AD-751 874

DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM

Allen E. Cole

Air Force Cambridge Research Laboratories L. G. Hanscom Field, Massachusetts

10 August 1972

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 ATORL-72-0477 12 August 1972 Environmental Research Papers, No. 409

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

Distribution of Thermodynamic Properties of the Atmosphere Between 30 and 80 km

ALLEN E. COLE

Approved for public release; distribution unlimited.

AIR TORCE SYSTEMS COMMAND

Peproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Opportune of Computer US Opportune of Computers

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

ŧ

٠,

rs.

Unclassified Security Classification

A DEFINITION OF THE RESEARCH Laboratories (LKI) L. G. Hanscom Field Bedford, Massachusetts SectorFile DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM SectorFile DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM SectorFile DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM SectorFile DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM SectorFile DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM SectorFile DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM SectorFile SectorFile Interim AutonsWiffert and, Madt Matsace SectorFile AutonsWiffert and, Madt Matsace AutonsWiffert and, Matsace AutonsWiffert and Matsace AutonsWiffert and, Matsace	DOCUMENT CON (Security classification of title, body of abstract and indexing	TROL DATA - RLD	ered when t	he overall report is classified)
L. G. Hanscom Field Bedford, Massachusetts A coour DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM A DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE A CONTRACT ON ADDA 100 CONTRACT A PROPERT DATE A PROPERT TASK, WORK UNIT NOS. 8624-01-01 C DOD SLEMENT 62102F A PROPERT MOSSING SLETANY ACTIONY A DISTRIBUTION STATEMENT A DIST	1. ORIGINATING ACTIVITY (Corporate author) Air Force Cambridge Research Laborat	tories (LKI)	2a. REP Uncl	ORT SECURITY CLASSIFICATION assified
A RECENT THE DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE BETWEEN 30 AND 80 KM • DISTRIBUTION OF THERMODYNAMIC PROPERTIES OF THE ATMOSPHERE Scientific. Interim. • Authonitifut more, made under dates? Scientific. Interim. • Authonitifut more, made under dates? Authonitifut more, made under dates? Authonitifut more, made under dates? Authonitifut more, made under dates? • Authonitifut more, made under dates? • Authonit	L. G. Hanscom Field Bedford, Massachusetts		24. GRO	908
BET WEEN SO AND SO KM Secontific. Scientific. AutooNU/(Fitthem, middle outid, last same) Allen E. Cole A strongs (Fitthem, middle outid, last same) Allen E. Cole A strongs (Fitthem, middle outid, last same) Allen E. Cole A strongs (Fitthem, middle outid, last same) Allen E. Cole A strongs (Fitthem, middle outid, last same) Allen E. Cole A strong (Fitthem, middle outid, last same) Allen E. Cole A strong (Fitthem, middle outid, last same) Allen E. Cole A strong (Fitthem, middle outid, last same) A strong (Fitthem, middle outid, last same) <td>A REPORT TITLE DISTRIBUTION OF THERMODYNAMIC</td> <td>PROPERTIES</td> <td>JE THE</td> <td>E ATMOSPHERE</td>	A REPORT TITLE DISTRIBUTION OF THERMODYNAMIC	PROPERTIES	JE THE	E ATMOSPHERE
Scientific of the organization of the second	BE (WEEN 30 AND 80 KM	·····		
Altents) (First same, middle suited, fair same) Allen E. Cole Allen E. Cole A PRORT DATE 10 August 1972 13 CONTACT ON CRANT NO. A PROJECT. TASK, WORK UNIT NO. 8624-01-01 C DOD SLEMENT 62102F C DOD SUBSELEMENT 681000 DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. The Super Lement Arg Solution Statement Allen Contract of Cont	Scientific. Interim.			
A GEORY DATE 10 August 1972 13 CONTRACT OR GRAFT NO. A PROJECT. TASK. WORK UNIT NOS. 8624-01-01 C. DOD ELEMENT 62102F 4 DOD SUBELEMENT 681000 C. DOD SUBELEMENT 681000 C. DOD SUBELEMENT 681000 C. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. C. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. C. ECH, OTHER C. ECH, OTHER C. ABSTRACT Recently acquired rocket observations from U. S. and USSR stations in rectic and subarctic regions are used to expand and update information published n AFCRL Environmental Research Paper No. 300. Extreme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated world- vide extremes of temperature, pressure and densities at levels setween 30 and 80 km for latitudes 30°, 45°, 60° and 80°N during June-July und December-January. Distributions around the annual mean are given for 10°N.	s. AUTHORISI (first name, middle initial, last name)			
A REPORT DATE 74 TOTAL NO. OF PAGES 74 NO. OF PAGES 14 33 14 34 23 14 35 14 33 14 36 CONTRACT ON GRAMT NO. 34 AFCRL-72-0477 A PROJECT. TASK. WORK UNIT NOS. 8624-01-01 AFCRL-72-0477 AFCRL-72-0477 C. DOD ELEMENT 62102F AFCRL-72-0477 4 ODO SUBELEMENT 681000 ERP No. 409 C. DISTRIBUTION STATEMENT 681000 ERP No. 409 Approved for public release; distribution unlimited. 12 SPONSONING BILLTARY ACTIVITY A. SUPPLEMENTARY NOTES 12 SPONSONING BILLTARY ACTIVITY A. SUPPLEMENTARY NOTES 12 SPONSONING BILLTARY ACTIVITY AGING AND	Alleli E. Cole			
A PROJECT TASK, WORK UNIT NOS. 8624-01-01 C. DOD ELEMENT 62102F C. DOD SUBELEMENT 62102F C. DOD SUBELEMENT 681000 C. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. C. DISTRIBUTION STATEMENT Approved for public release; distributions from U. S. and USSR stations in Interctic and Subarctic regions are used to expand and update information published n AFCRL Environmental Research Paper No. 330, Ext reme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated world- vith frequency distributions of observed temperatures and densities at levels setween 30 and 80 km. for latitudes 300°, 45°, 60° and 80°N. Auring June-July Ind December-January. Distributions around the annual mean are given for .5°N.	A REPORT DATE	74 TOTAL NO. OF P	AGES	74 NO. OF REFS
A FROJECT TASK, WORK UNIT NOS 8624-01-01 c. DOD ELEMENT 62102F 4 DOD SUBELEMENT 681000 C. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. T. SUPPLEMENTARY NOTES TECH, OTHER Recently acquired rocket observations from U. S. and USSR stations in arctic and subarctic regions are used to expand and update information published n AFCRL Environmental Research Paper No. 330, Extreme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated world- wide extremes of temperature, pressure and density are provided, together vith frequency distributions of observed temperatures and densities at levels petween 30 and 80 km for latitudes 300, 450, 600 and 80°N during June-July and December-January. Distributions around the annual mean are given for 1.9 ^N .	SG CONTRACT OR GRANT NO.	94 ORIGINATOR'S R	EPORT NUM	1 IBER(S)
C DOD ELEMENT 62102F d DOD SUBELEMENT 681000 d. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. distribution statement Approved for public release; distribution unlimited. distribution statement distribution	& PROJECT, TASK, WORK UNIT NOS. 8624-01-01	AFO	CRL-72	2-0477
COD SUBSCIENCENT 681000 COD SUBSCIENCENT Generation Generat	C. DOD ELEMENT 62102F	St. OTHER REPORT	NO(S) (Any c	other numbers that may be
OISTAINUTION STATEMENT Approved for public release; distribution unlimited. In SUPPLEMENTARY NOTES If Supplementary Notes If E SPONSORING BILITARY ACTIVITY Air Force Cambridge Research Laboratories (LKI) L. G. Hanscom Field Bedford, Massachusetts 01730 Asstract Recently acquired rocket observations from U. S. and USSR stations in Irctic and subarctic regions are used to expand and update information published n A FCRL Environmental Research Paper No. 330, Extreme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated world- vith frequency distributions of observed temperatures and density are provided, together vith frequency distributions of observed temperatures and densities at levels setween 30 and 80 km for latitudes 30°, 45°, 60° and 80°N during June-July und December-January. Distributions around the annual mean are given for .5°N.	4 DOD SUBELEMENT 681000		E	CRP No. 409
Approved for public release; distribution unlimited. Approved for public release; distributions from U.S. and USSR stations in the formation published in AFCRL Environmental Research Paper No. 330, Extreme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated worldwide extremes of temperature, pressure and density are provided, together with frequency distributions of observed temperatures and density are provided, together setween 30 and 80 km for latitudes 30°, 45°, 60° and 80°N during June-July und December-January. Distributions around the annual mean are given for .5°N.	0. DISTRIBUTION STATEMENT			
TE SUPPLEMENTARY HOTES 12 SPONSORING BILITARY ACTIVITY AIT FORCE Cambridge Research Laboratories (LKI) L. G. Hanscom Field Bedford, Massachusetts 01730 3. ABSTRACT Recently acquired rocket observations from U. S. and USSR stations in arctic and subarctic regions are used to expand and update information published n AFCRL Environmental Research Paper No. 330, Extreme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated world- vide extremes of temperature, pressure and density are provided, together with frequency distributions of observed temperatures and densities at levels between 30 and 80 km for latitudes 30°, 45°, 60° and 80°N during June-July und December-January. Distributions around the annual mean are given for .5°N.	Approved for public release; distributio	n unlimited.		
TECH, OTHER Laboratories (LKI) L. G. Hanscom Field Bedford, Massachusetts 01730 Asstract Recently acquired rocket observations from U. S. and USSR stations in arctic and subarctic regions are used to expand and update information published n AFCRL Environmental Research Paper No. 330, Extreme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated world- vide extremes of temperature, pressure and density are provided, together with frequency distributions of observed temperatures and densities at levels between 30 and 80 km for latitudes 30°, 45°, 60° and 80°N during June-July and December-January. Distributions around the annual mean are given for .5°N.	11. SUPPLEMENTARY HOTES	12 SPONSORING MIL	ITARY ACT	wity Research
L. G. Hanscom Field Bedford, Massachusetts 01730 ANSTRACT Recently acquired rocket observations from U. S. and USSR stations in arctic and subarctic regions are used to expand and update information published n AFCRL Environmental Research Paper No. 330, Extreme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated world- vide extremes of temperature, pressure and density are provided, together with frequency distributions of observed temperatures and densities at levels between 30 and 80 km for latitudes 30°, 45°, 60° and 80°N during June-July and December-January. Distributions around the annual mean are given for .5°N.	TECH OTHER	Laboratori	es (LKI	()
Recently acquired rocket observations from U. S. and USSR stations in arctic and subarctic regions are used to expand and update information published n AFCRL Environmental Research Paper No. 330, Extreme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated world- vide extremes of temperature, pressure and density are provided, together with frequency distributions of observed temperatures and densities at levels between 30 and 80 km for latitudes 30°, 45°, 60° and 80°N during June-July and December-January. Distributions around the annual mean are given for .5°N.		L. G. Hansed Bedford, Mas	om Fiel ssachus	ld setts 01730
Recently acquired rocket observations from U.S. and USSR stations in arctic and subarctic regions are used to expand and update information published n AFCRL Environmental Research Paper No. 330, Extreme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated world- vide extremes of temperature, pressure and density are provided, together with frequency distributions of observed temperatures and densities at levels between 30 and 80 km for latitudes 30°, 45°, 60° and 80°N during June-July and December-January. Distributions around the annual mean are given for .5°N.	3. ABSTRACT		·	
DD 2081 1472	Recently acquired rocket observation arctic and subarctic regions are used to an AFCRL Environmental Research Pap Pressure and Density Between 30 and 80 wide extremes of temperature, pressur- with frequency distributions of observed between 30 and 80 km for latitudes 30°, and December-January. Distributions a 15°N.	ons from U. S. expand and up er No. 330, Ex 0 km. A revise e and density a l temperatures 45 ⁰ , 60 ⁰ and 8 around the annu	and USS date inf treme ' ed set o re prov and der 0 ⁰ N du al mean	SR stations in formation published Temperature, of estimated world- rided, together nsities at levels ring June-July n are given for
DD F0RM 1472				
DD F0RM 1/72				
DD F0RM 1472				
DD F0RM 1472				
DD FORM 1/72				

