and by the Arabs during the
Middle Ages. The median (the value such that there are the same number
of observations above as belows it) and the arithmetic mean (the sum of all
the observations divided by their number) seem not to have come into use
wtil early in the modern era.

The probiem of determining the constants in the equaticn of the
straight line which best {its (in some specified sense) thxee or more non-
collinear points in the (x,y) plane whose coordinates are pairs of asscciated
values of two related variables, x and y, dates back at leas. as far as
Galileo Galilei (1632). This problem can be generalized in two ways: (1)
Instead of finding the best linear equation in two variables (best line in
a plane), one may wish to find the best linear equation in three variables
(best plene in three-dimensional space) or in more than three variables
(best hyperplane in a hyperspace);(2) One may drop the requirement that the
equation be linear, aad find the best curve in a plane,the best surface in

three-dimens ional space, or the best hypersurface in a hyperspace. Statisti-

cians spzak of these problems as those of linear and roniinear regression.

e N



The problems of determining the best average or measure of central
tendency and the best linear or nonlinear regression equation are related
to each other and to the problem of choosing the best measure of variability
or dispersion. The solutions of all three problems depend upon the distri-
bution of the errors or residuals (deviations of the observed values from
those predicted by the regression equation). The body of statistical theory
which treats all these related problems is called the theory of errors. In
the following sections we shall trace the development of the theory of
errors from the time of Galileo to the present day. We shall see that,
almost from the time early in the nineteenth century when it was first pro-
posed, the method of least squares has enjoyed a pre-eminence over other
methods in the thecry of errors. We shall examine the question as to the
oonditionst under which this pre-eminence is deserved and when other methods

are theoretically suwperior to the method of least squares.

2. PRE-LEAST-SQUARES ERA (1632-1804)

Galileo Galilei (1632) considers the yuestion of det~rmining the distance

from the earth of a new star, given observi.tions on its maximum and minimum

\

elevation (in degrees) and the elevation oi’ the pole stir by thirteen ob-

servers ut different points on the earth's surface. 1~ the observations were

exact, the distance could be determined from the observations of any two
observers, and the 78 determinations made by pairing the observers in all
possible ways wouid all give the same result. Since the observations zre
subject to error, 78 different distances of the star from the center of the

earth are found, ranging from a value less than the radius o! the :arth to

2
S
B Y mwwr{{ﬁm




w0y

R T S I S R e Y R

infinity and beyond. Both extremes are munifestly impossibie . Gelilec

stat:s {(p. 290 of the Fnglish translation): "Then these observers being

capable, and having erred for all that, and their errors needing te he

corrected for us to get the best possible information from their observa- -
tions, it will be appropriate for us to apply the winimum amendments and

smallec* oorrections that we can--just encugh to remove the observations

from impossibility and restore them to possibility °**." In this statement

we see the beginnings of the th-sry of errors, which attempts to determine

the truth from inconcistent observations by minimizing various non-decreasing

functions of the errors.

Roger (otes (1722), in his last paragraph (page 22), considers four
cbservations p,q,r and s, which may not be equally reliable, of the position
of a point. He proposes, as the most probable tru: position, a weighted
average wit: weights P,Q, R and S which are inversely proportional to the
spread of the crrors to which the respective cbservations are subject. This
proposal representzs one of the earliest attempts to determine an average
which uses 211 the observations but does not assign equal weights to all
of them.

Leonhard Buler (1749) and Johann Tobias Mayer (1750), working inde-
pendently, developed what lias come to be known as the Method of Avec_ages
for fitting a linear equation to observed datz. In this method the
observational equations are divided into as many subsets as wrere are
coefficients to be determined, the division being made according to the
valucs of (one of) the independent variable(s), those having the largest

values of this variable being groirad together, then the next largest in




e LRI &) 8 g
o S R s i AR e SRRV LSRG MR R b

TR epme o G

SHGE L e o e o Lot et e i el L

] el Pt ol gy oo b < 2
O TNERTORINT SN, o 2

R e

aother growp, etc. Then the equations in eac) group are added together,
vhich is equivalent to applying to sach subset the condition of zerc sum

of residuals inherent in the metiiod of Cotes for equal uncertainties of the
observations. The resulting equations, whose nuwber is equal tc the number
of coefficients to be deterwined, are then solved simultaneously. Mayer
gives a numerical example in which he uses twenty-seven observations on the
position of a moon spot to write twenty-seven equations each containing three
unknown quantities (the coefficients in the equstion to be fittea;, which he
divides inco three groups of nine equations each. Then he adds all the
equations in each group and solves the rasulting three equations simultane-
ously to obtain the three unlnown crefficients. A drawback of this method is
that the results depend on the way in which the observational equations are
dividzd into subsets, and are therefc.e sumewhat arbitrary and subjective.
Euler (articles 122-123 of the cited work) is also credited with being the
first to use the minimax principle (minimization of the maximum residual
error) for solving a redundant system of linear equations.

Christopher Maire § Roger Joseph Boscovich (1755) report on the results
of an expedicion undertaken by the two authors under the auspices of Pope
Benedict XIV to measure two degrees of meriaian and correct the map of the
Papal State. On pp. 499-501 the author (Boscovich) attempts to determine
the best value of the ellipticity of the earth from five measurements of
degrecs of meridi n (the new one by Maire and himself reported earlier in
the velune and four others) whicii he considers most reliable among a large
number of available measurcments. If the earth were exactly an ellipsoid

of revolution snd if the measurcments were perfectly accurate, any two
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meusurements of degrees cf scridian made at different latitudes wouid
determine its ellipticity exactly. But becavse the measurements are subject
to error, each of the 10 palrs of mcasurements yields a differant value of
the ellipticity, which is inversely proportional to the excess of the polar
degree over the equatorial. If the ellipticity is computed from the arith-
metic mean of all ten excesses, the result is 1/z55, but if the two most
discrepant values of the excess (one of which is actually negative) are dis-
carded and the ellipticity is computed from the arithmetic mean of the eight
remaining ones, the result is 1/195. Boscovich gives both of these results,
but is not satisfied with either.

Thomas Simpsaon (1756) points out that the practice of taking the mean
of a number of observations, while commm among astrcnomers, has been ques-
tioned by some persons of considerable ncte who have maintained that a single
observation , take: with due cere, is as reliable as the mean of a great
nunber. In order to refute that position, h2 d~termines the distributioms
of the mean errors of n indepandent observations from a discrete uniform
(rectangular) distribution and from a aiscrete isosceles triangular popula-
tion. He then compares these distributions with those of single observations
from the same populations, and shows that the probability is less +hat the
crror of the mean of n observations equals or exceeds a given value than
that the error of a single observation equals or exceeds the same value, the

more so the greater the value of n.

Boscovich \1757) sumarizes the measurement of a meridian arc .iear Rome
and reevaluates the data on this and previous measurements given by Maire ad

Boscovich (1755). He proposes for the first time two criteria for determining

Cadnmiod R
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the best-fitting straight line y=a+bx through three o> mcre poirts: (i1)The sums
of the pocitive and nagative residuals (in the y-directicn) shall be nuweri-
cally equel; and {2) the sum of the absolute vaiues of the residuals shall
be a2 minimm. His first criterion requires that the best-fitting straigh:
line pass through the centroid (X,¥) of the observaticms, whose coordirates
are tte aritmetic means of the x's and of the y's, respectively. The seccad
criterion is then applied subject tc the restriction imposed by the farst.
He procseds to apply these criteria to the data of Maire and Boscovich, dut
gives no indication of the method of soiving the resulting equation for the
best value of the slope b.

Simpsan {1757) reveats the material of his earlier paper, with two not-
ablie additions. At the beginning he states explicitlv for the first time the
assumptions that the error distribution is (1) symmetric (positive and

negative errors of the same magnitude are equally lixely)and (2} limited ir

*.,

extent (with limits cdepending on the goodness of the instrument and the sxkill
of the observer). Four pages of new material at the end are devoted to extension
to a continuous isosceles triangular error distritution of the results previously

given for the corresponding discrete distribution.

Boscovich (1760) gives {pp. 420-425) a geametric method of solving the
equations resuliting from the criteria stated in his earlier paper to the
problem of finding the straight line y=a+bx of best fit tc a number of noints
hich Gre not collinear, and applies this method to the same five meridian
arcs, obtaining the valve 1/243 feor the ellipticitv of the earth. This rethod
is based on the ordered slopes bl)bzlbszbfbs cf the lines comnecting the five

. . , . . . croid FF
observacicnal points RIPAEPN i=1,2, , > tc their certroid ’X,¥;

Xs

N
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According to Sheynin (1965}, three works of Johamn Heiarich Lasbert

(1762, 1765a, b), none sf which the present autir his seen, contaip: (1)
the first general cutline since Galilei (1632) of the properties of errors
of cbservations; and (2) 2 rule for estimating the precision oi xeasurements
by compzring the means taken with and wvithcut the most extreme observation.
In the first work {1760}, Lambert uses the principle of maximum likelihood,
for vhich be gives 2 graphical method of solutica; Sheynin notes, however,
that Lambert did not regard this principle as useful ix practice, aad aewer

retimned to it. In the secomi work {1763a), Lasbert staies chat the objectives

of the theory of errors are to find the relations betwees errcrs, their am-
sequences, the conditions of cbservation ond the acaw £Y of instruments. He
also undertakes a study of the errors of functions of the cbservations, and
endeavors to determive the "tne value” of the Jhserved quantity and to esti-
mate the accuracy of the obsenatins. He gives rules for fitting straight
lines and curves by dividing “i2 observaticas into groups and taking their
ceaters of gravity instead of the original observations. in the thirc work
(1765b), Lambert gives a justi Jcation for preferring a= aritimetic mean to
& single observation, a derivation of a sewicircular priobability density
function for the distribution of errcrs, and a statement cf the minimax
principle (z=inimizing the maximm residual eryor), but confesses that he does

not know how to use this principle in a general and straightforward mammer.

After sclving several probiems concernisig averages of observaticas
having discrete error distributions, vhich are reminiscent of Simpscn (1759,
1757), Jjoseph Louis Lagran e (1774) states and solves his Problem X: "One

supposas that each observation is subject to all possible errors between the

H
)
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o limits p and -G, &d that the facility of each error x, that is, the
mmber of cases in which it can ocaur, divided by the total mmber of cases,
is represented by zy firction whatever of x designatad by y; ane requirss
the probability thet the mean ermr of n osbservations shali be included be-
tween the limits r and -s." He appiies the result to two examples: (1)y=K

(a2 ccastat) [miform or rectangular distribution of error]; (y=X(p>-x9),
(-0,r) [paxabolic distribution of error]. He remarks (p. 225) that the latter
sppears to be "the simplest and most ;atural which cne can imagine.” He alsc
cmsiders a Problem XI, vhich is essentially a third examwple of Pioblem X with
v*Kk cos x, (-%/2,3/2) [cosine distribution of error]. In zach case the mxan
error of n observations has smaller dispersion {the more so the larger n) than
the error of a single cbservation.

Pierre Simon Lapiace (1774) considers the problem of dete-wining the best
average of three observations. He pruposes two criteria: (1)The average shouid
be such that it is equally likely to fall abowe or below the true value; aid
(2) the average should be such th2t the sum of the products of the errors
and their respective probabilities is a minimm. He demonstrates that the
™o criteria lead to the same average. Let X)3iX,€%3 be the three observaticns,
and let P=x,-x; and q=X3-X,. Suppose that the true value is X;*%; then the
probability [density] tha: the three observations (assumed to haw come from
a symeetric distribution) will fall at the poin-s X)1X,, and Xg will be f(x)
f(p-xj£f(p+q-x), whers f(x) is the probzbility [censity] that a single observa-
tion will fall at a distance x from the true value. Now construct a curve
whose equation is y=f(x)f(p-x)f(p*q-x). In order to satisfy Laplace's criteria
it is necessars to find the value of x such that an ordinate erected at the

abscissa x(measured from xl) ““-rides the area under thjs curve equally.

8




The solution depends, of coursc, on £(x). Liplace takes £(x)=(m/2)e I
[the density finction of what we now call Laplace's first distribution] and
finds the solution x=p+(1/m)iffi+ (1/3)e - (1/3)e ™], which zpproaches the
aritmetic sean (2p*q)/3 as »+0 ané the median as mre; for Jamce, it liss
between the arithmetic mean and the medis

Deniel Bemoulli (1778} qastions the practice common to astronomers
of rejecting coepletely observations judged to be too wide of the truth. bt
assigning equal weights to all thcse retained. He advoccates reiection of
observatiois anly if an 20cident occurred which remdered an observatiom open
to question. He proposes a semicircular distribvtion of error, and discusses
the choice of diameter. As limiting cases, the choice of an infir!te diameter
leads to takirng the aritimetic mean as the sverage of the observatioms, whiie
diminishing the diz=ter as much «s possible withurt contradict.on leads tc
taking the midrange. He prcposes what has coes o be known as the method
~f maxtamx 1ik:1ihood to determine the average of : :amber of ocervatioms.
For oe> observation,, the result is equal to the aritimetic rean. For three
observations, X X8y 42 result is greater than,equal to, or le than
the aritimetic mean (x1+ x,* 13}/3 according a&s the ==liun x, is less than,
equrl to, or greater than w.e midrange (xf <3)IZ. For more than three
observations, the method hecomes wavieldy. since for n obsesvations it requires
solution of an equation of degree (2n-1}. In cormenting on Bemoulli's paper,
Euler (1778; proposes maximizing thz sum of the fourth powers of the prob-
ability densities of the errors of the observations instead of maximizing
their product (the likelihood function). He advances certain unconvincing

argutents. for the use of his criterion 'astead ol Bernoulli's, and works
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cut two examples based on real observations. T2 rexlly vuinerable part of
Bernoulii’s method,as Isasc Todumter (1865) has pointed out, i< not the '

principie of meximm likelihood, but the rarticular iaw of probability assumed.

Laplace {1781) extends the theory given in his earlier paper to ay mumber
of chservations and geaerzlizes it to the case in which each observation nzy
have 2 different 1sz of facility of error. ‘e states trat ane cmn =2ks ia-
finitely nany choices of an awverage according as one irposes varicus criteria,
of vhich he emmerates four: {1) One n37 require that average such that the
sum of the positive errors equal the sum of the anegative er-ors 4. arithmetic
: mem]; (2) one may require that t.: sum of the pocitive errors miltiplied
; by their res—ective probabilities e¢-al the sum of the pzgative errors multi-

plied by their r:spective prohabilities; (5) one may recu.ce that the avera;e

3 be the most probabie true vialue [Deniel Bernouili's maximm likelihood o -ter-
K iocnj: or (4) one may require that the error be a minimw, i.e. that the sum
=3 of the products of the errors (taken without regard to sign) =d their respec-
tave probabilicies be a minimm. He shows that criterion (4), which he regards
as the findsmental one, is equivaleat to criterion (2). He also shows that
criterion {4) leads to the aritimetic mean, and hence agrees with criterimm
(1), when the following cmnditioas are satisfied: (1) The law of facility
of error is the same for ail the otservations; {2) positive @d negative
errors of the same magnitude are equally probable; and (3) errors can be
infinite, but the probability ¢f an error x tends to zero as |x;+e.

Jear: Bermoulii IIT (178S), in a&- article on averages, refers to the
methods of Bascovich (1757,1760; and Lambert (1765a), and gives fuller accounts

of the mewirs of Lagrange (1774) and Daniel Bernoulli (1773), the iatte.

10




differirg someséis: from the published version. The discrepancy is apperently
acoonted for by the fact that the cummavry given is 7732< om ¢ preliminary
1769 version in which a sexicircular distribution of errcr is assumed < in
the version published in 1778, but the met’:icd of maxiem likeiibood is not
employed. Instead, the following It2rative proceduze is used: First take the
eean of all the cbservations a&s the center of the scmicivcle and determine the
center of gravity of the area carcespordizs to the :I~c¢rvaticms; take this
yoint as the center of a new semicircle, and repeat the cperation until the
center of g svity and tae ceuter <f the semicircle coincide.

L@lace. (.736), given three or more nca-coilirear pairs of observations
of tio varia-les, x and 7, proposes testing ¢the adequacy of the limear relation
y=at+ix by fiist determining a 2nd b so as to minimize the maximr- ~bso.ate
deviaticn from the fitted straight line, then deciding subjectively whether
a azTiation of this macnitude is consistent with the limits of tae errors to
vhich the observatiors are susceptible. He gives a pro-edure for determining
the required values of a and . In a later paper, Laplace (1793) gives a
procedi~ hich he says is much simpler. He oserves that when the sbsoiu.e
value of the largest deviation is mads a minimm, there are actually three
observations whose deviitions,two with ane sign and one with the other, have
this sar: absolute value. He offers another meth~d of treating tie observations,
based on the criteria that (1) the sum of the deviationz should be zerc aid
(2) the sum o7 the absoiute deviations shouid be a minimur. These criteria
were first prrposed by Boscovich (1757). Lapiace develops an analytic proce-
dize Lzsed on these criteria while the ;:7oacedure used by Boscovich (1760)
was geomet..C. Lapsiace appli:c both his methods to data on lengths of degrees

of merician and on legths of the seconds pendulum, !:oth of wh.u. he “sses

11
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to detemmine the earth's ellipticity. In the second volume of his two-volume
treatise on celestial mechanics, Laplace (1799) summarizes the results of his
earlier papers, agaia proposing the same two methods for determining the
straight line y=a+bx which best fits thres or more points (xi,yi) whose
coordinates are pairs of related observations: (1) Minimizing the maximm
residual; an3 (2) miniwizing the sum of the absolute residuals subiect to the
restriction thst the sums of the positive and negative residuals shall be
mmerically eqial.

Gaspard Clair Frangois Marie Riche Promy (1804) gives 2 geometric inter-
pretation of the two methods of Lapiace (1799), applies them to actual data,
and compares the resuits with: those obtained by a third method (his own) based
a the idea that the deviation to be expected should te proportionai to the
independent variabie x, or almost so.

Jean Trembley (1804), after brief mention of the work of Lambert, Lapiace,
and Daniel Bernoulli on the most advantageous method of taking zverages of
observations, tumns to the wori of Lagrange {1774) on the same protlem. He
states that his purpose is to use combinatorial theory to obtain the sme
resuits which Lazrange obtained by the useof integral calculus. He succeeds
in using combinatorial theory to obtain results for discrete error distribu-
tions which Lagrange “und witi: the aid of differential calculus and Simpson

1756, 1757) by series expatsions. He does not treat the case of continuous
error distributions, which is the only on- for which Lagrange emplcyed

integral calculis.

3. EIGHTY YEARS OF LEAST SQUARES (1805-1384)

Adr’ = Marie Legendre (1305), while uot the first to use the method of
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least squares, was the :irst to publish it. He starts with the linear form
E = 2¢bxecys °°°, where a,b,c, °°° are known coefficierts vhich vary from
o> equetior to another and x,y,”” " are unknouns which must be detersmined
oy the condition that the value of E reduces, for each equation, to zero or a
very small mmber. He derives the normal equatimns without the explicit usc
of calculus by multiplying the linear form in the wknowns by the ~vefficient
of each of the wnknowns and suming over ail the observations, then setting ?
the sums equal to zero. If the results, when substitutc? in the nommal

TR TN N7

equations, produce coe or more errors judged tos large to be admissible, he
recmeends rejecting the equations which produced them, and determining the

mknwns fron the remaining equutions. Though he offers no mathematical proof

of the method of least squaves, Legendre makes the foliowing claim for its *
swericrity: "Cf adl th=: principles which one can propose for this object, I s
think that none is more general, more exact, or easier to apply than the one
which we have used in the preceding research, whick con;:sts in making the

sum cf the squares of the errors a minimm. By this means, a sort of equili-

prevailing, is r:ost proper to make known the state of the system nearest to

. AR
Q) ! AL

A g brium among the errors is established which, preventing the 2xtremes from
the truth." [Transla*tion by present writer of statements on pp. 72-73].
Puissant (1805} gives a theoretical disaussion ot tne m2thod of least
squares, followed by an application to the determination of tie ellipticity
of the earth fram measures of degrees ol meridian. K: mentions the method
E of conditional equztions [method of avercgec] proposed by Mayer and .- [Bosco-
é vich] method (pruferred, he says. by Delambre} which gives ''tne least errors .
¥ of latitude, half positive, half negative.” He also applies the method of

17




least squares to the detemminstion of the ellipticity of the varth from the §
langths of seconds pendulums, and compares the results with those obtsxined by g
Mathize by minimizing the maximua discrecancy between observed and fitted
values, as rroposad by Lanlacs (1799). ;
Svanberg (1805), ir the preliminarydiscomse of a book describing the :
measurenes t of 1 meridian arc in Lapland by Svanberg and three colleagues,
cowpare:, the resulvs obtained by applying the o methods proposed by Laplace
(3799) to the -dererminatin of the earth's ellipticity from fifteen measure-
ments of the lengths of seconds pesidulues and of digrees of meridian by various
observers at cdifferent latitudes. No mention is made of the method of least

squares; it is reasonzble to assume that, at the time of writing, the author
had not heard of it. The same assumption is probably walid in the case of

v zach (1805), who expressts he opiniaa that little reliance can be placed
on the aritlmetic mean when it dces not stand equally far from the extremes.

He reviews th2 work of Lawbert (1755a) and Janiel Bernoulli (1778), but
expresses a preference for the modicication of Bernoulii's procedure due to
Euler (1778), waich he applies <o data on terrestrial refraction and barometric
pressure.

Jean Bsptiste .foscph Delambre (1806-10) gives a three-volume report on a
vast undertaking, carricd cut under the auspices ~f the Acadmis des Sciences
with thz zuppo-t of the French goverar.nt, to establish the base of tae metric
system {1 meter = one ven-mi_lionth of the distan~c: from the Equator to the
North Pole) b’ measuring the meridian arc Lotween the parallels of Dunkerge
end Barcelona (over 9°). On pag> 117 of the first wlume, Delambre places

himself squarcly cn the side of those who never suppress an observation or

14




assion it a smaller weight simply because it deviates from other observa-
tions of the same kind. On pages 92 and 110 of the third volume, he compares
values of the earth's eccentricity (ellipticity) calculated from the
abservations of Delambre and Méchain by Laplace (1799), by Legendre (1805),
and by himself. Laplace [by minimizing the maximm deviation] obtained the
value i/lSO; Legendre [ty the method of least squares], 1/i48; and Delambre
[by an wnspecified method, probsbly that of Delarbre (1813)]; 1/135. How-
ever, by combining the observations of Delambre and Méchain with thore made
by Bovguer in Peru about 60 years earlier, the task force obtained the value
1/334, whic) agrees much better with results cbtained froa measurements of
the length :,:f a pendulum of known period and with those predicted by the
theory of nutation and precession- This latter value was used in detemmin-
ing the len",';:h of the standard metur.

Carl Friedrich Gauss (1806) claims priority in the use (though not in
the publication) of the method of least squaras in the following words
(p. 184): 'l still have not seen Legendre's [({1805)] work. I have purpc-ely
not taken the trouble t¢ do sco, in order that the work on my method shall
remain entirely my own ideas. Through a few words, methnd of least squarzs,

which de Lalande let fall in the last History of Astronomy, 1805, ™ arrive

at the suppesition that a fundemental thenrem, which I myself have already
used for twelve years in many calculations.and which I will also use in my
work [Gauss (18(9)], whether or not it belongs essentially to my method--
that this fundamcatal thecrum is also employed by Legendre.™ [Tianslation of
portion quoted by Merriman (1877), pp. 162-163].

Bernhard August von Lindennu (1806} svates Laplace's (1799) analytic
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form. of the method of Boscovich (1760), as well as Legendre's (1805) method
of least squares, and cpplies both in the determination of the elliptic
meridian. He does not comient as to the relative merits of the two methods,
but reports that, in at lerst one instance, they yield very nearly the same
results.

Robert Adrain (1803), apparently wna.=.c of the work of Legendre (1805)
and of the (as yet unpublished) work of Gauss, independently develops the
method of least squares and uses it to solve the following problems: (1)
Suwppose a,b,c,d, **° to be the observed measures of any quantity x, the most
probable value of x is required [Ans. the arithmetic mean of the observations];
(2) Given the observed positions of a point in space, to frind the most
probable position cf the point [Ans. the center of gravity of the observed
positions]; (3) To correct the dead reckoning at sea, by an observation of
the latitude [the answer differs from all rtles previously used, which he
hopes will be abandoned]; (4) To correct a survey. The author mentions that
he has also used the same principle to determine the most prcbable value of
the earth's ell\ipticity. These last results were not published until ten
years later [Adrain (1818a}].

Gauss (1809) ‘deduces the normal (Gaussian) law of error from the
postulate that when any number of eoually good direct cbservations cf an
unknown quantity x are given, the most prcbable value is their arithmetic
mean. He shows that the method of least squares, used by him since 1795,
but named by Legendre (1805), follows as a conseqience of the Gaussian law
of error. If one does not assume this law, he might minimize the sum of the

an powers of the errors for a=1,2,3, *°° , but Gauss points out that
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dnimizing the sun of their squares (n=1) is simplest. Letting m*= [Laplace's
pethod of situation] is equivalent to minimizing the maximm errors (one
positive and cne negative, equal in magnitude). Gauss also mentions Laplace's
other principle, first proposed by soscovich, of making the sum of the abso-
lute values of the deviations a miniimm. He was wwparently unaware that
Boscovich proposed to minimize the sum of the absolute values of the deviations
subject to the restriction that the sums of the positive and negative devia-
tions shall be equal, since he speaks of this restriction as one added by
Laplace. He does not mention the fact, though he may have been aware of it,
that this restriction results in minimizing the sum of the absolute deviations
from the srithmetic mean instead of from the median. The same is true of
the fact thet minimizing the sum of the 2n§-h— povers for m»= results in the
choice of the midrange as en average instead of the arithmetic mean.

Laplace (1810) shows that if random samples of size n are drawn from
a distribution with mean ; snd known dispersion, then the distribution of
sample means hac mean y and dispersion 1//n times that of the pareat
distribution; moreover, under very gereral conditions [which Laplace does
not state exy licitly] on the parent distribution, the distribution of sample
means tends to normality as the sample size n increases. As Eisenhart (1964)
has pointed out, these results greatly strengthen the justification given
by Gauss {1809) for the use of the method of least squares, especially when
dealing with a large number of wbservations. In a supplement, Laplace shows
that when the law of error is the normal law, his own ‘most advantageous
method" [Laplacc (1731)], the method of maximum likelihood[Bernoulli (1.778),
Euler (1778?) and Gauss (1809)], and the method of least squares [which he

introduces without reference to either Legendre (1805) or Gauss (1809)) are all
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equivalent and lesd to the choice of the arithmetic mean as the average of
& mmber of observations. '
Friedrich Wilhelm Bessel (1810) uses the method of least squares to
determine the orbit of a comet and Gauss (1811) uses it to determine the
orbit of the asteroid Pallas. Gauss obtains twelve equatioms involving six
wknown corrections to the elements of the orbit. Because the nature of the
observations which furnish the tenth of these equations does not inspire
confidence, he discards that equition and determines the unknowns from the
cther eleven. Merrimar (1877), p. 166, notes: '"We find hzre for the first
time the notation [a b= a'b'+ a"b'+ a™ b” + *** and also the algorithm for
the solution of normal equations by successive substitution, since univers-
ally followed in lengthy computations °°°."
Laplace (1§1la) considers, in his Articles VI and VII, the problem of
choosing the average to take of n observations in order tc correct an
element already known approximately. He finds that the normal (Gaussian)
law is the only one of the form £(x)= Ke-g(xz)’ where g(xz) is continuous,
for which the arithmetic mean is the "most advantageous" in the sense of
Laplace (1781). However, because of tte rudimentary form of the central limit
theorem given by Laplace (1810), choice of the arithmetic mean is advantageous
when: the number of observations is large or when cne is taking the average of
results each based on a large number of observatiors, and hence in these
cases one may use the method of least squares, which Gauss (1409) developed
from the postulate that the arithmetic mean is the best averige of a number
In his Article VIII [reprinted as Lapl-.e (1811b)], Laplace

of observations.
extends these results to the case of correcting two unknown elements [regression
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coefficients]. iis analysis is already uite laborious for this case, but

he indicates that tie results hold fur any mwber of wknown elements whatever.
Laplace (1812), in lis mommental work on the analytic theory cf proba-

bilities, siamarizes the results of his study spaming almost four decades.

Articles 20-24 of his Pook II, Chapter iv, vhich is entitled "Of the proba-

bility of errors of the mean results of a iarge mmber of observations, and

of the most advantagecus mean results,” contain most of the relevant material.

Arcticles 20 and 21, which deal respectiveiy with the correction of ane or two
clements, already known approximately, by the aggregate of a iarge mmber of
observations, and which contain Laplace's'prcof’ of the method of least
squares, follow closely the treatment of Laplace (181la,b). Article 22, which
deals with the case in which the facility of positive errors is uot the same
as that o negative ones [the distribution of errors is not symmetric] follows
iaplace (1810). Article 23, unlike the preceding ones, deals with the case
in wiiich the observations have already been made. The idea of the "most
sdvantageous' average as the abscissa corresponding to the ordinate which
divides equally the area under the [joint] probability [density] curve [like-
lihood curve] of the observations goes back to two of Laplace's earliest
mmoirs [Laplace (1774, 1781)]. The author also summarizes the results of
the supplement of Laplace (1810) and gives a more straightfcrward proof

than that of Laplace (1811la) of the fact that the normal law of error is

the only one of the form f(x)-xe'g("23 for which the srithmetic mean is

mosit advantageous. In Article 24, the author mentions various other methods
of averaging observations, including the cne proposed by Cotes (1722) and
applied by Euler (1749) and Mayer (1750), and the one based on minimizing
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minizizing the maxime deviatior, as proposed by iaplace (1796,1793). He
concludes t=at the best cicice of method depends on the lar of error whes
the mmber of oix<rvatioas is smll, but recomends the method of least sgares
proposed by legendre {1325; and Gauss (i309) for use whemever the mmber of
observatians is large. In the second supplement (frst published im 1%13),
Laplace explaias the method proposed by Boscowich 1757, 1763} [see aiso
Laplace (1793, 1799)] based or minixizing the sum of the solute values of
the deviations subject to the restriction that their algebrzic sam be zero,
to which he gives the name "eticd of situation.™ tie determipes 2 coniition
under vhich this method is preferabie t Eis o "most advamisgedus nethod,”
and explores the possibility; of finding a weighted average of the two which
is more rrecise than either.

Delambre (1813) returns to the guestion [see Delambre (1805-10)] of
determnining the eccentricity of the earth from incamsistent chservatioms o=
the lengths of meridian arcs. O page 608, he advocates a method, which is
probably the one he used in his earlier work, in the {~llowing woré:. it
seems that one should seek neither the least sum of ervors nor the least
s of squares, but the least errors, half negative, half positive.” Since
the least sum of absolute deviations is achieved when the deviations are
taksm from the median, in which case half the deviations are negative and
half positive, it appears that the author, perhaps without realizing it, is
advocating the Boscovich-laplace s2thod withou:t the restriction that the
sums of the positive and negative deviation: be equal in magnitude, which

requires that deviations be taken from the aritimetic mean rather than from
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e nodizz. O pp. 607-%3, Deimbre apuies tis sethod to the detersiaa?’cr
of T eartc"s ecoemtricity from the Delasbre-Mechain cbservatioms.

Lepeadre (1514) sets the stage for a3 guotatioe fram po. 72-73 of kis
earlier work [legemire (:805)] by stating that iaplace (15127) has fxnd by
cEsiderations tased an the calanlbx of protadilities that the meth™od of
least sgrares sould be used iz prefereace to ali ctaers to £xd the mst
exact average value of cae or of several minowm elemexts amomg all those
wiick zre given by diffevent observations. Iz sc doing, he overstates, as
sazy later writers do, the gemevality of wiat Lapiace actzally prowed about
the nethod of least scuares, weich is tiat the methwd of least sguares is
bes? for the nommal erros lad and asympteticzily best (2s T mmber of
abservatiaes n-=) for cther error imss satisfying certaiz conditiors.

Jan Frederik vam Beeck Talkoer {1815; scusses the awerape value of
2 certzin xmi2T of quantities or of separat= ooservetices. For sererai
observatioes of z single guantiiy, he advocates the use of the aritimetic
#2an. If one of the dbszrvations differs fram the mean by an amount greater
than the assimed limit of ermor, that observatice 15 discarded, and th2
aritmetic mean of the remz2ining opes ic t2ken. For observations an two
relzted quantities, he proposes twe methods of determining the best fitting
straight line. The first, which he attri%tes to Lambert (17653), imvolves
dividing the points represeating the pairs of observed {x,y) valres imto

two groups (as nearly =3 pessible 2qual in mucber), one coniaining the poinis

with the smailest abscissas and the other those with the largest abscissas,
ar joining the centers of gravity of tne two sets of points. The other
method is based on the use of the Boscovich criteria, which the author
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sarictes o Lapdzoe (755). By taking Xo or 4% ravier tham x zs the inde-
pendens variable, the arthor bvaizs coTvilimesr rigressiom eations of

&&Bwﬂzdwﬁswzﬁwmwwgﬁ
tee fovx veotix. Be adhvocztes usizg R2t power of x wizchk gives the best 5t

in tae sarse that the s of the aBscinte deristions of the coserwved poirts

w
v e

from the fitted crre is smzlilest, sshject o the axditisn tat the algebraic
sam is Zevo. It is imtewestizg o Dote that Pe mekes Do Wenticm cf the method
of Ieast sgmares, aithoygh the wsk of lependre (DA0S), Gamss (1819}, a3
Lagisce (1512) was already widely ioowem.

E Gaxss (i%i6) poirts o=t that it is oot necessery to kow  the precisian
s | hi= 1/c/Z, wbere o is the standard devistim] of the cbservatices ir arder to
aply the method of least swmazres, zd thet the relation of th: precision of
E the Tesults to tiat of the dbservaticos is indepemdest of b, but that the value
2 of B is itself imteresting =nd imstructive. We them proceeds to give varices
methods of determining k, including nethods based m the o2 root of the sur
3 of the n2 powers of the absolute errors (devistices frem the true value)
for »=1,2,3,4,5.6, znd 2n alternzte method based co the medizm N of the
E absolute values of the errors. He shows that the method bazsed cm ne2 gives
the greatest precision for samples fror a normel population, 10J observations
for n=2 yielding the same precisim as 114 fo1 p=1, 109 for u=3, 1533 for ==4,
' 178 for n=5, 251 for o=6, or 249 {[actuzlly 272--see comments 2elow] for the
3 alternate nethod based a M, but notes that the last method and the one based

E: o n=1 are arithmetically more convenient. Although he gave the correct
” mathematical expression for the probable errcr of the redian absolute error

M, Gauss made a mistake in calarlating the value of the m=eerical coefficient.




Sewersl izter atires, Imcindirg Maber (I8, Focke $E38C3-3:, o= o

(13£5), kawe giver thz onore.: vlume, TS 12 is isievestiszg I ole that whe

Srst two, writing &xrizg the iifztiae of S==s, 34 so wite=mt

|

L R T T ATy Y T ey Py PP DT Y VTN Y Pt "!ﬁflﬂ]lmlﬂm}

zis wistzke, Wik remsizs mpoorrected in Zis ooilacted worlks.

Lraiz QER Glclistes e =xmrth’s € lintcoity By U= mothod of lessr
scoares fronx Iata o the leogths of peoimiagms vidrstisy seooeds 31 SEfrent
latitndes giwen by Laplace (175€;. e omergoys the rec:its oot only sith
those ohtaired by ixpisce, Saszd on e CritsTiz of Soscoaice {ITETG iz
also it the resuits obtaizned oy that w0 ZE3ET OOTTSCing ted €7TToTS
made oy laplace. Fe fnds that most of the discrspecy behuees Lanlzss’s
results and his own is Gue to those errors. The ooTTeciss res:its of Ipiying
the Boscovich-iaplace method, besed oo minimizimg the sum of the &scivts
values of the residuals subject to the restricticn that the zipebreic su= =f
the residuzls shall be zero, differ by less thzn 1% from those cbtainzd by
the nethod of least squares. In another peper, Adrzin (18185 uvses the method
of least squares to find the diameter of the sphere (7315.7 wiles) »&ich most
nearly coincides in variows specified peculiarities with the actuial terrestrial
spheriod, given neasurenents of degrees of meridizn.

In 1821 there appeared an anonyacus paper whose authorship Cauber (18¢1a,
1852) attributes to Svamberg. The author gives a disasssion, which is as smuch
philosophical as mathematical, of the problea of finding the best average of
a mxber of observations. He distinguishes between two cases, one in which
the observations are all made (n the same identical object z2rd thus differ
only because of errors of observation and the other in which observaticns are

made on 2 quantity which is itself variable. He traces the history of the
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srcbism from the tine wen e 2riCmetic mexs ves iwed bt questism,
=vopt the periad in WBidh studemts of the ecry of procadility (ameceg
won he nextions Bosowrick, D. fermonZli, iambert and iapramge) questicres
its xe, o the tine wWem wide acrepiEaces of the metEcd of least sgmres
deveigel Ty lepemdre (1805} & Camss (1905) led to the belief that
erithoetic meam is indeed the most probable wlre. e pleads for further
sxamaztice 6f the guestice, raising chjectiors to the wse of the Fritfmetic
e wher e chsemvaticns are pet clocely bumched, especiazlly 3£ they are se

SymmeTic thet there Zve I=5F OTT oG e Side of e rithnctic mEx iam

m T2 ciher, or wEem thers ic reasee © belismve thet ¥osy ave rot 21l egelly
relizdbie. = memtias 2 mmrer of soher nossible zyerages, suin as the medimm,

the migrenpe, 22 he ayihmetic me=m of thos:t remsiring after discarding the
fone o~ more} lzvpest G smzlisst dbservetioms. He comclides thet the problem
of the Yest merege goends 2 tie law of facility of error and hence Ras muv
geoeral solutian. ‘eserthelsss, 2t the emd of the pzper be proposes za Lterz-
tive procedoe wh.h starts fram e arithmetic meat (o7 sane other reascanzble
value), then teses the reciproczls ¢i the residuals [or their sgzares) as
w2ights of the corresponding obser-atisns ané “ms obtzins a second approxi-
z=ticn, which gives new residuals, after which the process is repeated umtil

it converges.

Carss (1823) coepares his eariier formilation of the method of lcast
squzare: [Gains (180%). ~ith that of Lzplace (1812), and concludes that neither
is en'irely satisfactory. The former is based on the as.umption that the
erros of observaticn follow a normal (Gz_ssian) distribution, which follwss

fron his postulzte that the best average of thc coservations is their arithmetic
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aeam. Lapiace ssowe: thar the methad of lesst sgumares yields 3 result Wich §

is best asymptotically {in the semse of minimizirg the sam of the sbsolbite g

;4 values of the :vsidmals siact to the restrictisn that the algebrzic sum of §

ey the residuelc s=311 be zevo, waen the mmber of coservelions is sufficiently i
1argz), whaterer the disiriierion of errozs [ender very gemeral (oxditions %

i a0t stated by ieplace]. That left 2 sap, which the sxthor nov Praposes to ;

i 111, %or 2 case of 2 <2I] or aocerate Ember of observetioms whose errors ;

'i ars not rcuaally distributed. Gasss begins by comparing the situaticen to z

2 game in which there is io gain to bope for, bet 2 1673 to fesr, the problen ,

A being how to minimize the loss, shich is assumed to be the same for positive

. a loss fimction proportional to the sum of the absolitle values of the errors,

’” asLz_;laedid,or*oﬁzsmoftheirrxgposcrs,nbeingapositiveem

ke integer. In the Gerxn susmmary, but ot in t:z Latin text, Gawss points out,

H zs Laplace had aiready done, that the larger the =xponent n becames, the

nearer cne comes to the situation whers the oSt extreme errors alame serve

| as a measure of precision. Gauss chooses m=Z, iiich besides being the simplest

_, . of 1*s type alsc possesses certain desirable properties [see Gauss (1816) for

, & proof, assuming a normal distribution, of these properties, which unfor-

. | tmately for his argment, do not hold for certain other common Jistributionsi.

g

On the basis of this choice he justifies the use of the method of leact
squares, whatsver the rumber of observatiomns and whatever the distributim of
their errors. Gauss' second exposition sesus to the present writer t2 be no
morz satisfaciory than Lis Ffirst. In each case he starts from a postulate,

piausible but not universally valid, which leads .pexorably to the fsregoae




oconclusion. Nevertheless, LiS argzment apparently convinced kis ccritempor-
aries, since the literature of the next few decades includes mamy writings
ae least sgares but only a few an rival nethods.

Lopustin-louis (axchy (1824), given & large mmber of cbservations of
two varizdles, x and ¥ (points in the xy-plane), seeks to determive the values
of two elemerts (coefficients ip the linear regression egstion y=a+bx) such
that the absolute value of the largest recidual is a minimm. He adcomplishes
this sinizizatica by means of an iterative scheme. He shows that 2z line in
the plan may be such that cne, two, or three of the given points deviate
fram it by the marima amont, but that for the line which is the wmigue
solution of the problea there are three such points with the maximmn 7esidizl,
two residazls of one sign axd ope of the other {cf. Laplace (1793)]. He proves
four theorexs concermiag tihe possible system »f vzlues of the elements, and
gives a geometric interpretation of ezch in temms of the mmber of facss, edges,
axd vertices of 2 comvex polyhedrom. 7This paper is 2 cordensation Of a ==moir
vresented in 1£14; the entire memwir,«hich was published izter [Cavchy (1831)],
includes a generelizaticn of the theory in two directions, comsidering the
case in which the functioa of the elements which represents the errors is a
power scries and the mmber of elements exceeds two. Cauchy shows that the
mmber of residuals whose absolute value is equal ¢c the maximm always
exceeds by zt least one the mmber of variable elements.

Two mexoirs by Poisson (1824,1829), large parts nf whioy 2re reproduced
in a later work [Poisson (1837)] are, according to Merriman (1377), pp. 175-
176, a commentary on the fourth chapter of Laplace (1812). Merriman quotss
Tochunter (1863) to the effect that Peisson confines hims<1f to the case in
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which ane eleqens is to be deterxine: from a larpe mmber cf observaticss,
bat Jreat~ it in a more generai mamer than iLaplace, dropping the asswptions
that positive and megstive er:ors ave equally likely a2 that the 1law cf
facility of error is the same for every chservadi-a.

Jaaes ivory (1825,i%76) gives four demenstraticms of the method of least
sares. His first paper ic aivided into three parts. In the first par* he
gims two of kis demonstrations, neither of which is based ax the theory of

~ob@ility, wiich he cansiders ircelevant. In the secoml mart, he discusses
the proability of -.ro:5, failing to recognize that the probability of amy
deEnite zorr- ror a continexss distribution msst br an infinitesimal, and
w&55ng no éi.zinction boteeen true ecrors and sesiduais. In the taird part,
he attempts - =now that the method of least squares cannot give the most
advantageous or prozable results umless the law of facility of error is the
noreal 3 ¢ x)=c IS e page 165, he poies the follcving statemert
concerning the demcestratiza of Lapiace (i812), Book II. Ch. iv, Art. 20:

" °*° wiatever mirit it .y hzve in other respects, [it] is neither more nor
less zeneral *.on the other solutions of the problem.” Later authors have re-
garde. Ivery's demonstrations as unsatisfactory, and the presen:t writer shares
thic opinion. Glaisher {187Z) has -malyzed Ivery's criticism of Laplace,
whicn b regarded as a resuit of Ivory's failure to 'mderstand the demonstra-

ticm of Tapiace. 7t appears to the present writer that Glaisher was guilty

of the same fauli. In modern terminsiogy, what Lapiace actually proved in

the article ciced by Tvory [cee ai,o lzplace (1810,1811a)] is that the method
of least squares is asympcotizally most zdvantageous for an’ error distribution

which is well cnough behaved so that its mean is asyrgtotically nommally
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distribeted. He did not claim o have shown that it is mst advantageous
{best} sor ay finit2 number of observations from a non-normal ervor distri-
Sution, bt recomme.sed it as advantageous [good] and cowputstionally
convertent whenever the mmber of observations 5 large. Ivory's —econd paper
contains bis fourth demomstration, regardi:d by i1lis (1844) as no more
satisfactory and by Merriman (1877) as still more zbsurd than the previous
coes.

Grorg Wilbheta Mimcke (1825) gives an exposition of the method of least ;
squares based lzrgel:” on the demenstration cf Gauss {1823). He proposes the
use of the aritimetic mean >f the observations remaining after those farthest
from the mean have been excluded. 3Sauss (1828) gives 1 method of solving the
normal ~quations which arise in carrying out the method of least squares.
Whittaker § Robinson (1924) state that this method is substantially equivalent
to reducticn of a quadratic form toc a sum of squares.

Carl Friedrich Havber (1830a) extends the work of Gauss (1816,1823) on
the estimation of the precision of observations to the case of s observations
arising from populations having (possibly) different dispersions. The situztion
ir which all come from the same population is included as a special case. He
consicers estimators based on the square root of the mean of the squares of
the error.-,the mean absolute error, ard the median .bsolute error. lie cam-
pares the precision of these estimators when the law of the facility ¢f error
is the normal (Gaussian) law. The mathematical expressions which he obtains
agree with those given by Gauss (1816), as do the numerical results for the

root-mean-square error and the mean absolute errir. For the probable error

of the median absolute error M he gives 0.78671 w/v¥s (where w :5 the true

value of M), which he approximates by 0.7867IM/vs, without mentioning that
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Gaues incorrectly calculated the mmerical coefficicnt (for which he gave
the correct mathematical expression &?Ea“z,where 0=0.4769363) 1 » vo 0.7520974.
{Hauber's value is correct to within a wn:! in the fifta decimal place.]
Hauber states as an advantage of the median absolute error that it is iande-
pendert of the law of facility of error. This is true in the sense that it
is unbiased for any law cf error. As for most so-called ''distribution-free"
estimators, however, *ts precision and its ei{ficiency relative to other
estimators do depersi on the law of error. Hauber (1830b) extends the results
of Poisson (182%,1129) to the case of two or more quantities to be determined.

Haber (1830-32), i~ a six-part article, discusses the theoy of averages.
In the first three parts he deals with arithmetic mzans, both population means
(expected velues) and sample means, along with the root-mean-square crror and
probable error of the latter and various applications. In the fourth he dis-
cusses cases in which the values of the quantities of interest are neot given
by the observations, but functions of these ¢uantities. In the fifth and
sixth parts he deals with methods of solving the set of observational equa-
tions, grearer in number than the number of quantities to be determined. He
gives three methods: (1) the method of averages, which he attributes t«
Tobias Mayer; (Z) the method of least squares; and (3j a hybrid method in
which the number of equations is reduced by Mayer's method to a manageahle
number (still greater than the number of quantities to be determined), which
are then solved by the method of least squares.

C. von Riese (1830) summarizes the results, of the paper hy Gauss (1823),
which contains Gauss' second "proof' of ihe method of lexst squares, and the

1828 supplement thereto, which contains iis algorithm for solving the nowmal
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equations. The author mentions the earlier "proof’ by Gauss (1809) based on
the postulate, which voa Riese attributes to Cotes (17227)" that the arith-
metic mean is the best average of a mmber of observations. He also refers
to the work of Laplace (1810,1811a,1812) on the méthod of least squares and
on the rival method besed on minimizing the sum of the ‘absolute errors, as
well as the earlier work of Boscovich (17577) on the latter mathed and the
articles of J. Bernoulli (1785) on various averages and of ‘Muncke (1825) on
the method of least squares. | ’
Johann Franz Encke (1832-34) gives an exposition, in three parts, of
the method of least squares. The first part contains the "proof" by Gauss
(1809), an attempt by Encke to demonstrate that the arithmetic mean is
necessarily the best average of a mmber of observations, a discussion of
weights and probable errors, and two tables of the probability iﬁte'gi'él
(2/»")] 2dt In this part, the author also gives a proof, which he credits
to his colleague Dirichiet, of the expression for the probable error of the
median absolute deviation, which Gauss (1816) had given without proof; ‘He
gives the value of the numerical coefficient in ﬁds‘éxpresﬁdn’h# "0.786716
[correct to six decimal places], as compared with the values 0.78671 [Hauber
(1830a)] and 0.7520974 [Gauss(1816)]1, neither of which he mentions,as well

as a numerical exammle of apnlication of this method to actual data. The

sacond part of the article contains Gauss' algorithm for the sol‘ution of

norral equations and his method of determining weights, while the third deals
with conditioned observations. -
Cauchy (1837) states the following problem (pp 460-461 of the English

translation): " °*° I suppose that a function of x represented by y is developed
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in a converging series arranged according to the ascending or descending powers

of x, or according to the sines and cosines of ap arc x, or, more generally,
according to other fimctions of x which I shall represent by ¢(x) = u,x(x = Vv,
#(x) = w; so that we have (1) y = au + bv + ow + °°° where a,b,c, **° are
xostant coefficients. Now the question is, 1st, how many termms of the second
mesber of the equation (1) ave to be employed, in order that the difference
between it and the exact value may be very small, and capable of being compared
with the errors to which the observations are liable; Zadly, to determine in
numbers the coefficients of the terms retained, or, in other words, to find

the approximate value just mer.cioned." The data consist of n values of y

represented by yi(i-l, *** ,n) and the cerresponding values of xi(and hence
of W4V 0¥ ***) velatad ly n equations (2) Yi® aut b1v1+ cywW;+ **t. The
authn proposes successive approximations based on neglecting all but one, two,
“** terms cn the right-hand side of equations (2), the process continuing
wntil the residuals are comparahble to the inevitable errors of observation.
Cauchy's method must be considered as one of the alternatives to the method of
least squares.

