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This report was prepared by Capt Kevin Yelmgren of the Aerospace
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entitled " High Velocity Fluid Mechanics. "
The author acknowledges the advice given by Mr. Otto Walchner and
Mr. Frank Sawyer, as well as the technical support provided under contract
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ABSTRACT

Wind-off, bench tests on a wind tunnel model that had freedom to pitch,
and yaw, but no freedom to roll indicated that the pitching and yawing motions
were inertially coupled. An order of magnitude analysis showed that this

coupling was due to the product of inertia term I The inertially coupled

yz*
equations of motion are solved, and a method is presented for determining
the magnitude and sign of IYZ from recordings of the model motion. The

method used to dynamically balance the model is described, and experimental

results are presented that verify this method.
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NOMENCLATURE

Amplitude components

Flexure damping constants

Constant defined by Eq. (19)

Moments of inertia about body axes
Products of inertia about body axes
Moments about body axes

Angular velocity components on body axes system
Normal coordinates, Eq. (A-27) and (A-28)
Time |

Body axes system (Fig. 1)

Space fixed axes

Constants defined by Eqs. (A-38) and (A-39)
Eulerian angles

Constants definéd by Egs. (14) and (15)
Constants defined by Egs. (16), (17) and (18)

Circular frequency in pitch and yaw
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I, INTRODUCTION
In order to investigate possible aerodynamic interactions between
the pitching and yawing motions of a nonrolling body undergoing non-
planar motions, a flexure was designed to give a wind tunnel model
freedom to either pitch, yaw or pitch and yaw simultaneously. The model,
a 10° half angle cone, was weighted so that the body axes of rotation

were intended to be the principal axes of inertia, and yet I, was not equal

y

to I Releasing a model balanced in this manner from a combined pitch

z*
and yaw attitude with zero initial velocities results in a nonplanar
Lissajous motion, that is, a motion with different frequencies in pitch
and yaw. As the model is not rolling, the pitch and yaw components of the
motion should be uncoupled, damped, sinusoidal oscillations.
Wind-off bench tests with the model in vacuum did not give the uncoupled

motion that was expected. The pitching and yawing motion envelopes were
not smoothly dampyed exponentials but rather ' sinusoidally' damped expo-
nentials. The sketches below are an exaggeration of the motion obtained.
The initial velocities in both sets of sketches are zero ( éo = !;DO = 0), with

Vo = O, in the first set, and Y, = 0, in the second set. This beating
type of motion indicates that the pitch and yaw motions are coupled due to a
slight inertia asymmetry, that is, the principal axes of inertia do not coincide
with the axes of rotation. The purpose of this report is to determine which

product of inertia causes the coupling, to determine its magnitude from the
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observed coupled motions, and finally to show how the model must be

‘balanced to eliminate the inertial coupling.
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AN B e

II, THEORETICAL ANALYSIS

The moment equations of motion for a body fixed coordinate system

1
(Fig. 1), with its origin located at the c. g. of the body, can be written as( )

M_ = Ip+(I- S I (i -
x = LP A -I)ra -1 (F+qp) +L (rp-aq)
(1)

M = 14§ +(I -1 -1 (p + + 1 .
y g4 (I Z)pr Xy(p qr) YZ(Pq r)

. . (2)
L, (- %)
M - I W - . . _ ©
, St (Iy Ix)qp .Iyz(q + pr) + Ixz(qr p)
. (3)
T Lyla” - P
where p,q,r are the components of the angular velocity along the body
axes, X,y,z respectively. The angular velocity components can be written
as
p = (,‘b -y sin @ (4a)
q = 6 cos ¢ + t;bcos 6 sin ¢ R : (4b)
r = Y cos fcos¢ - ésingb (4c)

The terms Mx’ My, Mz are the moments acting on the body. For a nonrolling
vehicle in a vacuum, without wind, these terms represent the flexure moments

acting on the system. The pitch and yaw moments can be written as

Mg = - GCyb - k0 , (5a)
M = -G, - | 5b
2 CuV¥ - Ky ¥ | (5D)
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1