6.4.,

Security Classification

ia

Unclassified

Security Classification

14. KEY WORDS		X A	LINK B		LINK C	
	ROLE	WT	HOLE	WT	ROLE	WT
Stratosphere				Ţ		
Mesosphere						
Density						-
Pressure						
Temperature						
					1	
	ļ					
			Ì			
				L.		
	Unch	asifie	d			

ب

e

Security Clannification

Á

AFCRL-72-0477 10 AUGUST 1972 ENVIRONMENTAL RESEARCH PAPERS, NO. 409

AERONOMY LABORATORY PROJECT 8624

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

Distribution of Thermodynamic Properties of the Atmosphere Between 30 and 80 km

ALLEN E. COLE

Approved for public release; distribution unlimited.

AIR FORCE SYSTEMS COMMAND United States Air Force

1C-

Abstract

Recently acquired rocket observations from U. S. and USSR stations in arctic and subarctic regions are used to expand and update information published in AFCRL Environmental Research Paper No. 330, Extreme Temperature, Pressure and Density Between 30 and 80 km. A revised set of estimated world-wide extremes of temperature, pressure and density are provided, together with frequency distributions of observed temperatures and densities at levels between 30 and 80 km for latitudes 30° , 45° , 60° and 80° N during June-July and December-January. Distributions around the annual mean are given for 15° N.

