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INTRODUCTION

Li

De'ision makcrs frequently choose between courses

of action whose probable consequences are characterized

by multiple value attributes. For example, corporate

strategies might be ealuated in terms of their impli-

I cations for long run profits, short run profits, and

I market share; automobiles in terms of their safety and

I J performance characteristics, cost, comfort, and luxury

I options; and prospective graduate students in terms of

their test scores, recommendations, and undergraduate

academic records. Optimal decision making in Puch con-

texts requires that decision makers trade off one value

relevant factor against another in determining the overall

worth of each possible alternative. Economic theorists

(Edgeworth, 1881) have long assumed that people can sub-

jectively make such trade-offs, but until v.'y recently

this assumption remained untested. During the past decade,

however, psychologists have devoted a substantial effort

to the study of the wholistic multi-attribute evaluation

process. (Throughout this paper an evaluation will be said

to be wholistic if it is generated by a subjective process

without resort to fornma] analytical procedures.) These
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studies, reviewed by Slovic and Lichtenstein (1971), have
generally indicated that people can make such trade-offs

in a systematic and meaningful fashion. Nevertheless,

this research has also revealed important shortcomings of

wholistic evaluation. First, wholistic evaluations tend

to be 'oased on but a limited number of value attributes.,

frequently ignoring potentially significant value relevant

considerations (Shepard, 1964; Slovic and Lichtenstein,

1971). This shortcoming seems to arise from a more general

limitation of human information processing--namely, that

people can deal with only five to ten "chunks" of conceptual

information at any given time (Miller, 1956). In addition,

wholistic evaluations are characterized by a substantial

degree of random error, and the amount of error tends to

increase as the decisfon maker attempts to consider an

increasing number of value attributes (Slovic and

Vchtenstein, 1971). Error of this type has been shown to

be an importa:.;t. zotrce of suboptimality in real world

decision making (Bowman, 1963).

As the shortcomings of wholistic evaluation have

uecome increasingly apparent, decomposed evaluation pro-

cedures have been proposed as means for improvIng upon

the intuitive decision making process. Decomposition

methods attempt to achieve greater optimality by dividing
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the overall evaluation task into a set of simpler sub-

tasks, each of which is well within the Judgmental

capacities of the decision maker. These procedures

typically involve the following major steps: a) list

the set of alternatives to be evaluated; b) specify the

set of attributes with respect to which each alternative

is to be evaluated; c) numerically assess the value of

each alternative with respect to each attribute; and

d) specify an arithmetic evaluation rule for determining

the overall value of each alternative. The final task,

specification of an evaluation rule, is generally accom-

plished in one of two ways. When magnitude estimation

procedureý. dre used, each attribute is assigned a

quantitative importance factor. The overall value of each

alternative Is then computed, usually using a weighted

sum or product. When indifference judgment procedures are

used, the decision maker must first select an important

and continuous base attribute against which all other

attributes can be traded off. Then trade-offs are assessed

between the base attribute and each of the other attributes.

Under the assumption that value combines additively across

dimensions, the overall value of each alternative can then

be expressed in terms of units of the base attribute.
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Proponents of the decomposition approach claim the

following major advantages. First, by reducing the

information burden placed upon the decision maker, decom-

position procedures should substantially reduce the amount

of random error in the evaluation process. Second,

decomposition permits decision makers to consider a much

larger number of attributes in choosing between alternatives.

These are probably the two most important advantages of

decomposition over wholistic judgment. Others have been

cited, however. Raiffa (1969) has argued that it can

assist decision makers in the logical structuring of their

problems, and Edwards (1971) has discussed a case study

in which the explicitness of the procedures facilitated

both the communication and resolution of conflicts between

decision makers representing divergent interests. Edwards

also argaed that decomposition is especially suited to

application in organizational environments, with specialists

making Judgments in their own areas of expertise and decision

makers with overall responsibility specifying and weight-

ing the criteria. Finally, Yntema and Torgerson (1961)

have argued that decomposition should be particularly use-

ful in decision making contexts requiring a large number

of routine value Judgments. For, once developed, a quanti-

tative evaluation function can be incorporated in a computer

algorithm, thus freeing the decision maker for intellectually

more challenging tasks.



- DECOMPOSED EVALUWTION: THEORY, SENSITIVITY,
METHOD, AND VALIDATION

As outlined above, decomposition procedures are

rather ad hoe in nature. Critics might argue that the

weighted sum formulation ignores configural interactions

between attributes, interactions which decision makers

themselves claim to take into consideration. This objec-

tion is greatly weakened, however, by the large body of

experimental literature which shows that wholistic Judg-

ments can be very well approximated by simple additive

models, and that configural considerations account for

but a very small proportion of variance in this evaluative

process (Slovic and Lichtenstein, 1971). Nevertheless,

a stronge, normative Justification of decomposition

procedure is required.

The Theoretical Basis for Multi-Attribute Evaluation

Riskless Decision Making. A decision is said to be

riskless when the decision maker is able to specify with

certainty the consequences associated with each course of

action. Thus, riskless decisions require that the decision

maker select one from a set of outcomes. When the riskless

choice assumption is appropriate, the theory of conjoint

5
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measurement (Krantz, Luce, Suppes, and Tversky, 1971)

provides a formal axiomatic basis for additive decomposed

evaluation. Notationally, let (Xli, x2 i,...,xni) be the

vector of attributes describing outcome Xi, with xji

denoting the J-th attribute of outcome " . Further, let

Xr Xs denote the relationship "outcome Xr is not preferred

to outcome Xs", and let Xr~Xs denote "the decision maker

is indifferent between outcomes Xr and X s."

The first two assumptions of the conjoint measurement

formulation are fundamental to all theories of rational

choice (Arrow, 1952). These are:

1) Connectedness: For any two outcomes Xi and Xj,

either Xi Z Xis Xj Xi or X i-Xj

2) Transitivity: For any three outcomes, X., XP,

X k if Xi Z XP, and X Xk) then XIxk XXk•I

When both of these assumptions are satisfied, preferences

are said to be weakly ordered.

Next we consider the two independence assumpticns

which are at the heart of the conjoint measurement form of

additivity. When outcomes are characterized by only two

attributes, the following independence assumption is

required.



S7

3a) Cancellation. Let X..1 X1 j, and Xlk be any

three states of the first attribute X1, and

let x21  x2 j and x be any three states

of the second attribute x2 . If (Xl jyx 2 i)

(X and (xx) x (Xljx)

then (xliX2i) • (xlk,x2k).

When outcomes are characterized by three or more attributes,

K •each of which is sufficiently important to influence the

decision maker's preferences, then the cancellation axiom

is replaced by the following independence assumption.

3b) Monotonicity. Let (XlX 2 ,...,xn) be the attri-

bute vector describing the generic outcome

X. Let Y be any subset of these attributes and

let Z be the vector of remaining attributes, so

that X = (Y,Z). Let Yi and Y be any two states

of the Y attributes, and let Z. and Z be any

two states of the Z attributes. Then

(YiZi) < (YjZi) if and only if (YiZj) i (Yj1ZJ).

Intuitively, preferences for states of the Y attributes

are not influenced by the state in which the Z attributes

are held fixed.
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Although the theory of conjoint measurement Involves

other technical assumptions, for practical purposes

satisfaction of weak ordering and cancellation in the two

attribute case and of weak ordering and monotonicity in

the case of three or more attribute., is necessary and

sufficient to guarantee the existence of an additive

evaluation function for riskless choice (Krantz, Luce,

Suppes, and Tversky, 1971). That is, there will exist an

additive value function V comprised of constituent functions

V1, V 2 , ... , Vn such that, for any two outcomes Xi and Xi.

X <X if and only if V(Xi) V (Xj) where

V(X) = V!(xI) + V2 (x 2 ) + *.. + V n(Xn).

Further, because riskless choice requires only that the

decision maker rank order outcomes in terms of their

desirability, if V is a value function, then any monotone

transformation of V is also a value function.

Edwards (1971) has argued that it is difficult to

imagine circumstances under which the assumptions required

for additivity are not satisfied. Those familiar with the

economic concepts of complementary and competing goods

might object. For example, the attribute "number of

right shoes" and the attribute "number of left

I
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shoes" clearly do not combine additively in deter-

mining the overall value of a commodity bundle of

clothing. From a practical standpoint, however, this

example need not lead to the rejection of additive

evaluation rules; for the attribtxte "number of pairs of

shoes" may well contribute additLvely to the overall value

of the commodity bundle. Rather, this example illustrates

that satisfaction of additivIty depends upon an appropriate

definition of attributes. In general., Edwards' assertion

seems sound. Additive evaluation models should be appro-

priate for most riskless decisions.

Risky Decision Making. When decision making involves

uncertainty, on the other hand, t.he assumption required to

guarantee the existence of an addItive evaluation function

Is etrong and intuitively unappealing. Thus, risky

decision making may frequently require non-additive evalua-

tion procedures. Formally, a declsion is said to be

ry when, for each possible course of Qction, the

decision maker is able to specify a probability distribu-

tion over the possible consequences of that action. Let

(AIA 2 ,...*Am) be the set of possible actions and let

(X ,X2,..X n) be the set of poss1ble consequences of those

actions. Then for each act AI there Is an associated
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probability distribution of outcomes (P:liXl;P2iX2;
PniXn) That is, given that act A is selected,

outcome X1 will occur with probability Pli; outcome X2

with probability P2i; and so on. Thus, in risky decision
P21,

making the decision maker chooses not between outcomes,

but rather betwecn probability distributions of outcomes.

