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i 
Preface 

Literature on the many -aethcds of manual orbit deter- 

mination is extensive as one might expect. However, in 

the course of my research for simple computational methods 

and devices, I noted that the graphical device known as a 

velocity hodograph had virtually disappeared from recent 

literature.  I felt and still feel that the velocity hodo- 

graph offers interesting possibilities for solving orbit 

determination problems. To a large extent, this thesis is 

devoted to practical applications of the velocity hodo- 

graph. Since this graphical device incorporates the basic 

concepts of orbital mechanics, I claim no truly original 

ideas. 

I would like to take this opportunity to express my 

appreciation to Professor Peter Bielkowicz for leading me 

through several courses in astrodynamics, suggesting this 

topic, and finally, but certainly not least, for his 

guidance and criticism during the writing of this thesis. 

I also wish to acknowledge my gratitude to Captain Tony 

Barth of the USAF Avionics Laboratory for providing me 

with many research documents. My special thanks to my 

family for their understanding and encouragsment during 

the preparation of this report, with particular expres- 

sions of appreciation to my wife, Evelyne, for her 
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assistance In typing. 

Daniel H. Jean 

Details of iMrJrotions in 

this dacunti ii rp.j/ bs bs.ter 

stur-iod on microfiche. 
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Abstract 

Simple non-electrical methods and devices for orbit 

determination on the basis of explicit navigation are 

examined. Principal measuring devices discussed are the 

sextant, stadlmetrlc Instruments, and almucanters. Com- 

putational methods for solving the geometric orbi'cal 

parameters are focused on adaptations of the velocity hodo- 

graph. Discussion Includes sample problems and a general 

analysis of inherent errors. 
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METHODS AND DESIGN 

OP SIMPLE DEVICES FOR ON-BOARD 

AND GROUND-BOUND ORBIT DETERMINATION 

I.  Introduction 

Background 

After a decade of successful space exploration In the 

vicinity of the earth which was climaxed by the Apollo 

landing on the Moon, nan continues to strive to penetrate 

deeper Into space. Of particular Interest among possible 

future manned missions are fly-bys and landings on other 

near and distant planets of the solar system. Due to the 

great distances Involved, Earth-based radio navigation 

capabilities will be severely limited If for no other rea- 

son than time-delayed communication.  Intuitively, this 

situation leads to an emphasis on developing on-board 

navigation procedures and measuring devices which are 

totally independent and self-sufficient with respect to 

collection of data (the observables) and orbit computa- 

tions. In addition, missions landing on some planets may 

be faced with determining the orbits of probes or command 

modules from observations made on the ground. The method 

which presents the greatest reliability, although not 

necessarily the greatest accuracy, Is most often the one 

divorced from sophistication. Since electronic equipment 

( 
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failure Is a distinct possibility, simple non-electrical 

devices augmented by manual calculation schemes which are 

most general In applicability should be considered. 

Problem 

This report Is Intended to present a discussion of 

methods and design of simple devices for on-board naviga- 

tion and ground level orbit determination, even In the 

event of electronic equipment failure.  'On-board" naviga- 

tion Is defined as space navigation, the art of describing 

the spacecraft state from observables as seer from within 

the spacecraft, without resort to outside communication. 

"Ground based orbit determination" is defined as the art 

of descrlblrg a spacecraft state trcm.  observables as seen 

from the ground. The term "state" Is defined as the posi- 

tion and velocity relative to some reference coordinate 

frame for a particular point In time. Classically, the 

state Is expressed by a set of numerical constants called 

orbital parameters when the motion of the vehicle is in a 

free-fall trajectory. 

■ 

o 

Scope 

Prav us theses dealing with manual navigation were 

written by Captains Schehr and Smith ("Manual Astronaut 

Navigationi Apollo Mission Application") and by Major 

Horrlgan and Captain Walsh ("Manual Astronaut Navigation") 

under the sponsorship of Professor Bielkowlcz. These 
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gentlemen developed the Delta-H method which was Initially 

applicable to small range, low-eccentricity orbits and then 

extended to highly eccentric elliptical orbits.  In addi- 

tion, these theses, combined together, form a wonderful 

synopsis of the measurements which can be made with a 

hand-held sextant or stadlmeter and the computations which 

follow to specify the orbital parameters. 

Rather than repeating their voluminous Information In 

new or disguised yerbage, the firlBOiyilit objectlre Is to 

Investigate simple non-electrical devices which can be 

used to collect observable data and the promising manual 

methods of calculation using the velocity hodograph. 

Assumptions 

The primary assumption made Is that the spacecraft 

follows unperturbed, pure Keplerlan fllgut. This Implies 

that i 

1. The trajectory Is restricted to two-body 

motion and describes conic auctions. 

2. The gravity field of the attracting body is 

uniform, inverse-square, and central. 

3. The mass of the spacecraft is negligible 

compared to the attracting body mass. 

k.    The vehicle is always consi:«red to be 

located in one clearly defined sp  e of 

influence such that travel from one body to 

another Involves patch conic solutions. 

: 
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Other assumptions made are that there are no pre-cal- 

oulated reference trajectories which therefore Implies 

relying on explicit navigation schemes, and that the 

reader Is acquainted with the basics of orbital mechanics. 

Organization 

Chapter II deals with the design of simple devices 

used to measure the observables from a space vehicle. 

Chapter III presents a theoretical discussion of the 

velocity hodograph. 

Chapter IV provides examples of typical problems and 

their solution. 

Chapter V deals with grow id level orbit determination 

and associated hardware. 

( ) 
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II.  Simple Measuring Devices 

Introduction 

Space navigation as well as ground level orbit deter- 

mination are both an Instrumentation and computational 

problem. All Instrumentation and computational modes 

should employ the same navigation concept. The concept 

selected in this report Is the "explicit" navigation 

scheme. Explicit navigation Is more desirable In the 

sense that It can handle any situation which calls for a 

deviation from the flight plan (Ref 12t^28). Although 

the explicit navigation methoi has the disadvantage of a 

large computational load, It has the primary advantage of 

providing the navigator with direct data on spacecraft 

position and indirectly the velocity. The raw data that 

must be obtained for use in the computations are position 

fixes. The position fix data Includes a radial line of 

position (LOP) from the attracting body and a radial dis- 

tance on the LOP. Three position fixes permit the naviga- 

tor to fully define the orbit.  Partial fixes which 

include only the LOP or the radial distance can also 

establish the orbital parameters completely or partially 

depending on the conditions and circumstancesi for example, 

having only three ranges would only allow computing three 

orbital parameters (See Chapter III for more details). 

I 
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TELESCOPE 

VERNIER 

Figure 1. The Sextant 
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The l/pes of non-electrical instruments that can proTide 

LO? and range (radial distance) Information are all opti- 

cal Instruments. Fortunately, the sighting and aiming 

involved Is one area where the superior capabilities of 

the human eye for resolution and recognition can be used 

advantageously. Discussion of the Individual Instruments 

now follows. 

The Sextant 

The sextant Is an Instrument fitted with moving 

mirrors and prisms. The basic measurements taken are 

angles between the llne-of-sight of one reference body to 

another, or to measure ^he angle subtended by the diameter 

of an apparent disc such as the sun, moon, or planets. 

Oddly enough, the ancient mariner's sextant (Pig. 1) 

Is readily adaptable, in principle, to space navigation 

and orbit determination problems. This adaptability was 

dramatically demonstrated (.uring the manned space flights 

of Gemini IV, VII, and XII. 

