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Preface

Literature on the many methcds of manua: orbit deter-
mination 1s extensive as one might expect. However, in
the course of my research for simple computational methods
and devices, I noted that the graphical device known as a
velocity hodograph had virtually disappeered from recent
literature, I felt and still feel that the velocity hodo-
graph offers interesting possibilities for solving orbit
determination problems. To a large extent, this thesis is
devoted to practical applications of the velocity hodo-
graph. Since this graphical device incorporates the basic
concepts of orbital mechanics, I claim no truly original
ideas,

I would like to take this opportunity to express my
appreciation to Professor Peter Bielkowicz for leading me
through several courses in astrodynamics, sivggesting this
topic, and finally, but certainly not least, for his
guidance and criticism during the writing of this thesis.
I also wish to acknowledge my gratitude to Captain Tony
Barth of the USAF Avionics Laboratory for providing me
with many research documents., My special thanks to my
family for their understanding and encouragement during
the preparation of this report, with particular expres-

sions of appreciation to my wife, Evelyne, for her
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Abstract

Simple non-electrical methods ané devicss for orbit |
determination on the basis of explicit navigation are
examined. Principal measuring devices discussed are the
sextant, stadimetric instruments, and almucanters. Com-

putational methods for solving the geometric orbital

! ] parameters are focused on adaptations of the velocity hodo-

graph. Discussion includes sample problems and a general

1 analysis of inherent «¢rrors.
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METHODS AND DESIGN
OF SIMPLE DEVICES FOR O%-BOARD
AND GROUND-BOUND ORBIT DETERMINATION

I. Introduction

Background

After a decade of successful space exploration in the
vicinity of the earth which was ciimaxed by the Apecllo
landing on the Moon, man continues to strive to penetrate
deeper into space. Of particular interest among pcssible
future manned missions are fly-bys and landings on other
near and distant planets of the solar system, Due to the
great distances involved, Earth-based radio navigation
capabilities will be severely limited if for no other rea-
son than time-delayed communication. Intuitively, this
situation leads to an emphasis on developing on-board
navigation procedures and measuring devices which are
totally independent and self-sufficient with respect to
collection of data (the observables) and orbit computa-
tions., In addition, missions landing on some planets may
be faced with determining the orbits of probes or command
modules from observations made on the ground. The method
Wwhich presents the greatest reliability, although not
nececsarily the grzatest accuracy, i1s most often the one

divorced from sophistication. Since electronic equipment
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failure is a distinct possibility, simple non-electrical
devices augmented by manual calculation schemes which are

most general in applicability should be considered.

Problem

This report is intended to present a discussion of
methods and design of simple devices for on-board naviga-
tion and ground level orbit determination, even in the
event of electronic equipment failure., “On-board” naviga-
tion is defined as space navigation, the art of describing
the spacecraft state from observables as seer from within
the spacecraft, without resort to outside communication.
*Ground based orbit determination” is defined as the art
of describirg a spacecraft state frcam observables as seen
froﬁ the ground. The term ”"state” is defined as the posi-
tion and velocity relative to some reference coordinate
frame for a particular point in time. Classically, the
state 1s expressed by a set of numerical constants called
orbital parameters when the motion of the vehicle is in a

free-fall trajectory.

Scope

Prav’ ous theses dealing with manual navigation were
written by Captains Schehr and Smith (“"Manual Astronaut
Navigation: Apollo Mission Application”) and by Major
Horrigan and Captain Walsh (”Manual Astronaut Navigation®)

under the sponsorship of Professor Bielkowicz. These
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gentlemen developed the Delta-H method which was initially
applicable to small range, low=eccentricity orbits and then
extended to highly eccentric elliptical orbits., In addi-
tion, these theses, combined together, form a wonderful
synopsis of the measurements which can be made with a
hand-held sextant or stadimeter and the computations which
follow to specify the orbital parameters.

Rather than repsating their voluminous information in
new or disguised verbage, the rrinciple objective 18 to
investigate simple non-electrical devices which can be
used to collect observable data and the promising manual

methods of calculation using the velocity hodograph.

