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Section 1

INTRODUCTION

Under Air Force Weapons Laboratory (AFWL) contract AF29 (601)-
5399 IBM developed an automated transient circuit analysis digital computer
program, PREDICT, for analyzing the responses of electronic circuits in
transient radiation cnvironments, and a system of digital computer programs,
TREAT, for processing component radiation effects data. These programs
were subsequently maintained, modified, and distributed to various aero-
space companies throughout the United States. After extensive application
of PREDICT, a number of modifications and improvements were suggested.

Under AFWL contract AF29 (601)-6489 IBM developed and evaluated tne
suggested improvements, and recommended that a new circuit analysis pro-
gram incorporating these features be developed. The effort under AFWL
contract AF29 (601)-6852 consisted primarily of formulating and coding this
new circuit analysis program, which was called SCEPTRE. The most recent
contract, F23601-70-C-0038, was awarded for the purpose of implementation
of a series of desirable improvements.



Section @1

FORMULATION AND THEQRY

2.1 INTRODUCTION

Any automatic transient analysis program is designed to relieve the
user of ithe necessity of writing and programming the differential and algebraic
equations that describe networks. PREDICT and other programs already
perform this basic task, but the degree of flexibility permitted the user varies
widely among programs. SCEPTRE, written as a successor to PREDICT.
incorporates many improvements.

This section presents the formulation and theory that serve as the basis
for SCEPTRE. Therefore, the discussion is mathematically oriented. Those
features of SCEPTRE that are not mathematical are not included here. For
example, the extremely useful features of Rerun and Model Storage are not
described.

2.2 GENERAL SOLUTION

SCEPTRE consists of two separate formulations that combine to pro-

duce the general transient solutions of a given network. One is referred to
as the initial-conditions program. This will determine the network voltages
_ that prevail before any time-~varying forcing function is applied. This program

does not treat time as an independent variable; instead it holds time constant,
and iterates on selected voltages. The output of the initial-conditions pro-
gram may be obtained independently or it may be automatically used as the
starting point for the transient program. Thus, the output of the initial-
conditions program effectively supplies the initial conditions for the system
of differential equations that are solved by the transient program.

The second program is called the transient program. This program
uses time as an independent variable and solves systems of differential equa-
tions as functions of time. The output of this program represents the tran-
sient response of a given network., As implied above, the transient program
may be used in conjunction with the initial-conditions program, or it may be
used by itself if the initial conditions of the network are known.



The general solntion procedure described here concerns tac definit. o
of the terms, matrices and procedures that are common to both progran.s:.
Other parts of this volume will provide the detailed explanaticas and deri-

vations. The first step in either program is the construction of a tree*
(Ref. 1) according to prescribed rules, which differ for the two programs.
This permits formation of a B matrix that effectively expresses link volt -
ages in terms of tree branch voltages and tree branch currents in terms oif
link currents. Figure 1 shows a composite B matrix that contains all pos-
sible element classifications and submatrices. This matrix is derived in
appendix I. The element classifications are given in table I.

Tree Branches

| | 1 i
: Class | Class : Class ! Class Class }
I 4 4 5 | 6| 7 Y i
Class 1 B]4 BIS B]é B]7 BIY
Class 2 82 4 82 5 82 6 827 B2Y
‘Closs 3 834 8?5 836 837 B3Y
_32 Class 8 BS4 885 886 887 BBY
ot e
Class 9 894 395 896 897 B9Y
Class 0 B'M 805 806 807 BOY
Clos X1 Bxa | Bs | Be | Bz | Bxv

Figure 1. Composite B Matrix in SCEPTRE

geproduccd from Q

es! available copy.

*A trec is defined as any connected network subgraph that contains all

nodes of the network but no complete loops. All circuit elements that are
members of the tree are termed tree branches. All circuit clemeats ox-
cluded from the tree are termed links. A'"'C"treeis defined in this repart

as one in which tree members are chosen in the prefercnce order E, C, 2
and L. All current sources (J) must be excluded from the "C* tree. There -
fore. these sources are links. A cut set is defined as that group ot cicments
that would isolate two groups of nodes when removed from a nctwork.
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Table 1 1
ELEMENT CLASSIFICATIONS IN SCEPTRE
| Class Element
{ 1 Capacitor links
2 Resistor links
3 Inductor links
4 Capacitor tree branches
5 Resistor tree branches
6 Indvctor tree 1ches ' .
7 Voltage sources
E 8 Independent current sources
9 Primary current sources (dependent on voltage across terminals).

This class will appear only in the derivation of the initial-
conditions program.

0 Secondary current sources (dependent on cther current
sources). This class will appear only in the derivation of the
initial-conditions program,

Y Voltage sources that are dependent on resistor voltages. This
class will appear only in the derivation of the transient program.

X Current sources that are dependent on resistor currents. This
class will appear only in the derivation of the transient program.
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The following matrices ard vectors may also be defined as a result of
the element classification in table I

a diagonal matrix composed only of resistor links

-1 | .

Ryg

a diagonal matrix composed only of resistor tree branches

-1

5]

RS

a diagonal matrix composed only of capacitor links

-1

Ch

a diagonal matrix composed only of capacitor tree branches

-1

Cyaq

a matrix composed only of inductor links and the mutual
inductance belween inductor links

- a matrix composed only of the mutual inductance between

inductor links and inductor tree branches

- a matrix composed only of inductor tree br..nches and the

mutual inductance between inductor tree branches

- a diagonal matrix composed only of the voltage derivatives of

\'

primary current sources

- vectors composed only of the currents or voltages asso-
ciated with capacitor links

(7]



9 - vectors composed only of the currents or voltages asso-
ciated with resistor links

° 13,' V. - vectors composed only of the currents or voltages asso-
ciated with inductor links :

v

e I, V, -vectors composed only of the currents or voltages asso-
4 4 . ) . : »-
ciated with capacitor tree branches

V. - vectors composed only of the currents or voltages asso-
ciated with resistor tree branches

e I, V. -vectors composed only of the currents or vdltages asso-

€, 6 ciated with inductor tree branches

* J8’ V8 - vectors composed only of the currents or voltages asso-
ciated with independent current sources

° Jg, V9 - vectors composed only of the currents or voltages asso-
ciated with primary current sources

) JO’ VO - vectors composed only of .the currents or voltages asso-
ciated with secondary current sources

° E7 - a vector composed only of voltage sources. .

