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REPORT SUMMARY 

This is the first semi-annual technical report describing the work 

done and the accomplishments of the research effort for ONR-ARPA titled, 

"Composite Design Syrthesis". 

The research being carried out deals with the problem of design 

synthesis in heterogeneous elasticity.  Design synthesis is defined as the 

achievement of a desired design criterion, i.e., stress distribution, strength- 

to-weight ratio, etc., by preselecting a stress or displacement pattern in a 

stretched plate and then determining the variation of the elastic moduli that 

is required to permit the desired effects.  The accomplishment of the desired 

effects requires the solution of the governing equations of elasticity, parti- 

cularly the compatibility equation, in terms of preselected stress fields in 

the body for unknown material properties which are spatial functions. 

Since the initiation of the program, progress has been made in 

several areas. The compatibility equation for generalized plane stress has 

been generated in terms of both rectangular and polar coordinates.  Solutions 

for material property variation for the pressurized annular disk have been 

generated wherein the stress condition imposed was one of constant circum- 

ferential stress through the wall of the disk.  This solution showed that 

such a stress distribution can be achieved if a smoothly varying modulus of 

elasticity is developed such that it is a given function of the radius. 

Material property relations of a modified type of orthotropy as well as 

isotropy were employed and curves plotted for a range of material properties. 

It was shown that quite different distributions of the moduli are required for 

the externally pressurized disk as compared to the internally pressurized disk. 

These moduli functions were derived directly from the compatibility equation. 

The work done showed that it is theoretically possible to achieve a maximum 

circumferential stress in a pressurized disk that is considerably lower than 

can be achieved in the homogeneous isotropic or orthotropic case, and in fact, 

for the internally pressurized disk this maximum stress can be considerably 

lower than the applied pressure. 

The governing equations of the heterogeneous rotating, uniform 

thickness, rotating annular disk have been formulated and the solutions are 

being determined numerically.  In this case the material density as well as 
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the woduli can be considered as spatial functions, thus introducing another 

degree of freedom that might be employed by a designer. 

A stress function has been developed which if implemented by the 

correct material property variation will eliminate the stress concentration 

found around small holes in large plates.  This particular application has 

great usefulness in the fabrication of structures that are secured by rivets 

or for structures which must contain circular cutouts. 
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SYMBOLS 

Symbol Quantity 

a,b inside and outside radius 

a., material coefficients 

E, 
dimensionless  shear-modulus coefficient ('i) 

A  ,B ,C  ,Cn=C0 constants of  integration o»  o'  o*   1'   2 0 

Ec 
orthctropic ratio ( =p ) 

E. modulus of elasticity corresponding to the subscripted 
direction (i »= r}9) 

f J7 

f](0),f2(9) functions of 9 only 

G modulus of rigidity ( = G Q -  ) 
\      re      a66/ 

g acceleration of gravity 

k radius ratio  (=b/a) 

k. orthotropic ratio  (=e) 

k^ Poisson's ratio  in tangential direction ( =vfi   ) 

m cos 0 

n sin 0 

P internal pressure 

q external pressure 

r radius 

T temperature  difference  function 

u,v displacements 

R,X,Y body forces 



Symbol Quantity 

a coefficient of linear thermal expansion 

ß exponent (= -k,/k2) 

v material density 

e strain component with one or two subscripts 

0 body force in tangential direction 

9 angular position 

\ exponent 

v Poisson's ratio  in tangential direction  ( = v    ) 
br 

exponent ( 3 - [(*      ^ ]) 
-k,   - k2 

c2)k2. 

p dimensionless position ratio  (=r/b) 

0 coordinate system offset angle 

Y stress function 

u) rotational velocity 
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INTRODUCTION 

It has long been recognized that structural elements romposed of 

composite materials, such as glass, boron, carbon, or other filaments, embedded 

in a suitable matrix, such as epoxy or polyester, offer outstanding strength- 

to-weight ratios.  The potential of such materials is considered so great that 

material scientists and engineers believe that they will form the bulk of the 

structural materials of the future.  Though the application of such materials 

has been a growing part of the state of the art for structural components?, 

-«rticularly in the aerospace industry, the translation of the concept of 

fibrous composites into a primary load carrying structure has been and remains 

a challenging process. 