A number of strategies for making such decisions

have been proposed, but the expected utility principle has

generally come to dominate normative discussions of risky

choice (Luce and Raiffa, 1957). According to this principle

there exists a utility function U defined on outcomes

such that:

a) For any two outcomes X and XP, Xi Z Xj if and

only if U(Xi) < U(X1 ).

b) For any two actions Ai and AP, Ai Z A, if

and only if EU(Ai) _ EU(A).

Here U(Xi) deontes the utility of outcome Xi and EU(Ai)

denotes the expected utility associated with action Ai

where

EU(Ai) = PliU(XI) + P 2 iU(X 2 ) + ... + PniU(Xn).

Finally, the utility function U is defined on an interval

scale; that is, if U is a proper utility function, then any

positive linear transformation of U is also a proper utility

function.
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The expected utility principle is not new; Bernoulli

(1738) discussed it over 200 years ago. Its status as

a normative principle was not firmly established, however,

until von Neumann and Morgenstern (1944) demonstrated

that it could be derived from a set of basic axioms of

rational choice. Since that time a number of other

axiomitizations of the expected utility principle have

appeared (Herstein and Milnor, 1953; Savage, 1954; Luce

and Raiffa, 1957; Krantz, Luce, Suppes, and Tversky, 1971).

WI As stated above, the expected utility principle is

neutral with respect to the description of outcomes; they

H *may be either single- or multi-attributed. And when out-

comes are multi-attributed, the theory is neutral with

regard to the composition rule relating each attribute of

an outcome to the averall utility of the outcome. Flshburn

(1965), however, has specified a single additional assump-

tion which, when combined with the expected utilil.-

principle, guarantee3s that this function will be additive.

Central to Fishburn's proof is a relationship between finite

gambles (or discrete probability distributions over finite

sets of outcomes) which we will term marginal equivalence.

Two gambles are said to be marginally equivalent if they

give rise to identical marginal probability distributions

over the possible states of each outcome attribute. This
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concept is most easily illustrated for the case of'binary

attributes. Consider outcomes of the form (xlX2,X3)i

where the first attribute may assume either of the states

x.' or xl"; the second attribute either of the states

x2' or x2 "; and the third attribute either of the states

x or x3". Next, consider the gambles GI and G where
3 3 2

II = with probability 1/3 receive outcome (xl',x2",x 3 ')

with probability 1/3 receive outcome x3

with probability 1/3 receive outcome (xi',x2 'tx•')

U p otm ',x 3

with probability 1/3 receive outcome (xl",x 2 ",x 3 ")

For both gambles the probabilities of receiving attribute

states x,', x2 ', and x3 ' are 2/3 and the probabilities of

receiving attribute states xl", x2", and x311 are 1/3.

Thus, GI and 02 are marginally equivalent. For though the

Joint probability distributions over outcome attributes

differ for the two gambles, the marginal distributions are

the same. Fishburn has shown that a multi-attribute utility

function U defined on a finite set of outcomes can be

additive if and only if the following assumption is satisfied.
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I 4) Marginality: Let G1 and G2 be any two

finite gambles defined on the outcome set.

If G1 and G2 are marginally equivalent,

then G G

That is, given that the expected utility principle is

satisfied, an additive utility function U exists if and

only if the decision maker's preferences satisfy the

marginality principle. And, as the following example

illustratps, the marginality assumption Is very string, and

may in many cases fail to be satisfied. Consider the

following two gambles.

with probablity 1/2 receive $5000 and a 1973 Volvo

with probability 1/2 receive $10 and a rusty hubcap

with probability 1/2 receive $5000 and a rusty hubcap

with probability 1/2 receive $10 and a 1973 Volvo

Since Ga and Gb are marginally equivalent, a utility func-

tion defined on dollars and automobile components can be

additive if and only if the decision maker is indifferent

Sbetween Ga and Gb. A casual survey indicates that most

people are not; they prefer G which provides a sure pros-
b

pect of attaining a highly valued outcome. More gen~erallJy,
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it would appear that the marginality assumption will be

violated in a wide variety of contexts and that, con-

sequently, non-additive evaluation functions will be

required for many risky decision making contexts.

Fortunately, a simple formulation of non-additive Ij

utility assessment follows quite naturally from the formal

definitions of value and utility. Recall that V is said

to be a value function if, for any two outcomes Xi and

XiI Xi < Xj if and only if V(Xi) ý V(Xj). Recall also
that U is said to be a utility function wheniever the
following two conditions are satisfied: a) for any two

outcomes X and XP Xi Z X if and only if U(Xi) S U(Xj); &

and b) for any two actions A and A,, A A if and only
Ak A1  k 1

if EU(Ak) • EU(A 1 ). From these def~nitions it is clear

that U and V, if they exist, must be monotonically related.

That is, if there exist bonafide utility and value func-

tions U and V, respectively, then there will exist a

monotonic transform R such that U(X,)= R(V(X,)). Thus,

given that an appropriate value function V has been assessed,

determination of U requires only that R be specified. This

formulation applies whether or not U is additive. Note

that V may be additive while U is not. For example, let

(Xlx 2 ,...,xn) be the vector of attributes characterizing
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Li the generic outcome X, and let V(X) = £Vj(xj). Further,

let U(X) = logl 0 V(X). Then, U(X) = logl 0 (EVj(xj)),

which is not additive in the xj. This case of additive

value but non-additive utility will arise whenever the

weak ordering, monotonicity, and expected utility assump-

UI tions are satisfied, but the marginality assumption is

not. Throughout this paper the approach discussed here

will be termed the R(V) method of multi-attribute utility

assessment.

A Sensitivity Analysis

The arguments of the previous section suggest that

while additive evaluation rules will probably be appro-

priate for most riskless decsizon making contexts, non-

additive rules may be required for many risky contexts.

Yntema and Torgerson (1961) have argued, however, that

whenever the monotonicity assumption is satisfied, additive

main effects models will provide an excellent appr'oximation

to ove±vall value, regardless of how highly interactive the

true data generator. This hypothesis implies that the

distinction between additive and non-additive evaluation

rules is trivial from a practical standpoint. It has also

been argued that additive evaluation models are very robust

with respect to both the assessment of the functioas



16

relating each attribute to overall value (Edwards, 1971)

and to the specification of weighting factors for the

attributes (O'Connor, 1972; Fischer and Peterson, 1972).

In this section numerical examples are constructed to

test each of these hypotheses. [I

Additive Approximations to Non-Additive Composition 1Z
Rules. The theory of conjoint measurement assures that

whenever the weak ordering and monotonicity assumptions

are satisfied, there exists an additive evaluation rule

which will preserve the ordinal properties of the decision

maker's preferences. For risky decision making, however, I

an evaluation function must also reflect the interval

scale properties of the decision maker's preferences, and U
satisfaction of monotonicity is not sufficient to assure 21

that an additive function can preserve these properties.

Yntema and Torgerson (1961) argued, however, that if

monotonicity is satisfied, then an additive approximation

will do an excellent job of preserving these interval scale

properties. They supported this argument with a simple

numerical example in which an additive approximation to a

data generator consisting only of two way multiplicative

interaction terms accounted for 94% of the variance. The

present analysis tested the Yntema and Torgerson hypothesis
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in the presence of higher order interactions as well.

The conclusions drawn are relevant only to decision

making contexts in which an interval scale measure of

value or utility is required.

This analysis considered only two classes of functions

satisfying the monotonicity condition, and is, therefore,

illustrative rather than exhaustive. Functions of the

first class consisted of additive and two-way cross product

terms.

F 1(X 12X2,...,xn) Ex I+ EEx Ix.i xi l+ Exix

These functions closely resemble those studied by Yntema

and Torgerson (1961), which included only the two-way

cross product terms. Functions in the second class con-

sisted of additive and n-way cross product terms.

F 2 (x ,x 2 ,...,Xn) E I- + ix

To assess the ability of additive models to approxi-

mate F1 and F 2 , 1000 vectors of attribute values were

generated for alternatives described by three, six, and

nine attributes. To avoid discontinuities associated with

multiplying by zero, values with respect to each attribute
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were constrained to be greater than or equal to one.

Actual attribute values were randomly generated from a

uniform distribution over the range I to 100. This data

generating process was such that attributes were not

correlated with one another. U
La

Using this data set, additive main effects approxi-

mations were correlated with FI and F 2 for the three, six,

and nine attribute alternative sets (see Table 1). In

general, the additive approximations to the F1 models are

excellent, and their quality improves as the number of

attributes increases from three to nine. Additive main

effects models do not, however, provide good approximations

to the F 2 models, and the quality of these approximations

declines sharply as the number of attributes increases.

These results clearly reveal that the Yntema and

Torgerson example has been overinterpreted. Additive models

do not provide good approximations to highly interactive

data generators satisfying the monotonicity condition.

