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1. INTRODUCTION

This report summarizes the work conducted under Contract No.
H0220025 during the period 1 March ~ 1 September 1972. ‘The pregram is generally
concerned with an understanding of how stress waves interact with discrete '
faults, randomly distributed faults and tunnels in rock media. The study
comprises both theoretical analyses and two-dimensional computer calculations
of selected interaction problems. The work carried out during this period was
primarily concerned with the characterization of randomly faulted media and
the development of an algorithm for controlling crack propagation in the SHEP

code.
2. TEGHNICAL PROGRESS: RANDOMLY FAULTED MEDIA
2.1 POROSITY

In trying to understand the e’ffects of strong stress waves on rock
media, e.g., hard granite, it is first necessary to assign a length scale
within which damage occurs. This length scale depends, oi course, on the
energy associated with the excavéfion process or damage process caused by
a high explosive burst. There are two categories of bursts, those which are
used for excavation (a few tons of high explosive), and those which are
designed to damage winderground structures or tunnels (several kilotons or
more). It is generally agreed1 that the scaled elastic radius (the radius of
a spherical region within which plastic yield and significant fracture damage
may occur) surrounding a burst center is of the order of 400 ft/kt1/3. This
means that the elastic radius associated with a megaton burst is of the order
of 4000 ft. On the other hand the elastic radius associated with an excava~

tion burst may bz as little as 40 ft.

From tests such as PILEDRIVER and HARD HAT which were conducted
at Nevada Test Site 15 in hard granite, it is known2 that fractures, faults or
blocks are distributed with spacings significantiy less than 1 ft. Thus a
sphere of radius, as l:tle as 40 ft. will contain a large number of flaws. In



such a sphere or a larger one, one is led to the view that the fracture area
is 80 compiicated and so diversified that one may profitably approach the
problem of defining the flaw structure on a stochastic basis, and assume that

the flaw area is randomly distributed. This idea has been subsumed by other
3 _

investigators".

With this thought in mind, we undertake to characterize a randomly
faulted medium by elastic moduli which depend on the fracture area per unit
vuiume, There arise immediately a number of model problems that one can use
as a guide to this characterization. The simplest one and the first of several
we shall discuss is the hydrostatic tension of a porous medium. If one
makes the first order approximation that a unit cell of a randomly porous
medium is a spherical cell, then it is easy to show that the effective bulk
modulus of such a cell is given by

1=V
Kegr = . 3V (1)
K Yig
where vp is the volume fractiqn of pores, and
K,G are the elastic moduli of the continuum

It is also easy to relate vp to the surface area per unit volume e, namely

2/3
v, = (3% (2)

where b is a length scale which has to do with porosity or flaw size. We
suspect that interaction among the adjacent flaw will result in a not dissimilar

relation where:

n
v, = B (3)

and where n and b must be determined experimentally,



Expression (1) is based on linear elastic theory. Because the
applied stress becomes concentrated at the pore surface, it is of interest
to see under what conditions(s) (1) breaks down. We approach the question
by analyzing the effect of geometric nonlinearity.

- Assume that a spherical shell of outer radius, b, inner radius, a,
is subjected to isotropic tension, S, at the outer surface, i.e.

31' l =+8S (4) |
r=b

We desire to determine the amount of dilatetion. The bulk material will
actually dilate very slightly, while the pore will dilate more or less highly
depending upon the tension. Let us assume that the material properties are

given by:
=S (za2-3) +as)
2 b (5)
where w is the strain energy function
>‘1 is the stretch ratio in the ith principal direction
J is the volume ratio, J =17 7«,1 . (6)

and G is the shear modulus of the material.
The Piola stress is given by: '

W _ . Jf' ()

Oi—s—x'i—'—G[Ai'? Ai ] (7)
The Cauchy stress is given by:

. MO [Aiz .

01 e G ] +1'() (8)
Let the deformed coordinate be related to the undeformed coordinate by

r =r() (9)
Then _dr

}‘r T dr . (10)




_I |
M= My =t 1y
2 d
Thus J=i 5 (12)

We can also write

= (13)
A =02
and Mg = Ay = A (14)
Thus b S IR as)
G 2 .
A
0 o '
"¢ _ 8 _ ] £
c <G ° A+ X (16)

In writing (5), we have included in the first term on the right hand
side all the geometrical nonlinearity associated with shear. The second term
has been left arbitrary, but does represent the effect of dilatation. Since J
will nowhere throughout the spherical shell be significantly different from
unity, it matters little what function £(J) we choose so long as it reduces to
Hooke's law in the limit of infinitesimal strain. When we make this identi-
fication, we find that:

£(1) = 0 17)
£(1) = -1 (18)
f"(l) B .1__12; = é(- + %‘- = G (19)

Apart from these mild restrictions, f may have any form whatsoever. We are
going to choose f to make the ensuing analysis convenient.

