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———— 

1. INTRODUCTION 

This report summarizes the work conducted under Contract No. 
H0220025 during the period 1 March - 1 September 1972.   The program Is generally 

concerned with an understanding of how stress waves Interact with discrete 

faults« randomly distributed faults and tunnels in rock media.   The study 

comprises both theoretical analyses and two-dimensional computer calculations 

of selected Interaction problems.   The work carried out during this period was 

primarily concerned with the characterization of randomly faulted media and 

the development of an algorithm for controlling crack propagation in the SHEP 

code. 

2. TECHNICAL PROGRESS;   RANDOMLY FAULTED MEDIA 

2.1 POROSITY 

In trying to understand the effects of strong stress waves on rock 

media, e.g., hard granite, it is first necessary to assign a length scale 

within which damage occurs.   This length scale depends, of course, on the 

energy associated with the excavation process or damage process caused by 

a high explosive ourst.   There are two categories of bursts, those which are 

used for excavation (a few tons of high explosive), and chose which are 

designed to damage underground structures or tunnels (several kilotons or 

more).   It is generally agreed   that the scaled elastic radius (the radius of 

a spherical region within which plastic yield and significant fracture damage 
1/3 may occur) surrounding a burst center is of the order of 400 ft/kt '   .   This 

means that the elastic radius associated with a megaton burst is of the order 

of 4000 ft. On the other hand the elastic radius associated with an excava- 

tion burst may be as little as 40 ft. 

From tests such as PILEDRIVER and HARD HAT which were conducted 
2 

at Nevada Test Site 15 in hard granite, it is known   that fractures, faults or 

blocks are distributed with spacings significantly less than 1 ft.   Thus a 

sphere of radius, as li.tle as 40 ft. will contain a large number of flaws.   In 



such a sphere or a larger one, on»j Is led to the view that the fracture area 

Is so complicated and so diversified that one may profitably approach the 

problem of defining the flaw structure on a stochastic basis, and assume that 

the flaw area Is randomly distributed.   This Idea has been subsumed by other 
Investigators  . 

With this thought In mind, we undertake to characterize a randomly 
faulted medium by elastic moduli which depend on the fracture area per unit 

v^.ume.   There arise Immediately a number of model problems that one can use 

as a guide to this characterization.   The simplest one and the first of several 
we shall discuss is the hydrostatic tension of a porous medium.   If one 

makes the first order approximation that a unit cell of a randomly porous 

medium is a spherical cell, then it is easy to show that the effective bulk 
modulus of such a cell is given by 

1 - v 
Keff = 7-T^r (1) 

K +4G 

where vp       is the volume fraction of pores, and 

K/G        are the elastic moduli of the continuum 

It is also easy to relate vp to the surface area per unit volume ft, namely 

vp - (^
2/3 (2) 

where b is a length scale which has to do with porosity or flaw size.   We 

suspect that Interaction among the adjacent flaw will result in a not dissimilar 
relation where: 

v        /b ft ,n 

V   (— J (3) 

and where n and b must be determined experimentally. 



Expression (1) Is based on linear elastic theory.   Because the 

applied stress becomes concentrated at the pore surface, it is of interest 

to see under what conditions(s) (1) breaks down.  We approach the question 
by analyzing the effect of geometric nonlinearity. 

Assume that a spherical shell of outer radius, b, inner radius, a, 

is subjected to Isotropie tension, S, at the outer surface, i.e. 

5,l = +S 
r=b 

(4) 

We desire to determine the amount of dilatation.   The bulk material will 

actually dilate very slightly, while the pore will dilate more or less highly 

depending upon the tension.   Let us assume that the material properties are 

given by: 

W=? (SXi
2-3)+Gfa) (5) 

where        W       is the strain energy function 

J is the volume ratio, J = ir\. 
and G        is the shear modulus of the material. 