2,3 TRANSIENT SOLUTION

1

The state variables of any system can be defined as the: minimum set
of quantities that will suffice to determine all other quantities in the system
at any instant, It can be shown that the knowledge of the set of all capacitor
tree branch voltages {V4) and inductor tree link currents (I3) is sufficient to
determine all other element currents and voltages, and furthermore, that this
selection of state variables will allow network formulation in terms of first-
order differential equations. The starting point of the derivation then is that
quantities V4 and I3 are known and the list of unknowns is made up of V1, Vo,
V3, Vs, Vg, I, I2, 14, Is, Ig, I7 and Vg. In addition, the derivatives of the
state variables, V4 and I3, must be obtained in préparation for the numerical
integration routine which produces the updated state vanables that are valid
at the next time increment.

Some of the equations needed to solve the unknown quantities may be
obtained from the transient-solution B matrix (figure 2). The B matrix
itself arises from a ""C'" tree, which is formed by an E, C, R, L preference
order. Note that the B matrix differs from the composite matrix of




Tree Branches

) ' ) i
I ! I
: Class I Class | Class Class }
Closs 1 B 0 0 B
: Links _ 14 17
& Class 2 82 4 825 0 827
. Closs 3 83 4 835 83 6 837
Class 8 BB4 885 886 887

Figure 2. Transient-Solution B Matrix in SCEPTRE

Figure 1' in that some submatrices are zero valued* and that no distinction
is made between types of sources. Since link voltages can be written in
terms of tree branch voltages directly from the B matrix, the followingequa-
tions may be written in matrix form:

Vy =By Vy-Bip Eq (1)
Vp = '524 Vs . Bys Vs - Byq Eq (2)

| Vg = -Bgy V4 - Bys Vg5 - Bgg Vg - Byg Ey ()
Vg = -Bgq V4 - Bgg V5 - Bgg Vg - Bgq Eq (4)

Since tree branch currents can be written in terms of link currents, there
arises:

T T T T

"‘,For example, Bys must be zero since the ""C" tree preference prohibits the
possibility of a capacitor link closing a loop that contains a resistor tree
branch.



T T T 6)

Iy = Bys Iy+Bgg I3+ Bgs Jg
} T T
I, = Bgg I3+ Bge ™ Jg (7)
T T T T
I, = Byg 1, + By Iy + Bgy” I3+ Bga™ Jg (8)

where the superscript T is used to indicate the transpose of a matrix.
Two additional equations may be obtained from differentiating Equations

(1) and (7) yielding:

Vy = -Byy V4 - By Eq ®

. _ T o T .

16 = B36 I3 + 886 J (10)
Note that source derivatives E7 and jB have been introduced in the last two

equatiors. * These equations together with a few fundamental relations will
be used to derive all of the network currents and voltages in terms of known
quantities.

2.3.1 SOLUTION OF RESISTIVE QUANTITIES

The resistive quantities of interest are Ip, Is, Vo, and V;. The funda-
mental voltage current relatons for resistors permit:

V, = Ry I, (11)

I (12)

Rgg Ig

5 55

\'

I2 may be explicitly solved for by manipulation of equations (2), (6), (11) and
(12) to get

A T T
I = Mg { “Bgyq V4 = Byp Eq - Byg Ry [335 I3 + Bgg Ja]} (13)
where '

) T
Mp = Rgy + Byg Ry Byg (14)

*See section 2.5 for a discussion on source derivatives.



The significance of equation (13) is that the vector of resistor link currents
has been solved in terms of all known quantities since the right side of the
equation is composed entirely of state variables V4 and I3, known sources
Eq and Jg, and known incidence submatrices. Once Iy is known the vectors
Is, Vo, and V5 can be determined from Equations (6? (11), and (12),
respectively. .

An alternate approach may sometimes be preferable. Equations (2),
(6), (11), and (12) may also be manipulated to obtain

-1 T

_ T
Vs =Mg {“325 Gyp [Bas Vg + Byy Eq]+ Bgs 1

T
3+ Bgs Jgr (15)

where

. T
Mg = Gg5 + Byg Gyg By (16)

Equation (15) gives the vector of resistor tree branch voltages in terms of
quantities that are all known. Then, Vy, I, and I5 can be solved by Equa-
tion (2), yielding

I, = Gyy V, (17)
and I = G, V, (18)

respectively. The two approaches differ in the size of the matrix to be in-
verted. The first approach requires the inversion of a matrix (MR) contain-
ing the number of rows and columns equal to the number of class-2 elements
in the network. The second approach requires the inversion of a matrix (M)
containing the number of rows and columns equal to the number of class-5
elements in the network. Networks containing resistors that are all constant
require only one matrix inversion. There is no practical difference between
the two approaches. If, however, the network contains at least one variable
resistor, a matrix must be inverted at each solution time increment. Hun-
dreds or even thousands of matrix inversions are necessary, and the size of
the matrix becomes of significant importance, SCEPTRE will automatically
determine which of the two approaches should be taken for each individual

- network.




2.3.2 SOLUTION OF CAPACITOR QUANTITIES

The capacitor quantities that must be solved at each time step are Iy,
Iy, Vi and V3. Vector V3 itself wiil have been updated by the integration
routine and hence will be known. The fundamental relationships for capacitors

permit
V=S4, (19)
vV, =5,1 (20)

Equations (5), (9), (19), and (20) may be combined to obtain

o T T T .
I = Mg { -B.4 544 [ Bog Iy +Bgy I3+ By, Ja] - By Eg}e21)

M, _ T
S =8p; +By4S44 By (22)

At this point, vector I has been isolated in terms of all known quantities.
There remains to obtain I, Vi, and V4 from equations (5), (1), and (19},
respectively.

2. 3.3 SOLUTION OF INDUCTIVE QUANTITIES

The inductive quantities that must be solved at each time step are i3$
V3, Vg, and Ig. Vector I3 will have been updated at the start of each time
step and will be known. The fundamental relations for inductors permit

3 = Lgg I3+ Lgg g (23)

6 = s3Iz * Lgs 6 (24)

\'

A%

Equations (3), (10), (23), and (24) may be combined to obtain
i =M "1 [-B,, V, -Bu Vo - By Er - [Boe L.s Bo ¥
3 L{344 35 '5 377[366686

* Ligg BasT] ‘ia} (23)

10
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where

. T
My, = Lgg + Ligg Bgg ™ + By Lgg + Bge Lo By

T (26)

Now i3 is written in terms of known quantities. Following this, V3, Vg, and

I may be obtained from Equations (10) and (23), (10) and (24), and (7), respectively.