Gotthilf Heinrich Ludwig Hagen (i837) advocates the use of the method of
least squares [Legendre (1806), Gauss (1809,1823)], which he explains in
considerable detail. He does mention, however, the use by Prony (1804), before
the method of least squares was known, of the method of Laplace (1799) based
on the criteria of Boscovich, as well as the work of Lambert (1765a). He
also discusses the suppression of outlying observatious, which he strongly
opposes unless there is some reason other than the fact that they deviate

considerably from the remaining ones, and the assignment of weights to
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individual observations. Friedrich Wilhelm Bessel (1838) discusses the prob-
ability wéf errors of observation and the method of least squares as developed
g by Laplace (1812), Causs (1823), and others. He shows that the normal law

: of ervor is not to be regarded as an a priori rule, free from exception, and

throws new light on the conditions under which it holds. Bessel and Johamn

Jakoo Daeyer (1838) join Hagen (1837) in taking a firm stand agains: the

rejection of outlying observations, which had been advocated and practiced

S

by such earlier authors as Boscovich (1755, 1757), Lambert (17603,1765a), and
q Legendre (1805). S. Stampfer (1839), on the other nand, has no qualms about
' rejecting observations. Of nine determinations of the ratio of the lengths
'l of the Vienna fathom and the meter, by various methods, he rejects the two
smallest on the grounds that both were obtained by comparisons with the
French standard half toise, which leads him to suspect a constant error in
; the standard half toise. He is still not satisfied with the result, and
proceeds to discard also the smallest of the remaining values, apparently
L for no other reason than its discrcpancy from the six still remaining.
J Christian Ludwig Gerling (1843) gives an excellent treaticnt of the method
of least squares. He recommends great caution in discarding observations,
" but says even so that '"there remain observations which we must discard after
the fact, because we hold it to be more probable that a gross blunder has
* occurred than that an unavoidable error can produce such a large deviation."
; William Fishburn Donkin (1844) starts from the assumption thac the
weight of an observation is proportional to the square of its precision
{?‘f {(inversely proportional to its variance) and, as one would expect, he reaches
the same coaclusion as the one Gauss (1823) reached by assuming a squared
g 32
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error loss function, namely that the method of least squares should be used,
independently of the law of facility of error. Robert ieslie Fllis (1844)
examines in detail the demonstrations of the method of least squares by
Gauss (1809), Laplace (1812), Gauss (1323) and Ivory (1825,1826). He concludes
that laplace's objecticn to Gauss' first demonstration, based an the postu-
late that the arithmetic mean is the best average to take of a maber of
observations, is justified. He regards Laplace's demonstration and Gauss®
second as somewhat more satisfactory, but endeavors to show that none of the
three tends to prove that the results of the method of least squares are the
most probable of all possible results. He finds Ivory's demomstratioms, shich
are not based on the theory of probabilities, not at all conclusive,

Lambert Adolphe Jacques Quetelet (1846) gives an elementary exposition
of the theory of means and of the laws of error, in which he advocates use
of the interquatile distance as a measure of the probable error. He uses
this method of estimating the probable error of the right ascension of the
Rorth Star [repeated measurements of the same quantity] and cf the chest
measures of Scottish soldiers [measurements of related quantities].

Augustus e Morgan (1847) gives an extensive treatment of the method
of least squares which consists largely of a translation of and comments on
the treatment of Laplace (1812). In cases in which the relative precision
of the observations is in doubt, he proposes an iterative procedure in which
one makes the best possible initial estimate of the weights, finds the most
probable result, then adjusts the weights accordingly, and repeats the process
until assumed and deduced weights agree.

Sir John Frederick William Herschel (1850) gives a demonstration of the
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sethod of least sqrares, sixilar ton 1t of idwaiz (FA0H), tased ax the
assumption that the compcmer?s of esTor iIn D crixgual directis e
independent. Iz comentizg o= the wovk of Quetelet (1345}, he questiars
neaseres of Scotch scldiers and the Peights of Fremch comscripts, poimtimgz
out thar kis values & not agree Wil: those of either the itmetic meap
or tte median. Ellis (1850} giscusses Ferschel’s proot of the method of
leas t sqraares, Wiich he regards as wesatisfactory, and explairs ad defends
laplace’s methnd. Dockizn (1553) offers some critical emetis o the Teory
of least scuares, and especiaily ce the remarxs of Ellis. Dorckin szrs thar
Herschel's proof "should be treated with: respect™ znd that the methnd of
ieast sguares msy be used, if for oo cther reasm:, Decanse it is 2 very

Jules Biecayme (18Z) reviews the development of the theory of least
squares from the early work of Legemire (1835), Gzuss (i2063,1823) and
Laplace (151123,18iZ). e comsiders t'= modifications and generalizations
recired when the observations zre not 211 eguzlly precise and when not one
but several variasbles are to be estimated, with particular emphasis on the
precision of the results of apriying the method of least sguzres to these
cases. A later paper of Bienayné (1858) i- practically identical with this
one.

Benjamin Peirce (1852) proposes the first oljective criterin for the

rejection: of observations, based on the principle that observations in

question should be rejected when the probability of the system of errors when

they are retained is less than that of the system of errors obtained by their

34

TERMSED v WY FAAALLEY el S T TSR




: N . . 1
e ERWETIE M A u.mb\w" TYOU TN RSN

ey
S

- o

PR

.

BRIy o DO Bt ITR O e o M - D NN bt e

rejectiar mitipiied by the zsubabdlity of mebitg exacIiy s mamy abmereel
ckseryetiews. The detsils of tiis Titeriar and others sropesed br later
mfres Wik be anitted. Eider (1S55) fiyves ar excellier suamery of Toss
Tropesed P o L@ time.

Caxdry (3853a) mefmtairs that s mechod ¢ Ivvevpolatior (Caxchy (RESD}

cx= be tS2d tr Cetrrrine Sererii umkoWe rztities from 2 redImart Sys?em
of enutics, Witk reszits megTiy 25 LTS 25 Dy the metiad of least
smaares. Zierzme (1855:) arpmes, towerer, thar e Go methods e cmplets=ly
Ffferere and eper Tt 2 artradicrticn exists. Oy (335D) medimtzins that
in mecy itpestigatiors his metiod of Iztsrpolztion ic preferglc to the aelPod

6% l=zst symres. Candy (3833c) <lains thet Eis methnd is the shortest, amd
that the nethod of least smxres gives the most proceble rrsulls anly ader

certzin cmditians, wrich zre, actording v Oy (A8334,e), thet the lx
of facility of error is the same for zil the errors, tost mo 1iETS can be
zssigned ‘o the megnitude of zn eryor, 2nd thet the proosbility of am error
is proporticaal to A Cauchy (1853%) shows that the most probable
vzlues mav sometines differ from those found 5y the nethnd of least squares.
Bienayné (183%) reviess some of Czuchy's artizles [Czuxhy (183%,e,f)] znd
mzintzins that the nezn of the sun of squzres of the errors is umder all
ciramstances a measure of precision of the observations. Cauchy (1853g)
shows that the system of weights which mzkes the largest error to be feared
in a mean as small as possible often differs considerably fra= that givea by
the method of least squares.

Joseph Bertrand (1655) offers certain historical and critical remarks

on presenting a copy of his translation into French of the Latin memoirs of
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Causs. v Sngiish travsiztior 3w Sale F. Troeger f1S57) Ias cinge Deem
prerace’ from Sevtrand’s Fremch Trasiztion

Seriais fpothorp Gocld, Jr. (RI53) giwes mbles for Feirre’s Crizeviom
Wwich rTe nove extersive rtaEr s of Felrce (FISZ) and Pncinde two move
cigrificart Ggnres. e zewrcis FelrTe’s Tup eampies, and Ir ove case o
chres Ther oriy are chwemEriar sSoril te refectsl, Mieress Feirce referied
w; toseeyer, Rder {IG35) Ras poimted oot that meither result ie trosTwooThy
simce Conid tses Peirce’s imoorrect sEive of Che stamdeTd Jeviafiom.

Fowkrey tlond {i853) afvmcetes, T 2ffect, e wme of e M e Im

Fveraring nereoToiogicel chwerrstigms. Tiis amrape is STIIT mead e nets-
orolopists todsy, the so-cziled rear &zily temperaiive Deimg e aritThmetic
rean of Toe Zighest zE lowest remperzinoves recocried during z 24-homr period.
Gecrpe Zidweil L3ry {I336}, 2ver stmiing the mapers of Feirce (1837}
= Codd (1533) o Peirce’s criteriar Sor the relectiap of Gobtfu ciserve-

- - - .

Sans, samerizes mis ormrlnsions 25 followsT 1. The methemerical theory of

probsbilities f2iis in 211 guestions =piring to errors of extreme megnitide.

-~ -

2. ¥o amsideretions of the megnitide of residz] errvors per se will fistify

ws in rejecting z result. 3. ¥e zre justified in rejecting 2 result iy
when, from the Dest estinzte thet we czn form of the extent of actiom of the
veTicis czuses «hich czn proXxce error, we find thzt the combinztion of those
czuses o error czrwt possibly produce the discordance in guestion;--4. And
wlen w2 perceive that sther czuses may have intervensd, whose ratine is such
that <hey cammwt be recognized as ocarTing in the ordinarv series of
obcervaticns.”” Joseph Winlock (1%36) answers 2irv's criticisms of Peirce’s

criterion, sumring up the czse in its favor as fcllows: "Pegarding the
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. proeiility of an erver 3 3 Smctiaw of its magritde, we e emabiad o
_ Sl the probw (3HIr of ar srstem of residal erroes, and By the cmparisw
of the systems o= =TToUs beStre mc 2fter rejection ir accoedamce Witk the
rule of the Criteriom, we car decide, wWithim safe Iiwits, whetier the

3 chsesyatians. ™

Josegic Petzval (125F) mlds that the mettod of least scmeves is mot
E aplicable in optics, Decase of the fril== of the underlying assmptiars
TaEt ositive and megative errors of ezl mepmitnde FTe egrzlly prohadle anc
*; teaz al2 Gservptiors e made uer exzlily fporadle colitiaes by egmlly
{3 the secord of thess sccmprioms. B proposes instead Wit he calls Tthe
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nethod of mmericlly gl mxine zud Hrine” iz which the nerinmm of the
equivalert to miniwizing the sam of the 22 powers cf the residmis, wers
# is g inteper which tends ™ infinity 2s 2 Iimit.

C. C. von Andrae (1857) studies the probiem of choosing cze, twn, thres,
""" of a series of n egually relianle observstioms to be used inctead of all
n observatims in determining the most advantageous value of the measured
qaantity. In choosing z single observatiom, he uses the principle [Laslzce
(1799)] of miriwizin; the sur of the absolute valies of the errors, dropping
the Boscovicn condition that ‘he sums of positive and negative errors be
aqual in magnitude. Hence he Chroses the median, which he defines, for a
sample of size n, as the &m c¢rdered observation, where mn/2. By analogy,

if s observations are to be used, he chooses the mﬁ ordered observations
Py
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25wy (E3€3: zives z Ziscpesias of Bie nesiod of I2pst sraes, wWiioot

Tiose Iz ks erciier peper [Airy I5SE1Y an the rriectior of Subtfd ciser-

Tarioms.
Cozrive & Schooyr (2351 giver 2 free tramsiztiom imto Emgplish of the

ey of (adey (5337F op Tocy™s metiod of incerpolatior. ¥Wlliam

Pire
Crormwod Setiery (1387 zzpiifes thic method t. actumzl coservatians im the

Giiian Comwenet (1585} ,in == zopendix to the seom wiume of his

treatice m 2etra oy givSs z CEtziled disamsic of the meThoS of least
sozzres. Toe zuthor Hsoxmses Peirce’s critericm for the rejectian of Aobe-

' chseriEticms =23 pTOposeS Ris owe criterimm for rejecting z single

ctservetim. The lztis- is tesed  the principle thet, sizmce the mmber of

errors mmericzily greztsr tHeEn o5 tnzwaeexaec:.u- to occur in = cbser-
vaticas is 2T o{t)ét = my(e), *ere ¢lt)= € 21257, an coservatica
Geviating from the mezn by @@ amont greater thzn oo snould be rejected if
the quantity o5 (<} exceeds */2, zince suck an error “will have 2 greater
probebility agzinst It thzn for it1.” The appendix and related tzbles were
reprinted separztely in 1868.

fgustus DeMorgan (1864) declares that the arithmetic mezn is the best
average of a serics of observaticns because the most probabie rtesult i< the
arithmetic meun plus corrections of which we have no knowledge, either as
to sign or value, and no seans of getting any, so that there is no reason

for supposing that the true valie lies on one side of the arithmetic mean
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~sthey ttar the other.
Issac Todixmter (19657, Im Eis histrey of pachetility. summrizes the

ok cf vYarios eriters o the theory of errors, inclacing Sapsar (1737),
Lagrmge (1576}, D. Beraoclli (1773), Ecler (1778). J. Berscndii (17%3), ad
Srabe:g (1835), as well ac merces writizgs of waplace (3774,1781,:735,
1799,1%12,1511a2 5,1312). The las* foor of these deal primrily with the metiod
of Jzest syares, but Todaxter makes it cleqr that Laplate aever entirely
abamdceed same of His earlier methods.

Earc James Stone (186%5) Zfizes viat ke c2lis a wdolaes of carelessmess,
=, ¥rich, for a ziven observer &< 3 given class of cbserveticns, exsresses
the zwerape rzaber of cbservarices fuch that person n2kes with cne mistake.
Stone proposes a2 criterion for rejsction of observations wrich, vith »=2n,
where n is the maber of dbservatiars, is egivalsnt to Coauyemet's.

Eineln Joréam (1859) extends Gauss' table of fectors for computing the
probable errcr and its probable mcertainty from ths o root of the mean of
the n' powers of the absciute values of deviations from the true value w
through n=10 and corrects Gauss® factors for the nedian, vhich »e shows to
give a slightly less (rcther than more) precise estimate than ths other asthod
for ns5.

Todumter (1865) develops Laplace's treatment of the method of lea't
squares aly] demcastrates that some of the results which Liplace obtained for
the case of tw~ eluments hold for the case of any mmber of elements.

Cleveland Aboe (1871) gives & historical note on the mythod of least
squures in which he points out thzt although Legendre (180%) was the rirst
te publish the method and Ganss had uses it since 1795 (though he did not
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publish it until 1809), it was independently developed by Adrain (1808)

in America. The author reprints a portion of Adrain's original investigation,
gives interesting biographical notes on Adrain, and summarizes the results

of two of his later papers [Adrain (1818a,b)] in which he applies the method
of least squares. G. Zachariae (1871) gives an excellent textbook treatment
of the method of least squares.

James Whitbreud lee Glaisher (1872) gives a history of the method of
squares, including an account and a critical evaluation of the contributions
of Legerdre, Adrain, Gauss. Laplace, Ivory, Ellis,De Morgan and others. He
offers an alternative to the rejection of observations in the form of an
iterative procedure in which the weights of the vbservations are adjusted
after each iteration as proposed by De Morgan (1847). Last, but not least,
he proves that if errors are distribtuted according to Laplace's first law
[f(x)-ﬁn/Z)e"m'XI], the gedian of the observations is the most probable true
value, He does this by showing that the probability [density] of the true
value x is proportional to exp [-m(the sum of the absolute values of the
deviations of the observatioﬁs from x)] and that that sum is a minimm when
taken about the median [the middle one of an odd mmber of observations or
any value between the middle two of an even numbér of obser.ations].

Friedrich Robert Helmert (1872), in the first edition of a book 1 the
adjustment computation bv the method of least squares, gives a proof, ¥ (lowing
that of Gauss (1816), that the probable error can be cetermined more precisely
from the mean of the squares of the errors of a number of observations (assumed
to have come from a normal distributicn) than from the moan of the absolute

values of the errurs. In later editions, he .dds a section on the theory of
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the maximm xror 2d its =2 in the exclusion of chsszvations.

Claisher 71873) zizborates <r e altscmative o ths rejecticn of dhser-
vatioes proposes in his earlier roper [Clzishes 11577)). He 3iso exzrines the
criterion proposes by Stone (13625 ror e Tzjaction of Znlying dbservations,
and criticizes it on O groomis: 3 Amy rejection critericn besed on the
spraition of Z= validity of the aritheetic me2» is incmsistent; (2) Even
among <zn criteria Stone’s is p32 the 107l desiredle ane and is imwractical
because of the practical impossibiiity of determizang the valo of & it
being assumed that the cbserver makes on: mistake in r obser «tioes. In two
papers published the szwe year, Stwme (1873a,b) justifies the use of the
arithmetic mean and the normel lax of error on the basis of tie axie mat
all direct mezsures ars of equal vzive and exzwines in detail the objections
raised by Glzisher (1873) to the author's criterion [Steme (3868)]. Be points
out that his criterion is relatively insensitive [robust, as mcdern statisti-
cians would say] to moderatelv larpe variations in n. He insists that even if
Glaisher's assumptions axe graated, Glzisher has not maximized the right
expression, and hence has not found the correct weights for the observatioms.
Further notes by Glaisher (1874) and Stone (1274} appear to have generated
more heat than light.

Todmumter (1873) reviews the work of various authors, especially Boscovich
and Laplace, on methods used to find the equation y=a+bx of the best-fitting
straight line involved in the determination of the eilipticity of the earth
from measurezents o: dagrees of meridian and lengths of a seconds pendulum at
wideiv separated points on the earth's surface. He writes: "T presvme that

neither of the metnods which Lapiace [(179Y)] discusses would now be practicaily

41

TL A ¢+ WM,




used in such czlculations, but the method of least squares™.

Custay Theodor Fecmer (1874) shows that, wvhile the sum of squares of
deviations is z minimm whern taken from the aritimetic mean, the sum of the
absolute deviziions is 2 mirimm when taken “rom the median. He makes a :
reaark which 1eads to the couclusion that he was unasare that the latter '
fact was knovn to von Andrae (1860) and was proved by Glaisher (1872). He :
also discusses power means, which he defines as values such that the suws
of powers of deviatiszas are minimal when taken froe them, and probability
la:;s under which such power means are valid averages.

Hervé Mguste Etienne Albans Faye (1875) discusses various justifica-
tions of the method of least squares. He points out that Gauss and Legendre
deduced it from the sccepted opinion that the most probable value of a
quantity of vhich a mmber of observations have been made is their arithmetic

mean, while Laplace and others justified it on the basis that the errors are
due to 2 iarge mmber of causes each ceatributing only a smz11 part of the
resultant error. He insists that the iaw of probability of errors camnot
be established a priori, ¢» the basis of a hypothesis or of a generally
accepted opinion, in spite of the extreme eiegance of the proof of Gauss,
but must be established a posteriori, from a direct study of the facts. He
gives an example in which, because of a systematic error, the method of
least squares gives an extremely misleading result; quite rightly, however,
he does not blame this result oa the method but on th2 observations. Hermann
Laurent (1875),commenting cn the same question, says that the Gaussian law
of error should never be accepted a priori; on the contrary, one orght to

reject it, because it assigns positive probabilities to impossibly large errors.




‘o is the astronomer”, he inquires, "who makes an error of 361 degrees in
wegsuring sn angle?” He makes a study of 1444 measurements of an angle of
approximately 15°, and concludes that the observations cast doubt on the
exactiiess of the Gaussian law, and that therefore one ought to rzject the
method of 1 ¢ squares when one has only a small number of observations.

Francis Galton (1875) proposes the use of the medizn as a measure of
central tendsncy angd of the difference between the nadian and cne of the
quartiles, or thc average distaince between the median ond the two quartiles,
as a measure cf dispersion (probable error).

Truman Henry Safford (1876) gives rules fcr good observation based on

the methoC of least squares, and hints for abbreviating computations. Mcnsfield

Merriman (1877) gives a chronological bibliography, containing 408 titles and
covering the jeriod 1722-1876, on the method of least squares and rival meth-
ods, with valuable histurical and critical notes.

Benjamin Peirce (1878) gives a fuller explanation of the criterion which
he proposed over a quarter of & century earlier {Peirce (1852)]. Charles A.
criott (1878) makes favorable remarks on Feirce's criterion, based on twenty
years of use in various investigations.

Francis Ysidro Edgeworth (1883a) questions the umiversal and indiscrim-
inate use of the normal (Gaussian) law of error i the following words:
"The Law of Error is caducible from several hypotheses, of which the most
important is that every measurable (physical observation, statistical number,
&c.) may be vegarded as £ functicn of an indefinite number of elements, each

element being subject to a detemminate, although not in gencral the same,

-

law of facility. Starting from this hypothesis, I attempt, _irst, to reach
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the usual conclusion by a path which, slightly diverging from the beaten

road, may afford some interesting views; secondly, to show that the excep-
tional cases in which that conciusion is not reached are more important than
is commealy supposed". (pp. 300~301). Later in the same paper (pp. 305-306),
he writes: "I submit, in the absence of evidence t¢ the contrary, that non-
exponential [non-Gaussian] laws °** do occur in rerum M, that the'ancient
solitary reign' of the exponential [Gaussian] law of error should came to

an end." Edgeworth (1833b) begin= a paoer on the method ~f least squares

with a philosophical discussion of the differences between the approaches of
Gauss and lLaplace, between most probable results and most advantageous results,
and between minimizing mean square errors and mean absolute errors. He pro-
ceeds to the question of how to treat outlying observations, He proposes a
method of weighting the observations which is the same as that proposed by
Stone (1873b). In a later paper [Edgeworth (1§87a), p. 373 (footnote)], he
acknowledges Stone's priority, of which he was unaware at the time he wrote
this paper,

The year 1884 saw the publication of two books on the adjustment of
observations by the metho” of least squares. Both authors aiso consider the
question of the rejection of outlying observations. Merriman (1884) advocates
the use of Chauvenet's criterion, but he also discusses two other criteria--
Peirce's and a new one based on Hagen's deduction of the law of error, More-
over, he states (p. 169): "In general, it should be borne in mind that the
rejection of measurements for the single reason of discordance with others
is not usually justifiable unless that discordance is considerably more than

indicated by the criterions. A mistake is to be rejected; and an observation
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giving a residual greater than 4r cr 5r [r = probable error} is to be regarded
with suspicion, and be certainly rejectad if the notebook shows any thing
wfavorable in the circumstances under which it was taken', Thomas Wallace
Wright (1884) advocates rejecting an observation whose residual is greater
than five times the probable error (or three times the mean square error); in
the second edition [Wright § John Fillmore Hayford (1906)], this rule is
restated in slightly modified form,

4. THE AWAIENING (1885-1945)

Edgevorth (1885) discusses the choice of measures of central tendency

: A
B A O Y

and of vsriability. He insistc that, while the arithmetic mean and the root-
' mean-square deviation from it are most accurate for samples from a normal
population, other measures (median and mean absolute deviation or quartile
deviation) are more conveniert and little less accurate, while for other popu-
L2 lations they may be more accurate as well as more convenient. With regard to
measures of variability he writes (pp. 188-189): '°°‘When the observations

reclly conform to a [normal] probability-curve, there are several formulae

‘:,!'". for the modulus [c=cvZ, where o is the standard deviation] which are little

inferior to the above [root-mean-square error] in cespect of accuracy, and

.
-

two of them which are superior in respect of convenience. If we call the

G

preferential method thc method of mean square of errors, one of the rival

o

methods might be called the method of mean first power; the other the method

DT TS S
PR ANARITS

of mean zero powers. ‘°° [The last] method is that described by Mr. Galton

[(1875)] " *; the same in principle as that which was employed by Quetelet

[(1846)]. The essence of this method is to notc the points between which
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are comprised quarters (eights or other fractiors) of the total number of
observations, and then tn equate the distance thus given by observations

to the corresponding multiple of the modulus as assigned by theory. For
example, if we take two points so that between them there occur half the
total number of given observaticns, and outside each of them a quarter of
the total number, the distance between these two points ought theoretically
to be equal--is equatable--to twice the modulus x 0.476.'" On pp. 190-191,
Edgeworth discusses the use of the median. He finds that the fluctuation
[the square of the modulus c(or twice the variance cz)] of the distribution
of medians of sets each consisting of m observations is equal to the recip-
rocal of Zmyz, where y is the maximum ordinate of the probability curve
divided by its area.

Edgeworth (1886) explores in detail the relative advantages of the
arithmetic mean, the median, and the mode, with less attention given to
other possible means. On the grounds of precision, he declares the arith-
metic mean to be superior to the others for the normal law and others near

it, but says the median is better 'when the apex of the curve is very high

and its extremities very much extended." (p. 167). "In respect of convenience,

[the Mode] has u considerable advantage over the Arithmetical Mesn and a
lecs marked advantage over thu Median.'' (p. 168). The author makes passing
referernce to the use of the quartile deviation by Quetelet (1846) and of
quartiles and deciles by Galton (1875) in estimating the probable error, and
to the method of situation aind the most advantageous method [Laplace (1799,
1812)].

Simon Newcomb (1886) considers the problem of combining a number of
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! observations of the same quantity so as to obtain the best result. He raises
= two objections to the criterion for rejection of doubtfu! observations pro-
posed by Peirce (1852}: (1} It disregards amy a priori knowledge of the
probable error of the cbservaticns and seeks to determine it from the cbser-
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vations themselves; and (2) It does not take account of the fact that the

L
‘cl\‘".‘,,{“

a priori probability of an observation varies from one observer to another.

Given n observations assumed to have come from a generalized law of error

i

vwhich is a mixture of m normal laws, with proportions p; having precisica

. =
b
:

hi(itl,...,m), Newconb says the best result is a weighted mean (with the
weights proportional to the probabilities of the hypotheses on which they
depena) of o weighted means of the observations, each mean being obtained

by making a hypothesis concerning the distribution of the m measures of pre-

cision among the n observations.

Edgeworth (1887a), in discussing the diversity of methods for the treat-
mcnt of discordant observations, makes the following statement (p. 365):
; "Different methods are adapted to different hypotheses about the cause of a
5" discordant observation; and different hypotheses are true, or appropriate,
according as the subject-matter, or the degree of accuracy required, is

different." He specifies three hypotheses and divides the different methods
of treating discordant observations into four groups. He rates the first

three types of method on their appropriateness under each of the hypotheses,
deferring discussion of the fourth method (use of the median instead of the

arithuetic mean) to a later paper [Edgeworth (1887d)].

Edgeworth (18387b) drops Boscovich's Condition (I) [that the sums of
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positive and negative Gaviafias be equal in magnit:de] and uses only his
Condition (II) {that the sum of the absolute values of the deviziions be a2
zinimm], which, as we have already seen, rezrires the choice of the median
rather than the aritimetic mean. Edgeworth gives the following description
(pp. 279-282) of his procedure: "It is proposed here to treat those difficul-
ties in the reduction of observaticms which are peculiar to the case of plural
quaesita. °°° Comsider, first, the simple case in vhich there are anly two
~uaesita. Let the given equations be of the form a1be1y~wi=O,azwazyﬂdézﬂ,&c.,
where Wy sWy, &c., are observations subject to equal error. According to the
usual procedure we obtain for one locus {of the sought point xy} the'normal
equation' al[alx+b1y-w1]¢a2[azx&bzy-w2]+ &c.=0; which may be thus interpreted.
Substitute any assigned value for y in the original equations. Of the n values
for x thus presented, the (weighted) Arithmetical Mean is given by substituting
the assigned value for y in the 'normal' equation. The analogous procedure

is to find a locus such that if we substitute any assigned value of y in the
original equations, the Median of the corresponding n values of x may be given
by the locus. The series of points, which in the case of the Arithmetical
Mean: is obtained by a single stroke of amalysis. must, in the case of the
Median,be traced one by one. That is, we must substitute in the giver equa-
tions sucressive values of y(e.g. 0,6,28, §c.), find the Median value for x
corresponding to each assigned y, and plot the series of points. A second
Median Curve is afforded by the Medians of the y components; and the inter-
section of these Median Curves gives the Median Point. The method is perfectly

general. As an illustration we may take the case of two quaesita, x and y,

the equations fur which involve only one of the variables. The Mean loci are
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in this case lines parallel to the axes. And it foliowes from cmsiderations
which I haze elsavbere [Ecgesorth (1887d)] put together, thzt the Medim,
& compared vith the Aritimetical Memn, z2ffords a solution mearly as good
when the typical [normal] probability-carve prevails, aad better when the
observations are 'discordant'”. The a:thor (p. 2806) calls the Bescovich-Laplace
method [Laplace (1799), Sec. 40] a "remarkable hybrid between the iethod of
Least Squares and the Method of Sitmation”, because Boscovich's Candition (I)
requires that deviations be taken from the aritimetic mean,as in the method
of least squares, instead of froe the median, as in Edgeworth's versiom of
the method of situation, where that condition has been dropped.

Edgeworth (1887c) writes as follows (pp. 222-223) concerning the method
developed in the preceding paper: "The method may be tims described in the
case of two varisbles, x and y. Find an approximate solution by some rough

process (such as simply adding together sevzral of tie equations so as to fom
two independent simulitaneois equacions). Take the point thus determined as s
new origin, and substitate in the n (transformed) equations for one of the
variables x a series of values t §,+ 2§, §c. Corresponding to each of these
substitutions we have n equations for y. For each of these systems determine
the Median according to Laplace's Method of Situatjon. This series of Medians

forms one locus for the sought point. A second locus is fewd by transposing
X and y in the directions just given. The intersection of these isci is the
required point. The method may be extended to any mumber of variables. °°° The
advantages claimed for the new method are that, while in the typical case of
the laws of facility being all [rormal] Probability Curves, the generalized
Method of Situation is only slightly less accurate, and considerably less
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laborious, tim the Metiod of Lesst Scumres; iz the sbror=al case of Discordmit

bservations the proposed wthod is nec axly zore cuvemient, but better. It
is much to be wished that same practical istronomer would give this method 2
trial by employing it in some laboriows and importast caloculation .™

Edgewcrth (1837d) comsiders the questicn of the choice of means in the
special case of discordmnt cbservations. (n p. 270 he writes: "The criterim
wbether the Median or Arithmetic Mean is the better reduction is presumably
the character of the correlated Probability-Curze. The reduction which corres-
pands to the smzller Hodulus is presumably the better; since thus we obtain
a smaller ‘probable’ error """ . Which cf the reductions will have the smsaller
Modulus will depend on the character of cur faciiity-curve. For [normal]
Probability-Curves, and presumably functions in their neighborhood, it is shown
by Laplace [(1812), Supplement 2] that the Arithmetic Mean has the advantage.
But for curves whose head reaches high, while their extremities strech out
far, the Median has the advantage. Now the grouping of Discordant Observa-
tions is apt to assume this form. Accordingly the Median is proposed as the
Mean proper to this class of observations. If we have been decsived by the
appearance of Discordance *°° and the facility-curve was realiy a nommal Prob-
ability-Curve, yet we shall have lost little by taking the Median instead of
the Arithmetic Mean. For the error of the former is of the sawe order as
(only 1.3 [times] greater than) the error of the latter. And, if the observa-
tions are really discordant, the derangement ue to the larger deviations will
rot be serious, as 1t is for the Arithmetic Mean.' The author gives three
nuerical exarmples.

Edgeworth (1887e) gives two tests of symmetry, one based on a comparison
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of the seams of the positive aad asgxtive deviatioas from the sritimetic
=m aad the other o 2 comperisoa of the zrithmetic ean aad the sedim of
the cbservaricas. The critical valie witich he gives for the latter test is
erTomets ; since the srithmetic e ad tre medin zre correlated, the
varimce of their difference is a0t the sim of their warimees, but that sm
decressed by twice their covariance.

. H. Turmer (1837) comments as follows (pp. 456-470) on the method of
Edgeworth (1887b,c): “"Edgeworth invites attention tc a method of reducing
ckservations relating to several quantities, wich he has sugpested as a
substitute for the ordinary procsss of the "™Method of Least Squares’. I have
applied this method to an example for a particular case of two warisdles, and
venture to offer the foliowing remaris and suggestions for cnsideraticn.
[Here follows a quotz<ion from Tdgeworth (1887c).] Some of the labeur of this
process, ¥ sometimes the preliminary search for an approximate solution, may
be avoided by the use of a graphical method [which the author describes]. °°°
In the mothod of least squares the normal equations have a wmique solution;
but the intersection 5f two broken lines may be a sevies of points, snd the
two median loci may also have a common portion. The solution then becomes to
some extemt indeterminate. °°° It is possible that the mmoer and distribution
of these points of intsrsection afford real information as to the value and
accordance of the observations. But, in practice, a single solution, although
its singularity may be same hat fictitious, is preferable to a variety; and
tmless some additional criteiion for extracting a single solution from the
median loci can be obtained, it is to be feared that we have here a somewhat

serious objection to this method a. e scor »f convenience. ‘" * Mr. Edgeworth
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clains a5 advamtagss for the new method that (1) It iz co=siderakly less
laborious tham the ¥Method of Least Sgares. (Z)In the case cf Miscorixt
Gbservations 1t is thecretically bettar. So far as wy slight experience en-
tities me to express a& opinion aa these points, I soonld say that (1) is wexy
dottiul. In trying 2 mex method mach time is liable to be wasted; but there
woalld, I imagine, never be gxilt= the same strzightforsardness aboat the mew
metnod virich maXes the metaod of least sgmares so easy, althougt: somesiat long.
(2) is somevbat counterbalanced by the Fzilure to give 2 wnique soluti™.
Sdgeworth (183%5) restates (p. 184) the method he proposed a yvear earlier
[Edgeworth (1887b,c)]: "A substitute ‘or the Method of least Squares has been
proposed by me, based upon the follo. ng princinle. The data being of the foru

alxo-’oly °°C - =0 azxibzy °c -v_,_-o, ic., (here ¥a,¥5, &. are observations
of equal worth), a2 solution is obtainable by taking x,y *°" such that the sua
of the residuals (the left-hand members of the above written equatioms), each
residual taken positively, should be a winimm. In a footnote (pp. 184-185)

he writes: "This rule is derivable from the hypothesis that the law of error,

the facility-curve under which the chservations range, is of the form y-(h/Z)e'hx,

x taken positively in both directions [Larlace's first law of error; see
Laplace (1774)]. But the use of the rule does not coemit us to the assumption
of the hyputhesis. The Method of Least Sum is in this respect exactly on a
par with the Method of Lsast Squares. The rule of the latter Method is--Deter-
mine x and y so that the sum of the squares of the residuals may be the least

possible. This rule is derivable from, and specially correlated with, the
hypothesis that the law of fecility is the [normsl] Prcbability-curve. But it

is thought legitimate by Laplace and other eminent authorities to apply the
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Tule eve lere the bypothesis is zot assmed. No dmibt the use of either
method divorced from the law of facility appropriate to it is open: to logical

other.” The author contizoes (pp. 123-13€): "The point thus designated must !
be an each of tw, o7 more, loci amaiseous to the Normal equatims of the :
ordingry method. ioconding:r the Iintersection of the Mediazn loci® was at

senw o mmeeames v

first proposed by me a5 the sciution. ot ¥r. Turner [(1857;] has shown that
these loci are 3pt to hz=ve in common, ot anly severzal points, but evea lines
and spaces. ~°° In this eveat commn skse tezches us that we should 2dopt |
the nmiddle of the indeterminate tract as the best point; and this presumption
is confirned by a formal calcuistion of utility such as Lzplace [(1312)], in
the simpiest case of a single wnimown quantity, has employed 5 discover the
'most advantageous point’.” Having thus disposed cf one of Turner's criticises,
Edgeworth endeavors (samewhat less successfilly, it seems to the present writer)
to answer the other, namely that the methcd is not less laboricus than the
methcd of least squares, as Edgeworth [(1887b,c)] had asserted.
Joseph Bertranu (1888a) states that the Gaussian law of provability is
the only one for which, among several observations made upder the same condi-
tions, the mean value is the most probable. Given any other law for the
probability of errors,it is possible to specify the combination of a series
of measurements which will give the most probable value. The converss is not
true; given a combination of observations, in most cases there is no probability
law for which that combination gives the most probsble value. For example,he says,
there is no probability law for which the geometric mean or the harmonic mean

of z number of observations is the most probaple value. The latter part of
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the paoer deals with the rejection of cbszrvetions, for which Bertran
(18225) proposes a new critericn. The zuthor repezts and elaborztes oo these
results in kis bock [Bertrand (18%9}).

Faye (1288) points cut that the greztest discrepancy from the meza of
a set of observations is not likely to be counterbzlzced by 2 discrepancy
of nearly the same magnitde but of opposite sign, and hemce valess the mmber
of observations in the set is very large it is likely to have an indue
influence on the arithmetic mean, so that the arithmetic mean of all the
observations is not the rost provable value. Given forty observatioms, he
coaputes the arithmetic means of the largest and smellest observatians, the
second largest and second smzlilest, and so on (the midrange and the quasi-
midranges). The former has the value 4.315 and the latter range from 3.815
to 3.995. He attributes this discrepancy to the fact that the largest devia-
tion from the arithmetic mean, 6.35-3.93 = 2.42, is not matched by a comparable
deviation in the opposite direction. He therefore recommends reiecting the
largest observation, which changes the aritlmetic mean from 3.93 to 3.87, a
value which he considers to be iore probable. In general,however he holds
that observations should be rejected only if they are considered doubtful
at the time they are made, or at least before any computations have been
made. Otherwise the calculator can too easily make the results agree with
his preconceived and sometimes erroresus opinion.

Galton (1888,1889) advocates the use of the median as a measure of cen-

tral tendency and the quartile deviation as a measure of dispersion. In the

latter publication, he writes: '"The median, M, has three properties. The
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first follows immediatrly from its construction, namely, that the chance is

amlme,ofagpmr;mhmmmeinﬁzmmﬁagor
falling short of M. The second is, that the most probable value of ay
previcusly unknown measure in the grow is M. °°° The third property is that
vhenever the curve of the Scheme [of distribution] is sy:metrically disposed
on either side of ¥ °°°, then M is identical with the ordinary Aritimetic
Mean or Average.” . 41). "As the M[median] aeasures the Average Height of
the curved boandary of a Scheme, so the Q[quartile deviation] measures its

gZeneral slope. """ Our Q has the ~nther merit of being practicaily the same
as the value vhich msthematicians call a.> ‘Prcbable Error' " ." (p.53).

Eranmel Czuber (1890) advocates the setia ~f maximm likelihood to find
the most probable system of values of m wnknosn elexents p,q,r, °°" in the law
of error ¢(X) of specified form, given that 315%p,""",X, a¥e the errors of n
observations. He attributes this method to Gauss (180%), but we hove already
seen that it was used even earlier by Lambert (1760) and by D. Bernoull:
(1778). The author enumerates three conditions under which the usual method
of finding the maximum likelihood estimates, based on solvirg likelihood
equations formed by equating to zero the partial derivatives of the likelinood
functam 9=¢(x1)¢(x2)"’¢(331), fails.

J. E. Istiemne {1890) endeavors to prove that '‘the best value to adopt; as a
measire of a quantity of which experience has furnished values tainted by

acci lental errors, is, in every case, the median value'"." In Chapter I, he

proves the following theorem (p. 241): 'The most probable value, detemined
by the rule of the median value, is that for which the arithmetic sum of the

dev: ations is a minimum.” Chapter II is devoted to the proposition that the
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rule of the median vzlue is indeperndent of the law of errors and should be
aplied to the exchision of every other ruie, shatever be this 1»:. Chapter
II1 deals with the copsequences of the 1law of the median value, of which the
author gives sewerza!, inciuding the use of the method of least first powers
in solving n inconsistent equations in & winowns (no=j. An example dealing
with artillery fire is given in the appendix. The author is, of course, in-
correct in declaring the wmiversal superiority of the median, but no more so
than earlier authors who insisted on that of the arithmetic mean.

Czuber (1891aj gives a detailed study of the theory of linear observa-
tional errors, the method of least squares, and the theory of errors in the
pPlane and in space. The first six sections of Part ! deal with laws of error
[with particuiar emphasis on the nomal (Gaussian) iaw, though Laplace's
first law and others are mentioned]; the early work of Simpson (1756,1757)
and Lagrange {1774) on the advantages of taking averages, of Laplace (1774,
1781} om his "most advantageous method", and of Daniel Bernoulli (1778) omn
the method of maximum likelihood; the work of Leg {1805), Adrain (1808),
Gauss (1809), Laplace (1812), and later writers on the method of least squares;
and the problem of the choice of means and its relation to the choice betweer
the method of least squares and rival methods. Sections 7 and 8 deal with
estimaticn of the precision of a series of observations from the trix errors
and the apparent errors (residuals), respectively. Section 9 compares the
(normal) error law with experience. Section 10 dezls with the smallest and
largest errors in a set of observations, and Section 11 deals with the treat-
ment of outlying observations. Purt 2 is concerned with the details of the

computational procedure for the method of least squares, and Part 3 deals with
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the theory of errors in the plane and in space.
Czuber (1891b) examines the rule proposed by Estieams (1890) and its
consequences, and shows that the median end the method of least absolute first

powers, far from being valid whatev~r the law of error, as asserted by Estieme,

are, as pointed out by Glaisher (1872), tied just as fimmly to the first law
of error of Laplace (1774) as are the arithmetic mean and the method of lesst
squares to Laplace's second (Gauss') law.

P, Pizzetti (1892) gives a useful summary of worl: to date cn the theory

of errors, with a bibliography of 503 items, but presents few ir any new results.

Edgeworth (189%), in comnection with & study of avereges of correlated
ooservations, proposes two principles of wider application: '"(1)knen observa-
tions are combined according to a system of weights different from thut wnich
is known to be best, it is in gemeral advantageous to reject a certain class
of the given observations. (2) When, as usual, the observations range under
@ [normal] probability curve, the median m corrected by the quartiles q; and
) affords a fornula for the Mean, viz. (1.2m + qp* qz) + 3.2, which is more
accurate than that method of combining such observations which has hitherto
been supposed to be the most accurate, viz. the Arithmetic Mean. The principle
nay be applied with great ease and advantage to Discordant Observations.! The
autior's statement that his new formula gives a result more accurate than the
arithmetic mean for observations from a normal error law is incerrect. The
source of his error lies in the assumption that the quartiles are independent
of each other and of the median, whereas they are actually considerably corre-
lated, as Karl Pearson (1920) has pcinted out.

P. J. Ed. Goedseels and Paul Mansion (1893) discuss the theory of erross,
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Goedseel: observes that in reality no one has ever established the method of
least squares in an absolutely cenclusive manner, and that one should avoid
assigning too great objective value to the results to which it leads. Msmsion
is of the same opinion. In reality, he says, the only definitiom which oo

% can give of accidental errors is this: They are the errcrs which are elimi-

i nated by the method of least squares. But it is just to recall that Gauss took
care to express himself with precision on what is arbitrary in the theory to
which he gave such a perfect form. The great advantage of the method of least
squares is that it allows the comb.iation, in a siuple and reasonable mamner,
& of the results of observations of wnequal value in a condensed form. This

é discussion is of interest because the budding dissatisfaction with the method
7 of least squares expressed here later led to substantial contributions by the
’% authors to the theory cf rivel methods.

; Karl Pearson (1895), in comnection with the first exposition of the

/,: Pearson system of frequency curves, discusses the relative positicn of mean,

| ; median, and mode of sar “es from a Pe.rson Type III distributicn. He finds tuat
i the median lies about one thiré of the way from the mean to the mode.

.

L]
<7 geiienbade s
D Ny

Henri Poincaré (1896) discusses the theory of errors and the aritbmetic

rean, justification of the law of Gauss, errors in the pousition of a point, and

= ..

the method of least squares. He expresses doubt as to the universal validity
of the Gaussian law of exror (and with it the arithmetic mean and the method
of least squares),but offers no specific altermatives. Twice he raises the
question as to whether cne should reject outlying cbservations, but offers no
definitive answer.

Fechner (1897) discusses various laws ot exror and various averages
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{aritheetic mean, median, and mode), as well as the largest apd smaliest
values, thuir difference {the range) and their sum (twice the midrange), and
ccopares theoretical and observed valves for several of these statistics.

Czuber (1899) appiies the thecory of probapility to the results of measure-
ments. He discusses the arithmetic mean and other averages, including the
mediw and the power means [Fecdmer (1274}], and the estimation of the pre-
cision of a series of observations on the basis of the true errors. He mentions
thc meth - or situation of Laplace (1793,1799), based on the two conditions of
Boscovich, as the first attempt at a systematic solution of the problem of
solving an inconsistent system of observational equations. He devotes several
sections to demonstrations of the meilivd of least squares based on the work
of Gauss (1809}, Laplace (1812), and Causs (1823) and related material. He
also discusses measures of precision based on apparent errors and differences
of observations, the comparison of theoretical and observed distributions,
tie largest and smallest errors in a series of observations, and the treatment
of outlying observations.

Goedseels (1900) mentions three methods of solving a set of simultaneous
equations greater in number than the number of unknowns--the method of Tobie
Mayer (1750), the method of least squares, and the method of Cavchy (1837).

He makes a detaiied study of the method of Mayer and establishes the four
following propositions: (1) The method of Mayer .sed in our days differs
appreciably from the original method; (2) The modern method is susceptible to
an important simplification; (3) There is room for returning, in certain cases,
to the primitive procedure; (4) Both the primitive and modern procedures offer
certain advantages not previously pointed out (especially in .he case of only

two unknowns).
59
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A. A. Markoff (1900) devotes a chapter of his book on the calculus of
probabilities to the method of lieast squares.

. Goedseels (1901) proposes a simplification of the method of Cauchy (1837)
‘ i for solving a system of m linear equations in n unknowns, m>n. Goedseeks (1902)
3 proposes an application of Cauchy's method to least squares.

z Czuber (190%) discusses the theory of erroxs of observation, inciuding laws
A‘ of error, various measures of precision (including the mean absolute error, the
p square root of the mean square error, the probable error, the nt root of the
mean of the m powers of the absclute value of the error, and the mean differ-
:‘- ence of all pairs of observations), and the method of least squares.

G J. C. Kapteyn (1903) develops the theory of skew freguency curves fram a
‘ different pcint of view than that of Pearson (1895). He discusses the medisn
: and the method of calculating it for his theoretical curves, and compares its
, values in several axamples with those of the mode and the arithmetric mean.
) ? S. A. Saunder (1903) advocates the use of Peirce's criterion for the

,; rejection of doubtful observations, for which he gives a new teble of critical

k.

values. He also discusses the alternative to rejection of observations pro-

g posed by DeMorgan (1847) and Glaisher (1873).
, { Mamsicn (1906) sumiarizes important contributions to the history and

the critique of the method of least squares contained in extracts of letters

and papers of Gauss in the eighth volume of Gauss‘ collected works (published

'\; in 1900). He makes brief mention of the theory of combination of observations,
| introduced by Laplace (1786) [see alsc Laplace (1793,1799), in which the

N" * largest error (in absolute value) is smaller than for any other system. He
i : noints out that Gauss (1809) criticized this method on the grownds that it

“: uses for the final calculation of the unknowns only a mumber of equations

"
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equal to the mmber of unknowns; the other equaticns are used anly to decide
the choice which one should make.

Goedseels (1909) proposes two methods, which he calls the most approxi-
wative method and the method of minimm approximation, for solving a system
of n aquations in p unknowns (n>p). In the most approximative method ome
assumes that the intervals (Ai ’Bi) containing the respective residual errors
r, are knwn, and seeks to determine for each umknown (say Xx) the smallest
interval (1,S) containing that unknown, i.e. an interval such that for every
value of x less than I or greater than S, one or more of the residues T,
lie outside the given interval. If all observations are equally trustworthy
and if positive and negative errors are equally likely, then A= Ay * =
Ah= A, B1= B2= *tt o= Bn= B, and -A=B=M (say). Consider a series of equations
in a single unkinown of the form x=m, having the same approximation M, and
suppose the equaticns are arranged in order of increasing values of m: x=iity +
T, X =Wt 1y, M, X =M. Then the most approximative value is the
midrange, (m1+ mn)/ 2, and the approximation of this value is the difference,
M- (mn-ml)/z, between the given approximaticn, M, and the semirange,(%-ml)/z.

When M- (mn-ml)/z-o, the midrange (m1+ nh)/z is the exact value of the unknown.

When M- (mn-ml)/2<0, the dz%ta are gbsurd. When the limits of the errors are
not. known, Goedseels advocates use of the method of minimm approximation,
which is the same as the method of laplace (1786,1793,1799) in which the
maximum absolute deviation (residuzl) is minimized; in the case of a single
unknown, the result (average) obtained is the midrange. Goedseels discusses
various other methods, including the method of least squares and the erpiri-
cal methods of Mayer (1750) and Cauchy (1837). In summary, he states that
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he prefers the most approximative method when the limits of error are known
and the minimum approximation otherwise, especially in very important
questions, even though the calculations become quite laborious for p>2; in
questions of lesser importance, he says the method of least squares or even
oile of the empirical methods may be used %o save labor.

Charles J. de la Vallée Poussin (1909,1911) states and proves the
following theorems concerning the minimum approximation, which ascume that
any n of the first members of the system of equations (1} a;x +biy+"'+zip
m = 0(i=1,2,""*,m; m>n) fom a system of linearly independent expressioms:
I. The values of theunknowns which provide the minimum approximation M of
the system (1) give at least n+l residues attaining this limit M in absolute
value. II. The min‘mun approximation and the corresponding values of the
unknowns, for a system of n+l equations in n unlknowns, are obtained by general
formulas. III. If m>n+1l, the minimum approximation of a system of m equations
in n unknowns is that of a certain system of n+l equations which are part of
the proposed system. One can deduce from these theorems an iterative pro-
cedure for determining the minimum approximation.

Goedseels (1910) summarizes the results given in his book [Goedseels
(1909)] on the most approximate method, tue method of minimm approximation,
and the method of least squares, and applies all three methods to a mumerical
example involving the compensation of the coordinates of the vertices in
a topographic survey. He insists that the method of least squares is not
as good as the other two methods, even in the case of normally distributed
errors, for which it gives the most probable values, since these values are

inadmissible if they lie outside the interval {I,S) of the most approximative
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pethod. In the mwerical example, he first ascertains the the maximm error
e specified by the observer is admissible, i.e. that it is not less than

the minimm approximation m. Then he proceeds to cawpensate the z-coordi-
nates of the data points by the most approximative method and by the method
of least squares. He rejects the results of the latter method as inadmissible,
since the z-coordinate it gives for one point liss cutside the interval given
by the most spproximative method. Finally, he ignores the maximm error
stated by the observer and compensates the z-coordinates by the method of
minimmn approximation. The resulting values lie within the intervals given
by the most spproximative method, and the author shows that this must always
be true if any admissible value e>M (where M is the minimm approximation)

is designated as ¢ by the observer.