For d):,:

0 and assuming small angles, Eq. (4) reduces to

pr .- YH

“q_= ;

r s ’J/

Substituting Eq. (6) into E§s. (2) and (3) gives:

;Myzcrlye (I -1 -y yo)- Ixy(—w) + IYZ(— Yo 6 - Y)

‘‘These.equations-can beb simplified due to the small angle assumption. .Assume

uthat pitch -

~and

LA order of magnitude analysis can now be made for the individual terms of

rEq. {7)

. s .
»'+'IXZ(-',§9 'lpz)
WM, == LY (L L (-0 61 (0 - o)

P

;. . . LY . . 2 L] 2
.;+_:1XZ(9 v+ Yo+ Yo) +1xy(é - Y£0?%)

and-yaw, angles can be approximated as
¢0 == PCOO cos Wot, Y= \,’/0 cos lllt

, Bo= -,,(:.09 90 sin th , Y= - wwl//o sin wlpt

ST e
P Q= \”twe 90 cos Wyt , 1 ww ll/O cos wt[/t

(6a)

(6b)

(6c)

(7a)

(7b)




~ As can be seen from Egs. (8a) and (8b), the product of inertia term I

o ¥
vy
0? =~ 920.)29
6 = Gowz
. 2

.0

All the product terms are small compared to either the § or Y term if

the amplitudes tpo and 90 are small. Thus for small angles, Eqgs. (7a)

and (7b) reduce to

M = 10 -1 I - (8a)

M = 1¢ -1 § | | - (8b)

yz
causes the coupling between the pitch and yaw motions. Although Ixz and

I may be of the same order of magnitude as Iyz' they are multiplied by
Xy »

relatively small quantities so that they can be ignored compared to the terms

Iyzg and Iyzll/ .

The effect of I , ©°n the pitch and yaw motion and the value of I
yz

causing the coupling can be determined from the solution of Eqs. (8a) and




oy

(8b). Substituting Eq. (5) into Eq. (8) gives

1,0 —Iyztl/ =-Cpb-ky0 | (9a)
L - 1,0 = - cwz// - szp | (9b)

oY, in matrix form,
I -1 o) |c, o|f6 k, o lfo] fo
L IYZ;',D+OC wh T Lok [ Lwf Lo (10)
yz 2 v v :

Equation (10) is a second order, coupled, differential equation. As the

coefficient matrices are symmetric, this equation can be solved using a

normal coordinate Sjyst~en{(2” 3) The initial conditions used to solve Eq. (10)

aTe
8(0) = 8 Y(0) = Y
) © ) ° (11)
B0) = ;{?\0 P (0) = :1//0 g

Following @ method identical ‘to that given in Ref. 3, the solution to Eq. (1)

is derived in Appendix.A. The results are

i

‘ _at | Y o . ~9. ' N
o(t) e ot %ib-u- (qS t[/o~—0 Jcos wit -+ i)l:z M + 29 (0 t{/o- OO)J sin wgt }

¢ © 0 9 L Wy w, 1
. (12)
A [ (6-0 Vo) A
vy s B | Gt | My .
-+ 3 (65- q’) l//)co wwt -+ 5 | w:; + wlp (90— (Z)lzlllo) Smwl[/t
and,
Ayt V(O b ) [t6-0 4 2
Y S (U U
Wi = o V] con 4 [ﬁ— ol ¢12w(:)] Sm“’w"‘
. . , , (13)
~Agt () %—90) 19 0-90)
4 e »9 ;—LL@V—— Cosw()t ~+val§, (—LL(;———- + ?59— ((b“t[/O—GO) sinwgtf