Assumptions
The primary assumption made is that the spacecraft

follows unperturbed, pure Keplerian fligut. This implies
that:
1. The trajectory is restricted to two-body
motion and describes conic swctions.
2. The gravity field of the attracting body 1is
uniform, inverse-square, and central.
3. The mass of the spacecraft is negligible
compared to the attracting bndy mass.
k, The wvehicle is always consiisred to be
located in one clearly defined st : e of
influenca such that travel from one body to

another involves patch conic solutions,
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Other assumptions made are that there are no pre-cal-
culated reference trajectories which therefore implies
relying on explicit navigation schemes, and that the
reader is acquainted with the basice of orbital mechanics.

Organization
Chapter II deals with the design of simple devices

used to measure the observables from a space vehicle.
Chapter III presents a theoretical discussion of the
velocity hodograph.
Chapter IV provides examples of typical problems and
their solution.

Chapter V deals with grovid level orbit determination

and agsociated hardware.
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II. Simple Measuring Devices

Introduction

Space navigation as well as ground level orbit deter-
mination are both an instrumentation and computational
problem. All instrumentation and computational modes
should employ the same navigation concept. The concept
selected in this report is the "explicit” navigation
scheme. Explicit navigation is more desirable in the
sense that it can handle any situation which calls for a
deviation from the flight plan (Ref 12:428). Although
the explicit navigation method has the disadvantage of a
large computational load, it has the primary advantage of
Procviding the navigator with direct data on spacecraft
position and indirectly the velocity. The raw data that
nust be obtained for use in the computations are position
fixes. The position fix data includes a radial line of
position (LOP) from the attracting body and a radial dis-
tance on the LOP. Three position fixes permit the naviga-
tor to fully define the orbit. Partial {ixes which
include only the LOP or the radial distance can also
establizh the orbital parameters completely or partially
depending on the conditions and circumstances; for example,
having only three ranges would only allow computing three

orbital parameters (See Chapter III for more details).

Y
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The vypes of non-electrical instruments that can provide
LOP and range (rcdial distance) informatior. are all opti-
cal instruments. Fortunately, the sighting and aiming
involved is one area where the superior capabilities of
the human eye for resolution and recognition can be used
advantageously. Discussion of the individual instruments

now followus,

The Sextant

The sextant 18 an instrument fitted with moving
sirrore and prisms. The basic measurements taken are
angles between the line-of-sight of one reference body to
another, or to measure “he angle subtended by the diameter
of an apparent disc such as the sun, moon, or planets,

0ddly enough, the ancient mariner'’'s sextant (Fig. 1)
is readily adaptable, in principle, to space navigation
and orbit determination problems. This adaptability was
dramatically demonstrated (uring the manned space flights
of Gemini IV, VII, and XII.

The required accuracy of sightings for lunar or
Planetary missions is several seconds of arc (Ref 4:208).,
Current marine sextants such as the Navy Mark II Mod O
welghts approximately 2.7 pounds. The vernier readout
least count is 0.1 minute of arc (Ref 9:3). Although it
is a well known fact that simply increasing the radius of

the sextant arc will correspondingly increase the instru-

ment accuracy, the limitations placed on weigh®, size,
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Figure 2. Schematic Diagram of
Optics; Hand-held
Sextant
(From Ref 20:k4)

restricted field of view, and cramped quarters in the
current space program makes instrumeut accuracy purely an
engineering problem. Thus, the simple sextant becomes a
sophisticated piece of hardware containing such items as
precision stainless steel worm and worm wheels (35 mil=-
lionth of an inch) and beryllium structural elements (Ref
14:198)., The complexity may be easily visualized by
glancing at Figure 2.

Studies made at the NASA Ames Research Center,
Moffett Field, California, sh. ed that the ability of

rextant operators to make accurate navigation measurements
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was critically dependent of training. Test results at the
research center also indicated that increasing the sextant
telescope magnification frc: 2 to 20 power decreased the
average standard deviation from 22 seconds of arc to about
5 arcsec, The results of Gemini X1I showed that hand-held
sextant performance was excellent, providiﬁs a standard
deviation measurement error of less than +10 arcsec (Ref
191655).