Elastostatic equilibrium is guaranteed by the statement:

do

F ek
2 ar T =% =0 (0)



We also have

=N (21)

so that: -
and
r%=(ff-ng% (23)

Equation (22) will be used to determine r as a function of A, or
vice versa, when J is known, as a function of \. Using (23), we can rewrite
(20) in the form:

J dc',r
(i‘z"“’&f*z("r“’e): 0 (24)

After introducing (15) and (16) and simplifying, one obtains

3
'chIX .2 —4[2 . (25)
AL+ N

Equation (24) is immediately separable if we set

fu=._7_I4 3 (26)
Now let

= wihd (27)
so that

4
dtn) = - —AC ) dv (28)
w [C +'§ W +-§w ]

Now observe:

asr"b,h-'l-l-t,l"1+0(€z),w-'l-t (29)

asr*a,h*%‘-,]=1+0(e2),w-°€ (30)




Thus, at either limit, the governing equation behaves like: ]

din\ ~ -dinw (31) . :

Thus, to an excellent approximation:

AW = C1 (32)
and .
_ ~3
J=C) (33)

Insertion of this result into (23) yieldé:

3

ce 1/3

A=+ =) (39
r

The radial component of the Cauchy stress is given by:

5
r _J _,_.3C
—(—.; = >‘4 + 3C 1 ']j7'3_ . (35)

which, with (33) and (34) yields:

~4/3
o 3 3 Cy 3c -
< = C) (cl+-;§—) *30‘1'61 (36)
We now set:
3r=S, atr=D> (37)
G =0 atr=a (38)

Wé can solve (37) and (38) to an excellent approximation by first setting

C?: 1+ 0 (39)

and then linearizing both expressions in 6. This is permitted only because
the materials of interest have Poisson's ratio v= 1/4, otrC= 2. In the case



of a rubberlike material, this approximation breaks down because C is more
like 1000,

If we define
3 =
A-1=0 (40)

then we arrive at;

1, 3%
_ K 4G
13-————1__‘,P (41)

L]

(4
S

which is identical with (1). Thus geometrical nonlinearity has no overriding
effect even though strain at the pore may be very large and even though the
pore may buckle in compression.

2.2 PLANE CRACK

In the previous section 2.1, we considered the effect of flaw
volume (porosity) upon bulk modulus. -In this section we shall show how to
analyée the stress field around a plane crack in an infinite plane space
subjected to simple shear at infinity, cf sketch:

=~ S




Within the framework of linear theory, the problem can be solved
by the Kolosov-Muskhelishvili technique of complex variables. It is first
convenient to map the Cartesian frame into an elliptic frame by the trans-

formation:

z=2 (¢ +%) (42)
where | ¢ =p0 : (43)
and . U= ei" (44)

Far away from the crack, the mapping approaches:

z - % p el? (45)

which is polar in nature. For this problem we have the BC, as p = =,
o =0 =0,T =S: (46)

These stress components may be converted by tensor transformation into the

corresponding polar components, and we obtain

asp @, 0 -1 '+ - 1§0% (47)

ps

asp~—0, Up-i'r -0 (48)

pY

In terms of the two complex potentials ¢ and ¢, the cartesian displacements
and elliptic stresses are given by:

2G(u + iv) = (3-4v)<p-§éécf -y (49)
¢ 9=
- m o (—f 4+ €
op+0'}—2(zc +EE) (50)
and 5 B 2 0 0. z
e S e P8 I 30



We now expand ¢ and ¥ in power series in ¢ which are holomorphic for
€ = =; we then equate powers of 0, and are led to the results:

i 1
¢=_____a2 T (52)
- ais _1_ 53
I 3 B (53

After transforming back to Cartesian coordinates we obtain:

g (c+1)<r 272 41
2(¢2-1% (¢ )3 2(¢2-1)3

;o (& +1)(c 2<;2+1)
xY

1
g3 (C+C)

+ (CZ 3 (54)

What we desire now is an average value of Txy within some unit cell of
outer radius R, inner radius 1. If one‘deﬁnes

G <T,,>
eff _ Xy
G ~ S : (55)
T, Ppdpdsd
where <> JR § xy (56)
i 7R - 1),
one arrives at the incorrect result: <Tay >=8 (57)