From the standpoint of applied decision theory, this

demonstrates that when the marginality assumption is

seriously violated, additive evaluation functions will not

be acceptable for risky decision making.
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TABLE 1

PRODUCT MOMENT CORRELATIONS FOR ADDITIVE

APPROXIMAIIONS TO NON-ADDITIVE COMPOSITION RULES

ExNa Compositlon Rule

E.X, + EX~ EX1 + zxI

3 .964 A.58

6 .985 .678

.9 1990 .48o

a Number of attributes
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Linear Additive Approximations to Non-Linear Additive
Models. The last analysis demonstrated that evaluation

models are considerably more sensitive to the proper

specification of a composition rule than has generally

Sbeen realized. This analysis tested the sensitivity of

multi-attribute evaluation rules to the specification of

functions relating each attribute to overall worth.

Throughout this analysis, additive composition rules were

assumed to be appropriate.

Given the unlimited number of functions which might

conceivably arise, an exhaustive analysis was again unfeasible.

Instead, only four monotone functions were considered. The

first two of these were members of a family of exponential

functions frequently discussed in the utility theory

literature:

fl(x) = al(l - e-X/50)

f 2 (x) a2 ( _ e -X/lO

Here a and a 2 are scaling constants such that f (O) = 0

and fi(100) = 100. Figure 1 displays plots of these two

functions.
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Figure 1. Plots of the functions f1 and f2"
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LJ

The third and fourth functions studied were members

of a family of power functions of a type frequently Li

encountered In studies of psychophysical Judgment:

fW - ( 71

f3(x) - a3(x - 20)1/3 + b 4

Graphs of these two functions are displayed in Figure 2. "-

Again, a 3 , b 3 , a4 , and b4 are scaling constants such that

fi(0) = 0 and ft(100) = 100.

Using these functions, four classes of multi-attribute

evaluation models were constiucted:

F I (xx2,...,xn)= fI(Xl) + fl(x 2 ) + ... + fI(xn)

F2 (XlsX 2 ,...,Xn) f 2 (xl) + f 2 (x2 ) + ... + f2(X

F3(X,,x2, ... ,xn) f 3(X) I+ f 3 (x 2 ) + ... + f 3 (X n)

F 4 (Xl,X 2 ,...,x) n f 4 (xl) + f 4 (x 2 ) + ... + f4(Xn).

Actual numerical examples were constructed for n = 1, 3, 6,

and 9. For the single attribute case, values were computed

for all integer values of x between 0 and 100. For the
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multi-attribute cases, 500 three, six, and nine attribute

vectors were randomly generated. States of each attri-

bute were randomly selected from a uniform distribution

over the range 0 to 100. Again, this data generator was

such that attributes were uncorrelated. Overall values

were computed for each of these alternative vectors using

F1 , F 2 , and F4.

In order to assess the sensitivity of these multi-

attribute evaluation rules to the proper specification of

component functions, three types of approximations were

considered. For the "straight line" approximations, value

was assumed to increase linearly with x; in particular, it

was assumed that f(x) = x. For the "one-step` approxima-

tions, the true value for x = 50 was plotted. Straight line

segments were then used to connect this point, (50, f(50)),

with the two end points of the scale, (0,0) and (100,100).

For the "three-step" approximations, true values were

plotted for x = 25, 50, and 75. Straight line segments

were then used to connect these points, (25, f(25)),

(50, f(50)), and (75, f(75)), with the end points of the

scale. Separatu approximations were developed for each

of the four functions studied. Additive models based on

these approximations were then used to compute overall values

for each of the randomly generated alternatives. These

!
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approximated values were then correlated with the true

values generated by F1, F2, P32 and F4. 4 he results of

this analysis are presented in Table 2.

1 -• The first Important result of this analysis is that

the quality of the approximations does not vary with the

number of attributes describing an alternative. Overall

correlations with the multi-attribute alternatives are not

substantially better than the correlations of the approxi-

mations to the individual component functions. Thus,

straight line approximations provide a good fit only when

the component functions are highly linear (i.e., in the

cases of F1 and F 3 ). In all cases, however, the three-

step approximations are excellent. And, except in the

case of F 2 , the one-step approximations are also very good.

These results suggest that while straight line approxi-

mations will not always be acceptable, it is not necessary

to precisely assess the value of every state of a given

attribute. Even in the case of continuous attributes, it

should seldom be necessary to assess the value of more than

three to five intermediately valued states. Interpolation

between these points should, provide an excellent approxi-

mation to the value of other states of the attribute.
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Li
TABLE 2

PRODUCT MOMENT CORRELATIONS FOR LINEAR ADDITIVE

APPROXIMATIONS TO NON-LINEAR ADDITIVE FUNCTIONS

ab
Function Na n Approximation

Linear 1-Step 3-Step

flI 1 101 .968 .997 1.000

3 500 .972 .997 .999
6 500 .971 .997 .999

9 500 .970 .996 .999 +

f2.+1 101 .691 .851 .971

3 500 .727 .863 .9741

6 500 .710 .859 .973

9 500 .705 .851 .969

f3 1 101 .925 .981 .981

3 500 .924 .981 .980

6 500 .928 .981 .980

9 500 .927 .981 .980

f4 1 101 .825 .936 .968

3 500 .835 .935 .971

6 500 .833 .934 .971

9 500 .834 .936 .966

a Number of attributes.

b Number of observations upon which correlation is based.
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Sensitivity to. Weighting Parameters. This section

considers the sensitivity of evaluation rules to inaccurate

assessment of weighting parameters. Throughout it will be

assumed that an additive composition rule is appropriate

L and that the component functions have been accurately

assessed.

L. For three, five, and nine attribute outcomes, three

different additive evaluation models were constructed.

These models differed only in the relative weight which

they assigned to each attribute. In each case, the first

of these three rules discriminated very highly between

the attributes, assigning 81 times as much weight to the

most important attribute as to the least important attri-

bute. The second rule utilized the same rank ordering

of attribute importance, but afforded much less discrimina-

tion. Here the ratio of the weights assigned to the most

and least important attributes, respectively, was only nine

to one. The third rule did not discriminate at all between

attributes; each received equal weight. Specifically, for

the three attribute alternatives the "high", "low" and "no"

dikcrimination models were:

H3 (xl,x 2 ,x 3 ) = 81xI + 25x 2 + X3

L3 (Xl,x 2 ,x 3 ) = 9xI + 5x 2 + X3

N3 (xlX 2 ,x 3 ) = xI + x2 + x 3.
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For the five attribute outcomes the three evaluation rules

were:

H (x1 ,x 2 ,...) 81xI + 49x 2 + 25x3 + 9x+

Llx2, ... ) 9x, + 7x 2 + 5x 3 + 3x4 + x5

N5(xIx2,...) =XI + x2 + x3 + ]4 + x5 .'

And for the nine attribute outcomes the rules were:

9(xl,3 X2,...) =81xI + 64x 2 + 49x3 + 36x4 + 25x5

+ 16x 6 + 9x7 + 4x8 + x9

(x 9xl + 8x2 + 7x3 + 6x4 + 5x 5

+ + 3x 7 + 2x 8 + 9

N 9 (x l,x2, ... ) x1 + x2 + x3 + x4 + x 5 + x6

+ x7 + x+ + x9•

Each of these nine evaluation rules was then used to

compute the value of 1000 randomly generated attribute

vectors. Again, the attributes were uncorrelated and values

within each attribute were generated by a uniform distri-

bution over the range of 0 to 100. Finally, for three,



29

five, and nine attributes, the high, low, and no discrimina-

tion models were correlated with one another. These

correlations, displayed in Table 3, indicate that additive

models are quite robust aga'.nst improper specification of

weighting parameters. The low discrimination models

afford excellent prediction of the high discrimination

models. In addition, the no discrimination models provide

a good approximation to the low discrimination models.

These results suggest that additive evaluation rules are

relatively insensitive to errors in the assessment of

importance weights. The low correlation between the high

discrimination and no discrimination models demonstrates,

however, that insensitivity is a relative matter and that

gross errors in the assessment of weights will lead to

seriously biased overall value assessments.

Methods for Assessing Decomposed Evaluation Functions

In the previous sections we have considered the

theoretical basis for multi-attribute evaluation and the

sensitivity of multi-attribute evaluation rules to

various types of assessment errors. This section discusses

four procedures for assessing a decomposed evaluation

function. Throughout this discussion it is assumed, first,
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TABLE 3 V

PRODUCT MOMENT CORRELATIONS BETWEEN ADDITIVE

MODELS WITH DIFFERENT WEIGHTING FACTORS

N a Modelsb

High-Low High-No Low-No }

3 . 977 . 756 •.855

5 .967 .736 .865

9 .968 .768 .888 _

a Number of attributes.

b The High, Low, and No discrimination models

assigned relative weights of 81:1, 9:1, and

1:1 to the most and least important

attributes, respectively.

i "• "
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that the set of alternatives to be evaluated has been

listed, and second, that the attributes with respect

to which these alternatives are to be evaluated have been

specified.