2.3.4 SOLUTION OF VOLTAGE SOURCE CURRENTS AND CURRENT
SOURCE VOLTAGES

A complete list of possible outputs of a network would include the
current through voltage sources and the voltage across current sources.
These can be obtained directly from equations (8) and (4), respectively, since
the right sides of these equations are known at this stage of the computational
sequence. These steps complete the formal derivation of all network currents
and voltages.

2.4 SCANNING PROCEDURE

2.4.1 IDEAL OPERATION (SUBMATRICES B14, BZS’ AND B36 = 0)

The series of matrix operations described in section 2, 3 could very
well be programined as they are to produce the solution of the general
transient analysis problem. All of the matrix multiplication, addition, etc.
could be performed at each time step to generate the necessary currents and
voltages. Research completed during the study phase of this contract showed,
however, that a very significant improvement in computer running time could
be achieved by a more efficient utilization of the information contained in the
B matrix,

The study report* indicated that various network voltages and currents
could be read or "scanned" directly from the rows and columns of the B
matrix respectively. This can be put more precisely by

VL = -B VTB (27

1‘
and Ipg =B I (28)

where ITg, I1,, Vrp and Vi, represent the vectors of trec branch currents,
link currents, tree branch voltages, and link voltages, respectively. 1If the
vectors and the B matrix are partitioned according to the form of figurc 2,

equations (27) and (28) lead to the first six equations of scction 2.3. Quan-
tities Vg and I5 are exnlicitly written in terms of known quantities of equa-
tions (2) and (6) if submatrix Bgs = 0. Once the resistive quantities are

* AFWL-TR-65-101,  Volume I

11




determined, equation (5) presents Iy in terms of known quantities if submatrix
B14 = 0. Inthe same manner equation (3) presents V3 in terms of known
quantities if submatrix Bgg = 0. Clearly, then, the condition '"Bj4, Bgg,

B3§ = 0" permits solution of V,, I, 14, Vg, Ig, and V; directly {)y scanning
and without any matrix manipuization. Quantities Iy, Vg, Iy, Vg, V4, and I3
‘can then bhe determined from the operations given or implied in the non zero

portions Jf equations (11), (12), (21), (24), (19), and (25), respectively.
Once all of these quantities are explicitly obtained in terms of known quantities,

the equations are stored, compiled, and executed at each time increment
without recourse to repeated matrix manipulation.

2.4.2 OPERATION WHEN B25 £0

In most large networks, submatrix Bgs does not equal zero. When
this happens, quantities Vo and I5 cannot be ""'scanned'" out and either Equa-
tion (13) or (15) must be solved. Both of these equations require the inver-
sion of a matrix; thus, some matrix manipulation must be done. To illustrate
the procedure, assume that some hypothetical network has given rise to the
B matrix shown in figure 3. The network is fairly typical in that B14, B3g
= 0, but Bggs #0. The nature of submatrix Bgg (outlined in figure 3) is such
that resistors R3 and Rp contribute no rows or columns, and the scanning

process immediately vields

Voo = E1 - V.o and IRD = ILI’ from which follow

R3 C2

Ipg = (B) - Vog)/Rgand Vpr, = Ry Iy

These quantities will be updated at each time step without matrix manipula-
tion. The rest of the resistive quantities in the network may be solved by

the matrix manipulation implied in equations (13) and (14). Once the resis-
tive quantities are determined, the remaining network quantities may be
scanned out and stored. The only repeated matrix manipulation required will
be for the three resistor link currents (IRI, IRz, IR4) that cannot be scanned

: because'st #0.

12



i |
Class 4 ! Class 5§ : Class 7
| i
C' C2 = RA RB Rc RD : El
R] 1 0 I
R2 0 I
Class 2
R3 0
————— R4 0 0 _
L] 0 0 0 0 0 1 0
Class 3
L2 0 0 1 0 0 0 0

Figure 3. B Matrix from Hypothetical Networlk
2.5 SEMI-AUTOMATIC SOURCE DERIVATIVES

The need for source time derivatives is established in equations (9) and
(10) where Eq and Jg are required. In situations where non-zero source time
derivatives are needed, the user must supply them. These situations are
subsequently described.

2.5.1 VOLTAGE SOURCE IS VARIABLE AND B17 #0

If By7 # 0 and the voltage source is constant, SCEPTRE will automat-
ically supply a zero derivative. In the case where a non-zero derivative is
required and the user fails to supply it, the run will be terminaied with a
diagnostic message. The situation is best recognized by Lhe presence of
any circuit loop composed solely of capacitors and at least one variable
voltage source.

2.5.2 CURRENT SCURCE IS VARIABLE AND B86 #£0

If Bgg #0 and the current source is constant, SCEPTRE will aulomat-
ically supply a zero derivative. In the case where a non-zero derivative is
required and the user fails to supply it, the run will be terminated with a

13



diagnostic message. The situation is best recognized by the presence of any

circuit cut set composed solely of inductors and at least one variable current
source,

2.6 LINEARLY DEPENDENT SOURCES

The ability of SCEPTRE to correctly process linearly dependent sources
permits the user to define current and voltage sources that are linear functions
of resistor currents and vo'tages. This feature is expected to be most useful
for, but not limited to, applications involving families of small-signal tran-
sistor equivalent circuits such as shown in figure 4.

These linearly dependent sources require special treatment because
their magnitudes are direct functions of quantities that are not state variables.
Unless these sources are specifically processed, they will be updated at the
nth time step according to the values of their independent variables at the
(n-1) time step (as they would be in PREDICT, for example). This results
in a "computational delay, ' which can lead to large errors throughout the
entire network,

Linearly dependent sources are provided {or in the general B matrix
by the Y and X classification. When these sources exist, SCEPTRE will set

up the B matrix as shown in figure 5. Under these circumstances, equations
(2) and (6) ¢ n be extended to:

Vg7 -Byg V4 - Byg V5 - Byg By - By, EX (29)
T T T T
Ig =Bys Iy+Bgg Ig+Bgg™ Jg+B " JX (30)
h,
Ic
B o AAA- —oC
I]
+
hre V2 CD he '1<D ?"oe V2
o ;
3

Figure 4. Low-Frequency h-Parameter Equivalent Circuit

14
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§ CLC'SS E CISOSS i Cl:ss i C|;ss Class g
—_— —1 oy |
Class 1 | B4 0 0 B, By,
—C;s—s- 2— B B,s 0 B,y By,
Closs 3 By Bas “' Bag B By,
-C-I-ass 8_ 884 385 886 887 BBy
Class x. Bt Bes Bes Be7 By

Figure 5. B Matrix with Linearly Dependent Sources

Since any resistor-voltage-dependent voltage source must depend on a resis-
tor tree branch voltage or a resistor link voltage, there arises

EY =k

where:

1 Vo + l‘:2 Vs (31)

k, is a matrix of constants containing the number of rows
equal to the number of class-Y voltage sources and the
number of columns equal to the number of nonscannable

class-2 elements.

k'2 is a matrix of constants containing the number of rows
equal to the number of class-Y voltage sources and the
number of columns equal to the number of nonscannable
class-5 elements.