Goedseels (1911) calls attention to an interesting study of the method
of winimum approximation, including a simplification of that method, proposed
by de laVallee Poussin (1909,1911). He proposes, in turn, two other sirpli-
fications applicable both to that method and to the most approximative method.
These simplifications apply only when there are only one or two rnknowns,
of which at least one is positive. The latter is really nc rastriction at
all, since the data can be transformed so that st least cae unknown is positive.
The restriction to one or two wnknowns is less sericus than one might think,
since one always proceeds by successive elimineiion of the unknowns, and the
number of them is always eventually Jzss tlan three; moreover it is in the

final stages, where this condition is satisfied, that the methods in question

become most complicated. In an abstract reprinted as a footnote on pp. 351-

352, de la vallde Poussin states that, with the simplifications proposed by
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himself and by Goedseels, the calculations for the method of minimm approxi-
mation are even simpler than those for the methed cf least squares.

G. Udny Yule (1911), in a textbook that has gone through many editioms,
discusses averages fincluding the median (Mi) and its relation to the arith-
metic mean (M} and the mode (Mo)], measures of dispersion [the range, the
mean deviation about the median, and the quartile deviation Q-(Qs-Ql)IZ, where
Ql and Qg are the quartiles], and measures of skewness [(M-}0)/S = 3(M-Me)/S
(Pearson's measure, where S is the standard deviation) and (Q1+ QS' 241)/2Q].
Re also discusses the standard errors of quantiles (median, quartiles, deciles,
etc.) and of the semi-interquartile range (quartiie deviation Q), as well as
the correlation between the errors in two quantiles.

L. Tits (1912) states and proves three theorems which embody further
simplifications, beyond those of de la Vallee Poussin (1911) and Goedseels
(1911) ,0of the most approximative method and the method of minimum approxi-
mation. He uses these theorems to simplify the sviution of a numerical
example given by Goedseels (1911).

Edward Lewis Dodd (1913) points out that Czuber (1841} recounted many
of the attempts that have been made to relate tho principle of the arithmetic
mean as the most probable value with the Gaussian probability law, but quoted
from Bertrand (1889), p. 180, an example to show that this law and principle
are not strictly compatible., The author endeavors to show this incampatibility

by other means. Specifically, he shows that, under certain conditions, the
quadratic mean (root-mean-square) of two measurements from a Gaussian distribu-
tion has a greater probability than the arithmetic mean: also, there exist

positive values of b (less than unity) for which the probability of bm is
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greater than that of m (the arithmetic mean). The probability of the median
of three or more measurements from a Gaussian distribution is, however,
always less than that of the arith tic mean,the ratio of probabilities
approaching v2/x £ .7979 asymptotically.

Edgeworth (1913) gives empirical confirmation of Pearson's rule as o the
relation between the crithmetic mean, the median, and the mode. He camputes
median, quartiles, deciles, and mean deviations for sums of 25 and of 16 random
digits, and compares them with the theoretical values.

H. M. Goodwin (1913) discusses the rejection of observations, for which he
gives a new criterion, which involves computing the arithmetic meesn and the
average deviation, omitting the doubtful observation, and rejecting that
cbservaticn if its deviation from the mean is greater than or equal to four
times the average deviation.

Mansionn (1913) sumarizes the work of various authors on three methods
applied to the theory of errors, whick involve minimizing respectively the
largest error, the sum of the absolute values of the errors, and the sum of
squares of the errors. He points out that these methods result in choice of
the midrange, the median, and the arithmetic mean as the respective averages;
also that an order-preserving (or order-reversing) transformation does not
affect the method of minimm sum of absolute values, since the median of the
trancformed function is the transforming function of the median of the original
data, but does affect the other two uethods.

David Brunt (1917) discusses the law nf error, making reference to the
work of Gauss, Todhunter, and Glaisher. He deduces the law of error [Laplace's

first] which results from the assumption that the median is the most probable
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value. He also deals with the rejection of observatious. He appears to
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favor use of the criterion of Wright § Hayford (1906), but he also states
that Bessel opposed rejection of any observation umless the observer is
satisfied that the external conditions produced some unusual source of error.

Warren M. Persons (1919) gives reasons for preferring the median to amy
other average of link relatives in computing indices of seasonal variation.
P. J. Daniell (1920) discusses various measures of central tendency and of
dispersinn. Besides the usual arithmetic mean, median, standard deviation,
mean numerical deviation, and quartile deviation, he also discusses discard
averages and discard deviations. Since the middle observaticiis (in order of
magnitude) contain most of the information about cen*ral tendency and the
extreme observations contain most of thc informatiow about dispersion, he
proposes discarding some proportion (say 50%) of the outer observations in
computing averages and of the imnner observations in computing measures of
dispersicn.

Karl Pearson (1920) points out that Edgeworth (1893) was in error when
he stated (p. 99, footnote) that the displacements of the two quartiles and
the median are independent; they are, in fact, considerably correlated. The
duthor determines the standard errors of quentiles of a sample of size N
(assumed large) from any known population and the correlations of pairs of
such quantiles.

R. M. Stewart (1920a) raises two objections to Peirce's criterion for
the rejection of doubtful observations. First of .11, the principle as stated

by Peirce is erroneous when n (the number of observations to be rejected)is

greater than unity. Even for the case n=1, Peirce's argument is based on an
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are less than the value obtained from Peirce's criterion, no observation
should be discarded. The author remarks that Chauvenet's criterion for re-
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.;. jection of a single observation also contains am obvious fallacy. Stewart

\ (1920b) proposes a new method for the treatment of discordant observatioms.

‘ Like Stone (1873b), Edgeworth (1883b), and Newcomb (1886}, he assumes that the
_ precision is not the same for all the observations, but he simplifies matters as
*—_ : mxch as possible by restricting the number of values of the precision constant

h to two. He proposes a weighted mean which is a function of the residuals.

s
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He gives a method of finding the weights; once that has besn done, the weighted

mean can easily be found.
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Durham Jackson (1921) shows that, for each value of p>1, there is a definite

n

number xmx, which minimizes the sum Sp ) = a1

Ix-ai!g where a;,a,,"""a, are

alSh b,
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: a set of real numbers. For p=2, xp is the arithmetic mean of the a's. The
' limit of X,» 8 p+1, is the median, while the limit of Xy 85 P, is the mid-
" range.

3, Dodd (1922) studies the arithmetic mean, the median, the midrange, and
'} other functions (averages) of the measurements with reference to their approx-

imation to the so-called true value, by determining which has the greatest
probability density at the true value. He summarizes his results as follrws
(p.158): "The present examination of functions of measurements is not exhaus-
tive. The general conclusion, however, would probably be that in most cases
where the law of error is symmetrical (the error function even) the arithmstic
mean is ‘better than other functions. The supericrity of the avithmetic mean

becomes samewhat doubtful: (1) When the number of measurements is small. °°°
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(2) Yhen the probable erzor is not small compsred with the arithmetic mean.
*** (3) Wen the error curve,--as evidenced by the actual distribution of
megsurexents--falls away from its maximm with scee rapidity at first, but
nevertheless persists at some distance from the maximar. In this case, the
median may be better than the arithmetic mean. “°° (4) When the error curve
is perpendicular to the axis of errsrs, meeting this axis at equal dictances
from the origin. In this case, tlie average of the least and greatest messure-
ments [the midrange] may be better thun the sverage of all the measurements
[the arithmetic mean]. °*° "

Ponald Aylmer Fisher (1922) advocates the use of the sample median in
estimating the central value of the Cauchy distribution, pointing out that the
distribution of the sample mean is the same as that of a single observation,
so that the sample mean is an entirely useless statistic. He also touches on
the treatment of outlying observation:;, and lays a fimm mathematical foundation
for the method of maximum likelihocod, here first given that aame.

W. L. Crum (1923), in determmining the indexes of seasonal variation in
an economic series, takes the median of a series of link-relatives for a
particular month as the unadjusted ind'x for that month, as recommended by
Persocns (1919). To the observed data he fits (1) a normal curve, (2) a
Charlier Type A curve, and (3) a composivion of two normal curves. He notes
that Yule (1911) has shown that 1f a distribution miy be dissected into two
normal distributionseach of half the original frequency, and if the ratio
between the two standard deviations is greater than 2.24, the median has a
smaller probable errcr than the mean. He endeavors to extend this result
to the case under consideration, in which the standard deviation of the larger

portion, containing about 3/4 of the total number of cases, is 4.8 times that
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of the smalier portion. He conciudes that for this series and for many (but
not all) economic series, the median is better than the mean.

Edg=worth (1923) restates the rationale of the mathod which he proposad
much eariier {Edgeworth (1887b,c,1888)] for solvirny a redundant systzm of
equations and amplifies the directions for its apnlication given by Turner
(1887). He then considers several nuwerical examries, and closes (pp. 1085-
1088) with the following conclusions: '""The accuracy of the double Median
depends on much the same considerations as those which relate to the single
Median. °°° The cumparison of the (single or dovtie) Median method with that
of Least Squares is prejudiced by two misapprehensions exaggerating (a) one
the defects of the Median, (b) the other the merits of Least Squares. It is
presumed that detemmination by way of Medians is less exact because it some-
tires leaves the segment of a line, or even (in the case of the double Median)
a space within which no unique value is distinguished. But the comparative
definiteness of the Arithmetic Mean is illusory, considering that the deter-
mination is liable to a probable error. °*° The Methcd of Least Squares enjoys
an undue preference in virtumof its connection with the Normal Law of Error.
For probably that law is not in general fulfilled by observations so perfectly
as to justify the preference given. The preferability varies with the charac-
ter of the observations. °*° When the curve representing the observations is
quite abnormal [non-Gaussian] it is very possible that the Median should have
the preference in respect of accuracy. °°° When the extremities of the curve

representing the crude observations are abnommally protruberant, the Median

is apt to be preferable. ‘** In short, the use of the Median (single or double)

is often easier, and sometimes more accurate, than the Method of Least Squares.

69




*** Altgpether, ne may conclude with Laplace that, in certain cases, the
Method of Situtatien is preferable to the Method of least Squares".

Edwin Bidwell W:lson (1923) re-examines the data of Crum (1923) and
reaches the following onclusions (pp. 850-851): 'With the exception of the
extreme positiwve deviations which have not been well fitted by amy of Professor
Crun's three suggesticas, these data give internal evidence or following
Laplace's first law of erro. instead of his second law and should be fitted
to that law. By simple graphical means using arith-log ‘[semi-log] paper an
extremely good fit [to Laplace's first law] may be had in a very few minutes'
work (all that is necessary is tu plot the grouped data, draw a straight line,
and read the graph). °°° Professor Crum's plea for the use of the median in
certain types of statistics is much reinforced by the behavior of these data
when discussed in relation to the first law of error."

J. Haag (1924) studies the precision, for samples fram a normal distri-
bution, of the arithmetic mean, the median, and the quasi-midrange X=(1/2) (xn-r
X)-p +1). which is equal to the midrange for p=1 and to the median for p = ]
[(n+1)/2]. He finds that the mean is the most precise, the median has asymp-
totic relative precision v2/%* 4/5, and the midrange is the least precise,
with asymptotic relative precision 0.

Jackson (19z4), given a set of p simultaneocus equations in n unknowm
quantities (p>n), studies the question of determining values for the unknowns
so that these equations shall be approximatley solved, in the sense that the
sun of the m-t—11 powers of the abscluts values of the errors is a minimam. For
12, this is the classical prcblem of least squares. The author shows that

the problem has at least one solution for every m>0 and a unique soluiion fox

70

B e VU DA P B R BN e L W LI S F ﬁ&xﬁ&*&a&fggﬁﬁm @W 5 m

RSP ETEN

b Ao o




m>1l. The limiting case as m is equivalent to the problem of minimizing

the maximm error.

Edmmd T. Whittaker § G. Robinson (1924) give the probable errors of
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the arithmetic mean and the median, as well as those of various measures of
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precision, based on the mit powers of the absolute errors (m=1,2,3,4,5,6)

3

and the median of the absolute deviations from the true value, all vnder the

,p
Lty

assuption that the samples are drawn from a nomal distribution. They dis-

TR A e A

cuss the method of least squares at some length, giving an account of the

i ; contributions of Legendre (3805), Gauss (1809,1823,1828), Laplace {1812) and
| others. They mention three alternatives to the method of leust squates: (1)
the method of Tobias Mayer (1750);(2) the method of minimun zpproximation
[Laplace (1799), Goedseels (1909), de la Vallée Poussin (1911)]; and (3) the
method of Edgeworth (1887c¢,1888).

! Julian Lowell Coolidgc (1925) devotes one chapter of his book on prob-
. ability to errors 2r observation. In his section on determination of the
i "best value" he states the following theorem, which he attributes to Fechner

(1874) : "The sum of the numerical values of the divergences of a number from

a given series of numbers will be a minimum if the number in question be the
median." He also includes sections on the Gaussian law of error, for which he
gives Gauss' first dsduction[Gauss (1809)], with passing mention of that of
Hagen (1837) based on the composition of elementary errors, and on doubtful
observations.

J. 0. Irwin (1925a) finds a complicated expression for the exact distri-

bution of the difference the p-t=h and (p+1)§1_1. individuals in order of magnitude

(from largest to smallest) of a sample of size n from a normal distribution,
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together with useful approximations for differences between first and second
and betvieen second and third individuals in order cf magnitude, which he
tabulates for selected values of n. Irwin (1925b) propcses a criterion for

the rejection of observations based on these differences. Using the approxi-

*} mation developed in his earlier paper [Irwin (1925a)], he calculates the prob-
L abilities that the differences between the first and second and between the

z‘f‘ second and third individuals should be greater than i times the standard

‘ deviation of the sampled yopulation. If these protabilities become too small,
* he advocates rejecting the first (the last) or the first two (the last two)

' ’ individuals as not belonging to the same homogeneous group as the remainder, so
: ; that a table of these probabilities fer varying values of A provides a criterion
"' for the rejection of outlying observations.
" ’; Paul Lévy (1925) devotes a chapter in his book on probability to the
theory of errors. One section deals with the determination of parameters of

;, precision. He prcposes using the interquartile distance to estimate twice

; the prcbable error (or 0.95a, where a=ov2 and ¢ is the standard deviation).

He gives two methods of determining the quartiles; later we shall present
reasons for preferring a third method. Another section deals with the method

] of least squaves; the author does not present any alternative methods.

: Joseph Reilly, William Nevman Rae § Thomas Sherlock Wheeler (1925 advo-
? cate the use of the criterion for rejection of observations given by Wright

g & Hayford (1906): "Reject each observation for which the residual exceeds 5

| 3§ times the P. E. [probable error] for a single determination. Examine care-

‘, ? fully eacl: observation for which the residual exceeds 3.5 times the P. E. and

reject it if any of the accompanying conditions are such as to produce lack of

72




+
e 4 N
HEE Caditle b,

ey

o ———— A0 & o

e

ocmfidence”. The authors explain the determination of empirical comstants
by the method of least squares; they do not present amy alternative methods.

L. H. C. Tippett (1925) tabulates the mean, standard deviatiom, 81 and
g, (measures of skewiess and kurtosis), and values occurring with probabilities
5% and 1% for the distribution of the largest of n individuals in samples from
% normal population for selected values of n up to 1000, as well as the mean,
sfmdzrd&ﬁzﬁm,aﬂﬁlmdazforﬁledistﬁbutimofﬁ\eranga.lbmes
his res-lts in deciding whether or not to reject outlying observaticas. Egon
Sharpe Pearsan (1926) uxtends Tippett's results.

Estierne (1926-27) proposes replacing the classical theory of errors of
cbservation based on the aritimetic mean and the method of least squares by
what he calls a rational theory ba.-” wa the median =.d the metiinod of least
{absolte) first powers, which he derives from the notion that, for a con-
scientioys observer, every measuresent has the same subjective probability
1/2 of being too large as of being too small. L.terestingly enough, he doe~
not take the next logical step and propose replacing the Gaussian law of error
by waplace's first law of error. Instead, he insists that his so-called
rarional theory is consistent with any one of a whole family of error laws,
inciuding the Gauss®m iaw, which may be used to approximate the unknown true
law. He also proposes to treat the case of systematic errors, wi' h Gauss
(1823) specificaily excluded from his treatment, by taking the median of the
mediaus of repeated measurements under each of several conditions. He proposes
a metl d of obininy m linear equations in n umknowns (2nomn) based on his
rational thocry. Even when the restriction meZn is satisfied, his method does

no* appear to oe practicel. He insists that the importance of an error, at
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least in many cases, is proportional to its absolute value and not to its
square as postulated by Gauss (1823); that, however mmerous be a set of
measurements take.. . the nearest wnit, they camnot provide well founded rea-
sons to adopt a value stated to a fraction of that weit; that the ac. uracy of
a set of measurements camnot be judged by their consistency,since there may
be systematic errors; and, finally, that time and money are better spent in
perfecting measuring instruments so as to obtain more accurate observations
than in increasing the number of observations.

"Student" [William Sealy Gosset] (1927) proposes a criterion for rejection
of doubtful observations, basud on the sample range. He also extends the
work of Tippett (1925) and E. S. Pearson (1926) on the distribution of sample
range.

Arthur L. Bowley (1928) yives a summary and an arnotated bibliography
(74 items) of Edgeworth's contributions, including important work on the law
of error and the choice of means, with special emphasis on the median. In the
latter connection, the author writes (pp.101-i02): "The median has the disadvan-
tage that its standard deviation of error (1 dividoed by 2/h times the greatest
ordinate where the area of the frequency crve is unity) is greater by 25% than
that of the arithmetic mean in the normal o~ . This excess is not, however,
serious in the rough measurements of credibii.ty with which we are gemerally
cancerned in statistics, and in some non-normal curves the median is more
acamrate than the ar_tlmetic mean, °*° It has the well-known advantage that it
can be camputed when the measurements away fram the centre are known wmly
roghly, and geuisrally in graded observations interpolation is anly veeded in
the centrai parts °*°*, If no graduation is necessary the median is evidenmtly
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the casiest mean to compute, and if the maximm ordinate is known its prob-
able error can at once be written down, As is well known, the median is

that position which makes the sum of the deviations from it (all takem as
positive) a miniram, the test of least detriment suggested by Laplace, °°°
Finally, if a mean is required of discordant observations, where discordance
signifies that the observations are taken from facility curves with different
moduli, there is 'a peculiar propiety in the use of the Median.' °°*°, For
these reasons Edgeworth attached great importance to the median in a consider-
able mmber of problems, His advocacy extends to its use for two or more
unknowns °°°," The last statement is xemplified by seven pages (pp. 103-109)
an the method of situation of Laplace (1812) [1818] and its modification (by
eliminating the restriction that the sums of positive and negative deviatios
be equal in magnitude) and extension (to two or more unknowns) by Edgeworth
(1887b,c, 1888,1523).

Jerzy Neyman and E. S. Pearson (1928) give an expression for the prob-
ahility integral of the range of samples of size n and tabulate the mean,
standard deviation, 8, = a5 and 6= a, for the standardized range W/o for
samples of size n = 3.4,6,10,20 from rectangular end normal distributians,

Edwin B. Wilson § Margaret M. Hilferty (1929) re-examine an extensive
series of observations for which C. S. Peirc. ["Theory of Errors of Observa-

tions," Report of the Supcrintendent of the U. S. Coast Survey (for the year

ending November 1, 1870), Appendix No. 21, pp. 200-204 and Plate No. 27. U. S.
Government Printing Office, Washington, 1873] concluded that the normal law
was verified, and reach the opposite conclusion. Peirce's data consist of

about 500 observations each day for 24 differenc days. The authors give the
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standard deviations of the median and of the mean for esch day, and proceed
to campare them, reaching the following conclusions (p. 124): "The ordinary
statement based on the normal law is that the deterimmation of the median is
25% worse than that of the mean. A comparison of the standard deviations of
the redian and mean °°* shows that fc. these observatims the median is better
determired than the mean on 13 days, worse determined on 9 days, and equally
well determined on 2 days. Roughly speaking, this means that mean and median
are an the whole equally well determined.'" The results tend to show not only
that the data have nct come from a normal distribution but that for same dis-
tributions the median is more precise than the mean.

E. C. Phodes (1930) gives (pp. 974-978) the follewing account of problems
encountered in an appiication in a practical situation of the method of mini-
mum deviations: "The writer recently was desirous of smoothing out the
fluctuations in [a] series of figures "17 pairs of values of x=§(1)+8 and y]°°".
A parabola was fitted by the method of Least Squares. °°° The result was not
considered altogether satisfactory. °°* it was considered that the parabola
was a bad fit. Two reasons suggested themselves for this. fivst, the original
data from which the series was obtained did not involve zbsolutvly random
fluctuations; second, the rarabcla might not be the vest rurve for uce in
smoothing. °°* It was °** dec’ded to concentrate on the first consideration,
which meant that although we had obtained the parabola of best fit by the method
of least squares, yet it might not really be the best parabola which would
smooth sut the fluctuations in the series. This led us to the question of what
other methods of fitting there were available, and Edgeworth's description of

the use of medians in this comiexion led to the attempt to fit by the method of
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Minimum Deviations. This method may be briefly described. Suppose the
equation to the parabola is Y2yt 3, x+a2x2, and the given y's are Y.gs 779
oty Y.1» Yoo Yyo "ty Yg» then instead of, as in the method of Least Squares,
making 5;8--8(30* a, x+a, xz-yx)2 a minimm, we make S;E_slao'a a, x+a, xz-yxl

a minimun. His [Edgeworth's] description of the method and his arguments

in its favour are briefly sumarized [by] Bowley [(1928)], pp. 103 et seg.,

_and are exposed by Edgeworth [(1888,1923)]. Unfortunately, Edgeworth confined

himself ir the working of the method to a reliance on a diagram (he used as
illustrations the prcblem of two variables), which means in practice a rather
laborious piece of work, and apparently did not notice that the method could
be applied in a more simple mamner. °°° The simpler method is as follows:--
Swrpose we are dealing with u series of deviations, say, involving three
unknowns , A1u+B1v+C1w+D1 ,A2u+Bzv~'rC2w+D2, Anu+an+an+Dn, and we want to
find values of u,v,w which make Sg-l !Asu+st+CSw+Dsl a minimm. First, find
for what values of v and w the expression is a minimun when u is given by

- (Brwcerr) /,\., i.e. find 2 local minimum point in the plane Aru+Brv*Crw*D =
0, where r is any one of the values of s fram 1 to n. This reduces the problem
to one involving two vaviables only, i.e. what values of v and w will make
S’;i] ?.tv*Ftht] a winimun, where the E's, F's, G's are obtained from the
A's, B's, C's, D's. To solve this, find for what value of w the expression

is a minimum when v is given by —(pr+Gp)/Ep, i.e. find a local xinimum point
1~ the line Eprprp = 0, where  is any are of the values of t fram 1 to
n-1. This reduces simply to the problem of finding a weighted mediar. °°°
Than [the] point of intersection of °°° three planes [A’lu+B,_v+C!w+D£-0 ’l\n“"BmV

+ Cthm = Q, %anv*anDn = 0] is the true mimimue point, and ths valwes u,
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v, w obtained from solving these equations make Sg,llAstswcstsl a mini-
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Tokishige Hojo (1931) studies the distribution of the median, quartiles,
and interquartile distance in samples from a normal population. He compares
the precision of the median with that of the mean and the midrange, and con-
siders the problem of estimating the population standard deviation from the

interquartile distance of a sample. In defining the sample median, M, and

o N vt

the sample quartiles, Q and Qz, of a sample of size n, the author distin-
guishes four cases according as (i)n=4m, (ii) n=4m+l, (iii) n=4m+2; (iv) n ¢
4m+3, where m is an integer. His definitions for these cases are as follows:
) Q=Oxy* Xp0q)/2, M=ot Xo 11)/2, Qg™ (Xgg# X, 9)/25 A1)Qy= (X * Xp,4)/2
Mexyre1s Qg (Rape® Xapep)/23 (EDQ™ Xy MeCpyg + X9500) /2057 X,
(iv)le Xpe1 M'x2m+2’ Qs-x:,m‘_:,,, vhere X5 denotes the i--t‘}l smallest observa-
tion. The present writer prefers to define the median and the quartiles so
that they divide the population into four intervals with equal probability
1/4, viz. Q1- X(n+1)/4° M'x(nﬂ)/Z’ Q3= X3(n+1)/4° where a fractional subscript
indicates interpolation between adjacent ordered observations. This definiticn
agrees with Hojo's except for the quartiles in cases (i) and (iii) above, for
which it yields, (i) Q= (3G* Xpp)/4, Qg (Rg#ixg,1)/4; (iid) Q=
(Jgn* 325”1)/4, Qg (3Xg,, + xan+3)/4.

Richard von Mises (1931), in his volume on probability and its applica-

tions, includes a section on elementary descriptive statistics in which he

discusses the median, quartiles, deciles and percentiles in addition to the

arithmetic inean and the standard deviation. There is also a chapter on the theory

78




of errors and adjustment of observations in which the author follows the ap-
proach of Gauss (1809,1823).

Karl Pearson (1931) gives tables of criteria (Chauvenet's and Irwin's)
for the rejection of outlying observations and of the distribution of range,
median, and midrange in samples from a nommal pcpulation. Walter A. Shevhart
(1931) discusses the use of the median and the midrange as measures of central
tendency instead of the arithmetic mean, and the use of the range as a measure
of dispersion instead of the standard deviation.

Allen T. Craig (1932a,b) proves several useful theorems concerning the
distributions of the sample median, mean, midrange, first quartile, and
range. Harold Jeffreys (i932) offers an alternative to the rejection of
observations. He takes the probabilicy of an error to be given jointly by
two normal [Gaussian] laws, one for the normal and the other for the abnomal
errors, and provides a method of solution for the five unknowns (means and
standard deviations for normal and abnormal errors and proportion of novmal
errors), together with an approximate solution by a method of weighting, the
weight of an observation being a continuous fumction of its deviatiun.

Willem J. Luyten (1932) considers data on the differences of pairs of
measures of the distance of double stars, and concludes that Laplace's first
error aurve fits the data much better than his second (the normal curve). He
points out (p. 365) that, as a corollary of the use of the first Laplacean
curve, it is no longer the arithmetic mean and the standard deviation but the
median and the arithmetic mean error [mean deviation firran the median] that are
the significant constants of the distribution.

Egon S. Pearson (1932) gives a tcble sumnarizing available results on the
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distribution of range in samples of 100 or less from a nomnal population.

He discusses the method of computation of the table and experimental checks
on the adequacy of the approximation employed, and gives illustrations of the
use of the table.

P. R. Crowe (1933) proposes a graphical method, based on the median and
the quartiles, of representing the distribution of monthly rainfalls. He
compares the median with the mean and the mode, and the quartile deviation
with the standard deviation and the mean deviation, giving advantages and
disadvantages of each from the viewpoint of the climatologist.

A. T. McKay and E. S. Pearson (1933) develop theory which leads to certain

new results regarding the form of the range curve at its teminals ad pro-
vides the exact distributicn of the range of samples of 3 from a nomal popu-
lation. They also give the exact distributions of the range in samples of n
from rectangular and right triangular universes, tue former having previously
been given by Neyman and Pearson (1928).

Paul Reece Rider (1933) summarizes the history of criteria for rejection
of observations from Peirce (1852) to Jeffreys (1932), and draws the following
conclusion (pp. 21-22): "From the various methods cited above it is easy to
see that devices for rejecting discordant observations could be imvented with-
out number. The choice of which to use, if any, is largely an indivicual
matter. If one is willing to subscribe to the hypothesis laid down in a
given criterion, he should be willing to abide by the result of applying the
criterion to a set of data. *°° In the final analysis ii would seem that the
question of the rejection or retention of a discordant observation reduces

to a question of common sense. Certainly the judgment of an experienced
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observer should be allowed considerable influence in reaching 2 decisiom. This
judgeent can wdoubtedly be aided by the spplication of one or more tests based
on the theozry of probability, but any test which requires an inordinate amount
of calculation seeas hardly to be wortlwhile, and the testinony of any criter-
ion which is based upon a complicated :iypothesis should be accepted with extreme
caution".

Hans Minzner (1934) studies the precision of the ag absolute moment (a>0)
for the generalized Gaussian distribution function Qx(e)a th x/2r(1/x) ]e"hxl'g| X
x»1. He shows that the maximum precision is attained when o=x. He points out
that in the special case amy=2, this reduces to the statement that the standard
deviation is the most precise measure of dispersion for the Gaussian distribu-
tion, as shown by Gauss himself. Another special case, not emphasized by the
author, is a=x=1, in which the result reduces to the statement that the mean
deviation is the most precise measure of dispersion for Laplace's first distri-
bution. We have alveady seen that the mean deviation is a munimum when taken
sbaut the median rather thar. about the arithmetic mean.

Harry S, Pollard (1934) gives the following results concerning medians:
(1) an exact expression gy = 1/(2/Zn+3) for the standand deviation of the media:
of samples of (2n+1) items (n an integer) from a rectangular population with
prodebility depsity function £(x)=1 ever a unit interval, which compares with
the classical (large-sample) approximation o1/ [2£(0) /3] where s is the sample
size and £(0) is the value of the p.d.f. at the population median; (2) upper
ad lower limits for the standard deviction of the median foi sumples from any
population, and (3) a method of dstemining the probable error (or any percentile)
of the distribution of the median for samples of size (2n+1), for which Dodd
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{1922) has given the p.d.f.

Maurice Préchet (1935) comperes the precision of the mean and the median.
He admits that the xean is to be preferred to the median in the majority of
cases, but insists that it is not always so--median life or median income
provides & more representative value than the corresponding mean, Certain
statisticians cbject to the use of themedian on the ground that its precision
is less than that of the mean, which is true for the nommal law of error
(Laplace's seconc 1aw), but not, as the suthor shows, for certain other prob-
ability laws., He studies two laws for which the median is more precise than
the mean, at least for sampies of size three. Let u' be the standard error
of the mean and " be that of the median. For samples of size thres from lLa-

place's first law of error with cmulative distribution function F(x)= ¢*/2 for
x<0, F(rj=1-¢"%/2 for x30, the medim is slightly more precise iu’zs u""s 1/36],

while for samples of size three from the probability law F(x)= 0 if x¢1, F(x)=
1-x"%if %31, with lexgZ,y" is finite but p' is infinite. The author presents
supporting evidence from a paper Ly Wilson § Hilferty (1929).

R. C. Geary (1935) ctnsiders the ratio LA of the mean deviation to the
standard deviation [v2/* for infinite rendom samples from a normal population]
as a8 test of normality. He tskes the mean deviation from the mean rather than
from the median, He notes that V3, is a test of syactry rather than of
normality, while the frequency distribution of 8, (a measure of kurtosis) is
unknown. E. S. Pearson (13935) compares 8, And Geary's criterion. He cencludes
that there are strong practical groumds for choosing the latter as a test of
shether the puiilation sampled is platykurtic or leptokurtic umless the sample
is very large, when 8, way be used, but that /B, is the best criteriom of
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skowness, tnd that two tests (v’s'l ad either g, or Geary's criteriom) are
vrequired for departure from normalily.

A. T. ¥cKkay (1935) studies the distribution, for samples from a nommal
distribution, of u=X-X, where X is the highest observation and X is the mean.
He uses the statistic u as the basis of a criterion for rejection of outliers,
snd cawpares this criterion with the criterion of Irwin (1925) and one based
on the distribution of range tatmlated by E. S. Pearsem (1932).

Williaa R. Thompson (1935) derives the distribution of t=5/s, where s.is
the sample standard deviation and § is the deviation of sn arbitrary observa-
tion from the sample mean, and uses this statistic, for which he tabulates
critical values T 85 A criterion for the rejection of observations deviating
from the wean by more than st,.

Georges Darmois (1936) discusses the relative precision of the median and
the arithmetic mean of samples from various populations, and the related ques-
tion of whether to use the method of least squares or the method of least
absolute first powers.

E. S. Pearson and C. Chandra Sekar (1936) study the criterion for rejec-
tion of outlying observations proposed by Thompson (1935). They pcint cut that
it provides camplete control over the probability of Type I error (rejecting
the hypothesis that all the observations have been drawn from a single normal
population, with unspecified mean and standard deviation, when that hypothesis
is true). Nevertheless, they show that the criterion is quite inefficient
in the presence of two or more outliers unless the sample is quite large.

Emil J. Gurbel (1937) studies the precision of the arithmetic mean and

of the median, and verifies that the former is more precise for wnifom,
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Gaussian, and extreme-value distributions, and the latter for the sysmetric
double exponential (Laplace's first) distribution.
Qurtis Bruen (1938) considers various methods of combining observations
based on the concept of power-means, as defined by Fechner (1874). The p&&
oxrder power mean of a set of observations, xi(itl,Z,S,'",n) is that value,
x, which makes the sum, Zl:ti«xlp, 3 =ipimm. It is well known that the
median is the first-order power-mean, the arithmetic mean is the second-order
power-mean, and the midrange is the limiting value of the pm order power-mean
as p*~. Not so well known is tne fact,which the author attributes to R. M.
Foster (1922), that the mode is the limiting value of the pii- order power-
mean as p*0. The author generalizes the concept of the pcwer-mean from the
case of direct observations to that of indirect observations or of implicit
functional observations, for which it leads to the method of least power-
suns of the absolute values of the deviations. Corresponding to mode, median,
mean, and midrange one has then the mcthods of ieast number (least sum of
zero powers), least sum of first powers, least sum of squares, and least maxi-
mur (ieast sum of infinite powers) of the absolute deviations, Jackson (1924)
has studied the existence and the uniqueness of solutions by the method of
least p—ql- powers (0<pge) of sets of n simulta:.us linear equations in m
unknowns, when m<n. Bruen reviews the contributions to the theory of errors
of Mayer, Boscovich, Laplace, Legendre, Gauss, Cauchy, Glaisher, Fechner,
Edgeworth, Turner, Goedseels, de la Vallée Poussin, Rhcdes and others. He
closes with z discussion as to the choice of method, in which he points out
that the choice depends an the presumed distribution of deviations, each

method being best for a particular distribution--the mode in one variable or
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the modal point in two or more variablies for a spike distribution (single isolated

value), tha median or median loci for a symmetric awsonantial (first Laplaoean)
distribution, the mean or mean loci for a normal (Gaussian or second Laplacean)
distribution, and the midrange or midpoint of least range for a wniform
(rectangular) distribution.

E, L. Dodd (1938) reproduces some of the results of Jackson (1923) con-
cerning the median, quartiles, and other positional means (quantiles) and
enmmerates some of the properties of these measures.

Jose Barral Souto (1938) shows that the mathematical expression Mh-
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(Z‘;_l P; a}i')l/h, where the a; are non-negative real mumbers and the p; are
positive weights whose sum is 1, leads for particular vaiues of h to the
following "means': hm-e gives the smallest of the a;, h=-1 gives the (weighted)
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harmonic mean, h=0 gives the (weighted) geometric mean, h=1 gives the (weighted)
quadratic mean, and h=~ gives the largest of the ;. If the a; are replaced

by their ahsolute deviations from a certain value of x, A is transformed into
) = (I, pylx-a, MMM, Souto shows that the values of x which minimize
Mh(x) are the following for particular values of h: for h+0, the mode; for

+ et o AR ENA B 8

h=]l, the (weighted) median; for h=2, the (weighted) aritbmetic mean; and for
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h=e, the midrange. The corresponding minimm va_ues of Mh(x) are respectively

the geometric mean deviation (2ero), the mean (absolute) deviation, the root- 3

L A

mean-square deviation (standard deviation), and the semirange. These results

are a generalization and extension of those given by Bruen (1938) andearlier

authors.
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Gumbel (1939) studies the determination of the median, quartiles, and

other qua.tiles from small samples. He takes as the three quartiles the !
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(e /4L, (60237212, and [3(n+3)/4]12 values from below, where n is the
sample size. In an analogous mamner, he takes as the quantile corresponding
to cumilative probability A the [(+1)A]2 value from below.

Jeffreys (1939) discusses the use of the median instead of the mean and

the rejection of observations. He points out that the mean is the best average

only when the underlying distribution is normal, in which case the standard

, deviation is the best measure of dispersion; in the same way, the median is

: sssociated with Laplace's first distribution and the mean (absolute) deviation.
He offers the opinion tlat there is much to be said for the use of the median
‘f_ when the form of the 1z of distribution is unknown because it is less affected
by a few abnormally large residuals than is the arithmetic mean. He criticizes
Peirce's and Chavenet's criteria for the rejection cf observations, and offers
’* a modified form of the alternative which he proposed earlier [Jeffreys (1932)],
with a table of weights for its implementation.

7

Niels Arley (1940) genevalizes the results of W. R. Thompson (1935). Let
xl,xz,"‘, X, be independent normal variates with mean e(xi)- [?81 a; j pj,

N e iRy
e an s LU

2
R T

where the a's are known coefficients and the p's mknown parmmeters. Let the

g = oz/Pi, where 02 is unknown but the weights Pi are known.

Finally let & denote the estimate of e(xi) and Sg the estimate of the variance

et

variance of X; be o

of X~ £ both obtained by the methed of least squares. Arley shows that the

R S Sy
s Sa U i S s T
(asisy i

probabilivy density function of ;= (x- gi)/Si is given by p(r)= const. (n-m—r2)

(n-m-3)/2 for |r|sn-m. He applies this result to chtain a criterion for the

rejection of observations,which he compares with criteria proposed by various

other authors.

Fréchet {1940a) campares certain measures of dispersion of the sample
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median and the sample mean for large samples from wmimodal distributions with
finite variance. let X be a random variable with unimodal distribution, oy

its standard error, 0, its nean absolute error, and I-:x its quartile deviation,
and let M be the wedian and V the aritimetic mean of a sample from this distri-
bution. Fréchet shows that for sufficiently large n, (i)oysl.74o //H,(ii)g,
a.éﬂex/vﬁ,(iii)l’ﬂd.?as BX/E. For V, there is the oquality oy o /¥ corres-
ponding to (i), but there are no inequalities for V corresponding to (ii) and
(iii). Fréchet concludes that the sample median should be more widely used
except when the distribution is known to be such that the sample mean is better.
Fréchet (1940b) obtains the following inequalities for the messures of disper-
sion of the random variable X itself, the notation being the same as in the
preceding paper: Ogex/oxsl;OsEx/ex,sZ, OsEx/axsvﬁ-. If A, is the upper bound of
the mean probability density of X between x; and x,: Prob{x1<X<x2}/(x2~ x)
when Xy, X, vary, then he shows that the following inequalities hold: Osl/Aex
<4; Osl,o'Auxssz; 0<1/AE <4. Moreover, he shows that none of the twelve in-
aqualities among Oys O B and A, can be replaced by a sharper one.

Edwar. Paulson (1940) finds the distribution of the median of a random
sample of size (2n+1), where n is an integer, from a symmetric population (whose
mean and median are both zero) in terms of the incomplete Beta function, vhich
hes been tabulated by Karl Pearson. He suggests that his results are especially
useful in sampling from populations such as the Cauchy distribution, for which
the mean is not a consistent statistic.

Robert R. Singleton (1940) points out that the method siven by Rhodns
(1930) for estimation of the parameters in a regression equation by minimizing

the sum of absolute values of deviations is iterative and recursive, and is
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presented without proof. He uses geametric methods and temminology to develop
proofs for various methods and to obtain a new method which raduces the labor
by eliminating the recursive feature.

Abraham Wald (1940) considers two sets of random vzriables xi,yi(isl,‘“,
N;N even). Neither the true values xi’Yi nor the coefficieniz « and 8 of the
linear relation [Yi = aXi-rB] between them is known. As an estimate of a [cf.
Lambert (3765a)] he uses a-raz/al, where al'[(xl".""Sn)’(’ﬁnﬂ*'“*xN)]/N’az'
[0+ " 4y) - Opey*” " "+¥)) }/N and m=N/2. He points out that the greater la |
the more efficient is the estimate a of a, and t.hatlall is a maximum when one
orders the observations so that Xy X)€" "Xy

E. B. Wilson (1940) points out that the usual formula for the =tandard
error of the median of random samples of . ze n,oM-1/2¢Mv5-, where ¢, is the
value of the probability density function at the medis2, unlike the corres-
ponding formula o/va for the mean, is not universally valid. He explores
various pathological cases for which it gives incorrect results. He then sets
out to find a true expressica for oy Testricting himself to samples of odd
size n=2k+1(k an integer) from a population that is symmetric about the origin,
with probability density function ¢(x) and cumulative distribution function
¢(x) [not the author's notation]. The probability density function of the
median is then v(x)=[{2k+1)1/(k1)%][6()1¥[1-2(x) ;X4 (x), its mean is zero, and
its variance is giva1 by °1\24 = f xzw(x)dx, where the integration extends over
the whole range of the function ¢(x). The author applies this result to show
that the standard error of the median of samples of size n from the Cauchy
distribution ¢{(x)= 1/x( 1+x2) is infinite for n»3, but finite for n=5,7,""".

R. J. Brockner (1941} shows that, for a rardom sample of size N from a
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rectangular population of length 1 around an rnkrown value @ [thac is, f(x)=
1 if o-1/2sxg0+1/2,£(x)=0 otherwise], the variance of the sample midramge

t is Y/ [2(N+1) (N+2)]. This compares with a variance of 1/12N for the sample
mean X. Both the mean and the midrange are unbiased estimators of 6. The
ratio of the variance of t to that of X is 6N/[{N+1) (N+2)], which is less
than one for N>2 and approaches zero as N+w, so the mean is a poor estimator
of central tendency for a rectangular population.

Maurice Fréchet (1941) ex=wines two methods of demomstr.ting the valid-
ity of the nomal law of error--the method of Gauss (1809) based on the
pristulate that the arithmetic mean is the best average of a set of equally
reliable cbservations and the method [due to Hagen (1837), whom the aut:or
does not mentionj based on the composition of a large number of small ele-
nentary errors. He does not find either method convincing, and concludss that
verficetion is possible enly experimentally, by comparison with actuai data.
This can be accomplished in various ways--by comparing theoretical and obser-
ved frequeacies in the various classes of a grouped frequency distribution;
by computing the Pearsonian measure of kurtosis 82'a4=u4/u§, where u, is the
1% woent sbout the mean, for the data and miparing it with the theoretical
value (3 for the noymal (second Laplacean) law, 6 for the first Laplacean
lau]; or by computing the ratios D=(q,-q;)/(d,-d;) and C=(q,-q,)/ (cp-¢y)s
whcreql and q, are the first and last quartiles, “1 andd2 are the first
and last Gariles, and = and c, are the first and last centiles, and com-
paring them with the theoretical values [D=0.5263 and (=0.2899 for Laplace's
second law, D=0.4307 and (=0.1772 for Laplace's first law]. The author
applies the latter methed to data on artillery fire, Retuming to theory,
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he shows the correspondeice between laus of error and measures of central
tendancy md dispersion, the aritheetic mean and the standard deviation
corresponding to Laplace's second law and the median and the mean absolute
deviation(from the median) to Laplacs's first law, etc. He extends this cor-
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: respordence to the multivariate cese (two or more dimensioms).

H. 0. Hartley (1942) writss the probability integral-of the range W

in random semples of size n from a population with probability demsity fumc-

tion £(x) in the fora P (W)= n [ “£(8) f P £(000™ ! ds. Hartley md E. .
Pearson (1942), using mmerical integration, tabulate Pn(VJ to 4 decimal pluces

/ &irn gq "

: for samples of size n=2{1)20 fros a standard normal population at intervals
of 0.05 ia W.

K. Raghavan Nair and M. P. Shrivastava (1942) propose a simple method

R of curve fitting by grouping the residuals into as many groups as there are
;- unknown coefficients to be estimated, and using the group averages to estima’e

the coefficients.

George A. Barnard (1943) studies the use of the madian in place of the
mean in quality control charts.
e Samuel S. Wilks (1943) gives an excellent textvook treatment of order
statistics and functions of order statistics, including the largest or smallest
i sample value, the sample median, and the sample range.
R. C. Geary (1944) compares the mean, the midrange, and the median as —
a0 reasures of ceantral tendency for a rectangular population with known range 1.
E. J. Gumbel (1944) studies the moment cheracteristics of the distribution,

in a sample or size n, of the nid largest and n smallest values and of their

s [+2] and difference, the m?-ll midrange and mt-h— range. He assumes that n is
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so large that the o m values may be regarded as independent. For wel,
the m-r}—‘liél‘mge ad uﬂ}'rmge for quesi-midrarge and quasi-venge, ae they are
more comonly calied] become simply the midiiuge and the range.

Herbert Robbins (1944) detemmines the expatted values of the difieremce
between the largest snd swiilest order statistics [the range B} and of the
difference F between the values of the cumulative distribation function
evaluated for the largest and smallest order statistics. The results sre
E(F)=(n-1)/ (@+1) and B(R)= :{ 1-£2(t)- [1-£(t)]" } dt, shere £ is the proba-
bility density function [t the author's notation]. From the latter it
follows that the expected value of the range fou n=3 is alwuys 3/2 that for
=2, since 1-£5-(1-H)3 = (¥ {1-£2-Q-H7. '

E. S. Pearson, H. J. Godwin and H. 0. Hartley (1945) study and tabulate
the probability integral of the mea: deviation (f."c’n the arithmetic mean) of
samples from a nomual distribution.
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5. THE MODSRN ERA (1946-1972)

George A. Baker (1946) studies the distribution of the ratios of sample
cange *- :ample standard deviation in samples from nommal distributions and
from two differemt ccabinations of two pomal distributiins, one symmetrical
but distinctly bimodal =znd the other weakly bimodal but strongly skewed. He
tabulates varicus moment constants of the distribution for various sample sizes.
He finds that the correlation between stendard deviation and range of the same
samplie is negligible for samples of size n3100 from the nomual population, but

not from the comi;inatioms.

(eorge N. Brown and John W. Tukay (1946) study the distribution of sample
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means for sayples from various distributions, inciuding "“long tailed" ones,
for vhich they f£ind that the distance between any two percentage points of
the mean of a sample of size n is ultimately larger them a positive power of
». Taey claim that these results show that (1) "the use of the mean of a
sample as a measure of location *°° implies a belief that the tails of the
rnderlying distribution are net too long; (g) it is probable that the relative
efficiencics of mean and median are greatly ;.ffecte&"ii;sy the ieszi: of the.tail",
A. George Carlton (1946) shrws th:t the range and midrange of a sanpi;
from a rectangular distribution are a pair of sufficient statistics, and
maximm likelihcod estimates, for the true range and true mean. He derives
exact and limiting distributions of midrange, range, and their ratic, and
calculates the 'efficiencies' of the sample mean and median as estimates of
the true mean. The limiting distributions are non-nommal, with standard exwor
of order n"! instead of the usual n" /% For the one-parameter rectanguiar
distribution f(x)=1/A, O¢xsi, he finds that the largest observation v "is a
sufficient statistic and is evidently the maximm likelihood estimate of A".
Harold Cramer (1946) gives an excellent advanced treatment of the mathe-
matical theory of statistics, including measures of central tendency (location)
and of dispersion and the method of least squares and rival methods. Since all
measures of location and dispersion are to 2 large extent arbitrary, each
measurc having its own advanteges and disadvantages in various cases, and since
the principle of least squares is associated with specific measures (mean and
standard deviation), Cramér states that there is no logical necessity for
adopting this principle. On the contrary, he says, it is largely a matter of

convention whether we choose to do so or not, the main reason in favor of the
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principle being the relative simplicity of the rules of operation to which
it leads.

Joseph F. Daly (1946) proves that, for samples from a nommal population,
the mean 2nd the range (or amy other symmetric function of the sample variates
vwhich is invariant wnder a translation of the origin) are statistically inde-
pendent.

E. J. Gumbel (1946) shows that in & sample of size n. (large) the m:
observation from one extreme and the kt-L from the other in order of magnitude
may be regarded as independent provided that m and k are small with respact
to n and that the populaticn behaves in its tails in a certain exponertial
ranmer.

Maurice George Kendall (1946) gives a thorough treatment of t}- theory of
linear am¢ curvilinear regression. He points out that the most i~ i«tant use
of least squares in statisticai theory is in estimating the paraz.eters (coef-
ficients) in regression equations. He also ventions its use in estimating the
parameters of statistical distributions, which will not be omsidered in detail
in this report.

Frederick Mosteller (1946) suggests that certain "inefficient" statistics
may be useful when data are inexpensive compared with the cost of camputing
"efficient" statistics. In particilar, he proposes the use of linear combi-
nations of order statistics, which he calls systematic statistics, to estimate
the mean and standard deviation of a normal population. He compares the

efficiencies of the estimates of standard deviation with tiiose of other estimates

which do not involve sums of squares or products, iucluding is mean deviations

about the mean and about the median.
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Frank Ephraim Grubbs and Chalmers L. Weaver (1947) study the use of
grouw ranges to estimate the population standard deviation frow a sample from
a normal population. They tabulate the moment constants (mean, standard devia-
tior, ey and 04) of the range for samples of size n=2(1)12 from a normal popu-
lation.

E. Lord (1947) proves that the mean and the difference between the plt
and qg order statistics of a samic of size n. (which reduces to the range
whea p=1, q=n) from & nomal population are independent.

K. R. Nair (1947) shows that the standard error of the mean deviation m'
from the median is equal to or less than that of the mean deviation m from the
mean for samples of 3 or 4 from a nommal population. He suggests that, in
view of greater simplicity in calculation, there would be stron; practical
gromds for using m' rather than m if expressions for the mean and variance of
m' and tables of its probability integral were worked out and if the efficiency
of m' relative to m for sample size n>4 were found to be not appreciably worse

<0 for n=4.

R. L. Plackstt (1947) detemmines am upper limit, independent of the form
of the distribution, for the ratio dn of the expected range in samples of size
n to the popvlation standard deviation. This limit is n {2[(2n-2)!- (@-1)1)?]
/(2-1)1}M2, which is approximately n1/2 for large n. Plackett finds distri-
butions for which the limit is attained; for n=2,3 the distributions are
rectangular.

Warren B. Purcell (1947) proposes saving time in life tects by using the
median instoad of tie mean to indicate shifts in central tendency and the
minimm value (first order statistic) instead of the range to indicate shifts
in dispersion, thus making it possible to terminate the test as soon as [n/2]
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+ 1 failures have occurred, where n is the mmber of items placed on test, aud
.' [n/2] is the largest integer less than or equal to n/Z.