The first of the four procedures, the additive rating

scale method, has been adapted from Edwards (1971),

Fishburn (1965), and Hoepfl and Huber (1970). It is

designed for riskless evaluation and involves four major

steps. First, for each attribute, x., the decision maker

specifies the most and least desirable states, denoted by

xi* and xii, respectively. Arbitrarily, these states may

be assigned values of 100 and 0, respectively.

Next, within each attribute, the decision maker assigns

numerical values to all intermediately valued states. For

example, consider the i-th attribute and let xij be any

state of this attribute such that xi, z xj C xi*. For

each such state the decision maker assesses a value

Vi(xij) which reflects the value of xij relative to xi*

and x i*. If the attribute is continuous, interpolation

between a few well chosen points will be required.

Third, weighting or scaling factors are assessed

which reflect the relative importance of each attribute.
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The relative weight assigned to a given attribute should

be proportional to the change in overall value produced

by moving that attribute from its least to most valued

state, all other things being equal (Fishburn, 1965).

For convenience, these weights may be normalized to sum to

one.

Finally, overall values may be assigned to each

alternative by the additive evaluation rule

V(XlX 2 ,.*..xn) - W1 VI (xI) + w2V2 (x2 ) + ... + wnVn(Xn),

where wi is the normalized weighting factor for the i-th

attribute.

The second decomposition procedure, the additive

trade-off method, is also designed for riskless decision

making. Essential to this procedure is the existence of

an important continuous base attribute against which all

other attributes may be traded off; for example, lives

saved or equivalent dollar value. Let xI denote this

attribute. Next, for each attribute, a standard state,

xi°, must be specified. Then, differences in value between

states of the other attributes can be traded off into units

of the base attribute x . For example, let x j be any

state of the i-th attribute. The decision maker is asked
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to specify a state of the first attribute, Xlk, such that

(xI xj ,..,iI ijil,... 9x 0 ) - (xlk,X2 ,...,x ).

Intuitively, Xlk should be such that the differece in

value between x and x is equal to that between xl°

and Xlk. One such Judgment is required for each state of

the attributes x 2 , x3 , ... , xn. When attributes are con-

tinuous, interpolation will be necessary. In this way

deviations from the standard state of each attribute may

'-4 be expressed in terms of units of the base attribute.

When overall value is assumed to be linear in the

units of the base attribute, each attribute may be assigned

an overall value by summing over attributes the base

attribute equivalent value of the deviation of each attri-

bute from its standard state. For example, if the base

attribute is measured in dollar units, then within each ol"

the other attributes deviations from the standard state of

the attribute will be assigned dollar equivalent values.

If the state of an attribute is preferred to its standard

state, then this dollar value will be positive. If the

state of an attribute is less desirable than its standard

state, then this dollar value will be negative. Thus,

assuming that value is linear with dollars, an overall

value can be assigned to an alternative by summing over
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attributes the dollar equivalent value of the deviation

of each attribute from its standard state.

When riskless value is not linear in units of the

base dimension, it is necessary to assess a riskless value

function V over this base attribute. This function may

be assessed using the direct estimation procedure described

for obtaining functions over attributes in the rating scale

procedure. In this way, value differences within each of I

the other attributes may be expressed in terms of units of

the value function V. These units may then be summed

across attributes to assign overall values to multi-

attribute alternatives. I

The next two decomposition procedures to be discussed

are designed for risky decision making. Because both

procedures rely upon the indifference probability method

(Luce and Raiffa, 1957; Raiffa, 1968) for assessing risky

utilities, this method is considered first. It can, in

principle, be applied to either single- or multi-attribute

outcomes. It will later be argued, however, that the

method is best suited for single-attribute assessment and

that decomposition procedures should be used for multi-

attribute utility assessment, particularly when the number

of attributes is large.
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I U ~~Let (X,2..,) be the set of outcomes to which

utilities are to be assigned. In applying the indifference

probability procedure the decision maker must first specify[ the most and least desirable outcomes in this set; let

X* and X* denote these outcomes, respectively. The

decision maker assigns utilities to all other outcomes in

Lthe outcome set by comparing them with X* and X*. These

comparisons take the form of hypothetical lotteries or

L gambles. Consider any intermediately valued outcome X1.

The decision maker assigns a utility to this outcome by

specifying a probability p1 such that he is indifferent

between receiving the outcome X with certainty cr accept-

ing the gamble (pi,X*; (l-pi),Xj). One such indifference

probability must be assessed for each outcome in the set.

These indifference probabilities themselves provide an

appropriate utility measure, provided that the decision

maker has assessed them in an expected utility maximizing

fashion. To show that this is the case, note that utili-

ties are defined only on an interval scale. Thus the

extreme outcomes X* and X. may be arbitrarily assigned

utilities of 1.0 and 0.0, respectively. Then, assuming

that the indifference probabilities were assessed in an

expected utility maximizing fashion, the relation

Xi - (pi,X*; (l-pi),X*) implies that U(Xi) = piU(X*)

+ (l-pi)U(X*), or U(Xi) = pi.
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The validity of the indifference probability assess-

ment technique rests on the assumption that the decision K

maker acts as an expected utility maximizer in evaluating

simple gambles. Although this is surely an idealization,

studies of human gambling behavior indicate that expected

utility models provide a fairly close approximation to

this behavior, provided that the gambles involved are of

the very simple type used in the indifference probability

assessment method (Davidson, Suppes, and Siegel, 1957;

Coombs, Bezembinder, and Goode, 1967; Tversky, 1967).

Application of the indifference probability assessment

technique to complex multi-attribute alternatives, however,

seems very qu.estionable because of the heavy information

load placed upon the decision maker. To reduce this infor-

mation overload problem, utility decomposition procedures

have been developed. As in the case of riskless evaluation,

these procedures reduce the complexity of the Judgments

required of the decision maker.

The first of the two utility decomposition procedures

which we will discuss was developed by Raiffa (1969) and

will be termed the additive utilitL procedure. In imple-

menting this method the decision maker begins by specifying

the most and least preferred states of each attribute.

These states are arbitrarily assigned within attribute
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utilities of 1.0 and 0.0, respectively. That is, for
each attribute, Ul(xl) 1.0 and Ul(Xl) = C. Next,

utilities must be assigned to intermediately valued states

IU of each attribute. For example, let x j denote the J-th

state of the i-th attribute. To assign a utility to state

L xij the decision maker assesses a probability piJ such

L that he is indifferent between obtaining state x i with

certainty or accepting the gamble (pij,xi ; (l-Pij),xi*),

L assuming all other attributes are held constant. One such

Judgment must be elicited for each state of each attribute.

L. Note'that in making these assessments, the decision maker

needs only to consider the relative utility of different

states of a single attribute. Again, if attributes are

L• continuous, interpolation will be required.

L| Next, the decision maker must assign importance

factors to each attribute. This is accomplished by having

Lthe decision maker assess the utility range associated with

each attribute. Notationally, let X* = (xl*,x2 ,.,.,xn

and X* = (X1 ,X 2 *-,...,Xn*) denote the most and least

desirable multi-attribute outcomes, respectively. And let

(X k ,xi) denote the outcome which is characterized by the

most desirable state of attribute k and the least desirable

state of all other attributes. 'here will be n such out-

L comes. In order to assess the utility range associated with

f
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the k-th attribute, the decision maker specifies a pro-

bability, Wk, such that he is indifferent between accepting

the outcome (XkE,xi*) with certainty or accepting the

gamble (wk,XV; (l-wk),X*). Arbitrarily letting U(X*) = 1.0

and U(X*) = 0.0, it can easily be shown that wk is a

measure of the utility range of the k-th attribute, and

thus, that the wk may be used as weighting factors in an

additive utility function. This method of assigning

weights is the most undesirable feature of the additive

utility decomposition, for it relies upon wholistic utility

assessments of n multi-attribute outcomes. When the number

of attributes is large, these assessments may be subject

to a substantial degree of error.

Finally, overall utilities may be assigned to each

multi-attribute outcome according to the additive rule

U(Xl,X 2 ,...x) = WlUI(xI) + w2 U2 (x 2 ) + ... + wnUn(xn).

These utilities can be used In the computation of the

expected utility associated with each course of action.

Despite the apparent similarities between this pro-

cedure and the riskless rating method, Raiffa (1969) has

shown that the two will not necessarily coincide. They

should be monotonically related, so that both may be used
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Lifor riskless decisions. But they need not be linearly

related, and only the additive utility method is formally

appropriate for risky decision making.

LiThe second utility decomposition, the R(V) method,

exploits the monotone relationship between riskless value

and risky utility. Recall that if V is an appropriate

measure of riskless value, then there exists some monotone

transform R such that U(X) = R(V(X)). So, given a decom-

posed value function V, U can be specified simply by

determining R. This may be accomplished in either of two

ways, depending upon the manner in which the riskless

value function has been assessed.

When trade-off procedures have been used to construct

the value function V, assessment of R will be particularly

easy. Suppose, for example, that all outcomes have been

traded off into a continuous base dimension, such as

equivalent dollar value or number of lives saved per year.