The reason that < Txy> turns out to be independent of R under this definition
of the average is that there is a stress singularity at [p=1; =0, 7). This
stress singularity {or stress concentration) affects the reduced stress at

o= % , in such a way that <-rxy> is a constant. In order to define <'rxy>
correctly, one has to treat the body with a crack in it as a "black box" and
use the phenomenological definition of shear modulus, namely:

lr
o Xy_
Cott= 75 (58)
y ' x



with <G> = 5 (59

This integral can in principle be done but the work is prohibitive., In the
interest of ~xpadiency, we turned our attention to another problem which
can be done in a more straight forward fashion with equally useful results.

2,3 EFFECTIVE POISSON'S RATIO AND YOUNG'S MODULUS

Consider now an elastic space perforated by a sphere of radius
a subjected to simple tension at z = + «, In the absence of the hole, the
solution in Cartesian coordinate is, of course:

Gx= Gy=0, UZ=S (60)
=y

u=-vgx (61)
v=-vEy = (62)
= 8

w = Ez (63)

In spherical coordinates, the solution (r = =) takes the form,

o .= 8 cs2 6 (64)
Og= S snz 8 (65)
T.g = S snb csf (66)
Oe =0 (67)
T.g= —8 snf csh (68)
u = 1-;8- r [csze - vsnze] (69)
v = -5 snooso (70)

10



At the hole, we have: o = Tg= 0 (72)

We present here only the pertinent details; th: solution is straight forward.
We expand u and v in spherical harmonies, and write:

u =nf0 a P, (cso) {73)
vVv=2X bn P;l (csd) (74)

wheré the prime denotes differentiationrer, and a " and bn depend onr .,
We use the method of equating coefficients of Pn, and after much calculation,
obtain:

o ' 2
| 4-5 3 5
5 =0+ 2(7-5\:»5 ()7 + 2'(3—5\»5 ()°1+ 3% sev [33; =Y &)° - 5%

4 :
t ey 7% -5 @°)] | (75)
a1+ 1451(57\)-)5(\1»)+ ¥ @)% 30 @)
2
+ 50r0es 0 18)° - (&)°) (76)

where W 1is the Cartesian displacement component.

The effective Young's modulus is defined by:

Eeff . Y A+ B csze + Ccs4e

Z
= (77)
E w%e (D + E, cs6)

where {A, B, C, D, Eo} are defined above in (75) and (76).

The average tensile modulus is then given by:

11



e A ——

T -
<E> 2 A+Bcs 9+CcsG BEO e
-_:-B_:: l snfdo -{3E 2
.o (D+E_ocs 6) r=b E
< E“
+[ .—..é.—- = EB—VED—.'-S-J—Z—D— ,,/EQ—]arctan«/'_ﬁ}r_b (78)
“/DEo (o} o Eo o - -
E, E2 E
A,y_20 Zo B (l_Toy,C
~{50-3p+ 552) *5 (3-3p) *sph-b (79)

<E> a 3
Figure 1 shows how - F behaves as a function of (-5) » In

plotting _5_32 it was sufficient to use the approximate representation given
by (79), which is valid for 0 < (—) <1. in the limit of small (£)3, (81)
behaves like:

3
<E> . ;_3 (1+2J(7(f ;\3\’) () (80)

which means that the 1n1t1a1 downward sl.ope of the two lines shown in
Figure 1 for (v = ; . 3) and respectively ‘ % . Equation (80) can now be
used in a fracture analysis as long as ( )3 is small with respect to unity

in a sense that can be defined. We prefer however, to represent g>
empirically by an expression that fits over the whole range, 0 < (a) < 1.
Such an expression is of the form:

2 3
27 - 12v- 15y

b
Equation (81) assumes that the two curves in Figwe 1 are roughly linear.