A photographic sextant that can make conventional
sextant measurements and simultaneously provide positive
means for target star identification was also investigated
at the Ames Research Center., The summary of the study
concluded that the film was the most critical factor and
that currently available emulsions lack either resolution,

speed, or ease of development (Ref 24:1).

The Stadimeter

The stadimeter 1s a device used to obtain the dis-
tance separating the observer from another body by taking
angular measurements of that body and provided the body’'s
diameter 18 known. There are two classes of systems:
gsystems viewing a limited portion of the target and sys-
tems viewing the entire target.

Development of the stadimeter by the U.S. Alix Force
and the Kollsman Instrument Corporation has emphasizzd
the class of instruments measuring the amount of curvature

evident in the limited field of view available. The

RTINS i
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observed curvature can be translated into range by means
of precomputed calibration curves. One way to obtain the
curvature is to measure the deviation angle between two
chords comnecting three equidistant horizon points (A, B,
and C). A pair of composite prisms creates three super-
imposed fields of view. The deviation angle 18 measured
when the three arcs of the horizon intersect (Fig. 3).
Another method consists of a triple split image field with
a center scanning prism (Fig. &) which when aligned with
the outer segments 1 and 3, the angle O can be read di-
rectly from the stadimeter.

The equation providing the relationship between the
measured angle O and the altitude h as geometrically pre-

sented in Figure 5 is

- ’
~\/.|_ (oos "}icssa-cos*%)z'
| -~ cosPg cos 8’

sin A4

h=F

~ | (2-1)#

where

R = radius from body center to horizon

A = fixed angle between the side lines of sight
e.’

The pre-computed calibration curves plot h versus O; how-

measured angle 6 plus a correction angle 50

ever, from Eq (2-1) it is evident that (h/R) versus 9' can

*This equation is derived in Ref 18:117.
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dORIZON

CHORDS TO THE HORIZON

—~ —
arc length AB = avc length BC

ﬁ3= the reasure of curvature

INSTRUMENT FIELD OF VIEW

RETICLE CROSS LINE

1. 2. 3.

1., Stadimeter pointed at horizon so that the images
of the horizon at A and B crose horizon at C out
of the field of view.

2. Horizon at C brought into field of view.
3. Horizon at C aligned upon the intersection of the

horizons at A and B. The reticle aids in this
operation,

Figure 3. Horizon Geometry and Alignuent of
Images in Instrument Field of View
(From Ref 25:18-9)
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Window
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Figure 4. Stadimetric View
{From Ref 13:102)
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Figure 5. 3Jeocmetry of Stadimetric Measurement
(From Ref 13:103)

also be plotted. Since O and 46 are both dimensionless
functions of R and h, a plot of (h/R) versus©would be
more general since it would apply to any heavenly body
(See Appendix A for specific relatioships).

The stadimeters just discussed are intended for use
at low altitudes. For example, the USAF Space Stadimeter
is riot intended for use above 2500 NM altitude. For
sracecraft altitudes above 2500 NM, the angular diameter
of the body zan be measured (Fig. 6). The following

13
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Figure 6. Stadimetric Angle With Respect
to a Spherical Bbody

equation 1s used to determine raunge

d/fe R
sin¥, T sin¥h

(2-2)

where

d = diameter of body

¥ = -ngle subtended over diameter

The second class of stadimeters views the entire

target. A typical method is one propose. by L.M. Vorob'ev
(Ref 231126) which consists of a movable circular screen
(Fig. 7) whose plane is perpendicular to the direction of
the celestial body. The screen o diameter 2r moves per-
pendicularly to the axis 00, to & '7sition wanere the edges
of the celestial body are barely visible. The subtended

half angle from Figure 7 is

ik
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Figure 7. Measurement of the Arngular
Diameter B8 of a Planet
By Means of a Movable
Circular Screen of Radius r
(From Ref 23:126)

= arcton —— (2-3)

th

Substituting the value for the planet radius and the
angle A/2z into Eq (2-2) produces the range value.