A\




where ,
2 + C 2
N 9.% Ty w Y
2k +k 2 T 2k
o qblz ] Y )
g +C 2 ! 2!
Ay = (P: f@ K - ~ zkw
+ 2
Voot v
I w? Iw -k
6 = —IZ N - _ Y
-1
" Iywk(/ Y’ Iyzw%l/
2 2 _
. Iyzwe Izw%klp
2
-k
12 Ing 9 Iyzw(?
¢ = ¢,-9,
2 _ _ 2
; = Iy I (Iyz)

v, 0 21° 21° I

kI +k, I kI +k I3y k. k,
W ____{Qz yx}_}_(J{OZ l,fly} ) 921[/

The sign in front of the square root term in Eq. (20) is determined from the

z 0
than k_ /I then the plus sign in Eq. (20) will be associated with w? , and

o'y v

the minus sign with wzg. If k@ /Iy is greater than kl[/ /IZ, then the reverse

case of zero I , where w?=kx /1 ,‘and wr=k /1. If k, /1 is greater
yz v 6y Y oz

will be true.
The effect of 1 , °n the model motion can be seen from Eqgs. (12),
y ,
and (13). As there are two,nearly equal, frequency components present in

each equation, the resulting motion for both pitch and yaw will be a beating

type of motion. That is, the envelopes will have a sinusoidal type pattern.

(14)

(15)

(16)

(17)

(18)

(19)

(20)



The effect of Iyz on the frequencies can be determined from Eq. (20),

which can be rewritten as

, , i
, <'w/91> _ (1,/1, + kw/k glz/lerk;p/kg ky /g 21)
\ o2 /1 - 1% /1%y Y21 /1 - 2 (1 - 1% /1%
o o/l (Z/ A (L1, -1, /1)
and,
12 kg I 2 kplZ
(QJ/ )2 - 5k %I—T + AIZ/IY+ ﬁ } | R—ZTZT/Z (22)
45 g1 R - 2 2 - _ 2 2 )
k#//lz »2(1:7Z/»1y7 IYZ/IY %}Z(IZ/IY 14, (L/L - 17 /1)

E.qua‘tiyo:ns ,(2,_1) ,and (22) are plotted in Figs, 2 and 3, as the frequency ratios

‘0/(1( Il )/2 and w /( IJ//I /?- versus I /I for k /k0 equal to 1.014,

Sevaeras

and for several values of I /I . These curves show that I has a small
o y . yz

cffect on the frequency, causing it to increase or'decreasc depending on the

SRR RS U AR S VR S S et

value of 1 /I .
SR ,‘y

The _{ngmgpts of inertia, IY and IZ, as well as the product of inertia,

Vo e
R SR G

I , can be obtained from Egs. (16) to (18) as

YZ LS oLl
_ 2 2 A
— E_ ¢11 (.09 } ¢1zﬁg
by F P w: W (23)
§ | W0 |
2 -
I = lj}l{ ¢11 wlp ¢1zw29 (24)
.7 - v—a‘ (.()2 wz
k (W? - w?) .
.Y 0 |
it F P 25)




In order to determine the I of a system, values of k, , $ , W

1% %
and w@ are required. While the flexure stiffness, k’a(/ » is known from

static bench tests, w@’ w

v and a)‘ must be determined from dynamic tests,
i.e., from recordings of the pitching and yawing motions.

Values for ¢11 and (,‘blz can be determined as follows. Assuming that

the initial angular velocities are zero, Eqs. (12) and (13) reduce to

3 ((}‘)11\/,6- 90)coswt + 22— aw ((j)nlp 6,) s1nw9t§

At A
+ e ¥ ; %J' (Qo—gf)lzwo)cos wL!Jt + %laf (90- qblzl,bo)sinwll/t %
and, ‘ .
At - ) CA
W(t) = e ’ﬁb 3 (_Ego_%y_b_()_coswwt + E‘Z{j?b (90- ¢12W0)Sinwlpt z
-Apt - -0,) A
+ e 0 ; (El.l_"gj‘_?_coswat + iﬁ—ﬁqg— ((ZJHI,UO— 90)sinw9t s
or, ‘ ,
s o Ayt 6
o(t) = Aee cos(wet - }/69) + Bee Cos(wtpt - 7'61,1/) (26)
-Awt -’\gt
Y(t) = Awe cos(w”[/t - ')/‘Pll/)+ Bl[/e cos(wet- )/1[19) (27)
where
(¢ ”[/o— 90) Az@