Preceding page blank

Contents

1.	INTRODUCTION	1
2.	DATA	2
3.	DATA ACCURACY	4
4.	PROCEDURE	- 5
5.	DISCUSSION	5
	5.1 Temperatures 5.2 Densities	5 6
6.	DISTRIBUTIONS OF TEMPERATURE AND DENSITY AT SPECIFIC LATITUDES	7
7.	WORLD-WIDE EXTREMES	7
REF	ERENCES	26

Illustrations

1.	Longitudinal Plots of Temperatures Which Are Equalled or Exceeded 1-, 10-, 50-, 90- and 99-percent of the Time During	
	June-July and December-January	8
2.	Longitudinal Plots of Densities Which Are Equalled or Exceeded 1-, 10-, 50-, 90- and 99-percent of the Time During June-July and December-January	12

Preceding page blank

1.	Data Analyzed in Determining Temperature and Density Distributions Between 30 and 55 km	3
2.	Data Analyzed in Determining Temperature and Density Distributions Between 50 and 80 km	3
3.	Median and Maximum and Minimum Temperatures Equalled or Exceeded 1-, 10- and 20-percent of the Time During June-July and December-January at 80 ⁰ , 60 ⁰ , 45 ⁰ and 30 ⁰ N and During the Year at 15 ⁰ Latitude	16
4.	Median Densities and High and Low Values Equalled or Exceeded 1-, 10- and 20-percent of the Time (given as percent departure from U.S. Standard Atmosphere, 1962) During June-July and December-January at 80°, 60°, 45° and 30°N and During the Year at 15° Latitude	20
5.	Median and Extreme Temperatures Which are Exceeded 50-, 10- and 1-percent of the Time During Months With Highest Values and 50-, 90- and 99-percent of the Time During Months With Lowest Values at Locations With Highest and Lowest Temperatures Between Equator and Pole (Antarctica excluded)	24
6.	Median and Extreme Densities (given as percent departure from U.S. Standard Atmosphere, 1962) Which Are Exceeded 50-, 10- and 1-percent of the Time During Months With Highest Densities and 50-, 90- and 99-percent of the Time During Months With Lowest Densities at Locations With Lowest and Highest Densities Between the Equator and Pole (Antarctica excluded)	25
7.	Median and Extreme Pressures (given as percent departure from U. S. Standard Atmosphere, 1962) Which Are Equalled or Exceeded 50-, 10- and 1-percent of the Time During Months With Highest Values and 50-, 90- and 99-percent of the Time During Months With Lowest Values at Worst Locations	95
	in the world (Antarctica excluded)	20

vi

Distribution of Thermodynamic Properties of the Atmosphere Between 30 and 80 km

1. INTRODUCTION

Recently acquired rocket observations from U.S. and USSR stations have been used to expand and update information published in AFCRL Environmental Research Paper No. 330 Extreme Temperature, Pressure and Density Between 30 and 80 km (Cole, 1970) A revised set of world-wide extremes of temperature, pressure and density for levels between 30 and 80 km are presented for use in the revision of MIL-STD-210A. Climatic Extremes for Military Equipment. Frequency distributions of observed temperatures and densities at levels between 30 and 80 km are also presented for latitudes 30° , 45° , 60° and 80° N during June-July and December-January. Distributions around the annual mean are given for 15° N.

In determining the world-wide extremes, June-July observations were used to represent one extreme of the annual cycle of temperature, pressure and density and December-January the other. The warmest and coldest mean monthly temperatures and the highest and lowest densities and pressure at levels between 30 and 80 km occur over the summer and winter poles. The use of data for two calendar months, rather than one, greatly increased the sample size and the reliability of the estimates with little effect on extreme values.

The frequency distributions of temperature and density at levels between 30 and 80 km for latitudes 30° , 45° , 60° and 80° N are also based on June-July and December-January observations. Although the maximum and minimum mean

(Received for publication 10 August 1972)

monthly temperatures between 30 and 80 km do not occur at all latitudes in the same month, the June-July and December-January observations provide a good indication of the magnitude of the seasonal and latitudinal temperature variability at these levels. June-July and December-January are also the months with the highest and lowest densities.

The annual temperature cycle at levels between 30 and 80 km is largest near the poles, decreasing toward the equator. Semiannual and biennial cycles are largest near the equator, decreasing toward the pole. The phases as well as the amplitudes change with latitude and altitude. The semiannual oscillation produces two pronounced maxima and minima within the yearly temperature cycle in tropical and sub-tropical regions. North cf 30° latitude, however, there is normally one pronounced maximum and minimum within the yearly temperature cycle. The combined annual and semiannual components occasionally shift the time of the maximum temperature in the upper stratosphere to early June or May, and the minimum to early December or November. However, in cases where the maximum mean monthly temperatures occur in May rather than December or January, the difference between the May-and-June and the November-and-December values are only a few degrees.

In tropical areas the amplitudes of the temperature cycles are relatively small in comparison to those at mid-and-high-latitudes. Consequently, distributions of temperature and densities for 15° N are given around the annual rather than the seasonal mean.

2. DATA

Data for determining distributions of temperature, pressure, and density at levels between 30 and 80 km are from meteorological and experimental rocket observations taken primarily in the Northern Hemisphere. Unfortunately, observational sites are not evenly distributed throughout the hemisphere. Most of the observations are from sites in North America. There is a considerable gap in the data between 40° and 60° N and a sharp decrease in the number of available observations for levels above 55 km, especially in tropical areas.

Meteorological Rocket Network (MRN) observations (World Data Center A, 1965-70) for the years 1965-69 and Russian rocket observations (USSR, 1967-71) for the years 1965-1969 were used to determine the frequency distributions of observed temperature, pressure and density at levels between 30 and 55 km. The measurements considered were taken within a few hours of local noon at locations given in Table 1.

The frequency distributions at levels between 55 and 90 km are based primarily on data derived from grenade, falling sphere and pitot static tube experiments (USSR, 1967-71; Smith et al, 1964, 1966, 1967, 1968, 1968-70; Groves, 1965, 1968; Faire and Champion, 1965-69) performed between 1958 and 1970 at the locations listed in Table 2.

Observation Site	Loc	ation	
Ascension	7 [°] 59'S	14 ⁰ 25'W	
Antigua	17 ⁰ 09'N	61 ⁰ 47'W	
Barking Sands	21 ⁰ 54'N	159 ⁰ 35'W	
Cape Kennedy	28 ⁰ 27'N	80 ⁰ 32'W	
Wallops	37 ⁰ 50'N	75 ⁰ 29'W	
Volgograd	48 ⁰ 41'N	44 ⁰ 21'E	
West Geirinish	57 ⁰ 21'N	7 ⁰ 22'W	
Churchill	58 ⁰ 44'N	93 ⁰ 49'W	
Ft Greely	64 ⁰ 00'N	145 [°] 44'W	
Thule	76 ⁰ 33'N	68 ⁰ 49'W	
Heiss Island	80 ⁰ 37'N	58 ⁰ 03'E	

Table 1	Data Analyzed	in Determini	ng Temperature
and Densi	ty Distribution	s Between 30	and 55 km

Table 2. Data Analyzed in Determining Temperature and Density Distributions Between 50 and 80 km

Observation Site	Loc	ation	······
Ascension	7 ⁰ 59'S	14 [°] 25'W	
Natal	5 ⁰ 55'S	35 ⁰ 10'W	
Woomera	30 ⁰ 57'S	136 ⁰ 31'E	
White Sands	32 ⁰ 23'N	106 ⁰ 29'W	
Eglin	30 ⁰ 23'N	86 ⁰ 42'W	
Wallops	37 ⁰ 50'N	75 ⁰ 29'W	
Volgograd	48 ⁰ 41'N	44 ⁰ 00'E	
Churchill	58 ⁰ 44'N	93 ⁰ 49'W	
Point Barrow	71 ⁰ 21'N	156 ⁰ 59'E	
Heiss Island	80 ⁰ 37'N	58 ⁰ 03'E	

The World-wide pressure extremes are based on observations taken at Thule Point Barrow and Heiss Island. The maximum and minimum pressures were observed at these locations

3. DATA ACCURACY

The equipment used by the Meteorological Rocket Network consists of parachute-borne telemetering sets with bead thermistors to sense temperature. They are ejected from rockets at altitudes of 60 to 65 km. Errors associated with acrodynamic heating during ascent and ejection and with solar radiation on the bead during descent by parachute have not been completely resolved. The current opinion (Ballard and Rofe, 1969) is that little correction is needed below 50 km. In addition to possible biases, measurements include random errors. Estimated rms (root-mean-square) instrumental errors in MRN density and temperature measurements are given below.