The required accuracy of sightings for lunar or 

planetary missions is several seconds of arc (Ref 4t208}. 

Current atarlne sextants such as the Navy Hark II Mod 0 

weights approximately 2.7 pounds. The vernier readout 

least count is 0.1 minute of arc (Ref 9«3)» Although it 

is a well known fact that simply increasing the radius of 

the sextant arc will correspondingly increase the instru- 

ment accuracy, the limitations placed on weight, size, 
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Long eye relief 

'eyepiece 4.6X 

Nofmol eye relief 
/eyepiece 80X 

Sconning 
m>"<*     Scorning line 

mirrors        /       \/ SLOS f Hers 

Fixed line 
sight 

Beom splitter 
50% transmission 
50% reflection 

( 

Figure 2. Schematic Diagram of 
Opticst Hand-held 

Sextant 
(From Ref 20i4) 

restricted field of view, and cramped quarters In the 

current space program makes Instrument accuracy purely an 

engineering problem. Thus, the simple sextant becomes a 

sophisticated piece of hardware containing such items as 

precision stainless steel worm and worm wheels (35 mil- 

lionth of an inch) and beryllium structural elements (Ref 

I^il98). The complexity may be easily visualized by 

glancing at Figure 2. 

Studies made at the NASA Ames Research Center, 

Moffett Field, California, sJu ed that the ability of 

sextant operators to make accurate navigation measurements 

8 
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was critically dependent of training« Test results at the 

research center also indicated that increasing the sextant 

telescope magnification frc:" 2 to 20 power decreased the 

average standard deviation from 22 seconds of arc to about 

5 arcsec. The results of Gemini XII showed that hand-held 

sextant performance was excellent* providing a standard 

deviation measurement error of less than +10 arcsec (Ref 

19t655). 

A photographic sextant that can make conventional 

sextant measurements and simultaneously provide positive 

means for target star Identification was also investigated 

at the Ames Research Center. The summary of the study 

concluded that the film was the most critical factor and 

that currently available emulsions lack either resolution, 

speed, or ease of development (Ref 2^il). 

The Stadimeter 

The stadimeter is a device used to obtain the dis- 

tance separating the observer from another body by taking 

angular measurements of that body and provided the body's 

diameter is known. There are two classes of systemsi 

systems viewing a limited portion of the target and sys- 

tems viewing the entire target. 

Development of the stadimeter by the U.S. Air Force 

and the Kollsman Instrument Corporation has emphasized 

the class of Instruments measuring the amount of curvature 

evident in the limited field of view available. The 

■ 
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observed curvature can be translated Into range by aeans 

of precoaputed calibration curves. One way to obtain the 

curvature is to measure the deviation angle between two 

chords connecting three equidistant horizon points (A, B, 

and C). A pair of composite prisms creates three super- 

Imposed fields of view. The deviation angle Is measured 

when the three arcs of the horizon Intersect (Pig. 3)» 

Another method consists of a triple split Image field with 

a center scanning prism (Fig. ^) which when aligned with 

the outer segments 1 and 3, the angle 0 can be read di- 

rectly from the stadlmeter. 

The equation providing the relationship between the 

measured angle G   and the altitude h as geometrically pre- 

sented In Figure 5 is 

K/| _ (cos faces0-cos*tj)7- 
In  1 V'  \| - cos/yz cosW 

Sin ^4 
(2-1) 

where 

R = radius from body center to horizon 

A ■ fixed angle between the side lines of sight 

0 = measured angle 0 plus a correction angle ^0 

The pre-computed calibration curves plot h versus 0j how- 

ever, from Eq (2-1) it is evident that (h/R) versus 0 can 

♦This equation is derived In Ref I81U7. 

10 
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HOHIZON 

arc length AB ■ arc length ^C 

ß**  the measure of curvature 

INSTRUMENT FIELD OF VIEW 

RETICLE CROSS LINE 

1• Stadimeter pointed at horizon so that the Images 
of the horizon at A and B crose horizon at C out 
of the field of view, 

2. Horizon at C brought Into field of view. 

3. Horizon at C aligned upon the Intersection of the 
horizons at A and B. The reticle aids In this 
operation. 

Figure 3t Horizon Geometry and Allgniaent of 
Images In Instrument Field of View 

(From Ref 25»8-9) 

11 
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( ) 

Stadimeter View 

Figure k,    StadImetrie View 
(Prom Ref 13«102) 

12 
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( ) 

I 

Figure 5. Seometry of Stadlmetrlc Measurement 
{Prom Ref 13*103) 

also be plotted. Since 9 and /0 are both dlmenslonless 

functions of E and h, a plot of (h/H) versus ©would be 

more general since It would apply to any heavenly body 

(See Appendix A for specific relatloshlps). 

The stadlmeters Just discussed are intended for use 

at low altitudes.  For example, the USAF Space Stadimeter 

is not intended for use above 2500 NM altitude. For 

spacecraft altitudes above 2500 NM, the angular diameter 

of the body oan be measured (Pig. 6). The following 

13 
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o a \ "n.. 
^j^ 

Figure 6. Stadlaetrlc Angle With Respect 
to a Spherical Body 

( ) 

equation Is used to determine range 

r = c//2 R 
sinf/i Sin 

(2-2) 

( 

where 

d = diameter of body 

^■ ngle subtended over diameter 

The second class of stadlmeters views the entire 

target. A typical method is one proposes by L,M. Vorob'ev 

(Ref 23i126) which consists of a movable circular screen 

(Fig. 7) whose plane is perpendicular to the direction of 

the celestial body. The screen c* diameter 2r moves per- 

pendicularly to the axis 00, to a  sitIon wnere the edges 

of the celestial body are barely visible. The subtended 

half angle from Figure 7 Is 

Ik 
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Screen. 

Figure ?. Measurement of the Angular 
Diameter >ö of a Planet 
By Means of a Movable 

Circular Screen of Radius r 
(Prom Ref 23tl26) 

' ; 

2 r  O-rc u n. IT 

4 
(2-3) 

Substituting the value for the planet radius and the 

angle &lt   into Eq (2-2) produces the range value. 

i 

ZenAth Viewing Telescope 

A simple optical Instrument called a "bazooka" or 

zenith viewing telescope as Illustrated in Figure 8 can be 

used to establish the local vertical of the spaceship 

above the surface of the celestial body (Ref 16J289). 

15 

mmmsm*ämmmmsm mmaomtmiimmim -imm»mmmfW'mm[mi^iäimMir''it 



GA/MC/71-1 

O 
Half Slivered 
Two Way Mirror 

Geographic Position Zenith 

Star Field at Zenith 

Figure 8. Zenith Viewing Telescope 
(From Ref 26i790) 

Theoretically, this method amounts to star-matching. An 

identified star at the zenith would immediately establish 

the line of position in terms of right ascension and 

declination. 

o 

The Almucantar 

The almucantar is a general application of the 

"bazooka" telescope. This system calls for establishing 

a local vertical vector which is the symmetric axis for 

cones whose semi-angle is measured from the zenith. Thus 

a simple peep sight centering element placed at the cone 

apex and concentric circles scribed on a window with the 

zenith at the center would theoretically suffice (Ref 10i 

2^-9). The concentric circles represent degrees of co-alti- 

tude. Knowing the co-altitude of two stars at any instant 

16 
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of time can establish a LOP. (assuming that the navigator 

can eye ball the zenith to resolve any aabiguity). 

Angnlfj Accuracy 

Jn reality, air parameter is measured with some error. 