EY is a vector composed of class-Y voltage sources.

Also, since any resistor-current-dependent current source must depend on
a resistor tree branch current or a resistor link current, there arises

JX=k3I +k, I

where:

2tk lg (32)

kg is a matrix of constants containing the number of rows
equal Lo the number of class-X current sources and the
number of columns equal to the number of nonscannable
class-2 elements

15



e kg is a matrix of constants containing the number of rows
equal to the number of class-X current sources and the number
of columns equal to the number of nonscannable class-5
clements

i

E e JX is a vector composed of class-X current sources.

If Equations (31) and (32), together with Vo = Rog Iy and I5 = Ggg
] are substituted into Equations (29) and (30)

Ryply+ Bys Vi + By, [k RyyTy+ Ky Vg | ~-BaaVa- By Er  (33)

2 T T rl‘ T
F - - + =
; Gss Vs " Bgs Iy~ Bys [Kylp* kg G5 V5] =By I3+ Byg Jg (34)

The last two equations may be consolidated as

: (Ryy + Byy Ky Ryp) (Byg + By, Ky) I “Bgq V4 - Byp Eg

a T T T | T T

’ (-Bgs - Bys™ kg) (Ggg - Byg™ ky Ggo) Vg Bgg I3+ Bgs Jg
} If the large matrix on the left side is called MRG, then
E I o | B2a Ve~ BarEy
¥ - MRG
: T T k
. v5 B35 I3+B85 J8

and the resistive quantities Is and V5 can be determined without computation-

al delay. Note that since all four "k matrices are constrained to be constant,

the linearly dependent source feature itself will not require any more than

one inversionof MRG. If anv variable resistors are present in a network,

MRG must of course be inverted at each time step. In addition, the extra

row and column that was added to the B matrix of figure 2 by the linearly

dependent sources will add terms to the equations used in the solution of

, capacitive, inductive and some source quantities. Specifically, equations :
i (5), (3). (4) and (8) become 1

A, T P

Ty v T+ T +B TJ8+BX4TJX (5"

14 1 24 2 34 3 84

3
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V*-—BV-BV-BV-BE-Bsm ")

3 = “Bgq V4 - Bgs V5 - Byg Vg - Bgq Eq - By,
Vg = ~Bgq V4 - Bgs Vi = Bgg Vg - Bgy Eq - By EY “
l; =By 1y + By T 1y + By, T Iy + By, T 3g 4 BT X (87)

and the new relations
VX - B V, - By Vg - By Ep - B, EY (35)
T+, T1,+B,,74d,+B7TJx (36)

IY = +By, Ip+ By I3+ Bg, Jg+ By
now cxist.

A restriction must be nlaced on these sources based on the content of
Section 2.5. The B matrix of figure 5 transforms equations (9) and (10)
into:

B,, E, -B, EY (9°)

Vi = -BygVq By Eq-Byy

1 14
T:

. T ] T L ] "
16 = B36 13 + 886 J8 + Bx6 JX (10")
Now, additional time derivatives f-:Y and .ix are required wheaever Bly or

BxG £0.

. Differentiation of equations (31) and (32) would involve quantities V. Vs
I, and i5. The formulation contains no provisions for these quantities and
there is no way the uscr could know them to supply them as input data.
SCEPTRE will automatically check for the existence of non-zcro Byy or Bxg
and terminate the run with a diagnostic message when they occur, situ-
ation can be recognized by the presence of any circuit loop composed solely
of capacitors and at least one linearly dependent voltage source, or the pres-
ence of any circuft cut set composed solely of inductors and at least one
linearly dependent current source.

2.7 INITIAL CONDITIONS SOLUTION

2.7.1 TECHNIQUE DESCRIPTION

Many practical circuits require computer solution of the initial condi-
tnns prevailing at the start of the trangiemt (time - { o) before the transient

17
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solution can begin. These values can always be determined by a separate
transient run in which all forcing functions are held at the values for time

1 = tg. However, an alternate procedure based on an iteration technique using
- independent variables other than time was considered desirable. This pro-
F - cedure presents the advantage of economy of machine time on all circuits for © .
which convergence occurs. This section will describe the formulation of this
portion of SCEPTRE, which is completely independent of the transient
formulation,

TR P

If an L tree is set up based on the preference order E, L., R, C, a .
general B matrix may be set up according to the procedure outlined in -3
section 2.2 The zero-valued submatrices arise from the L tree and the :
preference order*. The resulting B matrix is shown in table II.

] Table 11
| GENERAL B MATRIX FROM THE L TREE
! I ! ' |
o4 b5 b e T
L I
D1 Bua | Bis | Bis | By
210 Bys | Bas | Bt
3 | o 0 Byg | By
| Bga | Bgs | Bgg | By
° | Boa | Bgs | Bgg | Bgy ' 8
O 1 Boa | Bos | Bog | Bo7 ]

The following equations (among others) arise from this B matrix if
vectors Vg, 14 and submatrix Bgq are assumed tc be zero. These assump- :
tions are based cn the known {inal values of Vg and 14 for the initial condition " o

*T'or example, the submatrix Bgg must always be zero since non-zeroentries
in it could only arise when resistor links close loops containing capacitor tree
branches. The preference order prohibits this possibility,

18
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problem and the absence of any current-source capacitor cut sets (see the
restrictions in section 2. 17, 4),

Vg + Bog Vg + Bgr E- = 0 (37)
\/2 1 1325 V5 + 1327 E7 =0 (38)

T ° T T _ ,
Ig - Byg Iy -Bgs Jg-Bgs™ Jg-Bns Jy=0 (397

To get all the variables of equation (39') in terms of Vg, Vo, V5, and
effective sources, the following substitutions are made:

Iy = Ggg Vg
Iy = Gy Vy
J0 = an
J —_

= G, V. +
9 99 ' 9 Q9
where:
e a is a matrix containing the number of rows equal to the
number of secondary current sources and the number of

columns equal to the number of primary current sources

o Ggg and Ggo are diagonal matrices containing only
conductances

o Gggis a diagonal matrix containing only diode and trarsistor
junction conductances

e Qterms are described in appendix II.