The Piola stress is given by: 

is the stretch ratio in the i     principal direction 

'i (6) 

„     aw      rn  , Jf (J) -, 
0i=: dY i    T"" 

(7) 

The Cauchy stress is given by: 

X, ö. X, 
(8) 

Let the deformed coordinate be related to the undeformed coordinate by 

Then 

r =r(r) 

X =^- \     dr 

(9) 

(10) 



,——-,., ~. .'* —„J. ■„..,—,. ™ 

xe= x0=!?: 

Thus T     r     dr 
J " r2   dr 

We can £ ilso write 

^"x2 

and xe = X0 = x 

Thus 0£. = V x2fa) G    x2 

, 
o0     0e    .  . J f 0) 
G   "   G   " A   '     X 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

In writing ( 5 ), we have included in the first term on the right hand 

side all the geometrical nonlinearity associated with shear.   The second term 

has been left arbitrary, but does represent the effect of dilatation.   Since   J 
will nowhere throughout the spherical shell be significantly different from 

unity, it matters little what function f(J) we choose so long as it reduces to 
Hooke's law in the limit of infinitesimal strain.   When we make this identi- 

fication , we find that: 

f(l) =  0 (17) 

f'(l)=-l (18) 

'"W = rAv = I+ i 5 G (19) 

Apart from these mild restrictions, f may have any form whatsoever.   We are 

going to choose f to make the ensuing analysis convenient. 

Elastostatic equilibrium is guaranteed by the statement: 



We also have 

r = \r 

so that: 

and 

dr   -Ar-   x2-X+rdF 

dr d\ 

(21) 

(22) 

(23) 

Equation (22) will be used to determine  r  as a function of X, or 
Vice versa, when J Is known,as a function of \.   Using (23), we can rewrite 
(20) In the form: 

J d0r 
(72 -^-HT 

+ 2(o  -a0)=  o dX r    we' (24) 

After Introducing (15) and (16) and simplifying, one obtains 

dL „    2 (X3 - T) 
dX        X(l+X4f") 

(25) 

Equation (24) Is Immediately separable If we aet 

f" = 
Ä7T (26) 

Now let 

so that 

J = w3X3 

dtnX = LC.+ w ) dw 
w [C +| w+^w4] 

(27) 

(28) 

Now observe: 

asr-b, X-l + c, J-1+0(€Z), w-1 -c 

asr-a, X--i,J=l + 0(c2), w-c 
(29) 
(30) 



Thus, at either limit, the governing equation behaves like: 

dlnKf* -dlrm 

Thus, to an excellent approximation: 

The 

G      X4 

which, with (33.) and (34) yields: 

.3   -4/3 

1 

We now set: 

5  = S, at r = b 
r 

5  = 0, at r = a 
r 

(31) 

(32) 
Xw= C1 

and (33) 

Insertion of this result into (23) yields: 

3     C32.l/3 (34) ^(Cj + ^f) 

radial component of the Cauchy stress is given by: 

— +3C -1-W3 

I^C^C^^f) ^3C-l-3# (36) 

(37) 

(38) 

We can solve (37) and (38) to an excellent approximation by first setting 

(39) 
Cj = i + e 

and .hen linearizing both expressions in 8.  This is permitted °nly beoause 
fte materials of interest have Poisson's ratio v= 1/4, ore = 2.   In the ease 

1 
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of a rubberlike material, this approximation breaks down because C is more 
like 1000. 

If we define 

^-' 
s 6 (40) 

then we arrive at: 

s " B- 
K + 4G 

1 - v„ (41) 

which is identical with (1).   Thus geometrical nonlinearity has no overriding 
effect even though strain at the pore may be very large and even though the 
pore may buckle In compression. 

2.2 PLANE CRACK 

In the previous section 2.1, we considered the effect of flaw 
volume (porosity) upon bulk modulus.   In this section we shall show how to 

analyze the stress field around a plane crack in an infinite plane space 
subjected to simple shear at infinity, cf sketch: 

 ^S 

N 



Within the framework of linear theory, the problem can be solved 

by the Kolosov-Muskhelishvili technique of complex variables.   It is first 
convenient to map the Cartesian frame into an elliptic frame by the trans- 

formation: 

«-! u-^) (43) 

where 

and 

(43) 

(44) 