Seaman J. Tanenhaus (1947) proposes the use of the lot mediam or, better
still, the average wedian of several sublots, as the most typical value of
abrasion-resistance of yams fxam distributions which are decidedly positively

skewed, for which the mean tends %o be atypical, being unduly affected by the

‘“‘ Churchill Eisenhart, Lola S. Dewing and Celia 5. Martin (1948a) show that
the abscissa of the (one-tai’ e-probability point of the distribution of the

median in random samples of +ize n=2m+l from any continuwous distribution is

identical with that of the Pe - probability pcint of the parent distributicn,

9 ;n
s where J3_ /2 G P a P, ’n)n’k- e and G = nl/k(a-k)! is the mmber of
3 combinations of n things taken k at a time, Eisenhart, Deming and Martin

(1948b) compare the ¢-probability points, for various vaiues of € and n. of
the median with those ¢f the mean for samples from normmal (Gaussian), Cauchy
and double-exponential (Laplace's first) distributions and with those of the
midrange for the rectanguler (uniform) distritution- Their results give
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numerical verification of the fact that the mean is the best average for the
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b

- o A
61, % ennt g A
BREDISR S

normal distribution, the median for th: double-expomential distribution, and
the midrange {or the rvectangular dis’ribution, while the median is the best
of tne thres considered for the Ce why distributioi.

G. W. Housner and J. F. Brennaun (1948) consider the problem of bivariate
regression in which both varisbles are subject to error and have a finite

nuber of means falling on a line and in which the muber of sample vbserva-

tions taken about each mesn is known. They estimate the slope b of the
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regression line Y=a+bX as the total of the differences of all pairs of obser-
ved values of the y's divided by the like total for the observed x's, and

show that this estimate is consistent. For the case of ungrouped data, the
proposed. estimate reduces to D = Zg_lyi(i-f)/fi‘.lxi(i-f), where the x's are
ordered according to magnitude. In a particular numerical example, the authors
show tlat this estimate compares favorably with others that have been proposead.

K. R. Nair (1948) studies the distribution of the extreme deviate from
the sample mean, LN X, where xl,xz,'“,xk are ordered values in a sample of
size k from the wnit normal distribution and X is their mean,as well as the
distriputior of its studentized fomn, w/s, where s2 is an independent wmbiased
estimator of the population variance. He uses the latter distribution as the
basis of a new criferion for rejection of outliers, which he compares with the
criteria of Irwiu, Tippett, Student, McKay and Thompson.

K. C. Sreedh:ran Pillai (194f) determines the infommation (as defined by
Fisher) furnished by eech order statistic xi(isl,z »-"°,n) in a sample of size
» from a norral distribution concerning the mean y and the vaviance az, od
tabulates results fox n’=2,.3,“'ﬂ, 12; i=1,2,°"*, [n/2]+ 1. Not surprisingly,
these tables show that the central values give the most information concerning
u and the extreme values concexiiing cz. The author detemmines a fiaction of
n which, when multiplied by the semirangs (X, xl)/z, yields an unbiased
estimator of ¢, and studies the distribution of the semirange.

K. R. Nair (1949), in a foiiow-up of his previous note [Nair (1947)] on
the mean deviations fraa the medlian and from the mean, and their use in ssti-
mating the standard deviation o of a normal populaticn, shows that the coef-
ficients of variation of the two mean deviations are almest the same for samples

of size n when 2q<l0.
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W. R, Purcell' (1449) elaborates on the usc of the median life and the
shortest life instead of the mean life and the range, as proposed in iis
earlier paper Purcell (1947)1, and gives an example of their successful use
in saving time in life tests on incandescent lamps.

K. J. Shone (1943) studies the use of the sample range in estimating the
standard deviation of nomnormal populations. let o, T, o, and N represent the
sample standard deviation, the mean range, the standard deviation of the range,

2.=2, 2

and the sample size, respectively. ¥or N=2, he finds that 2¢°=y"+ oy for all

populations whose variance is finite; for N=3, T/o £ 2,10-0.81 or/f for

r\'o%'m..f.« -

Lt

eighteen discrete wnimodal distributions; for N=4 and N=5, yrespectively,f/c =
2.29-0,690 r/f and T/oé 2.41-0.46 «r/i' for five selected populaticns of extreme
form.

John W.1der Tukey (1949a,b,c,d) and Theodore E. Harris and Tukey (1949)
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report on a study of sampling from contaminated distributions. Tukey (1949a,

t‘\;-.‘!u\ﬁmén

c,d) studies the relative efficiencies and effectivenesses (in large samples)
of various estimation procedvres when the distribution differs from normality
in the direction of long tails (resulting from a mixture of two nommal distri-
butions with the same mean and different standard deviations). Harris and
Tukey (1949) and Tukey {1949b) consider the relative efficiencies of estimators
obtained frcx the mean and standard deviation by removing the extreme y § at
; each end of the sampls, for varying degrees of contamination, both in large
and in maderately iarge samples.

William John Youden (1949) exposes the failacy in the common practice of |
making three measurements, averaging the two valwes closest together and '
discarding the other. Intuition suggests that if two of the three measurements
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are in close agreement while the third is considerably removed from either of
the others, then there may be grownds for suspecting and perhaps rejecting the
third value. Analysis shows, however, that for samples of three fram a nomal
distribution, one of the measurements will be at least 19 times farther awsy
from its neighbor than the distance separating the two closest in one sample
out of twelve; hence it appears that measurements that should be retained are
often discarded.

Wilfrid J. Dixon (1950) proposes new criteria, based on the ratio of the
differences of two pairs of order statistics, for rejection of outlying
observations. He compares the performance of these criteria with those of
Irwin, McKay, Thompson, Nair, and Grubbs for detecting contamination of samp-
les from a normal population with mean p and variance az, N(u ,02) , by one or
more observations from (&)N(u + Ao,cz) or (b)N(u,Azoz).

Grubbs (1950) also proposes a new criterion for rejectiou of outliers,
the criterion being the ratio of the sums of squares of deviations from the
mean for the truncated sample (with the observation or observations in guestion
omitted) and for the complete simple. He obtains and tabulates the distribu-
tion of this ratio for one extreme observation and for two extreme observacicas
both at the same end; he does not examine the criterion for cme extreme at each
end.

Theodore E. Harris (1950) gives a simple explanation, with a numerical
example, of a procedure, essentially that of Edgeworth (1923) and Rhodes (1930),
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for fitting o regression line Ysa+bX by minimizing the sum of the absolute
deviations rather than the sum of squares of the deviations. He points out
the relation betwees this problem and linear programming.

F. M. Henry (1950) studies the loss of precision from discording discrep-
ant datz. In particular. he wplies the rule of Goodwin (1913): 'When the
nusber of observations is small, rejrct wiy observation that deviates more than
4 A.D. from the sample mean, the mean and A.D. [average deviation] being com-
puted with the omission cf the doubtful observation” to series cof five measure-
ments of a time interval with a stop watch, and the 'best two out of three" pro-
cecure to series of three such measurements. In both cases he finds that
use of the procedure results in an increased rather than a decreased e¢rror;
in the case of three measurements, not only the average of all three measure-
ments, but also the average of the two extreme measurements (the midrenge)
gives better results.

E. S Pearson (1950) investigates the estimation of the standard doviation
of a population from the range of a sample of size n or the muun range of N
items divided into m groups of n items each. Even when (a) the population is
not nommal or (b) the sample includes one or more outliers, he concludes that
use of the range, with adjustment appropriate for a nommal populaticn, is
justified provided ngl0.

K.C.S. Pillai (1950) finds, in a fomm suitable for numerical calculations,
the distributions of the midrange and the semirange an! their joint distribu-

tion for samples of size n from a standard ncimal vopulation, N(0,1).
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G. R. Seth (1950) finds the joiut distribution of the two closest obser-
vations xx'(x'<'") of the set Xy 5%y ,xs(xlgngxs}, given the distribution of
Xy 9% 5Xs3 he also finds the joint distribution cf ws{x'-x') und w=(x"-x'}/
(xs-xl) in general, and the joint density function of u and w and the marginal

density {inctions of © and of w, all when the wmderlyinz distribution is nommal

with mean 6 and variance unity, N(6,1). He also obtains the joint Jzi.it¥
function of u=x'"'-x' and v=(x'+x")/2, as well as the marginal density function
of v, which has mean 6 and variance 1/2 +/3/4n.

R. K. Zeigler (1950) shows that, for a random sample of size 2k+1 from a
distribution which has a finite second manent and which is continuous at x=¢
with £(0)#¢, 6 being the population medisn, the joint distribution of the
sample meaian and the mean deviation from the sample median is asymptoticaily
bivariate normal, and gives the asyuptotic means, variances, and correlatizn
ceefficient.

D. H. Bhate (1951) shows that, for symmetri-al probability functions
which are members of the Pearson family, the wmean of two symmetrically placed
elements in an ordered sample (3 qussi-median or quasi-midrange) is more
efficient than the median as an estinate of the central value. He demonstrates
by an exanmple that this statement is not true for all symmetrical probability
functions.

Brown and Mood (1951) propose a method based cn medians for determining
the coefficients in a multiple linsar regression equation. let the dependent
varisble y be distributed with mediar ay* Zl{ar Z,. and suppose <e have . samuple
of n sets of associated observations ¥i» 2190 %350 s g With 1=1,2,77°, n.

Then the coefficients o, are estimat:d by the numbers *a'r such that medi,im
Z_.<
i “r
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Dixon {1651) finds the distribution of the ratio r‘("n"ﬁx-j)/ (x,"x;) for
some small values of i and j, where xl,xz,“’,xn are the order statistigs cof
a sample of size ng30 fram a population which is (1) rectangular or (2) mormal.
He tabulates 3-decimal-place percentage points, correspanding tc cumulative
probability «=.005,.01,.02,.05,.1(.1).9,.95, for r when j=1,2 and i=1,2,3, for
samples of size n=(i+j+1)(1)30 from a nomal population. These tabular values
are usefal in applying the criteria for rejection of outliers propesed by the
author in his earlier paper [Dixon (Z350)].

H. 0. Hartley and E. S. Pearson (i951) tabulate the moment constants of
the distribution cf the range in samples of size n=2(1)20 drawn from a normal
population with unit variance. They note that there are some discrepancies
between their table and some earlier results of Grubbs § Weaver {1947).

Ray Bradford Murphy (1951) treats the problem of outlying observations
in samples from univariate normal populations as one in linear hypotheses. In
particular, he introduces t-tests for outliers from a single wniverse and
likelihood ratio tests for outliers from several wuniverses. He discusses the
problems of testing for all possible numbers of outliers, k, subject only to
the restriction that Zken, where n is the sample size.

J. H. Cadwell (1952) finds improved approximate formmulas (polyncuials in
n‘l) for the ratio of the standard error of the median to the standard exror
of the mean for raudom samples of size n drawn from a normal population. Numeri-
cal examples show good agreement with the exact results of Hojo (1931). The

author shows i7 to extend the result sc as to obtain the corresponding ratio
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for any quantile of a sample from a comtinuous population.

Anders Hald (1952a,b) gives theory and tables for the distribution of the
taauge. He also discusses the distributions of the largest observation and of
its deviations from the population mean and the sample mean, as well as criteria
for the rejection of outlying observaticas.

Tsurochiyo Homma (1952) obtains possible limit laws for the range and
the midrange of samples from a continuous population, :md chows that the range
and the midrange are not asymptotically independent.

Norman L. Johnson (1952) gives an zpproximation, valid for w smail and n
not too large, for the probability Pn(w) that the range of n independent random
variables does not exceed w. He also gives an approximation for the critical
values w, satisfying Pn ("a)"’“

Julius Lieblein (1952) investigates the distributions of several statistic:
involving tic closest pair of observations in a sample of size three from rec-
tangular and nommal populations, and calculates their means and standard
deviations. He shows that the ratio of the difference of the closest pair of
cbservations to the range is a poor criterion for rejecting outlying observa-
tions, and finds the distribution of the outlying observation for a rectangular

population.

K. R. Nair (1952) extends his earlier table [Nair (1948)] of percentage
points of the studenitized extreme deviate from the sample mean to cover more

sample sizes and more significance levels.

Calyampudi Radhakri.hna Rao (1952) gives examples involving the use of
the largest and/or smallest cbservations to estimate the parameter(s) of a

rectanguiar population, the asymptotic distribution of quantiles,and the
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efficiency of the samy’2 medim as a estimate of the mean of a nomal popu-
1stion.

J. H. Cadwell (1953) presents a method for evaluating the pzobability
density function of the rg quasi-range, LD SIS of a sample of size
n from a nomsl population, and tabulates percentage points aand moments of
vy for n=10(1;30. He investigates the efficiency of quasi-ranges in esti-
mating the population standard deviation, and findswo(therange) to be most
efficient for 2¢ncl7 and w, most efficient for 18e¢3l.

Dixon (1953) studies the problem of contamination of a sample supposed
to be dram from a nommal population with mean y and variance o%, N(u,0%), by
drawing a proportion y of the chservaticas £rom either N(i#io,02) or N(u,i%62).
He discusses the estimation of » ¥ use of the mean and the median, the esti-
mation of o2(or o) by the sample variance and the range, and gives recccmended
rules for processing data under various conditions of contamination.

Enoch B. Farrell (1953) proposes the comstruction of quality control
charts usirg ranges and midranges within subgroups and medians of these statis-
tics between subgrowps. He contends that this method gives more useful estimates
of the true population parameters than ths conventional method when outlying
observations due o the presence of assignable causes of variation are present,
also that it is more effective in detecting and locating assignable causes, be-
sides inwolving simpler computations.

Harman Ieon Harter (1953) applies the principle of maxdimm likelihood
to the problem of determining the regression equation of one variable on p
others. He shows that for a nomal distribution of residuals, the maximum

likelihood solution is the least squares solution, found by minimizing the

103

analdnbt RSO A st e




AN TR I et sy s e ot T4 BR

o

RN AT
AR

s peinty

SR

G

i
e
R
-2
1283
%,

E
B,
34
A

) o
-~ -, & % S R+ % - ” [ - . N gl P L4 ;
g v s % X, % (o B OIEr X2 s s ST g e & - A & s s foo -, L - . ¥ o P ol e am 3 s o ® L vt g
e N S A e e G AR e S S o P A N P S O o L 3 g et ’-.o-z"i“ el Y ool e a8 g S T~
- ) - - B tale k) bt .. i By £ e

L

sums of the squares of the residuals, vhile for a Laplace (first) distribution
of residuals, the maximm 1ikelihood solution is found by minimizing the sum
of the absolutz valies of the residuals. For distributicns of residuals with
finite limits, only o:rtain solutions are admissible, ani either of the sbove
mathods may lead to an inadmissible solution. For a rectangular distribution
of residusls, the likelihood finction is a coustant, and there is no 2% e
maxiram likelihood solution, one admissible solution being just as likely as
aother.

E. P. King (1953) shows that, when the criteria of Grubbs (1950) and Dixon
(1951) are employed to detect the presence of a single outlier, the effect of
using a test statistic based on the more deviant of the two extremes, thus
testing a two-sided hypothesis, is approximately, but not exactly, to dowle
the significance level of the standard test procedure.

Edwin Glemn Olds (1953) studies the problem of finding the coefficients
a2 and b in the equation of the best-fitting straight line Y=a+bX when values
of y are observed corresponding to a fixed set of x-values. He points out that
when y has a normal distribution with constant variance for each X, the solu-
tion can be found either by the method of least squares or by the method of
maximm likelihood. When y has a rectangular distribution, the method of
maximm likelihood does not, in gemeral, give a unique solution, and the method
of least squares sometimes yields a solution which is inconsistent in that the
residual (the difference between the predicted and observed y-values) for
ane or more x-values may lie outside the admissible interval (-c,*+c), where
2c is the range of the rectangular distribution assumed for the residuals. The

author «dopts the least squares solution whenever it is consistent; when it is

Jud

oty




not, te shows how to find a modified least squares solution which minimizes
the sun of squares of the residuals subject to the restriction that the
absolute vslue of each residual must be less than or equal to c.

Frank ¥rosd:an (1953) adwocates, for the rejection of outlying observa-
tions, Dixmn's criterion based wn tie éxtreme observation when no psst data
are available and Nair's criterion based on the studentized extreme deviate
when rast data are available for use in obtaining an independent estimate of
the standard deviatice of an individual measurement. He tabulates criticai
valuves at the 5% and 1% levels for both tests.

Youden (1553) summarizes available results on the situatics: in which three
measurements are made and the two showing the best agreement are selected. The
difference beteen the selected measurements averages about four-tenths
(3-3v5/2) that of the difference for honest duplicates [Lieblein (1952)]. The
dispersion of the average of the selected pair is 12 per cent larger than that
of the average of duplicates. Let d be the difference between the seiected
pair and D the difference between the discarded measurement and the nearer
cf the selected ones. The interval D is ten or more times a5 large as d im
15.7 percent of sets of three measurements. More than one-third of the time,
D is at least fcur times as large as d. Values of the ratio D/d exceed 32.57
once in twenty times [Youden (1949)].

Cadwell (1954) gives an asymptotic expression for the probability integral

of the range for samples from a symmetric unimodal distribution, and investigates

its accuracy for the case of samples of size 20 to 10 from a nomal population.
For this range of sample sizes the errors are small, and they can te made less
than .0001 by using a correction based on values given in the paper. The author
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tabulates percentage points of the range for saples of size n~=20,40,60,80 and
106 from a norwal population.

David R. Cox (195¢) studies the mean range and the cvefficient of variation
of the range in samples of size 2,3,4, and 5 from different types of pcpula- ;
ticns covering a wide range of values of B =a3 axl B,=a,, the messures of
§m and kartosis, including symsetric and asymsetric mixtures of normal
distributions, the normal distribution,the rectangular distribution, exponential
type distributions, the Pearson systex, and Shone's mmerical results for five

discrete distributions. He tabulates the nommalized mean range and the coef-
ficient of variatior of the range to 3 decimal places for samples of size 2,
3,4 and S Sor 6,=1.0(.2)2.0(.5)5.0(1.0)9.0; 8, is not a determining factor.He
copares the distributions of the range for samples from exponential and normal
populations, and applies the results to estimation of dispersion by use of

the range.

Herbert A. David (1954) finds the cumlacive distribution function and
the expected value of the range of samples from five non-normal populations,
and makes maerical comparisons of the results with the corresponding anes for
sawple- from a normal population.

H. A. David, H. O. Hartley and E. S. Pearson (1954) approximate the
distribution of uv=w/swhere WXoax~ ¥ain’ (n-l)szc Y’:-l(ri' ‘i)z, and xl,' i Xy
is a random sample with mean X from a normmal population] by selecting a curve
from the Pearson system with the proper first four moments. For specific values
of n they compare the vesult with that of an exact alternative derivation. After
examining certain noa-nomal populations, they suggest that u may be useful in
detecting departures from normality.
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Gumbel (1954) derives the continuous cmulative distribution function
vith specified sean and variance for which the expected value of the largest
of n independent observations is a maximm ard the continwous c.d.i. vith
specified variance for which the mean range is a2 maximm. The latter result,

-obtained by a different method, was previously given by R. L. Plackett (1947).

The former result, obtained independently,is given by Hartley and David (1954),
who also cbtain an upper bound for the expected value of *he mi order statistic
and best upper and lower buunds of the sample range of x under the restrictions
that the mean and variance of x are 0 ad 1 respectively and values of x are
restricted to th» closed interval [a,b], where a and b are given constants.
Thoy derive the distributions for which the upper bownds are attained, and
shce that the lower boupd is attained for a discrete distribution where x may
assuae only two values. These results are of interest in assessing the bias
that may result from ine umwarranted assumption of nomality when using the
sample range to estimate the population standard deviatiom.

E. S. Pearson ani . O. Hartley (1954) give tables of moment canstants,
probability integral and percentage points of the ramge; also tacles of per-
centage points of the extreme standarized deviate from the population mean and
from the sample mean, the extreme studentized deviate from the szmple mean, and
the ratio of range to stardard deviaticn in the same sample, a1l for samples
from a nomal population. Various appiications of these tables, ircluding the
rejection of outlying observations, are discussed in the intrcduction.

George J. Resnikoff (1954) discusses various spproximations to the distri-
bution of the average range, and tsbulates percentage points of the average
range for subgroups of size five, commonly used in quality control work, for
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samples of size N=5m, vhere m is an integer.

F. Zitek (1954) discusses various measures of sample dispersion, includ-
ing standard deviation, mear deviation, and range, which may be used in
estimating the standard deviation of a normal population. For n=2(1)15, he
tabulates normalizing factors which make these estimators wmbiased and variamces
of tae resulting unbiased estimators whenever these are available in t*':z liter-
ature, an( makes some observations on the efficiency of the estimators.

John T. Chu (1955a) obtains upper and lower bounds for the curilative
distribution function of the median ¥ of = sample of (2ntl) observations on a
randam variable X from a population with probability cemsity function f(x) and
umique median £. He shows that the apprcach to nommality of the distribution
of X is rapid wier X is nomaliy distributed, but much slower when X Las a
rectangular or a Laplace (first) distribution. Chu (1955b) shows that, under
very general conditions, var ¥ »(4[£()]°(2n+3)} L, as compared with the asy-
mototic variance {4[£(£)]%(2n+1)} 7}, with the equality holding for the rec-
tangulay dictribution. He shows that the sample mean X is more efficient (has
sm2l1ur vaciance) than X for many symmetric distributions, notable exceptions
being the Laplace and Cauchy distributioms.

Chu and Harold Hotelling (1955) show that, wunder certain regularity
conditions, the central moments of the sample median are asymptotically equal
to tle corresponding moments o: the asymptotic distribution, which is nommal.
Thev give a general approximation procedure for the monents of the median which
involves expanding the inverse of the cunulative distribution function in a
Taylor series; the approximation error can be made arbitrarily small by using

a sufficiently large number of terms in the expansion. They apply the meihod
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0 the nommal, Laplace, and Caxly distributions; for the first two of these
they cbtain upper &l lower bords for the variance of the median by a mxh
simpler procedure. They cbtain detailed resuits concerning the medianc of
sa»ples dram from 2 normal population.

-J. Arthur Greemwood (1955) expresses the differential of the prcbability
of the x-th range [quasi-range] in terms of Bessel functitns of the third kind,

ad integrates by parts to obtain the distriburion of the m-th range.

Mzx Halperi:, Samel W. Greentocuse, Jerome Comfield anc Julia Zalokar
(1955) tabulate, to three significant figures, the upper and lower 5% and 1%
points of the studentized maximm absolute deviate @mxilxi- xi/s, vhere the
%;{i=1,"** k) are independent and each H(u,0%), ad where ms*/o” is distributed
as x with m degrees of freedom and independent of x;, for k=3(1)10(5)20(10)46,
50 and m=3(1)10(5)20(10)40,60,120. They give exampies to illustrate the use
of the tables for various piyposes, including an outlier test »hich is d.2
to-siGed version of Nair's test.

George William Thompoon (1955) shows that bounds exist fo- w/s, the ratio
of range to standard deviation in the same sample of size n, for all popula-
ticns with non-zero variance. He tabulates upper and lower bounds for w/s to
three decimal piaces for n=3(1)20(10360(20)100(50)209,500,1000; also lower
and wper 0.1%, 0.5%, 1.0%, 2.5%, 5.0% and 10.0% points and the medizn (50%
point) of w/s to five decimal placcs for samples of size n=3 from a normal
population.

Tukey (1955) shows that varicus characteristics (e.g. percentage points,
expectation, reciprocal standard deviation) of the range of samples from a
normal population behave asymptotically like the squate root of a log (bn+c)
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where n is the sample size and a,b,c are appropriate constants. He uses this
fact as an aid in interpolating bet.een tabular values of these characteristics.

%_ U. Behrens (1956) proposes certain factors for use in detemmining the
standard devistion spproximately either from the mean deviation (taken from
th2 mean) or from the range. He compares these factors with those developed
by other authors [including Tippett {1925}, Pearson (1932) and Pearson, Gedwir
§ Hartley (1945)], and refers to the different bases of the two kinds of fecters.
He contends that Lis factors are useful for the cbjectives generally pimrsued
by expericent statioms.

Juan Bejar {1936) defines the median regressica curve of a bivariate
distribution f(x,y) as the locus y=g(x) of the median of the conditional distri-
bution £(ylx), and gives its general properties. Since g(x) is not easy to
obtain, the author introduces the inear regression, and then the polynomial
reg.essica, which minimize the mean deviatiom instead of the mean square ue-
via.ion as in the meam regression curve. He points cut that the calculation
of the median regression inwolwes winimizing a linear expression with the
variabies comstrained by irequalities, and is therefore closely related to
lineswr programming.

Ches*ar 1. Bliss, ¥illiaw G. Cochran and John W. Tukey (1956) propose a
new criterion, based en the range, icr the rejection of outliers. The test
statistic 1s the largest range in k sets of n measurements divided by the
sun of all the ranges. If the obsarved ratio exceeds the 5% critical value,
which they tabulate for various values oF k and n, they conclude tha: the set
having the largest range contains an ovtlier, which is identified by inspection
and rejected.
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H. A. David (1956) gives trbies of the upper percentsge points of the
studentized extreme devigte from the sample mean like those of Nair (1948,
1532) [reprinted by Pearson § Hartley (1954)],but correctad by using a better
spproximation.

Akio Xudd (1958) proposes a new criterion for the rejection of outlying
gbservations. Giwven threz sets of independient observations {x}: (i)m1 from
N, 109, 1=1,2,""°, ny; (i) 1, frn N@(D o%); and (@iddng from N® o2,
ne of n,+ 1 possible decisions, Di(accept Hi), is to be made, where Hy:

R AN ettt SN

~ o~ g

L= By= = zhl. .(2) ’ Hififﬂ): M(z)- each mj (except ni)' m,- 2. The author
iresents a decision procedure for which: Pr(acc. DOIHO) = 1-p, Pr(acc. D; [H;)

2ot QA SERE IARA LD Rl AN RN ARSI W nes « o - vne

is maximized for i#0. Tae optimm -lecision procedure involves Xy© max {x,,X,,
"‘,xi-,"’.xnl}; X, the mean of samples (i) and (ii); S, the overall standard
deviation using X for (i) and (ii) and i3 for (iii). The decisior: rule is:
select DO i€ (xu- X)/S¢r_, sod select Dy if(xM-i')/s>Ap. 1f o is snown, S is
replaced by o; in this case set (iii) is not needed, and diffcrent ;‘P are

W 1 A T A & KR IR L) WP

teeded. In each case, the author states that the critical walues A, are to
be published later [see Kudd (1958)]. L

Harold Ruben (1956) shows that the nreduct moments of the extreme ordar
statistics in samples of even sizes from normal populztions can be expressed ‘

A dreis

7o B, % Y

as linear firictions of the products of the contents of certain hyperspherical
simplices, and uses ti_s fact to obtain simple explicit expressions for the

variance of the saple range for samples of size 2 and 4.
Juan Bejar (1957) gives a method, similar to linear programming, to deter-
mine the regression line y=atbx such that lei-a-bxil is a minimm or the

500 A B e Vi 3 La b o hnt 8N T SIS L S 0 & e

regression plane zs=atbx+cy such that Eizi-a-bxi-cyil is a minimm, He gives two
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exmples in which he arranges the data to make the shortest calculitions.

Dixon (1957) discusses seversl simple estimates of the mean and standard
deviation of a nommal population. Estimates of the mean considered are the
median, the midrange, the mean of the best two (in the sense of minimm
variance), and the mean of all but the largest and smallest. Estimates of the
standard deviation studied are various linear combinations of quasi-ranges.
The efficiencies of these estimates are compared with those of the sample mean
and sample standard deviation and the best linear unbiased estimates for
samples of size ==2(1)2C.

A. Ghosal (1957) derives formulss for the distribution of the rikquasi-
range W= x _-X., of samples of size n from rectangular and exponential
distributions; tabulates their first four moment constents for r=0,1,2 and
n=5,10,15,20; and compares the efficiencies of Wr(r>0) and WO as estimstors
of the pcpulation standard deviation. For the expmential distribution, he
finds that W, is more efficieut than W, for n> 9 and ¥, is more efficient
than ¥, for mal7.

B, i. Harley and E. E. Pearson tabulate the probability integral and
percentyge prints of the Tange for samples or size n=200 from & nommal popu-
lation. They indicatc that the results will be useful in conmnection with a
suggestion by David, Hartiey § Pcarson (1954) that a compaxiron of the range
and roct-nean-squars estimators of iUie population standard deviation msy serve
as a test of homogeneity or as a routine check of accuracy in coaputation and
also in cmmection with methods of in%erpolation suggested by Tukey (1955).

Motosaburo Masuyama (1957) derives upper and lower boumds on the ratios
of the poruiation standard deviation o to the expectation of the sample rage
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and of the population variance o? to the expectation of the square of the
saple range,md suggests that the hammonic mean of the appropriate pair of
these bounds may be used for all distributions as a multiplier of the sample
mgeoritssqmminestinating«oroz.

Rider (1957) studies the distributior cf the midranges of samples from
five symmetric populations of limited range and the relative efficiencies of
sample midrange and mean in estimating the populaticn midrange (which is
identical with the population mean and median). he finds that the midrange
is mor® efficient than the mean for all of the populations considered (which
have standardized fourth moment a, = 2.19,2.14,1.9,1.19,1), and that its
efficiency increases with decreasing a.

Masaaki Sibuya and Hideo Toda (1957), using an expansion formula given
by Cadwell (1953), tabulate (to four decimal places) the probability density
function of the range w in normal samples of size n=3(1)20 for w=0(0.05)7.65.

S. Babcock, A. Beck, A. Davies, B. Goldsmith and E. Torkelson (1958)
introduce the median, quasi-range method for control of lot average and lot
standard deviation for measurable lot quality characteristics which are
nommally distributed. They tabulate factors for computing wper and lower
acceptance limits for the median and an upper acceptance limit for the optimal
quasi-range for samples of size n=5(5)50.

D. E. Barton and D. J. Casley (1958) propose a quick estimate of the
linear regression coefficient of y on x in a bivaris'e sample (xl ,yi), i=1,2,
***, n, which they obtain Ly dividing the difference of the means of the k
largest and the k smallest of the x's into the differe..ce of the reans of
the corresponding y's. For large samples from a bivariate nonnal population,
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the maximm efficiency (81per ceat) is attained whem k = 0.27a. For small
semples the efficiency lies between 70 paxr cent and 80 per cant vhen k is
betveen one-third and cne-quarter of n.

Philip G. Carlson (1958) obtains a recurrence formmla for E(whﬂ), the
expected value of the range of a sample of siz 2n+l, in terms of E(,,,,;)
for i=1,2,'"", n-1.

Ferrell (1953) suggests a method for computing control limits for samples
from a strongly skewed wmiverse which can be approximated by a lognomal dis-
tribution. The gemetric range = Max/Min is used in place of the range ad
the gemmetric midrange x=/Max x Min in place of the mean. The suthor describes
corresponding changes in the computation of linits. This method accepts the
skewcess of the universe and allows a search for other assignable causes of
variation.

Harter (1958) discusses the use of sample quasi-ranges in estimating the
standard Geviation of nommal, rectangular and exponential populations. For
the nomal population, he tabulates the expected value, variance and standard
deviation of the 1'gl quasi-range for samples cf size n for r=0(1)8 and n=(2r+2)
(1)100. For each pair of values of r aud 1, he also tcbulates the efficiency
of the unbiased astimator of population standard deviation based on cne sample
quasi-range. He <1so considers estimatcrs based «u a linear combination of
twe quasi-ranges, and gives a method for dotermning the weighting factor
which maximizes the efficiency. The most effic’ent unbiased estimutozs based
on one quasi-range for n=2(1)100 and on lircar combirations of two adiacen?
quasi-venges and of any ¢wo quasi-vanges (r<r ¢8) for n=4(1)100 ars tabulated,
along with their efficiencies. Thess sstimators are compared with those cf
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by m exmple. For rectangular and expmential populations, the most efficiemt
wbissed estimators based on one quasi-rmnge sre tabulated, together with their
efficiencies and the bias when estimators which assume normality are used.
Bemnard Ostle and J. M. Yieson (1958) express the distribution of the
L. rmge of a sample of size n from a right trimgular pepulation in terms of the
' range of the population, and apply the result to an acoeptance sampling problem.
J Plackett (1958) examines the methods used by the ancient Babylonisn and
; Greek astronamers in estimating parameters of cbservational dsta, and finds no
evidence that they made use of the aritlmetic mean of a group of comparsble

E
:
Grubbs and Weaver (3947) based on group ranges, and their wse is illustrated g

observations. He does trace its use as far back as the late sixteenth century,
vhen Tycho Brahe spplied it to astronomical observations in order to eliminate

systematic errors.The concept of the mean as a more precise value than a single
moasurement was already known to de Moivre, Flmmsteed and Mawpertius early in
the eighteenth century, but remained controversial until the second half of
that century, when it was demonstrated conclusively by Simpson (1756, 1757)
ad Lagrange (1774), both of whom made use of results due to de Moivre. The
author closes with an accomt of the work of Simpson and Lagrangs, which we
have already examined.

Rider (1958) considers the femily of demsity functions £(x)=c(l+|x-6|%)®,
-w<x<e, where the case h=1, k=2 is the well-known Cauchy Gemsity functies, and

Compares the efficiency of the sample moan and the sample median as estimators
of ¢ for various other values of h snd k.

Jean Geffroy (1959) makes notable contributions to the theory of extreme !
values, including the proof of various results concerning stability in probmbility
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:,;i and almost camplete stebility of midrange, quasi-midranges, and rmge of smmples.
Gusbel (1959) expresses the asysptotic distribation of the redaced B

1,

rage R, which is a certsin linear trmsforn of the AL range w_, in tems of
the previously derived asymptotic distribution of R, the reduced range, and
calculates its moments. For = close to n/2, where n is the sample size, he
shows that the atl range is ssymptotically norsally distributed and gives its
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Herman siansel (1959) summarizes the results of investigations by Tippett
(1925}, E. S. Pearson (1932), Behrens {1956) and others cn: the use of range
for the estimation of measures of variability. Ile points out that use of the
range makes possihle short-cut methods of sscertaining standard deviation with
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only a slight loss of acamracy which are applicable iu every branch of biology.
Harter (1959) gives a revised and condensed version of the material in

R
WehXi:

L

his earlier r.port [Harter (1958)] on the use of sswple quasi-rszges in esti-

hl

mating population standard deviation. He points out that the standard deviatiim
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of an exponential population whose lower limi¢ (Jocation purameter) is known
can be estimated more efficiently from a single order statistic than from a
quasi-range.

Harter and Donald S. Clesm (1959) give a description of the computstion
and use of tables of the probability integral, psrcentage points and mments

y Ao RS P AR A n bt st
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—a of the range for sasmples from a nurmal distribution. They include the following
- tables: (1) an eight-decimal-place table of the probibility integral of the

3 (stand~rdized) range, Wew;3, at intervals of 0.01, foi samples of size n=2(1)20
3 (2)40(10)100; (2) a six-decimel-place table of percentage points of the range

-

for the same values of n and cumulative prohability P=.0001, .0005, .001, .005,
116
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.01, .025, .05, .1 (.1) .9, .95, .975, .99, .995, .999, .9995, aad .9999; aad
(3) a table of moments of the range [mean to 10 decimel places (1] significsnt
figures), varimnce to i00P(105F), ey to 8 IP(SSF) and o, to 7IP(8SF)] for
sauples of size n=2(1)100.

Berasrd Ostle and George P. Steck (1959) prove that the symmstry of the
pexemt populstion implies that the ssaple mean and the sample range are wm-
corrvlated, snd constyuct su exmmpic to show that the cczverse is not true.
They piesent a necessary and sufficient condition that the correlation between
the mean and the range be positive (negative). They also prove that the
symmetty of the parent population implies that the sawple range and midranes
are tacorrelated.

K.C.S. Pillai and Benjamin P. Tienzo (1959) dewelop, in series fom, for
n=3,4,5 sd v<10, the distribution of the standardized extreme deviate from
the sasple mean, u=max [{:sl- x)/o, (I-xl)/o] and the corresponding studentized
deviate, t = max [(x - X)/s , X - x;)/s.], vhere x;<x,<" " "€x, is an ordered

sqhofsiunﬁuammipmﬂatimwiﬁxmaz,‘iisthesqle

mem, aﬂs‘isthesqmemotofanindepeudmtmsqmextiuteofsz
based an v degrees of freedom. Pillai (1959) tabulates the upper S% and 1%
points of 4 for n=2(1)10,12 and v=1(1)10, and discusses the method of pre-
paration of this teble.

Rider (1959) derives the distribution of the v quasi-range, W= X - X,
where xlsxzs"‘an are dram at random from an exponsntially distribured popu-
lation, and gives the moment generating function :md the cumulsats of wr. Froa
these he shows that the mean of ¥, slowly diveiges with iz reasing smmple size

while the variance approaches a finite value: for exasple, 12/641.6/449 for r=0.
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Jobn Edeard ¥aish (1959) proposes a large-saple nomparametric criterion
for rejection of cutlying cbservations. lLet x,€x,¢ " “ex, be independeat cbser-
vations fros comtinmoos populations. The null hypothesis, Hy, is that these
observations -1 resuiicd from independent random drawrirgs from the same well-
behaved populsiiz with ~nspecified shape. The altemative hypothesis is H,:
ﬁtisuliestobserv:.imsuetnosull(orﬂi:d:eihrgstuetoolnge)
to be consistent with H, xhere i is a small mmber which should be specified
vithout knowlecge of the observatins. The altemative H; is accepted if a
stat.isticoftheﬁnxi-(lﬂ)xiﬂkakisnegative,mm,kistbehxgst
integer contained in i+/2n, and n is sufficiently large. Similarly, the al-
ternative H) is acoepted if 5, . -(MAIX_,+ AX ;1 is positive. Two-sided
tests are obtained by combining these me-sided tests. Tchebycheff's inequality
yields an approximate upper bound for the significance lewel of the test for A
suitably chosen.

H. Weiler (1959) shows that if a>0 is the smallest and b is the largest
of n values whose aritimetic and harmonic means are X and H, respectiwvely, then
0<(-H) Me(b-2)2/4sb, the first equality holding only if 21l n values are equal
and the second only if half of them have the value a ad the other half the

value b. Moreover, since Heg<X, where g is the geometric mean, the same inequality

holds for (X-g)/g. Thus X differs little from H or g if the n values have a
small range end all are far removed from zero.

Frank J. Anscombe (1960) examines mmerous criteria for the rejection of
outliers proposed during a period of more than a century. He suggests that re-
jection rules should not be regarded as significance tests, as has usually been
the case, but as insurance policies. He makes a detailed study of the effect
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of routine spplication of rejectice criteris to replicste (especially tripli-
cate sd quedrplicate) determiaations of < single weime, focussing attemtion
mainly o rules appropriste whea the popilation standsrd deviatiom ¢ is kmom,
but giving some attention to studestizag ruies. He cxsxines the fol fowing
riles: Rule 0. For given C, rejeci ewery dbservetion 7; (i=1,2,"°", n, vere

R is the mumber of cbservations} such that !Ziiﬁ,ﬂem z~ ¥ 7 ?-'Eyiix.
Estimate the mem x by the mean of the retained observatioms. Rule 3. For
given C, reject y,, if 12>Co, where M is the vaiue such that iszizii for
all ifd; othervise no rejections. Estimste » by the wezn of the retained
chservations, thus § = § if |z )<Co,fe7-2. /(1) if |z,/>Co. Rule 2. Apply
Rule 1. If an observation is zejected, consider the remaining observations as
a sample of size n-1 ard apply Rule 1 again; and so on. Estimste s sy the memp
of the retained cbservations. The author Sinds Rule 9 wnsatisfactory, since a
single outlier, if it outlies sufficiently, can csuse the entire, sample to be
rejected. He finds Rule 1 satisfactcry for small sawples (=3 or 4), but
sirce Rule 1 cm reject only ons outlier, Rule 2 must be corsidered for lsrger
sample; which may contain more than one outlier.

Dixon (1960) considers various estixators or p. ulstion mean end standard
deviastica from censored nommal samples. Among the estimators of the mean
coasidered are the Winsorized means, in which the magmitude of an extreme obser-
vatin which is wmknown or peorly known (or suspected of being spurious) is
veplaced by the next largest (or smallest) observation, as proposed by Charles
P. Winscr, instead of rejecting it eantirely. Jixon finds that the efficisncy
of Minsorized seans, when balance is maintainad by Winsorizing the same number
of observ.tions at each extreme, is remarkably high relative to that of the
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Harter (2960) gives a condensed version of the material on the range of
samples from a nommal pogilation contzined in the report by Harter § Clesm
(1959). The table of the probability integral is amitted, but those of the
percentsge points (abridged) and moments of the range are included, along with
a sectimn on interpolation :n the tables which is not founa in the report.

Robert Vincent Hogg (19602) defines ¢ lccation statistics T and even
location-free statistics S by T(x1+ h, x,* h,”"°, ¢ h) = T(xl,xz,"',xn)
+h, T(x,- x5, )= -T(x;,%,,""",X ), S{xy+ h, x;# h,”"", x # h) =S
O -7 7a%) s SEx, "7, XY= S0y, %5777 %) for all real valwes of
h. He proves that the symmetry of a probability demsity finctioe implies that
the correlation between an odd lccation statistic and an even location-free
statistic is zero. This generalizes two special results of Ostle & Steck (1959).
The sample rean, the sample mediim, and the sample nddrange are odd location
statistics, while the sample variance, the sample range, the sample uasi-ranges,
the sample mean deviation fram the sample median, and any ratio of two of these
statistics are even location-free statistics. Hogg (1960b) proves that if the
Cistribution is symmetric about 6 and EI exists, then E{T|S = s}=e, together
with a2 multivariate extension useful in obtaining wmbiased estimators of 6: e.
g-» (RZM1+ RIHZ)/(Rf Rz), where M’l andM2 are the medians and R1 and R2 the
renges of random samples from two distributions both of which are symmetric
about 6.

William H. Kruskal (1960) gives an exposition of the problea of handling

wild observatiors, or outliers. He suggests that such observations should be

reported even though they may be excluded from the analysis; moreover, they
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si~uld not be disamssed simply in temms of the propriety of including them
in the malysis, of which the sutior gives illustratinons, bat treated as
opportmities to leam something new. He classifies outliers into three cate-
gories according as there is (a) a priori knowledg=, (b) a posteriori inowledge,
or (c) no knowlelge of a varicut causal pattern. Those in the thirxd category
are the ones vhich cause the trouble, and the author expresses dissatisfaction
with existing approaches to handlirgz them.

Rider (19603) copares exact varimaes with the valucs obtained by using
the formula for asymptotic variance for the medians of small samples (n = 1,3,
5,7) frca expomentisl, normal, cosine, parsbolic, rectangalar and inverted
parabolic populations, which have standard fourth momerc . 9,3, 2.19, 2.14,
1.8 and 1.61 respectively. He finds that the adequacy of the asymptotic fcrmila
increases with ;- Rider (1960b) makes a similar comparison for the varimce
of the median of samples of size Zk + 1, for k=0(1)15, from a Cauchy distri-
bution.

Tukey (1960) surveys sampling from contaminated distributions and reaches
a mmber of conclusions, of which the following are relevant to the preseat
study: (1) "In large samples the sample mean is not nearly so safe an indicator
of location as is the mean of the obs:rvations which remain after a small
percentage of the highest, and an equil percentage of the lowest, have been
set aside (use of alightly truncated mean).” (2)"In slightly large samples,
there is ground for doubt that the use of the variance (or the standard devia-
tion) as a basis for estimates of scaling type is ever truly safe.” (3)"In
moderately or very large samples, °°° the variance or staidard deviation is
safely used only [for certain purposes which the author specifies]." (4) 'Nearly
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imperceptible non-norme’ities may aric comventional relstiss efficiescies of
estimates of scale and location eatircly useless.™ (5) "If coatasination is

a real pessibility (and wbhem is it pot?), neither p»mn mor variamcs is likely
to be 2 wissly chosen basis for meking estimates from a large smple.” (6) "As
m interin moasure, the use of truncated varimnces is lilkely to be quite
satisfactory.” (7) "In smsller samples, the use of the mean deviation mey be
a frequently useful compromise.

Aascombe (1961)considers four statistics designed to rewveal certzin types
of departure from the ideal statistical conditions (independent sad normally
distributed residuals with zero memn and constant variance) wnder which the
least-squares method of estimating the parametsrs in a regression equation is
mquestionsbly satisfactory. He gives informstion about the distributions of
these statistics under th® null hypothesis cf ideal conditions, but states
that a thorough investizstion of the aopropriateness of the least-squares
method wouid have to gc further, and would sncomnter grave difficulties. He
states that for mst fields cof observation, outliers may be expected to ocaur,
so that significance tests to detemine whether extreme observations do in
fact occur with frequency iacampatille with the ideal conditions may be
irrelevant. He writes: 'The day-to-day problem with outiiers °°° is not: is
the ordinary least-squares meinod sppropriate? but: Low s.iuld [it] be modified?
not: do gross errors cccur sometimes? but: how can we protect ourselves fram
the gross errors that no doubt occasiunally ocamnr? The type of insurance
usually adopted (it is not the only kind conceivable) is to reject completely
any observation whose residual excesds a tolerance calculated according to
some rule, and then apply the least-sguares method to the remsining observations."
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? He refers to his oim esrlier paper [Amscosbe (1960)] comtaining suggestions

Sor choosing a routine rejection rule and to the Bayesim approsch of de

Plnetti (1961).

Eicembart (1961,196Z) summsrizes the work of Poscovich om the cosbinstion i
2 of cbsezvations. He points out that Boscovich was the first to devise a com-

= pletely cbjective procedure for wicuely detormining the coefficients of a
two-parameter line y = o + 8x from a set of three or more cbservational points.
He also notes thst Boscovich's precedure, like the median, is comparatively
insensitive to the more extsem: of a set of observations, and is especially
well suited to sumarizing the linear trend evidenced by a more or less hetero- ;
gencous set of data compiled from various sources, or obtained by a measure-

ment procedure that has a tendency to yield occasional discordsnt values.

Besides Boscovich's geometric aigoritim, the author discusses the algebraic
formulation of Boscovich's method by Laplace and the modification by Edgeworth,

who adwocated unrestricted minimization of the sum of absolute valuss of the
residuals, dropping the restriction that their algebraic sum must be zsro,

taus in effect requiring that the line pass through the double asdian paint

(X,¥) instead of the center of gravity (X,§) of the observatians. He also

montions the more recent work of Fhodes, Singleton, Harris, and Bejar, as well

as the classical work on rival methods, including least squares.

Thomas S. Fergusor. (1961a) derives locally best tests, based on the
sample skewness ag * fg‘l and the sample kurtosis a, respectively, of the aull
hypoth:assto that a mmber of observations were all drawn at random fram the
same normal population N(u ,oz) against the alternatives HA that one or more

cutliers came from N(u+io ,az) and HB that one or more outlierscems from
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Nip,1%0%). e compares the power of these tests with those proyosed by Grubbs
(1950) and Dixm {1950). Ferguson (196ib) surveys the literature on the rejec-
tion of outliers from the time of Meirce (1852) to date, with special emphsasis
on the period after 1950. He dewstes one section to the relation between
rejection ard estimation, in which he discusses trimming and Winsorization.
Bruo de Finetti (1961} proposes a Bayesim aprroach to the treatment of
outlying observations in which observations are never rejected, though the
influmce of outlying observations on the final distribution mzy be weak or
alxist negligible. He distinguishes three cases,in which the errors are (a)
independent, () exchangeable, or (c) partially exchangeable, where independence
means "independence with knom error distribution”, exchangeability translates
"independence ¥with unknown error distribution", and partial exchangeability
translates "independence with an unknown conditional error related to visible

features of the individual observatiomns."

Harter (1961) gives examples of the use of tables of percentage points
of the range [Harter § Clemm (1959) and Harter (1960)], including an application
to rejection of outliers based on use of the test statistic ¥ = w/o (‘he stand-
ardized range) as proposed by Dixon (1950).

M. G. Kendali (1961) reports the results of a historical study of the
work of Daniel Beynoulli on the method of maximm likelihood. He sets thz
stage by reviewing the earlier contributions of Cotes (1722), Euler (1749),
Mayer (175C), [Maire §] Boscovich (1755), Simpson (1756,1757), Lagrange (1774),
and Lapiace (1774). Kendall's comments are follwed by English translations of
the psper by Berroulli (1778) and the related ore by Buler (1778), which

Kendall vogards as less valuable.
C. P. (uesenberry and K. A. David (1961) point out that one may approach
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the problem of testing for outliers differently depending ~u the object in
view. If the primary interest is in pouning the observations so as to secure
a more accurate malysis of what is left (e.g. to obtain the most relishie
estimate of a mean) the criterion may be; the effect on the staadard error of
estimate, vhereas if the interest lies in identifying the exception(l observa-
tions so as to create a new insight into the phenomens inder study, the
criterion msy be the risk of wrongly deciding whether an observation. is excep-
tional or not. The authors take the second point of view. They modify the
test statistics proposed by Nair (1948) and by Hrlperin et sl (1955) for one-

s
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" e
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sided and two-sided tests, respectively, by replacing the independent estimate
E s, of population variance in the dencarinator by the pooled estizate s* =
& {[a-Ds vsgll(m-l)}uz, which makes use also of the internsl estimato s°
; from the sample of size n. They compute and tabulate percentage points of the
modified statistics.
{% Pranab Kimar Sen (1961a) studiss sore properties of the asymptotic variances

of the sawple quantiles and quasi-midringes and discusses the role of the sample

Gt Dk doros
> e
b

modim. He shows That, smong the cliass of sasple quantiles, the sample median
has asymptctically the smallest variance only wnder somewhat restrictive
/5

E: regularity conditions; while wmmong the class of sample quasi-midranges, the

sample median has asymptotically the smallest variance anly for a class of
nn-regular parent density functions. He tsbulates the relative efficiency of
the sample mediun with respect to the optimi: quasi-midrange for nine common
rarent distributions. Sen (1961b) studies the stochastic convergence of the
sample extreme values for distributions having a finite end-point and the

asymptotic convergence of their moments to the corresponding ones of thizir
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limiting distritutions. He applies the results to the estimation of the popu-
lation midrange from the sample midrange.

K. S. Srikantan (1961) treats the gemeral problem .f testing a regression
model against the altexnstive hypothesis of a single cutlier. He develops test
criteria which are generalizations of those of Grubbs (1950) and of Pearson §
thandra Sekar (1936), the latter based on the work of Thompson (1935), and
tabulates their 5% and 1% critical values for regression on m variabies (w=1,2,3).