Then, equation (39') becomes

T T T 1] [. )
Ggg Vg - Bog Gpy Vy - Bgg ™ Jg - [895 + Bys °] [090 Vg Qs] =0
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Equations (37), (38), and (39) may be designated as F Ve),
Fo (V9 Vg, Vs) and F3 (Vg, Vg, V5) respectively. 1II the basxc ewton-
Ra.phbon melhod (see appendix ITI) is applied to equations (37), (38), and (39):

JF
_ 1

dF

1
dFl
BFZ
6F
GV (V 2, V5) AVZ +
JF

2 _
avg(vy v, ve) AV = 0

oF

3

6F3
-d'-v—z- (Vg, Vz, VS) AVZ +

dF
3

2,‘

(3}

or

(" [~ T
F, (v, vz,vs)T INA

F‘2 (Vg, V2, VS) + 2

F, (Vv Vz, Vs) AV5

3y

e - L -

e et C———

Coaa el LI
oo, i il
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where the Jacobian is

[ arl
ENPY (Vgr Voo V)
. aF
g av ~ (Vg Vg V5)
OF,
aV (V V29 VS)
1t

A\fg = V9 (n+1)- V9 (n)

av,

- V2 (n+1)- V2 (n)

AVS : V5 (h+1) - V5 (n)

. . t
where n is used to designate the resulls of the n

equation (40) becomes
-
-F1 (V9 V2’ RY )

Fz (Vg, \' V5)

25

L -
leading directly to
- -
V9 (n: 1)
‘V2 n - 1)
v, (n. 1)
L5 J L

+ Z

V9 (n) ]

V2 (n)

V5 (n)

Vg (n+1)-
Vz (n+1)- V2 (n)

V5 (n+1)- V5 (n)

21

9 2 5)

V9 (n)-—1

OV, 9 T2 TS

oF,
- (Vg Vo Vo)

h. .
iteration pass, then

an
'“BTI';(VS)' Vo V)
0F3
'"6’\7'5" Vg, Voo Vi ;)
-
(41)
-0 (42)
Vi V)
g Vi) (43)
i
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Equation (41 ) may be written more explicitly if the indicated differentiations
are performed on equations (37), (38), and (39) to obtain:

[ B -
1 o 95
7 = ) I B,s
T T T
‘[*395 + Byg °] Ggg “Bgs Gyy  Ggs
L -

so that equation (43) becomes

- -

- 1 - .
Vyn.1) Vg(n)] F, (Vg Vy Vi)

vz(n * 1) = vz(n)w = VA Fz (vgv vzr v5)

44
Vo(n+ 1: Vs(ni F, (Vg Voo Vs)J (44)

Equation (44) may be written in more convenient form as follows (see also
Appendix 1V):

B 1T 1-1
Vg (n+1) I o 395
V,(ns1) | = o 1 B,
V (n. 1) -[B TIB TG]G -B TG G,
5 95 *Bos 99 25 Ca2 55
r E -
-Bg7 E,
-Byy Eq
W T, T T e

Equation (44') signifies a computational sequence as follows:
Quantities Vg, Vg, and Vg, the vectors of voltages across primary current
sources, resistor link, and resistor tree branches respectively, each have
some assumed value (usually zero) to begin the computation at n= 0. All
members of the right side of equation (44') that may be voltage dependent
are updated. The left side of equation (44') is then computed and the first
iteration (n=1) is complete. The right side of equation (44') i8 re-cvaluated

22



on the basis of the results of the first iteration and the left side is again com-
puted, thereby completing the second iteration (n=2). This process is repeated
up to 100 times, After any iteration, if

Vin s 1y Vi 50000 | v 55| + 0.0001 (45)

is satisfied for the set of all voltages in equation (44), convergence is con-
sidered to have occurred and the procedure is terminated. If after 100
iterations equation (45) is not satisfied. a diagnostic message will be printed
indicating that convergence has not occurred. Experience to date has
shown that the Newton-Raphson procedure will converge for most circuits in
less that 30 iterations.

Convergence of the Newton-Raphson method can sometimes be pro-
hibitively delayed if for some reason a large forward bias (V> 0. 8v) is applied
to any diode or transistor junction that has been represented by the user in
the conventional closed form J = Ig(e 8V _1). 1In this case, the slope of the

diode curve, given by GJ = % m“a"v. will contritmite a vory large term

in Ggg and consequently in the Z matrix. The practical results of this can be
more easily appreciated by consideration of a one equation system as repre-
sented by the second equation in Appendix IOI. A large derivative caused by a
highly forward-biased diode leads to a very small step (AX) in the indepen-
dent variable. Many steps will therefore be required to complete convergence.
This situation is avoided in SCEPTRE by the inclusion of a subroutine called
DISCLF. This subroutine effectively ensures that the true operating point on
the diode curve is approached in the iteration process from a lower voltage
rather than a higher voltage. Smaller diode slopes are used so that larger
(and fewer) steps can be taken toward convergence. This is described in
reference 2.

If convergence has occurred, quantities Vg, Vg, and Vg5 arc now known.
There remains to compute only capacitor voltages and inductor currents since
capacitor currents and inductor voltages must be zero.

2.7.2 COMPUTING CAPACITOR VOLTAGES

From the B matrix in table O the capacitor link voltages can be written
in terms of the tree branch voltages as

Vl , -B14 V4 - BIS V5 - B” E7 (46)

In addition the principle of conservation of chirge permits

T . T

By Cp Vi1 Caq Yy

where V, (0) and \14 (0) arc initial voltages that may be specified by the user.
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Equations (46) and (47) lead to

- T T T
Vg = Mg {’314 C11Bis Vs "By €y Byg E;- By €y v, (0

+ Cay V, (0)} (48)

Te . B

where Mc = B14 11

14 * €44

Once V4 is determined, V; may be found from equatioa (46).
Note that Class-4 elements can occur only if a capacitor cut set exists. (1)

Otherwise equation (48) will be identically zero and all capacitor voltages can
be determined from equation (46).

The use of equation (4%7) permits solution of a class of networks in

which the final value of capacitor voltage is dependent on an initial value.
Consider the circuit shown in figure 6. which contains a capacitor cut set.