Far away from the crack, the mapping approaches: 

a       id z -♦ •« p e (45) 

which is polar in nature.   For this problem we have the BC, as p -» 00, 

a   = o   =  o, T     = S x       y        '    xy (46) 

These stress components may be converted by tensor transformation into the 

corresponding polar components, and we obtain 

as P - ", ö    - i-r      - - iSo 2 (47) 

asp-0, üp-iTpi? - 0 (48) 

In terms of the two complex potentials 0 and ^, the cartesian displacements 

and elliptic stresses are given by: 

2G(u + iv) = (3-4v)(p- f-_vF   - n> 

0 
o   + o  = 2 (— p       d        v z 

C + 
9Q 
ZC 

(49) 

(50) 

and 
0C    0; _   0 

2 0,.,.        0r z. 
(51) 

8 



We now expand 0 and $ in power series in C which are holomorphic for 
C "• •; we then equate powers of a, and are led to the results: 

♦■^i (52) 

♦■^•(C-i^) (S3) 

After transforming back to Cartesian coordinates we obtain: 

f3 (c4) 

What we desire now is an average value of T     within some unit cell of xy 
outer radius R, inner radius 1,   If one defines 

Geff        <Txy> ,    4 
~G~=    ~S~ (55) 

JV f  T     Pdpdd 
where <T    > =  -* &  (56) 

y ff(R   -1) 

one arrives at the incorrect result:   <T     > = S (57) 

The reason that < T    > turns out to be independent of R under this definition 

of the average is that there is a stress singularity at Cp= 1; ^ = 0, ir].   This 
stress singularity (or stress concentration) affects the reduced stress at 

^ = «■ , in such a way that <T> is a constant.   In order to define <T    > 4 xy xy 
correctly, one has to treat the body with a crack in it as a "black box" and 

use the phenomenological definition of shear modulus, namely: 

T 
Geff = irfV (58) 

y      x 



<G>.^Vdpd# (59) 
ff (R2 - 1) (59, 

This Integral can in principle be done but the work is prohibitive. In the 

interest of Mcpedienoy, we turned our attention to another problem which 

can be done in a more straight forward fashion with equally useful results. 

2.3 EFFECTIVE POISSON'S RATIO AND YOUNG'S MODULUS 

Consider now an elastic space perforated by a sphere of radius 
a  subjected to simple tension at z = ± ».   in the absence of the hole, the 
solution in Cartesian coordinate is, of course: 

ax=  ay = 0, oz= S (60) 

us=-vf x (61) 

v = -VEy                    ! (62) 

W=IZ (63) 

In spherical coordinates, the solution (r - ») takes the form. 

(64) 

(65) 

(66) 

(67) 
Tre=   "S snöcse (68) 

u   =  ^r[cs29-vsn2e] (69) 

v   =   -^ snßcse (7Ö) 

a s r S cs2 e 

öe = s sn2 e 
Tra = s snd cs e 

0e = 0 

w =   0 (71) 

10 



At the hole, we have:   a =  T g =  0 (72) 

We present here only the pertinent details; th3 solution Is straight forward. 

We expand u and v In spherical harmonies, and write: 

u =  L   anPn(cse) i73) 
ft=0   n   n 

v = S bn Pn (cs^ ^74^ 

where the prime denotes differentiation re r_, and a   and b   depend on r_. 

We use 

obtain: 

We use the method of equating coefficients of P . and after much calculation. 

ö 2 , z     M  . 4 - 5v     /ayS .      9 ta^S-, .   cs 9    r33+ 15v ^3     Arfi\5-t 
T"= [l42(7-5v)    W   + 2(7^5 ^  J+  7^7 [ 2  ^    " 45 dH 

+ ll^  t7^5-5^^ <75) 

Sz 
r i +  (4-15v)(l +v) ^a.3      9 (1 + v)  .a.5 , 

= l i +     2 (7-5v) (r }   +   2 (7-5v)  (r '   J 

2 
15 (l + y) cs 6 r ,a>3     /a.5-, ,7fi. +   2 (7-5v)      [ (r) ■ (r) J ^6) 

where w is the Cartesian displacement component. 