Temperature – less than 1° K at levels below 50 km (Ballard and Rofe, 1969) Density – 2-to 3-percent at 50 km decreasing with altitude (Cole, 1968)

Estimated rms instrumentation errors in the temperature and density measurements taken by USSR rocketsondes at Heiss Island and Volgograd (USSR, 1967-71) are:

Temperature - 3[°]K at 40 km 5[°]K at 50 km 7 to 10[°]K at 60 to 80 km

Density = 10 to 15% at 60 to 80 km

There are insufficient data on which to base statistical estimates of the observational errors in temperatures, densities and pressures derived from grenade, falling sphere and pitot-static tube experiments. The accuracy of grenade measurements is related to (1) altitude; (2) height increment over which temperatures are averaged, normally 2.5 to 5.0 km; and (3) the arrangement of microphones that are used to detect the arrival of sound waves at the ground. Determining the arrival time of sound waves at the ground is the major source of error. Inaccurate time measurements can result in temperature errors ranging from 1° C at 40 km to 15° C at 90 km (Smith et al, 1964). Since the errors are random, they will have little effect on the mean values but will tend to increase the range of extreme values. It is difficult to assess the magnitude of the effect of these errors on the estimated extremes of temperature, pressure and density since they are based on theoretical studies which give only a range of possible errors.

4. PROCEDURE

Temperature, pressure and density observations at 5-km intervals between 30 and 80 km for June-July and December-January at each site were ordered from the smallest to the largest and plotted on probability paper using the following formula suggested by Kimball (1960):

Pi = (i-3/8)/(N+1/4)

where P is the probability of a value being equalled or exceeded, i is the sequence of observations, and N is the number of observations. Smoothed lines were drawn through the points on the probability paper and the curves were used as estimates of the true distributions. The values equalled or exceeded 1, 10, 20, 50, 80, 90 and 99-percent of the time were determined from the probability curves for each site and plotted on linear graph paper as a function of latitude. Smoothed curves extending from the equator to 85° N at levels below 50 km and from 30° to 85° N at levels above 50 km were subjectively fitted to the data points. Curves representing the distributions (by latitude) of temperature and densitites which are equalled or exceeded 1-. 10-, 50-, 90- and 99-percent of the time are shown in Figures 1 and 2.

5. DISCUSSION

5.1 Temperatures

At mid-and high-latitudes, the warmest median temperatures between 30 and 60 km occur in June-July and the coldest in December-January. The latitudinal temperature gradients are weak in summer with temperatures increasing toward the pole. The magnitude of the day-to-day variability about the seasonal medians as indicated by the 1- and 99-percent values, Figure 1, remain relatively constant between equator and pole in June-July. The reversal in the latitudinal temperature gradients between 75° and 80° N is based on Heiss Island data. Extrapolation of U. S. data for June-July would show increasing temperature from equator to pole. The decrease suggested by the Heiss Island data may not be real since the U. S. and USSR temperature measurements were taken with different types of sensors. It is possible that the Russian instruments may be biased toward colder and/or the U. S. sensors toward warmer temperatures.

The December-January temperature distributions between 30 and 60 km, Figure 1, are nearly normal and the range of observed values relatively constant from the equator to 30° N. At higher latitudes, temperature distributions are bimodal. Sudden warmings and coolings of the upper stratosphere in arctic and subarctic regions produce large day-to-day changes in the vertical temperature

 $\mathbf{5}$

distribution. As a result temperatures are usually colder or much warmer than the seasonal medians. The extremely warm temperatures, values equalled or exceeded 1- and 10- percent of the time, deviate consideratly more from the median than the extremely cold temperatures. At some locations, the 1- and 10percent December-January temperatures are warmer than the corresponding June-July values for the same level. There is considerable variation with longitude in the 1- and 10- percent temperatures in arctic and subarctic regions as the frequency and magnitude of the winter warmings varies with longitude. The 1 percent 45 km temperature at West Geirinish (57 N^O 7^OW) during December-January, for example, is 304 K compared to 1 percent values of 264 and 275 at Ft Greely (64^ON 164^OW) and Churchill (59^ON 95^OW) which are at approximately the same latitude. The 99-, 90-, and 50- percent December-January temperatures between 30 and 60 km decrease rapidly with latitude between 30^O and 80^ON with the lowest temperature occurring near the pole. Longitudinal variations in the 99- and 90-percent temperatures are relatively small.

There is a level of minimum seasonal and latitudinal variability in monthly median temperatures at 60 and 65 km. Day-to-day variations at this level, however, are much larger in winter than in summer at both mid- and high-latitudes. The latitudinal temperature gradients at levels above 65 km are the reverse of those at the lower levels. The coldest temperatures occur in June-July and warmest in December-January, with the more extreme values occurring in polar regions. Although the median temperature curves are relatively smooth for levels above 60 km, the 1- and 10-percent curves are very irregular, particularly at 75 and 80 km. Part of this irregularity is undoubtedly due to the extremely small sample of observation and larger measurement errors associated with observations at the higher levels.

In the tropics, 0° to 25° latitude, the temperature cycle is dominated by a semiannual oscillation at levels between 30 and 80 km. Both mean monthly temperatures and densities at these levels are highest in the spring and lowest in winter, with secondary maximum and minimum values occurring in the fall and summer respectively. The amplitudes of the semiannual oscillations, however, are relatively small when compared to annual variations at high latitudes. The temperature and density distributions given for tropical regions are computed around the annual rather than seasonal medians for levels up to 50 km. Sufficient observations are not available in tropical areas for estimating the day-to-day distributions of temperature and density about the seasonal or annual medians above 50 km.

5.2 Densities

6

The annual variability of density at levels between 30 and 80 km increases with latitude. The highest and lowest values occur near the poles in June-July and December-January respectively. The seasonal range increase with altitude up to approximately 70 km and then decreases slightly between 70 and 80 km.

In June-July, densities increase gradually from equator to pole and the range of the day-to-day variability about the median values as depicted by the 1- and 99-percent curves, Figure 2, remains relatively constant with latitude except for a slight increase between 60° and 80° N.

In December-January there is a rapid decrease in the median densities and a relatively large increase in the day-to-day variability between 30° N and the pole. The irregularity of the latitudinal density curves between 30 and 60 km in subarctic regions is a reflection of the longitudinal variability in the structure of the atmosphere and the intensity of winter warmings of the stratosphere.