Cl =9pf
I —o e 1t
J__C2=]pf

1oV =

L ]

Figure 6. Capacitor Cut Set Circuit

If both capacitors are initially uncharged, the final values of the cap : ‘tor
voltages after the switch is closed must be VC1 = 1 volt, VC2 = 9 volts. I
however, capacitor Cl has an initial charge of 5 volts, the principle of con-

servation of charge (reflected in equation (47)) requires the final result to
be VC1 = 5.5 volts, VC2 = 4.¢% volts.

2.7.3 COMPUTING INDUCTOR CURRENTS

Since Vg is known,

-1

1 0 Vy (49)

g =R

The inductor tree branch currents then can be written from the B matrix
in terms of link currents as

T T o T T T
lg = Bgg Iy+ Bgg I3~ Bge Jgr Bgg™ Jg + Byg ™ J (50)
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In addition, the flux relations around an inductor loop permit

(51)

Byg Lgg Ig * Lga Iy = Bgg Lgg Ig (0) * L33 I3 (0)

where Io (0) and I3 (0) are initial currents that may be specified by the user.
Equations (50) and (51) lead to

o
I3 =My, {Lss I3 0y * Bse Y66 I6 (0)

T T T T
“Byg Lgo  [Byg Iy + Byg g Byg g+ Bog” 4g]} (52)

: T
where M, = Bgo Leo Bao + Ligg

Once I3 is determined. Ig may be found from equation (50). Note that Class-3
elements can occur only if an inductor loop exists.* Otherwise, equation
(52) will be identically zero and all inductor currents can be determined from

equation (50).

The use of equation (52) permits the solution of a class of networks in
which the final values of inductor currents are dependent on the sizes of the
respective inductances. Consider the circuit shown in figure 7, which con-

tains an inductor loop. If both inductors are initially relaxed, the final values
of the inductor currents after the switch is closed must be IL1 = 1 amp.

IL2 = 9 amps.

R =18

‘————o/cr A YAYAY,

—
10V LY =%h 3 L2 = th

Figure 7. Inductor Loop Circuit

“See paragraph (subsequent section 2. 7. 4) on network restrirtions for quali-
fication of this.
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The task of computing the capacitor voltages and inductor currents com-
plete the initial-conditions problem. These quantities may then be trans-
ferred to the transient program to serve as initial conditions.

2. 7.4 RESTRICTIONS

Since the initial-conditions program is formulated differently and for a
different purpose than is the transient program, certain restrictions apply
to the initial-conditions program that do not apply to the transient program.

These restrictions and the practical considerations that lead to them are as
follows:

1. No circuit containing a loop composed entirely of voltage
sources and inductors will be accommodated. This situation
would cause an infinite inductor current and is obviously of
no practical importance. The presence of an E~L loop is
disciosed by the condition 1337 £ 0.

2. No circuit containing a cut set composed entirely of current
sources and capacitors will be accommodated (see figure 8).
This situation would invalidate equation (37) and complicate
the solution process by requiring that V4 be carried along in
the Newton-Raphson procedure. This cut set situation can
always be removed by arbitrarily connecting a large resistor
from note A to the ground. Note that the configuration of
figure 8 could be handled by the transient portion of SCEPTRE
if a Newton-Raphson solution was not desired. The pres-
ence of a J—C cut set is disclosed by the condition that
either B g4. Bgq. or Bpg # 0.

chl chz
1t ' @ 11
() AN
N J
] 2
-
J3 3

Figure 8. A Current-Source Capacitor Cut Set
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3. The choice of independent varnbles will be somewhat rostricied.
No resistor or inductor current may be used as an independent
variable. Furthermore, a capiacitor voltage may be used as an
independent variable only if it is in parallel with o resistor or
current source (Ve = VR, Ve - Vi) The objective here is to avoid
the need for any auxiliary computation between passes of the
iteration procedure.

4. Networks containing entirely capacitor cut sets can be accommo-
dated only if the members of the cut set are constant.

5. Networks containing only inductor loops can be accommodated onlv
if the members of the loop are constant,

2.8 INTEGRATION ROUTINE

Three integration routines will be optionally available for use in
SCEPTRE. Two of these, RUK and TRAP, were available in PREDICT
and have been only slightly modified. The third routine. called XPO, was
developed at the IBM Scientific Center in Palo Alto, California. by Dr. R.
Wartcn and Mr. M. Fowler and adapted for use in SCEPTRE. Studies
to date indicate that XPO is usually, although not always, faster than the
other methods. For that reason, tkis routine will always be used unless
the user cxplicitly requests otherwise in the RUN CONTROL scction of any

run,

2.8.1 RUK FORMULAS AND VARIABLE STEP SIZE CONTROL

The well-known Runge-Kutta fourth-order-accuracy formulas (Ref. 2)
for the numerical solution of the differential equation

.i' ) [(t. Y)
are riven hy

oy oy () -I/G[kI 2k, 0 2k, .k4] (5:4)

where

K, hf[l. y u)]

b |
K, |.||7=.2, v(l).zkl]
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k3:hf[t+;, y(t)+%k2]
k4=hf[t+h, y(t)+k3]

Variable step size control (Ref. 3) is achieved by computing

k3=hf[t+h, y (t+h)]

and

E =k, - 2k, - 2k, + 3kg (54)

The above formulas easily generalize to systems of differential equations,
in which case y and E become

v =y, ...y, 0]

Ez(el,...,en)

Now let
ul. u2

Set

Uk = Uy +u, 'yk(t+h)|

L, = L+, lyk(t+h)l

If lek , > 1.5 Uk for some k, the integration step h is halved, the in-
dependent variable is restored fromt + h to t, and the values of v and y are
restored to the values at time t,

I Iekl >0.75 U for some Kk, and lekl <1,5 Uy for all k, the current

integration step is accepted, but the step size is halved for succeeding steps.

If Ly < lekl < 0.75 Uy for all k, the step size is unaltered.
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If |ekx| < Uk for all k, and |ex| < Lk for at least one k, a doubling in-
dicator is activated. Actual doubling is delayed for seven time steps. Halving
always takes precedence over doubling; thus anytime a halving signal is re-
ceived, the step size is halved and doubling is delayed for at least seven steps.
Similarly, after successful doubling, another seven steps must elapse before
the step size can be doubled again,

Recommended choices for uy, ug, 11, and 12 are as follows. I
absolute error control is desired,

set

L
(=)

u 0. 0075 u,

1

1
1

0. 00005 l2 0.