The present and growing use of structural elements fabricated from 

composite materials creates the need for the development of a rational analytic 

design basis, which to a great extent is presently non-existent.  This is not 

to be construed as meaning that little or no research on composite materials 

has been carried out.  On the contrary, a large amount of literature has been 

generated dealing with both the determination of the mechanical properties of 

these materials and the analysis of specific structures fabricated from them. 

In general, from the microscopic viewpoint, research on the mechani- 

cal properties of composites has dealt with the determination of such properties 

for materials having given component elements ordered in fixed spatial 

relationships.  The spatial relation in these cases might have a high degree 

of symmetry, as in long or continuous filament composites, or a completely 

random or homogeneously disordered array as usually employed in short carbon 

or boron fiber composites.  Such research has been directed towards the 

creation of analytic or experimental methods of determining the mechanical 

properties of composite structures in terms of the known properties of the 

composites' components, characteristic of this approach are the works of 

Sayers and Hanley [1]", Chen and Cheng [2], Hill [3], and Gaonkar [4], among 

others. 

In the analysis of structures composed of such composites, the 

material has generally been treated as exhibiting gross, homogeneous. 

Numbers in brackets are references found at the end of this report. 



Isotropie or anisotropic mechanical properties.  These gross properties, when 

entered into the constitutive equations defining- the material, have allowed 

analyses of such structures through the classical methods of the theory of 

elasticity, plates ar.d shells, vibration, and others. Along these lines, the 

concept of the "unidirectional lamina" was introduced and utilized as the 

"fundamental unit of material" in design and analysis.  This procedure 

employs test data obtained from a unidirectional lamina as the basis for the 

design of laminated components and structures.  Exemplary work done along 

these lines has been carried out by Dong [5], Tsai [6,7], Tsai and Azzi [8], 

Whitney [9], and Whitney and Liessa [10,11], also among others. 

All of these analyses have dealt with materials and structures that 

have predetermined mechanical and behavioral characteristics.  That is, once 

the geometric array and the constituents of the composite are prescribed, 

then the mechanical properties of the material and the response characteristics 

of a structure fabricated from such a material have been inherently established. 

Analysis will merely determine what these properties aid response charac- 

teristics are. 

When dealing with composite materials, the analytical procedures 

discussed above appear to be highly inefficient in many applications.  The 

designer of fibrous composite structures is presented with numerous degrees 

of freedom and an opportunity to exercise ingenuity totally unavailable to him 

with conventional materials.  Composites, whether filamentary, fibrous, or 

sintered or fused metallics, are capable of being tailored to meet specific 

requirements.  When considering specific structural applications for such 

materials, it would be logical to assume that a structure could be optimized, 

depending, of course, upon the optimization criterion, by varying the mechani- 

cal properties of the material throughout the structure.  Further it would be 

logical to bypass analysis completely and define this now nonhomogeneous 

structure by some means of design synthesis.  Admittedly, the creation of a 

design synthesis procedure to adequately handle most problems in structural 

design is quite difficult.  However, the concept of design synthesis to deter- 

mine the variation of the mechanical properties of a material within a structure 

so as to achieve a desired stress or deformation pattern in that structure is 

one capable of bs;ing developed. 



The work described herein deals with the first phase of an effort 

to develop a design synthesis methodology for composites.  It is directed 

specifically to the problem of heterogeneous plane elasticity. 
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GENERAL DISCUSSION 

Consider the following question: 

Given a plane elastic body with known boundary tractions and/or 

displacements, can the mechanical properties of the continuum be described 

such that an "arbitrary" stress distribution within the body is met? 

The term "arbitrary" is to be understood as defining a family of 

stress distributions that are preselected but still conform to equilibrium 

requirements and boundary conditions. To answer this question we start by 

making the following two basic assumptions: 

(1) the classical equations of linear elasticity are valid in this 

application, and 

(2) the mechanical properties of the continuum can be expressed as 

spatial functions. 