Besides the usual instrumentation and personnel error, such 

factors as the aberration of light, confusion with binary 

stars, and proper motion of stars can contribute to erro- 

neous measurements. 

Aberrational displacement due to the spacecraft's 

velocity is small for velocities of 10 to 20 km/sec but 

for velocities of about 100 km/sec, the angular displace- 

ment may approach 1 minute. 

The distance between components of binary stars are 

relatively large. For example, the components of the 

binary star in Ursa Major aid oituated about 12*  apart 

(Ref 23il25). The bept solution for alleviating this 

error is to avoid using binary stars. 

Proper motion of stars can be dismissed on the assump- 

tion that the star catalog in use is current and that the 

annual proper motion of stars la  measured in microradians. 

The effect of angular measurement error Increases with 

the distance from the body. For example, a space vehicle 

situated approximately 80 million miles from the sun and 

20 million miles from each of two planets being sighted, 

a total error of 30 arcsec would result in a 12,000 mile 

error in position, in a direction perpendicular to a line 

17 
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to the sun ami alout 3,000 miles in directions perpendic- 

ular to lines connecting the rehlcle with the planets 

(Ref 8»39). 

Range Accuracy 

Pros Eq (2-2) it is evident tnat for a given angular 

error & and a given body radius R that the range error is 

magnified as the range increases. 

The more difficult error to handle is the one con- 

cerning the body radius. Errors in body radius measure- 

ment are attributable to the Influence of the planets' 

atmospheres and their nonsphericlty. To A great extent 

the former reason is due to a question of definition. 

For example, the radius of the Earth for stadimetric meas- 

urements is taken as the airglow radius which is 1^.9 NH 

above the average earth surface radius. Since, as previ- 

ously mentioned, this error is due to definition it will 

not be discussed further. 

Looking at the non-sphericity problem, the assumption 

may be irade that if the body is not a sphere then it is an 

ellipsoid of revolution about its spin axis. Just as it 

is necessary to know the radius of a spherical body, here 

the oblateness must also be knowni therefore, let it be 

assumed that the following physical characteristics of the 

planet are common knowledge 

a = semi-major axis 

b = semi-minor axis 

18 
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e m  planet eccentricIty 

Since the planet is like a spinning top or gjro, the 

Intercept of the celestial sphere by the axis if, fixed in 

space and can be identified or at least nearly apprcximated 

by scae eter. For ^xaaiple In Pi^ur^ 9t the Intercept is 

labeled as Star Q. Angle X  is the smallest or largest 

angle measured from Star  Q to the body surface in the XI 

plane or any other plane containing the spin «is. Look- 

ing at the ellipsoid from a great distance the body ap- 

pears as a circle of radius a when  ^■ 180 and it ap- 

pears as an ellipse with a semi-minor axis equal to b 

when  >'= 90°.  In fact, from any intermediate angle t, 

the body seen from a great distance such as at point A 

appears as an ellipse whose semi-minor axis B is 

ft 5 0.(1 - eWr}'*       (2-4) 

Note that R is also the apparent radius of the body meas- 

ured in the XY plane. The point of tangency is A-, but a 

perpendicular constructed from the line-of-sight APA' to 

the body center is R, (the apparent radius as viewed from 

point A). 

At point P the angles ^ and /2f or if,   and <f>t  may be 

measured with a sextant and the sliding screen stadimeter. 

R, and Rt can bft calculated from Eq (2-4). Since (f> is the 

difference between 2( and /z, suppose that ^ and $ are 

the angles measured. From the problem geometry 

19 
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SiarQ    SUrQ 

I 

Figure 9. Geometry of Stadimetrlc 
Viewing of an Ellipsoid 

20 
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U a  . «*. 
^t     ^ '   sin«,       $üi(#-< (2-5) 

where 

r = radial distance to vehicle 

Hfc ■ body surface radius on the line Joining 
the body center and spacecraft 

h = altitude 

<*; ■ subtended radius arc for the apparent 
radius R, 

Application of a trigonometric Identity and rearrang- 

ing Eq (2-5) yields 

sin <ft cosoc, - cos0 sin.*,    _    R,. 
st-n.«^ ' ft 

(2-6) 

therefore 

o< =. col 
(VR.) 4- cos <t> 

hin (f) 
(2-7) 

Having solved  c<(, let j^/Z - <>(,  and substitute Into Eq 

(2-2) to obtain the range r. 

The angle X which corresponds to the body latitude 

may be found from th2 following equation 

21 
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A.= ISO* -  (<+*,) (2-8) 

Knowing A, the body radius Rfc on the line connecting the 

body center with the spacecraft Is 

u 

(2-9) 

and the altitude can be Immediately obtained from Eq. (2-5)« 

As Just shown, the problem of non-sphericity can be 

handled through additional calculations so that oblateness 

need not introduce range errors. Thus, the accuracy in 

range is really dependent on how well the physical dimen- 

sions of a celestial body are knowr. 

22 
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IM. The Velocity Hodograph 

Introduction 

Graphical solutions can be developed advantageously 

In the solution of problems In space flight. Graphs are 

pictures, which, as Is so often said, are worth a thousand 

words.  It geometrically portrays numerical results that 

are mathematically difficult to grasp. The velocity hodo- 

graph defined as the locus of velocity vectors Is a geo- 

metrical picture which reduces all conic sections to map- 

ped circles. 

Mathematical Derivation 

If motion of the spacecraft is described in polar 

coordinates, the velocity vector can be defined by two 

orthogonal componentsi the radial velocity, f, and the 

transverse velocity, r9 . The equations used to develop 

the hodograph equation are 

k ~ r^O '  consto-nt 

(3-1) 

(3-2) 

(3-3) 
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U 
where 

a ■ semi-major axis 

e = eccentricity 

h = angular momentum per unit mass 

V ■ total velocity 

r = radial distance 

0 ■ angular velocity 

yu= gravitational constant 

Substituting Eq (3-3) into (3-2) and rearranging 

yields 

0. 
O-e'j (3-*) 

o Eq (3-^) can now be directly substituted into Eq (3-1) to 

give 

. & r + (-^ a s* _2 
r 

^<* (l-e
2,) 

(3-5) 

which when rearranged yields Eq (3-6) below.  It is imme- 

diately recognized as the equation of a circle with coor- 
« 

dinate axes r and r9 .  It should be noted that in the 

proceeding development the initial equations, Eq (3-1) and 

Eq (3-2), are equations for circular and elliptical sec- 

tions! however, the same resulting equation is produced 

assuming parabolic or hyperbolic conic sections. 

^H-'r/ = («fjl (3-6) 
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U 
Eq (3-5) as notated represent«; a graph with a "float« 

ing" centerk  It is desirable to fix the center such that 

a pre-plotted graph can be constructed and used under all 

circusstances. This can be accomplished by reducing the 

equation to a non-diaensional form. Thus, dividing Eq 

(3-6) by OVhf yields 

m*&-r- 2    2 
e (3-7) 

Letting 

X = ^ek _   -r^g* (3-8) 

■ and 

V - ^ T - ^ 
'■6 

^. (3-9) 

it is evident that in the X,Y coordinates the origin for 

circles of radius e is centered at the point (1,0) as 

shown in figure 10. 

Discussion 

Many interesting relationships can be obtained by 

Just looking at X and Y, for examplet 

y = >^ - Jjd^f = irli r-Al -/-f ecosö  (3-10) 
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Figure 10. Dlmenslonless Polar 
Hodograph of Velocity 

and 

Y = — - 
y**- 

±£9   _   ±X 
^   '   v.. 