= ¢ S § .4

(28a)

(]
] X .
[ % (6o~ ¢12l//o) L+ 51%2 (28b)

o]
i




RG2S PLZ N Y. R  (294)

| . . 0

Ag
tan’}/eg = tan’)/d/9= —Cl)—é

| - )
: tan’)/wlp= tan’yaw = a)yj/

o
!

therefore, from Egs. (28) and (29)

(39)

'

The sign of 1 . is associated with the sign of E)' which depends upon
y

{
i
i
|
|
i
|
|
i
i
i

the signs of the A's and B's. If the envelope of the motion initially decreases,
‘ _then A and B in Eq. (26) or (27) will have the same sign. However, if tie
envelope initially increases, then A and B will'have opposite signs. The

sign of A always has the same sign as the initial release angle.

10

i
o I |



III. EXPERIMENTAL INVESTIGATION

The objective of .the experimental investigation was to determine the
fIyz of the model, and then to eliminate it by préperly balancing the model.
»’i‘he Iyz of thé original mod‘el was small, and therefore it was difficult to
de;cermine the amplitude components of the motion. In order to overcome
.t‘h‘is difficulty, a larger, known I , was added to the model. The resulting

motion was more easily reducible. The original IYZ of the model, plus the

added Iyz was determined by fitting the data to Eqs. (26) and (27) by the

(4,5)

least squares differential corrections technique The added Iyz was

then subtracted to give the Iyz of the model. This was repeated with

another known Iyz’ and the model I was taken as the average of the two

y‘Z

results.

PROCEDURE

The two model configurations tested were the basic model plus:

. R _ 2 - 2 1- tZ
Configuration I - 4404 S11° L Jgdea S I, ddea S

(1) -5.25 x 1075 4,843 x 1074 5.393 x 1074

(2) 14,27 x 1075 4,843 x 1074 5.393 x 10-4

For each model configuration the model was first balanced in the xz,_ and
yz planes to insure that the center of gravity 'Was located at the pivot point.
The model was mounted in a test cabin which wasv evacuated to less than
2mm of me;rcury to eliminate aerodynamic effects. The model was set at a

predetermined pitch and yaw angle, and released.

11




The resulting angular motion was recorded by strain gauges mounted
on the flexure. The analégue output from the gauges was digitized, and
stored on magnetic tapes. Calibration runs for t:kle conversion of the digitized
data to degrees were made before and after each run. The pitch data was
fittedvto Eq. (26), and the yaw data to Equation (27). The section length fitted
was one beat period. The amplitude components determined from the least

squares fit were then used to calculate ¢11 , and ¢ Eq (30), and then '(5,

i2’
Equation (18). The vglue of. a;, along with Wy > and w‘l/, which were also
obtained from the least squares fit, were used to calculate Iyz' Eq. (25),

as Well as Iy, Eq. (23)', and IZ, Equation {(24). Three consecufive sections were
fitted, and the average values resulting from these three fits were taken as

the Iyz; Iy’ and IZ of the configuration. The added values of Iyz’ IY and Iz

were subtracted from the measured values to give I " IY and Iz' of the
y

original model.

RESULTS

| The motions that were obtained from the runs are shown in Figs. 4,
5, and 6. As can be seen from run #l, Figs. 4a and 4b, the 6 envelope
initially increases while the ¥ gnvelope initially decreases. The Iyz of
this‘ configuration should be negative. This is in a;cord with the

-5

I = -5.256x10 sl-ft?, that was added to the model. For run #2, Figs. b5a,

yz -
and 5b, the situation is reversed. The @ envelope initially decreases,

while the Y envelope initially increases. The Iyz of this configuration

12




should be positive. This is again in agreement with the Iy-Z =+4,27 x 10"5

s1-ft® that was added to the model for this run.