J. Tiago de Oliveira (1961) gives a general proof of the asymptotic inde-
pendence of the sample mean and extremes for an absolutely continuous distribu-
tion satisfying the conditions of Gumbei (1946) for asymptotic independence of
the extremes. '

Simeon M. Berman (1962) shows, wnder gemeral conditions, that if the
standardized largest observation has a limiting distribution, then the student-
ized largest observation has the same limiting distribution and the studentized
largest absolute deviate has a limiting distribution ' f the same form.

Giovanni. Cancelliere (1962) gives a new proof of the theorem that the sum
of the absolute values of the deviations of a set of vbservations xl,xz."' s X,
from a nusber x is a minimm when x is the median of the x, (i=1,""",n). '

Odoardo Cucconi (1962) proposes a criterion for the rejection of outlying
observations from a k-dimensional distribution (k=1,2,7,°°") which is assumed
to be k-variate nomal, but possibly contaminated by spurious cbservatious. This
criterion is 1 generalization of that of Thompson (1935), to vhich it radwes
for k=1, The critorion is [N/ (81105 Dy (845/8) (xmy) (xyom), 51,2,

N, vhere rxi(z-l,z,“',N; i=1,2,"°,k) is the 3 coordinate of tre s observation,

A is the value of the determinant of the matrix whose element (cij- cji) is givea
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by the sum of the products of the deviations of the .x; and _x, from their

2 mﬁumlimdnj,mdtsijisthaoofactorofcij. In order to test

E | the hypothesis H, that the s (s=1,2,** N) cbservation is homogencnus with

: the others, the value of the criterion is calculated and compared with the

| critical value rﬁ’,‘g‘. The values of r(5), obtained fron the incomplete Bota
distribution, are tabulated to two decimal places for a~0.05,0.01; k=1,2,3,4;

:: and various values of N ~anging from 5 to 100. E
Harter (1962), ar part of 2 study of the ratio of two ramges not otherwise %
: relevant to the presat topic, tabulates (to 8IP) the probability demsity func-

é tion of the standardized range Wew/c for samples of size n=2(1)16 from N(u,lz) .

at intervals of 0.01 in W. This tablie represents a considerable improvement

over the earlier 4DP table of Sibuya § Toda (1957) at intervals of 0.05 in W.

Harter's values for W a multiple of 0.05, when rounded to 4DP, agree with those ;
i of Sibuya § Toda except for an occasional discrepancy of one unit in ths last :
:' place.

‘ Bruce Marvin Hill (1962) prcposes a test of linearity versus convexity of

a median regression curve. Specifically, he proposes to test Hy: Y= o8 xi"i

% against HI: Yi-¢()(i)+ei, i=0,1,°**,n, where a,8 and ¢ are unspecified and ¢(x) ;

. is a nonlinear convex function, the c; are independent indentically distributed 1

'; random variables with median zero and a continuous density function f(e) such

: that £(0)>0, snd the X; sre fixed and known. The test involves estimating a

line from a central subset of the observations by the procedure (using medians)

of Brown § Mood (1951), making a weighted comt of the mmber of remaining

l: observations lying above the line, and rejecting Hj if this number, R , is too %

; large. The author gives the asymptotic distribution of R under H,, from which %
127 %
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he obtains critical values of R , and the asymptotic distribution of R, under
Hy, from which he obtains the power of the test. The test can be adapted to
two-sided alternatives. !

Alex Rosengard (1962) seeks to wnify the exicting theory of limiting distri- :
butions of the mean and of the extremes of a sample by study'ng the limiting
joint distribution of these three statistics.

Sibuya (1962) examines an asymptotic formuls for the expected value of the
median of the ranges of N independent normmal samples each of size n. He compares
the approximate values obtained from this formula with exact values obtained by
numerical integration for n=2, N=3(2)17.

M, M. Siddiqui (1962) makes a numerica! study of the method proposed by
Chu § Hotelling (1955) for approximating the moments of the sample median by

use of a Taylor series expansion of the inverse of the cumlative distribution
function. He applies this method to various distributions and presents the
results in tabular form. They show that the relative error decreases monotoni-
cally with sample size, and generally support the author's expectations that
properties of the parent population which contribute to zapidity of convergence
are finite range, a low value of kurtosis, and symmetry.

Tukey (1962), in a study of the future of data amalysis, devotes considerable
attention to ''spotty data" resulting from long-tailed fluctaation-and-error dis-

tributions, occasional causes with iarge effects, or irregularly ion-constant

variability. He offers a number of possible cures or palliatives, including
trimming and Winsorizing samples, which result in a small loss in exXficiency when !

the samples come from a normal distribution but a large gain in efficiency when i

they come from a very long-tailed one (e.g. the Cauchy distribution). For
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two-dimensional arrays he proposes graphical methods to be gpplied to the
residuals, including (1) a conventionai plot on nommal probability paper, (2)

a modified plot of 3= (v;- i)/ai‘n against i, where the y, (i=1,2,”*",n) are the

shy
residuals, y is their median, and 3 is the standard normsl deviste corres-
panding to the camilative probability of the iR order statistic of & sample
size n, and (3 ar srithmetic analogue of the modified plot called FUNOP
(from FU11 NOrmal Plot). He proposes a specific procedure called FUNOR-FUNCM
(FULL NOrmal Rejection-FUll NOrmal Modification) because it uses FUNOP and
first rejects and then modifies deviations. This procedure is a sort of
two-dimensional snalogue of trimming and Winsorization, since it first rejects
(trims) the most extreme deviations (those greater ihan AR' o) and then reduces
to By * ailn. o the remaining deviations exceeding the latter value, both AR
and BM being prechosen.

Anscombe and Tukey (1963) emphasize the importance of exsmination and
analysis of residuals, which may furnish information about the presence of
outliers and/or about inappropriateness of the fitted curve or the scale of
measurement. They suggest use of both graphical and analytic techniques, but
suggest beginning with the former, preferably in the form of a scatter disgram
in which residuals are plottez against fitted values. When the most prominent
sort of misbehavior ¢f the data has been diagnosed, it is important, they say,
to deal with it before seeking out other sorts of misbehavior. If outliers
are detected they may be rejected outright or modified by Winsorization or by
assigning them smaller weights which decrease smoothly as the size of the
residual increases. If the signs of the residuals show a definite pattern, this
may indicate that the type of curve fitted is inappropriate. If the spread of
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the residuals is correlated with the fittad vilues, this may indicate that

the scale of measurement is inappropriats. Thise two phenomena are, of course,
not independent; e.g. a straight line may sdequstely fit the data resulting
from a traxcformation of scale. even though there was evidence of anvilinear- 1
ity on the original sczle of measurement.

Eisenhart, Deming § Martin (1963) give tables to accowpmy their earlier
sbstracts [Eisennart, Deming § Martin (1948a,b)] conceming the distributions
of the median and the mean of samples from various populstions.The sbstracts
are reprinted (slightly edited).

Harter (1963) tabulates (to 8IP) the probability integral of the standard- j
ized r2 quasi-range W= w /o, st intervals of 0.01 in N_, for r=0(1)8 and
samples of size n=(2r+2) (1)20(2)40(10}3100 from a normal population with wmit
variance, N(u,1%), obtained by mmerical integration. He also tabulates (to
6 DP) percentage points of LA corresponding to cumulativ: probability P=0.0001,
0.0005, 0.001, 0.00S5, 0.01, 0.025, 0.05, 0.1(0.1)0.9, 0.95, 0.975, 0.99, 0.995,

0.999, 0.9995, 0.9999 for the same values cf r and n,obtained by inverse
intarpolation in the table of the probability integral.

Joseph L. Hodges, Jr. zud Erich L. Lehmann (1963) propose various estimates
of location based on rank tests. Of particular interest is the estimate 8, which
is the medizm of the NQWL)/2 averages (z;+ z;)/2 of the i and § order
statistics (igj) of a sample of size N. The authors show that this estimate,
which we shall call the Hodges-lehmann estimate,has, under specified conditioms,

certain properties of regularity, invariance, symmetry, median unbissedness and

o Ctmania e

ssymptotic normality. For samples from a normal population, it has asymptotic
efficiency 3/¥=.955 relative to the sample mean.

[
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Mndre G. Lewrent (1963) presoats s mmelogue to the distributioe of
- X)/s [Thampson (1935)], where X; is a ramdox chservation from a saple
vith mean X and s? is mn indepeadent Toot-mean-square estimste >f the popu-
laticn varimcs, in case the distribution of the underlying populatios is
exponential. He disamsses its use in obtaining minimm varimce wbiased
estimates of functions of the parameters and the probability distributions of
the reduced i ~nder statistic and the reduced range and in tests for exponen-
tiality or the presence of outliers.

Gersld J. Lieberman and Rupert . Miller, Jr. (1963) in a study of simul-
tmecus tolerance intervals in regression, include a2 section on detection and
correction of outliers using simultaneous confidence principles.

B. S. Niven (1953), recalling that the saple mean ad the sample range
are mcorrelated if the parent population is symsetric [Ustle § Steck (1959)
and Hogg (1960)] and independent if it is normul [Lord (1947)--see also Daly
{1946)],gives & method suitable for the calculation of their joint distribution
wien the saple size is small. She gives specific results for samples of sizes
thres and four from rectangular and exponential populations, and recalls [McKay
§ Pearson (1933)] that for samples of size 3 from a normal population, the
distribution of the range may be written in terms of the nomal probability
integral.

John W. Tukey and Donald H. McLaughlin {1963} discuss trimming and Winsor-
ization. Given n ordered cbservations ylcyz:"’syn, their arithmetic mean is
Folpryge
(yC"‘l * Yge2t U Y. g)/(n-Zg), and their g-times (symmetrically)

+ yn)/n, their g-times (symmetricelly) trimmed mean is Y’l‘g =

Winsorized mean is Yig" (goyg+1+ Yge1* yg+2+“ R AR

g g.yn_g) /n. Clearly both
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Yyg €3 Ty POY 1255 sttmnticn to extreme values tham doss 7, but ¥, does ?
not divert stteation from the tails of the saple so completely as does yy,-
For underlying distributions whose shapes are wvery close to Gaussian, the
Minsorized means are less variab): than the trimsed means. Maen the under-
lying distribution is Gaussimn , the efficiercy of thc trimmed means is quite
high, the fractioral loss being crudely 2g/X: (corresponding to efficiency of
sbout 2/3 for tue median), but that of the corresponding Winsorized means is
mxh higher. On the other hand, trimmed means are clearly much more efficient
than ¥Winsorized means for sasples from very long-tailed distributions. The

———— -

authors raise, but do not answer, the question as to where the tramsitica takes
place. They define g-times (Symmetrically) trimmed and Winsorized sums of
squared deviations in an anz ogous mamer: ssnrg- (ygﬂ- y.rg)20 42" yTg)Z

M y-rg)z; SSDyg 80541 Y,glzfcyg,f y,,g)z* g,,z-y,g)z""'*(yn.g- ng)z
+ 804" y'g)z.

Wiles (1963) deals with wuse problem of identifying and testing a candidate

set of a smail nusber t of extreme sample elements as significant cutliers in
a sample of size n from a k-dimensicnal normal distribution with unknown
parameters. He considers the probliem in detail for ¢=1,2,3,4. He defines

criteria Ty and Ty, respectively, for testing a single observatiom as a signi-

o M e A —

ficat outlier and a pair of observations as significent outliers, small values ’
of r and ) constituting the critical regions. Exact probabilities P(r1<r) and |
P(r2<r) are extremely complicated, but the author gives vaiues of r, for which
the wper bounds of P{z-lqa) and P(r2<ru) have the value o for «=0.010, 0.025,
0.050, 0.106; ‘=1,2,3,4,5; and n=5(1;30(5)100(100)500.

Victor Chew (1964) discusses statistical criteria for the rejection of

132

e i W@W s ifmny *gg%ﬁwmmzmw&mmwmﬁ I e




T e~ e s,

obsorvations suspected to contain gross errors, covering the ‘ases of ame
opulstion or several [<zulatiors, mivariate or multixsziate data, sad
corrslaced or mersTsiated observations. He points osut the weaknesses in some
of the ~Zsssical rejection procedures, develops mew procedures, and recommends
existing procadures when appropriate. He also tabulates critical values for
mmmy criteriz. In the case of a sample of independent cbservations from a
single normal dis*sibution withunnown mean aad varisace, he recommeads using
A Dixon's or Grubbs® ciiterion and swiiding Chmivenet's. If m independent esti-
: mate of population variance is available, he recommends the criterion of Nair
E or that of Quesenberry § David. For a random saple from a bivariate norsal
{ distribution, he proposes a procedure based on the maximm radial distance if
3 the parmeters are known; otherwise, he recomeends Milks' critcrion. He paints

E out that residuals from a regression analysis are not anly <= -.clated but [often]
' also have heterogeneous variances. Though he adwits that not much work has been
E done in this ares, he recmends trying the methods of Licberman and Miller

B and of Srikants, Temarking that the latter may be more convenient. For g
samples of n independent observations each, the method of Dixon or Grubbs can
be applied to the deviations from the sample means, though the control chart

sppreach may be moxe convenient for routine applications, especially if samples
are obtained sequatially.

Cyrus Derman (1964) shows that, for the truncated Cauchy distribution with
p.d.f. g,00 = 1/2(1+x%) tan"lz for -zcxez and 0 otherwise, the varimnce of

the mean of a sample of size n is (z-tan'lz)/n tan"!

z, while the asymptotic
variance of the sample mudian is (tan'lz) 2/n. Hence the efficiency of the sample

mean relative to the sample medisn is (taxflz) ‘7’/ (z-tan’lz) , which exceeds wnity
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if ad only if 2<3.42, representing a2 trumcation of more tham 9%.

Eisenhart (1964), in a disassion of the seming of “least” im least
squares, poiats out that the metnod of least squar=s was developed origiually
from three distinct ;cints of view vhich differ not only in their aims and in
their iritial assumptions, but also in the memings that they attach to the
samerical vesults conmon to all three. These viewpoints are: (1) Least Sm
of Squaved Residmls [legendre (1805)]; (2) Maximm Probability of Zero Error
of Estimation [Gasss (1809)]; and (3) Least Mean Squared Ervor of Estimation
[Gauss (1323)]. He cioses with the following remarks: "The robust survival
of the Method of Least Squares as a valuable tool of applied science no dodbt

stems in part from the algebraic and arithmetical advantage of Least Sum of
Squared Residuals and in part from the fact this procedure also yields estimites
of least Mean Squared Error in the important case when the end results are
iinear fimcticas of the hasic observations. This one-to-one correspondence

between minimizing some function of the residinls and minimizing the same
tmction of Errors of Estimation appears to be a unique property of Least
Squares. And although the Method of Least Sy:aves does not lead to the best

available estimates of wkncwn paraseters vhen the law of error is other than
the Gaussian, if the mmber of independannt observations available is much
iarger than the number of paraneters to be determined the Method of Least
Squares can be usually counted on to yieid nearly-best estimates'.

Friedrich Gebhardt (1964) points out that some of the many procednes
that have been proposed for handling outlying observations are based on statis-
tics with the optimm property of minimizing, for certain altemative hypotheses,
the probability of the error of the second kind (accepting the null hypothesis
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Hy vhen it is false) given that of the error of the first kind (rejecting Hy g
i vhen it is true), the cbservatioms that are mot rejected being used to estimate

“ wknowm parameters, e.g. the mem. He considers ane such procedure which gives

Tise t0 a2 ane-parme’er family cf estimators for the mem a2 compares their

risks with those of the Bayes solutions with respect to 2 ane-paraseter family

4 Peter J. Hiber (1964) treats iz detail the theory of robust estimation of :
a location parameter of a containated normal distribution with c.d.f. '
e F(t)=(1-s)#(t)+< H(t). Oce<l, where ¢ is a known rumber, #(t) is the standard

‘ normal c.d.f., and H(t) is an wmknowe <.d.f. He seeks an estimator, inter-

mediate between the sample mean and the smple medim, that is Tobust against
deviztions from rommality. Iztxl,xz,“',xnbeatzﬂmsqleofsiun,md

let the estimator T=T, (x;,x,,”"",x ) be ciosen 50 as to minimize JT_, pl(x;-T),

H where ¢ is 2 known fimction. vaetakep(t)ztzuegetﬁxetsmlleast-sqm

estimitor, the sample mean, while o(t)=|t| yields the sample median and o(t)=
-log £{t), vhere f is the assumed density, yields the maximm likelihood esti-
macor. Huber shows that the most robust estimator (the one with the lowest
supremm of the asymptotic variance whea H ranges over all symsetric distribu-
tions) correspmds to p(t)=t?/2 for |t]<k, p(t)=k|t]-k%/2 for |tj>k, where k
ad ¢ are related by vZa(1-c)= I : e‘tz’zdu(zme’kz/ 2. He also considars
robust estimation of a scale parameter, whlch he finds more difficult and less
satisfactory.

K. V. Mardia (1964) obtains the exact distributions of extremes, ranges
&d midranges in sawles from any multivariate population. He lets (xlj,"- ’&j)’

j=1,""",n,be a random sample fram a k-variate continuous population with
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p.d.f.f(xi,‘“,rk), sad denotes the minimm and maximm cbserv:."ions of the

i wariste by X, ad Y, respectively, the iR ragge by R (= Y;-X,) amd the ;2
midrange by vi(sfria» xi}/z), where i=1,""° k. He finds the distributions of
&y X Y775 Yy Ry, R) and (77, ), which Teduce to the
classical forms for k=1.

Mary G. Natrella (1964) compares the variaces of the wnigue medians of
samples of size m (for odd values of ») with those of the psewdo-medians (the
awverages of the tw central chservations) for m exen. She investigates samples
from normal, rectangular, and extreme-value distributians, and fings that no
general conclusion is possible as to whether it is better t» take m odd or even.

Albert Stanley Paulson (1964) gives a probability basis for the computation
of certain measures of effectiveness of test statistics aa¢ derives analytical
expressions for these measures. He computes these meas:yes for several test
statistics for the rejecticn of outliers awd makes comparisons to show the degree
to vhich some statistics are better than others. In particular, he finds that
the standardized extreme deviate test is more efficient than the chi-square test
in detecting location srror when the population variance is kaown. When the
population variance is unknown, he finds that the Quesenberry-David statistic
using a pooled estimate of the population standard deviation in the denominator
is more efficient than the studentized extreme deviate.

E. S. Pearson and M. A. Stephens (1964) extead the table of percentage
points of the ratio u=w/s of the range w of a sample of n observat:ons fror a
normal population having standard deviation o to tiue root-mean-square estimate
s of o derived from the same sample, vhich was camputed vy David, Hartley §
Pearson (1954), and test the accuracy of the approximation used by those authors.
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Alex Bosengard (1964a,c) establistes results an the imiting independence
of mesns (quantiles) and extueme values not reiated to the existence of limit-
jng distributions (redwed limiting distributions) for these statistics.
=3 Rosengard (1964b) shows that, vhen 2 varisuce exists, the joint districution
of the waan and s quantile has, as its limiting form, a spécified bivariate
| normal d&stribution.

Thomas J. Rotienberg, Franklin M. Fisher and C. B. Tilaws (7964) propose o
8 class of estimators of the center of the Cauchy distribution. Each estimator
in the class is the arithaetic mean of a central sulsct of the sumple order

s FUR eV
*

statistics. The samplc aedian is 2 aember of this class, but it is not the sost
efficient. The average o7 apornximately t.e middle qua~ter of the oscered satple
has the lowest ssvmptutic variance. _

Asit Prckas Basu (1965) proposes some test- for outliers in the case of the
exponential distribuion with p.d.f. £()=e X )//6 xu, 130, 20, When y
and 0 are kown, the following test statistics, whose distributions are easily
obtained, may be used to test whether the largest value X, of an srdered sample
of size n is an outlier: Bov (%- u)/e, Blsixn- xl)/s, BZ8(§{ )&1_1)/9. Similar
tests can be devised for the smallest value X;. As an overs:l test of the
preseace of outliers one may use the xz- test, since under the null hypothesis

2 }iup(@-i*tl)z. /6, vhere z.= x;- X, ; and x;= 3:, follows the chi-square distri-

o b -

bution with 2n degrees of freedom. When v and 6 are not known, ane can use the ?
standardized deviate U = (x - x,) /Z(xi- x,) , whose disirivution has been derived
by Laureat (17637). :

G. P; Bha~tackarjee (19€5) znvestigates the effect of non-normality on the

distribution ~f range by deviving the probability integral and the first two
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. noneats of the range of a sample dram froc a pepulation represented by the
; ﬁntﬁnurwnsofnmpnithseris. He then exmmines the use of range
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in place of root-mem-squave devistion as sn estimator of the standard devia-
3 tion of a non-nomzl populstion. He concludes that the range estimator of the
population standnid deviation is better for a playku.tic parent popularion
(and worse for a leptokurtic one) tian ihe corresponding estimator for 2 normal
['% population, thus contradicting an vrroneous conclusion reached by Cox (3954). q
4 Feter J. Bickel {1965) states the main results of the asymptctic theory 3
of the Winsorized and trimmed means and outlines the proof. He discusses an
g alternative me fod of triming and Winscrization (not equivalent to that of |
Z Tukey) which encompasses the efficient estimates preposed by Huber and general-
] izes to higher dimensions. He gives the minimm efficiency, with respect to | a
5 the families of all symestric and symetric unimodal distributions, of
_ Winsorized and trimsed means with respect io the mean. He compares the trimmed ﬂ
mean and the Winsorized mean with the Hodges-lehmann estimate (the median of
' averages of pairs) and the principal estimate proposed by Huber with the mean
; and the Hodges-Lelmann ostimate. He concludes that although all the proposed
.: "nonparametric’’ estimates of locat<on behave satisfactorily when compared with the
mean, with the possible exception of the Winsorized mean, the Hodges-Lekmamn
estimate seams to be the "safest" among them. ;
H. A. David and A. S. Paulson (1965) sumarize and extend the results given

ty Paulson (1964) on the performance of several tests for outliers. ‘iney note

that such tests ''gencrally have one of the following aims: (a) to screen data

in routine fashion preparatory to analysis (the probiem of 'rejection of out-

liers’); (b) to sound an alarm that outliers are present, thus indicating the
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need for closer study of the data-generating process; (c) to pin-point obser-

vati.ns vhich nzy be of special interest just becruse they are exireme." They

do not trest csse (s}, which is the one of the primary interest in the present
study .t they do cite some refsrences to it.

E. J. Oumbel, P. G. Carlson and C. X. Mustafi (1965) prove that if the
initial distribution (parent population) is umlimited, diffsxentiable, sym-
motrical and wmimondal, the distribution of the midzange, for any saple size,
is slso wnlimited, differentiatle, symmetrical and wmimodal. This extends a
result of Gumbel (1944).

Shati S. Gupta and Bhupendra K. Shah (1965) derive the exact <xvressions
for the moments of thie order statistics of saples of size n from a standard
logistic distributicn L(0,1), where L(u,02) has the c.d.f. F(y;u,0)= 1/[1+exp
-[G-w/s}e(73Y%)1]. Taey tabulete the first four exact moments of the ki
ordeyx statistic X(k) for n=1(1)2C¢; k=1(1)n. They also tabulate percentage
points of X(k) for n=1(1)10, k=1(1)n and for n=11(1)25, k=1, n and n/2, (n+2)/2
(u even) or (n+1)/2(n odd). They =lso derive expressions in closed fomm for the
camulative discribution function and the density function of the range, both of
which they tabulate for n=2,3. Shah (1965} obtains the distributions of semirange
ad midrange of samples frca the logistic population.

K. V. Mardia (1965) gives alternative proofs of the formulas of Tippett
(1925) for the expected values E(R) and E[R-E(R)j™, wheve m is a positive inte-
qer ard R is the range of a sample of size n irom a continuous population. These
proofs are simpler than those givem by Tippett and other authors, and hold for

all n, whereas Tippett, in .is rroof of the latter formida, assussd n to be even.
The author alse finds the exect value of the vari:.ce of the range of a sample of
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size »*3 from a normal population; similar results for n»=Z and n=4 were given
by Kuben (1256).

Michael E. Tarter and Virginia A. Clark (1965) show that the cumulative
distribution function (c.d.f.) and the moment generating function (m.g.f.) of
the logistic distribution can each be expressed as a Maclaurin series where
the coefficients are simple functions of Bernoulli numbers. They give the m.g.f.
of the median, and determine the variance of the median, ¢lsc the efficiency
of the median relative to the mean for varicus sample sizes, as well as its
asymptotic efficiency. They also give the variance of any order statistic and
the covariance of any two order statistics.

Tukey (1965) studies the informativeness of specific order ctatistics or
blocks of consecutive order statistics in a sample.

F. J. Anscombe and Bruce A. Barron (1966) consider a particular procedure
for rejecting outliers and also a particular procedure Sor modifying outliers,
for samples of size three assumed to have heen drawn from a common ncmmal
population, except that one of the three readings may have an added bias. They
give numerical results illustrating the effects cf the procedures on estimation
of the location parameter. They conclude that estimation by least squazes
should usually be tempered by successive application of both a rejection rule
and a modification rule.

R. P. Bland, R. D. Gilbert, C. H. Kapadia and D. B, Owen (1966) extend
the results of McKay § Pearson (1933}, Lord (1947), Resuikoff (1954), Harter
§ Clemm (1959) and otney authors to obtain exact results for additional cases
of the distributions of the range and mean range for samples fram a normal

population.
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Dorian Feldmsn and Howard G. Tucker (1366) study comsistent estimates
of non-wique quantiles of s distribution finction. As a special case thay
consider the problem of medimns, especially the smmple median of tix set of
averages of al1(™;') pairs of chservations X, X,,"**, X [the Hodges-Lelmamn
estimate of the location parmseter]. They prove that this sample median con-
vorgss almost surely to the center mediar. of the original population, provided
that the original distribution is symmet:ic about a median ; otherwise, this
sample median of averages of pairs need not converge, and even if it did con-
verge, it might converge to a mmber which is not a median of the parent
distribution.

Joseph L. Gastwirth (1966) discusses a procedure for finding robust
estimators, based on robust rank tests, of tihe location parameter of the sym-
xetric mnimodal distributions. Not only can the Hodges-Lehmann estimator be
cnstwucted from the author's procedure, but this procedure can also be used
to generate another estimator T, which is the best linear umbissed estimator of
the location parameter. The best linear unbiased estimator corresponding to
the least favorable distribution of Huber (1964) is tho trimmed mean.

Priedrich Gebhardt (1956) relaxes the restriction in his earlier paper
[Gebhardt (1964)] that the respective variances of stragglers and non-stragglers
be known by requiring only that the ratio of these variances be known. The
results for a variety of cases which he studies support the suggestion of Tukey
(1962) to trim the sarple by all cbservations that deviate substantially from
the sample mean and to Kinsorize tnose observations that deviate mnderately,
but ¢{rimaing exactly two observations is almost always a better strategy than
Hinsorizing two.

J. Like¥ (1966) finds the distributions of Dixmm's statistics for rejection
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of outliers in the care of a sample from an exponential population, tabulates g
their percentage points, and gives examples of their use.

Donald T. Searls (1966) proves that ‘€ a Winsorized mean is formed by
replacing all sasple values larger than a predeternvined cutoff point t by the
value t itself, there exists a region for t for certain common distributions

siwch that the mean square error of the Wincorized mean is smaller than the
variance of the ordinary mean. He presents an exampls vhich shows that a wide
range of cutoff points can be chosen which still result in a gain.
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statistics used to tesc¢ hypotheses concerning a and 8. He shows that the
least squares estimates arc a special case of th.se estimates. He proves that
"rank score" estimates exist and shows how t~ compute them. He discusses both i

0. B. Sheynin (1966) contends that J. H. Lambert should be given preced-

ence over Gauss as the originator of the theory of errurs. He gives a concise

'A; summary of Lambert's works on the subject, which was the principal source of

information used by the present writer concerning these works [Lambert (1760,

1765a,b)].

Thomas A. Willke (1966) reports the results of a sampling study of the

j‘; estimation of the mean and standard deviation from the closest two of three

observations in a sample from a normal population contaminated by slippage of j

I‘ the mean. The results of Lieblein (1952), which indicated that use of the :

i closest two out of three is not advisable for noncontaminated samples, are %

borne out by this study for contaminated samples as well. %

f J. N. Adichie (1967) defines point estimates 3 and § of the parameters %

? a and 8 in the linear regression equation Y=a+8X in terms of certain 2
i
i

the small-sample and asymptotic properties of these estimates. He shows that
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¢ and 8 are wmbiased if the underlying distribution of observations is sy~
metric. He also proves that 3 and £ are jointly asymptotically normel, and
that the asymptotic efficiency of (3,8) is the same as the Pitmsn efficiency
of the ran: tests on vhich they are based, relative to the classical tests,
Finally he compares the efficiencies of these estimates unc! the Brown-Mood
median estimates.

P. J. Anscombe (1967) reviews various topics relevant to the present study,
including the effect of modern computers on ststistical calculation, “'stepwise
regression", testing goodness of fit by examining residuais, and pessible al-
ternatives to the method of least squares appropriate wban the distrioution of
errors has long tails. He points out that Laplace and Gauss justified using
the method of least squares and restricting attention to linear cambinztions
cf the observations largely on the basis of computational simplicity and
feasibility. In the age of computers this justification is no longer valid.
Suppose one has n sets of observations on a dependent variable and p independ-
ent variables, denoted respectively by y; and X (i=1,2,°**, n; r=1,2,"*",p).
If it is assumed that the true y is a linear fumction of the x's, one can set
Yi® 25-1 :‘irsr + ci(i-l,z,”‘,n), where the ¢'s are independent with zero mean,
so that My " ?1’_1 X; B0 where u; is the expected value of y;. The problem is
then to estimate the parameters 8, as precisely as possible . In the classical
theory it is assumed that the ¢'s are normally distributed, s¢ that the method
of least squares is optimal. Anscombe points out that it is possible to fit
the B's by stages (e.g., one at a time) and advocates testing gcodness of fit
by examining the residuals. He then raises the question as to what should be
done if the distrioution cf the e's is not normal. If the distribution is
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skewed, he suggests that it mey be symmetrized by transforming the y-scale,
usually by raising each y to some fixed power (or by taking logaritims); he
points out, howover, that such a transformation has other consequences which
may or may not be desirable. iIf the distributimn of the e's is symmetric but
platykurtic (shorter-tailed than ths normel) or leptokurtic (lomger tailed
than the normel), a differenc remedy is required, involving departure from
the method or least squares. Anscombe studies in detail the case of a long-
tailed distritation of errors. If ones wishes only to find estirates of the

3's without any indication of their precision, he suggests ainimizing, instead !
of §3r;0;)% 1;¥0;70g), where ¥(s) s tho square fuction for small values
of the argument but increases less rapidly for larger values and is constant

for very lar,e values. Specifically, he suggests choosing as the estimates

(8,) the valves of (8) that minimize [y r;-up)” + K ly;ovs-Ky) +
2(3)“1(2“2“‘1) ,where K; and X, are chosen mumbers (x2>x1>0),2m denotes

sumnation over the values of i such that lyi- uilsKl,Z @ denotes summation

over the values of i such that K;<| y;- u;l< Ky, and 2(3) denotes summation

over the remaining values such that Iyi- v;1>K;. If, on the other hand, one

desires evidence from the data concerning the precision of the estimstes

('B‘r), it is necessary to make some assumption about the true distribution of

the ¢'s. Llet the error density function be represented by f(c|a,s), where

typically « is a shape parameter and o is a scale parameter. He notes that
apparently the only kind of density f(ela,0) that permits easy integration

with re-pect to o in closed form is f(€|°»°)"(3a/°) exp (-cule/ol"), where

3, and c, are functions of a. ¥hen a=2 we have normality, and when 1l<a<2 we

have a smooth function of = with longsr tails than the normal density. When
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«=1 we have the double expomential (Lsplace's first) distribution, concerning
wich Jeffreys (1939) [2nd ed. (1948), Sec. A.4] hes commented: “The interest
of the law is reduced somenhat by the fact thet there do not appear to be any
cases where it is true." Anscombe expresses the opinion that the same remark
can be made about the distribution when «=1.5 (say). He advocates instead
Jeffreys' form of the Pearson Type VII error distribution, with demsity func-
don £(clmio)n(ay//%i0) (1 ¢/a%) 2 here c = a*/2a-1/2)°, o= /o
rm)/r(m-1/2), which approaches normality as m+=, for some appropriate value
of . Anscombe suggests m=4, for which the Type VII distribution is equivalent
to the Student t distribution with 7 degrees of freedm. He proceeds to in-
vestigate the likelihood function of the Type VII distribution. He points
out that maximizing this likelihood function is rather like minimizing the
expression 2(1) - Z(z) + 2(3) mentioned above. For the Type VII cistributionm,
»>1/2; however, for negative values of m, the same density function gives a
Type II distribution over a finite interval (a distribution with shorter tails
than th. normal).

Allan Birnbaum and Eugene M. Laska (1967a,b) present a general method of
determining efficiency-robust estimation methods, which they use to derive
admissible linear tmbiased estimators (whose respective variances, over a
specified family of symmetric shapes nf the error distribution, cannot be
jointly improved) and maximin-efficient linear unbiasad estimators (which
maximize the minimm asymptotic efficiency, within a class of estimators, for
a family of demsities).

Bdwin L. Crow and M. M. Siddiqui (1967) derive robust estimators of the

location parameter which are efficient over a class of two or more forms
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fpencils) of continuous symwetric mimcdal distributions. The pencils con-
sidered are the normal, double axponercial, Cauchy, parabolic, trismgular,
and rectangular. The estimstors considered are trimmed mesns, Winsoiized
means, "linearly weighted™ means, and & combinstion of the median and two other

order statistics. Asymptotically these are compared vith the Hodges-Ishmann
estimator. The best trimmed mean or linearly weighted mean has an asymptotic
efficiency of at least 0.82, relative to the best estimator for any single :
pencil, over a range of pencils of distributions from the normal to the Cauchy, |
while the coxdinaiion of the medism and two other order statistics is at least

0.80 efficient over the same range.

Hodges (1967) makes a further study of the Hodges-Lehmenn estimate T,
which he recognizes 25 a member of a class of estimates. He explores this
class for other members which are easier to compute, and finds that ome of the
siwplest of these, D, which is defined as the median of the means of pairs of
symmetric order statistics, corresponds to the one-sample analog of Galton's
rank-order test. He applies D to the same samples used with T and obtains very
similar results. Finally, he compares a mmber of estimates, including X (the
mean), T,D, and the trimmed and Winsorized means with regard to normal effi-
ciency, ease of computation, and extreme value tolerance. Bickel and Hodges
(1967) derive the asymptotic theory of Galton's test and the related estimate
D, which gives an explicit form to the limiting distribution of D only for
rectangular and Laplace parent populations. Although the limit is not normal,
they conclude that the scatter of D is quite close to that of T. Finally,
they give the small-sample distribution of D for a rectangular parent. Although
their evidence is incomplete, they conclude that D is robust as well as easy to

compute.
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FEPPTIE-Y. .



Hodges sad Lehmame (1967) compute, for samp’es of siz» = from a symmstric
distribution satisfying suitsble regnlarity conditions, an approximstion to
the vazisace of the modis: ¥ up to terss of order 1/n® and a correspnding
aporoximstion to the efficiency of X relative to the mean X up to tomms of ovder
1/n. For normal suod rectangular distributions, these give a mxh closer approx-
mtion to the exact efficiency than does the usual asymptotic efficiency. The
authors paint out that, to the accwracy of their approximstioy, one should not
use the median based on an odd mmber ~f observations since the median based
on the aext smaller even mmber is equaily acamrate. They extend their results
to other averages of two symeetrically placed oxder statistics (quasi-medians),
thus making possible, in some cases, a further reduction in sample size without
loss of accuracy. i

Robert V. Hogg (1967) finds an estimator T, vhich is a weighted mean of ‘
'1'1, 1'2,'“, T.,tlbere'rj is a reasonable estimator (e.g., a minimm wean square
errOr estimator of the parameter 6 of the family Dj of distributions, j=1,2,
***, m), such that T has the same asymptoti. distributien as that of‘l'j,uhm

ths sample comes frij. The weights are functions of the sawple itess. The
auther gives empirical evidence that T is satisfactory for small sample sizes.
He p7r6ics tnat if Tj and the weight Wj are odd locaticn and even location-free

statistics, respectively, then T=] W.T,, where ] W;=~ 1, is an unbiased esti-
mators of the center of every symmstric distribution, provided certain expec-
tations exist. This fact is useful in comstructing the weight function Wj. The
perticular T which the author investigates empirically is given by T~Xj 14 for
ke2.0, X for 2.0¢ke4.0, T, ,, for 4.0<ke5.5, Tm for 5.5 k, where X7, is the :
mean of the [n/4] smallest and the [n/4] largest items in the samplc (an interior-
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tri.d),fu‘is the mean of the remsining interior smple items (m
exterior-trismed mean), X is the sample mean, m is the sample median, and
k=J(x,- D¥ns? is e smmple lurtosis. He cowpares the ratic of the variances
of X,m M(the iiodges-Lelmamn estimate) and T for 200 samples each of sizes 7 and
25 from four populations with kurtosis K=1.9,2.7,3.9,9.9. For both sample
sizes, T has the smailest variance for K=1.9, X for K=2.7, and m for K=3.9,9.9.
The mesn performs very poorly for distributions with long tails (high K), the
median ~erforms rather poorly for those with short tails (low K), and the
overall performance of both M and T is good.

Fred C. Leone, Toke Jayachandran :nd Stanley Eisenstat (1967) report on
an empirical study of the performance of the sample mean and the Hodges-Lehmann
and Huber estimators of the location parameter when applied *o contaminated
distributions. They verify Huber's statement that his estimator T and the
Hodges-Lehmann estimator are close compeitors and his conjecture that, for a
sample of size n, the distribution of the ratio of /n times his estimator T of
the location parameter to the estimator S of the scale parameter can be approx-
mated by a Student t-distribution. They compare the sample variance of n'/2-

T with its maximal asymptotic variance as given by Huber. They also verify,
by means of a chi-square test of goodness of fit, that the distributions of
the Hodges-Lehmann estimator and of Huber's T can be approximzted fairly well
by appropriate noraal distributions when n»20.

Max Ray Mickev, Olive Jean Dunn and Virginia A. Clark (1967) point out
that the examinaticn of residusls is mot always sufficient to identify outliers
in a regression modil, and propose stepwise regression. Their procedure finds
the single observaticn whose deletion causes the greatest reduction in the sum
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of squred residusls, ther repeats the process ca the remsining datz. The
selection of stopping rules is left open.

M. M, Siddiqui aad X. Raghumendansn (1967) supplemen® the peper of Crow
aad Siddiqui (1967) by a study of the rcbusta:ss properties of four estimstors
of location (a weighted average of the median and two other symmetric order
statistics, the trimed mean, the Winsorized msan, snd the Hodges-Lehmamn esti-
mator) with respect to eight distribution types (normsl, .0% and .05 contsminated
normel, logistic, Student's t with 3 and 5 degrees of freedom, double exponen-
tial, and Cauchy). For each of these types the probability demnsity finctiom is
continuous and symsetric about the mean and the range is infinite. The estimator
with the highast guaranteed efficiency for the ecntire class of distributioms is
the mean of the middle 50% of the sample. The authors state that the Hodges-
Lebmann estimator was first suggested by Tukey, but the present writer finds no
evidence of this in the source cited, where Tukey does use the averages of all
pairs of observations, which he calls Walsh averages, b::t does mot suggest using
their medisn as an estinmator of the location parameter.

Chatter Singh (1967) obtaine expressions for the raw moments and the prob-
sbility integral of the largest (smallest) value and for the first twc moments
of the range of samples from non-normal populatisns represented by the first
four terms of the Edgeworth series. He gives some conclusions about the nature
of the effects of parentzl skewness and kurtosis. The mean largest (smallest)
vaiue is sensitive to parental skewness but not to kurtosis in small samples.
However, parental kurtosis tends to increase or decrease the variance depending
upon whether A,=a, -3 is positive or negative. The mean range is quite insensi-
tive to population changes in small sanples, but both skewness and kurtosis have
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a greater sffect on the variance of the range. The suthor compares his results
with those of Pearson (1550), Cux (1954), David (1954) and others.

G. C. Tiso snd Irwin Guttman (3967) point out that a msjor difficulty
involved in strtistical procedures, designed to guard against the coasrrence
of ocutliers or spurious observstions, which are based upcn exmmining fie
mgnitude of the residiuals, is caused by the fact that the residuals are
correlated. They show how to avoid this difficulty by adjusting the residuals
on the basis of informtisn from an auxiliary experiment so that the adjusted
residuals become uncorrelated. This leads to 2 set of estiartion procedures,
for the winown mean of a normal population N(u,c2) with known o> in which one
or more observations for which the magnitudes of the adjusted residuals are
largest will be excluded. The authors discuss certain properties of these
procedures, give exact mwmerical resuits for the cases of one and two spuricus
observations, snd generalize to the case of unkixwn variance.

G. K. Bhattacharyya (1968) obtains median and weighted median estimate:
for the linear trend parameters of a univariate time series by applying the
Hodges-1~tmann method to some well-known nonparametric tests for trend. He
extsivis the estimation procedure to the multivariate trend model, and studies
its asymptotic efficiency properties relative to the classical estimates,

G. E. P. Box and G. C. Tiao (1968) consider the problem of outlying obser-
vations from a Bayesian viewpoint. They assume that each observation in an
experiment may come from either a "'good" run or a 'bad" run. They specify the
models corresponding to good and bad runs [N(uo2) and N(u,k%02), respectively]
and the prior probability o thzt a run is bad, and employ standard Bayesian
inference procedures to derive the appropriate analysis. They give an example
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of the spplication of thedr swthod to actusl dsts, and examine the semsitivity
of the results tc chenges in s sad k.

Irving ¥Wingate 2urr and Peter J. Cislak {1968) give, in closed form, the
density function of the medisn for odd sized sasples from the Bur system of
distritutions [ which has c.d.f. Fx)= 1-0a) K, 00, ¢, ©0; Fx)= 0, x<0
and covers almost ali of the regions of the main Pearson Types IV and VI and
an inportant part of that of the mein Type I (Beta distribution)]. All finite
moments of the medisn X are linesr combinations of Beta functions. For samples
of size n=3,5,7 and 11 from Burr populations with ey = 0,.50, 1.00, 1.50 and,
corresponding to each Gg.yo two well separated valuss ofu“x, the authors
tabulate the following important characteristics of the medisn: Biss, o, oy ¢,
B4 and efficiency relative to the sample mean. They point out that it
sppears that, for this system, the medisn begins to Le more efficient than the
mean at about the degree of non-normality of the exponemtial distribution. Burr
{1968) tabulates, for samples of size n=2,3,4,5,8,10 from populations of the
Burr systea with 27 different ccmbinations of Sy and L the following
characteristics for the distribution of range R: standardized mean and standard
deviation, Gg.ps B4.R and coefficient of variation. He confirms that the
standardized mean range is highly stable for fixed n under varying non-normal-
ity,as has been pointed out in the literaturs, and finds that the same is true
of the standardized standard deviation for the populations studied, wiich have
LT 2.87. He also finds evidence that the range is somewhat wore robust and
efficient than hitherto noted.

Thecphiios Cacoullos (1968) presents a sequential scheme for detecting
outliers in a sample from a p-variate normal population N(u,azl) in which
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the compoments sre independestly normelly distributed with the same variance
o2, At the k32 stage of apsvimentation, when the first k cbservations are 4
availeble, tie most recent cbservation X, is rejectsd s ar outlier if and
caly if [x - %1% c o uhen o¥ is Inown or |x,- 5,15 c 57 vhen both u and ;
o” are winow, vhere G [h) x,/K, si= [y Ix;- 51 7/p0c1), Ix] denotes
the length of x and c_ denotes the upper o point of the x>~ distribution with
E p degrees of freedam. The author considers the sequential stopping rule
‘ which stops taking observations as soon as the first outlier is rejected. He
proves that this scheme terminates with probability cne after a finite mmber
of steps and that the mmber of observations N has moments of every order. The i
E probability P, that the kX2 cbservation is rejected appears to be monotone 5
increasing for reasomsble critical values of c and spproaches a as ke, |
D. R. Cox and E. J. Snell (1968) cmmerate the following types of depart-
ure, from the usual linear regression mcdel of one independent variable on
n independent variables with errers ¢ normally distributed with zero mean and
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constant varience, which can be detected by an appropriate analysis of resi-

duals: (1) the presence of outliers; (2) the relevsuce of a factor amitted
from the model, detected by plotting the residuals against the levels of that
facter; (3) non-linea- regression on a factor aiready included in the model,

dotected by plotting the residuals against the levels of that factor and
obtaining a curved relationship; (4) correlation between different ei's, for
example between :i's adjacent in time, detected from scatter diagrams of
suitable pairs of residuals, or possibly from a periodogram analysis of
residuals; (5) non-constancy of variance, detected by plotting residuals or
squared residuals against factors thought to affect the variance, or against
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fitted values; (6) ron-normality of tbs distribution of the e;'s, detected
by plotting the order~d residuals against the expecied vaiues of the order
statistics from a standard normal distribution. The auth.zs give a more
general definition of residuals and find some asyrptotic pvoperties. They
also discuss some illustrative examples, including a regrassicn problem in-
volving axponentially distributed errors.

D. R, Cox (1968) makes miscellaneous comments on viarious aspects of
regression analysis, including outliers and robust estimation. He points out
taat screening of data for suspect observations will often be requived, Suspect
values may be examined individually in order to decide whether or not tc in-
ciude them in sny subsequent analysis; this is the usual procedure with limited
data. Often it is necessary to perforia analyses both with and without suspect
values. When p cbservations are available for each individual, the best way
of looking for cutliers will depend on the type of effect expected,.of which
the author discusses three. With extensive data, he suggests the use of
methods of robust estimation, such &3 that proposed by Huber (1964), which
are insensitive to outliers.

D. R. Cox and D. V. Hinkley (1969) consider a linear regression model in
which the errors are irdependent and identically distributed with zero mean.
If the type of error distribution is specified, the asymptotic efficiency of
least-squares estimates relative to maximm-likelihood estimates of the
regression parameters can be found, and the anthors calculate it explicitly
for an Bdgeworth series, for a Pearson Type VII distribution [suggested by

Anscombe (1967)] and for a log Gamma distribution of errors.

A. S. C. Ehrenberg (1968° quotes various authors ca the subject of the
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Justification for adopting the least-squares approach to zegression snalysis.
H» says it sppears to be a case of the practical man accepting the theoreti-
cians' judgement that it will give tho "best" solution, and the latter assuming
the "best fit" is what the former wants,

Frank Rudolf Hampei (1968) studies the problem of robust estimation. In
the one-dimensional case, ne finds the optimal solutions (with regaxd to
asymptotic variance and sensitivity) fo: the class nf (sufficieatly regular}
M-estimators as definad by ialer. The optimal estimators of the location param-
eter in the model of normality turn out to be the Huber estimators and the
trimeed means.

J.. A, Hartigen (1968) defines a Bayes measure of discordance of an obser-
vation x, given a set of observations X5 Xy, *c X,» to be the distance
between the posterior distributions of a parameter, in the presence or absence
of x. He also proposes a measure of dissimilarity between two observations.
¥hen the number of observat ms is large, these two measures msy be spproximetoed
by simple functions of the log likelihood, thereby avoiding dependence on prior
distributions.

Arnijot Hgyland (1968) studies the behavior of the Hodges-Lohmann sstimator
of locaticn 9% and the classical estimator 8(the arithmetic mean) in a situation
where the data occur naturally girouped in n blocks, c observations per block,
with the sxperimental conditions varying fram bleck to block, thus invalidating
the standard assumption that the observations are independent and identically
distributed. In particular, he studies the asymptotic efficiency, as n+= with
c fixed, of e* relative to § for normal and gross error models. The relative

efficiency is less than 1 for the former and greater than 1 for the latter in
ali cases studied.
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Peter J. Hube. (1968}, in a survey peper on robust estimation, begins
by attacking the dogms of normslity and the associzted rule of the arithmetic
mosn. He points out that msny mathermticians of the nineteenth and early
twentieth centuries realized that they were not wniversally valid, but in most
cases continued to buhave as if thcy were, not realizing how bad the clsssicai
estimates could be in slightly non-normal situgtions. The turning point did not
come wtii after World War II, when Tukey and his associates began to emphasize
the shortcomings of the classical estimates and propose practicable altsrnatives
to them. Huber defines what he means by robust estimators and emmerates four
distinct goals to be achieved by them. He gives three mesthods of constructing
robust estimates: (1) maximm likelihood; (2) linear cowbinations of order
statistics; (3) estimates based on rank tests. He introduces the idea of asy-
mptotic robustness, and attempts to answer criticisms that have been levelled
at ssymptotic theory, restriction to symmetric distributions and minimax theory,
all of which play important roles in rcbust estimation. He also considers the
question of ease of computation, pointing out that the Hodges-Lehmann estimate,
for a sample of size n, requires O(n2] operations, as compared with approxi-
mately G(au log n) for Hodges' alternative, Huber's estimate, and the trimmed
and Winsorized means. He points out, however, that Hodges' alternative esti-
mate is not asymptotically normal. He closes by mentioning some other problems
(largely mnsolved) in robust estimation: (1; estimation of scale paransters;
{2) estimation of location parameters in the multivariate case; (3) estimation
in the absence of transiation and scale invariance; and (4) regression and

enslysis of variance problems.
Masao Kogure and Hajime Makabe (1968) situdy the non-central distritution
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of the standardized range and give an application to a process cspability
study through a control chart with trend line.
P. Prescott (1968) suggests a simple estimator of the standard deviation i

e e ——_————— A ———

of a normal population as an alternative to the usual voot-mean-square esti-
mator. The proposed estimator, which is one-third of the difference between b
the means of the largest one-sixth and the srallest one-sixth of the cbserva-
tions, has an asymptotic efficiency of 0.956.

Pranab Kumar Sen (1968a) studies the robust-efficiency of the Hodges-
Lehmann estimator when the n observations are diaw from distributions which
are symetric about their medians and have continuous c.d.f.'s Fl(x),"', Fn(x)
which are not necessarily identical. Sen (1968b) studies a simple robust %
unbiased estimator of ti.> regression coefficient g based on Kendall's rank

correlation coefficient tau. The estimator is the medisn of the set of slopes

(Yj- Y;3/ (XJ.- X;) joining pairs of points with X, Xj. Sen compares its pro-
perties with those of the least squares estimator and same other nonparametric
estimators.