Then R can be directly obtained simply by assessing a

utility function over the continuous base attribute. In

contrast to the additive utility decomposition, this vari-

ant of the R(V) method requires no wholistic multi-attri-

bute utility assessments. Rather, the decision maker needs

only to assign single attribute wholistic utilities to

three to five states of the base attribute.
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When the riskless value function has been constructed

using rating scale procedures, assessment of R is some-

what more difficult. Raiffa (1969) has suggested that the

decision maker directly assess the utilities of a few

well chosen multi-attribute outcomes. The values of these

outcomes (as indicated by the rating scale decomposition)

can then be plotted on one axis, and the wholistic utili-

ties assigned to these outcomes on the other. Utilities

for outcomes having other values can then be obtained by

interpolating a curve through the points for which utilities

have'been assessed. Like the additive utility decomposition,

this variant of the R(V) method requires wholistic multi-

attribute utility assessments. In many cases it will

require fewer, however. For while this variant of the

R(V) method will require three tu five such Judgments, the

additive utility method requires as many such Judgments as

there are attributes.

Validation of Decomposed Evaluation Functions

The decomposition procedures Just described are not

difficult to implement. Nevertheless, it remains to be

shown that the Judgments required can be made in a systematic

and meaningful fashion. Broadly speaking, experimenters

have adopted two general approaches to this problem of

validating decomposed value measures.
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The first approach, external validation, requires that

SIt be possible to specify anobjective etral defined)
criterion against which to validate the value measure.

L This strategy is most likely to be useful when value

attributes are essentially predictors of the decision

maker's overall objective. For example, price to earnings

ratios, corporate earnings growth trends, and dividend

yields are often used as measures of the value of an issue

on the stock exchange. These attributes are of value,

however, only in so far as they are predictors of the

investor's true goal, expected monetary return. Thus,

investment decisions generated by a decomposed evaluation

model could be validated against subsequent monetary return.

In principle, external validation should be applicable to

a wide variety of real world decision making contexts. In

practice, however, it has been employed only in two experi-

mental studies (Yntema and Torgerson, 1962; Lathrop and

Peters, 1969), both of which found decomposed evaluation to

be slightly, but not dramatically, superior to wholistic

judgment.

The second approach to validation was proposed by Miller,

Kaplan, and Edwards (1967, 1969) and rests on the principle

of convergent or construct validity.
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-II
The basic idea of construct validity is that a
test should make sense and the data obtained by
means of it should make sensc. One form of
making sense is that different procedures pur-
porting to measure the same abstract quantity
should covary (Miller, Kaplan, and Edwards,
1967, p. 367).

In the context of decomposed evaluation, logically equiva-

lent evaluation procedures should assign similar values

to alternatives.

Most applications of this strategy have examined the

degree of within subject convergence between wholistic

and decomposed judgments. When alternatives are charac-

terized by a small number of attributes, information over-

load should not be a serious problem, so it is reasonable

to expect a high degree of consistency between the two

types of judgments. Mean within subject correlations

between wholistic and decomposed judgments have typically

ranged from the low .80s to high .90s (Pollack, 1964;

Hoepfl and Huber, 1970; Pai, Gustafson, and Kiner, 1971;

von Wiaterfeldt, 1971), though in one case (Huber,

Daneshgar, and Ford, 1971) correlations in the low .60s

were obtained. The poor convergence in this latter case,

however, may well have been due to noise in the wholistic

responses rather than to any weakness of the decomposition

approach (see Fischer, 1972).
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In each of the above convergent validation studies,

decomposed models were validated against wholistic rank-

ings or ratings. They may also be validated against real

or hypothetical choices. Two studies have adopted this

strategy (Yntema and Klem, 1965; Huber, Daneshgar, and

Ford, 1971), and both obtained a high degree of within

subject convergence.

A third variant of the within subject convergent

validation strategy has also been considered. To the

extent that they are valid indicators of a decision maker's

preferences, two or more different decomposition models

ought to assign the same values to alternatives. This

approach is particularly attractive because it can be used

in real world decision making contexts in the absence of

a known criterion and without relying upon difficult

wholistic Judgments. Eckenrode (1965) obtained a high

degree of within subject convergence across six different

procedures for assessing importance weights. Von Winterfeldt

(1971), on the other hand, obtained low convergence between

weighting procedures but high convergence between additive

models based upon these weights. This latter result

reflects the robustness of additive models against minor

errors in weights.
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Finally, in some instances, between subject conver-

gence may provide an appropriate validating device. This

strategy is primarily applicable to matters of expert

judgment rather than personal taste. Kennedy (1971)

asked professional bankers and accountants to assign

weights to attributes of loan applications, and obtained

a high degree of convergence between the average weights

assessed by these two groups of subjects. Eckenrode (1965)

and O'Connor (1972), on the other hand, obtained only

moderate correlations between weighting factors assessed

by different expert judges. In addition, however, O'Connor

found that overall indices based upon these divergent

weights assigned very similar overall values to alternatives,

another instance of the robustness of additive models

against variations in weights.

In summary, a number of different approaches to the

validation issue have been considered, and in all cases

the experimental results have supported the decomposition

approach. Nevertheless, this validation Aiterature has

two major shortcomings. First, only one study (von

Winterfeldt, 1971) has dealt with risky utility assessment.

Second, trade-off procedures, which may well prove the

most useful tool .'or real world decision making, have yet

to be experimentally validated.



EXPERIMENT 1

The goal of this experiment was to fill two gaps in

the validation literature by experimentally validating

the additive trade-off and additive utility decompositions.

Additive rating scale methods were also studied so that

the degree of convergence between the three approaches

could be assessed and so that the comparative advantages

and disadvantages of the three methods could be determined.

Methbd

Design. Subjects evaluated hypothetical compact

cars described by either three or nine attributes. Each

subject utilized six different response modes, three of

which required wlolistic judgments and three decomposed

judgments. In the first wholistic response mode, sub-

L jecrs evaluated each car on a 0 to 100 rating scale. In

L the second, they compared each car with a "standard car"

which was approximately average in all respects, indicated

which they preferred, and assigned a dollar value to the

difference in worth between the two cars. In the third,

subjects assigned utilities to cars utilizing the indif-

ference probability assessment procedure. After all

45
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wholistic judgments had been made, subjects constructed

decomposition models using the additive rating scale,

dollar trade-off, and risky utility methods.

In analyzing the data, two versions ol' the within

subject convergent validation strategy were considered.

First, each of the three types of decomposition models

was used to predict each of the three types of wholistic

judgments. Second, the degree of convergence between the

three decomposition models was assessed and contrasted

with that between the three types of wholistic judgments.

Subjects. Six male University of Michigan students

served as subjects. They were screened for prior mathe-

matical exposure to insure that the! would feel comfortable

with the task. One of the six failed to complete one

portion of the experiment and was dropped from all data

analyses.

Alternatives. Subjects evaluated hypothetical compact

cars described by either the first three or all nine of

the attributes listed in Table 4. Several of these

attributes, such an fuel economy, were in principle con-

tinuous. Others, such as type of transmission, were

categorical. In either case, at least three and at most

five different states of each attribute were used to
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'U
b TABLE 4

LIST OF ATTRIBUTES USED TO DESCRIBE
ALTERNATIVES IN EXPERIMENT 1

L Name of Attribute Units States

1 2 3 4 5

S1) Quality of VG G Ac P VP

Steering and

Handlinga

2) Fuel Miles 22 24 2 6 C 28 30
perEconomy Gal.

3) Comfort: Rear A pC VP

Seata

14) Acceleration Secs. 12 14 16c 18 20

(0 to 60 mph)

5) Radio * AM/FM AM Nonec

Equipment

6) Cost of Upkeep **** Low Ac High

7) Comfort: Front * VG G -Ac P VP

Seata

8) Stopping Feet 125 135 145c 155 165

Distance

(from 60 mph)

L9) Transmissionb * 4-Sc 3-S Auto

a VG, G, A, P, and VP represent ratings of Very Good, Good,

Average, Poor, and Very Poor, respectively.

b 4-S, 3-S, and Auto represent four speed stick shift,

three speed stick shift, and automatic transmission, respectively.

c "Standard state" for the attribute.

-ia ia ~ a k
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construct alternatives. Table 4 lists the states

considered for each of the nine attributes..

For the three attribute alternatives, a set of 12 L
hypothetical cars was constructed. States of the three

attributes were randomly determined subject to the

following constraints. For the five state attributes, each

state was selected at least two times and at most three;

for the three state attributes, each was chosen four times.

A similar procedure was used to construct a set of 18 cars

described by nine attributes. For five state attributes,

each state was chosen at least three times and at most

four; for the three state attributes, each was chosen six

times.

Procedure. Subjects were first familiarized with the

nine attributes. They were instructed to regard performance

and quality indicators as reliable measures collected by

an independent automotive testing service. To provide a

frame of reference for the quantitative measures of accelera-

tion, fuel economy, and braking, subjects were provided with

actual test data for the 1971 model Volkswagen "Super

Beetle," Plymouth Satellite, and Ford Boss 351 Mustang.

Next, subjects specified the most and least desirable com-

binations of attribute states for both the three and nine

attribute alternatives. These were used as a frame of

reference throughout the experiment.

I ,_ ...- , ..,. ..... .. • , ,o • • • • ' ..• • I ..• '' • -.. .... f '• • .. .• • | ' '' ' ' '"
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K U Subjects next made six sets of wholistic Judgments.