6. DISTRIBUTIONS OF TEMPERATURE AND DENSITY AT SPECIFIC LATITUDES.

Median temperatures and densities with maximum and minimum values which are equalled or exceeded 1-, 10-, and 20-percent of the time during June-July and December-January are given for levels between 30 and 80 km in Tables 3 and 4 for 30, 45, 60 and 80° N. Densities are shown as percent departure from the U. S. Standard Atmosphere, 1962. In areas where there is considerable longitudinal varability (arctic and subarctic regions), values for a specific latitude are from the region reporting the most extreme conditions.

7. WORLD-WIDE EXTREMES

High and low temperatures, pressures and densities for various levels between 30 and 80 km that have a 1-, 10- and 50- percent likelihood of being equalled or exceeded during the worst season (two month period) at the worst location (antarc-tica excluded) are presented in Tables 5, 6 and 7. At most levels the 1 percent world-wide extremes are based on extrapolated data and are more extreme than observed conditions. Due to the sparsity of data at the higher levels, confidence in the 1- and 10-percent values decreases rapidly with altitude above 50 km.

Figure 1. Longitudinal Plots of Temperatures Which Are Equalled or Exceeded 1-, 10-, 50-, 90- and 99-percent of the Time During June-July and December-January. Triangles represent median values and circles seasonal mean values. Number of available observations is given in brackets at the 80- and 60- km levels

Aline

- 21:12:

.

Figure 1 (Contd.). Longitudinal Plots of Temperatures Which Are Equalled or Exceeded 1-, 10-, 50-, 90- and 99-percent of the Time During June-July and December-January. Triangles represent median values and circles seasonal mean values. Number of available observations is given in brackets at the 80- and 60- km levels

Figure 1 (Contd.). Lorgitudinal Plots of Temperatures Which Are Equalled or Exceeded 1-, 10-, 50-, 90- and 99-percent of the Time During June-July and December-January. Triangles represent median values and circles seasonal mean values. Number of available observations is given in brackets at the 80and 60- km levels

. _

Figure 1 (Contd.). Longitudinal Plots of Temperatures Which Are Equalled or Exceeded 1-, 10-, 50-, 90- and 99-percent of the Time During June-July and December-January. Triangles represent median values and circles seasonal mean values. Number of available observations is given in brackets at the 80- and 60- km levels

DENSITY

Figure 2. Longitudinal Plots of Densities Which Are Equalled or Exceeded 1-, 10-, 50-, 90- and 99- percent of the Time During June-July and December-January. Triangles represent median values and circles seasonal mean values. Number of available observations is given in brackets at the 80- and 50- km levels.

the burger of the state

بأد لعديد ف

20.2. 2. 1

Figure 2 (Contd.). Longitudinal Plots of Densities Which Are Equalled or Exceeded 1-, 10-, 50-, 90- and 99-percent of the Time During June-July and December-January. Triangles represent median values and circles seasonal mean values. Number of available observations is given in brackets at the 80- and 50- km levels

Figure 2 (Contd.). Longitudinal Plots of Densities Which Are Equalled or Exceeded 1-, 10-, 56-, 90- and 99-percent of the Time During June-July and December-January. Triangles represent median values and circles seasonal mean values. Number of available observations is given in brackets at the 80- and 50- km levels

١

3.

P

1.1.1.5

• . •

A. Oak B

Figure 2 (Contd.). Longitudinal Plots of Densities Which Are Equalled or Exceeded 1-, 10-, 50-, 90- and 99-percent of the Time During June-July and December-January. Triangles represent median values and circles seasonal mean values. Number of available observations is given in brackets at the 80- and 50- km levels

Table 3. Median and Maximum and Minimum Temperatures Equalled or Exceeded 1-, 10- and 20-percent of the Time During June-July and December-January at 80° , 60° , 45° and 30° N and During the Year at 15° Latitude

Real Contraction

	T	Median		Variations					
	Altitude	Temp	1	%	1	0%	2	0%	
Season	(krn)	(°K)	Max	Min	Max	Min	Max	Min	
	30	242	262	233	246	234	243	236	
	35	253	260	238	256	246	255	249	
	40	271	275	243	272	261	270	263	
	45	276	288	269	286	273	284	275	
ly	50	27?	312	252	293	266	288	272	
-Ju	55	264	278	221	275	238	272	249	
ne	60	244	259	208	255	219	253	228	
J.	65	232	253	200	243	217	236	219	
	70	202	241	175	220	184	212	189	
	75	182	246	153	202	164	196	171	
	80	181	239	128	219	140	197	154	
	30	210	255	194	231	198	224	202	
	35	223	256	199	244	210	236	213	
ry	40	235	284	207	256	219	248	224	
າແຂ	45	250	281	203	264	224	260	233	
Jar	50	242	282	201	265	225	259	229	
-1	55	241	291	208	262	221	253	226	
mbe	60	241	303	206	263	213	255	219	
ece	65	233	310	186	277	202	263	209	
ğ	70	233	297	166	277	201	261	207	
	75	233	289	183	259	201	251	207	
	80	223	277	165	254	194	240	201	

80⁰N

Table 3 (Contd.). Media: and Maximum and Minimum Temperatures Equalled or Exceeded 1-, 10-, and 20-percent of the Time During June-July and December-January at 80°, 60° , 45° and 30° N and During the Year at 15° Latitude

	A1424-2	Median		ot	Varia	tions		đ
Season	(km)	(^o K)	Max	^{%c} Min	Max 10	Min	Max 20	<u>%</u> Min
	30	236	245	232	243	234	241	235
	35	249	258	243	256	247	253	248
	40	263	272	259	269	263	268	262
	45	278	287	271	283	274	280	275
	50	282	290	273	286	277	284	270
[u]	55	272	278	257	275	264	273	265
e-J	60	262	273	242	265	250	263	253
Jun	65	240	259	225	253	230	248	233
•	70	216	239	202	226	208	222	211
	75	192	202	178	196	182	194	186
	80	169	180	140	176	153	174	155
	30	216	253	203	235	208	225	210
	35	219	277	204	259	204	238	214
y	40	230	300	206	278	211	246	219
uar	45	242	303	219	282	225	255	231
Jan	50	251	289	227	280	240	271	245
- J û	55	248	283	225	275	233	256	238
nbe	60	243	271	210	261	224	253	234
cer	65	238	262	208	258	218	249	222
De	70	233	264	212	253	219	249	225
	75	228	255	180	249	203	246	213
	80	223	248	173	243	195	239	204
	1	1	1		1	1	1	1

60⁰N

Table 3 (Contd.). Median and Maximum and Minimum Temperatures Equalled or Exceeded 1-, 10- and 20-percent of the Time During June-July and December-January at 80°, 60° , 45° and 30° N and During the Year at 15° Latitude