Following from these assumptions the well known governing relations of gener- 

alized plane stress, given in rectangular coordinates are as follows: 

Equilibrium Equations 

—- + — 
äx    öy ^ + -^ + X p=0 

-■—L + r-^ + Y f= 0 , 
5x   öy        ' 
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Compatibility Equation 
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u Assuming that the continuum exhibits orthotropic material proper- 

ties and neglecting time and strain rate effects,.the constitutive equations 

can be expressed as generalized Hooke's Law as 

e 
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where a, and a„ are the coefficients of thermal expansion and T represents 

the temperature difference distribution. The relations defined by Equations 

(4) are valid when the axes of the material properties of the continuum are 

coincident with the axes selected for the differential equations of the 

problem. If the axes are not coincident, except for the z-axes, and the 

other two axes of the material properties are rotated about the z-axis through 

some angle, i,   in relation to the geometric axes, then more complicated 

relations between the stresses, temperature and strains are developed. 

Lekhnitskii [12] presents these relationships in some detail. For the gener- 

alized plane stress case in point the material coefficients are related to the 

two axis system by 
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where    m ■» cos i,  and n = sin « . 

No generality will be  lost by continuing with  the  constitutive 

equation as  given by Equations  (4).     Substituting Equations   (4)   into  (3), 



assuming that the a..'s are spatially dependent and carrying out the required 

differentiation yields: 
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Assume that the body forces have a potential,  V,  such that 

av X • ax 

ay ' 

and choose Airy's stress  function, Y,   in the  form 

by 

(7) 
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Making the appropriate substitutions into Equation (6) yields 
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and,  of course,   the equilibrium equations are met exactly. 

Notice  that in Equations  (4),   (5),  and   (9),   a12 has not been 

equated to a«..    Normally,   under the limit of small displacement theory 

dealing with linearly elastic materials which are conservative,   the material 

coefficient matrix,  defined  in Equation (4), would be  symmetric and a.« would 

equal a«..    However,   some recent work by Bert and Guess   [13],  among others, 

shows  that there exists experimentally derived data which   indicate that  for 

some  types of composite materials exhibiting orthotropic properties  the 

material coefficient matrix  is not symmetric and a..-   is not equal to a91 . 

To  limit  the growing complexity of  this work,   the material  coefficient matrix 

will be  taken as symmetric,  at least  for  the  initial phase of this effort. 

Equation  (9)  can also be expressed  in polar coordinates as 

follows: 
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with Y being the stress function defined by 

r   r or  r2 äe2   r 
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Equations (11) satisfy the equilibrium equations formulated in polar coor- 

dinates for plane stress which are 

—£ + i_ie +_r a + R = o 
or   r 99     r 

-^• + -rrra + 2 -^ + © = 0 . 
9r   r 99     r 

(12) 

In order for Equations (11) to meet Equation (12) exactly the body functions 

V and V„ must be defined as 
r    9 

V« - T- (rV ) <= R 9  Sr v r' 

(13) 

thus putting a rather narrow interpretation on the body forcts. 

In the classical approach to the problem of orthotropic plane 

elasticity, the coefficients a., are either constants, as in the case of the 

homogeneous condition, or as in some rare cases, are special functions of 

position. In the first case all the terms within the second set of large 

braces, | j, in Equations (9) and (10) are zero leaving the remainder of 

these two equations in the form of the well-known, homogeneous, orthotropic. 
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compatibility equations In terms of the stress function Y. In the second 

case all the partial derivatives of the a,,'s which appear In these second 

sets of braces are capable of being evaluated, resulting in extremely compli- 

cated fourth order partial differential equations with variable coefficients. 

Proceeding along classical lines, these equations must be solved for Y which 

contains arbitrary constants of integration. These constants are then deter- 

mined by evaluating Y in terms of the stresses on the boundaries. 