The expression for Poisson's ratio is obtained in the following
way. The Cartesian displacement is given by:

T ¥V _u+vctng '

x=y = = (83)
W u-vtn#@

¥ iRl (83)

12
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Figure 1. Effective Modulus at a Function of Pore Fraction.
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I
X . u+vctnd
so that Vo= —‘T? m (84)
z
where u and v are glven by:
Su_ri a)?, T2 L14 p (cs6) 75 @
as "~ t12 ‘r +0y a 2 \©8 2 (7-5v) ‘r
+ o a)f ar, (85)
6 (7-5v) \r 3 a
S _po—1_ (2)4 . 5 (1-2v) (2)2_,_ L5 (86)
22 ((7-3v) 'r’ T & (7-5v) (f 6 ‘a

as ~

Substitution into (84) yields after averaging atr = b

<VY> = arctan /§- 1 (87)
B
+/BC
where 5 : 3
3 a S (1-2v) ,a 1
A=z + B) + 7 (D) t7 (89)
3
1 4-15v _ ,a 9 __ ,a
Iy =l BT =% (5) (89)
(90)

3 5
15
C= grsy LB - () ]

3
Figure 2 shows how (87) behaves as a function of (%) . In plotting

(87) it was sufficient to use the approximation:
<>--ﬁ(1-19+19—2)-1 (91)
V>=3 3BT 2

_ 3
In the limit of small (%) » (91) behaves like:

2 3
<v> v-ﬂ*';)(?qg:) = 1) (%) (92)

14
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Effective Value of Poisson's Ratio vs Pore Fraction.




which means that the initial downward slopev of the lines in Figure 2
(for v = -;—, %-.) are respectively -g—, ;11- . Over the whole range (91) can be
better represented by an empirical function of the form:

3 6
vz v-k () +1(}) (93)

where k 1s the lUnear coefficient in (92), and 1 is adjusted so that, at
(%)3'-'- 10

1+4v-5v2 (94)

<V>= 2
9 -4y~ 5v

which is the value obtained from (94).

The results of the preceeding analysis can be summarized by
saying that, for a porous material, an effective Young's modulus and an
effective Polsson's ratio can be defined by an expression of the form:

_B—_ =] -~ ko vp (95)
2
and <y> =y - k1 vp + k2 \fp (96)

where, if the holes interact, vp is given by:

n

with b and n empirical. Also the parameters {ko k1 k2 }depend on v as
given above.

Before using <E> and <v> to determine the fracture behavior of
a randomly flawed material, it is prudent to point out that the representa-
tions ( 95) and ( 96) are, strictly speaking, only valid in a simple tensile
field. It would be necessary to determine these same parameters for two
or three other types of loading and to strike some sort of an average bzhavior,
In general, however the algebra involved is cumersome and tedious and, at
the best, we must think of ko' kl, and k2 as semi-empirical parameters

1€




anyway. Thus we prefer to eschew the analysis of other model flaw
problems and wili go ahead on the basis that, roughly speaking, effective
Young's Modulus decreases linearly with flaw content, and effective
Poisson's ratio decreases parabolically with flaw conteiit.

2.4 INCORPORATION OF EFFECTIVE MODULI IN THE GRIFFITH
. CRITERION

Again, we start slowly and look at a model problem, one which
was first treated by Max Wil]iams4, and which is the first problem con-
sidered in this section, namely, the hydrostatic tension of a sphere.

Imagize now that as the sphere is stretched radially by a monotonically
increasing stress at its outer boundary (r = b), that the inner boundary (r=a)
starts to ablate (fracture) when some critical stress concentration is reached,
In this analysis, we ignore inertia and do a quasi~static analysis (the
algebraic details are suppressed).

In the case of linear theory, it is easy to show that, as the stress
is increased monotonically from zero, a critical stress is reached which
depends on the initial flaw size, and which is determined by the Griffith
criterion to have the farm:

5= 11- (1Y g, (98)

where a, is the critical hole size and I'is the specific surface energy.

2t this point the linear theory predicts that, in order for a o to
increase, S must bz decreased; and conversely, as S is increased, a,
decreases. Thus (98 ) possibly holds only at the point of initiation of
flaw growth, and predicts, as is known from studies on glass, that the
critical stress depends inversely on the square root of the hole size. In
order to find how the hole grows as S increases indefinitely, one must do
a geometrically exact analysis. In order to gain insight into how the hole
grows, we present here an exact geometrically non-~linear analysis for an
incompressible neo~Hookean material. Following the same approach as
used above in Section 2.1, it is easy to show that the Griffith Criterion
predicts that:

17
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Ap-12/3 - 1 -4/3

-é{rzvr}/a[Z(l#T) "‘"(1"‘ Vo '3].
and 5 11 Ag-l ot 1

6-:7[;%_-(17'-' yp ) ]+2[rl;-(1+ vp)
where

3

3¢
In the limit of small strain, i.e., as - 0 we have:
p

which relations are valid for:

3
ar
vp >> (Gb
‘b
In the limit of large strain, 1.e., as 3 J T ® we have:
p
3/2
1,2r —
(b- 3 (Gb) Vp
3/2
8 5 Gb —
G =723 Y