100

		Median			Vari	ations		
Season	Altitude	Temp	Mar	.%	1 1	0%	21 Mar	0%
			iviax	11111	max	111111	wiax	WIIN
	30	235	246	231	243	233	240	234
	35	247	255	241	251	245	250	246
	40	259	270	253	267	257	264	258
	45	271	282	263	279	266	275	268
x	50	277	288	268	283	272	281	274
Jul	55	267	275	251	271	257	269	260
-eu	60	255	270	233	265	240	260	244
Ju	65	234	245	216	241	223	238	220
	70	213	226	188	219	196	216	202
	75	197	210	175	205	186	201	190
	80	182	203	154	195	163	191	170
	30	220	235	214	230	217	226	219
	35	231	257	218	251	224	243	226
Y.	40	244	270	232	263	238	256	240
uar	45	257	290	241	282	251	271	254
Jan	50	263	284	250	275	256	270	258
1 C	55	257	275	22 9	267	239	263	245
nbe	60	249	266	220	263	230	257	241
cer	65	239	255	216	246	223	243	228
De	70	22 9	246	206	238	211	234	217
	75	21 9	261	297	245	205	235	210
	80	208	248	185	237	197	228	202

45⁰N

- Design D. Statistics and the second s Second s Second s Second se Table 3 (Contd.). Median and Maximum and Minimum Temperatures Equalled or Exceeded 1-, 10- and 20-percent of the Time During June-July and December-January at 80° , 60° , 45° and 30° N and During the Year at 15° Latitude

		Median			Vari	ations		
	Altitude	Temp	1	%	1	0%	20	0%
Season	(km)	(°K)	Max	Min	Max	Min	Max	Min
	30	232	240	227	237	230	235	231
	35	244	254	237	250	240	247	242
	40	256	267	250	263	253	261	254
	45	268	276	261	273	265	260	266
7	50	273	282	262	278	266	276	268
וויר	55	264	273	247	269	253	267	256
ne-	60	251	265	235	257	243	254	245
Jul	65	232	240	218	236	222	234	225
	70	212	222	186	218	194	214	199
	75	202	218	178	214	192	209	196
	80	193	207	182	200	189	198	191
	30	230	239	222	236	225	234	227
	35	23 9	253	231	248	235	245	237
~	40	251	268	243	262	249	258	250
uar	45	264	283	254	277	261	274	263
Jan	50	270	285	260	280	264	276	268
-19	55	258	272	231	267	243	263	248
mbe	60	245	255	231	248	240	246	242
iecer	65	233	254	218	242	226	238	228
De	70	220	235	198	227	204	225	210
	75	209	253	197	237	203	227	208
	80	198	243	187	230	194	217	197

30⁰N

 $15^{\circ}N$

						1		
	30	231	243	226	239	22 9	236	230
1	35	244	256	236	253	240	250	242
Jua	40	248	270	251	265	254	263	256
Anı	45	26 9	278	258	274	263	272	265
	50	272	285	263	277	267	275	269

Table 4. Median Densities and High and Low Values Equalled or Exceeded 1-, 10and 20-percent of the Time (given as percent departure from U. S. Standard Atmosphere, 1962) During June-July and December-January at 80° , 60° , 45° and 30° N and During the Year at 15° Latitude

а. С			Variability						U.S. Std Atmosphere,
Season	Altitude (km)	Median Density	Max 1	Min	Max)% Min	Max	0% Min	1962 (kgm ⁻³)
	20	1.0	110		115				1.0410-2
	30	+ 8	+18	+ 5	+15	+ 0	+13	+ 1	1.8410
	30	+13	+30	+ 3	+20	+10	+18	+11	8.4034
	40	+20	+32	+ 6	+26	+13	+24	+15	3,9957
	45	+25	+41	+ 7	+33	+17	+30	+18	1.9663 -3
1y	50	+30	+47	+ 2	+42	+16	+39	+22	1.0269
٦n.	55	+38	+53	+ 2	+51	+16	+48	+26	5.6075
ne-	60	+40	+59	+ 9	+56	+21	+52	+28	3.0592 ⁻⁴
Ju	65	+36	+65	+ 6	+60	+16	+53	+20	1.6665^{-4}
]	70	+28	+70	+ 2	+62	+11	+53	+17	8.7535
	75	+20	+66	-20	+35	- 6	+37	0	4.335 ⁻⁵
	80	+20	+50	-15	+39	- 0	+30	+10	1.999^{-5}
	30	- 23	- 3	-39	-12	-31	- 17	-28	1.8410 ⁻²
	35	- 25	+ 1	- 44	-12	-35	- 17	- 32	8,4634 ⁻³
~	40	-27	+ 4	-50	-10	-40	-15	- 38	3.9957^{-3}
1ar	45	- 27	+ 9	-51	- 8	- 45	-14	-39	1.9663^{-3}
anı	50	-31	0	- 55	-15	- 47	-21	- 44	1.0269 ⁻³
[1	55	- 36	+ 5	-59	-21	-53	-25	-51	5.6075^{-4}
pe	60	- 41	- 7	-66	-21	-59	-31	- 56	3.0592^{-4}
Ser	65	- 49	- 1	-69	-34	-65	- 38	-61	1.665^{-4}
Dec	70	-54	0	-71	-28	-65	-37	- 62	8.735 ⁻⁵
	75	- 52	-10	-74	- 32	-66	-40	-63	4.335 ⁻⁵
	80	- 49	+ 8	-78	-34	-66	- 35	-65	1.999 ⁻⁵

80⁰N Densities

Table 4 (Contd.). Median Densities and High and Low Values Equalled or Exceeded 1-, 10- and 20-percent of the Time (given as percent departure from U.S. Standard Atmosphere, 1962) During June-July and December-January at 80° , 60° , 45° and 30° N and During the Year at 15° Latitude

					17	L 2124			U.S. Std
	Altituda	Median		07	Varia 1	$\frac{101111}{0\%}$	2	0%	Atmosphere
Season	(km)	Density	Max	Min	Max	Min	Max	Min	(kgm^{-3})
	30	+ 7	+12	- 1	+ 9	+ 2	+ 8	+ 4	1.8410^{-2}
	35	+10	+17	+ 1	+14	+ 6	+12	+ 7	8.4634 ⁻³
	40	+14	+23	+ 5	+18	+10	+16	+11	3.9957^{-3}
<u>ہ</u>	45	+19	+33	+ 6	+25	+11	+23	+14	1.9663^{-3}
Jul	50	+24	+37	+ 9	+33	+17	+30	+22	1.0269^{-3}
ue-	55	+24	+32	÷14	+29	+19	+27	+21	5.6075^{-4}
Ju	60	+25	+37	+12	+30	+17	+28	+20	3.0592^{-4}
	65	+26	+43	+10	+37	+16	+33	+20	1.6665^{-4}
	70	+24	+38	+ 5	+33	+14	+30	+17	8.7535 ⁻⁵
	75	+32	+51	+10	+40	+17	+37	+22	4,335 ⁻⁵
	80	+29	+43	+ 5	+38	+15	+35	+20	1.999 ⁻⁵
	30	- 9	+ 7	-32	+ 2	- 25	- 2	- 15	1.8410-2
	35	- 12	+ 8	- 35	+ 2	- 30	_ 2	- 10	9 4624-3
ary	40	- 16	±10	- 30	+ 3 + 7	- 52	- 3	-13	2 0057-3
nu	45	-10	110	-30		- 32	- 4	-20	3.9957
Ja.	40	-20	T12	-39		-34	-10	- 24	1.9663
e r-	50	-22	+15	-42	+ 2	-36	-14	-28	1.0269
qm	55	-27	+ 2	- 46	-14	-38	-21	-34	5.6075
ce	60	-32	0	-53	-16	-39	-23	-37	3.0592 4
De	65	- 38	- 7	-51	-18	- 46	-26	- 43	1.6665 ⁻⁴
	70	- 40	-17	-53	- 31	- 49	-34	- 49	8,7535 ⁻⁵
	75	- 41	- 8	-53	-25	- 47	-30	- 45	4. 335 ⁻⁵
	80	-34	-18	-53	- 23	-47	-28	- 43	1.999 ⁻⁵