'4 
= e sinO (3-11) 

where  \(c, the local circular velocity, is"\£pFa Obviously 

many more rearrangements are possible. Prom Eq (3-10) it 

becomes immediately apparent that Q  is the true anomaly 

and since X is equal to (1+e) when 0 is zero and (r0) is 

maximum, it follows that the point (l+e,0) is the peri- 

focal point. By the same type of argument (l-e,0) is the 

apofocal pointi however, it should be noted from Eq (3-8) 

that points where X is equal to or less than zero are not 

physically defined. Furthermore, it should be noted that 

the X axis represents the apsidal axis, AS the true anom- 

aly Increases from perifocal point, r is always initially 
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ü 
positive so froa Eq (3-11) it is deduced that 6 is meas- 

ured in the counterclockwise direction since Y is initial- 

ly positive. 

Additionally, it is evident that the arctangent of 

(Y/X) is the same as (f/r0) so that a line Joining point 0 

to point (X,I) forms an angle with the X axis equal to the 

flight path angle. 

Time from peripoint passage can he indirectly obtain- 

ed by adding new curves to the graph. Consider the time 

equations (Ref a»^-5) for an ellipse, 

u y 

at* 
tfc i-e 6w| 

i+e      2 
-eV^? sin 9 

I +ecos0 
(3-12) 

for a hyperbola. 

.svS 
At_ £*] eV^     sing 

■^H -•>/eH   tan-| 
(3-13) 

and for a parabola 

^£(^1*7^11 (3-1*) 
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Noting that 

(4 
/*% 

I-e 

2 
2 

(3-15) 

Eq (3-12), (3-13). end (3-1^) can be written as 

(3-16) 

where K = f (et6 ), thus 

K = 0 for 0 = 0° 

K = Ttjl-e1)"*    for 0 - 180° 

By preplottlng constant lines of K (Ref 3»13)f time may 

be computed from Eq (3-16). The time so obtained Is 

normally expressed In the units used In the gravitational 

constant^(See Fig. 11). 

The range (radial distance) at any point on the free- 

fall trajectory can be easily found after one point of the 

orbit's eccentricity circle is associated with a range 

value. Knowing range r, «t point (X, ,1, ) the square of 

the angular momentum per unit mass is obtained from 

Eq (3-10) 

A s Y; ^ X, 
(3-17) 

The second point fixes Xt and by the conservation of 

angular momentum 
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O 

Figure 11. Time Lines of Constant K 
(From Ref 5«39) 

rtyu.X2 = -r, /u-X, (3-18) 

( ^ 

Thus the caloulated range is 

1    K 
(3-19) 
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It follows that the perlpolnt radial distance must be 

(3-20) 

The semi-major axis for all conies can be expressed as 

rX a = 
|i-e*| 

The seml-latus rectumt p, is simply 

P= rX 

(3-21) 

(3-22) 

. 

I   l 

Concept and Method of Graph Usage 

In order to Increase the accuracy of data extracted 

from the graphs It Is evident that the graph must be quite 

large and have a dense grid of lines to minimize the er- 

rors associated with Interpolation, Obviously, combining 

cartesian coordinates, polar coordinates, and time con- 

stant curves on one graph would be shear nonsense. 

Instead, It Is suggested that there be three separate 

graphs plus a transparent overlay which would merely serve 

to transfer the plotted points from one graph to another. 

As seen In Figure 12, the three graphs are the (XtY) 

cartesian graph, the (e, 6 ) polar graph and the graph of 

time constant curves K.  If the distances X - 1 and e = 1 

are represented by a length of 20 centimeters, each graph 
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SY 
  

ll 
I 

n . • •9     "^ 
i i ! i i»; 2.    v   I 

Li 

Transparent Overlay X,Y Cartesian Coordinates 

or 

e,0 Polar Coordinates    lime Constant Curves, K 

Figure 12. Composite Graphs 
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slBllar to those shown In Figure 12 would measure 50 cm 

horizontally by 60 cm vertically. Line Intervals of 2 am 

would provide X,Y and e scale readings to 0.01 without 

interpolation and to about 0.001 with interpolation.  In 

addition, the cartesian and polar graphs have the potential 

to be contracted in scale by factors of ten in order to 

deal with orbits having an eccentricity less than 0.1. 

Case Studies of Applicability to Orbit Determination 

For simplicity, let it be ass^Tied that a set of three 

observations exists containing range r (i.e., radial dis- 

tance from the center of the attracting body) and angular 

data ^where ^ is the central body angle or great circle 

arc on the celestial sphere between the line-of-position 1 

and the succeeding LOP's. The data is (r, , %)-,   (^. ^ )» 

and (r, , & ). From the polar coordinate equation for 

conic sections, one can derive an expression for X and Y 

in terms r's and ^"s.  (.3ee Appendix E). With X,I and r 

known the problem is essertially solved. 

A second case can be considered where the angular 

measurements are not included. Here the data consists of 

(r, , t, ), (rt , tt) and (r3 , t$ )  where t, < tl< t 
3 

Using 

equal time intervals and numerical differentiation (See 

Appendix B), it is possible to determine r and r, but L.ot 

S   thus posing some difficulty. The difficiilty is im- 

mediately resolved by substituting the following equation 

(See Appendix C) 
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M'=v>vf (3-23) 

Into Eq (3-10) producing the relationships 

X =1 9  I + 

or 

X -- 8 

(3-24a) 

(3-2^h) 

where  V(t Is the local circular Telocity for radial dis- 

tance r.  Manipulation of Eq (3-10), and (3-11) yields 

Y = + V? (3-25a) 

or 

Y = 
-rYX" (3-25b) 

'J.C 

The solution for finding the geometric orbital parameters 

Immediately follows. 

The third case occurs when the following data Is 

obtainedi { Qi ,  t, ), (r,, a 64 . ta) »nd ( 0,, t,). Here, 

X can be found from Eq (3-8) and from the first time deriv- 

ative of the angular momentum the following expression for 

r Is given as 
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v,./ 

T9 

2d 
(3-26) 

Having found r, Y can be solved so that knowing r, X, Y 

the problem is solved. 

The final case is the situation where ranges cannot 

be obtained} only the angular measurements are available. 

The data consists of ( ö. » t» ) t ( Ö, . t, ), ( 08 , ta}, 

(6 t t, ), and t %t %J* I* Is no1? necessary to lean 

heavily on equations derived by Hssrs. H.H. Gersten and 

2.E Schwarzbein (Ref 22i697). Their equations arei 

o 
e cos 0, = Q/S 

e slnö, = R/S 

(3-27) 

(3-28) 

where 

Q=(0IpinÄ0(,-|e,j^8i»iAÖ|t 

+ 0. !% smA0/2- sin60^ (3-29) 

^    A^ R = -(03
z-0/)cos60(a 

-f^-e (3-30) 

3^ 
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o 

1 

s = 

+ [e3fsin*et~[9tfs.n*e$      (3-31) 

From Eq (3-27) and (3-28) it is clear that 

(3-32) 

X = 1 + <?/5 (3-33) 

and 

Y = ft/S (3-3*0 

Although X and Y can be found, a range must be associated 

with the point (X,Y) in oider to progress with the solu- 

tion. An expression for range can be obtained from Eq 

(3-8)i it is 

^ 

r = ^ X i 
e 

(3-35) 

With X, Y, and the corresponding range, r, ,, known the 

problem is readily solvable. 