Suppose It is assumed that the material coefficients, the p. ..'s, 

are unknown but that the stress function Y is a fully defined function of the 

spatial coordinates. That is, the stresses throughout the body as well as on 

the boundary are known.  In such a case, Equations (9) and (10) reduce to 

second order partial differential equations with variable coefficients, in 

terms of the a..'s. The solution of these equations and the resultant deter- 

mination of the magnitude and distribution of the material properties throughout 

the body is defined as design synthesis. 

It is believed that Equations (9) and (10) have not been previously 

published. Bert [14] derived an equation similar to (10) wherein he reduced 

the unknown material property coefficients from four to one. His formulation 

is as follows: 
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with the thermal terms omitted.    Equation (14)   is equal  to Equation  (10) 

with the  following identities: 

S = a 

e = 

22 

all/a22 

a66/2a22 

a12/a22 

(15) 

with S being the dependent variable and e, c, and v being fixed ratios.  It 

is anticipated that most real composite materials will exhibit material 

property characteristics as defined by Equations (15). 

The solution of equations such as (9) and (10) where there are 4 

or more independent a..'s, even where these a..'s are assumed independent of r      ij ' ij 
temperature, is quite difficult but certainly not impossible. The simpli- 

fying assumption made in Equations (15) leading to the formulation of Equation 

(14) reduces the problem to only one unknown parameter. Work is progressing 

on the application of Equations (9), (10), and (14) to the concept of design 

synthesis. The following section of this paper deals with such applications. 
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APPLICATIONS 

Rotationallv Symmetric Problems 

Example 1: The pressurized annular disk, internal pressure: Consider a 

pressurized annular disk as shown in Figure 1. In the case where the ring 

is Isotropie and homogeneous, the stress distribution is as developed by 

Lame (1852) and is given by (c.f., Ref. [15], p. 60), 

(h - 0 CTr ^ " ~2~ r    k - 1 V 
(16) 

a c (VO 6  i2  i % k - 1 p 

where p •= r/b, and k «= b/a. These relations lead to the following con- 

clusions: 

(1) taNa |  for all p and all k 
u   r 

(2) (a )    occurs at the inner boundary (p «= 1/k), and thus v '  w9 max 

From the stresses so generated, which for the homogeneous ring, are quite 

independent of the material properties, it is clear that the material is not 

being used efficiently, particularly as the thickness ratio, k, increases. 

For the homogeneous, orthotropic annular disk Bienick et al. [16] 

shows that the stresses are given by 

(f+1) t   f-1 v  / + c„r 

(18) 
, -(f+lK  , f-l 

ae c "ci£r   +c2fr 

u c c-r      . -9 r   1 2 

where f •= (a-./a,,)1 , and c. and c, are determined from the boundary con- 

ditions, in this case ar ■= -P at r «= a and a,. ■= 0 at r •= b. This work and 
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FIGURE  1.     PRESSURIZED ANNULAR DISK 
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work done by Shaffer [1?] show that as k gets large the limit of the stress 

concentration approaches the orthotropy ratio, f,- and does so rapidly.  Both 

Bienick and Shaffer deal with the nonhomogeneous case, but both assume a 

special form of nonhomogeneity, mainly that 

all ^ an ^ 

\ 
a22 " a22 r 

a12 e a21 "= a12 ^ 

where \ is real and a.-, a««, and a-2 are constants. Both carry out optimi- 

zation by varying \ and observing the results, but no attempt was made to 

carry out design synthesis directly. 

Consider now that the disk is composed of a heterogeneous, ortho- 

tropic material where the material properties are undefined but are functions 

of the radius of the disk. The equilibrium equation for this case reduces to 

_r + _r_e = 0 # (19) 

The compatibility equation reduces to 

1 (ree) " er ^ 0 ' (20) 

and the stress  strain relation for an orthotropic medium  is 

er c allar + a12CTe 

ee  C a12CTr + a22CTe 
(21) 

where a^^, a^2, and a22 are functions of r. Assuming a stress function 

such that 



'e 

I, 
r 

dr 

(22) 

and substituting Equations  (21)  and  (22)  into Equation (20) and carrying out 

the required differentiation results  in 

a22Y" + (a'22+-l a22)r + (^ a'l2 -^ a11)Y . 0 , 
r 

(23) 

where the prime marks designate absolute derivatives with respect to r. 