60 ⁰ N D	ensities
---------------------	----------

Table 4 (Contd.). Median Densities and High and Low Values Equalled or Exceeded 1-, 10- and 20-percent of the Time (given as percent departure from U.S. Standard Atmosphere, 1962) During June-July and December-January at 80° , 60° , 45° and 30° N and During the Year at 15° Latitude

					Varia	bility			U.S. Std Atmosphere
	Altitude	Median	10	7c	10	<u>)%</u>	2	0%	1962
Season	(km)	Density	Max	Min	Max	Min	Max	Min	(kgm ⁻³)
	30	+ 6	+10	- 1	+ 8	+ 2	+ 7	+ 3	1.8410-2
	35	+ 9	+14	+ 4	+12	+ 6	+11	+ 7	8.4634^{-3}
	40	+13	+18	+ 6	+15	+10	+14	+12	3.9957^{-3}
	45	+16	+22	+ 9	+19	+13	+18	+14	1.9663^{-3}
~	50	+18	+25	+12	+22	+16	+21	+17	1.0269^{-3}
Jul	55	+21	+30	+11	+25	+15	+24	+16	5.6075^{-4}
- at	60	+22	+44	+ 5	+37	+11	+32	+14	3.0592^{-4}
Jur	65	+23	+41	+ 4	+35	+10	+31	+14	1.6665^{-4}
	70	+22	+30	- 4	+25	+ 6	+23	+10	8.7535
	75	+18	+29	- 7	+21	0	+19	+ 6	4.335
	80	+14	+22	- 8	+20	- 2	+16	+ 3	1.999 ⁻⁵
	30	- 5	+ 5	-14	+ 2	-11	- 1	- 9	1.8410 ⁻²
	35	- 7	+ 7	-17	+ 2	-12	- 2	-10	8.4634 ⁻³
	40	- 8	+ 6	-17	+ 2	-12	- 2	-10	3. 9957 ⁻³
ary	45	-10	+11	-20	+ 6	-16	- 1	-14	1.9663^{-3}
anu	50	-12	+ 9	-24	+ 4	-18	- 2	-16	1.0269^{-3}
- J	55	-13	+ 7	-30	0	-25	- 5	-21	5.6075-4
beı	60	-15	+ 7	-27	- 3	-24	- 7	-21	3.0592^{-4}
en l	65	-19	- 5	-40	-10	-35	-14	-30	1.6665^{-4}
Dec	70	-20	- 4	- 41	-15	-34	-17	-30	8.7535 ⁻⁵
	75	- 20	-11	-42	-15	-36	-19	- 32	4.335
	80	-17	- 9	-42	-14	-36	- 15	-31	1,999 ⁻⁵

45⁰N Densities

Table 4 (Contd.). Median Densities and High and Low Values Equalled or Exceeded 1-, 10- and 20-percent of the Time (given as percent departure from U.S. Standard Atmosphere, 1962) During June-July and December-January at 80° , 60° , 45° and 30° N and During the Year at 15° Latitude

winder house to strate and state the

14 18 Ash & 1188

			Variability						U.S. Std Atmosphere
	Altitude	Median	1	%	10)%	2	0%	1962
Season	(km)	Density	Max	Min	Max	Min	Max	Min	(kgm ⁻³)
	30	+ 5	+10	0	+ 7	+ 3	+ 6	+ 4	1.8410 ⁻²
	35	+ 7	+11	+ 2	+ 9	+ 4	+ 8	+ 5	8.4634 ⁻³
	40	+ 9	+15	- 2	+13	+ 6	+12	+ 7	3.9957 ⁻³
	45	+13	+21	+ 6	+17	+ 9	+18	+11	1.9663 ⁻³
~	50	+14	+28	- 2	+22	+ 4	+15	+ 7	1.0269^{-3}
Jul	55	+14	+23	+6	+19	+10	+17	+12	5.6075 ⁻⁴
	60	+14	+48	-10	+39	0	+26	+ 6	3. 0592 ⁻⁴
Ju	65	+14	+40	- 6	+34	0	+23	+ 5	1.6665 ⁻⁴
	70	+ 9	+25	-13	+15	- 4	+14	0	8.7535 ⁻⁵
	75	+ 2	+14	-18	+10	-13	+ 7	- 8	4.335 ⁻⁵
	80	+ 2	+13	-19	+ 8	-12	+ 6	- 8	1.999 ⁻⁵
	30	- 3	+ 2	-10	0	- 7	- 1	- 6	1.8410 ⁻²
	35	- 2	+ 5	- 8	+ 3	- 4	+ 1	- 2	8.4634 ⁻³
ج ج	40	+ 1	+ 6	- 9	+ 4	- 4	+ 3	- 2	3.9957 ⁻³
uar	45	+ 1	+11	- 8	+ 5	- 4	+ 4	- 2	1.9663 ⁻³
Jan	50	+ 3	+12	- 9	+ 8	- 1	+ 7	+ 1	1.0269 ⁻³
L	55	+ 3	+19	-10	+10	- 6	+ 8	- 2	5.6075 ⁻⁴
nbe	60	+ 2	+19	-10	+10	- 5	+ 7	- 3	3.0592 ⁻⁴
cer	65	+ 2	+20	-20	+11	-11	+ 7	- 7	1.6665^{-4}
De	. 70	- 4	+11	-28	+ 4	-20	+ 2	-15	8.7535 ⁻⁵
	75	- 5	+14	-30	+ 6	-18	+ 2	-15	4.335 ⁻⁵
	80	- 6	+12	-26	+ 6	-18	+ 2	-15	1.999 ⁻⁵

30⁰N Densities

15⁰N Densities

		[r	r		
-	30	- 1	+ 4	- 6	+ 1	- 3	0	- 2	1.8410^{-2}
_	35	+ 1	+ 7	- 4	+ 5	- 1	+ 3	0	8.4634 ⁻³
Iua	40	+ 4	+10	- 2	+ 7	+ 1	+ 6	+ 3	3.9957 ⁻³
Ant	45	+ 6	+13	+ 1	+10	+ 4	+ 8	+ 5	1.9663 ⁻³
	50	+ 9	+17	+ 4	+15	+ 6	+12	+ 7	1.0269 ⁻³