For each of the three wholistic response modes, subjects

evaluated two sets of stimuli; one in which cars were

L described by three attributes and one in which they were

described by nine. The same two sets of stimuli were

K evaluated in each of the three wholistic response modes.

Subjects were randomly assigned to each of the six possible

orders of the three response modes. But within a given

F+ response mode, the three attribute alternatives were always

presented first. This within response mode presentation

order was adopted to facilitate task learning on the part

of the subjects.

Elicitation of the wholistic judgments proceeded as

follows. Subjects were handed a booklet of either 12 or 18

pages for the three and nine attribute alternative sets,

respectively. Each page of a booklet listed the attributes

describing a particular alternative. On the bottom of each

page was the response device.

For the rating scale judgments, subjects indicated

their response by making a slash through a 100 millimeter

line which was divided into 10 equal segments, and labeled

at 10 unit intervals from 0 to 100. Subjects were

instructed that the previously specified most and least

desirable cars could be arbitrarily assigned values of 100
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and 0 on this scale, and asked to evaluate other cars

relative to these two extremes.

In the wholistic dollar trade-off response mode,

subjects were first shown the list of attributes charac-

terizing the "standard car" for both three and nine

attributes (see Table 4). These cars were selected so as

to be approximately average in all respects. At the

bottom of each page was the question "Preferred to standard

car?", to which the subject responded "yes" if he pre-

ferred the car described on the page to the standard car,

and "no" if he preferred the standard car. Below this the

subject indicated the dollar difference in value between

the two cars.

Before assessing risky utilities, subjects were intro-

duced to the indiff~rence probability assessment procedure.

Subjects first assigned utilities to simple gambles

involving only monetary outcomes. They did not actually

play these gambles. After they were familiar with the

procedure, subjects used it to assign wholistic utilities

to the hypothetical vars. Throughout, subjects had at their

disposal a table for converting from probabilities to odds

levels, but always gave their responses in probability form.
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i Subjects were not introduced to the idea of decom-

Li position until after all wholistic judgments had been

made. Decomposed models were constructed in the order in

Li which subjects had made the corresponding whollstic

judgments.

In constructing rating scale models, subjects first

assigned values to the various states of each attribute.

Using a 100 millimeter scale, they located the most and

least desirable states of the attribute in question at the

0 and 100 points of the scale, respectively. They then

indicated the relative values of other states of the attri-

bute by making slashes through the scale. Importance

weights were elicited in a similar fashion. First subjects

ranked attributes in order of their importance, They next

arbitrarily assigned an importance of 100 to the most

important attribute. Then, again using a 100 millimeter

scale, they assigned relative importance weights to each of

the other attributes. Subjects were told to view these

importance assessments as percentages. For example, a

rating of 50 would indicate that an attribute was 50% as

important as the most important attribute. Finally, these

importance weights were normalized to sum to one.

Additive trade-off decomposition models were constructed

using a slightly modified version of the procedure described

earlier. Within each attribute, subjects assigned dollar
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equivalent values to deviations from the standard state

of each attribute. For example, let xi0 be the standard i
state of the i-th attribute, and let xii be any other

state of that attribute. Subjects were first asked to i
indicate which of these two states they preferred. They

were then asked to assign a dollar value to the difference

in worth between, these two states. These dollar differences

were then assumed to combine additively across attributes.

In constructing additive utility models, subjects used

the indifference probability assessment procedure to assign

within attribute utilities to the states of each attribute.

In making these judgments, they compared intermediately

valued states of each attribute with the most and least
.1

valued states of that attribute, assuming all other attri-

butes to be held constant. Next, subjects assessed

wholistic utilities from which importance weights were

derived. For both three and niLne attributes, subjects

assessed multi-attribute utilities for all alternatives for

which one attribute was in its most valued state and all

other attributes in their least valued states. As noted

earlier, such assessments provide a measure of The utility

range associated with each attribute and thus provide an

appropriate measure of importance. In principle, these
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J importance assessments should have summed to one. In

practice, however, they typically did not, and so were

U normalized to sum to one.

During all stages of the above procedure, subjects

were run individually and under close supervision.

Results

Convergence between Wholistic and Decomposed Responses.

As noted earlier, the formal definitions of value and

utility require that any two such measures be monotonically

related. So if subjects were completely consistent in

making all of their wholistic and decomposed assessments,

and if their wholistic assessments satisfied the mono-

tonicity condition, then each of the three decomposition

models should perfectly predict the rank ordering of

alternatives generated by each of the three wholistic

response modes. To test this proposition, rank order

correlations were computed (see Table 5).. For the three

attribute alternatives the obtained correlations were in

general very high. Similar results were obtained for the

nine attribute alternatives, though these correlations were

generally somewhat lower. Here, however, the risky utility

decomposition consistently provided poorer predictions of

the rank orders generated by all three wholistic response

modes.
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The utility theory axioms also require that any two

L interval scale measures of value or utility be linearly

related. Thus, assuming risky utilities to be additive,

each of the three decompositions should be equally pre-

dictive of the interval scale properties of each of the

three types of wholistic responses. To test this hypo-

thesis, product moment correlations between wholistic and

decomposed judgments were computed (see Table 6). Data for

the three attribute alternatives generally supported this

hypothesis, though there was some indication that the risky

utility decomposition afforded poorer prediction of the

riskless wholistic assessments than did the riskless

decomposition models. Similar results were obtained for

the nine attribute alternatives, though here it was more

evident that the risky utility decomposition afforded

poorer prediction of the riskless wholistic assessments.

To provide a more sensitive measure of interval scale

convergence, mean absolute deviations (MABS) between

wholistic and decomposed assessments were also computed.

Because the various sets of responses were measured on

different scales, these differences could rot be directly

computed. To make all sets of responses comparable, each

subject's data was transformed as follows. Within each

response mode and stimulus set all judgments were linearly
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L transformed to range between 0 and 100. Such transfor-

mations were appropriate because the value and utility

functions in question were defined only on an interval

L, scale. Using this transformed data set, within subject

MABS scores were computed (see Table 7). This analysis

revealed a clear departur.-e from the utility theory assump-

tion that preference is risk variant. For both three and

nine attributes, the utility decomposition afforded better

prediction of the risky wholistic assessments and the

riskless decompositions afforded better predictions of the

riskless wholistic assessments. This result is reminiscent

of Tversky's (1967) finding that an interval scale measure

of subjective worth varies depending upon whether or not it

is based upon risky or riskless judgments. In addition,

however, the MABS analysis of the nine attribute alternatives

generated results which seem to conflict with those of the

previously discussed rank order correlation analysis. For,

using Spearman's rho as a measure of convergence, the

additive utility decomposition models provided the poorest

predictions of all three sets of nine attribute wholistic

judgments, including those wholistic judgments which were

assessed using the indifference probability utility assess-

ment procedure. Yet using MABS as a measure of convergence,

the additive utility decomposition models provided the best
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predictions of the nine attribute wholistic utility

assessments. Apparently the additive utility decomposition

procedure was subject to a considerable degrea of random

error which caused it to fail to correctly order alter-

natives which were fairly similar in overall utility. In

addition, however, the additive utility decomposition

procedure did capture some of the subjects' attitude toward

risk and was thus better able to predict the interval

scale properties of the wholistic utility assessments.

Convergence between Decomposition Models. To the

extent that they are valid, two or more decomposed

evaluation models should produce the same rank ordering

over a given set of alternatives. Rank order correlations

were computed to test this proposition (see Table 8). In

general, the three decompositions did produce similar rank

orderings. The degree of ordinal convergence between the

decomposition methods was not, however, greater than that

between the various sets of wholistic responses (see Table

9). In fact, convergence between the additive utility

decomposition and the other twu decompositions was poorer

than that between th2 wholistic utility assessments and

the other two types cf wholistic assessments. This result

further supports the earlier conclusion that the additive

utility decomposition procedure is subject to a considerable

degree of error.
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TABLE 8

CONVERGENCE BETWEEN DECOMPOSED EVALUATION

.1ODELS: EXPERIMENT I
Li

Measurea Nb Modelsc Subject

1 2 3 4 5 Median •-j

Rho 3 RS-TO .98 .93 1.00 .97 .97 .97
RS-UF .84 .77 .95 .89 .97 .89

TO-UF .85 .90 .95 .92 .99 .92

Rho 9 RS-TO .95 .95 .95 .96 .94 .95
RS-UF .77 .79 .99 .97 .94 .94

TO-UF .85 .88 .94 .92 .93 .92

PM 3 RS-TO .99 .98 1.00 .98 .97 .98
RS-UF .82 .79 .99 .94 .99 .94

TO-UF .85 .88 .99 .94 .97 .94

PM 9 RS-TO .98 .99 .97 .95 .97 .97
RS-UF .84 .88 .99 .97 .97 .97
TO-UF .85 .92 .97 .91 .97 .92

MABS 3 RS-TO 4 6 0 4 6 4

RS-UF 18 17 3 9 3 9
TO-UF 17 13 3 10 6 10

MABS 9 RS-TO 4 4 6 8 6 6
RS-UF 15 11 2 6 5 6

TO-UF 15 9 6 11 8 9

aMABS, PM, and Rho refer to mean absolute deviations, product

moment correlation, and Spearman's Rho rank order correlation.