The effective Young's modulus is defined by: 

Eeff zaz 
wE 

A+ B cs 9 + Ccs4e 
E (D + E0 cs2e) 

where {A, B, C, D, E 3 are defined above in (75) and (7 6). 

The average tensile moduius is '■h^n given by: 

(77) 

11 



<E>       p2 A+ Bcs2e ± C cs49 i       Bna.0      t c     . BEo " CD 

- = j —27; I    snede « i-^- + —-5— £ o     (D + E   cs 6) r= b o E o o 

xr      A B ./D" L CD     /D~i ^„^^  / o i f'7Q\ + [•—^ - f-vf^ + y- yf-]arotan^-gir.b (78) 
VDE"       ^O    ^O    E^       ^O o o 

B.       E2 

3 
Figure 1 shows how —3— behaves as a function of {-c)  .   In 

<E> plotting -g1— , it was sufficient to use the approximate representation given 

by (79), which Is valid for 0 ^ (|)3 s 1.   in the limit of small (|-)3, (81) 

behaves like: 

<I>-~   1 - 3 (1+v) (3 - Sy)  ,a*3 <8 » 
B^-  1 2 (7-5v)      (b) ^0) 

which means that the initial downward slope of the two lines shown In 

Figure 1 for (v = j / öO and respectively j > T *   Equation (80) can now be 

used In a fracture analysis as long as (r-)* Is small with respect to unity 
<E> in  a sense that can be defined.   We prefer however, to represent —=— 

_ 3 
empirically by an expression that fits over the whole range, 0 ^ (^)   Si« 

Such an expression is of the form: 

ll^L  13-2V-15V2   £* (81) 

h 27 - 12v- 15v 

Equation (81) assumes that the two curves in Figure 1 are roughly linear. 

The expression for Polsson's ratio Is obtained In the following 

way.   The Cartesian displacement is given by: 

ii_ v. - u_+_v_ctnj9 /Q2) 
x "" y ~ r 

**s w _   u - vtn 9 /Q-X 
z "        r l   ' 

.12 



<E> 

Figure 1.   Effectlva Modulus at a Function of Pore Fraction. 

13 



u 
so that -v    .. JL «   u ± vctn 9 

eff    ~       u-vtane (84) 
z 

where u and v are given by: 

Gu      r 1 2 
^ - r-i- (^\L   1-2V    r , o aS  " I 12 tr)   + ^^T a ]+ P2 (cse) [y^j-j (i) 

+   6(7-5v) (P   +   3 irJ 

4 

öv^r'        3 a J (85) 

Subsütutlon Into (84) yields after averaging at r = b: 

where 
A= 3 

B=-r-^  + A- 15v     .a^3^ 9 a   5 

c 377WC(|)3-(|)5] 

(86) 

<v> =7A_ arctan m 
./hC B (87) 

(88) 

4 (7-5v)    W   + 417^-5^) (fa) (89) 

(90) 

^87) It    a  ^T 2 ShOWS h0W (87) behaVeS aS a fUnCtlon of ^3-   to Plotting 
(87) It was sufficient to use the annroxlmaHnn. b 9 

approximation: 

<v>. #(i-i fi+l fif .    , 
B l       3   B  + 5   B2 ^ - ! (91) 

In the limit of small (|)  , (9!; behaves ^ 

<v>~   v, (l+v) fl4v2- 1)    a  i 
2 (7-5v) ^b, (92) 

14 
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<v> 

^ 

0     -1     .2     .3     .4     .5 0 .6     .7     .8     .9 ^0 

Figure 2.   Effective Value of Polsson's Ratio vs Pore Fraction. 
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which means that the initial downward slope of the lines in Figure 2 
11 3    1 

(for v = j' f ^ are respectively ^■/ j .   Over the whole range (91) can be 
better represented by an empirical function of the form: 

3 6 
vd v-k(fL)   +1 (fL) (93) 

where k is the linear coefficient in (92), and 1 is adjusted so that, at 

<v>=   ! + 4v - 5v2 (94) 

9-4v-5v 

which is the value obtained from (94). 