K

The results of the least squares fitting procedure are summarized in

Table L

TABLE I: Results From Least Squares Fit to Data

. . 2 2 2
Configuration Iy mode] Sl-it lzmodel sl-ft Iyzmodel sl-ft

1 0.002732 0.002397 0.30 x 10°°

2 0.002737  0.002405 0.37 x 10-5

The average value for the Iyz of the model is 0. 34 x 1072 s1-ft> with a
probable error of #0,11 x 10-5 .sl—ftz, or about 32% of the average value.

The average values for Iy and Iz are 0.002735 sl-ft?, and 0.002401 sl-ft?,

respectively. The probable error of these terms is estimated to be about
0.1%.

The angle between the principal axes, and the body axes is given by

(21 1
'l-tan p f » which for small angles reduced to Y2 For runs 1
2 I,-I I,-1

b/ 27y
and 2, with intentionally added Iyz's (Figs. 4 and 5), this angle is
10. 2 degrees and 9. 6 degrees respectively. For the original model, the
| angle is 0. 6 degrees. Even this small angle of less than one degree was

sufficient to cause inertial coupling of the pitching and yawing motion that

could be detected on oscillograph records.

13




IV, DYNAMIC BALANCING METHOD

The Iyz of the model was determined to be O, 34 x 10"5 sl-ft?,

AnI_ of -0, 32 x 1072 s1-ft? was then added to the model by placing equal.
yz :

masses at 45° and 225° on the model (see sketch)., This should reduce the net Iyz '
0©

270 > y

N

of the model to approximately zero. The model was statically balanced by

O

: . C . 0 o .
placing macses on the geownetric, or principal axes, i.e., 07, 907, 180,

or 270°. This prevented any additional IYZ being added to the model. This
configuration was run, and the resulting motion, Figs. 6a and 6éb, showed

that the model is in near perfect trim.

14
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V. CONCLUSION
The present study of the motion in vacuum of a nonrolling body with
freedom to pitch and yaw shows that the product of inertia I . is the
dominant term causing inertial coupling of the pitching and yawing motion.
The presented analysis, and the described method of eliminating the inertial

coupling have been verified by experiments. The model is now ready for

wind tunnel tests, the results of which will be reported later.

15
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VI, APPENDIX A

The governing equations of motion in a body fixed coordinate system

with its origin located at the c.g. are

X3 _ I L] + C - + k = O ‘ . R . '.—1
Iy9 yzxp 0t k0 (A-1)
, - Iyze, + Izv,l/ + Cl//l// + klplp = 0 (A-2)
Consider first the undamped equations of motion
160-1 Y+ko=0 | - (A-3)
y yZz 6
- IYZG + Izl/J + klptl/ (= O, B (A-4)
In matrix form, Eqs. (A-3) and {(A-4).are written as
I -1 Y0 k. 0 1¢6 0
Jy yz { } 6 { ; { } : L L
o = (A-5)
T, L W0 k[ To U |

One possible solution has the form

0 A1 . e ' ‘ ‘ ,
v = {AZ } sin wt ‘ o (A-6)

Substituting Eq. (A-6) into Eq. (A-5) gives

I -1 Ay WPsinwt] [k, 0 A, sinuwt {0}
y yz N 6 . _
2 . . -
Iyz IZ -A,w" sinwt 0 kl[/ A, sinwt 0
or, i

Sl I W] A k., 0

y Yzw 1 9 A,y 0

2 2 + =

I w' -1 w A, 0 k A, 0

yz z Y |

23




matrix addition then gives

ky - Iywz Iyzwz Ay 0 :
= ‘  (A-7
I W k -I1w*] (A 0 (8-
Yz Y Tz 2

The characteristic equations results from setting the determinant of the

.coefficient matrix to zero

: 2 _ 2 4 =
C (kg Iyw)(kw I o) Iyzw 0

1-12 )t (k1 4k )P +kk = 0
Iyla 19 - gl iy iy =
let =11 -1° . L - (A-8)

then, the natural frequencies of the system are

+ +
P koL k1 kOIZ kI |° _ - kk hos)