Zenlth Viewing Telescope

A simple optical instrument called a *bazooka” or

zenith viewing telescope a3 illustrated in Figure 8 can be
used to establish the local vertical of the spaceship
above the surface of the celestial body (Ref 16:289).

15
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Half Siivered
Two Way Mirror

Geographic Position

Star Field at Zenith

Figure 8. Zenith Viewing Telescope
(From Ref 263:790)

Theoretically, this method amounts to star-matching. An
identified star at the zenith would immediately establish
the line of position in terms of right ascension and

declination.

The Almucantar

The almucantar is a general application of the
"bazooka" telescope, This system calls for establishing
a local vertical vector which is the symmetric axis for
cones whose semi-angle is8 measured from the zenith. Thus
a simple peep sight centering element placed at the cone
apex and concentric circles scribed on a window with the
Zenith at the center would theoretically suffice (Ref 10:
249). The concentric circles represent degrees of co-alti-

tude. Knowing the cc-altitude of two stars at any instant

16
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of time can establish a LOP, (assuming that the navigator
can eye ball the zenith to resolve any ambiguity).

Anguler Accuracy

In reality, arv rarameter is measured with some error.
Besides the usual instrumentation and personnel error, such
factors as the aberraticn of light, confusion with binary
stars, and proper motion of stars can contribute to erro~
neous measurements,

Aberrational displacement due to the spacecraft's
velocity is small for velocities of 10 to 20 km/sec but
for velocities of about 100 km/sec, the angular displace-
ment may approach 1 minute.

The distance between components of binary stars are
relatively large. For example, the components of the
birary star in Ursa Major a.e situated about 12’ apart
(Ref 23:125). The best solution for alleviating this
error 18 to avoid using binary stars.

Proper motion of stars can be dismissed on the assump-
tion that tne star catalog in use is current and that the
annual proper motion of stars 18 measured in microradians.

The effect of angular measurement error increases with
the distance from the body. For example, a space vehicle
situated approximately 80 million miles from the sun and
20 million miles from each of two planets being sighted,

a total error of 30 arcsec would result in a 12,000 mile

error in position, in a direction perpendicular to a line

17
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to the sun ard alout 3,000 miles in directions perpendic-
ular o lines connecting the vehicle with the planets
(Ref 8:39).

Range Accuracy
From Eq (2-2) it is evident tnat for a given angular

error § and a given body radius R that the range error 1is
magnified as the range increases.

The more difficult error to handle is the one con-
cerning the body radius. Errors in body radius measure-
ment are attributable to the influence of the planets’
atmospheres and their nonsphericity. To 1 great axtent
the former reason is due to a question cof definition.

For example, the radius of the Earth for stadimetric meas-
urements is taken as the airglow radius which is 14.9 NHM
above the average earth surface radius., Since, as previ-
ously mentioned, this error is due to definition it will
not be discussed further.

Looking at the non-~sphericity problem, the assumption
may be wade that if the body is not a sphere then it is an
ellipscoid of revolution about its spin axis. Just as 1it
is necessary to know the radius of a spherical body, here
the oblateness must also be known; therefore, let it be
assumed that the following physical characteristics of the

planet are common knowledge

a semi-ms jor axis

b

semi-minor axis

18
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e = planet eccentricity

Since the planet is like a spinning top or gyro, the
intercept of the celestial zphere by the axis is fixed in
space and can be identified or at least nearly apprcximated
by scze egter. For «xample iu Figurs 2, the intercept is
labeled ss Star Q. Angle & is thes smallest or largest
angle measured from Star Q@ to the body surface in the XY
Plane or any other plane ccntaining the spin axis. Look-
ing at the ellipsoid from a great distarce the becdy ap-
pears as a circle of radius a when ¥ 180° and it ap-
pears as an ellipse with a sa2mi-minor axis equal to b
when (= 90°. In fact, from any intermediate anglie ¥,
the body seer. from a great distance such as at point A

appears as an e2llipse whose semi-minor axis R is
2 . A
R:Q(l-f;&mab')‘ (2-4)