bNumber of attributes.

cRS, TO, and UF denote the additive rating scale, additive

trade-off, and additive utility decompositions, respectively.
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TABLE 9

CONVERGENCE BETWEEN WHOLISTIC RESPONSE

MODES: EXPERIMENT I

Measure a Nb ModelsC Subject

1 2 3 4 5 Median

Rho 3 RS-TO .98 .81 .96 .81 .92 .92

RS-UF .96 .96 1.00 .87 .95 .96

TO-UF .97 .86 .95 .96 .84 .95

Rho 9 RS-TO .92 .87 .85 .95 .91 .91

RS-UF .91 .89 .97 .93 .96 .93

TO-UF .90 .83 .83 .93 .88 .88

PM 3 RS-TO .98 .87 .96 .89 .92 .92

RS-UF .79 .91 1.00 .89 .94 .91

TO-UF .84 .80 .96 .86 .82 .84

PM 9 RS-TO .96 .90 .96 .95 .87 .95

RS-UF .75 .87 .98 .81 .95 .87

TO-UF .78 .80 .95 .84 .84 .84

MABS 3 RS-TO 6 14 6 10 14 10

RS-UF 29 16 3 16 9 16

TO-UF 25 22 7 22 18 22

MABS 9 RS-TO 6 11 8 9 12 C,

RS-UF 32 15 6' 19 7 15

TO-UF 33 15 7 19 15 15

aMABS, PM, and Rio refer to mean absolute deviations, product

moment correlation, and Spearman's Rho rank order correlation.

bNumber of attributes.

CRS, TO, and UF denote the wholistic rating scale, trade-off,

and utility response modes, respectively.



Consideration of the interval scale properties of the

three decompositions also revealed a high degree of con-

vergence. Both product moment correlation and MARS

analyses indicated that the degree of interval scale con-

vergence between the three decompositions was consistently

and substantially greater than that between the corresponding

wholistic response modes (see Tables 8 and 9).

Discussion

The generally high degree of convergence between not

only the decomposed models themselves, but also between the

wholistic and decomposed judgments strongly suggests that

all three decomposition procedures can provide a meaningful

measure of the decision maker's preferences. The relatively

low rank order correlations between the additive utility

decomposition and the other nine attribute wholistic and

decomposed judgments suggests, however, that the additive

utility decomposition is less reliable than the other two

decomposition methods.

Experiment 1 also produced two other notoworthy results.

First, the degree of interval scale convergence between

the three decomposition procedures was consistently greater

than that between the corresponding sets of wholistic

judgments. This finding supports the contention that

decomposition can improve upon wholistic evaluation by



reducing the amount of random error in the evaluation

process.

The final noteworthy rezult was that the degree of

convergence betweer the decomposition models and the risky

wholistic assessments was less than that between the

deccmposition models and the riskless wholistic assessments.

Although a number of explanations of this finding are

possible, two seem most salient. First, the risky wholistic

assessments may simply be subject to more random error,

and thus, are inherently less predictable than the riskless

wholistic assessments. The difficulty of the judgments

required in the risky wholistic response mode makes this

explanation quite plausible. A second possible explanation

is that the who'istic preferences for risky alternatives

were systematically non-additive, and thus, that additive

decomposition models provided an imperfect approximation

to the subjects' true preferences. Confirmation of this

hypothesis would suggest that non-additive decomposition

procedures are required for risky decision making. For

there are certainly no compelling normative grounds for

additive evaluation under risk. The marginality assumption

which is required for additivity seems very questionable

from a normative standpoint, and it is easy to construct
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instances in which this assumption is and clearly should be

violated. Thus, if wholistic preferences under risk exhibit Ii

evidence of substantial non-additivity, it seems reasonable

to conclude that the decision maker's preferences really

are non-additive, and that any decomposition procedure

devised to assist him in making decisions should be capable

of reflecting this non-additivity.



EXPERIMENT 2

The primary objectives of Experiment 2 were to

determine first, whether wholistic risky utility assess-

ments are substantially non-additive, and second, whether

the R(V) utility decomposition provides a better measure

of risky utility than does the additive utility decompo-

sition studied in Experiment 1. These two objectives are

closely related. For, if wholistic preferences are

systematically non-additive under risk, then a non-additive

utility decomposition procedure, like the R(V) method,

seems called for. But even if wholistic preferences under

risk are additive, the R(V) method might prove superior to

the additive utility decomposition. Experiment 1 suggested

that the additive utility decomposition might be subject

to a substantial degree of error. The R(V) method con-

siderably simplifies the evaluation process by permitting

the decision maker to separate the consiceration of value

trade-offs between attributes from consideration of his

attitude toward risk. Because of its relatively greater

simplicity, the R(V) method might provide a less error

prone measure of risky preference than the additive utility

decomposition.

65
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Method

Design. Because wholistic utility assessments were

to be used to evaluate the relative desirability of addi-

tive and non-additive utility assessment procedures, a

large amount of random error in these wholistic utility

judgments would have posed a serious problem. To avoid

this possibility, only three attribute alternatives were

considered.

In the first stage of Experiment 2 subjects wholis-

tically evaluated hypothetical job offers using both the

riskless rating scale and risky utility response modes.

Because the analysis of variance was to be used to provide

a formal test of the additivity assumption, subjects

evaluated all possible combinations of attribute states.

Half of the subjects assessed the riskless ratings first,

and half the risky utilities first. After all wholistic

judgments had been made, subjects constructed additive

rating scale, additive utility, and R(V) utility

decomposition models.

Subjects. Ten male students from the University of

Michigan Schools of Engineering and Business Administration

served as subjects. All were either seniors or graduate

students and had, as a consequence, given serious
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L consideration to the problem of obtaining a job following

their graduation.

Alternatives. The alternatives to be evaluated were

hypothetical job offers described by three attributes:

annual salary, city of erployment, and type of work. Each

of these attributes assumed three states, yielding 27

possible job offers.

Particulrhr states of the three attributes were specified

as follows. The experimenter arbitrarily established three

salary levels -- $14000, $11000, and $9000 -- and three

cities -- Boston, Cleveland, and Tulsa. But given the

rather divergent backgrounds and interests of the subjects,

it was not possible to arbitrarily specify three types of

work which would be applicable to all subjects. Instead,

the experimenter asked each subject to describe three types

of work, the first of which he would view as "very good"

given his interests and goals, the second of which was less

desirab1l than the first, but nonetheless "good", and the

third of which was barely acceptable or "fair".

As in Experiment 1, alternatives for the wholistic

Judgments were presented in booklet form. Each page of a

booklet listed the three attributes describing a particular

job offer. Subjects evaluated each of tie 27 possible job



descriptions once in each response mode. In addition, to

provide a measure of wholistic reliability, subjects

re-evaluated five of the alternatives for a second time.

For each wholistic response mode, two booklets of wholistic

alternatives were constructed. Each booklet contained

16 job descriptions. Five of these were reliability items

which occurred in both booklets. The remaining 22 alter- •

natives were randomly divided between the two booklets.

The order of booklet presentation was randomized across

subjects.

Procedure. After becoming familiar with the nature

of their evaluation task, subjects created the descrip-

tions of the "fair", "good", and "very good" types of

work. Next they specified the most and least desirable _-

of the 27 possible job offers. Then wholistic assess- .

ments were elicited. As in Experiment' l, subjects indi-

cated their riskless ratings by making a slash through, a

100 millimeter scale which was divided into ten equal

intervals and numbered from 0 to 100.

Elicitation of the risky wholistic judgments differed

from Experiment 1, however, in that a plausible scenario

could be constructed. The instructions given to subjects

can be paraphrased as follows.

)I
I
9i
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Suppose that the two jobs which you previously
stated were the most (J*) and least (J*) attrac-
tive of the possible job offers are two of
only three job offers which you have, and
suppose that the intermediately valued offer
(J') described on the page of the booklet before
you is the third. You have been told that J*
is yours for the asking, and you may wait several
months if you wish before giving your decision.
The J' offer, on the other hand, requires an
immediate response. You can have it now if you
wish but if you wait the offer will no longer be
available. Unfortunately, while you have some
chance of receiving the J* offer, you will not
know for certain until several weeks from now,
and you cannot wait that long before stating
whether you will accept or reject J'.

This leaves you with only two alternative courses
of action. First, you can accept J', thus for-
feiting any chance to J* but assuring that you
will not have to accept J*. Or second, you can
reject J'. In this case, if you are fortunate,
you will receive the offer J*, but if not, you
will have to accept J*. Clearly, your decision
in this matter will depend upon how likely you are
to receive the J* offer. Your task in this por-
tion of the experiment is to specify, for, each
offer J', a probability p' of receiving the J*
offer such that you would be indifferent between
accepting and rejecting J'.

The actual instructions were stated less formally, and

subjects found this scenario quite plausible, Some had,

in fact, experienced such a situation. This plausibility

further strengthened the case for using these wholistic

utility assessments as a criterion for validating the

decomposed utility models.
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After completing the wholistic phase of the experi-

ment, subjects constructed decomposed evaluation models.