Summary 

The main advantage of the velocity hodograph is that 

by mapping all conic sections into circles a quick graphl 

cal method is provided for the determination of three 
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orbital parameters and other relationships. The orbital 

elements are the eccentriolty 

e- read directly from graph 

the semi-major axis 

a = vX 
i-e' 

and time to or from peripoint 

at^KrxV*? 

(3-21) 

(3-16) 

Other relationships of interest that can be obtained are 

the true anomaly 

Q -  read directly from graph 

the radial distance at peripoint 

-  r-X 
i + e 

(3-20) 

( 

and the seml-latus rectum 

P = = T X (3-22) 

Other advantages are that the hodograph is independ- 

ent of the central body (i.e., it can be used when orbit- 

ing any central body, hence, serves all planets and the sun) 

and that it can be used to calculate guidance maneuvers 

(Ref 21i905). No aspects of guidance are considered in 

this thesis other than to state here and now that guidance 
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u 
consists of orbital maneuvers based on conclusions gained 

from knowing the orbital parameters. Additional Informa- 

tion can be obtained In references 1 and 21* 

In the discussion of applicability It was shown that 

It Is possible to obtain from range and angle, range only, 

and angle only data the Information required to fix a 

point (X.Y) on the hodograph with an associated value of 

range. 

u 

C 
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IV. Sample Problems and Solutions 

Introduction 

Previously in Chapter II, the position fix consisting 

of a llne-of-position (LOP) and a radial distance was 

discussed. The LOP Is a line from the attracting body 

center through the spacecraft position and extended to the 

celestial sphere. The Intersection of the LOP with the 

celestial sphere can be given In terms of Latitude S and 

East Longitude «"C. Since the radius vector contained in 

the orbital plane traces an arc of a great circle on the 

celestial sphere, two orbital orientation parameters — 

Inclination and right ascension — can be obtained using 

spherical trigonometry. Furthermore, knowing the true 

anomaly which can be found from the velocity hodograph. In 

addition to knowing the Inclination and right ascension 

provides the necessary data to determine the argument of 

perlpolnt through more spherical trigonometry (See Appen- 

dix D). The three orbital parameters — Inclination, 

right ascension, and argument of perlpolnt — will not be 

discussed In the following problems since the calculations 

must always be based on two LOP's and follow the same or 

comparable mathematics suggested In Appendix D. In the 

sample calculations to be discussed next, a cluster of 

three to five observations is typical as shown In Figure 13. 
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Kj 

( 

N. 
observation 

\ 

observation 

observation 

spacecraft trajectory K
4 

Figure 13. Typical Trajectory with 
Observation Schedule 

(From Re/ 15«2^.) 
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U 
The central body in all cases discussed is the earth where 

the gravitational Constantsa is 62750.71? NM3/secZ. 

■: 

Sample Problea 1 

Five LOP's have been established at 15 minute inter- 

vals and the great circle arcs separating each point has 

been calculated. Since angular differences are involved 

let PS- 0  degrees. The angular data is ft=*  0, ^= 6,464, 

^= 12,787, %.= 18,992, and j^ = 25,106, In addition, 

one range sighting was obtained on the third observationi 

thus, r3 ■ 15,475 NM 

From the numerical differentiation formulas in 

Appendix B, the time derivatives of ft$ expressed in sec- 

onds are 

%   = izt 

/2 j 9ÖO) 

- 69. &    x /o i»}/. Sec 

•z    I.ZlS    *   /c -ro^d/sec i/s 

and 

\ztz vs~~ 
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W -2g-./06 + /6 (£5.4-26) -30(/2.7g7) 
/z (9ooX»oo) 

O./06   ■*- /e(o.+S6)  -3o(o.&87) 
12 (?0o}(^Oo) 

-7 
~   -/. 4-55   *   /O       <je§/sec 

-» 
=    -2.S"fe     ^   io       T-ft.<i/«e& 

(/.g475- x iO^K-Z.Si * /O*) 

= /.fe£«r x /o"'   KM/sec 

6.275"   •<  /O* 

=     8.75   x   /o'' 

(3-26) 

(3-8) 

Y = ^r-a9 
(3-9) 

(/.feig < i6')0.S+7S x itffji.zis * /Q-*) 
6,275" *  /0 + 

-2 =   7 5fc   x   /o 

Plotting X,  Y on the hodograph. Pig. 1^,  produces an eccen- 

*U 
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: 

210* 

;' 

240° 

■ :ilo   ! ./I/: i I ^i | j /is;: 

^   Problem 1 

O   Problem 2 

270° 

Q   Problem 3 

O   Problem b 

300 

Plgxire 1^, Partial Hodograph with 
Sample Problem Solutions 
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O 
trlclty of about .i5 and a true anomaly of 148 degrees, 

A more precise graph would have yielded 

e ■ 0.1^96 

9 = 147.5° 

a- 
/-e' 

-   13 830 A/AI 

(3-21) 

. 

The exact values used in setting up the problem are 

a = 13*760 NM 

e ■ 0.15 

0 = 150.696° 

Sample Problem 2 

Three range measurements separated by 15 minute inter- 

vals are obtained, but no LOP is established. The ranges 

expressed in nautical miles are r, = 9896, rz = 11098 and 

T3  ■ 12253. Then from numerical differentiation 

n = Zt 

-   122-53 - 9896 
2(90oJ 

=   1.309   NM/sec 
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u ♦•»5  - Zrj, 

9696 + IZZS3 - zOlOla) 
(9oo)(9oo) 

=  -5:8 >«  /o"      NM/tec- 

X* i* 
2. " (3-24a) 

fe. £74r x /O' 

-   O. 886 

Y = ■v5 (3-25») 

1 /(/.'098 »• /0*K0.886) 
= '-30,'V—riTFT^— 

= o.5'9 

■ 
i 

Plotting X,Y on Figure 14 appears to yield an eccentricity 

of 0.526 and 102° for true anomaly 

a = I- e» 
(3-21) 

W 
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0 (M0«?8 " IO*)lo.B8(>) 
1   -   0.526* 

=   13 6oo   NM 

u 

The actual values used In this problem were 

a - 13.760 NM 

e = 0.5 

0= 98.0600 

Sample Problem 2. 

The problem to be now considered is the situation 

where range data is not available for some unexplained 

reason. The angular data obtained over 20 minute intervals 

is 0fl= 0°, 0,= 12.883°, 0Z= 25.109°, 0a= 36.9^° and 

0 = 2f8.6570. The angular velocities are found to be 

0, = 1.820 x 10"^ rad/sec 

-4 0 = 1.745 x 10  rad/sec 

$t=  1.713 x 10"**" rad/sec 

Using Eq (3-29), (3-30), and (3-31) is somewhat laborious 

In order to retain significant digits, a desk calculator 

was used to accomplish much more rapidly what could have 

been done otherwise by hand calculations. The results 

obtained were 

Q = -2.5704 x iO"5 
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B = 1.5072 1 lO"5 

3 = 1.4939 x 10' 

and from Eq (3-33) and (3-34) 

X = .8279 

O 

.1009 

The range corresponding to position 0, Is 

^ 

x^ 
ft 

(3-35) 

and yields a value for r, of 11575 HM. 

When X,Y Is plotted on Figure 14 It appears to Indi- 

cate an eccentricity of 0.2 and a true anomaly of 150°. 