The results of the preceeding analysis can be summarized by 

saying that, for a porous material, an effective Young's modulus and an 

effective Poisson's ratio can be defined by an expression of the form: 

and <v> = v - kj v   + k2 v2 (96) 

where, if the holes interact, v   is given by: 

Vp=   (^L)n (97) 

with  b and ti empirical.   Also the parameters {k   k, k2 } depend on  v as 
given above. 

Before using <E> and <v> to determine the fracture behavior of 
a randomly flawed material, it is prudent to point out that the representa- 

tions ( 95) and ( 96) are, strictly speaking, only valid in a simple tensile 

field.   It would be necessary to determine these same parameters for two 

or three other types of loading and to strike some sort of an average behavior. 

In general, however the algebra involved is cumersome and tedious and, at 

the best, we must think of k0, k,, and k2 as semi-empirical parameters 

IG 



anyway.   Thus we prefer to eschew the analysis of other model flaw 

problems and will go ahead on the basis that, roughly speaking, effective 

Young's Modulus decreases linearly with flaw content, and effective 

Polsson's ratio decreases parabollcally with flaw content. 

2. 4 INCORPORATION OF EFFECTIVE MODULI IN THE GRIFFITH 
CRITERION 

Again, we start slowly and look at a model problem, one which 
was first treated by Max Williams4, and which is the first problem con- 

sidered in this section, namely, the hydrostatic tension of a sphere. 

Imagl-.e now that as the sphere is stretched radially by a monotonically 

Increasing stress at its outer boundary (r = b), that the inner boundary (r=a) 

starts to ablate (fracture) when some critical stress concentration is reached. 

In this analysis, we Ignore Inertia and do a quasi-static analysis (the 
algebraic details are suppressed). 

In the case of linear theory, it is easy to show that, as the stress 
is increased monotonically from zero, a critical stress is reached which 

depends on the initial flaw size, and which is determined by the Griffith 
criterion to have the form: 

^ti-(|)3]/Ä 9ao(l-v) O8) 

where ao is the critical hole size and Tis the specific surface energy. 

At this point the linear theory predicts that, in order for a   to 
increase, S must he decreased; and conversely, as S is increased, a 

decreases.   Thus (98 ) possibly  holds only at the point of initiation of 

flaw growth, and predicts, as is known from studies on glass, that the 

critical stress depends inversely on the square root of the hole size.   In 

order to find how the hole grows as S increases indefinitely, one must do 

a geometrically exact analysis.   In order to gain insight into how the hole 

grows, we present here an exact geometrically non-linear analysis for an 

incompressible neo-Hookean material.   Following the same approach as 

used above in Section 2.1, it is easy to show that the Griffith Criterion 
predicts that: 

17 



4r 1/3 r    .      
Xb" 1  2/3 ^h" 1 "4/3 

P .     P 

and ö        l r   i       #1     
X6 - 1   -4/3 j A3 - 1 -1/3 

where 
(100) 

^3b=   1+3€b (101) 

3c. 
In the limit of small strain. I.e., as —■ - 0 we have: 

VP 

/T"      5/6 

G =   B^Eb~ ~T76 (103) 
VP 

which relations are valid for: 

3 
vp>>(ir' • (io4) 

€. 
In the limit of large strain, i.e., as 3 —- ^ • we have: 

P 

3/2 
€b=3(Gb)      ^ (105) 

3/2 S  _   5     n/Gb _ -   - -,       ,,/ •_ 
P G =   2 - 2<TH^)       ^ (106) 

Which relations are valid for: 
3 

V ^fb-) (107) 

Thus, In summary, for large strain, vp increases quadratlcally with strain, 
and for small strain, the rate of increase drops to the (6/5)th power.   This 

18 



behavior Is shown in Figures 3 and 4 where vD Is plotted versus log cK for 
various values of (4r/Gb).   In Figure 5 we present a crossplot of log ? 

(vp= 1) versus by (4r/Gb).   In the small strain Hml , (103) compares favor- 

ably with ( 98) within a factor of two, whereas behavior beyond 20% strain 

Is Just act forthcoming from the linear theory.   Whether or not one uses the 
nonlinear theory depends on the value of (F/Gb). 