The amplitude ratio for the frequency w\P is obtained by substifuting

w\b into Eq. (A-7)
k. -1 w? I o A 0
o " 2
I w? k, -I o? A 0
yz Y v zy VA
k. -1 w%)A + I w A
Cp = Tyt 2y~
 and,
1 WA + (kg - LAy =0 "
yz lp llp (IP d/) ZW .
then,

A I (k, -1 & - | :
e/ J__T_QZ - (A-10)
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The second subscript on A is used to indicate that the amplitudes are

associated with the frequency w, 6. Thus, one possible solution for the

W

equations of motion is given by the trial solution, Eq. (A-6), in which the

frequency is

W

" solution is possible if sin wt is replaced by cos wt, i.e.,

and the amplitudes are related by Eq. (A-10), Another

; 0 B,
= cos wt
7 B,
A procedure similar to that for Eq. (A-6) gives frequencies identical to that

of Eq. (A-9), and an amplitude ratio for w, as :

17 -
B A I (k-1 WP -
oo W yz _Jk__%JQ
B,, A T T R-Iw: T I w '
22 0y Y yz ¥

The complete solution for a free vibration at the first natural frequency,

» is given by

w
v
0 = A;, sinw,t + B;, cosw, t
y SRyt By cos &
= A, sinw,t+ B, cosw,t
Vm By siney th By cos
A similar procedure for the second natural frequency, we , yields
6 = Ale‘sinwet + Ble cos wet
Y = AZG sinwet + B.ze cos wpt
in which N
A, B, I WA k,- I w?
6 _ 6 _ vz 8 _ W "z 6
A, "B, T k-l 1 w
0 9 0 'y o yz 0
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The most general solution for the free vibrations of the system is given
by the superposition of the motions in the two principal modes of vibration,
given by Eqgs. (A-13) to (A-16).

6 = A;, sinw,t + Bltl/ cosw t+Alesinw t + Blecosw t (A-18)

Vit v 6 6

. T Y = A, sinw, t + B, cosw, t +A4A, sinwét + Bzpcoswt (A-19)

7 Y 17 7 6 6
‘making use of Eqs. (A-12) and (A-17)
6= f_l_l[{ A,sinw,t 4+ B, cosw, t} + fiQ A, sinw t + B;,cosw ’Lg(A‘ZO)
Y "y 2y W Azg 17760 0"
= i ' s A-21
v gAle/ s1nwwt + Bzwcoswwt + ;Aaesmwet + BZGCOS(UQt% ( )
~Egs. (A-20) and (A-21) can be written as
6 = dunatdizq o | | | o (A-22)
V= paqt $2q | . (A-23)
where, . -t
R I w? Iw? -k | : .
2 U 2 | " A-24)
=Tk - 1 (
: yy 8 yz |
2 2 _
_ IXZwH _ Izw9 klp A 25
¢1z"1 wl-k I o (A-25)
- yo 6 yz 6
¢21 = 9z =1 | ' ' (A-26)
= A,, sinw,t + B, cosw, t (A-27)
R 2 A 2 -
qz = AZGSiant + Bzecoswet (A-28)

The constants AZ\[/' B Az@ , and Bzg can be determined from the

Zwt

initial conditions
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6(0)
¥(0)

I

6, 6(0)= 0 (A-29)

R UER | . (a-30)

it

¥

The quantities q, and q; represent the amplftudes of the motion in
the two normal modes and are called the normal coordinates. A work-and
-energy approach to the equations of motion shows that the multiplication of

the equations of motion in the normal coordinate system by the constant

[Ql i] will uncouple the equations of motion.