For the rating scale and additive utility decompositions

they followed the procedures utilized in Experiment 1. To

obtain weighting factors for the additive utility decom-.

position, subjects reassessed the required wholistic

multi-attribute utilities. Thus, the additive utility°

decompositions were independent of the set of wholistic

utility judgments which they were used to predict. Li

Construction of the R(V) utility decompositions

required no additional judgments. The rating scale models

provided a measure of riskless value. To determine the

transform R, the experimenter utilized the three wholistic

multi-attribute utility assessments from which the

weighting factors of the additive utility decompositions

had been determined. These three utilities were plotted

on one axis, and the corresponding values assigned by the

rating scale decompositions on Lh3 other. Between these

three points and the two extreme outcomes, J* and J*, the

transform R was approximated by straight line segments

Joining adjacent poi:.ts for which utilities had been

assessed. For one subject (#5) the three wholistic utility

assessments were not monotonically related to the values

assigned by the rating scale decomposition. In this case,

the transform R was based on the two utility assessments

which were nearest to the 0 and 100 points of the utility

scale.
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As in Experiment 1, subjects performed all tasks

individually and under close supervision.

Results

Riskless Ratings. The present design permitted a

direct test of the generally accepted assumption that

wholistic riskless preferences are additive. The analysis

of variance summarized in Table 10 revealed that despite

a significant (p 1 .01) City by Salary interaction, addi-

tive main effects accounted for 99.2% of the fixed effects

sums of squares. So, for practical purposes, the wholistic

ratings were essentially additive.

The next four analyses to be discussed were all

designed to assess the degree of convergence between

wholistic and decomposed riskless Judgments. Because the

rating scale decomposition was to be used as the basis for

the R(V) decomposition, it was especially important that

the rating scale models provide an accurate measure of

riskless preference.

The first two measures of convergence, the rank order

and product moment correlation coefficients, both indi-

cated a very high degree of convergence between the

wholistic and decomposed ratings (see Table 11). The



TABLE 10

ANALYSIS OF VARIANCE FOR WHOLISTIC

RATINGS: EXPERIMENT 2 L

% of Total Fixed Effects'

Factor df F-ratio Sums of Squares

City (C) 2,18 15.12'* 19.6

Salary (S) 2,18 351.80" 13.1j ~ Type of 2,18 45.40m' 66.5

Work (W)

c x S 4,36 4.68** .3

C X W 4,36 2.07 .3

S X W 4,36 1.20 .1

C X S X W 8,72 1.50 .1

" p < .0.
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third measure, the mean within subject absolute deviation

(NABS) of wholistic from decomposed ratings, also

Indicated a high degree of convergence (see Table 11).

The median NABS across subjects was cnly 7 (on a scale of

100), a very respectable result In view of the fact that

the mean NABS between wholistic reliability items was 6.

In the final and most sensitive test of convergence,

the cumulative frequency distribution of the absolute

deviations of wh.olistic from decomposed judgments was

plotted and conpared with the cumulative frequency distri-

bution of deviations between reliability Items. The two

distributions, plotted in Figure 3, were very similar.

Only for errors of one unit or less was the wholistic

reliability substantially greater than the degree of con-

vergence be;ween wholistlic and decomposed ratings. This

result suggests that the decomposition models accounted

for vIrtually all systematic variance In the wholistic

ratings, and thus, that the additive rating scale models

provided an accurate measure of riskless preference.

ikUtIlities. The hypothesis that wholistic

utility assessments are additive was tested by analysis

of varlanc2 (see Table 12). This analysis Indicated that,

despite a sLgnificant (p 5 .05) City by Type of Work
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TABLE 12

ANALYSIS OF VARIANCE FOR WHOLISTIC RISKY j
UTILITY ASSESSMENTS: EXPERIMENT 2 I

% of Total Fixed Effects
Factor df F-ratio Sums of Squares

City (C) 2,18 23.95** 23.7

Salary (S) 2,18 492.001* 17.5

Type of 2,18 40.101* 57.6
Work (W)

C X S 4,36 2.22 .1

C X W 14,36 3.10 .9

S X w 4,36 .78 .2

c x s X W 8,72 .32 .1

II p < .01

* p .05
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interaction, these wholistic utility assessments were

also essentially additive. Here additive main effects

accounted for 98.8% of the fixed effects sums of squares.

As in the case of the riskless ratings, four measures

of convergence between wholistic and decomposed judgments

were obtained. In each of these aralyses all three decom-

position models were used to predict the wholistic utility

assessments. Table 13 summarizes the rank order corre-

lations, product moment correlations, and MABS scores.

For all measures all three ilecomposition models yielded

excellent predictions of the wholistic utility assessments.

The median NABS scores for the rating scale, additive

utility, and R(V) utility decompositions were 11, 9, and

9, respectively, all excellent in view of the fact that

a mean MABS of 9 was obtained for the wholistic reliability

judgments.

The cumulative frequency distributions of absolute

deviations did, however, discriminate to some degree between

the three decomposition ¶odels (see Figure 4). Examina-

tion of these distributions reveals that the R(V) and

additive utility decompositions consistently dominated the

rating scale models. The differences involved, however,

were very small. These distributions also reveal that the
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degree of prediction afforded by the decomposition models

was about as high as possible given the degree of

reliability inherent in the wholistic utility judgments.

Convergence between Decomposition Models. As the

results presented above suggest, convergence between the .4

three decomposition procedures was excellent. This con-

clusion was supported both by rank order and product

moment correlations and by a MABS analysis (see Table 14).

Discussion and Conclusions

Experiment 2 provided further support for the con-

tention that additive decomposition procedures provide an

appropriate measure of riskless value. As in Experiment

1, convergence between wholistic and decomposed riskless

ratings was very high.

The second major result of Experiment 2 was somewhat

unexpected. Because the marginality assumption, which

is required for additivity under risk, is intuitively

unappealing, the experimenter had expected that subjects

would show substantial departures from additivity under

risk. The outcomes evaluated, if taken seriously, seem

to be of sufficient importance to produce violations of the

marginality assumption. Nevertheleso, interaction effects
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accounted for but a very small proportion of the variance

of the wholistic utility assessments. Thus, Experiment

2 does not support the contention that risky utility

assessment requires non-additive decomposition procedures.

This result should not be too strongly interpreted,

however. For the outcomes evaluated were hypothetical,

and consideration of the same alternatives when real jobs

were at stake might have produced a different result. In

addition, the possibility exists that while the job -

selection context does not produce non-additivity, other

multi-attribute evaluation contexts will.

The third major finding of Experiment 2 was that all

three decomposition procedures produced excellent, and

essentially equal, prediction of the wholistic risky

utility assessments. In contrast to Experiment 1, there

was no evidence that the additive utility decomposition

procedure was subject to a larger amount of error than the

other assessment procedures. Uncritical acceptance of

these results of Experiment 2 would suggest that the three

decomposition methods provide equally valid measures of

risky utility, and that choice between the three might be

based upon simple practical considerations such as ease of

assessment. That is, given the extremely high degree of

convergence be ween all utility assessments, whether



wholistic or decomposed, it seems unfruitful to attempt

to determine which response mode is "best". Since they

all assign essentially the same utility to a given

alternative, it makes little difference which response

mode is adopted.

The experimenter is inclined to adopt a more cautious

approach, however. For the numerical results presented

earlier indicated that interval scale utility measures are

quite sensitive to specification of a composition rule.

When that rule should be substantially non-additive, use

of an additive rule will seriously misrepresent the decision

maker's preferences. And despite the additivity of risky

preferences in the present experimen., there may well be

real world settings where a non-additive evaluation rule

is necessary. So in applying multi-attribute utility

theory to real world problems, it would still be advisable

to employ additive assessment techniques only after having

ascertained that the decision maker's preferences are

additive. This can be accomplished by determining whether

or not the decision maker is indifferent between marginally

equivalent gambles. If he is not, then the A(V) technique

should be used. When no direct test of the additivity

assumption is feasible, the R(V) procedure should again be

used. For it is formaly appropriate whether or not

preferences are additive under risk.



Finally, a brief discussion of previously unmentioned 1
limitations of this research is in order. First, a total

of only fifteen subjects participated in the two experi-

ments. Since fairly substantial individual differences

were apparent in the data, this is a serious limitation.

Given the small samples used in these studies, it was I
iimpossible to explore the possibility that different

assessment procedures may be required for different

decision makers.

In addition, it should be noted that this research

completely ignored the problem of defining the list of

value attributes relevant to a given decision. These were

simply given to subjects as part of their tasks. Yet in

actual practice this may well be one of the most difficult

aspects of an evaluation problem. It should also be noted

that the practice of giving subjects a list of attributes

to work with enhances the degree of convergence between

wholistic and decomposed assessments. For it assures that

both are based on the same information. In the real

world, on the other hand, wholistic and decomposed assess-

ments might conflict simply because the decision maker's

wholistic assessments took into account considerations which

he had not thought to incorporate in his decomposition model.

'S

p



85 -

This criticism applies not only to the present research,

I but also to virtually all psychological studies of

preferences for multi-attribute alternatives.

I
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