■ 

In general, for weakly cohesive materials, linear theory is 
adequate. 

I^t us now redo this problem in the framework of linear theory 
and replace the cavitated .hell by a solid shell of radius   b with an effective 
bulk modulus given by (1). 

A simple calculation shows that: 

7W V9b(l-v) (108) 
P 

Thus a Griffith calculation based on effective elastic constants rather than 
flaw geometry leads to a solution of the same form as that obtained in the 

"flaw" calculation, except that the length scale ao is replaced by b.   In 

effect, this means it is equivalent to filling up the void with material of the 

correct effective modulus.   Thus the randomly flawed theory leads to reason- 
able results. 

It is our intention to examine in similar fashion the problem of 
simple tension of the space with a hole replaced by "effective" material. 
If this checks out, we will then program the relations ( 95) and ( 9)6) into 

the SHEP code, and will then run several wave problems using the Griffith 
criterion for materials with simple geometry and moduli which depend on flaw 
fracture.   It is then our intention to define a critical a or v   at which 

sufficient damage is assumed to have occurred so that the fractured material 

is now ready for excavation by shoveling processes.   Thus we have here a 
simple damage theory, a precursor to excavation. 
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Figure 4.   Griffith Strain vs Flaw Content. 
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Figure 5.   Griffith Strain vs Surface Energy. 
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The present theory has so far been developed for an Isotropie 
elastic continuum.   In the forthcoming period, we propose to examine both 

an orthotropic elastic material as well as an elasto-plastlc material. 

3. TECHNICAL PROGRESS: DISCRETELY FAULTED MKDIA 

In the work completed on Contract No. H0210019, it was shown 
that a computer solution obtained by SHEP provided excellent agreement with 

the same features of the analytical solution derived by Achenbach and later 

extended by Blatz.   One feature of the computer solution is not, however, 

desirable.   Since the SHEP code is a difference equation representation of 
the continuum equation, it is naturally resonant and "coughs back" both 

oscillations in the wave profile as well as spreading of the wave profile. 

This behavior is shown in Figure 6 where the computer solution is compared 

with the theoretical solution for the velocity profile from the crack tip to 

the bow wave front.   Such a numerical behavior makes it impossible for us 

to compute precisely enough the integrals in the algorithm for crack propa- 

gation.   An attempt to smooth out the curve is being made with the aid of 

cubic viscosity, an extension of the form introduced by Von Neumann and 
Richtmeyer. 

If we decompose the stress tensor into elastic and viscous com- 
ponents, we find: 

7=TE+1D (W 

where tD is the dissipative stress.   This component generally can be 
written as: 

"tD= «j ^ + a2 d • d (HO) 

where d is the strain rate tensor, and: 

ak= «k (id, iid, ind), k= 1, 2 (111) 

with {l^, L^j, HIj} the three invarients of the strain rate tensor.   Von Neu- 
mann and Richtmeyer took: .   .. 
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Figure 6.   Computer Oscillations for Out of Plane Motion. 

24 



- 

?D" ^o^^-^d^ (112) 

where vo Is a kinematic viscosity and T Is a volumetric relaxation time. 

We take TD = 2vo p (l-fty d (113) 

where ^ Is a higher order rate constant. 

Equation (112) involves quadratic and linear terms, (113) Involves cubic and 

linear terms.   Equantlon (113) provlces a twofold advantage over (112).   First 

It can be used for Incompressible or Isochoric deformation (such as our model 

antlplane shear problem).   Equation (112) can only he. used for compressible 

media.   Equation (113) contributes to both the Inplane and out-of-plane 

terms.   In (112) the quadratic term contributes only to the Inplane terms. 
Thus (113) fills the bill for our problem. 

The coefficients v   and j8 are given by: 

v - C    ^• 0"     1   a* (U4) 

ß^ .(115) 

Equations (113), (114), and (115) have been programmed and an optimization 
study of the constants Cj and C2 is underway. 
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