Equation (23) is a single differential equation with three independent 

material coefficients as the operational parameters. When dealing with specific 

materials they may be found to be completely independent or show some type of 

defined relationship. As a first step we will assume that there does exist a 

simple ratio relationship between them that is expressable as 

a22 " a22 ' a,22 * al22 

all = kla22' alll " V 22 (24) 

a12 " k2a22' a 12 ^ k2a 22 

Making the appropriate substitutions in Equation (23) yields 

[r+^Y]a'22 + [r'+±r - "h] a22 *= o . (25) 

Thus if Y is known a„„ is fully defined. Let us suppose that for effective 

material utilization it is desired that j. be constant throughouc the 

cylinder; i.e., CJQ = A . Integrating the second of Equations (22) gives 
0   o 

Y «= A r + B  . 
o    o 

(26) 

Applying the boundary conditions  that a  (a)  «= -  P and a  (b)   = 0 yields 

.. 
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Y •= 
Pb 

k - 1 [p ' . 11 

P    rl ■ 1] ur "' ' k - 1 lp ' 

ae - P 

(27) 

k - 1 

with p = r/b and k ■= b/a as before.  It is interesting to compare Equations 

(27) with Equations (16) and (17). From Equations (27) it can be seen that 

if k is greater than 2, afl becomes less than the pressure P, and a , which 

equals P at p »= 1/k, becomes the maximum normal stress in absolute value. 

Thus for such a stress function and geometry there is no effective stress 

concentration. This is, of course, never true for the homogeneous disk. 

With the stress function now fully defined, Equation (25) becomes 

r k2b1 r(1_ki)    kibi 
L(1+k2) - -rJ a,22+ [—r-+ HrJ a22c 0 • (28) 

which has the solution 

" Co<P)0"§ [f +  (1"k2)] (29> a22 

where    p «= r/b 

r krk2  i 
L(l-k„)kJ 

and for the modified orthotropic condition as defined by Equations (21) and 

(24) 

a22 c 

kl C 

aii Ee 
a22  Er 

k2 - 
a12 

■a00 " ver ' 

(30) 
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The inverse of Equation (29) or EgCr) is shown plotted in Figure 2 

for various k^'s while k« was held constant at 0.5. This figure shows the 

strong dependency of the modulus distribution upon the orthotropy ratio k.. 

The ratio k? has a lesser effect as shown by Figure 3. Here the isotropic 

case (k. w 1) is shown plotted for four values of k«. 

Example 2.  Pressurized annular disk, external pressure: Consider the 

pressurized annular disk as shown in Figure 1 but with the pressure acting on 

the OD rather than the ID as shown.  If the stress criterion is retained; i.e., 

ov, •» constant, then the stress function becomes 

¥ "^i [1 -Pk] 

ar = ^ - k] (31) 

.5k. 
e  k-i Or    '= 

where    q ■* external pressure 

k •= b/a 

p «= r/b . 

The compatibility equation (25) becomes 

r       kpa-,      [-(l-k,)  ^a-, 
[(l+k2) - —J a'22 + [—^- + 4-J a22 = 0 . (32) 

Equation (32) is the same as Equation (28) except that a replaces b. The 

solution of Equation (32) is 

a22 = Co<P)0"§ Ö + (1-k2>]"5 <33) 

where ß, §, and p are defined in Equation (29). Comparing Equations (33) 

and (29) we see that the., are not the same, differing by the quantity 1/k 
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D 
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0 
0 
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U 