If relative error control is desired,

set

0. 005

u 0. 005 u,

1

1

1 =0 00005 1y 0. 00005.

. If smaller step sizes are desired than the ones yielded by the above
settings, the 0. 0075 and 0. 00005 settings should be reduced by a factor of 32.
This will yield half the previous step sizes. :

2.8.2 MODIFIED TRAPEZOIDAL INTEGRATION (TRAP)
2.8.2.1 Method

Given the differential equation
yO =1 y®) y 0=y,

Consider the following numerical integration scheme,

v e g =y g ¥ O (55)
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;,p (t+%h)=f[t+%h, Yy (t+%h)]
= tftedn y w5y o)
h [ : 3
Yo (t+h)=y(t)+3[2y(t)+yp(t+§ h)]

yc(t+h)=f[t+h, yc(t+h)]

Step-size control is achieved by computing

=§-h|:vp(t+% h)-‘y(t)’

The magnitude ofl E |indicates any changes to be made in the step size.

2.8.2.2 Truncation Error

(56)

(57)

(58)

(59)

Inasmuch as y = £+ y fy and the truc solution y.. is approximated by

. 2
yp W)=y O +hy W) +3 ¥ .

one obtains,

n? ;
yp t+h) =y ) +hy )+ (1, + ¥ 1).

On the other hand

(a2 oy b voiee vy Py
whence Equation (§7) hecomes
Yo rm 2y O g [250+5 O3 £ rgyL]

Subtracting Equation (57) from (60) yields

_ . h2 h2 . h2.
yT(t+h)-yc(t+h)=<_2_ - '6‘) yfy:.a_yfy
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which in turn yields the approximate local truncation error.

From equations (56) and (61) one gets

AL SRS IORE SE T3

whence
2h [ - 3h . . 2 h2 .
-3—[y(t+—2—)-y(t)]=hft+—3—yfy (62)

One notes that if f; = 0, then equation (62) is a good representation of
the local truncation error, neglecting higher order terms.

Experience indicates that for systems of equations of the form Y =
A (Y) Y + B, where A is piecewise constant, the method as well as step-size
control is adequate.

2.8.2.3 Stability
Consider the differential equation
3; = -ay, Y(O) = yO’ a>0

The numerical integration scheme given by equations (55) through (58)
yields

2 n
yc(nh)=<1-ah+-(a—he-)— ) v (0) (63)

This is easily established by induction, Thus, for numerical stability

it is necessary and sufficient that l 1-ah+ E‘?)— | < 1. This yields 0 <
ah < 6 as shown in Figure 9.

Inasmuch as | ah| < 6 is necessary and sufficient for numerical stability,
we say that the modified trapezoidal method has a stability radius, r, equal to

6. Moreover, from equations (55) and.(56) we see that the method requires

two derivative evaluatious (passes) per integration step. Thus, the pass num-

ber p associated with the method is 2.

The ratio r/p is a measure of a method's efficiency in the sense of
minimum number of integration steps per given time interval.
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Figurc 9. Root Locus of TRAP Characteristic Equation

The higher r/p, the fewer steps are required for a given a.

The following list shows r, p and r/p for a few representative methods:

-

METHOD r p r/p
Modified Trap. 6 2 3
Euler (Ref. 4) 2 1 2
Trapezoidal (Ref. 5) 2 2 1
NIDE (1PASS) (Ref. 6) 0.8 1 0.8
Runge-Kutta (Fourth-order) 2,78 4 0.7
MIDE (2 PASS) 1 2 0.5
Hamming (Ref. 7) 0.85 2 0.425
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2.8.2.4 Step-Size Control

As mentioned previously, the quantity
_2n . 3hy, .
Ey= o [yp (t+-5-)-y(t)]
is used for step-size control,

(1) The method is essentially the same as for RUK, Let uy, ug, 1,
1 9 be real numbers 20,

ComputeU=u1+u2 l Y, (t+h)| , Li= 11+ 12| Ye (t+h)|
It | E,| > 0.75 U, the step size is reduced.

If l Ez < L, the step size is increased.

L = |E, I < 0.75 U, the step size is not altered.
(2) Choice of uy, Uy, 11, 12.

Recall that Eg attempts to represent the local truncation error. For
absolute error control set

u1=0.01 , u2=0

i
o

1, =0.0005, 1

1 2

For relative error control set

u; =0.001 , uy = 0.01

it

l1 = 0, 00005 , 12 - 0. 0005

The above values work well in practice.

Reducing the above settings by a factor of 4 will reduce the step size
by a factor of 2.
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2.8.3 EXPONENTIAL INTEGRATION (XPO)
2.8.3.1 Method

Given the differential equation

y (t) -'-f[t,y (t)], y (0) = yq
this integration routine gives the computed solution
) eMiy
y(t+h)=y(t)+yA(t)h+ —)Thyp(t) , (64)
except for twoe cases that will be covered later. In equation (64)
, y (8) -y (t- hy)
YA {t) = T‘O

where t -hg is the last point computed:

yp () =y (t) -ya (t) (65)
A=Y () / ¥p () (66)

Since v (t) cannot be computed explicitly by the program, we take a small
Euler integration step and approximate y (t) by y's (t):

g (t+8) =y (1) +8y (t) |
vy (a8 =gt o8, vy (t23))] (67)

. _).Iﬁ (t +8) -y (t)
Vs (t) = 5 , O<ys

The first exception occurs if ’y's (t) and S'p (t) have the same sign..

Then set
YA (t) = o)

which results in equations (65) and (66) becoming

yp () =y (1) (68)

A=yg )/ Y ().
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This provides a better approxiniation to the solution of the cquation y Ay + b
wnthuut decreasing the overall effectiveness of Lthe method.

. The second exception occurs if A\, computed either by equations (66)
or (68) is non-negative. Then the term

Ah

!

in Equation (64) is replaced by 1 + ’;" thus chareing equation (64) to

3

y(teh) =y @ +iy ©n+(1+ 3 )0y © (69)

It can be shown with some effort that equation (69) is equivalent to a trape-
zoidal type integration method.