Note that R is also the apperent radius of the body meas-
ured in the XY plane. The point of tangency 18 A®, but a i
perpendicular constructed from the line~of-sight APA' to
the body center 18 R, {(the apparent radius as viewed from
point A).
At point P the angles 4 and J,, or 4 and ¢, may be
measured. with a saxtant and the sliding screen stadimeter,
R, and B, can be calculated from Eq (2-4). Since ¢ is the

difference between J and &, suppose that J and ¢ are

the angles measured. From the problem geometry
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Star Q Stavr Q Star @
»*% * €

i

Figure 9. Geometry of Stadimetric
Viewing of an Ellipsoid

20
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1 BRY;

v=R +h= sif'o(, stn():w(.) =
where

r = radlal distance to vehicle

3 B, = body surface radius on the line joining
4 the body center and spacecraft

h = altitude

«, = subtended radius arc for the apparent
radius R,

Application of & trigonometric identity and rearrang-
ing Eq (2-5) ylelds

sih @ cosex, - Cos @ sin, Ra (2-6)
sin«, R

1

therefore

(2-7)

oo [(R/R,) + cos ¢>]

sin ¢

Having solved o, let #/2 = <, and substitute into Eq
(2-2) to obtain the range r.
The angle A which corresponds to the body latitude

may be found from th2 following equation

21




GA/¥C/71-1

A= 180 - (§+) (2-8)
Knowing A, the body radius R, on the line connecting the
body center with the spacecraft 1is

RL— (Lb

= (2-9)
(az sin*A + b* c‘.oszi\)y2

and the altitude can be immediately obtained from Eq (2-5).
A8 just shown, the problem of non-sphericity can be
handled through additional calculatiocns so that oblateness
need not introduce range errors. Thus, the accuracy in
range is re;zlly dependent on how well the physical dimen-

sions of a celestial body are known.

22
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I.Z. The Velocity Hodograph

Introduction

Graphical solutions can be developed advantageously
in the solution of vroblems in space flight. Graphs are
pictures, which, as 18 so often said, are worth a thousand
words., It geometrically portrays numerical results that
are mathematically difficult to grasp. The velocity hodo-
graph defined as the locus of velocity vectors is a geo-
metrical picture which reduces all conic sections to map-

ped circles.

Mathematical Lerivation

If motion of the spacecraft 1s described in polar
coordinates, the velocity vector can be defined by two
orthogonal components: the radial velocity, r, and the
transverse velocity, ré « The equations used to develop

the hodograph equation are

T (- I ?’{) (3-1)
A = [0 (1-€%)] 2
A. = rzé = Consto-'!t (3=3)

23
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where

a = semi-ma jor axis

eccentricity

= angular momuntum per unit mass

< =
(]

total velocity
r = radial distance
O = angular velocity
A= gravitational constant
Substituting Eq (3-3) into (3-2) and rearranging
yields

T

o
™

N

L
o hE (3-4)
Eq (3<4) can now be directly substituted into Eq (3-1) to

give

e () - 28 ,u(}l-ze’) (3-5)
which when rearranged yields Eq (3-6) below. It is imme-
diately recognized as the equation of a circle with coor-
dinate axes r and 6 . It should be noted that in the
preceeding development the initial equations, Eq (3-1) and
Eq (3-2), are equations for circular and eliiptical sec-
tions; however, the same resulting equation is produced
assuming parabolic or hyperbolic conic sections.

ri+ ('r9 - 4“:—)2 = (e —’f)z (3-6)
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Eq (3-6) as notated represent> a graph with a “float-

ing” center. It is desiradble to fix the center such that
& pre-plotted graph can be constructed and used under all
circuzstances, This can be accomplished by reducing the
equation to a non-dirensional torm. Thus, dividing Eq

(3-6) by (A/k) yields

! . 2 H 2
;i () « (=2 -1)- ¢ (3-7)
Letting

: - 352

X=2Eh . x@ (3-8)
j and
|
; A .