L. de Haan and J. Th. Rumenburg (1269) study the distributicrn of the
quotient h = xn+1/ (Xope1™ Xy) Of the sample median and the sample range for
a sample of size 2n+l frcw a standard normal distribution. They give the c.d.f.
of by and the p.d.f. of h,, and show that } is asympotically rormal. N. Bouma
and A.Velmeyer (1969) tabulate the percentiles and the sscond and fourth moments
(when they exist) for n=1,2,3 snd 4 (samle sizes 2n+1=3,5,7 and 9), Their
tabulation is based partly on the theoretical results of de Haan and fumnenburg
and partly on mmerical results cbteined by Monte Carlo methods. They approxi-

mate the distribution of h_ by a Student ¢ distribution with v = zazzrfp /az(rg)
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¢egrees of freedom.

M. Mahasrmuiu Desu and Robert H. Rodine (1969) point out that the sample
median is a median wnbiascd estimator of the median of a comtinuous popuiation
fcr odd sample sizes, but not necessarily for even sample sizes. For symmetric
populations, however, the median of a sample of even size, as am estimater of
the population median £, is median unbiased and also unbiased in the usual
semse, and there is # ciass of mmbiased and median unmbiased estimators of ‘5

whic*. includes the sample mediecn and the sample midrange. The authors give an

estimator, using a random selection of pairs of symmetrically placed order ?
statistics, Y, aud ¥,_,,, which is a median whissed estimator for any popu- ‘
lation and wnbiased for symmstric populations.

James Johm Fillibon (196¢) examines the behavior of various linear esti- F

mators of location when the underlying distribution is known (simple estimation)
and when it is not Xnown, but is known to belong to a prespecified set S (robust
estimation). The estimators comsidered include best linear unmbiased estimators
and verious modificaticns thereof, as well as trimmed and Winsorized means.
The set 3 consists of 34 symmetric umimodal distributions; optimal linear
robust estimators are found for S and various subsets of S.

Joseph L. Gastwirth and Herman Rubin (1969) consider the problem of finding,
for the location parameters of symmetric unimodal distributions, robust esti-
mators which are linear functions of the ordered observations. In particular,

they study the maximin efficient linear estimators and admissible linear

estimators proposed by Birnbaum and Laska, and obtain asymptotic generalizations.
They demonstrate that within a large class of linear estimators there is a

unique maximin efficient linear estimator for general families of densities.

¥ T e i Bk, reema
R T e T

T S . . b b . e o o X e i SR Eosrs !
= Yy " H . g s T T T o R : & 23 Sheie a5
) a3, s 5 N ik y A A g OTT T N . ol ‘ s s B o 5 X >
St et o SN R T e R e 2 sk SRR e A e KRR A NN LIRS e MR S O o Gl ARG e ke R R QU I I FEARERNY AL SOEE ST
TR PNRTESRY R AL A VD VS i SIS TS et St g ves i A N P
o o
\ - ) NG Ton :
) et S R LR O A N ey PO IRY CRVUL AP R T PURY SNV
R R R T S arn, D R YT S D R T S AT oy R AR I R e R R AR ol KT bR A AL R TS TR A YR N
3 AT T e e W X 2

157

2
REN

E falicict

.
S IR I s W e SR o : L e O




They discuss in detail the special case in whiclh the family of densities
contains the logistic and double exponential distributions, for which they
find the maximin efficient linear estimator and compare it with the best con-
vex combination of the individual optimm linear estimztors and with a Hodges-
Lehmamn type estimator based on the corresponsing maximin rank test. Because
of computational difficulties, they look for a maximin efficient estimator in
smaller classes of linear estimators which are 2asy to use, including the
trimmed means and linear combinations of a few cample percentiles. They show
that, under suiteble regnlarity conditions, a maximin efficient estimator for
each of these classes exists, and give same numerical examples.

F. E, Grubbs (1969) gives an expository treatment of procedures for
determining statistically whether the highest observation, the lowest observa-
tion, the highest and lowest observations, the two highest observations, the
two lowest observations, or more of the observations in the sample are statisti-
cal outliers. Included are statistical formulae and tables of critical values
for tests of significance to be applied in detecting outiiers in single samples,
as well as examples of their application.

Irwin Guttman and D. E, Smith (1969) investigate the performance of three
rules for dealing with outliers in small samples from the normal distribution
N(u ,oz) when the primary objective of sampling is to obtain an accurate estimate
of yu. They assume that at most cne observation in the sample may have arisen
from either N(u+ao,az) or N(u,(1+b)o2) , and measure the performance of each rule
in terms of "Protection', the fractional decrease in the mean square error
obtained by using the rule when such an observation is actually present in the
sample. Numerical results are given for ngl0 when 02 is known, but only for
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Douglas M. Hadkins (1969) derives the distributions, under rull and alter-
native hypotheses, of the statistic proposed by Quesenberry § David (1961) for
detecting the presence of a single outlier.

Louis Alan Jaeckel (1969) considers various robust estimates of a location {
parameter. He definds three types of location estimators: maximm likelihood

type estimators, linear combinations of order statistics, and estimators derived
from rank tests. He gives some relationships among the three types, and shows
that Huber's minimax result applies to all three. He considers two flexible

estimation procedures in which the observations are used to choose an estimator
from a family of possible cstimators. The families considcred include the trim-
med means and a "weighted median" of paitwise means derived from an arbitrary
rank test.

C. L. Narayana and M. Subrahmanyam (1969) suggest an alternative to the
method of least squares in the theory of regression, the object being to reduce
the computations to a minimm and still obtain fairly accurate estimates of
the slope of the regre.sion line. They first compute the slopes of the lines
joining each pair of data points, and take (i) a simple average of these slopes,
(ii) a weighted average with weights equal tc the denominators of the respect.ive
slopes, or (iii) a weighted average with weights equal to the squares of the
denominators of the respective slopes. They prove that (iii) is equivalent
to .. method of least squares, and show by examples that (i) and (ii) are
simpler and nearly as efficient.

P. V. Rao and J. I. Thornby (1969) define a robust point estimator of the
parameter g in the generalized regression model yj-a'rgj (is)mj ,i=1,2,°*° ,n, where
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a and § are uninown parameters, g,,8;, ;s §, &re real-valued finctions of 2
real variable satisfying suitable conditions and zl,zz,'“, 2, are independent
identically distributed random variables having a distribution function belong-
ing to a spacified class. An important special case of this model is the
regression model obtained by setting gj(s) = axj, j=1,2,°°°,n, where the x's
are knowr constants. For this case, Adichie has proposed a robust estimator

of 8 of the Hodges-Lehmann type and Broun and Mood have proposed a median esti-
mator. A third alternative is provided by the estimator proposed by the authors,
3 which is also of the Hodges-Lenmamn type.

Ram Swarcop, Kemmeth A. West and Charles E. Lewis, Jr. (1969) present a

2 statistical technique, and the related computer program, for identifying the
outliers in wmi .riate data.
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' Kei Takeuchi (1969) proposes an estimator of the location parameter of a
continuous symmetric distribution which is a linear combination of the order
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~ statistics of a (fictitious) subsample of size k drawn randomly from the order

o N

statistics of a sample of size n. He proves that this estimator is asymptoti-
cally officient for a wide clsss of distributions satisfying certain regularity
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conditions, and shows by a Monte Carlo study that a modified version with
symmetric coefficients attains high relative sfficiency for several varieties
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of dis;ributims even for small sample size (n=10,15,20 or even n=5).

R

Jerry Thomas (1969) reports the results of a Monte Carlo investigation
of the effect of non-normality on the distribution of Dixon's criteria for

S e AT
< S,

s detecting outlying observations. He reaches the conclusion that Dixwvi's criteria
are not robust and may yield incorrect decisions for skewed distributions.
John E. Walsh (1969) studies the sample size n required for approximate
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independence tetween the sample median and the largest (or smailest) order
statistic. which he measures by the maximm value ¢ of the difference between
their trve joint probability and the c rresponding value assuming independence.
He finds that the following inequality holds: Znely-lve 2/2xcs-1+.0215/c
(e5.02).

Takashi Yanagawa (1969) proposes a new robust estimate of lccation defined
b Inp " bycayereeed 8 Oyl xiz’°"'xip)/(§ Jhich i the mean of the
medims, ( 1 )in mmber, of p-teples Oy ;""" % ) obtained from the origi-
nal random samplz of size N. He compawes this estimate for p»3 with other esti-
mates for small samples from normal and double exponential populztions, and
finds that it is the most robust in a class including the sample mean, the best
linear wnbiased estimate for the double exponential distribution, and the
Hodges alternative to the Hodges-Lehmann estimate.

V. P. Zelenen'kiy (1969) considers methods, based on statistical decision
theory, for the exclusion of anomalous measurements of random processes. He
proposes various sclutions with differing amounts of information about the
a priori statistical characteristics of the measured processes and the measure-
ment errors.

V. D. Barnett (1970) studies the problem, suggested by a medical example,
of fitting a linear functional model with replicated observations ~nd inhomo-
geneous error variances. For a particular error structure relevant to the
example. he finds maximm-likelihood estimators of the pararmeters in the model
(slope, intercept and error variances). He obtains simple closed-form expressions
for the ssymptotic standard errors of the estimators, even though the estimators
have no simple explicit form and must Oo evaluated by iterative methods.
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Allm Birnbmm snd Valerie Miko (1970) develop zpproximste versions of
optimally robust Pitman-type estimators of location, and show that they have
full ssymptotic efficiency for a prototype family of distributons. By mesns
of a Monte Carlo study for moderate n (20 to 1G0), they show that these esti-
mators have sfficiencies of 85% or more for normal, logistic, double exponential,
and contsminated normal distributions.

¥ayne A. Fuller (1970) investigates simple estimators of the mean of skawed
populations under the assumption that the tail of the distribution is well
approximated by the tail of a Weibull distribution. He considers relatively simple
estimators, in particular those that are linear in the order statistics or that

may be expressed as a lincar function cf the order statistics with weights that 5
depend on a preliminary test. The loss in efficiency when the proposed esti- '
mators are used for populations for which the sa.ple mean performs well (such
a3 the exponential) is very small relative to the gain for heavily skewed
populations.

J. L. Gastwirth and M. L. Cohen (1970) discuss the small-sample behavior
of various robust linear estimators. They find that for sample size 20 the
variances of thes» estimators are well spproximated by asymptotic theory. If
the observations are azsumed to come from a family of distributions consisting
of the Cauchy, double exponential, normal, contaminated normal and logistic
distributions, then the asymptotically maximin efficient estimator, the 27-1/i%
trimmed mean, is the maximin efficient estimator for size 16 or greaver, but
its minimm relative efficiency for samples of size 16 is less than asymptotic
theory suggests. If the Cauchy distribution is deleted frcm the above family,

the 20% trimmed megn is the maximin efficient linear estimator for all sample
sizes studied.
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Harter (1970) collects in two volumes various results (theory and tables),
from earlier publications authored or co-authored by him, on order statistics
and their use in testing and estimation. Yolume ! includes tables of probability
integral, percentage pcints and moments of the range of samples from a normal
populations [first published by Harter & Clemm (1959)] and a table of the
probability demsity function of the rang? of samples from a normal population
[first published by Harter (1962)]. Volume 2 includes tables of expected values,
variances, standard deviations, probabjlity integral and percentage points of
quasi-ranges of samples from a normal population [previously published by
Harter (1958,1959,1962)] and for the probability integral and percentage points
of the range of smmples from a rectangular population [previously published by
Harter (19§1a)j.

Huber (1970) considers the problem of studentizing robust estimates. Let
T be a robust estimate of a (location) parameter 6. Huber notes that little
has been written about the estimated standard deviation (e.s.d.) s(T) appro-
priate for T or about the st:xentized ratio (T-8)/s(: ), beyord the general
philosophy outlined by Tukey § McLaughlin (1963): Choose the T in the mmerator
to achieve a high robustness of perfeimance; ther match it with a denominator
s(T) to achieve a high robustness of valiiit; over a brozd range of distribu-
tions. As a result of his investigation, Huber draws the following conclusions:
(1) The trimmed mean, scaled by the Winscrized e.s.d., has both excellent small
sample and excellent large sample properties; since it is also easy to compute,
it can be strongly recoammended for practical use; (2) The trimsed mean and a
maximm iikelihood type estimate T develaped by Huber behave well even if thc
wierlying distribution fails to have a density, but the corresponding estimates
s(T) do not.
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D. G. Kabe (197C) expresses the distributions of Dixon's statistics for
the rejection of outlying observations in the case of ar exponential population
in terms of finite series of Beta functions, from which the probabilities of
rejection of suspected outliers can be easily calculated on a desk calculator,
thus making tables such as those of Like$ (1966) unnecessary.

R. M. Loynes (1970) obtains bounds on the asymptotic relative efficiency,
as an estimator of the central value of a symmetric distribution, of the power
mean of order q with respect <o the power mean ¢f order p, where l¢p<q, which
are (p-1)%/(q-1)% and =, both bounds being the best possible. If the under-
lying distribution is unimodal, ths lower bound can be improved to (2p-1)/(2q-1),
again the best possible.

C. Singh (1970) obtains the probability integral of the range of samples
from a population whose distribution can be represented by the first four terms
of an Bdgeworth series. He tabulates the nuwrical values of the corrective
functions arising because of nonnormslity. He compares the new theoretical
results with the earlier results of various authors, including Pearson (1950),
Cox (1954), David (1954) and Singh (1967). He concludes that, for Edgeworth
type yooulations, the effect of parental skewness on the probability integral
and percentage points of the range is comparatively small for samples of size
n<5, but as n becomes larger this effect becomes as prominent as that of kurtosis
except in the lower tail of the distribution. The effect of 1;2:, = ag =8, is
almost always opposite to the effect of Ay = a4-3 = B8,- 3, and they sometimes
rounterbalance esch other so that the resultant is close to the normal theory
vakue.

Paul Switzer {1970) discusses various methods of obtaining robust estimators
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of a location psrmseter ¢. He proposes choosing (say) three reasonsble candidate
estinmtors for vhich non-parametric estimates of the standard error are sveil-
sble, then actually computing each for the data at hand and using the one which
has the smallest estimated standard error. One general procedure is to assume
that the sample of siza M can be divided into K blocks of equsl size n=N/X,
compute the thrse sstimstes for each block, 3%, k=1,2,°**, K; 1=1,2,3; then taks
the overall 8, to be the average of the block estimates, 8= Ik #%/K, and esti-
mate its standand error by S;= [I., (3k-6,)¥/K(x-1)1M/%; choose that 8, for which
ths estimated standard error §; is smallest. As a special case he considers a
sanple size N divisible by 6; he dkvides the data into K=N/6 equal groups (at
random). In each growp k(of size 6), he computes, as the candidate estimates,
W @yt X)/2, 8 = O+ X072, and 8% = (K + X()/2, where the X's are the
ordered values in the group. He reports the results of a Monte Carlo study of
this procedure applied to samples of size N«30,60, and 120 drawn from a short-
tailed (umiform) distribution, a normal distribution, and a long-tailed {con-
taminated normal) distribution. The results are as expected, with 8, strengly
favored by the short-tailed distribution and strongly disfavored by the long-
tailed distribution.

Allan Birnbaum, Bugene Laska and Moxris Meisnmer (1971) determine maximin-
efficient linear unbiased estimators (MiiBs), and their efficisncies, for ordered
samples of sizes 5(5)20 from a family of nine distributions. Since these
distributions admit simple oxderings such that the MLUE over any subset is just:
the MLUE over the extreme pair in the ordered subset, they are able to summarize
the results compactly. They also discuss relations to other estimators.

B, C. Duckworth (1971) demcnstrates that the standard method of least squares

165

P S A T



AS Ry
5

SR
e

is wmsuitable for analyzing certain types of data, either because it fails to
sppreciate the strong dependence of the prediction error on the independent

variable or because it is umable to allow for any error introduced by the fitting

of an insppropriate equation. He contends that a senmi-subjective graphical technique
may often give more useful results, though he admits that such a method dlso has
disadvantages--besides being partially subjective, it is also rather cumbersome

and not easily computerizable, and there is no rigorous method of determining

the error of estimate.

Arthur 1. Edwards (1971) presents a set of computer subroutines, FITTER,
FUNGUS, and FUNNY, written for finding linca; least-squares fits of weighted
tabular data with any of several functiona) forms, and for evuluating the final
function at specified values of the independent variable. Provision is made for
several functional forms, including power series in the independent variable
or its reciprocal, with or without a ccnstant termm, and other functional forme
may be added as desirad.

M. V. Johns, Jr. (1971) develops a sequence of estimators, indesed by an
intager-valued parameter k, which src usymptotically efficiency-robust in the
sense that, for any k, the corresponding estimator is consistent and asymptoti-
cally normally distributed (as the sample size n increases) for any F in a large
subset ¥ of the class of symmetric distributions and, for large k, the corresponding
estimator is (nearly) best asymptotically normal for all F ¢ ¥, The simplest
non-trivial estimator in the proposed sequence (corresponding to k=2) exhibits
quite high efficiencies for smsll to mderate sanple sizes (n=10,20,40) for a
collection of distributions comprising the normal, the Cauchy, the logistic, the

double exponential, and the 10% ccentaminated nommal.
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West § Lewis (1969), considers the statistical linear relationship between the

Elmer E, Resmenga and R. G. Burdick (1971) describe a stepwiss camputer

) procedure for identifying and setting aside extreme vailues from sets of data
3 with minimm bias or subjectivity on the part of the wnalyst. Since trumcation
4 of a basically noral distribution causes a dowmward biss in the estimated vari-
ance, a graphical method is provided to compensate for the bias.

? i Ram Swaroop «nd William R. Winter (1971) present a statistical technique

: and the necessary computer program for editing multivariate data. Ths technique
is especially useful when large quantities of data are collected and the editing
| must be performed automatically. One task in the editing process is the identifi-
cation of outliers which deviate markedly from the rest of the sampie. The

." technique presented, a multivariate analog of the univariate technique of Swaroop,
3

varisbles in identifying the outliers. It is assumed that the data are from a
4 multivariate normal pooulation and that the sample size exceeds the mumber of
varisbles by at least two.
John Caso (1972) presents the results of an extensive literature search
in the area of robust estimation techniques. He gives a descriptive analysis
of seversl robust estimators of the location parameter of symmetric distributions.

These estimators, chosen because they are computationally and theoretically
tractable and can be easily understood by a practitioner, are the trimmed and
Winsorized means, the Hodges-Lehmann estimator, Hube-'s estimator, Hogg's esti-
mator and Switzer’s estimator. Caso also reports the yssults of a Monte Carlo
study, based on 4200 samples eich o: size, 12 and 24 from five symmetric prob-
ability distributions (rectangular, triangular, normal, contaminated normal and
double exponential), of the efficiency of the robust estimators relative to the
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best estimator for the distribution under consideration. The resuits show that
ths robust estimators provide a higher guaranteed efficiency thar the best
estimator for any particular distribution in the family.

Eisenhart (1972) traces the deveiopment of the concept of the best mean
of s set of measurements from antiquity to the present das. He reports instances
of the use of the mode by the Greeks as far back as the fifth cemtury B. C. and
of the midrange by the Arabs around 1000 A. D. The median and the arithmetic
mean apparently came into use much later, around 1600. By the early nineteenth
century, the principle of the arithmetic mean had become widely (though not
wniversally accepted), but it met its downfall at the hands of Poisson (1824),
who pointed out that for the Cauchy distribution with p.d.f. £(x)= 1/x(1+x%),
~acx<+=, the arithmetic mean has the same distribution (for which the moments
do not exist) as a single observation. The author also comments on the theory
of statistical estimation from the time of Laplace, D. Bernoulli, and Gauss to
the present, and closes with some comments on modern robust estimation, which
he says arose out of World War II arguments as to whether mean deviation or
stondard deviation is a better measure of dispersion in gumery and bombing
situatioms,

6. CONCLUSIONS AND RECOMMENDATIGNS
1. The best choices of measures of central tendency and dispersion and of
methods for fitting linear (or nonlinear) regression equations depend upon the
error law, i. e. the distribution of the errors or residuals. For the three
comwon laws of error shown on the accompanying graph (Figure 1), the best

choizes are as follows:
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2Tskon from the modisn, not from ths arithmetic mean.

This coiclusion folices from the theory of power means, as developed by Fechner
(1874}, Bruzn (1938; and cthers. The results are corroborated by the following
ratios of varimnces and asymptotic variances of median, mesa, snd nidrange for
the spec:fied distributions:

11: AVar@l_%;u: AV&QQQ_%;W: Var M) _ 6N

A Var (#4) A Var (M) Var (M) (N+1) (N+2)
2. For sny ciher member of the exponentisl family of error laws, with prob-
ability demsity function of the fora £(x)= ce 2L MI/0IP 4o sace choice of
weasure of central tendency is the power mecn of order p, with which are
associstad the measure of dispersion which is the pt root of the mean of the
abh - :epthpowers of deviations from the power mean of order p and the method
of fitting the regression equation which minimizos that measure of dispersion
of the residuals. Whea p is not an integer or is aa integer greater thea 2,
this does not lead to simple procadures.
3. Fox error laws which are not membe rs of the exponentiai family, it is not
clear what the best choices are.
4. For the sake of simplicity, it is recommende’ that the choice be restricted
to the tinee sets in paragraph (1) above. For symmetric distvibutions (whose
standardized third soment about th: mean, ag=us/c>, is equal to zero), the value
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of the standardized fourth mouent about the mean, am,/a’, can be used as a
criterion to decide which of the three sets of choices should be mede. For

a, near 3.0, the value for the normal distribution, one would obviously want

to make the choices which are associated with that distribution. For those with
substantially higher values of ay, One would expect the choices associated with
Laplace's first distribution (for which c4-6.0) to give better results, Siwilar-
1y, for iose with substantially lower values of ay, ONE would expect the choices

associated with the uniform distribution (for which a,=1.8) to give beiter results.
On the basis of theoretical results of Rider (1957) and empirical results of
Hogg (1967), it is recommended tha. the first set of choices in paragraph (1)
above be made for a4>3.8,the second set for 2.2 sa4.s3.8, and third set for ay

< 2.2. If, as will usually be the case, the population value of a, is unknown,
the corresponding sample value should be used.

5. A'l three of the above procedures are adversely affected by asymmetry in
the distributions of errors or residuals, which occurs if positive and negative
errors of the same magnitude are not equally likely, If the deviations from
the chosen measure of central tendency in a one-dimensional array or the devia-
tions from linear or nonlinear regression indicate asymmetry, as evidenced by
a sample value oi g which differs sionificantly from zero (the standard error

of a, is v6/n), consideration should be given to transforming the data so as to

3
reduce the asymmetry as much as possible, and then analyzing the transformed
data instead of the original data.

6. A11 three of the above procedures are also adversely affected by the pre-
sence of spurious observations which may have resulted fram gooss blunders or

some undetected change in the quantity » “-ured or in the comditians of
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measurement. The adverse effect is most promounced in the case of the pro-
cedure which is appropriate for the uniform distribution, which depends heavily
on the extreme observations, and least so for the procedure which is appropriate
for Laplace's first distribution, with the procedure appropriate for the nommal
distribution occupying an intermediate position. If there is any reascn to
suspect the presence of spurious observations, the procedure based on the uni-
form distribution should never be used, and that based on the normal distribution
should be used only after appiying one of the modern criteria for the rejection
of outliers, most of which are based on normal theory. Outliers at one extreme
only may produce {alse indications of asymmetry which vanish when they are
rejected. Outliers at both extremes are likely to yield high values of Gy
which would lead to use of the procedures based on Laplace's first distribution:
after they have been rejected, procedure: based on the normal distribution may
be appropriate. In such cases, it is often difficult to decide whether the
extreme observotions are spurious or whether they are genuine observations fram
a distritutior (swch as Laplace's first) with a high value cf aye

7. Much crn be learned by plotting the data. In the case of a one-dimensional
array, one can form a preliminary impression as to skewness (as measured by “3)’
kurtosis (as measured by o 4) , and the presence of spurious observations. In the
case of two variables, one can form a preliminary imgression as to whethe:

the relation is linear or nmnlinear; if the latter, one can get same idea as

to the type of curvilinear relation that should be fitted. After the regression
equation has been ritted, the residuals should be plotted against the independent
variable. The presence of any syztematic pattern may indicate that the wrong

type cf relation has been fitted. Mentica shorld be made of two systematic patterns
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that may occur: (1) A correlation between the independent variable X and the
magnitude of the residuals|Y-¥| may indicate the need to transform the data
before analysis and find the regression on X, not of Y, but of log Y, Yp, or
Y/X; md (2) If the residuals tend to be of cne sign for extreme values of

the independent variable and of the opposie sign for intemmediate values, this
may indicate the need to fit a curvilinear instead of a linear relation. If no
such pattern exists, the residuals may then be treated as a univariate array
and analyzed accordingly (for skewness significantly different from zero, kur-
tosis for which the procedure used is inapprcpriate, or the presence of spurious
observations which may not have been detected on the initial two-dimensional
plot). If any of these conditions is discovered, appropriate steps to alleviate
it can be taken and the resulting data reamalyzed.

8. If a2 function y = £(x) has been computed (or measured) quite accurately
and rounded values have been tabulated, the distribution of errors in the
tabuiar values is uniform between -0.5 and + 0.5, in units of the last digit
retained. This should be borne in mind in approximating the tabular values by

a linear or nonlinear regression equation.

" RUCBRAR A R RR AT ERGRSAEY




Frasad

AoFd

.
I

S

Py g
2

0952

P B RO

-

P AR P
X ‘t\‘¥b oI

sy¥d

e
%

/. i S
S P TR e WA &

H
AR A I
R

{i
TAR,
i

Sty

LTz

o

ot o

s
[

X . L g oe .
s A s e
DY RS TR § G B SR D e TR

RFTEY:

i BA R

References

Galilei, Galileo (1632). Dialogo soprd i due massimi sistemi del mondo:

Tolemaico, e Copernicano. Landini, Florence. [English translation, Dialogue

concerning the two chief world systems, Ptolemaic and Copernican, by Still-

man Drake (with foreword by A. Einstein). Univ. of Calif. Press, Berkeley,
1953). (TE)

Cotes, Roger (1722). Aestimatio errorum in mixta mathesi, per variatiomes
partium trianguli plani et sphaerici. Opera Miscellanea, pp. 1-22. (Appended
to his Harmonia Mensurarum). Cantabrigiae. (TE,AV,WA)

Euler, Leophard (1749). Piéce qui a Remperté le Prix de 1'Academie Royale des

Sciences en 1748, sur les Inegalités du Mouvement de Saturn et de Jupiter.
Paris. (TE,LR,MA,MM)

Mayer, Johann Tcbias (1750). Abhandlung tber die Umwilzung des Mondes um seine

Axe. Kosmographische Nachrichten und Sammlungen for 1748 1, 52-183. (TE, ik,
MA)

Maire, Christopher; Boscovich, Roger Joseph (1755). De Litter.ria kxpeditione

per Pontificiam ditionem ad dimctiendas duas Meridiani gradis, ot corrigendam

mappam geograph:. W, jussu, et auspiciis 3enedicti XIV Pont. Max, suscepta.

14
Ramae. [French translation, Yoyage Astronamique et Géographigu_g dans 1'Etat

de l’église, entrepris par 1'Ordre et sous les Aucpices du Pape Benoit XIV,

pour mesurer deux degrés du méridien, et corriger la Carte de 1'Etat

ecclesiastique. Paris, 1770]. (TE,LR,TO)

Simpson, Thcmas (1756). A letter to the Right Honourable George Earl of

174




435

.o ., - - PR we T .
oa i B e T ado® R R S :
(RO v, P IR QRO YA, 65 .
4 J ALLE 4 o TP MR

RS
i ‘65 0

& ST Sethy AT
XA

ASREHEES

hcdy

Y
PR £8c2d

:w’ S J% Seio o,
MRS

el ,\: SRS

2\
ot

AR A
des el

A

st LI ;.'}: N
TN s ;

TS, 0 '.\‘, s ned
PR T R IR

g

o
R
:,;.
i3
=

e B gIGRE

- N

Macclesfield, President of the Royal Society, on the advantage of taking

the mean of a number of observations, in practical astronomy. Philosophical

\I.

5

.aomwm-xuamnwﬁwwmm '
LI .

Transactions of the Royal Society of London for 1755 49(1), 82-93. (TE,AV,
A)

. v

Boscovich, Roger Joseph (1757). De litteraria expeditione per pontificiam H
diticnem, et synopsis amplioris operis, ac habentur plura ejus ex exemplaria
etiam sensorum impressa. Bononiensi Scientiarum et Artum Instituto Atque

Academia Commentarii 4, 353-396. (TE,AV,LR,LF,T0,AM,[MD]).

Simpson, Thomas (1757). An attempt t shew the advantage arising by taking the ‘

mean of a number of cbservations, in practical astronomy. Miscellaneous

Trects on Some Curious, and Very Interesting Subjects in Mechanics, Physical-

Astronomy, and Speculative Mathematics, pp. 64-75. J. Nourse, London (7E,AV,
M),

Boscovich, R. J. (1760). De recentissimis graduum dimensionibus, et figura, ac

magnitudine terrae inde derivanda. Philosophiae Recentioris, a Benedicto Stay

in Romano Archigynasis Publico Eloquentare Professore, versibus traditae,

Libri X, cum adnotationibus et Supplementis P. Rogerii Josepli Boscovich,

S.J., Tomus 3iI, pp. 406-426, esp. 420-425. Romae. [French translation in-
cluded in note appended to 1770 French edition of Maire and Boscovich (1755)].
(TE, LR, LF,0S)

Lambert, J. H. (1760). Photanetria, sive di Mensura et Gradibus Luminis, Colorum,

et Umbrae (esp. Arts. 271-306). Augustae Vindelicorum, Augsburg. [Review,
Nova Acta Eruditorum (1760), 564-57¢]. [TE,AV ML,AM,T0)

Lambert, J. H. (1765a). Theorie der Zurerl?issigkeit der Beotachtungen und Versuche.
Beytrdse zum Gebrauche der Mathematik und deren Anwendung, Vol. 1, pp.424-488.

175




Berlin. (Second edition, 1792). (TE,AV,LR,NR,AM,T0)
Lambert, J. H. (1765b). Ammerkungen und Zusatze zur practischen Geometrie.
Beytrape zum Gebrauche der Mathematik und deren Anwendung, Vol. 1, p&ge nos.

unknown. Berlin. (Secord edition, 1792). (TE,AV,M,AM,[MR])
Lagrange, J. L. (1774). Mémoire sur 1'utilité de prendre le milieu entre les
résultats de plusieurs observations; dans lequel on examine les avantages
de cette méthode par le calcul des probabilités; et ol 1'on resoud differents

problémes relatifs & cette matiére. Miscellanea Taurinensia for 1770-73 §,

167-232(esp. Probleme X, 225-229). [Reprinted in Oeuvres de lLagraige, Vol.

2, pp. 173-234. Gauthier-Villars, Paris, 1868]. (TE,AV,AM)
Laplace, P. S. (1774). Memoire sur la Probabilité des causes par les événemens.

Mémoires de Mathématique et de Physique Presentés’’" par Divers Savans 6,

621-657 (esp. Frobléme III: Déterminer le milieu que l'on doit prendre entre
trois observations données d'un méme phe'noméne, 634-644). [Reprinted in
Qeuvres Complétes de Lzplace, Vol. 8, pp. 27-65. Gauthier-Villars, Paris,
1891]. (TE,~V,EA,AM,MD,MR,0S)

Bernoulli, Daniel (1778). Dijudicatio maxime probabilis plurium observationum

discrepantium atque verisimillima inductio inde formanda. Acta Academiae

Scientiorum Petropolitanae 1 (1), 3-23 (Memoirs). [English translation by

C. G. Allen, Biometrika 48(1961), 3-13]. (TE.AV,AM,MD,MR,ML,TO0,0S)
Euler, L. (1778). Observationes in praecedentem dissertationem. Acta Academiae

Scientiorum Detropolitana- 1 (1),24-33(Memoirs). [English translation by

C. G. Allen, Biometrika 48(1561), 13-18]. (TE,AV,M4)

Laplace, P. S. (1781). Mémoire sur les probabilités. Mémoires de 1'Académie

royale des Sciences de Paris Année 1777, 227-332 {esp. 322-332). [Reprinted

176

N

RNV R Y




in Qeuvres Complétes de Laplace, Vol. 9, pp. 383-485. Gauthier-Villars, Paris,
1893]. (TE,AV,AM,ML,EA)
Bernoulli, Jean III (1785). Milieu. Encyclopédie Méthodique, Vol. 11, pp. 404-

409. Paris. (Second edition, 1789, entitled Dictionaire Encycl. des Mathe-
matiques). (TE,AV,LR ,NR,AM ,MD ,MR,0S ML,LF,T0)

Laplace, Pierre Simon (1786). Mémoire sur la figure de la terre. Mﬁn_@;_xg_g de
1'Académie royale des Sciences de Paris ,Ag“u‘x»é;g 1783, 17-46. [Reprinted in
Qeuvyes Complétes de Lapiace, Vol. 11, pp. 3-32. Gauthier-Villars, Paris,
1895]. (TE, AV],LR,MM, [MR])

Laplace, P. S. (1793). Sur quelques points du systfme du monde. Mémoires de

1'Académie royale des Sciences de Paris Année 1789, 1-87(esp. Sur le degrés

mesurés des méridiens, et sur les longeurs observées du pendule, 18-43).
[Reprinted in Jeuvres Complétes de Laplace, Vol. 11, pp. 477-553. Gauthier-
Villars, Paris, 1895]. (TE,LR,LF,MM,0S)

Laplace, P. S. (1799). Traité de Mécanique Céleste, Vol. 2. J. B. M. Duprat,

Paris. [Reprinted as Vol. 2 of Oeuvres Complites de Laplace. Gauthier-Villars,

Paris, 1878}. Part I, Book I1I, ch. v., pp. 116-165 (esp. 134 - 165).(TE,
[AV],LR,LF,;iM, [AM] , [MR] , [MD])
Prony, R. (1804). Recherches Physico-Mathématiques sur la Théorie des Eaux

Courantes. (esp. pp. xvii-xxxii). L'Imprimerie Imperiale, Paris (TE,LR,LF,MM,
0s)
Trembley, Jean (1804). Observations sur la méthode de prendre les milieux entre

les observations. Mémoires de 1'Academie Rcyale des Sciences et Belles Lettres

de Beriin, Classe de Mathématique Année 1801, 29-58. (TE,AV,AM)
Legendre, A. M. (1800). Nouvelles Méthodes pour la Détermination des Qrbites

177

Ly




- o
K,
I
ks

P RPN s T Ty s
e LA R B TSy T

sl

Ry T

N g
RS ETISA

et

o eresian g
SRS

Py ,',
s

¢
D)
¥

des Combtes. Courcier, Paris. (esp. Appendice sur la méthode des moindres
quarres, pp. 72-80). [Second edition, with supplement, 1806]. (T:,LR,LS,MM,
T0)

Puissant, Louis (1805). Traité de Géodésie, ou Expnsi.lon des Méthodes

Astronomigues et Trigonomdtriques, Vol. 1. Paris. [Volume 2, 1819; Second
edition (2 vols.), 1842]. (1E,LR,LS)

Svanberg, Jons (1805). Exposition des opérations faives sn Lapponie, pour la
détermination d'un arc du méridien en 1801, 1802 et 1803,°*". Stockholm.(TE,LR,LF M)

von Zach, Franz Xaver (1805). Versuch einer auf Erfahrung gegrundeten
Bestimmung terrestrischer Refractionen. Monatliche Correspondenz zur Beford-
derung der Erd- und Himmels-Kunde 11, 389-415,485-504. (TE,AV,LR,AM,M4,T0)

Delambre, J. B, (editor)(1806-10). Base du Systeme Métrique Décimal, ou Mesure

de 1°'Arc du Méridien Compris entre les Paralldles de Dunkerque et Barcelone,

Executée en 1792 et Anndes Suivantes, par MM. Méchain et Delambre. Bsudouin,

Paris. Voi. 1, 1806; Vol. 2, 1807; Vol. 3, 1810. (TE,AV,LR,LS,MM,[LF],T0)
Gauss, C. F. (1804). IX Comet vom Jahr 1805. Monatliche Correspondenz zur
Beforderung der Erd- und Himmels-Kunde }4, 181-186. (TE,LR,LS)
von Lindenau, B. A. (1806). Uber den Cebrauch der Gradmessungen zur Eestimmumng

der Gestalt der Erde. Monatliche Correspondenz zur BeOrderung der Erd- und
Himsels-Kunde 14, 113-158. (TE,LR,LS,LF,0S)

Adrain, Robert (1808). Research concerning the probabilities of the errors which
happen in making observations. Analyst 1, 93-109. (TE,AV,LR,LS)
Gauss, C. F. (1809). Theoria Motus Corporum Coelestium in Sectionibus Conicis

Solem Ambientium, Frid, Perthes et I. H. Besser, Hamburgi. {Reprinted 1906

in Werke, Band VII, Koniglichen Gesellschaft der Wissemschaften, GSttingen,

178

P et AR s SIS kSt ¢ A AW

[

T A e




: pp. 1-280; partial English translation by Hale F, Trotter in TR #5, Statis-
‘ tical Techniques Research Group, Princeton University, 1957, pp. 127-147].
 § (TE,AV,LR,AM,MD,MR,L3,MM,LF)

Bessel, F, W, (18105. tatersuchungen tiber die scheinbare und wahre Bahn der

grossen Cometen von 1807, Konigsberg. [Review, Monatliche Correspondenz

zur Beforderung der Erd- und Himmels-Kunde 22(1810),205-212), (TE,LR,LS)

Laplace, P. S. (1810). Mémoire sur les approximations des formules qui sont
fonctions de trés-grands ncmbres, et leur application aux probabilités.

Mémoires de la Classe des Sciences Mathématiques et Physiques de 1'Institut

de France Année 1809, 353-415; supplement, 559-565. [Reprinted in Oeuvres
Camplétes de Laplace, Vol. 12,pp. 30 -353, Gauthier-Villars, Paris, 1898].
(IE,AV,LS,AM,ML,EA)

Gauss, C. F. (1811). Disquisito de elementis ellipticis Palladis ex opposition-
ibus 1803,1804,1805,1807,1808,1809. Commentationes Societatis Gottingensis

1, 26 pp. [Partial English translation by Hale F. Trotter in TR #5, Statistical
Techniques Research Group, Princeton University, 1957, pp. 148-156]. (TE,LR,
LS)

Laplace, P. S. (1811a). Mémoire sur les intégrales définies, et leur applica-
tion aux probabilitds, et specialement & la recherche du milieu qu'il faut

Sciences Mathématiques et Physiqies de 1'Institut de France Année 1810,279-

347. [Reprinted in Oeuvres Complétes de Leplace, Vol. 12, pp. 357-412.

Gauthier-Villars, Paris, 1898}. (TE,AV,LR,AM,LS,EA)
laplace, P. S. (1811b). Du miliev qu'il faut choisir entre les résultats d'un

grand nombre dss observations. Connaissance des Tems for 1813, 213-223.

179

s ek ARSI

s R A A A NN s AT N

e e AU At £ Eabiw Lt £ AuAAond S 0 2 te R e A AP A SR A SRR S BRI IR e SRS SR S S s s, + J i S SR AR 2 A




[German translation, Monatliche Correspondenz zur BefOrderung der Erd- und
Himmels-Kunde 25(1812), 105-120. (TE,AV,LR,AM,LS)
Laplace, P. S. (1812). Théorie Analytique des Probabilités. Courcier, Paris.

Book II, ch. iv, pp. 304-348; second supplement (Application du calcul des
probabilités aux opérations géodésiques), 1818, [Third edition, 1820, con-
taining three supplements, reprinted 1886, together with a fourth supple-
ment added in 1825, as Oeuvres Complétes de Laplace, Vol. 7. Gauthier-

Villars, Paris. Book II, ch. iv, pp. 309-354; second supplement, pp. 531-

580]. (TE,AV,LR,AM,MM,LF 1S EA,0S)
Delambre, J. BE. (1813). Abre'gé d'Astronomie, ou Lesons élémentaire d'Astro-
nomie Théorique et Pratique. Courcier, Paris. (TE,AV,LR,MD,LF)

Legendre, A. M. (1814). Méthode des moindres quarrés, pour trouver le milieu
le plus probable entre les résultats de différentes cbservations. Mémoires

de 1a Classe des Sciences Matl.jmatiques et Physiques de 1'Institut de
France Anpe¢ 1810(2), 149-154. (TE,AV,IR,AM,LS,T0)

van Beeck-Calkoen, J. F. (1816). Over de Theorie der Gemiddelde Waardij.
Vezhandlingen der K. Nederlandandsch Instituut van Wetenschappen 2, 1-19.

(TE,AV,LR,AM,LF)

Gauss, C. F. (1816). Bestimmng der Genauigkeit der Beobachtungen. Zeitschrift

filr Astronomie und verwandte Wissenschaften 1, 185-196. [Reprinted 1880
in Werke,Band IV, Kdnig’ichen Gesellschaft der Wissenschaften, GSttingen,

pp. 109-117; English translation by Hale F. Trotter in TR #5, Statistical
Techniques Research Group, Princeton Univ., 1957, pp. 156-167). (TE,DI,MD,

AD,SD)

Adrain, Robert (1818a). Investigation of the figure of the earth, and of the

FEAELSRARONG

e Xt A G i

gt o

RS TENG Y,
sty re;%“masmmwrm-ﬁwﬁmmw»@e;mm«mmvm@w‘mmwmwwmmm

SRNETEG s e SRR ATt Aot

R N P P T v

S T

o]




gravity in ditferent latitudes. Transactions of the Anerican Philosophical

2 R i N A xSy B

Society (New Series) 1, 119-135. (TE,{Avl, LR,LS,LF,0S)
Adrain, Robert (1818b). Research concerning the mean diameter of the earth. :

§ Transactions of the American Philusophical Society (NS) L, 353-366. (TE,LR,

Anonymous (1821). Dissertation sur 1la recherche du milieu le plus probable,

’ entre les résultats de plusieurs cbservations ou expériences. Annales de ‘
5' Mathématiques Pures et Appliquées 12, 181-204. (TE,AV,AM,MD,MR,LS,08,T0)
*{:' Gauss, C. F. (1823)& Theoria combinationis observationum erroribus mininis 3
,‘ obnoxiae. Commentationes Societatis Regiae Scientiarum Gottingensis 4
. Recentiores ;; German summary, Gottingische Gelehrte Anzeigen (1821), 321- L3
3 527 (pars prior) and (1825), 313-318 (pars posterior). [Reprinted 1880 in Lo
"‘ Werke, Band IV, Koniglichen Gesellschaft der Wissenschatt.n, GOttingen, pp. 1 ;
3-53, 95-3 %; English translation by Hale F. Trotter in TR #5, Statistical ; ;
“ Techniques Research Group, Princeton University, 1957, pp. 1-82]. (TE,LR, . g
LS,LF,MM) g i
: Cauchy, Augustin-Louis (1824). Sur le systéme des valeurs qu'il faut attrbuer g
: & 1.eux éléments détermines par un grand nombre d'observations, pour que la f
* plus grande de toutes les erreurs, abstraction faite du signe, devienne un 1 %
[ minimm. Bulletin de la Société Philomathique (Paris) for 1824, 92-99. -
(TE,AV, LR, M¥) 3 §
? Poisson, S. D. (1824,1829). Sur la probabilité des résultats moyens des obser- ‘ ésg
| vations. Connaissance des Tems for 1827, 273-302; for 1832, 3-22. (TE,AV, g
» )
Z,‘ 3 Ivory, James (1825). On the method of the least squares. Philoscphical Magazine { ;
g ;!
2 181 i




g e ek e DAL TR

65, 1-10, 81-88, 161-168. (TE,AV,LR,LS,EA)

Mmcke, G. W. (1825). Beobachtung. Gehler's Physikzlisches Wé’rterbuch, Second

edition. Leipzig. Vol. I, pp. 884-912. (TE,AV,LR,LS,TO)
Ivory, James (1826). On the method of the least squares. Philosophical Maga-
zine 6§, 161-165. (TE,LR,LS) :

Gauss, C. F. (1828). Supplementum theoriae combinationis observatiomum erroribus

minimis cbnoxiae. Cormmentationes Societatis Regiae Scientiarum Gottingensis

Recentiores 6; German summary, GOttingische Gelehrte Anzeigen (1826), 1521-

1527. [Reprinted 1880 in Werke, Band 7V, Xihiglichen Gesellschaft der

R P

Wissenschaften, Gé’ttingen, pp. 57-93, 104-108; English translation by Hale
F. Trotter in TR #5, Statistical Techniques Research Group, Princeton
University, 1457, pp. 83-126]. (TE,LR,LS)

Hauber, C. F. (1830a).tlfber die Bestimmmng der Genauigkeit der Beobachtungen.
Zeitschrift fur Physik und Mathematik 7, 286-3.4. (TE,AV,DI,AM,MD,SD,AD)

Hacher, C. F. (1830b). Verallgemeinerung der Poisson'schen Unters:chungen

uber die Wahrscheinlichkeit der mittleren 1tate der Beobachtungen in

den "Additions 4 la Comnaissance des Temps  327." Zeitschrift fur Physik

und Mathematik 7, 406-429. (TE,AV,LR,LS)

Hauber, C. F. (1830-32). Theorie der mittleren Werthe. Zeitschrift fur Physik

und Mathematik 8, 25-26,147-149,295-315, 443-445; 9, 302-322; 10, 425-457.
(TE,AV,DI,LR,~¥,SD,MA,LS)

von Riese,C. (1830). Eine Recension. Jahrbucher flir Wissenschaftliche Kritik

L.(1), 269-284. (TE,LR,LS)
Cauchy, A. L. (1831). Mémoire sur le systéme de vaieurs qu'il faut attribuer

3 divers é1émens détemminés par un grand nombre dlobservations pour que la

182




Sl

-3

P T, A
AN AT Ay AR A K e
HOANLE TR A

»

WIS

5
:r -
5
&3
3
%
&
=)
3
L&
3
I3

PN - "
>

2l
2R !""’gy" .

P

pius grande de toute les erreurs, abstraction faite du signe, soit un
minimm. Jouraal de l'école Polytechnique 13(20).175-221. [Lith. MS, 1314].
(TE,AV,LR,NR,MM)

Encke, J. F. (1832-34). Uber die Methode der kleinsten Quadrate. Berliner
Astronomisches Jahrbuch for 1834, 249-304; for 1835, 253-320; for 1836,
253-309. (TE,LR,LS)

Cauchy, Augustin (1837). Mémoire sur 1'interpolation. Journal de Mathematiques
Pures et Appliquees (1).2, 193-205. [Lith. MS, 1835; English translation,
Philoscphical Magazine (3) 8, 459-468]. (TE,LR,NR,(M)

Hagen, G.H.L. (1837). Grundzige der Wshrscheinlichkeitsrechnung. Ernst § Korn,
Berlin. [Third edition, 1882). (TE,AV,LR,LS,LF,0S,T0)

Poisson, S. D. (1837). Recherches sur la Probahilité des Jugements. Bachelier,
Paris. (esp. Chapter 4). (TE,AV,LS) ‘

Bessel, F. W. (1838). Untersuchungen ber die Wahrscheinlichkeit der Beobach-
tungsfehler. Astronomische Nachrichten 15, 369-404. (TE,LR,i.S) )

Bessel, F. W.; Baeyer, J. J. (1838). Gradmessung in Ostpreussen und ihre Ver-
bindung mit Preussischen und Russischen Dreiecksketten. Berlin. [Reprinted
in part in Abhandlungen von Friedrich Wilhelm Bessel (edited by Rudolf
Engleman), Vol. 3, pp. 62-138. Wilhelm Engelmann, leipzig, 1876]. (TE,LR,

LS, T0)
Stampfer, S. (1839). Ueber das Verhaltniss der Wiener Klafter zum Meter.
Jahrbucher des K. K. Polytechnisches Institutes (Vienna) 20, 145-176. (TE,

AV,DI,AM,TO)
Gerling, C. L. (1843). Die Ausgleichungs-Rechnungen der Practischen Geomstrie,

183

SRR AN

R0




"
T T

2 2 43
ARG P

'?’X“r‘s) AT N o s A A PN

e O RAR A s b e
O AR PRSP e th
AN k

Pcore

T A

PO,

EE

S

B

s

cilh Tl
RO £

\
.
frtig

R
o)é.,,'.

(LKA

gl

,!.,!t

Rl

&

)
Ly

T

oder die Methode der Kleinsten Quadrate mit ihren Anwendugen fir Geoditi-

sche Aufgaben. Friedrich und Andreas Perthes, Hamburg ind Gotha. (TE,AV,
IR,LS,T0)

Donkin, W. F. (1844). An Essay an the Theor; of ii.c Cospination of Observations.
Transactions of the Ashmolean Society, Oxford. French abridgement, Journal
de Mathématiques Pures et Appliquées (1) 15(1850),297-332]. (TE,AV,LR,LS)

Ellis, R. L. (1844). On the method of least squares. Tramsactions of the

Cawbridee Philosophical Society 8, 204-219; summary in Proceedings of the
Cambr'.dge Philosophical Society 1(1), 5-6. (TE,AV,LR,LS)

Quetelet, L. A. (1846). lettres & S. A. R. le Duc Régnant de Saxe-Cobourg et
Gotha, sur la Théorie des Probabilités Appliquée aux :ciences Morales et

Politiques. Hayesz, Bruxelles. [English translation by O. G. Downes, London,
1849]. (TE,Av,DI, [MD], QD)
De Morgan, Augustus (1847). Theory of probabilities. Encyclopaedia of Pure

Mathematics (Encyclopaedia Metropolitana), Pt. II, pp. 393-490. (TE,LR,LS)
Z11is, R. L. (1850). Remarks on an alleged proof of the 'Method of least

Squares," contained in a late number of the Edinburgh Review. Philosophical
Magazine (3)37, 321-32C,462. [Reprinted in Ellis's Mathematical Writings
(Cambridge, 1863), po. 5:-62]. (TE,LR,LS)

Herschel, Sir John F. W. (1850). Quetelet's On Probahilities. Edinburgh Review
92(185), 1-30. [Reprinted in Herschel's Essays from the Edinburgh and

Quarterly Reviaws (Longman, Brown and Co., Lonuon, 1857), pp. 365-465. (1E,
AV,LR,LS MD)

Donkin, . F. (1851), On certain questions relating tc the theory of prob-
abilities Philosophical Magazine (4)1, 353-368, 458-466; 2, 55-66. (TE,LR,LS)

184

|



i, ot fiairic e

o
PSR AT s
IR

e

A

disten st balSiiond w i Siman b o

Bienayme, J. (i852). Sur 1a probabilité des erreurs d'aprds la méthode des
soindres carrés. Journal de Mathématiques Pures et Appliquées (1)17,33-78.
(IE,LR,LS)

Poirce, Benjamin (1852). Criterion for the rejection of doubtful observations.
Astronomica?! Journal 2, 161-163. (TE,TO,FC)

Bienayme, Jules (1853a). Remarques sur les différences qui distinguent 1'inter-
polation de M. Cauchy de 1a méthede des moindres carrés, et qui assurent la
superiorité de cette methodé. Covwtes Rendus .e 1’Acaddmie des Sciences de
Paris 37, 5-13. (TE,LR,LS,00)

Bienaymé, Jules (1853%). Considérations a 1‘appui de la découverte de Laplace
sur 1a loi de probabilitd dans la méthode des moindres carrés. C. R. Acad.