~÷≁ 23

Altitude	High 7	Temperatur	res	Low 7	l'emperatu	emperatures 90% 99% 198 194 210 199 211 203 219 203 224 203 221 209 198 186 183 166 163 153		
(km)	Median	10%	1 <i>°</i> /c	Median	90%	99%		
30	244	249	262	208	198	194		
35	255	260	276	216	210	199		
40	271	278	298	222	211	203		
45	282	288	303	22 9	219	203		
50 ·	287	293	310	243	224	203		
55	276	281	292	237	221	209		
60	265	270	302	238	221	209		
65	243	276	310	225	198	186		
70	236	277	297	203	183	166		
75	233	259	289	183	163	153		
80	230	254	278	<u>164</u>	140	128		

Table 5. Median and Extreme Temperatures Which Are Exceeded 50-, 10- and 1-percent of the Time During Months With Highest Values and 50-, 90- and 99percent of the Time During Months With Lowest Values at Locations With Highest and Lowest Temperatures Between Equator and Pole (Antarctica excluded)

NOTE: Underlined values indicate levels where temperatures are highest in December-January and lowest in June-July. Extreme high temperatures in the upper stratosphere (30 to 45 km) occur at West Geirinish ($57^{\circ}21'N$, $7^{\circ}22'W$) during winter warmings of the atmosphere. Extremes at other levels occur at Pt. Barrow ($71^{\circ}21'N$, $156^{\circ}59'W$) or Heiss Island ($80^{\circ}37'N$, $56^{\circ}03'E$). The only exceptions are at levels between 65 and 70 km where extremes often occur at midlatitudes.

Table 6. Median and Extreme Densities (given as percent departure from the U.S. Standard Atmosphere, 1962) Which Are Exceeded 50-, 10- and 1-percent of the Time During Months With Highest Densities and 50-, 90- and 99-percent of the Time During Months With Lowest Densities at Locations With Lowest and Highest Densities Between the Equator and Pole(Anarctica excluded)

Altitude	Hig	h Densities		Lov	Low Densities Median 90% 99% -23 -31 -39 -25 -35 -44 -27 -40 -50 -27 -45 -51 -30 -47 -55 -36 -54 -59 -41 -59 -67 -49 -65 -69 -54 -65 -71		
(km)	Median	10%	1%	Median	9 0 %	99%	
30	8	12	14	-23	- 31	- 39	
35	13	20	29	- 25	-35	- 44	
40	20	26	32	- 27	- 40	- 50	
45	25	36	42	-27	- 45	-51	
50	30	42	44	- 30	- 47	- 55	
55	38	51	54	-36	-54	-59	
60	40	56	59	- 41	-59	- 67	
65	36	60	65	- 49	-65	-69	
70	29	62	72	-54	-65	-71	
75	43	54	66	-53	-67	-74	
80	40	52	64	-50	-70	- 80	

NOTE: Extreme values are based primarily on observations taken at Heiss Island ($80^{\circ}36'N$, $58^{\circ}03'E$), Pt Barrow ($71^{\circ}21'N$, $156^{\circ}59'W$) and Thule ($76^{\circ}33'N$, and $68^{\circ}49'W$).

Table 7. Median and Extreme Pressures (given as Percent Departure from U.S. Standard Atmosphere, 1962) Which Are Equalled or Exceeded 50-, 10- and 1-percent of the Time During Months With Highest Values and 50-, 90- and 99-percent of the Time During Months With Lowest Values at Worst Locations in the World (Antarctica excluded)

Altitude	Hig	h Pressure		Lo	w Pressui	re
(km)	Median	10%	1%	Median	10%	1%c
30	16	21	24	- 32	- 38	- 42
35	22	29	33	- 34	- 41	- 47
40	28	37	42	- 36	- 42	- 48
45	38	46	50	- 41	- 47	- 55
50	43	50	56	- 44	-51	-61
55	44	54	66	- 47	- 58	-64
60	42	56	72	- 48	-60	-67
65	36	53	70	-51	-63	-69
70	30	46	55	-53	-63	-70
75	32	36	48	- 50	- 58	-68
80	19	29	42	- 45	-55	-66

NOTE: Extreme values are based primarily on observations taken at Heiss Island $(80^{\circ}37'N, 58^{\circ}03'E)$, Pt Barrow $(71^{\circ}21'N, 156^{\circ}59'W)$ and Thule $(76^{\circ}33'N, and 68^{\circ}49'W)$.

References

Ballard, H. N. and Rofe, B. (1969) Thermistor measurements of temperature in the 30 to 65-km atmospheric region, Vol 22, <u>Stratospheric Circulation</u>, of Progress in Astronautics and Aeronautics, Academic Press, New York.

Cole, A. E. (1968) Periodic oscillations in the tropical and subtropical atmosphere at levels between 25 and 80 km, in <u>Space Research</u>, Vol VIII, North Holland Publishing Co., Amsterdam.

- Cole. A. E. (1970) Extreme Temperature, Pressure and Density Between 30 and 80 km, Environmental Research Papers No. 330, AFCRL, Bedford, Massachusetts.
- Faire, A. C. and Champion, K. S. W., (1965-69) Space Research, Vol. 5, 6, 7, 8 and 9, North Holland Publishing Co., Amsterdam.
- Groves, G. V. (1965) Seasonal Variations of Temperature, Pressure, Density and Winds to 80-km Altitude at Woomera, 1957-1963, Dept. Physics, Univ. College, London.

Groves, G. V. (1968) <u>Determination of Air Density</u>, <u>Temperature and Winds at</u> High Altitudes, Dept. Physics, Univ. College, London.

Kimball, B. F. (1960) On the choice of plotting positions on probability paper., J. Am. Statistical Assoc. 55:546-560.

- Smith, W., Katchen, L., Sacher, P., Swartz, P. and Theon, J. (1964) <u>Tempera-</u> <u>ture, Pressure, Density and Wind Measurements With the Rocket Grenade</u> Experiment, 1960-63, NASA X-651-64-106.
- Smith, W., Theon, J., Katchen, L. and Swartz, P. (1966) Temperature, Pressure, Density and Wind Measurements in the Upper Stratosphere and Mesosphere, 1964, NASA TR R-245.
- Smith, W., Theon, J., Swartz, P. and Katchen, L. (1967) <u>Temperature</u>, Pressure, Density and Wi.J Measurements in the Upper Stratosphere and Mesosphere, 1965, NASA TR R-263.
- Smith, W., Theon, J., Swartz, P., Katchen, L. and Horvath, J. (1968) Temperature, Pressure, Density and Wind Measurements in the Stratosphere and Mesosphere, 1966, NASA TR R-288.

Smith, W., Theon, J., Swartz, P., Casey, F. and Horvath, J. (1968-70) <u>Temperature</u>, Pressure, Density and Wind Measurements in the Stratosphere and <u>Mesosphere</u>, 1967, 1968, 1969, NASA TR G-938, G-980, G-1005.

USSR (1967-71) <u>Results of Rocket Probing of the Atmosphere, Heiss Island and</u> <u>Volgograd</u>, 1964-1969, USSR Central Administration of Hydrometeorological Services Bulletins.

World Data Center A (1965-70) Data Report Meteorological Rocket Network Firings, Asheville, North Carolina.