The actual values In setting up this problem are 

e = 

e. 
r. = 

a = 

0,2 

150.658° 

11,627 NH 

10,000 NM 

Sample Problem 4 

This last example represents the case where three 

complete position fixes are known. The data has been 

reduced to 
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r, « 11,489 NM 

rt ■ 12.604 NM 

r,   = 13.619 NM 

^ nO ^- 0 

^= 7.5^1* 

^ = 14.482* 

The equations to be used are 

esLnO = 

^i - "n- 
T; - T; cos ^ ^ ' "^ te5 ^ ] 

1 tin pg 
- TJ CPS ^ ^ - r;coS/5 

(E-8) 

O 
and 

e cos 9. = ^ - >r 
.r; -^«••%. 

- I     ^Z sin Ac 
lT-rtco%%_ estnö      (E-9) 

See Appendix E for derivation of the above formulas. 

Breaking down Eq (E-8) into its basic terms yields 

n   -TT iZbOA- - U + QI 
17 -Trjcos)^ //4-8^   -('a604)(b.99/35^ 
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U mg 
- I DOS' 

=   ~ t.f 09 

y;-ir3cos% 

ZI 30 
- )707 

-  "i.z+s 

Tp-Tjfcos^    ~ — ZOOS' 

■=.   -I.CSö 

75 »is ^»  _ 
-1707 

-    -1.990 

kB 
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O 
esciaö  = -1.109     +   /.246' 

-/.teo    +   /.99 0 

~  0.4-00 

e cos Ö, - - /. /o t - (- /.bso){o.+00) 

=   -O. q-4-<? 

Therefore 

X = 0.551 

and 

Y = 0.400 

Plotting X,Y on Figure 14 produces an eccentricity of 

about 0.6 and a true anomaly of about 138 degrees. 

The semi-major axis is 

a = X 
I- e« (3-21) 

1 - (o.*;* 

O 
ff.   /0,00c»   NM 
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The actual values In this problem are 

e ■ 0.6 

0 = 137.580° 

a « 10,000 NM 

\ ■ 

Discussion 

The sample problems were Intended to show the reader 

that situations where the data Is restricted In some form 

or other can be solved just as the theory Indicates. Ad- 

mittedly, the examples selected to demonstrate the various 

situations were chosen with care. 

Sample problems 1, 2, and 3 rely on derivatives ob- 

tained through numerical differentiation and consequently 

contain truncation errors. Truncation errors are mini- 

mized as the time Interval gets smaller. On the other 

hand, measurement errors are magnified by the numerical 

differentiation algorithms as the time Interval gets 

smaller (Bef 17«97-98). All the sample cases selected 

consisted of range data correct to the nearest nautical 

mile and angular data correct to the nearest thousandth of 

a degree. Experimentation with time Intervals of 5i 10, 

15, 20, and 30 minutes and also experimentation with 3 and 

5 point differentiation did not vary the results of eccen- 

tricity and semi-major axis by more than 2 per cent when 

a fixed position on the orbit was selected. By contrast, 

however, the point of the orbit selected for experimenta- 
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tlon had an enormous effect. Had Sample Problem 2 been 

set up with the same time interval but at the true anomaly 

of 150° Instead of 98°, the solution would have produced 

an eccentricity of about 0.4 and a seal-major sxls of 

about 15f500 NM whereas the true values were 0.5 and 

13r760 NM, respectively. Obviously this represents a 

deviation which cannot be neglected, not even by the most 

careless navigator. That approximate derivatives obtained 

from finite differences should be viewed with skepticism 

(Ref 17i97) seems to be good advice until some future 

study reveals the criteria by which the e^d results ob- 

tained through calculations involving numerical differen- 

tiation can be accepted or rejected. 

Sample Problem 4 consisting of three complete position 

fixes does not rely on derivatives and not surprisingly 

should yield an acceptable result always. 

In Sample Problems 1 and 3» the shortcomings of try- 

ing to retain significant digits through slide rule cal- 

culations were quite evident to this author. To have 

measuring Instruments capable of measuring angles to the 

thousandth of a degree and using five place trigonometric 

tables but not being able to retain significant digits in 

the calculations seems somewhat unreasonable. A hand-heId 

mechanical calculator such as the Curta Calculator which 

is smaller than a four inch cube and weights less than one 

pound yet has an eight significant figure accuracy (Ref 61 

167) appears to be a necessary item for any mission 
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u requiring explicit oanual navigation. 

^ 
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V.    Grour'd Based Orbit Determination 

Ü 

Introduction 

Since electrical navigational devices are barred from 

consideration In this thesis, the tracking of satellites 

must depend on optical means. In order to be visible, the 

spacecraft must carry its own light source or be illumi- 

nated by mn external source such as the sun. 

The optical sightings normally consist of angular 

measurements in azimuth and elevation taken from a "•sen- 

scr" site local horizon. 

Certain assumptions to be made are that 

1. The coordinates of the site location are 

known. 

2. The direction of planetocentric true "North" 

is known. 

3. The true local vertical can be established. 

^. The central body surface radius is known. 

5» The central body rotation rate is known. 

Simple Devices 

The devices mentioned are crude devices in most 

instances and to a great extent resemble the schemes used 

by amateur moonwatchers. 
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The !test 

The mast is the simplest device.  It consists of 

erecting a aast of known height with Its longitudinal axis 

parallel to the local vertical. The ground about the site 

should be level to approximate a plane perpendicular to 

the local vertical. 

The individual making the sightings must move about 

the mast in order to maintain the visible satellite's 

position Just on top of the mast. As the individual 

tracks the satellite by moving his position about the 

mast, marking flags are dropped at recorded times. After 

satellite passage, the dropped flags can be used to di- 

rectly establish azimuth and time. Knowing the observer's 

eyesight height and a little plane trigonometry can estab- 

lish the angle of elevation (Ref 7«62). See Figure 15. 

Slew Telescope 

The slew telescope is essentially the most common 

instrument used to simultaneously provide a reading of 

azimuth and elevation. The principle is quite simple, 

featuring two degrees of freedom. In essence, the instru- 

ment consists of a sighting device mounted on a protractor 

which is free to swing en a pin connected to a vertical 

rotary shaft, A sketch is Illustrated in Figure 16, 

Techniques 

In order to avoid using a laborious, classical orbit 
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Figure 15. The Mast Figure 16. Slew 

Telescope 

determination •scheme such as Laplace's Method, the slant 

range to the target must be found to simplify calculations. 

The methods used to find the range resort to triangulation, 

but all triangulations require one known distance called 

the baseline. 

There are two basic techniques available. They are» 

1. The two station-one pass method 

2« The one station-two pass method. 

The two station-one pass method can establish the 

range to a satellite from only one satellite passage. The 

baseline is the known separation distance between the two 

stations. Due to restricted mobility, a mission landing 

on some planet would not generally be expected to estab- 
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Figure 17, Triangulation Error 

(From Ref 11:121) 

( 

llsh  a long baseline. If the baseline is small compared 

to the height of the target, the closing angle between the 

two rays is extremely small, and slight traclcing or mis- 

alignment errors in the direction to the target will pro- 

duce tremendous errors in range and spatial position to 

the target (Hef lltll9-120). See Figure 1?. 