. 2

§ Y= &=t (3-9)

o T
RN

it is evident that in the X,Y coordinates the origin for

circles of radius e is centered at the point (1,0) as

shown in figure 10,

AP e

Discussion
Many interesting relationships can be obtained by

Just looking at X and Y, for example:

: : 12
X = -:ih . x30% _ (va) . Ai =[+ecos@ (3-10)

T TE T
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Figure 10. Dimensionless Polar
Hodograph of Velocity

and

. :
Y = /";" = "”/fe = +VX/= = esinf  (3-11)
Le

where V,J_. the local circular velceity, 1s'\/§e Obviously
many more rearrangements are possible. From Bq (3-10) it
becomes immediately apparent that & is the true anomaly
and since X 1s equal to (l1+e) when O 1s zero and (r@) is
maximum, it follows that the pcint (1+e,0) is the peri-
focal point. By the same type of argument (1-e,0) is the
apofocal point; however, it should be noted from Eq (3-8)
that points where X is equal to or less than zero are not
physically defined. Furthermore, it should be noted that
the X axis represents the apsidal axis. As the true anom-

aly increases from perifocal point, r is always initially
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positive so from Eq (3-11) it 1s deduced that O 1s meas-
ured in the counterclockwise direction gince Y is initial-
ly positive.

Additionally, it is evident that the arctangent of
(1/X) 18 the same as (i/r@) so that a line joining point 0
to point (X,Y) forms an angle with the X axis equal to the
f1ight path angie.

Time from peripoint passage can be indirectly obtain-

ed by adding new curves to the graph. Consider the time

equations (Ref 4 :4-5) for an ellipse,

| + ecose

E | %
1 ot = (/A)z Zf“"[ 122 tan ] eVice S8 b (3.12)

for a hyperbols,

i ot= (-/%;)'/z (ev?':

sin® _ |7+l +Ve-l fani_

1+ecosh ‘Yool - el tan £ (3-13)
and for a parabola
N 14 30
ot = 7 fo.n-z- + -3—to.n T (3-14)
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Noting that

3
(2 z
\7—) (3-15)
Eq (3-12), (3-13), and (3-14) can be written as
’ X
ot-= K:u—z-'-KYX YT (3-16)

where K = f(e,6 ), thus

K=0 ; for O =

K = Tf(l-e")-? for O = 180°
By preplotting constant lines of K (Ref 3:13), time may
be computed from Eq (3-16). The time so obtained is
normally expressed in the units used in the gravitational
constant u (See Fig. 11).

The range (radial distance) at any point on the free-
fall trajectory can be easily found after one point of the
orbit's eccentricity circle is associated with a range
value. Knowing range r, at point (X,,Y, ) the square of
the angular momentum per unit mass is obtained from

Eq (3-10)

2
A= v X, (3-17)

The second point fixes X, and by the conservation of

angular momentum
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Figure 11. Time Lines of Constant K
(From Ref 5:39)

X, = X, (3-18)

% 2.9 (3-19)
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It follows that the peripoint radial distance must be

. _rX
P Tre (3-20)

The semi-major azis for all conics can be expressed as

rX

Q= IT—e'z—I (3-21)

The semi-latus rectum, p, is simply

p=rX (3-22)

Concept and Method of Graph Usage

In order to increase the accuracy of data extracted
from the graphs it i¢ evident that the graph must be quite
large and have a dens¢ grid of lines to minimize the er-
rors associated w;th interpolation. Obviously, combining
cartesian coordinates, polar coordinates, and time con-
stant curves on one graph woculd be shear nonsense.
Instead, it is suggested that there be three separate
graphs plus a transparent overlay which would merely serve
to transfer the plotted points from one graph to another,

As seen in Figure 12, the three graphs are the {X,Y)
cartesian graph, the (e, &) polar graph and the graph of
time constant curves K. If the distances X =1 and e =1

are represented by a length of 20 centimeters, each graph
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similar to those shown in Figure 12 would measure 50 cm
horizontally by 60 cm vertically. Line intervals o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>