E0/Co    0.5 

k| - variable , k2=0.5 

FIGURE  2.    MATERTAL  PROPERTY VARIATION FOR PRESSURIZED DISK 
WITH aQ  •= CONSTANT,   INTERNAL PRESSURE 



19 

II 

11 
E/Cn      0.5 

k «I.O (Isotropie cose) ,Ee =Er 
sE 

v= variable 

FIGURE  3.     MATERIAL  PROPERTY VARIATION FOR  PRESSURIZED ANNULAR DISK WITH 
(jQ   «= CONSTANT,   INTERNAL PRESSURE   (ISOTROPIC CASE) 
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within the second factor. Thus the distribution of the material parameters 

through the thickness of the disk must be different as compared to the 

internally pressurized disk. This is shown in Figures 4 and 5. Also notice 

that for the internally pressurized disk the hoop stress afl tends to zero as 

k tends to infinity while the limit on oQ for the externally pressurized disk 

is q, the pressure. Thus for the externally pressurized case the material is 

not being as effectively utilized and perhaps some other cr.cerion might more 

suitably apply. 

If the annulus has both internal and exterri-. pressure and the same 

stress criterion is applied, i.e., OQ - constant, then 

and the material property variation is given by 

-22 - v^"5 [7+^-vdOr5        (35> 

Example 3: The rotating disk: Consider the rotating, uniform thickness 
n 

annular disk as  shown in Figure 6.    The equilibrium equation governing this 

case  is 

" ^ (rar)  - ae + ^ a/r2 = 0  . (36) 

The compatibility equation in terms of strain and the stress-strain relations 

for an orthotropic material are given by Equations (20) and (21), respectively. 

Substituting Equation (21) into (20) results in 
U 

"■,;.? 

0=a'12ar + a12a,r + aI
2.2ae + a22a,e+^ Ua12-au)ar + (a^-a^cTgl. (37) 
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FIGURE  6.     ROTATING ANNULAR  DISK 
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Assume the stress  function 

a    »= - Y r      r 

ae «= Y' + - u) r    . 

(38) 

It  is possible that the material density, y»  could be a function of the 

radius.    A*  this stage such a condition  introduces an unnecessary complica- 

tion and will not be considered.     This being the  case the governing 

compatibility equation becomes 

r •(a22) +-f(a'22 -1. i a22) +* (^ - i^) 

*i*2*2 {*•*"*-? ■*-?)">• (39) 

Again, for simplicity, the modified orthotropy relations as defined by 

Equations (24) will be adapted making Equation (39) take the form 

0 «= a' 22 f«+-2 Y + IJÜ
2
r
2] + a22[Y

,,+^---y-+g ^C3"^)] gg 
(40) 

The stress criterion will be  the same as  before,   i.e., cr»   *= 

constant.    Using this criterion and operating on the second of Equations  (38) 

together with  the assumed boundary conditions  that CT  (a)   = a   (b)   » 0 yields 

/T-N 3/ 

'-ir(Ä)[<-t3H^)-©M] 

^r " W \^i) L1   "     3   "  pk + „, 3  " p     + k J k"       Pk      pk- 

2   / Yv    / k \ fk-'' - 11 
CT9 ' 3g    \k-l) I    ,3   J 

(41) 
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where    p •= r/b 

k •= b/a 

v «= iub e tip velocity 

U) * rotational velocity, radians 

g •= acceleration of gravity. 

Here we note that in the limits, when k -»' 1 

2 

'e      g" ac - ^ <«) 

which  is  the stress  in a rotating thin ring,  and when k -♦ ^ (i.e., when 

very small) 
2 

l_ 
'9  ~ 3g    ' a.  - ^ . («) 

which  is smaller than exists  for  the   isotropic,  homogeneous case by the 

ratio 

eo max 

where a      ^ hoop stress for heterogeneous case 
ei 

a      «= hoop stress  for  isotropic,  homogeneous case 
eo 

v      «= Poisson's ratio  for  isotropic,  homogeneous  case   . 

Substituting Equation  (41)   into Equation   (40)  and  carrying out  the 

required differentiation yields 

22 .    LFr    + Gr    + HrJ 

where A =  (k^  -  3k2) 

3 3- 

^ - V [Vrt-] 
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D "= k-CabXb + a) 

F •= k2 

3        3. 

H «= k2(ab)(b + a) 

Equation (45)   is not readily solvable   in closed form.    Solutions are  presently 

being developed utilizing a finite difference approximation technique. 