The one station-two pass method makes use of the 

fact that an unperturbed orbital plane remains stationary 

but due to the planet's rotation the sensor site has moved 

its location with respect to that plane during the elapsed 

time between satellite passage. The baseline is the chord 

which separates the site locations with respect to the 
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O 
orbital plane during each passage. Obviously the distance 

of the baseline is a function of singular rate of planet 

rotation and elapsed time. The time interval must corre- 

spond to the time between sighting the satellite on the 

first pass and sighting the satellite at the same position 

in its orbit on a succeeding pass. The baseline distance 

B can be expressed as 

B= 2Rbcos^ sin^ (5-1) 

O 

where 

R ■ body surface radius 

i ■ site latitude 

W » angular velocity of planet rotation 

&t a elapsed time 

O 

From the spherical isos- 

celes triangle of Figure 18 

it can Ke seen that the angles 

A, and (3600 - Aa) must be 

equal and their magnitude is 

a function of Af. With a 

precomputed table containing 

A, and A4 versus values of At, 

a search of the tracking data 

can be made to find the azi- 

muths A, and Aj, which will Figure 18. Azimuths 
Versus 

Elapsed Time 
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correspond to the elapsed time. The correct correspond- 

ence establishes a point on the orbit that is the coonon 

reference point betveen the two passages of the satellite. 

The greatest difficulty arising from triangulation 

with the baseline is that the angle between the baseline 

and the satellite line-of-sight must be calculated through- 

vector dot products. See Appendix P. 

Satellite Position Fix 

After calculating three slant ranges by triangula- 

tiOii, the satellite position can be deteimined quickly. 

The radial distance from body center to spacecraft is 

( ) T ^ Rfc + ir sm(^J (5-2) 

where 

Rb = body surface radius 

TS  = slant range 

El ■ elevation angle 

The great circle arc or angular ground distance ^ from 

the site to the sub-satellite point is found from 

i> - icL.n 
-I cos M 

«b "♦• ^ sin {El) 
(5-3) 

58 

iäädlHB^HH^IHHtauiiiayiiUMiüisiu^  nrimmmmmmmmä 



GA/MC/71-1 

0 

(   ! 

Figxire 19 

Range-Elevation Chart 

Flgicre 20 

Geometry for 
Sub-Satellite Point 

An all-purpose non-dimensional chart such as illustrated 

in Figure 19 can be used to obtain radial distance r and 

angular ground distance <f>. 

Application of the sine and cosine laws of spherical 

trigonometry allows one to calculate the position of the 

sub-satellite point in terms of latitude and longitude 

(See figure 20). Knowing the sub-satellite point is anal- 

ogous to knowing the LOP in space navigation. From this 

point on the solution is arrived at in the same manner as 

Sample Problem k where three complete position fixes are 

known. 
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Suaaary 

The foregoing discussion serely served to show that 

satellite tzacklng does not differ greatly from space 

navigation. The tricky part concerns manipulation of the 

angular data to establish the slant range and then to 

determine the sub-satellite points. Once three satellite 

position fixes are known, the problem Is solved In the 

same way as for space navigation where three complete 

DOSitIon fixes are known. 

( 
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VI. Conclusions and Eeconmendations 

Introduotlon 

This chapter comments on some of the impressions 

drawn from the research associated with this thesis, 

under the subheading "Recommendations," some discussion 

of follow-on theses are briefly touched upon. 

Ü 

Conclusions 

The following conclusions are offered as the result 

of experience gained in preparing this theslsx 

1. Navigational devices which are simple in 

concept and design appear to present no 

problem from the theoretical point of view. 

The real problem arises when the instrument 

is Integrated into a confined system which 

places restrictions on size, weight, and 

employment. Then, the simple device is 

transformed into a complex instrument re- 

quiring advanced and sophisticated engineer- 

ing designj witness the transformation of 

the simple marine sextant to the complex 

space sextant. 

2. The effects of oblateness on the range 

accuracy of stadimetric measurements involv- 
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Ing devices viewing the entire target can be 

resolved by additional calculations. Thus, 

the accuracy In range is really dependent on 

how well the physical dimensions of a celes- 

tial body are known. 

3« The composite graphs of the non-dlmenslonal 

velocity hodograph appear to provide the 

navigator with a tool which can assist him 

In determining three orbital parameters 

(eccentricity, semi-major axis, and time to 

or from perlpolnt passage) plus the true 

anomaly. In addition to the fact that the 

velocity hodograph Is a simple picture of 

any conical orbit, the hodograph has the 

potential of being used for guidance or 

orbital maneuvers which are usually the 

normal follow-up actions after determina- 

tion. 

4. Orbit determination can be completely or 

partially accomplished depending on what 

data is available by using first and second 

time derivatives of range and true anomaly 

obtained through numerical differentiation. 

5. The accuracy of the geometric orbital para- 

meters derived through numerical differen- 

tiation is more sensitive to the position 

of the spacecraft on Its orbit than to the 

62 



GA/MC/71-1 

time Interval chosen* 

6. Manual navigation aids stich as a mechanical 

calculator is a necessity in order to retain 

the significant digits within the computa- 

tions. 

7. Ground level orbit determination is basical- 

ly no different from on-board orbit determi- 

nation. Without resorting to Laplace's 

Method or some similar scheme, the key to 

the problem's solution is determining range 

by triangulation so that three spatial fixes 

are obtained. 

U Recommendations 

Some suggestions are offered for follow-on study 

topics. They are as followsi 

1. Resolve the geometry of the stadimetric 

system viewing a limited portion of a non- 

spherical target. 

2. Develop large size composite graphs of the 

velocity hodograph including a finely in- 

cremented constant time line graph and to 

investigate the handiness of the composite 

graphs thoroughly. 

3. Investigate what criteria should be used to 

accept or reject the geometric orbital para- 

meters obtained from calculations relying 
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on nuiaerlcal differentiation when nothing la 

originally known about the orbit. 
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Appendix A 

Supplementary Rel&tlonshlps in the Geometry 
of Stadimetrlc Measurement 

U 

The equations below (Ref 13»101) refer to Figure 5. 

The angle 0-^0 is measured; Sd is the correction angle 

due to the finite size of the center field of view. 

Let R = r^,  then 

0 .   -' $M. 
.''(lA/JJ 

^» ̂  

Sin (A-l) 

e = COS 

i        <t> ^ A 1    cos -|- + cos   -5- 

cos -^1 cos 0 > (A-2) 

-/ IfHI 
1-1 

-1 L 

i-yf?/ 

sLn-o-} 
w 
z (A-3) 

<f0   = 
-/ cos 4- cos1 ^ 

COS 

COS - 
w - COS   -£-\ 

2lJ 
(A-if) 
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Appandlx B 

Nuaerloal Differentiation Formnlaa 

The first and second time derlratires are given below 

for finite differences obtained froa three to five read- 

ings. 

3 readings} 

o 
** = 

x3 - x, 

zt 
(B-l) 

X, + X3 - 2 xs 
(B-2) 

k  readingst 

X- = 
6t 

(B-3) 

xÄ = 
x,  +x3 - Z x. 

«■ -       .12 
(B-^) 
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5 readingst 

X3    S 

(x.-xj - 8(^ -x4) 
lit 

(B-5) 

X3   = 

-(,xt^xf)4-/6(x4^xt)-.30X3 

—^ (B-6) 
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Appendix C 

Radial Acceleration 

When a body is in an exact circular motion it aay be 

said that the centripetal acceleration is balanced by the 

gravitational acceleration in which case the radius is 

constant implying that r = r = 0. Thus 

re z 
LC (C-la) 

0 or 

LC = r0 = t (C-lb) 

where g is the local gravitational acceleration at dis- 
tance r 

0LC is the local circular angular velocity 

V{c is the local circular velc-Jity 

When  e ^e.i the accelerrtions are not in balance} 

and( there exists a radial acceleration r and consequently 

a radial velocity r. The velocity is expressed as 

vl = (re)' +   r* (C-2) 
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U 
and the relationship for radial acceleration as 

e   ~ «i + 
» 

(c-» 

or 

re      -   J,^ +   r (c-3h) 

Substituting Eq  (C-lb)  into  (C-3h)  yields 

or 

re     "-   re I    + r (C-4«) 

I \l 

r9 = y +■   r r~ 
LC (C-4b) 
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Appendix D 

Orbital Orientation Parameters 

It Is assumed that two 

lines of position have been 

identified in terms of«cand i. 