Sci. Paris 37, 309-324; discussion, 324-326. [Reprinted 1867 {without
discussion) in Journal de Mathematiques Pures et Appliguées (2) 12, 158-176].
(TE:LR:{S’Q‘)

Cauchy, Augustin (1853a). Mémoire sur 1'évaluation d'incormnues déterminées

par w grand nombre d'éguations approximatives du premier degrd. f. R. Acad.
Sci. Paris 36, 1114-1122. (TE.LR,LS,QM)

Cauchy, Augustin (1853b). Mémoire sur 1'interpolation, ou Remarques sur 12s
Remarques de M. Jules Bienaymé. C. R. Acad. Sci. Paris 37, 64-68; further
remarks by Bienaymé, 68-69. (TE,LR,LS,OM)

Cauchy, Augustin (i853c). Sur la nouvelle méthode d'interpolation comparée a
la méthode des moindres carrés. C R. Acad. Sci. Paris 37, 100-109. (TE,LR,
Ls,o™)

Cauchy, Augustin (18531). Mémoire sur les coe’ficients limitateurs ou resivic-

teurs. C. R. Acad. Sci. Paris 37, 150-162. (1E,LR,LS)

i85

e e e Oy A o o B 0 S S N S S R SRS ST SR \

o B D N




Casuchy, Augustin (1853). Sur les résultats iwyens d'observations de mée
nature, et sur les résultats les plus probables. C. R. i:ad. Sci. Pmis
31, 198-206; discussion (remarks by Bienaymd), 197-198, 206. (TE,AV,*:,iS,0M)

Cauchy, Augustin (1853f). Sur la probabilité des erreurs qui affecternt des
résultats moyens d'obsezvations de m@me nature,C. R. Acad. Sci. Pari. 37,
264-272. (TE,AV,LR,LS,O0M,MM)

Cauchy, Augustin (1853g). Sur la plus grande erreur & craindre dens ua
résultat moyen, et sur le systédme de facteurs qui rend cette plus grande
erreur wn minimam. C. R Acad. Sci. Paris 37, 326-334. (TE,AV,L3,1S,00,M)

Bertrand, J. (1855). Suwr ls méthode des moindres carrés. (Lettre & K. Elie

de Beaumont, accompagnant 1'envoi d'un exemplaire de la traduction des
Mémoires de Gauss). C. R. Acad. Sci. Paris 40, 1190-1192. (TE,AV,LR,AM,LS)
Gould, B. A.,Jr. (1855). On Peirce’s criterion for the rejection of doubtful

observations, with tables for facilitating its anwplication. Astronomical
Jouraal 4, 81-87. (TE,TO,PC)

lloyd, Humphrey (1855). On the mean r=sults of observations. Transactions of
the Royal Irish Academy 22, 61-73; abstract, Proceedings of the Royal Irish
Academy 4, 180-183. (TE,AV,AM,DI,RA)

Astroenomical Journal 4, 137-138. (TE,TO,PC)

Winlock, Joseph (1856). On Professor Airy's objections to Peirce's criterion.
Astronomical Journal 4, 145-147. (TE,T0,FC)
Petzval, Joseph (1857). Fortsetzung des Berichtes iber optische Untersuchungen.

Sitnngsherichts der Mathematisch-Naturwissenschaftliche Klasse Kénigliche
Akademie der Wissenschaften, Vierma 24, 129-144. (TE,LR,LS,MM)

186

Airy, G. B. {1856). Letter from Professor Airy, Astronomer Royal, to the Editor.

s mr e e men s v————————




AR
0]

Bienayn{, I. J. (1858). Mémoire sur 1a probabilité des erreurs d'aprés la
méthode des moindres carrds. Acadimie des Sciemces de Paris, Mémoires
Preseirtds par Divers Savants 15, 615-€53. (TE,LR,LS)

von Andrae, C. G. (1860). Udvidelse af en a Laplace i Mécanique caleste
angivet Mathode for [lestemmelsen af en unbekjendt Storrelse ved givne
umiddelbare Jagttagelser; Oversight af Kgl. iurske Videnskabernes Selskabs
over Forhandlingen (Uopenhogen) 1860, 198-225. (TE,LR,LF)

Airy, George Bidde11(1861). On the Algebraical and Numerical Theory cf Errors
of Gbservations and the Combination of Observations. Macmillan and Co.,
iondon. (TE,LR,LS,TO0)

Schott, Charles A, (1861). Account of Cauchy's interpolation form:la. Report
of the U. S. Coast Survey for 1865, 392-396. (TE,LR,NR,QM)

Rartlett, W.P.G.(1862). On the empirical interpolation of observations in
physics ond chemistry. American Journal of Scieace 34, 27-33(TE,LR,NR,LS,QM)

“hauvenet, William (1863). Method of least squares. Appendix to Manual of
Spherical and Practical Astronomy, Volume 2(J.B.Lippincott, Philadelphia),
pp. 469-. ' cables, 593-599. [Appendix and related tables reprinted 1868
as A Treatise on the Method of Least Squares]. (TE,LR,LS,T9,PC,CC)

DeMorgan, Augustus (1864). Un the theory of the errors of cbservation. Trans-
actions of the Cambridge Philosophical Society 10, 409-427. (TE,AV,LR,AM,LS)

Todwnter, Isaac (1865). A History cf the Mathematical Theory of Probability
from the Time of Pascal to that of Laplace. Maamillan and Co., Lowdon.
[Reprinted 1949, Chelsea Publishing Co., New York]. (TE,AV,LR,AM,LF,EA,MM,
LS, ML ,M4,0S)

Stone, E. J. (1868). On the rejection of discordant observations. Monthly

187




Notices of the Foyal Astronomical Society 28, 165-168. (TE,70,SC)

Jordan, W. (1865). Ueber die Bestimmmg der Genauigkeit mehrfiwch wiederholter
Becbachtungen einer Unbekannten. Astronomische Nachrichten 74, 209-226. (TE,
AV,DI ,AM MD,SD,AD)

Todmunter, Isaac (1869). On the method of least squares. Transactions of the *
Cssbridge Phiiosophical Society 9, 219-238. (IE,IR,1S)

Abbe, Cleveland (1871). A historical note on the method of Jeast squares.

Mmerican Journal of Science and Arts (3) 1, 411-415. (ZE,AV,LR,AM,LS)
Zachariae, G. (1871). De Mindste Qvadraters Methode. Nyborg. (TE[LR,LS)
Glaisher, J.W.L. (1872). On the law of facility of errors of chservation and

on the method of least squares. Mowmoirs of the Royal istruacmical Society
39, 75-124. (TE,AV,LR,AM,MD,LS,LF,EA,TO,PC)

Helmert, F. R. (1872). Ausgleichungsrechnung nach der sMethode dei Kleinsten
Quadrate. B. G. Teubner, Leipzig-Berlin; second ed., i207; third ed. (With
supplement by H. Hohemer), 1924. {English transl.,USAF Aeronautical Crart
and Information Center, St. Louis, 1958]. (TE,AV,LR,LS)

Glaisher, J.W.L. (1873). On the rejection of discordant observations. Monthly
Notices of tho Royal Astnmomical Society 33, 391-402. (TE,TC,GC)

Stone, E.J. (1873a). On the most probable result which can be derived from a
mmber of direct detemminaticns of assumed equal value. Monthly Notices

of the Royal Astronomical Society 33, 570-573. (TE,AV,AM)

Stone, E. J. (1873b). On the rejection of discordant observations. Monthly
Notices of the Royal Astronomical Society 34, 9-15. (TE,T0,CC,SC,GC,S2)

Todhunter, Isaac (1873). A History of the Mathematical Theories of Attraction

and the Figure of the Earth, from the Time of Newton to that of Laplace,

188




Volumes I and II. Macmillan and Company, London. [Reprinted in two volumes

bound as one by Dover Publications, Inc., New York, 1962]. (TE,LR,LF,MM,LS)

Fechner, G. Th. (1874). Ueber den Ausgangswerth der kleinsten Abweichungssumme,
desser: Bestimmrg, Verwendung und Verallgemeinerng. Abhandlungen der

Konigliche Sichsische Gesellschaft der Wissenschaft zu Leipzig 18 [Math. Phys.
Classe 11], 1-76. (TE,AV,AM,MD,PM )

Glaisher, J.W.L. (1874). Note on a paper by Mr. Stone, '"On the rejection of

discordant observations". Monthly Notices of the Royal Astromomical Society
34, 251. (TE,TO,SC,GC)

Stone, E.J. (1874). Note on a discussion relating to the rejectien of discordant
observations. Monthly Notices of the Royal Astromomical Socizty 35, 107-108.
(7E,T0,SC,GC)

Faye, H.E. (1875). Note accompagnant la présentation d'une r-‘ice autographiée
sur la méthode des moiadres carrés. C. R. Acad. Sci. Posa 09, 332-356. (IE,

AV, LR,MM,LS)

Galton, Francis (1875). Statistics by intercomparison vith remarks on the law

of frequency of error. Philosophical Magazine (4) 4%, 33-46. (TE,AV,DI,MD,QD)
Laurent, H. (1875). Sur la methode des moindres carr:s. Journal de Mathéma-
tiques Pures et Appliquées (3) 1, 75-80. (TE,AV,IR,LS)

Safford, T. H. (1876). On the method of least squares. Proceedings of the

American Academy of Arts and Sciences 11, 133-201. (TE,LR,IS)
Merriman, Mansfield (1877). List of writings relating to the method of least

squares with historical and critical notes. Transactions of the Conneccicut

Academy g_f_ Arts and Sciences 4(1), 151-232. (All)

Peirce, Benjamin (1878). On Peirce's critericn. Proceedings of th2 American

189

e U F ALY S o Sl p Dt s ol £ e

“ &:WWM:‘%“ *




e I e R R QT e R A P e RO R R RO i s Raiig

!
i

Jicademy of Arts and Sciences 13 [N.S._§], 348-349; remarks by Charles A.
Schott, 350-351. (TE,TO,PC)

Edgeworth, F. Y. (1883a). The law of error. Philoscphical Magazire (S) 16,
300-309. (1E,AV,LR,LS)

Edgeworth, F. Y. (1883b) The method of least squares. Philosophical Magazine
(5) 16, 360-375. (TE,AV,LR,LS,PC) |

Merriman, Mansfield (1884). A Textbogk gn the Method o€ Least Squares. John

Wiley § Sons, New York; sixth edition, 1892; second printing, 1893. (TE,AV,
m,mols)mapcsmsm}

Wright, T. W. (1884). A Treatise on the Adjustment of (bservations by the

Method of least Squares. D. van Nostrand, New York. (TE,TO,PC,CC,SC,GC,WC)

Edgeworth, F. Y. (1885). Methods of statistics. Journal of the Royal Statisti-

cal Society Jubilee, 181-217. (1E,AV,DI,AM,MD,AD,QL)
Edgeworth, F. Y.(1886). Observations and statistics: an essay on the theory

of errors of observation and the first principles of statistics. Trans-
sctions of the Cambridge Philosophical Society 14(2), 138-169; abstract,
Proceedings of tie Cambridge Philosophical Society 5(4)[1885], 310-312. (TE,
AV,DI LR, AM,MD,MO,QD, LF, EA)

Newcomb, Simon (1886). A generalized *heory of the combination of observations
30 as to obtain the best result. ‘merican Journal of Mathematics 8, 343-366.
(TE,TO,PCNM) :

Edgeworth, F. Y. (1887z). On discor“ant observations. Philosophical Magazine
(5) 23, 364-375. (TE,T0,B4,SC) i

Edgeworth, F. Y. (1887b). On observatimns relating to several quantities.

Hermathena ¢ (13), 279-285. (TE,AV,LR,AM,ML, LY

190




e

4
K

1 o

Ay

R

1)

k&

. ,.
) PRV IS
AP

ta N 4’, AT
""T‘y‘ {‘{"hv PR

P

A

"ﬁ.':’"; "

y i XSTYILY.
e e W) JORNT o
2l

g

AR A

i

3

iy i

ARt 438 AR
) (‘} > AL

”,
5

Rl

Edgeworth, F. Y. (1887c). A new method of reducing observations relating to
to several quantities. Philosophical Magazine (5)24, 222-223. (TE,AV,LR,AMMD,
LF)

Edgeworth, F. Y. (1887d). The choice of means. Philosopiical Magazine (S)
24, 268-271,(TE,AV,AM,MD)

Edgeworth, F. Y. (18872). The empirical proof of the law of error. Philosoph-
ical Magazine (5) 24, 330-342. (TE,AV,AM,MD)

Turner, H. H. (1857). " Mr. Edguworth's method of reducing observations relaving

to several quantities. Philosophical Magazine (5) 24, 4€6-470. (TE,AV,LR,MM,
MD,LF,LS)

Bertrand, J. (13%8a). Sur la loi de probabilité des erreurs d'observation.

Comptes Rendts dc 1'Académie des Sciences (Paris) 106, 153-156. (TE,AV,AM,
QM,H4, TO)

Bertrand, J. (1888b). Sur la combinaison des mesures d'une méme grandeur. C.
R. Acad. Sci. Paris 106, 701-704. (™,AV,TO,AM,BC)

‘y

Edgeworth, F. Y. (1888). On a new method of reducing observations relating to

several quantities. Philosophical Magazine (5) 25, 184-191. (TE,AV,LR,AM,
MD,LF,LS)

Faye, H. E. (1§88). Sur certsin points de la théorie des erreurs accidentelles.
C. R. Acad. Sci. Paris 136, 783-786. (TE,AV,T0,AM,MR,QM)

Galton, Francis (1888). ’o-relations and their measurement, chiefly fron.

anthropometric data. Proceedings of the Royal Society of London 45, 135-14S.
(TE,AV,DI ,MD,QD)

Bertrand, J. (1859). Calcul des Probabilités, Gauthier-Villars, Paris. [esp.
art. 166-169]. (TE,TC,BC)

101

.
P R PR Y Y oo RUer e BE LU SE A T LN 7R RN

i
i
it
i
’i
i
‘¢
H
i
y

S aetmds e




Galton, Prancis (1880). Natural Inheritance. Macmillan and Company, London.
fesp. Chs. 4 and 5]. (TE,AV,DI,AM,MD,QD)

Czwber, E. (1890). Bemerkung tber die wahrscheinlichsten Werte beobachteter
GrOssen. Archiv der Mathematik und Physik (2)9, 97-101. (IEML)

Estieme, J. E. (1890). ftude sur les erreurs d'observation. Revue d'Artillerie

36, 235-259. (TE,AV,LRMD,’™)
Czuber, Emanuel (1891a). Theorie der Beobachtungsfehler. B. G. Teubner,leipzig.
(TE, T0,PC,CC,SC,GC)

Czuber, Emanuel (1891b). Uber ein Ausgieichungsprincip. Technische Blitter
23, 1-9. (TE,AV,DI,LR,AM,MD,LS, LF)
Pizzetti, P. (1892). I fondamenti matematici per la critica dei risul<ati

sperimentali. Atti dells Regia Universitd de Genova 11, 113-333. (Al1)

Edgeworth, F. Y. (1893). Exercises in the calculaticn of errors. Philosophical
Magazine 36, 98-111. (TE,AV,MD,AM MQ)

Goedseels, ..: Mansion, P. (1893). Discussicn sur la théorie des erreurs.
Amales de la Socidté Scientifique de Bruxelles 17(1), 52-53. (TE,AV,LR,LS)

Pearscn, Karl (1895). Centribution; to the mathematical theory of evolution.

IT. Skew variation in homogeneous mzterial. Philosophical Transactions of
the Royal Society of London (A) 186,343-414. [Reprinted in Karl Pearson's
Early Statistical Papers (Camoridge Univ. Press, 1948), pp. 41-112]. (TE,
AV, A4 MD,MO)

Poincaré, Henri (1896). Calcul des Probabilités. Gauthier-Villars, Paris.

Second edition, 1912. (TE,AV,DI,M,LR,LS,T0)
Fechner, G. Th. {1897). Kollectivmassichre. Wilheim Engelmann, Leipzig. (TE,

AV,DI ,AM,MD,MC.¥R,EX,RA,LD)

132




Czuber, Ezanuel (1899). Die Entwicklung der Wahrscheinlichkeitstheorie und
ihrer Anwendangen. Jahresbericht der Deutschen Mathematiker Vereinigung
L.(2), 1-279. (A11)

Goedseels, E. (1900). Etude sur la methode de Tobie Mayer. Annales de la
Sociétd Scientifique de Bruxelles 24(2), 37-58; rapport (par P. Mansion),
24 (1), 85-88. (TE,AV,DI,LR,MA,LS,0M)
Markoff, A. A. (i500). Calmlus of Probabilites (Russian). St. Petersburg.
Second edition, 1908; German translation, B. G. Teubner, Leipzig, 1912.
(TE,AV,LR,1S)
Goedseels, E. (1901). Sur la méthode de Cauchy. Annales de la Société Scientifique

de Bruxelles 25(1), 99-102,145-149. (IE,AV,LR,OM)

Goedseels, E. (1902). Sur 1'application de 1a méthode de Cauchy aux moindres
carrés. Annales de la Société Scientifique de Bruxelles 26(2), 148-156.
(TE,AV, LR,QM,1S)

Czuber, Emanuel (1903). Wahrscheinlichkeitsrechnung und il.re Anwendung auf

Fehlerausgleichung, Statistik und Lebensversicherung, Volume I. B. G.
Teubner, Leipzig-Berlin. Second edition, 1908. (TE,DI,AD,SD)

Kapteyn, J. C. (1903). Skew Frequency Curves in Biology and Statistics.

Noordhoff, Groningen. Second edition (with M. J. van Uven), Hoitsema Bros.,
Groningen, 1916. (TE,AV,AM,MD,MO)

Saunder, S. A. (1903). Note on the use of Peirce's criterion for the rejection
of doubtful observations. Monthly Nciices of the Royal Astronomical Society
63, 432-436. (TE,T0,PC)

Mimsion, Paul (1906). Sur la méthode de- moindres carrés dans le Nachlass de

Gauss. Aunales de la Suciété Scientifique de Bruxelles 30(1), 169-174(TE,AV,
LR,i5,MM )

193




Wright, T. W; Hayford, J. F. (1906). Adjustment of Observations. D. van
Nostrand, New York .[esp. pp. 87-92]. (TE,TO,WH,PC,CC,5C)

Goedseels, P.J.E.(1909). Théorie des Erreurs d'Observation. Charles Peeters,
Louvain end Gauthier-Villars, Paris. [Third edition}. (TE,AV,LR,MR,AM,PA,
M, LS, MA,OM)

de 1la Vallée Poussin, Ch. J. (1909). L'approximation minimum d'un systime
d'équations (résume). Amales de la Sociétd Scientifique de Bruxelles 32
(1), 173. (TE,AV,LR,MM)

Goedseels, P.J.Ed. (1910). Application de la théorie des erreurs de 1'auteur

ala compensation dés coordonnées des sommets dans les leves topographiques.
Amales de la Société Scientifique de Bruxelles 34(2), 257-287. (TE,AV,LR,
PA, MM, LS)

Goedseels ,P.J.E. (1911). Simplifications de la méthode la plus approximative.

et de 1'approximation minima. ﬁtalonnage des lunettes stadimétriques.
Annales de la Sociétd Scientifique de Rruxelles 35(1),351-368. (TE,AV,LR,PA,
M)

de la Vailée Poussin, Ch. J. (1911). Sur la méthode de 1'approximation minimum.
Amales de la Société Scientifique de Bruxelles 35(2), 1-16. (TE,AV,LR,MM)

Yuic, 6. Udny (1911). An Introduction to the Theory of Statistics. Charles
Griffin and Co., Ltd., London. Fourteenth edition (with M. G. Kendali), 1950.
(TE,AV,DI ,AM,MD,MO,RA,AD, 5D,QD)

Tits, L. (1912). Nouvelle simplification de 1a méthode la plus approximative

et de la méthode de 1'approximation minimum. Annules de la Société
Scientifique de Bruxslles 36(2), 253-263. (TE,AV,LR,PA,MM)

194

v e~ S VUi VAU YU SV U

———_— s I AP e o




Dodd, E. L. (1913). The probability of the arithmetic mean compared with that
of certain other fimctions of the measurements. Amals of Mathematics 14,
186-198. (TE,AV, A MD,QA,GM)

Cdgeworth, F. Y. (1913;. On the use of the theory of probabilities in statistics
relative io society. Journal of the Royal Statistical Society 76(2), 165-193.
(TE, AV, DI, AMMD M0, AD) |

Goodwin, H. M. [1I3). Elements - f tie Precision of Measurements and Graphical

Methods. McGrai-Hill Book Co., Mew York. (TE,AV,IR,AM,LS,T0,PC,CC,GR)

Mansion, Paul (1913). Sur les recherches de Laplace relatives 3 la thiorie des

errcurs. Annales de la Société Scientifique de Bruxelles 37, 107-117. (TE,AV,
LR,MM,LF,1S)

Brunt, David (19i7). The Combination cf “bservations. Cambridge University
Press, Cambridge, Englsnd,Second edition, 1931. (TE,AV,LR,AM,MDMO,LS,LF,
T0,PC,CC,WH)

Persons, Warren M. (1919). Indices of business canditions. Review of Economic
Statistics 1, 5-107. (TE,AV,AM,MD,MO,GM)

Daniell, P. J. (1920). Observations weighted according to order. American
Journal of Mathematics 93_, 222-236. (TE,AV,DI,AM,MDMQ,DA,SD,AD,QD,DD)

Pearson, Karl (1920). On the probable errors of frequency constants, Part III.
Biometrika 13, 113-132. (TE,AV,DI,AMMD,QN)

Stewart, R. M. (1920a). Peirces's criterion,Popular Astvonomy 33, 2-3.(TE,T0,

PC,CC)
Stewart, R. M. (1920b). The treatment of discordant observations. Popular
Astronomy 28, 4-6. (TE,TO,SM)

195




Jackson, Dinham(1921). Note cn the median of 2 set of numbers. Bulletin of
the American Mathwimatical Society 31 , 160-164. (TE,AV,LR,AM MU MR,LS,LF .MM)

Dodd, E. L. (192Z). Pm«titms of wezasurement inder general laws of error.
Skandinavisk Aktuarietidskrift 5, 133-158. (TE,AV,AM,MD,MR) .

Fisher, R. A. (1922). On the mathematical foundations of theoretical s‘atistics. %
Philosophical Transactions of the Royal Society  f London (A) 222, 309-368.
(TE,TO,AV,MD ,ML)

Foster, R. M. (1922). Derivatiim of Mode as Special Case of Generalized Mean.

Personal communic.:tion; result cited by E. V. Huntington, Mathematical
Memoranda, Handbook ox Mathematical Statistics (ed. H. L. Rietz), p. 7.

Boston, 1924. (TE,PM,MO)
Crum, W. L. (1923). The use of the median in determining seasonal variation.

Journal of the American Statistical Association ,1.2. 607-614. ("E,AV,AM MD)

Edgeworth, F. Y. (1923). On the use of medians for reducing observa‘’ions

relating to several quantities. Philosophical Magazine (6);12, 1074-1088. '

(TE,AV,] R %:,MD,LS,LF)
Wilson, E. B. (1923). First and sccond laws of error. Journal of the ‘

Anevican Statistical Association 18, 841-851. (TE,AV,AM,MD) ’
Haag, J. (1924). Sur la combinaison des résultats d'observations. Comptes

Rendus de 1'Academie des Sciences (Paris) 179, 1388-1390. (TE,AV,MD,AM,QM)

Jackson, Dunham (1924). On the method of least mth powers fo- a set of simul-

taneous equations. Annals of Mathematics (2)£§, 185-192; abstract, Bulletin
of the American Mathematical Society El (1921),304. (TE,AV,LR,LS,LF,MM)

Whittaker, £. T.; Robinson, G. (1924). The Calculus of Observations. Blackie

§ Son, Ltd., Lcudon-Glasgow. (TE,AV,LR,AM,MD,LS)

196




&

R

NN A W
AL 3},' '?\l;‘:‘ v
seasy

AN

St

£3

T
».-':"‘ 3

RTCTTE
IR

e < hpddEa L AL
PRI

i

2%

N S .
G raa! W S we
> L )m. 4.0)‘.;,'} f;f‘f‘,a‘." Pyt

e

R A P dan ot

o ,“ﬁ'b_‘a:r Pt s
TR

Sed s it

5 ™
B .

" o

A eyt
el

Coolidge, J. L. {1925). An Introduction to Mathematical Probability. Cxford
University Press, Oxford, England. [Reprinted 1962 by Dover Publicstions,

.Inc., New York.] (IE,AV,LR,AMMD,LS,T0,PC,CC,SC,GC)
Irvin, J. 0. (19253). The further theory of Francis Gelton's individual

difference problem. Biometrika 17, 100-128. (TE,AV,Di,0S)
Irvin, J. 5. (1925b). On a criterion for the rejection of outlying observations.
Biometrika 17, 238-250. (TE,T0,IC)
Lévy, Paul (1925). Caicul des Probsbilités. Gauthier-Villars, Paris. (TE,LR,LS)
Reilly, J.; Rae, W. N.; wheeler, T. S. (1925). Physico-Themical Methods.

D. van Nostrand, New Yurk, (TE.R,LS,TO,M}
Tippett, L. H. C,(1925). On the extreme individuals and the range of samples
taken from 3 normal population. Biometrika 17, 364-387. (IE,DI,RA,TO,TC)
Estiemne, J. E. (1926-27). Introauction 3 wne théorie ratiomnelle des erreurs

d'observation. Revue d'Artillerie 97(1926), 421-441; $8(1926),542- 562; 109

(1927), 471-487. {iE,AV,LR,IS,LF)
Pearson, Egon S. (1926). A further note on the distribution of range in samples

taten from & normal population. Biometrika 18, 173-194. (TE,AV,DI,R4)
"Student' (1927). Errors of routine analysis. Biom:trika 19, 15i1-1€4. (TE,

DI,RA,T0,IC,ST)
Bowley, A. L. (1928). F. Y. Edgeworth's Contributions to Mathematical Statistics.

. Royal Statistical Society, london. (TE,AV,LR,A$,KJ,LS, LF,T0,BM,S2)
Wilson, E. B.; Hilferty, M. M, (1929). Note oa C. 3. Peirce's experimental

discussion of the laws of error. Proceedings of the Nationel Academy of
Sciences 15(2), 120-125. (TE,AV,AM,MD)

* Neyman, J.; Pearson, E. S. (1928). i
{See Additional References at end of 1ist],

197

Y B R R e R DN . ! _

P

e i ¥t SRR AT LN T DA vl WY




Rhodes, E. C. (19%:}. Reducing observatioms by the method of minirim devia-
tions. Philosophical Nagazine (7) 9, 974-592. (TE,AV;IR,NR,AM,MD,LS,LF)
Hojo, Tokishige (1931). Distribution of the median, quartiles, and interquar-
tile distance in samples from 3 normal population. Biometrils 23, 315-360;
appendix vy ¥arl Pearson, 361-363. (TE,AV.DI,MD,QN,Z>) )
von Mises, Richard (1931). Vorlesungen aus dem Gebiete Zer Anpewandten Mathe-
matik. i. Band. Wairscheinlichieitstedmumg und ihre ‘nwendung in der
Statistik und Theoretischen Physik. Franz Deuticke, Leipzig-Wien. (TE,AV,
LR,MD,(QN,LS)

Pearson, Karl (editor) (1931). Tables for Statisticians and Biometricians,
Part II. Biometric Laboratory, University College, London. (TE,AV,ET, MR, MD,RA,

" T0,CC, IC) '

Shewhart, W. A. (1931;. The Ecanamic Costrol. of Quriity of Manufi:tured Product.
D. van Nostrand Co., Inc., iew York. {IE,AV,DI,AM,MD,MR,SD,RA)

Craig, Allen T. (1932a). Cn the distaibution of certain statistics. American

* Journal of Mathematics $4, 353-366. (TE,AV,DI,AM,HM,GM,MD,QN,RA)

Craig, Allen T. (1932b). Distribution of fumctions »f middle items (abstract).
Bulletin of the American Mathematical Society 38, 313. (TE,AV,DI,AM,MR,R4)

Jeffreys, Harold (1932). An alternative to the rejection of observations.
Proceedings of the Royal Society of London (A) 137, 78-87. (IE,T0,JA)
Luyten, William J. (1932). Notes on stiellar statistics. V: On the use of the

first Lapiscean error curve. Proceedings of the National Academy of Sciences
18, 360-365. (1E,AV,DI,AM,MD,SD,CD,AD)
Crowe, P. R. (1933). The analysis of rainfall probability. A graphical method

and its application to Ewropean data. Scottish Geographical Magazine 49,

73-91. (TE,AV,AMMD,MO0,SD,AD,QD)

*Pearson, £. S. (1932).
[Sce Additional References at end of list].

198

Y




~

.,"
AR A e T
i vk "

Feh

and its application to Europesn dats. Scottish Geographical Magazine 43,
3-91. {TE,AV, M40 ,M0,5D,AD, D)

“Rider, Paul R. (I533). Criteria for Rejection of (bservatioms. Nashingtom
thiversity Stulies-New Series. Sciéce and Techmology-¥o. 8. (TE,T0,RC,CC,

S<,52,B1,1C.91,6C,TC, JA, AV D)

Hmzvr, Fms (1934). Uber die Bewertimg der Fotenzmomente. Mos.stshefte fur
Mathemalik und FPhysik 43, 375-383. (TE,AV,DI,A,MD,AD,AD, M)

Pellard, Heny S. (1934). On the relstive stability of the median snd arith-
metric memn, with particular reference to certsin frequency distributions
wliich can be dissected into normal distributions. Ancals of Methemstical

Statistics 5, 227-262. (IE,AV,3MD)

Frichet, ¥surice (1935). Xxr les précisicns comparées de 1a moyenne et de 2a

wédiane. Aktuirské Wdy Si7), 29-34. TTE,AV,NL,MD)
Geary, R. C. (1935). The ratio of the wean deviation to the standard deviation

as a test of no:mality.Biometrixa 27, 310-332. (YE,DI,SD,AD)
Pearson, E. S. (1935). A comperisan 5f 8, and Mr. Geary's w_ criteria. Bomctriks

27, 355-352. (TE,DI,SD,AD;
Thompson, ¥. R. (1935). On a criterion for the rejection of observations and the

distribution of the ratio of the deviation to the sample standard deviation.

Amzsls of Mathematical Statistics 6, 214-219. (TE,T0,TC,T™)
Durmois, Georges (1936). L'emploi des cbservatioms statistiques. Methodes d'esti-

xation. Actualitas Scientifiquetet Industrielles, io. 356. Herman et Cie.,
Paris. (TE,AV,AM,MD,IR,LF,LS)

* McKay, A. T.; Pearson, E. S. {1933). [See Additional References at emd of list].
** McKay, A. T. (1935). [See Additional References at end of list].

199




A vsatph bl g2
.t‘:‘l‘r ),‘, ALY

Ty "* “'\\;;

Y
. “:{“‘;.\“. "( !

Ok AT e 2on (O3 X KO
a‘“\" &y ":“,\ 2

T T

RN -&- b )

o

z

-]
*
£

At S

- O pcenir et oAl S
* e ~ g s s T L T N o
. - ta s SN :
s :;—,3'...' I o

i
!

Pearsom, E. S.; Chandrs Sekar, €. (1936). The efficiemcy of ststisticsl teols

aad a criterica for the rejection of cutlying cbsexveticns. Riggetrike 28.
308-319; appendix *y JIM.C. Scott, 319-320. (YE,T0,1M}

Cubel k. 2. (1937). la precision de 13 moysmme srithaitique et de 1a médime.
MctulsSE Vadr 6(4), 145-154. (I5,AV, 4 )00)

Bruen, Curtis (i938). Methods for tie combination of cbservscions: Modal point
or most lesser-devistioms, median loci o> least deviatios, mean loci or lesst
squeres, and midpoint of least range or least grestsst-devistion. Metrom 13
(2), 61-140. (TE,AY MO MD,BLIR,IR,NR,IN,LF,1S )84

Dodd, E. L. (1938). Definitious and properties of the median, quertiles, and

other positional mens. fmerican Mathematical Monthly 45, 302-306; note by
EJM., 462. (IE,AV B, (N;

Souto, Jose Barral (1938). El modo y otras medias, casos particulares de ma
misme expression mstemetics. (Bnglish summary). Boletin Matemstico (Buenos
Aires) 11 (3), 29-41. (TE,AV,DI,AH,4DMD,13,G4,0A,AD,SD, SB)

Gabel, Buil J. (1939). Les valeurs de position d'une varisble aléatoire.

Catptes Rendus de 1 Académie des Sciences (Paris) 208, 149-151. (TE,AV,MD,
@)

Jeffreys, Harold (1939). Theory of Probabilitv. Oxford University Press, Londan.
(TE,AV, DI, MM, MD, 4D, ST, T0,PC,CC,JA)

Arley, Nieols {1940). On the distribution «f relative err-:5> from a normi popu-

1ation of errors. A discussion of some probleas in the theory of errors.

200

i S
o e S S
AT A T,




LaRatiiaN s s g

¢

Teuin

},‘L

ey gy a2, g,
KE AN Siif

1, T,
T gy

A1 Q‘*‘ ST et 1‘\,& st o
Foy M. ,

» -

Mathemetisk-Fysiske Meddelelser udgivet af det Kgl. Danske Videnska-
bemes Selsksb 18(3), 52 pp. (TE,LR,TO,AC,T¥,CC,PC,SC,VC,HCMZ,RC,7)

Fréchet, Maurice (1940s). Sur wme limitstion trés aénérale de la dispersiom
de 1a midime. Joumna? de 1a Sociétd Statistique de Paris 81, 67-76; discus-
siaxs, 76-78. (IE,AV,DI,NM)MD,AD,SD,(D)

Frichet, Maurice (1940b). Comparaison des diverses mesures de 1a dispersisn.
Revue de 1'Institut fnternational de Statistigue 8, 1-12. (TE,DI.Al,SD,QD)

Paulson, Edvard (1940). A ncte on the aistribution of the median. Nstional
YHathesatics Mapazine 14, 379-382. (IE,AV,M MD)

Singletcn, Retert R. (1945). A method for minimizing the sum of absolute values
of deviations. ;mals cf Mathematical Statistics 11, 301-3i0. (TE,AY.IR,NR,
MD,LF)

Mald, Abraham (1S40). The fitting of straight lines if both variablzs are
subject to error. Amals of Mathematical Statistics 11, 284-302. (IE,iR,05)

¥ilscn, Edwin B. (3940). The sampling eircr of the median. Science 92, 58-59.

- (TE,AV, A4 MD, DT ,SD)
Brookner, R. J. {1941). A note a: the mean as a poor estimate of central

tendency. Journal of the Awerican Statistical Assocciation 3§, 4iC-412.(iE,
AV, AM MR DI,SD)

Fréchet, Maurice {i941). Sur ls correspondance eutre certaines lois d'errexns
et certaines d2finitichs de la distance. Revue Scieztifique (Paris) 79, 3-14.
(ZE.AV,DI, AM,MD, SD,AD,QN)

Hartley, H. 0. (1942). The range in random sampies. Biometrika 32, 334-348.
(TE,DI,RA)

Pearsan, E. S.; Hartley, H. 0. (194). The probability integral of the range in

® Nair, K. K.; Shrivastava, M. P.(1942). [See Additional References at end of list].

201

ey ;ghb‘wf&%f‘.ﬂxﬂx“WWW‘N"“ LAV € AMKEE A NLIME M BAMANIET AR 114,44 BAVECUIIRY S0 P /81 wRI Y




samples of n obsezvations from a ncrmsi population. Bicmetrils 32, 301-310.
(IE,DL,IA)

Bermand, . A. (1943). The Use of the Medim in Place of the Mem in Quality
Ccatrol Charts. Techrical Report M. Q.C./R/2. (British)Ministry of Supply
Advisory Service on Quality Control. (IE,AV,M,MD)

¥Wilks, S. S. (1543). Mathemmticsl Statistics. Princeton University Press,
Princeton, N. J.; revisad and enlarged edition, John ¥Wiiey § Sors, Inc.,
New York, 1962. (IE,AV,DI.MD,RA,0S)

Geary, R. C. (1944). Comparisan of the concepts o efficiency &d closeaess for
consistent estimates of a parameter. Biometrika 33, 123-128. (TE,AV,A{MR,
MD)

Gumbel, E. J. (1944). Ranges and midranges. Amals of Mathematical Statistics
15, $14-422. (IE,AV,DI,MR,Q4,RA,QR,SR)

Robbins, Herbe:t (1944). On the expeciad value of two ststistics. Amnals of
Matlematical Statistics 15, 321-323. (IE,DI,RA,0S)

Pearson, E. S.; Godwin, H. J.; Hartley, H. O. (1945). The probsbility integral
of the mean devistion. Biometrika 33, 252-255. (TE,DI,AD)

Baker, G. A. (1946). Distributin of the racic of sample range to sample standard
deviatior: for normal and combinstions of normal. distributions. Amsls of
Mathematical Statistics 17, 36¢-369. (T%,DI,RA,SD)

Erom, George W.; Tukey, John W. (1946). Some distributions of sarplz means.
Annals of Mathewstical Statistics 17, 1-12 (TE,AV,AM,MD)

Carlton, A. George (1946). Estimating the parameters of a rectangular distri-
bution. Annals of Mathematical Statistics i/, 355-358.(TE,AV,DI,MR,AM MD,RA)
Cramer, Harald (1946). Mathematical Methods of Statistics. Princeton lniversity

202

-




Press, Princeton, New Jersey (TE,AV.DI,MMDMO,SD,RA,QN,LR,AR,LS,LF ML)
“Gabel, E. J. (1946}. (a the independence of the extremes in a saple. Amnals

of Mathematical Statistics 17, 78-81. (IE,0SEX)

Kendall, Maurice G. {1946). The Advanced Theory of Statistics, Vol'me II.
Cnarles Griffir § Co. Ltd., 'ondan (TE,LR,NRML,LS)

Mosteller, Frederick {1946). (n some useful “inefficient" statistics. Amals of
Mathematical Statistics 17, 377-408. (IE,AV,DI,AMMD,AD,SD.RA,05,QR)

Grubbs, Frank E.; Weaver, Chalzers L. (1947). The best wibiased sstimate cf
population standard deviation based on growp ranges. Joumnsil of the Mmerican

Statistical Association 42, 224-241. (TE,DI,RA)
28
Nair, K. R. {1947). A note on the mean deviation from tie median. Biometrika

34, 350-362. (IE,AV,DI,Ad,MD,AD)
Plackett, R. L. (1947;. Limits of the ratio of mean range to standard deviation.

Biometrika 34, 120-122. (TE,DI,RA,SD)
Purcell, Warren B. {1947). Saving time in testing life.
Control 3(5), 15-18. (IE,AV,DI,AMMD,RA,0S)
Tanenhaus, Seaman J. (1947). The median as a typical value for Walker yam
Textile Research Journal 17, 281-286. (TE,AV,2 MD,MD,0S?

Industrial Quality

abrader data.
Eisenhart, Churchill; Deming. 5ia S.; Martin, Celia S. (1948a;. The pichbability

points of the distribution of the median in random samples from any continu-

ous population (abstract). Amnals of Mathe-:tical Statistics 19, 598-599.

(TE,AV,MD)
Eisenhart, Churchill; Deming, Lola S.; Martin, Celia S. (1948b). On the arith-

metic mean and the median in small samples froe: the normai and certain non-

normal populations(@bstract).Annals 9_{ Mathematical Statistics 19, 599-600.

(TE,AV,A,MD)

*Daly, Joseph F. (1945). {See Additional References at enc¢ of list],
**Lord, E. (1947). [See Additional Peferences at end of list].

203

AN

ms.m«cmxmmmmmmuwmmmw j

L X

ROt R Aot i tpipied Lm’ﬁi%ﬁl}éfd}&&w&\“ PR TR TN




i

TR
§HEY

835 .g 'Y‘\ iy

%1l

WAL

T A

Sty

whod

Faazie

o TITY N P 2
et oPRAUER AT O T

- )

[ reeinin

Housner, G. 7.; Rrermm, J. F. (1948). The estimation of limear treads. Ammals
of Vathematicyl Ststistics 19, 380-388. (YE,AV,A,IR,IS,LF)
Nair, K. R. (1943). The distribution of the extreme deviate Srom the sample

memn and its studentized form. Biowmetriks 35, 118-144. (IE,05,M,IC,TC,ST,MC,

LX)

Pillsi, K.C.S. (1948). A note cn ordered samples. Sapidw3 8, 375-380. (IE,
AV, DI ,M4,SD,SK)

Harris, Theodore E.; Tukey, Join ¥W. (1949). ieasures of Location and Scale

which are felatively Insemsitive 0 Contamiration. Memoraxhm Report No. 31,

Statistical Rescarch Group_  Princeton Uniwversity, Prinoeton, hew Jersey.
(3E,AV, DI ,AM,RL,DA, WM, SD, D)

Nair, K. R. {1949). A further note an the mean deviation from the median.
Biometrika 35, 234-235. (TE,AV,DI MD,AD)

Purcell, W. R. (1949). Saving time in testing life. Electrical Engineering
(New York) €8,617-620. (TE,AV,DI,MD,0S,R\)

Shone, XK. J. (1949). Relations between the standard deviation and the distri-
bution of range in non-normal populaticas. Journal cf the Royal Statistical
Seciety (B) 11, 85-88. (TE,DI,SD,RA)

Tukey, John ¥. (1949a). Scaling by and 7or Power-Means--The Asymptotic Case.
Memorandum Report No. 25, Statistical Technigues Group, Princeton University,
Princeton, New Jersey. (TE,AV,PM)

Tukey, John W. (1949b). The Truncated Mean i1 Moderately Large Samples. Memo-
randm Feport No. 32, Statictical Research Group, Princeton University,
Princeton, New Jersey, (TE,AV,AM,iL DA, WM)

Tukev, John W. (1949c). Scaling by and for Percentiles and Exponential Averages.

204

s Awa ke




£

-
-

eyt T T
7 VT, &A s

LAY
WH

iy ot
)

itk

{rAe

gy sreE a7 :
A e idiie > {4

Y]

IR

‘..
]
e A AT LE A Tt

ey

P

it A

.
[LYSRTRPrS- I

e N

I I T Yy
e W) A T e
T :‘.*::“.‘:'MJ,A

e e By L N
SR [ o P S e T A B R TR Y (e B e

Meoraadem Report No. 33, Ststistical Resessch Growp, Princeton University,
Princeton, New Jersey. (IE,A¥,M)

Tiwy, Joim ¥. (1505d). Skeleton Tables Relsted to Comtsxi=<te' Distribetions
st Scale 3. Mewrmadam Report No. 34, Ststisticil Research Growp, Pzizceiom
University, Princetcn, New Jorsey. (YE AV, 0L)

Youden, W. J. (1949). The fallacy of the best two oui of three. Natiomsl
Rwesa of Staderds Tedmicsl News Bulletin 33, 77-78. (IE,10,#T)

Dixxm, ¥. J. (1950). Analysis of extreme valies. Ammals of Mathemstical
Statistics 21, 488-505. {IE,T0,IC,T4,IC)

Grubbs, Frek E. (1950). Sasple criteria for testing Jutlying dbszovatioms.
fomals of Mathematical Ststistics 2}, 27-58. (IE,T0,IC,IC,ST,14,G5)

Harris, 7. E. (1950). Pogression using mirimm sbsolute deviations (Aaswer
to question 25). The Americam Statisticiam 4 (1), 14-15. (TE,IR,IF,IS})

Menry, F. M. (1950). The loss of precicion from discardiag discrepent d'a.
Research Cuarterly of the American Association for Health, Physical : jucs-
tiom, and Recreation 21 (2), 145-152. (TE.70,GR)

Pesrson, E. S. (1950). Some notes o the use of raage. Riometrika 37, 88-52.
(TE,DI,RA, TU;
Pillgi, K.C.S. (1950). On the distributions of midrange and sewi-range in

smples from a pormal population. Amnals of Mathematical Statistics 21,
100-105. (IE,AV,DI'R,SR)

Seth, G. R. (1950). On the distribution of the bw ciosest among a set of
three observations. Amals of Mathematical Statistics 21, 298-301. (TE,T0,
BT)

Zeigler, R. K. (1950). A note mn the asyaptotic simltmnecus distribution of
the sample median and the mean deviztica from the sasplc medisn. Amals of

205

£ 2 et WA T Aot a5

Ear ]




Mathematical Statistics 2], 452-455. (IE,AV,DIMD,AD)
Hhate, D. H. (1952j. A note on the estimates of mtze of location of symmet-
rical population. Cslcutta Statistical Association Bulletin 4(13), 33-35.

(E,AV,QN,MD)

Bromn, G. ¥.; ¥ood, A. K. (1951). On median tests for linear hypotheses. Pro-
ceedings of the Second Berkeley Symposium on Mathematical Statistics and
Probability (University of Califomnia-Berkeley, 1950) (ed. Jerzy Neyman), pp.
159-166. University of California Press, Berkeley-Los Angeles. (TE,AV,MD,LR,
05)

Dixm, ¥. J. (1951). Ratics inwolving extreme values. Amnals of Mathematical
Statistics 22, 68-78. (TE,0S,T0,IC)

Hartley, H. O.; Pearson,E. S. (1951). Mogent constants for the distribution of
range in acrmal sasples. Biometrika 38, 463-464. (TE,DI,RA)

Murphy, Ray Bradford (1951). On Tests for Outlying Observations. Ph.D. thesis,

Princeton University. lhiversity Microfilms, Am Arbor, Mich. (TE,T0,IC,IC,
M, TM,NC,GS,IX)

Cadeell, J. H. (1952). Tac distribution of quantiles of small samples. Biometrika
2 207-211. (TE,AV,.M,MD,QN)

Hald, A. (195Za). Statistical Theory with Engineering Applications. John Wiley
& Sons, Inc., New York. (TE,DI,RA,0S,T0)

Hald, A. (1952b). Statistical Tables and Formulae. John Wiley § Soms, Inc.,
Ne. York. (TE,DI,RA)

Homz, Tsuruchiyo (i95Z). (n the limit distributions of some ranges. Roports

of Statistical Apnlication Research, Union of Japanese Scientists and

Engineers 1 (4), 15-26. (TE,AV,DI,RAMK)

206

RTINS




RRUEY)

Jolmson, N. L. (1952). Approximations to the probability integral of the
distribution of rangs. Biometrika 39, 417-419. (TE,DI,RA)

Lieblein, Julius (1952). Properties of certain statistics involving the closest
pair in a samwple of three observations. Journal of Research of the National
Bureau of Standards 48, 255-268. (TE,DI,RA,TO,ET)

N TP P
Ai‘l'; i‘\" 3 ¥

LHN A\ b . Gl
diseatliices

4 Nair, K. R. (1952). Tables of pércentage points of the "Studentized" extvome

e deviate from the saple mean. Biometrike 39, 189-191. (TE,EX,T0,NC)

Rao, C. Radhakrishna (1952). Advanced Statistical Methods in Biometic Research.

John Wiley § Sons, Inc. Ns¢ York. (TE,AV,DI,AM,MD,RA)

_ Cadwell, J. H. (1953). The distributich of quasi-ranges in samples fram a nommal
” population. Amals of Mathematical Statistics 24, 602-613.

(TE,DILQR)
" Dixon, W. J. (1953). Processing data for outliers. Biometrics 9, 74-89. (TE,
AV, DI ,AM,MD,SD,RA, TO)

3 Ferrell, Enoch B. (1953). Control charts using midranges and medians. Industrial
4 Quality Control 9_(5), 30-34. (TE,AV,DI,MD,MR,RA)

.( Harter, H. Leon (1953). Maxiimm likelihood regression equations t(wbstract).