Now consider the complete equations of motion, Egs. (A-1) and (A-2),

which can be written as

I -1 ] c, 0(8) [k, o]ye 0 |
y val V] an 6 £=’ ‘ (A-31)
1, L v 0 G ll¥) o x]lwl o |
From Egs. (A-22) and (A-23) | |
6 [sb“ <z>12] @ " |
ol N . | . (a-32)

Substituting Eq. (£-32) into Eq. (A-31) and multiplying by [(P“ i] will give
12

uncoupled equations in the normal coordinate system

-1 .. .
(pll ]' Iy —Iyz ¢11 ¢12 ql ¢11 ]' C9 O ¢11 ¢12 {ql}
, o+ .
¢IZ 1 ] -Iyz IZ 1 1 qz (Z)12 1 0 C?,D ! 1 g2

po

¢11 ! k@ 0 ¢11 ¢1z ql} %Ol
: BER

_¢12 1 0 kl[/ 1 1

matrix multiplication gives
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q:'ll 0 v *
=Y 0 qQ ¢121 Gt Sy 0 q1

w
v , + .
(plzk +k . ' i
0 220y qz 0 ¢ C,+C q2
w 12 0 Y
0 -
- (A-33)
- - ) ¢ k + 0 qi 0
+ v =
/ 0 0
¢ w qz
where it was assumed tha! (¢11 ({)12 ) + C‘.U) is much smaller than either
((,'[;11 C + Ctl/) or ((pzce + C‘P)’ and w@ and w‘l/ are given by Eq. (A-9)

Equation (A-33)is uncoupled and can be rewritten as

F(PZC +C, :

.. 1179 . . .

q + T_k_—lik wqu + w?‘ql =0 J ] : (A-34)
¢11 9t v v 4 : : : : ‘
L .J
(02 c +C

.o 12 0 2 2 - . . . . .

qz + _szg | Wi + whae = 0 | (A-35)

¥ ]

Equations (A-34) and (A-35) can be solved in the usual manner to give

=0yt i
q = € ll/lp [Alpcoswwt+ Bwsmw‘p

qz = e'éa wat [Aecoswet + B9 sinwet:l : g (A-37)

t] - (A-36)

where ‘ .
2 .
¢* C, +C, | w e \
10 Y ,

oy = |35 i | 2 | , (A-38)
n o6 Yy

and,

2c +C | w

P | |
- ______lk _0 : a
69" q)lzk9+klp 2 L (A-39)

The results, Eqs. (A-36) and (A-37) can now be transformed into the § and Y

¢oordinates using Equation (A-32).

28

W%Mww""?‘“" Y e P
L B R R




o(t) = ¢“ {choswwt + BXPSinth} e—kwt
| | Nt (A-40)
9, {Aacoswet + Bgsmwet }e 6
P(t) = {Al[/coswl//t+ BIPSInwl,Dt} Al[/t ‘ aoal)
. -At B
+ {Aecoswgt + BBSmth }e 8
where Al[/— 6#/“)\0 and )\9=69w9 (A-42)
The constants in Eqgs. (A-40) and(A-4]1) can be determined from the initial
conditions, Eqs. (A-29) and (A-30). |
A, = o~ B B =—~—1———9°—¢2% + 6, A
v T b v Fa, N
-0 , Y- 0
A = M——O— B = “q‘ll";p&—g + 6 A
0 ¢ 0 q)we 66
where ¢ = o, -9, (A-43)
The solution for the damped motion, coupled by IYZ is
agt ([0 ¥ ¢ Y- 6 A o W-0
6(t) = ¢ e 0 3(11 2 O> cosw t+ —uw————+—8— (JJ.TS__O) sinw,t
12 ? (j)u) 9 1] 0
) ) (A-44)
A 0. -6 Y 0 -0 % XA 0-0Y
+ ¢ e Wt; (—O—LZ’-—O—> cosw, t+| 122 Y (—9—12—9> sinw, t
11 ) 7 oW w k) '%
v v
) 6 -9 ¥ 06 ¥ X, (69 ¥
Yt) =e Aﬁbtg(o—‘u—g> cosw, tH|—ti2 4 Y ( —_—t O) sinw, t
[ Vool b, ey ¢ Y
. (A-45)
-6 ¢ Y-0 A0 Y -6
-thg(qllll!/o o o o , 8 < 1L 6 o .
+ e —T cosw6t+ -‘uavw—@-— + ‘*’9 3 smwgt

(A-24), (A-25) and (A-43) respectively.

where q')n , (1')1‘2 and ¢ are given by Egs.
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