The most general equation? for 

the orientation parameters 

(Ref 10t265) are given below. 

Right ascens ion,A» Figure 21 
Three Dimensional 

Geometry of an Orbit 

A = W tan J. 
r 
£ 

ta.n4.        * ) 

(D-D 

Inclination, li 

i *i a-n ia.n. S, 
sm^.-ii) 

(D-2) 

The true anomaly angle between the reference plane 

and point 1 Is given by 
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a a sia- [mi. 1 stu t 
(D-3) 

froa which the argument of perlpolnt is 

« = erQl {D-4) 

where dt is the true anomaly at point 1 as obtained from 

the Telocity hodograph. 

o 
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Appendix E 

Geometric Parameters from Bange 
and Angle Data 

This method can he used to find X and I for the ve- 

locity hodograph when three complete position fixes are 

knorfn. Since the LOP's of the position fixes are expressed 

In terms of latitude £  and longitude o<, the great circle 

arcs connecting LOP's with the LOP of position fix 1 form 

spherical triangles where the two sides (90° - ^ and 90° 

- /. ) and the Included polar angle ( o^ - «<, ) are all 

known. As defined here, the great circle arc of LOP 1 is 

a special case and may simply be expressed as 

p- -o (E-l) 

The succeeding great circle arcs may be found from the law 

of cosines, thus 

jX  = Cos"' [ cos (10-S) cos(?Ö -Ij 

+ Sin (fo-i[)sia(90-ftj «<«(•(-«(,)]    (E-2) 

which can he simplified to 

pf ?cos' [sin.^, sU/. ■i'CosSlcosSi c^s(o(.-«(J]        (E_3) 

75 

■ 
________ 



GA/HC/n-l 

u It is evident that the tlae separation between fixes Is 

Imaater^l In the above. 

From the general polar equation of • conic trajectory 

"r(/4 ecos6j = constant      (E-4) 

therefore let 

i7(/+ e cosej =*l(uecos(0 + if^   ^'^ 

and 

0 
^(i +ecose} = r3{i+ eco£(0 + ^)j    (E-6) 

Solving simultaneously by making use of the trigonometric 

Identity 

cos(ß+2J = cosÖcosp' -smOsm/>       (E-7) 

yields 

esinö =■ 

^ - r- — y-3 - v 

^-T^COS  ^ nr-^cos ^ 

— 

(E-8) 
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and 

Although Eq (E-8) and (E-9) look long, the calculations in 

Eq, {E-8) are simple and straightforward! and, the terms of 

Eq (E-9) are repetitions of terms In Eq (E-8), Note that 

^ = / + e cos©, (3-10) 

and 

are 

Y = e SlrtQ, 

the arguments for the velocity hodograph. 

(3-U) 
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Appendix F 

Baseline to Line-of-Sight Angle (<r) 

To find the slant range along the line-of-sight one 

must know the angle formed between the taseline and line- 

of -sight before triangulation ca: be made with the base- 

line distance. A coordinate system is established such 

as illustrated in Figure 22, 

The line-of-sight unit vector can be expressed as 

o Lir cos(AJcos(£i)£ -^Wco5(e!)?4 *in(eiH  t*-1) 

(^ooo/rd Pole) 

/ 

of 
loco. I    'loir/5 on 

Figure 22 
Line-of-Sight Unit Vector 

■ 
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V 4-fc— p'-s-Ke or P' 
e^ut/ I^TituJe. 

/ 

•4n(i^j 

Pol, 

p/OLNe of 

Figure 23. Baseline Unit Vector 

The baseline unit vector must also be expressed In 

terms of x,y,z. From Figure 2.3, It can be seen that the 

baseline unit vector can be expressed as 

] -. sUisUfflt. ±c«(^)9 -Wsuffijl   (P-2: 

where the sign of the term containing y depends ca which 

end of the baseline one Is making the calculation«. (As 

drawn In Fig. 23 the sign Is +.) 

The angle fl" between the tasellne and the llne-of- 

slght Is 

= cos"' [i • ij (F-3) 

79 

.., _,  ,.._.,...,. „.„^ „ 



GA/MC/71-1 

u 
VITA 

Daniel Henri Jean was    

.  , He graduated from  

 Tampa, Florida In 1956 and entered the united 

States Naval Academy at Annapolis, Maryland. He graduated 

with a Bachelor of Science degree and received a regular 

commission In the USAF In June i960. He served as a Deputy 

Missile Combat Crew Commander In the ICBM-Atlas complexes 

of the 566th Strategic Missile Squadron, Francis E, Warren 

Air Force Base, Wyoming. Subsequent assignments were 

within the Space Defense System where he served as Special 

Events Officer with the 1st Aerospace Control Squadron, 

Ent Air Force Base, Coloradoj and as Space Surveillance 

Officer with the 2nd Surveillance Squadron (Detachment 1), 

Shemya, Alaska and then with the 20th Surveillance Squad- 

rons Eglln Air Force Base, Florida until his entry Into 

the Air Force Institute of Technology. 

Permanent address»  
 

This thesis was   

80 

, ^ 



Lasslfled 
• - : - 

Security Classificatioi; 

DOCUMENT CONTROL DATA R&D 
(Security cJmssificMtion oi ti*lB, body ol abtlrmct and indexing annotation mutt %t entered when the orermU report ia cimtailied) 

i. ORIGINATING ACTIVITY (Corporate author) 

Air Force Institute of Technology 
irfrlght-Patterson AFB,  Ohio 45^33 

ZM. REPORT SECURITY   CLASSIFICATION 

unclassified 
2b.   CROUP 

3-   REPORT  TITLE 

Methods and Design of Simple Dsvices for On-board and Ground-bound 
Orbit Determination 

*■ OESCRlPTi VE NOTEä (Typt of repoft end Inclusive dmtes) 

APIT Thesis 
5. AUTHORIS) (Flnt nmme, middle initial, Immt name) 

Daniel H. Jean 
Major    ÜSAF 

6    REPORT  DATE 

June 1971 
7«.   TOTAL   NO.  OF PAGES 

88 
r&.   NO.  OF  REFS 

26 
is.   CONTRACT OR  GRANT NO. 

b.  PROJECT NO. 

9a.   ORIGINATOR'S  REPORT NUMBERIS) 

GA/MC/71-1 

96. OTHER REPORT NO(S) (Any ether numbers that may be assigned 
this report) 

10.   DISTRIBUTION  STATEMENT 

Approved for public release, distribution unlimited. 

Äpt^ov^.fbr pulDljto roiestse: IAW AFK 19{i 
Jerr^/C. Hix, päptäiiTptf^aF 
Director of Liformation 

^.•«"ONSORING MILITARY   ACTIVITY 

13.   ABSTRACT 

Simple non-electrical methods and devices fcr orbit determination 
on the basis of explicit navigation are examined. Principal measuring 
devices discussed are the sextant, stadimetric Instruments, and almu- 
cantars. Computational methods for solving the geometric orbital 
parameters are focused on adaptations of the velocity hodograph. 
Discussion includes sample problems and a general analysis of inherent 
errors. 

DD.FNr651473 Unclassified 
Security Classification 