4 Amals of Mathematical Statistics 24, 687. (Tt,LR,NRMu,LS,LF)

" ;’ King, E. P. (1953). On some procedures for the rejection of suspected data.

g Journal of the Roval Statistical Association 48, 531-533. (TE,T0,GS,IC)

‘} Olds, E. G. (1953). On Regression Analysis when the Dependent Variable is

‘ Rectangular (Preliminary Report). Technical Report No. 40, prepared under

Contract No. AF 33(616)-294, Department of Mathematics, Carnegie Institute

of Technology. (TE,LR,MI,LS)
Proschan, Frank (1953). Rejection of outlying observations. American Journal

207

A e TSR . BRI R AR




of Pysics 21, 520-525. (TE,TO,NC,DC) { .
Youden, W. J. (1953). Sets of three messursments. ke Scimtific Monthly 77.
(3), 143-147. (TE,TO,BT)
Cadwell, J. H. (1954). The probebility invegral of range for samples from a e
symetrical unimodal population. Amals of Mathematical Statistics 25, 803- -

806. (YE,DI,RA) ‘
Cox, D. R. (1954). The mean and coefficient of variation of ringe in small
samples frm non-normal populaticns. Biometrika 41, 469-481. (TE,DI,RA)
Devid, H. A. (1954). The distribution of range in certain non-normal popula-

tions. Biometrika 41, 463-468. (E,DI,RA)

David, H. A.; Hartley, H. O.; Pearson, E. 5. (1954). Tae distribution cf the :
ratio, in a single normal sacple, of range to standard deviation. Biometrika |
4], 482-493. (TE,DI,RA,SD)

Gubel, E. J. (1954). The maxima of the mean largest value and of the range. :
Amals of Mathematical Statistics 25, 76-84. (TE,DI,RA,05,EX)

Hartley, H. O.; David, H. A. (1954). Universal bounds for mean range an! extrewe
observation. Amals of Msthematical Statistics 25, 85-99.(TE,DI ,RA,0S,EX)

Pearson, E. S.; Hartley, H. 0. (editors) (1954). Biometrika Tables for Statisticianms,
Volume I. Cambridge University Press for the Piometrika Trustees, Cawbridge,
England. (Second editiun, 1958; third edition,1966). (TE,DI,RA,TO,NC)

Resrikoff, G. J. (1954). ‘me Distribution of the Average-Range for Subgroups
of Five, Techmical Report Mo. 15, Applied Mathematics and Statistics Labora-
tories, Stanfond University. AD 40426. (1E,UI,RA)

Zitek, F. (1954). On certain estimators of standard deviation. (Polish. Russian

% and Pnglish summaries). Zastosowania Mztematyki 1, 342-355. (T2,DI,SD,AD,RA)

208

oW T




%\ ' Ry
s gt ;,f 7 "x:j‘g %% Jvﬁsr ..x,ﬁ&?‘?i{’c’ e
A A WD P TN

Bonferroni, Carlo (1955). I valori medisni in una distribuzione continua.
Statistica (Bologna) 15, 3-22.(TE,AV,AM,MD)

Chu, Johsi T. (1955a). On the distribution of the sample median. Amnals of
Mathematical Statistics 26, 112-115. (TE,AV,ND)

Chu, Jolm 1. (1955b). The '"inefficiency" of the sample median for many faniliar
symmetric distributions. Biometrika 42, 520-521. (TE,AV.AM,MDj

CGhu, John T.; Hotelling, Harold (1955). The moments of the sample mediam.
Amals of Mathematical Statistics 26, 593-606. (TE,AV,MD)

Greemwood, J. Arthur (2955). Distrikution of the m-th range (sbstract).Amals

of Mathematical Statistics 26, 772. (TE,DI.QR)
Halperin, Max; Greenhouse, Samucl #.; Cornfield, Jerome; Zalokar, Julia (1953
Tables of percentage pcints for the studentized maximum alsolute deviate

in normal samples. Journal of the American Statistical Association 50,
18s-19s. (IE,0S,EX,TO,NC)

Thomson, George W. (1955). Bcunds for the ratio of range to standard devia-
ka 42, 268-269. (TE,DI,RA,SD)
Tukey, John W. (1955). Interpolations and approximations related to the nommal
range. Biometrika 42, 480-485. (TE,DI,RA)
Behrens, W. U. (1956). Zur abgeklirzten Berechmung der Standardabweichung.

Zeitachrift fur Acker-und Pflanzenbau 101, 459-464. (TE,DI,SD,RA)

Bejar, Juan (1956). Regresifn en mediana Y 1a orogramacién lireal. (English

summary) . Trabajos de Estadistica 7, 141-158. (TE,AV,LR,NR,AM,MD,LS,LF)
Bliss, C. I.; Coclnan, W. G.; Tukey, J. w. (1956). A rejection criterion based
wpon the range. Biometrika 43, 418-422. (TE,DI,RA,TO,CT)

David, H. A, (1956). Revised upper percentage points of the extreme studentized

209

S S P e e R R F e o i3
e e
S i

. N N ’ o 2 AR =
>




WA e ——— e —a—_—

DN ]

ceviate from the sample mean. Biometrika 43, 449-451. (IE,0S,EX,50,NC)

Xudf, A. (1956). On the testing of outlying cbservations. SankhyZ 17, 67-76.
(TE,AV, DI , A4, SD, TO, ™, NC,GS,KC)

Ruben, H. (1956). On the momenvs cf the range and product moments of extreme
order statistics in nomal samples. Biometrika 43, 458-460. (TE,DI,RA,0S,EX)

Bejar, Juan {1957). Cdlculo prdctico de la regresifm en mediana. (English
sumary). Trabajos de Estadistica 8, 157-173. (TE,AV,MD,IR,LF).

Dixon, W. J. (1957). Estimates of the mean and standard deviation of a nomal
population. Annals of Mathemstical Statistics 28, 806-809. (TE,AV,DI,AM,MD,
MR,(M,DA,RA,QR)

hasal, A. (1957). The distribution of quasi-ranges in samples from rectangvlar
and exponential distributions. Joumnal of the Institute of Actuaries Students'
Society 14, 94-101. (TE,DI,QR)

Hariey, B. I.; Pearson, E. S. (1957). The distribution of range in nomal
samples with n=200. Biometrika 44, 257-26C. (TE,DI,RA)

Masuyama, Motosaburo (1957). The use of sample range in estimating the standard
deviation oz the variance of any population. Sankhyd 18,159-162. (TE,DI,RA,SD)

Rider, Paul R. (1957). The midrange of a sample as an estimator of population
midrange. Joumnal of the Amevican Statistical Associstion 52,537-542. (TE,AV,
#41,MR)

Sibuya,Masaaki; Toda, tiideo (1957). Tables of the probability density function

of range in normal samples. Amnals of the Institute of Statistical Mathe-
matics (Tokyo) 8, 155-165. (TE,DT,RA)
Babcock, S.; Beck, A.; Davies, A.; Goldsmith, B.; Torkelson, E. [Subcommittee

of Joint Electren Tube Engineering Council Cwmittee on Sampling Procedures

210




.

)

.G

g‘m‘;a' y:
pm

|
{pons
o

Laset-S o sin et
) i 33 .

TR K\*"“_“" Y

Iy o Y S e T T V)

WE e
-

d
N
- P

e B

I

2 PR oSy P o ah
S e R e
1 —

L -

AT

b 53 I -y i it il o A Rkl
ARTEEE Fim e v MEIRRNEORI R S AR e

(JETEC-11)] (1958). Acceptance sampling of lots by the median, quasi-range
method. Industrial Quality Gontrol 15 (1), 8-11. (TE,AV,DI,MD,QF}

Barton, D. E.; Casley, D. J. (1958). A quick estimate of the regre:sion coef-
ficient. Bicmetrika 45, 431-435. (IE,AV,AM,1R,05)

Carlson, Phillip G. (1958). A recurrence formula for the med: rang= of odd sample
sizes. Skandinavisk Aktuarietidskrift 41, 55-56. (IE,DI,RA)

Ferrell, Enoch B. (1958). Control charts for Log-Normal universes. Industrial
Quality Control 15 (2), 4-6. (IE,AV,DI,AM,GE,GG)

Harter, H. Leon (1958). The Use of Sample Quasi-Ranges in Estimating Population
Standard Deviation. WADC Technical Report 58-200, Wright-Patterson AFB.
AD 1512C0. (TE,DI,QR,RA,SD) [See also Harter (1370), Volume 2: Chapter 1,

Section 1 and Tables Al-AS; Chapter 2, Section 1 and Table El]}.

Ostle, B.; Wiesen, J.M. (1958). An acceptance sampling plan based on the dis-
tribution of the range when sampling from a triangular popuiaticn. Industrial
Quality Control 15 (3), 8-9. (TE,DI,RA)

Plackett, R. L. (1958). Studies in the histcry of probability and statistics.

VII. The principle of the arithmetic mean. Bionetrika 45, 130-135. (TE,AV,
AM,DI,SR)

Rider, Paul R. (1958). Generalized Cauchy distributions. Amnals of the Institute
of Statistical Mathematics (Tokyvo) 9, 215-223. (TE,AV,AM,MD)

Geffroy, Jean (1959). Contribution i la thdorie des valeurs extrem:s. II.
Publications de 1'Institut de Statistique de 1'Universit€ de Paris 8, 123-185.
(TE,AV,DI MR,QM,RA,QR)

Guibel, E. J. (1959). The mt range. Jov -al de Mathénatiques Pures et Appliquées
(9) 38, 253-265. (TE,DI,RA,QR)

211

o e oh,




Moot 1,
7 YR

'I‘ Y

o
I RA

BB b ke o b st Ye s

Hitsel, Hormmm (1959). Dis Verwardumg der Varistiomsbreite bei der Schitnmg
der Stmiarddweicdang wd bei der Varimzmalyse wgroninstey Klocka:-
lagen, sowi= eile weitere Vereinfacdumg des Hartleys-hen Verfihmm zwr
direkten Bestimmmg wom Crenadiffecrzen. Bodeckultwr (A) 10, 148-158. (IE,
DL,RA) '

Hirter. H. Leom (1955). The wse of sawple quasi-ramges im estimsting populstion
standsrd Gevistion. Amaals of Yathemstical Statistics 30, 989-539; correctiom,
31(1960), 228. (TE,DI,QR,RA) [Se also Harter (1970), Volwe 2: Chapter 1,
Siction 3 and Tables Al-AS; Chapter 2, Section 1 aad Table 31].

Hartzr, H. Leon ; Clesm, Donald S. (1959). The Probability Integrals of the
Range md of the Studentized Rmge: Probability Intsgrals, Perceitage Points,
and Moments of the Range. WAIC Tedmical Report 58-484, Volume I. Wright-
Patterson Air Force Base. AD 215024. (TE,DI,RA) [See also Harter (1970},
Yolum: 1: Chapter 1, Section 2 and Tsbles #6-AS].

Ostle, Bemard; Steck, Georgs P. (1959). Correlation between sample mea:s and
sampls ranges. Joumnal of the American Statistical Association 54, 465-471.
(TE,AV,DI , MM MR, RA)

Pillai, K.C.S. (1959). Upper percentage points of the extreme studentized

deviate from the sample mem:. Biometrika 46, 473-474. (TE,AV,AM,0S,EX,TO,NC)

Piilsi, K.C.S.; Tienzo, Berjamin P. (1959). On the distribution cf the extreme
studentized deviate from the sample mean. Biometrika 46, 467-472. (IE,AV, MM,
0S,EX,TO,NC)

Rider, Paul R. (1959). Quasi-ranges of ssmples from an expaential population.
Amals of Mathematical Statistics 30, 252-254; corrections, 1266-1267. (TE,
DI,RA,QR)

212

JE—

B s by Wpma 1 AnEe @

- —




o - J—— ‘ IV W L G T W B e VT - 3
s T et TS ';,;kﬁ, — T &‘*ﬁ*‘”\‘@“-:ﬂwm-kl -’%’imm Tt § ree, ey e e W R e R e Loedoen MDY
= 2 A e A b Kk has

Wbags g P o 4y ey
e T T R e e Y
o7

s
3

22
-”‘

T T "
g;\{ ke ‘l\ﬁ»,

Famides WG

PR

4R ke ot TR
%3y R ITW
R A T

. ..
- SLATS !
":\\‘“3."-," 3 e

AR e 0

. oYy g P o
1 2R PR LAY

Laigands 11 2 0" SO

- xerny

Nalsh, J. £. (1559). Large smple nompermeetric rejectim of »tlyisg chser-
vatices. Assals of the Institute of Seatistical Mathemstics (Tckys) 19, 223-
22, (%=.05,70,%)

Meiler, H. (1959). Note on harmowic and geometric means. Australim Jourssi
of Statistics ], #4-46. (YE,AV,L,0450

fascosbe, F. J. (1969). Rejectiom of cutliers. Techmowetrics 2, i23-147; dis-
cussiam, i57-166. (IE,AV.MM)0,LR,LS,T0,PC,CC,GC,WC,B4,BC ST, M JA,G5, (T ,AR)

Dixom, ¥. J. (196C). Simplified estimation from censcred normal samples. Awsals
of Mathematical Statistics 31, 385-31. (TE,AV,DI,54,4,RA,QR, 10,

Harter, H. Leon (1960). Tables of range and stulentized range. Ammals cf
Mathematical Statistics 31, 1122-1147. (TE,"I,RA) [See also Harter (1970),
Volume 1: Chapter 1, Section 2 and Tables /6-AS].

Hogg, Robert V. {1960a). lertain uncorrelated statistics. Joumal of tie
American Statistical Association 55, 265-267. (TE,AV.DI, M, YD MR,SD,I’',QR,AD)
dogg, Aobert V. (1960b). Or conditional exjectations of location statis>ics.

Journal of the Awerican Statistical Assoziation 55, 714-717. (TE,AV,DI,MD.RA)
Kruskal, William H. (1960). Soxe remarks o1 wild observatins. Technoxetiics
£, 1-3. (TE,T0,T¥,1C,GS,BT,CT)
Rider, Paul R. {1960a). Variance of the mdian of small samples from several

speial populations. Joumal of the American Statistical Association 35,
148-150. (1E,AV,MD)
Rider, Paul R. (1960b). Variance of the mecian of samples from a Canchy distri-

bution. Jowrnal of the American Statistical Association 53, 322-323. (TE,AV,
D)

[

Tixey, John W. (1960). A survey of sampling from contaninated distributions.

213

ARk A MBI




A Ie—— .
wilier-abivianach DN TR R PO R AR
“ -

Contributioss to Probability amd Statistics: Esszys ia Somor of Havols
Hotelling (o/. Ingram Olkin et al), pp. M4E-455. Stamford University
Press, Stmford, Calif. (ZE,AV,IN,M,DA,SO,AD,IX (%)

Amscosbe, F. J. (1961). Examiratioe of residmls. Pr-ceedings of tis Fomrth

Berieley Sraposine an Mathematical Statistics ad Probability (Bereley,
Califzsiz, 1960) (ed. Jerzy Neywan), Volume I, pp. 1-3. University of
Caiii~vaca Press, Berkeley-los fageles. (GE,LR,1S,TD,AR)

Eiserhart, Caurchill (1961). Boscovich amd the combiration of chservations. i

Toger Joseph Bosoovich, S. J., F.2.S., 1711-1787: Studies of hic Life axd

T -t

¥ork o the 250th Amiversary of his Birth {ed. Lamcelot Law Waite),po.
200-212. Allen and Uowin, Ixd., Londos. (TE AV, AMD,IR.LS,LF M\ EX)

Fergusom, Thamas S, (39€12). On e rejectiom of outliers. Proceedings of

|
E
(Perkeley, California,1960) (ed. Jerzy Neymas),Volm: I, ap. 253-257. {
University of Califomia Press, Berkeley-ios Angeles. (TE,TO0,DC,GREC,FO) ?,
Fergusan, Thomas S. (1961b). Rules for rejection of outliers. Rewe Ge ‘
1'Institut Internationale de Statistique 23(3), 29-43. (IE,30,PC,CC,TH,EC, %
GR,CT,XC,WR,FC)
de Finetti, Bruno (1961). The Bayesian approach to the rejction of cutliers.
Proceedings of the Fourth Berkeley Symposiue on Mathematical Statistics and
Probability (Berkeley, Califcrmia, 1960) (ed. Jerzy Neyman), Voluse I, 199-

Z10. University of California Press, Berkeley-Los Angeles. (TE,T0,JA)
Harter, H. Leon (1961a). The Use of Sample Ranges and Quasi-Ranges in Setting
Exact Confidence Bounds for the Population Standar¢ Deviation. I. ARL 31,
Part 1. Wright-Patterson AFB. AD 260325. (TE,DI,RA) [See also Harter (1970;.

Volume 2: Chapter 2, Section 2 and Tzbles B2, B3].

214




L, oty Tt ™ P Rt
e s e casih e ST =l

Harter, d. leox {1961;. Use of tabes of perceatage poiats of riuge md st
dercized rmge. Tedmowetriss 3, 467-611. {TE,0N,R4,75,30

; § Teadali, M. C. (19€fi. Stufies iz S Eststy of probability and statistic. Xi-
Damiel Bernoulls ce maximm Iikelihood Siometzika 43, 1-2; C. 5. Alex’s
Inglish trmslztiaes of sapers 35 S. Sermeeilii {3778 ad by Euler (3573),3-1L.
TE, 55, LR 0K LMD A N8 )56

- Quesemberyy, C. P.; Devid, B. £. {31361}, Some .
- | -, 3PS, (70, B, LA

Sen, Prame® Emar (196l2}. Ot some momertiss of the asymoiocic variawes of the

L1 RS b a PN u.....,.muummaununu&iwm.'m:;lmuﬁ o6

i
)
;
3

e} sample quxtiles aad mid-ranges. Kezmai o the Wovai Statisiical Society

Creaa RS e et A I I e s b sase i RERLTAILE 0 Y Bhsuih VBT ttSSRESA T T A BIRNDH B o 0301 B AR L £ 618V

4%l

: (B) 23, 453453, (TEAY,H0, 30,04,
Sen, Pranab Kmar (1961b). A note an the large-sample beaaviour cf extreme

sample vzives from distribution with finite encé poin*s. Calcutta Statistical

Associztion Bulletin 10, 105-11S. (IE,3V,MR,(N,0S,EX)

) T
RS AR

Srikantan, L. S. {(1961). Testing for the single cvtlier ia 2 regression ac3el.
M A ,é; 251-250. (IE,ZR,LS,TO,IC,TC,ST » D4, NC,5S)
Tiago de Oliveira, J. (1961). The asymptotic independence cf the satp.e mean

. R et L SN H B G L daas

AR
T Y,

3
A

il e T

and extremes. Universidade de Lisboa, Faculdade de Cifncias A) 3 (2), 299-%3,
(TE, AV , B4, EX)

Berman, Simeon (1962). Limiting distribution of the Studentised isrgest obser-
vation. Skandinavisk Aktuarietidskrift 45, 154-161, (iE,EX,T0,GS,¥)

Cancellieie, Giovamni (1962). Una dizostrazione del teorema sullz mediama.

R

Rivista Italiana di Economia, Demografia e Statistica 16, 138-138. (TE,AV D)

Cucconi, Odoardo (1962). Un criteric per il rigetto delle osservazicni spurie.

PREVANG A 0 TPV TR L Pl o St

Sawola in Aziaue 21, 92-106. {TE,TO,IC.TM,NC,GS,CU)

R Sl TR SARS N

AN A - »=
4 S\
¥ Yo L F ke
|
. (o

o ok

215

(Y



”~ - oy Vs meet B g s v ek W TT oS TR 4 o v WS SRl o O ey s TATTV T b e T

Fsambars, Garchill (1552). Roger Joseph Boscovich aad the coabination of ;
chservations. Actes du Sysposimm ]atermatiosai 2. J. Boskoric 1961, pp. [
19-25. Beograd-Zag-eb-Ljwbljma. (TE,AS W% ¥D.1R,1F IS}

Harter, H. Leam (1962). Percemtage Points of the Ratio of Two Rages and :
lela*ed Tables. ML 52-27%. Weight-Pattersca AFB. AD 286848. (TE,IH,RA)
{See also Harter [1579), Volmme 1: (hapter 1, Sectiom 1 and Table Al].

mil, Bruce Marv:n {1962). A test of limearity vs. convex.ts of a median re-

gressiom cmve. Jenzls of Mathematical Stavistics 33, 1995-1123. (iE,AY,
MD,1R, R, (05,15}
hqz:d,ﬂzx‘i%.‘!).éuﬁdslnis-liﬁtesjointsetmgiaﬂssdeh

moyemne et des vilewrs extremes d'mn échantillan. Publications de 1'Institut
£ Statistique d: 1'Université de Faris 11, 3-35. (TE,AY,M,05,EXj

Sibuys, Masaaki (1362). A nocte an the 152 of medizm rarges. Amals of the
Institate of Stavistical Mathematics (Tokyo) 4, 37-29. (TE,AV,DI M, MD,RA)

Siddiqui, ¥. K. (1292). Appraxisations to moments of the samrle mediz. Amals
of Matlematical Stetistics 33, 157-168. (TE,AV,MD)

Tukey, Jobn ¥. (196Z . The future of datz amalysis. Annals of Mathematicai
Statistics 3, 1-67. {Tt,AV,DI,AM,4D,M3,RL, D\, WM, RA, TO,¥1,TF)

Aoscombe , F. J.; Tukey, Jjoka K. (1963). The examination and analysis of resi-
duals. Tedmometrizs 5, 141-160. (TE,LR,NR,1S,T0,JA\,¥1,TF)

Eisenhart, Ouwrchills Tezinz, Lola S.; Martin, Celia S. (1963). Tables Describ-
ing Small-Sample Prcperties of the Mezn, Median, Stendard Deviation, and
Other Statistics in {ampling from Various Distributions. Techmnical Note 191,
Naticaal Bureau of Standards. (7E,AV,DI,AMMD,MR,AD,RA,SD)

Harter, H. Leon (1963). The Use of Sample Rarges and Qmsi-Ranges in Setting

216




G\ B2 Ly TR S R

AN O .‘, A

st |
SO

SANM75) T

3
s
=
v
-
o2
s
7

Exact Confidence Bownds for the Population Stamdard Deviation ITI. 82 3, Pxt
Ii. Wright-Pattzrson AFS. AD 412352, (TE,NE,0N) [See also Harter (19), Volm:
2: Chapter 1,Section 2 aad Tibles 56, AJ].

Jodges, J. L.,Jr.; Le'maxa, E. L. (1963). Estimates of locatios based an rask
tests. Amals of Muthemstical Statistics 34, 98-611. (TEAV, L0, JE,T0,

1 AK)
Lawreat, fndre G. (1963). Conditional distributiom of order statistics aad dis-

tributios of the reduced i order statistic of the cxpaseatial mdel. Amals
of Mathematical Stztistics 34, €352-657. (TE,TO,ITM,DC,GS,FC,IA}

Liebermam, Gerald J.; Miller, Rpert G.,Jr. (1963). Simmitancous toleramce
imtereais in vegressiom. Biometrika 30, 155-168. (IE,iR,1S,1)

Miwem, B. S. (1963). The joir: distribution of fa> sample mean and the sample
raoge. Asstraiian Joamal of Statistics 5, 127-132. (TE,AV,DI MM RA)

Tukzy, Joho ¥.; Mclanghlin, Donaid H. {1963). iess vulmerile coefiderce and
significmce proccdures for location based on 2 single sample: Trimming/
Winsorization I. Sakhya (A)2S, 331-352. (TE,AV,M,RL,DA,M)

¥Elks, S. S. (1963). hultivariate stalistical outliers. Saihya (A)25, 407-426.
(TE,T0,IC,TH,NC,DC,G's . FC )

Cew, Victor (1964). Tests for the Rejection of Outlying (bservations. RCA Sys-
tems Analysis Technical Memorandkm No. 64-7, Missile Test Project, Patrick
Air Fore Base, Florida. (TE,T0,CC,IC,T,NC,DC,GS,CT,MR,FC)

Derman, Cyrus (1964). Some notes on the Canchy distribution. Miscellaneous
Studies in Probability and Statistics: Distribution Theory, Small-Sample
Problems and Occasional Tables. NBS Techaical Note 238, pp. 3-6. Statistical
Engineering Laboratory, National Bureau of Standards. (TE,AV,AM,MD)

217

PRYTE N X

<
Pt A B AR b e N B e 4 kAt e AN

I 1.

Lo s e W DAY B g v

————



Dimm, M. J. (1964). Query 4: Rejection of outlying values. Yecmome:rics 6,

238. (TE, 10}

Eiseshar:, Cuwrciiill (1564; Tke meaming of “ieaSt™ in least scuares. Jourmal
of the Mgshington Academy >f Sciences 54, 24-33. (TE,AV,NLMA,LR,LS,LF M4EA,
M)

Gebhardt, Friedrich (1964). On the risk of some strategies for outiying dbser-
vations. Ammals of Mathematical Statistics 35, 1524-1536. (¥E,TC,GS,KC,AR,FC)

Huber, Peter J. (1964). fobust estimation of a location paraeter. Amals cf

Mathematical Statistics 35, 73-101. (TE,AV,N4,MD,RL,#¢, DA HL WY, DI, LR, 1S, TO,
AR)

Mardia, K.V. (1964). Exact distributions of ext.emes, ranges, ad midranges in
samples from an; multivariate population. Joumal of the Indizn Statistical
Association 2, 126-1350. (TE,AV,DI,MR,RA,EX)

Natrella, Mary G. (1964). Yariances of medians and pseudo-medians. Miscellaneois
Stodies in Probab:lity a4 Statistics: Distribution Theory, Swall-Sample
Problems and Occasional T:bles. Technical Hote 238, pp. 9-12. Statistical
Engineering Laboratory, National Bureau of Standards. (TE,AV,MD,(M)

Paulsai, Albert Stanley (19€4). On the Performance of Several Tests for Outliers.
M. S. thesis, Virginia Polytedmic Institute, Blacksburg, Va. (IE,T0,T4,DC,GS,
KC,AR,KC)

Pearsan, E. S.; Stephens, M. A. (1964). The ratio of range to standard deviation
in the same norral sample. Biometrika 51, 484-4%’. (TE,DI,SD,RA)

Rosengard, Alex (1964a). Independance limite wmif me de la moyemne et des valeurs
extrénes G'in £chantillon. Comptes Rendus de 1'Acaiésie des Sciences (Paris)
258, 5786-5788. (TE,AV,AM,EX)

218




Rosengard, Alex (1966). Loi-limite jointe d"m quartile et de la moyemme d'm
échamtiilon. Goeptes Rendus de 1'Académie des Sciences (Paris) 259, 2759-27%61.

(TE,A¥, 8¢, 5

Rosengard, Alex (1964c). Indépendance limite miforme de 12 moy=me et des
valewrs extrémes d'wn échantillon. Comptes Bendus de 1*Académie Jes Scieaces
(Paris) 239, 2955-2956. (IE,AV,M,0S.EX)

Rothenberg, Thomas J.; Fisher, Fracklin M.; Tilaws; C. B. (1546}. 4 note an
estimation from a Cauchy sasple. Joumal of the American Statistical Asso-

ciation 59,460-463. (TE,AV,8430,00
Bacu, A. P. (1965). On some tests of hypotheses relating to the expanential

distribution when some outliers are present. Journal of the American

Statistical Associstion 6), 548-559. (TE,TO,TM,NC,GS,KC,IC,iA)
phattacharjee, G. P. (1965). Distribution of range in non-nomal saples.

Austrzlian journal of Statistics 7, i27-141. (TE,Di.RA)
Bickel, Petar J. (1965). On some robust estimates ~f lccation. Amnals (£

Mathemztical Statistics 36, 247-858. (TE,AV,AM,RL,DA W HL HV)

David, H. A.; Pzulson, A. S. (1965). The performance of severzi tests for out-
liers. Biometrika 52, 429-436. (1E,T0,MM,DC,GS,KC,AR,KC)

Gwbel, E. J.; Carlsx, P. G.; Mustafi, C. K. (1905). A note on midrange.
Amnals of Mathematical Statistics 36, 1052-1054. (TE,AV,AM,MR)

Gupta, Shanti S.; Shah, Brwpendra K. (1585). Exact moments and percentage points

of the order statistics and the distribution of the range from tae logistic
distribution. Amals of Mathemetical Statistics 36, 907-920.(TE,DI,RA,0S)

Mardia, K. V. (1965). Tippett's formules and other results an sample range cnd
extremes. Amals of the Institute of Statistical Mathematics (Tokyo) 17,

85-91. (TE,DI,RA,EX)
219

PRI AL L SN w823 E S e RS

R L DRSPS P Y IR 77 Sty LI e s et st

SAUSALARN a rRA R A R s




Sheh, B. K. (1965). Distribution of midrasge aad semirange from logistic
population. mgmn&.m&mm; 155-188.

(IE.W,IE )R SK)

Tarter, Michael E.; Clar’., Virginia A. (i965). Properties of the medim and
other order stiatistics of logistic variates. Amals of Mathematical Statis-
tics 3%, 1779-1786. (T, AV, MD,05;

Thkey, Jokm M. (1965). Khich part of the sample comizins the informatin? Pro-
coedings of the Matiousl Academy of Sciences 53, 127-134. (TE,(5)

Mascosbe, F. J.; Barran, Bruce A. (1966). Treatment of outliers in samples of
size three. Jowrnal of Research of the National Bureau of Standavds (B) 70,
141-147. (TE,T0,B7)

Blaad, R. P.; Gilbert, R. D.; Kapadiz, C. H.; Owen, D. B. {1966). On the distri- i
butions of the range and mean Tange for sawples from a nomal distribution.
Riometrika 53, 245-248. (iE,DI,RA)

Teldman, Dorim; Tucker, Howard G. (1966). Estimation of non-unique quaitiles.
Aonals of Mathematical Statistics 37, 451-457. (TE,AV,MD,HL,QN) !

| ‘Gastwirth, Joseph L. {1966). On robust procedures. Joumal of the American

3 Statistical Association 61, 929-948. (TE,AV,RL,DA,WM,HL HU,GA,T0) |

Gebhardt, Friedrich (1966). On the effect of stragglers an the risk of some mean
estimators in small samples. Amals of Mathematical Staristics 37, 441-430.
(1E,AV, B, DA, W)

Lires, J.'(1966). Distribution of Dixon’s statistics in the case of an expon-

WAS A A R1 M) DI NE.

et

ertial population. Metrika 11, 46-54. (TE,TC,DC)
Searis, Donald T. (1966). An estimator for a population mean which reduces the
2ffect of large true observations. Journal of the Americea Statistical

Asscciation 61, 1200-1204. (1E,AV,DA,WM)

220

A e P A B DR T R e i MERAND AR b i P e i S RS

U R T 2 L



Sheynin, 0. B. (1966). Origin of the theory of errors. Nature 211, 1003-1304.
(iE,AV, LR MA, R¥, ML, MM, T0)

Willke, T. A. (1966). A note on contaminated samplus of size thyee. Journal

of Research of the National Bureau of Standards (B)70, 149-151. (TE,TO,BT)

Michie, J. N. (1967). Estimation of rezression parameters based on rank tests.
Amnals of Mathematical Statistics 38, 894-504. (TE,AV,MD,RL HL,LR,LS ,BM)

fascambe, F. J. (1967). Topics in the investiz:ition of linear relations fitted
by the method of least squares. Joumal of ‘e Royal Statistical Society
(3) 29, 1-29;discussion, 29-52. (TE,AV,MD,RL,H,LR,LS)

Bickel, P. J.;Hodges, J.L., Jr. (1967). The asymptotic theory of Galton's test
and a related simple estimate of location. Amnals of Mathematical Statistics
38,75-89. (TE,AV,RL,HL,HA)

Birnbaum, Allan; Laska, Eugene (1967a). Optimal robustness: A general method,
with applications to linear estimators of location. Journal of the American

Statistical Association 62, 1230-1240. (TE,AV,RL)

Bimbam, Alian; Laska, Eugene M. (1967b). Optimally Robust Linear Estimators
of Location. Technical Report, Couramnt Institute of Mathematical Sciences,
New York University. Abstract, Annals of Mathematical Statistics 38,1932.
(TE,AV,RL)

Crow, Edwin L.; Siddiqui, M. M. (1967). Robust estimation of location. Journal

W MT)

Hodges, J. L., Jr. (1967). Efficiency in nommal samples and tolerance of extreme

of the American Statisticai Association 62, 353-389. (TE,AV,RL,HL,HU,DA,WM,

values for some estimates of locstion. Proceedings of the Fifth Berkeley

Symposium op Mathematical Statistics and Probability (Berkeley, California,

[ 3]
(38
ot

A i S dplineing :
o »sv;:{:g?;m—;»“,. e

i e o X AR BTN AN AR P L RS R R R A
AiE 4@3’%@%‘%@%@%WAWM . ﬂ_

»
ke

PR AN \(\i&\:&@?}‘

P ‘ PO G s e
St e s $ et R et Mo ttin I A v Bl i bl i)

. Y
PERPLTR 0 V-V K AN

Fhean AN Lo




1965/66) (ed. Lucien M. leCam and Jerzy Neyman), Volume I, pp. 163-186.

University of California Press, Berkeley-Loc Angeles. (TE,AV,RL,HL,HA)
Hodges, J. L., Jr.; Lehmann, E. 1. (1967) On medians and quasi medians, Journal
of the American Statistical Association 62, 926-931. (TE,AV,AM,MD,Q4)

Hogg, Robert V. (1967). Some observations on robust estimation. Journal ~f the
American Ctatistical Association 62, 1179-1186. (TE,AV,AM,MD,RL,HL,HU,DA,WM,
HO)

Leone, Fred C.; Jayachandran, Toke; Eisenstat, Stanley (1967). A study of robust
estimatcrs. Technometrics 9, 652-660. (TE,AV,RL,HL,HU)

Siddiqui, M. M.; Raghunandanan, K. (1967). Asymptotically robust estimators of
location. Journal of the American Statistical Association 62, 950-953. (TE,AV,
A¥,MD,RL MT , DA, WM ,HL)

Singh, Chatter (1967). On the extreme values and range of samples from nen-nommal
populations. Biometrika 54, 541-350. (TE,DI,RA,EX)

Tiao, G. C.; Guttman, Irwin (1967). Analysis of outliers with adjustad resi-
duals, Technometrics 9, 541-559. (TE,TO,DC,AR)
Bhattacharyya, G. K. (19568). Robust estimates of linear trend in multivariate

time series. Amnals of the Institute of Statistical Mathematics (Tokyo)20,
299'3100 m’LR)

Box, G. E. P.; Tiso, G. C. {1968). A Bayesian approach to some outlier problems .
Biometriks 55, 119-129. (TE,TO,TM,GS,AR)

Burr, Irving W. (1968). On a grneral system of distributions. IIJ. The sample
range. Journal 9_f_ the Americm Statistical Association 63, 63-643. (TE,DI,
RA)

durr, Irving W.; Cislak, Peter J. (1968). On a genera® system of distributions:

222




I. Its curve-shape chavacteristics; II. The sample median. Journal of the
Aserican Statistical Association §3, 627-635. (TE,AV,MD)

Cacouilos, T. (1968). A sequential scheme for detecting outliers. Bulietin de
1a Société Mathématigue de Gréce (N.S.) 9 (1), 113-123. (TE,T0)

Cox, D. R. (1968). Notes on sawe aspects of regressiop analysis. Journal of
the Royal Statistical Society (A) 131, 265-272; discussion, 315-329. (IE,LR)

Cox, D. R.; Hinkley, D. V. (1966). A note on the efficiency of least-squares
estimates. Journal of the Royal Statistical Society (B) 30, 284-289. (IE,
AV,IR,LS ML)

Cox, D. R.; 3nell, E. J. (1968). A general definition of residuals. Journal of
the Royal Scatistical Society (B) 30, 248-265; discussion, 265-275. (TE,LR,T0)

Ehrenfeld, A. S. C. (1968). The elements of lawlike relaticuships. Joumnai of
the Royal Statistical Society (A) 131, 280-302; discussion, 315-329. (TE,LR,LS)

Hampel, Frank Rudolf {1968). Contributions to the Theory of Robust Estimation.
Ph.D. dissertation, Universirty of California.Berkeley. University Microfilas,
Inc., Ann Avbor, Mich. (TE,AV,RL,DA,HU)

Haitigan, J. A. (1968). Note on discordant observations. Journal of the Royal
Statistical Society () 30, 545-550. (TE,T0)

Hjyland, Amljot (1968). Robustness of the Wilcoxon estimate of location against
a certain dependence. Amals of Mathematical Statistics 39, 1196-1201. (TE,
AV,RL,HL)

Huber, P. J. (1968). Robust estimation. Mathematical Centre Tracts, Selected

Statistical Papers 27, 3-25. {TE,AV,RL)
Kogure, Masao; Makabe, Hajime (1968). Non-central distributions of boih stand-
ardized and studentized ranges and their epplications-l. Range in a sample

b,

273

s e




Paegeson o

from two populations. Reports of Statistical Application Research, Japmese
tnion of Scientists and Engineers 13, 71-77 (IF,DILRA,T0)

Prescott, P. (1968). A simple method of estimating dispersion from normal
samples. Applied Statistics 17, 70-74. (IE,DI,SD,ID)

Sen, Pranab Kimar (i968a). On a further robustness property of the test and
estimator based o Wilcoxon's signed ramk statistic. Amals of Mathematical
Statistics 3, 262-285. (TE,AV,RL,HL)

Sen, Pranab umar (1968b). Estimates of the regression coeffi.ient based on
Kendall's tau. Joumal of the American Statistical Association 63, 1379-
138. (IE,L})

Bouma, N.; Vahmeyer, A. {1969} .Perceatiles and approximations of the sample
median over the semple range for samples of size 3,5,7 and 9 from a standard
nomal distiibution. Statistica Neerlandica 23, 235-239. (TE,AV,MD,DI,RA)

Desu, M. Mshammulu; Fodine, Robert H. (1569). Estimation of the population
median. Skandinavisk Aktuarietidsk-ift 52, 67-70. (TE,AV,M.MR)

Filliben, James John (1969). Simple and Robust Linear Estimation of the Location
Parameter of a Symmetric Distribution. Unpublished Ph.D. dissertation,
Princeton University. (TE,AV,RL,DA,W¥)

Gastwirth, Joseph L.; Rubin, Herman (1969). On rcbust linear estimators. Amals
of Mathematical Statistics 40, 24-39. (TE,AV,RL,HL,HU,GA)

Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples.
Technometrics 11, 1-21. (TE,TO,TM,DCCS,KC,AR,FC,.1)

Guttman, I.; Smith, D. E. (1969). Investigation of ruies for dealing with outliers
in small sampies from the nomral distribution: I. Estimation of the mean.
Techmametrics 11, 527-550. (TE,AV,T0)

224

%‘gy; A R P I e 0% o m L m B ml r e hedmeT L el R GRaTe. o -

A




WEE T e o
Zo Xcz

BT P A WE S FRRIERD

SLNE RN Lk
R A BRI

u!t{*:k

":‘";‘m 3

LR A

7
e
. 24
&
£
b4}
ez

Lo
R

SR e b e T B
LN .03“'{\ ~‘“’;v‘: Lo

de Hamn, L.; Rumenberg, J. Th. (1969). Some remsrks comcorning the quotieat
of sawple modiar. md sample range for a sample of si:c Zatl from 2 normal
distribution. Statistics Neerlandica 23, 227-234. (TE,AV,MD,IN,RA)

Havkins, D. M. (1969). (n the distribution and power of a test for a single
cutlier. Sath African Statistical Joumal 3, 9-15. [IE,10)

Jeeckel, Louis Alan £1969). Robust Estimates of Location. Ph.D. dissertation,
University of Califormnia-Berkeley. University Microfilms, Inc., Am Arbor,
Michigan. (TE AV,RL ML,0S,DAHL,HU)

Narsyana, C. L.; Subrshmanyam, M. (1969). On an altemative method to the
principle of least squares in the theory of regression. Ssnkhya (B) 31,
427-434. (IE,LR,LS,AS)

Rao, P. V.; Thomby, J. I. (1969). A rwoust point estimator in a generalized
regression model. Amnals of Mathematical Statisiics 40, 1784-1790. (TE,AV,
MD,RL,HL,LR,NR,BM)

Swavroop,Ram; West, Kemm2th A.; Lewis. Charles E., Jr. (1969). A simple Technique
for Automatic Computer Editing of Biodata. NASA N D-5275. National Aevomautics
and Space Administration, Washington, D. C. (TE,TO)

Takeuchi, Kei (1969). A Uniformly Asymptotically Efficient Robust Estimator of
a Location Parameter. Tecinical Report IMY 375, Courant Institute, New York
University. (TE,AV,RL,DA,WM,HL, HU,HO)

Thomas, Jerry (1969). Monte Carlo investigatien ef the rebustness of Dixon's
criteria for testing outlying observations. Proceedings of the Fourteenth
Conference on the Design of Experimeuts in Ammy Research,levelopment and Test-
ing, pp. 437-483. (ARO-D Report 69-2, U. S. Army Research Office, Durham, N.C.),
(T8, 70,DC)

225

£ O AT e A AR A N T A RS RS BT IIIGA AL AT ORI ST LR S S UR RN,

. :é?,».,j

».:hiwh}ﬂf‘ff}{%ﬁ&‘i%w SRS

e d Ao




y v AR—a o e = o sz - e - - e e
TR R e A BRI f LT 0 T T S .

Malsk, J. E. (1969). Sample sizes for spproximate independeace tletwomm smmple
medim aad largest (or smellest) arder statistic. Amstralima Jourmal cf
Statistics 11, 120-122. (IE. W MD,EX)

Yunagaes, Takashi (1969). 2 small-sasple robust campetitor of Hodges-lehmamm
estimsts. Bulletin of Mathematical Statistics (Rukuoks) 13(3-4), 1-14. (IE,
AV,RL,YE HA)

Zelezen'kiy, V. P. [Zelenen'ki¥, V. P.] (1969). Applicatiom of statistical de-
cision theory t the exclusion of smomelous meastrement<. Izvestia Akademiia
Neuk SSSR, Tekimichesksya Kibernetika 1969{2), 139-142/Russim); trmslated
as Bngineering Cybemetics 1969(2), 122-126. (IE,T0)

Bsmett, V. D. (1970). Fitting straight lines--the linear fimctional relstiom-
ship with replicated cbservations. Applied Statistics 19, 135-144. (TE,LR)

Bimbamm, Allmn; Miké, Valerie (1970). Asymptotically robust estimstors of
location. Joumnal of the Amsrican Statistical Association 65, 1265-1282.
(TE,AV,RL, 1)

Fuller, Wayne A. (1970). Simple Estimators for the Mean of Skewed Populations,
Prepared under Cozitract No. Cco-9165 with U. S. Bureau of the Uensus. Iowa :
State University, Ames, Iowa. (TE,AV,RL,WM,T0,DC,AR) !

Gastwirtnh, J. L.; Cohen, M. L. (i970). Small sample behavior r.f some robust
linesar estimators of location. Journal of the Americam Statistical Asso-
Ciation 65, 946-973. (TE,AV,RL,HL,HU,CA)

Harter, H. Leon (31970). Order Statistics and their Use in Testing and Estima-

tion, Volwwes 1 and 2. U. S. Governmeant Printing Office, Wsshington. (TE,DI,
RA,QR,0S)
Huber, P. J. (1970). Studentizing rcbust estimates. Nomparametric Tecimiques

226




in Statistical Inferemce (ed. M. L. Pwri), pp. £53-%63. Cmbridge Univarsity
Press, Cmbridze, nglxd. (TE,AV.Z.,HY)

Kzbe, D. £. (1970). Testing outliers fron an expomestial population. Metrike
22, 15-18. (IE,I0)

loyses, R. M. (157). On the asymptotic relative efficiencies of certaia loca-
154-135. (TE,AV, M0 P4, RL,H)

Siagh, C. (19). O: the distribution of raage of samles ficx nom-sormal
popularions. BRiometriks 57, 451-456. (TE,DI,RA)

Switzer, Paui (1970). Comments and Suggestions om Efficiency Robustaess. Tech-
mical Report No. 163, prepared under ON2 Contract NOOO14-67-A-0112-0053,
NR-\M2-067, Department of Statistics, Sianford thiversity. AD 7148:3. (IEA¥,
RL,SW)

Bimbam, Allan; Laska, tugene; Meisner, Morris (1971). Optizsl.y robust linear

estimators of location. Journal of the American Statistical Associztion 66,
302-310. (TE,AV,RL)
Duclororth, 7. C. {1971). On the Limitctions of the Method cf Least Squaves

for the Treatment of Certain Types of Data. RD B N-1971, Berkelev Nucleszr
Laberatories, Central Electricity Gemerzting Board, Berkeley, England. (IE,
iR,LS)

Edwards, Arthur L. (1971). FITIER, FUNGUS, FUNNY: Linear Least-Squares Curve
Fitting of Weighted Tabular Data. UCID-30017, Lawrence Radiation Laboratory,
University of Califormia, Livermore. {IE,LR,LS)

Jols, M.V.,Jr. (1971). Non-Parimetric Estimation of Location. Techmical Report

227

ummmwmmwmwm

i ity L 2t eSS e A MR IAI RS M A R L AR R T




SR STV
1 -

4

%

1

i

g

|
#o. 41, 2epartumat of Statistics, Stmferd diiversity, Staaford, Galifermis.

CE, 70,370 50

Remmsage, E. E.; Rntick, R. G. (1971). A Sraphical Method of Rmsoving Outlisr
Vaiwes from Aualyticil Dnts. Rsport of Inwestigations 7672, Dwreas cf
#des, U. S. Iepertment of the Interior, Washinztoz, D. C. FB 19R23. (IE, X5

Seercop, 2m; Winter, William R. (1371). A Statistical Tecmique for Casputer
IdmatiSicatim of Outliers in Altivariate Data. NASA TN J-6472. Naticasi

ferommtics and Spece Adninistration, Washisgtom, D. C. (TE,I0} :
Caso, Jom (1972). Rn-st Estins-on Techmigues for locatiox Parameter Esti- 3
mation of Symeetric Distvibutiors. Unxblished M. S. taesis (GSAMath/72-3),

Air Force Twstitute of Techologr. (TE,AV,RL,DANMEZHUHO,SM

Eiseshxrt, Gurchiil (1972). The drwvelopment of the concept of the best mean

of a sel of measurements from mtiquity tc the present day. Jourmal of the

Amezicar Statistical Association 17 (to appear). (TE, AV, A0, MR,IR,LS FA,
LF ML)

Neymaix, J.; Pearson, E. S. (192%). Cn the e and interpretation of certsin

test criteris for purposes of statistical irference. Eiomet—ika 204, 175-
240. (TE,AV,DI,MR,RA)
Pearson, Egon S. (1932). The percentage limits for the distribution of range

in sasples from a norxal population. (n€100). Biometrike 24,404-417. (TE,DI,
RA)

McXasy, A. T.; Pearson, E. S. (1933). A note on the distributiocn of rsnge in
samples of n. Biametrika z5, 415-4.0. (TE,DI,RA)

228

e S AT N et P St S IR T L SR
R LS P - PR ~ P . =

}k{i



Nckay, A. T. (1955). The distriintion of (s diffosumnce betham the extrens
chesrveties aad the =ap!- s in saples of 3 fren s somml mivrse.
Dianstriks 27, 466-471 (T 8055, 70,1C)K)

Nair, £. R.; Shrivestaws, )L P. (1942). (= 2 simps> mthed of arw fitting.
Seskiyi 6, 121-12. (TE,1R,15J5)

Baly, Josegh F. (i946). (= the we of smple rmge ia = aslope of Stuimt’s
t-test. Ammals of Mathemstical Statistics 17, 71-74. (IE,WV .5, ALR0)

lord, E. (1947). The wmse of rmge in place of standard devistion in the t-test.
Kiowetriks 34, 41-67; corrigenda, 3(1952), 442. (TE,A,IN,04,RA)

229

AN VY

—rre

PEPEIRYREY )

e b e U RGN AN WAoo NI N T




IO

IEMIPAT NN SR IE 4 4015 § SIS g WP R BTy oy RL &

o e - .

T ERREEREEN

8 9 ¢ 8

B K

8 £ 80 E¥EEP BB

Glos=zy of Cods letters

Arlay's criterima (for rejection of ostliers)

swzage {(shselute) dovistion

aritametic ssen

Anscmbe’s rales (for yejection of owtliers)

swzage slope (of regressiom lins)

sverage (a1 types)

Bertrimd’s criterion (for rejection of cutliers)
Brom-¥ood estimstors (of regressioa perameters)

best two (cut of three)

Chavenet's critericm (for rejection of cutliers)
Cachy's wethod (of iaterpolatiom)

(Bliss)-Cochrsn Tukey criterion (for rejection of outliers)
Cucconi's criterion (for rwejection of outliers)
discard zverages [trimmed meens]

Dixon’s criterion (for rejection of outliers)
dispersion (measures of)

equal sreas (under joint p.d. curve) {[Laplace's "most advantageous method™]
Bdgeworth's modificstion (of Stone's second criterion)
extremes (largest and ssallest values in samgple)
Ferguson's criterian (for rejection of autliers)
Gastwirth estimators

Glajsher's criterion {for rejection of outliers)
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geaueiric xidrmge

geonst~ic cmge

stric e

Goodria's mile {fer rejectiem of oatliers)

Grubbs® criteriea (for rcjection of emtliers)
Hodges® altsrmative (tc Hedges-lehmamn estimstor)
Hoplzzreich’s criterica (for rejection of owtliers)
Hodges-lelmamn estimstor

haraonic ssen

Hogg's estimstor

Hiber's estimstor

Tharin's criterion (for rejection of outliers)
interquartile range

Jeffreys' altemative (to the reiectiom of outliers)
Xndo's criteriom (for rejection of outliers)
Laurent’s snalngue (of Thompson's critericn)
largert (sbsolute) deviation

least {sbsolute sum of ) first (powers) [laplace's "method of situation™;}

least mmber of deviations (least sum of zero powers)
linear regression

least squarses

linearly wighted means

method of averages

Merriman's criterion (for rejection of outliers)
median

McKay's criterion (for rejection of outliers)
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misivariate BWiks' criterion (Sor 2ejectisn of ectliers)
Mrzznlits criterion (For rEjactin of aitiiszrs)

(s of) Socrth (powers cf p.d.f. of errors)
REeir’s chterion (for rejsctice of cutiiers)
Newcoah's =ethod (of trezting cutliers)

oonlinear regression

Nair-Shrivastava method (of curve Stting)

order stztistics

plus aporoximative mithode [ast spproximative metiod]
Peirce's criterim (for rejectian of cutliers)
DOWET means

quadratic average (mezn)

quartile deviatic [sari-interquertile range]
quasi-midrangs [quasi-pedian]

quartiles

quasi-rang?

range

Rohne's criterioa (for rejection of outliers)

robuct estimzicrs of location
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Stxre's (frst) criterion {for rejectiom of o=titers)
standgrd dexiztion [or yxxisece = (5'5)2]
Stewzrt’s method (criterior) {for rejectim of cutliers)

-

siTaree

Stdent’s rule (for rejection of cutliers)

Sxitzer's estimstcr

Stmne’s second criterion (for rzjectim of autliers)
Tirpett's criterion (for rejection of autliers)
thecry (of) exrors

Tuk=y*s FONCR-FONM procedre

Topsoe-Jensen criterimn ffor rejection of outiiers)
Thapson's method (criterice] (for rejection of cutliers)
treziment of outlying observations

Vallier's criteria: (for rejection of outliers)
weightzd aversge

Wright’e criterion (for rejection of cutliers)
¥right-Hayford (criteriom)(for rejectio of outliers)
Hineorization

¥insorized means

Waish's rule (criterian) (for rejection of outliers)

Yanagaa's estimator
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