Which relations are valid for:

3
2r
% << (gp:

X -1 -1/3

(99)

]

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(167)

Thus, In summary, for large strain, vp increases quadratically with strain,
and for small strain, the rate of increase drops to the (6/5)th power, This

18
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behavior is shown in Figures 3 and 4 where vp is plotted versus log € for
various values of (4T/Gb). In Figure 5 we present a crossplot of log €
(vp= 1) versus by (4I/Gb). In the small strain limi., (103) compares favor-
ebly with ( 98) within a factor of two, whereas behavior beyond 20% strain
is just not forthcoming from the linear theory. Whether or not one uses the
nonlinear theory depends on the value of (T'/Gb).

In general, for weakly cohesive materials, linear theory is
adequate,

Let us now redo this problem in the framework of linear theory,
and replace the cavitated shell by a solid shell of radius b with an effective
bulk modulus given by (1).

A simple calculation shows that:

l-y fora
§ = v_f%— Qirll-:—v , (108)

p

Thus a Griffith calculation based on effective elastic constants rather than
flaw geometry leads to a solution of the same form as that obtained in the
"flaw" calculation, except that the length scale a, isreplaced by b, In
effect, this means it is equivalent to filling up the void with material of the .
correct effective modulus. Thus the randomly flawed theory leads to reason-
able results.,

It is our intention to examine in similar fashion the problem of
simple tension of the space with a hole replaced by "effective® material.
If this checks out, we will then Frogram the relations ( 95) and ( 96) into
the SHEP code, and will then run several wave problems using the Griffith
criterion for materials with simple geometry and modull which depend on flaw
fracture. It is then our intention to define a critical « or vp at which
sufficient damage is assumed to have occurred so that the fractured material
16 now ready for excavation by shoveling processes. Thus we have here a
simple damage theory, a precursor to excavation.

19
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Figure 3. QGriffith Strain vs Flaw Content,
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Figure 4., Griffith Strain vs Flaw Content.
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Figure 5. Griffith Strain vs Surface Energy.
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The present theory has so far been developed for an isotropic
elastic continuum. In the forthcoming period, we propose to examine both
an orthotropic elastic material as well as an elasto-plastic material.

3. TEC HNICAL PROGRESS: DISGRETELY FAULTED MEDIA

In tne work completed on Contract No. H0210019, it was shown
that a computer solution obtained by SHEP provided excellent agreement with
the same features of the analytical solution derived by Achenbach and later
extended by Blatz .5 One feature of the computer solution is not, however,
desirable. Since the SHEP code is a difference equation representation of
the continuum equation, it is naturally resonant and "coughs back" both
oscillations in the wave profile as well as spreading of the wave profile.
This behavior is shown in Figure 6 where the computer solution is compared
with the theoretical solution for the velocity profile from the crack tip to
the bow wave front. Such a numerical behavior makes it impossible for us
to compute precisely enough the integrals in the aigorithm for crack propa-
gation. An attempt to smooth out the curve is bzing made with the aid of
cubic viscosity, an extension of the form introduced by Von Neumann and

Richtmeyer. 6

If we decompose the stress tensor into elastic and viscous com-

ponents, we find:

t = tB+ tD (109)
where—fD is the dissipative stress. This component generzlly can be
written as:

tD-_-al?I-;-azd-d ) ) (110)
where d is the strain rate tensor, and;

with {Id, II 4, LIy} the three invarients of the strain rate tensor. Von Neu-

mann and Richtmeyer took: -
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Computer solution

Theoretical solution

Figure 6. Computer Oscillations for Out of Plane Motion.
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-

't'D= 2v p (1-11) d (112)

where v, is a kinematic viscosity and T is a volumetric relaxation time.

-
Lo d

We take th = 2v p (1-811) d (113)

where 8 1s a higher order rate constant.

Equation (112) involves quadratic and linear terms, (113) involves cubic and
linear terms. Equantion (113) provices a twofold advantage over (112). First
it can be used ifor incompressible or isochoric deformation (such as our model
antiplane shear problem). Equation (112) can only be used for compressible
media., Equation (113) contributes to both the inplane and out-of-plane
terms. In (112) the quadratic term contributes only to the inplane terms.
Thus (113) fills the bill for our problem.

The coefficients Vo and 8 are given by:
H 1

(2
%= C; A}: ' (114)
%2 (115
gy ' . =

Equations (113), (114}, and (115) have been programmed and an optimization
study of the constants C1 and C2 is underway.
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