Non-Symmetric  Problems 

Example 4:     Small hole  in an infinite  plate.    Figure 7 represents a small 

hole  in an infinite plate which  is subjected  to a uniform tensile  stress,  P, 

in the x-direction.    For the homogeneous,   isotropic condition,   the stress 

distribution around  the hole   is well known as given by Timoshenko   [15]  as 

4      ..2, 
cos  29 

^-f(^4)-l(1+T)cos29 
r"'       ~   '        r' 

4      o  2, 

(46) 

ar9 
P /,       3a    ,   2a \     .    0Q 
2 I1 "IT + TV sin 2e    • 

The maximum stress occurs at r ^ a,  9   »= (iT/2,3n/2),  and  is 

a        •= (aQ) 
p 3P . 

max 9  rt=o,9=^/2 

For the homogeneous, anisotropic condition work by Green and Zerna [18], 

Hearmon [19], Savin [20], Leckhniskii [12], and (as directly applied to 

composites) by Greszczuk [2l], shows that the maximum stress at the hole is 

always greater than for the isotropic case and can reach values as high as 9P. 



1 

FIGURE   7.     SMALL HOLE   IN  INFINITE  PLATE  SUBJECTED TO 
UNIFORM,   UNIAXIAL  TENSILE  STRESS FIELD 
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Referring to Figure 7, consider the portion of the plate within 

a concentric circle of radius b, large in comparison with a. It can safely 

be assumed that the stresses at radius b are effectively the same as in a 

plate without the hole and can be given by 

(aj   «^ P (1 + cos 29) 
T  r«=b  £ 

, (47) 

fcWrcb--2Psin2e   • 

From Equation (46) it can be seen that 

(aQ)   «■£ P (1 - cos 29). 
o rcb  * 

It seems reasonable, tuen, to choose a stress criterion for the plate 

CTe «= function of 9 «= I P (1 - cos 2 9). (48) 

From the second of Equations (11), with V equal to zero the stress function 

becomes 

Y «=| Pr2 (1 - cos 2 9) + f1(P)r + f2(9) . (49) 

where    f1(9)  and f2(9) are  functions of 9  only.    Applying the first and  third 

of Equations   (11)   to Y results   in 

df-CB) 
|_(iäi) . ipSin29 - V-ir- 
ör \r 99/ r9       2 ^2 d9 

(50) 

^ w      -i    *2v 1 1 d2fl(9)      1    d2f2(e)    1 1 721 + ^ ^T c ^ = 9  P (1 + cos 2 9) + A ^y- + \ —V- + 7 fi<9) 
r ör      r2 Ö92        r      2 r    rd92 r2      d92        r    1 

Applying  the  boundary conditions 

(ar)        - (arQ)        ■= 0 
*■  r«=a ,-a rt=a 

yields 
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Pa2 

V9) •= - ^4  cos2e 

 ir— + f1(6) 1= - I [1 + 3 cos 20] . 
dG 

Choosing as a particular solution to the second of Equations (51) 

(52) 

yields 

and results  in 

f1(e) ^ ci + c2 cos2 e 

f  (9)   P - |ä  [1 - cos 29] 
JL £■ 

Y -= I {(r2 - 2ar)  -  (r2 - a2)  cos 29} 

ar - |(l -f)[l - cos 29 + 2(l -^cos 29] 

CTe  =| (1 - cos 2 9) 

^re-K1-^)311129 

The stress  function Y as defined by the first of Equations  (53)  has been 

applied  to Equation  (10) with  the body functions and the  temperature difference 

distribution taken as  zero.    Further,  Equations   (24)  have been utilized  to 

initially simplify the problem and numerical  solutions are being developed. 

(53) 
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SUMMARY 

Mathematical design synthesis has been shown to be possible in 

certain specific applications. The selection of a design criterion, in the 

cases discussed, one dealing with stress distribution, and the development 

of the material distribution within a plane body such that compatibility is 

satisfied, appears to be a rational basis of design for composite materials, 

It is to be shown that this concept of design synthesis can be applied to 

the fabrication of real composite structures. 
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