2 8.3.2 Truncatlon Error

: x-
Noting that ex 1 , when expanded in a Taylor series, becomes

1
eX-1
X

2
=1 +-}2‘- + % +0 (x3)
Equation (64) can be written

‘ 2 . 332,
yem =y ® iy Ohs i On by 0 22 0wt

(70)
" —y(t)+y(t)h+-2-y8 ) + 3xy8 ®) +0 (%)
R?ferrinf; to equation (67), note that
Y 0=y 0+ S[YOYOF] +0(3h 1)




Substituting equatio' (71) into equation (70) yields

.o, . h2 h2 e . 3
yt+h)=y®+y®h+yt) 5 +53 [y(t)-y(t)——]-»O(h)

It is noted that the use of either exception to the principal equation (64) still
yields the truncated expression, equation (72).

Since s < 2— the method is second order exact, i.e., the error is of

order h3. This characteristic will be used in equation (73) in the next

section,

2.8.3.3 Step-Size Control

Fort<t + £t + h, let yp (t + £ ) be the true solution to the differential
equation, let y. (t + £ ) be the computed solution, let ye (t + £ ) be an ex-
pression obtained by differentiation of v, (t +£ ), i.e.,

, YA () + (1 + XE)yp (1), X20
ye t +&) = {. .
vA () v e My ), A<0

and let ve (t « ¢ ) be obtained by substituting ye (t + £) into the differential
equation.

Ideally, step control should be based on the expression
Eo= [ [7p(t +&)-¥e +¢)] a&
ol’T

however, 'yT (t +¢) is not available except at £ = 0.

Making use of the fact that
f{t &, ypt+&)~ [yc (t +£) -y (t +€)]}

yT (t +€) + O (£3)

yc (t +£)

(73)

1




we obtain

Eo=j2['yc (t+€)de (t=€)]d € +f2 5 € &) < €~ ©)] a¢

"
:fo[f.)/c(t+€)'.ye(t+€)]d€ +O(h4) 7

Iy (t +&)-Ye (t +&) does not change sign for 0<<h, i
| Egl <h|yp(t «h)-Ye (t+ h)|<h|¥e (¢ - h) -Ye  + h)l+|0(h4) |

Thus for small h,
E - h|ye (t +h)-ye (t +h)]

vields an estimate of the truncation error.

Let uy, ug, 1y, 1gbe real numbers 20. Compute

s b

U=y +uglye (t+h)|

L=11+1lg ‘Yc (t+h)|

If | E| >U, the step size is reduced. I | E l < L, the step size is increased.
If LSE £ U, the step size is not altered.

For absolute error control set

b bl Ul i okl o, ol

uy = 0.0075 ug = 0

bbbl

1y = 0.0002 1y =0

For relative error control set

uq = 0.005 u g =0.005
1, = 0.0001 1o = 0.0002 i
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2.8.4 GENERAL ABSOLUTE AND RELATIVE ERROR CRITERIA

All three numerical integration methods described in this section are
approximate methods that are used te integrate differential equations and
thereby update the state variables at each time step. Each of these methods
has an automatic control that allows step sizetobe increased and decreased
during the transient problem. The r.:.thod of contro! used compares some
function of the step size and the derivatives of the state variables to a
quantity that serves as a standard as. for example, in equation (59). The
standard may be a constant or a variable function of the state variable. H
the former is used, it is tarmed an absolute error criterion; if the latter is
used, it is termed a relative error criterion.

Consider the situation in which two state variables are very different
in size. Let yj (t) = 1 and yg {t) = 100. For all practical purposes, it is
usually unnecessary to integrate the derivatives of these state variables to
the same accuracy. If an absolute error criterion is used, this is just what
is done, and the step size may be unnecessarily inhibited. If, however, a
relative error criteria is used, effectively a larger error will he tolerated
for the integration of ys (t) and a larger step size will be permitted. In
general, then, it would be best for the user to use relative error control
when large values of state variables (capacitor voltages and inductor cur-
rents) are expected.

Relative error control is programmed with all three integration methods,
but the user may easily modify the relative controls or enter absolute controls
(section 2. 2.9 of Volume 1). If larger numbers are used for the uy or up
entries, the solution process will be less likely to halve any particular solu-
tion step size; smaller numbers would increase the likelihood of reduced
step sizes. If larger numbers are used for the 11 and 12 entries, the solution
process is more likely to increase any particular solution step size; smaller
numbers make increased step sizes less likely. The user should realize that
any increase in solution speed that may result from adjustment of these num-
bers must necessarily come at the expense of integration accuracy.

2.8.5 IMPLICIT METHOD

The integration methods described in subsections 2.8.1, 2.8.2 and
2.8.3 are all explicit in form and can be used interchangeably within the
mathematical formulation of SCEPTRE without difficulty. If, however, any
implicit method is to be used, whether single step or multistep, an addi-

tional computational step is necessary.
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2,8.5.1 Basic Implicit Format

A generalized form of all implicit integration methods can be written

Y(n+1) = Z Y(n- i)+th Y(n i) (74)
i=0 =-1

where Y is the vector of system state variables, Y is the vector of state
variable derivatives, n is the step number, h is the step size and the a,. $

are suitably chosen constants. Multistep methods are introduced if !
Pi> o. The simplest derivative form of equation (74) is

Y(n+1) =Y(n) + h W}'(n+1)

which is commonly referred to as the implicit or backward Euler technique.
If an mth order system of differential equations is to be solved by this meth-
od, the following generalized matrix equation will result:

i 2Y, 3%, 10 «]
1- hg-a—Y— (Yl,...Ym, t) . e e -hg -a—Y—-—(Yl,...Ym, t) AYI
1 " 'm :
© Ay : :
- hg =™ (¥Y1,...Ym,t) . . . l-hg ¥, (1. Ym, t)| | ay ¥
Y m
1 Y
L m J L J
_ -
-F, (Y1,..Ym, t) (75)

L-Fm(Yl, o Ym, t)_J
The iteration implied in equation (75) is carried out to convergence at each
time step. The k superscripts here indicate the kth approximation to the
final value at convergence at each step, g is a constant that depends on the
order of integration, and Fj is a function of the ith differential equation,

the step size and past values of the mth state variable. Sparse matrix tech-
niques will be applied to the operation implied by equation (75) when large
problems are encountered.
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2,8.5.2 The Jacobian

The Y. terms in equation (75) are readily available from the basic
program formulation; but the general partial derivative term
JY.

—a%,lSiSm,ISjSm

]

is not. To determine what is real! needed. it is desirable to frame the

entire derivation of the sumbolic Jacobian in terms of the general matrix
equation

Y = AY + BU + NU (76)

Since the desired quantities are the general
aY,
_—
Y.
)

it can be seen from partial differentiation of equation (76) that these are

contained in the matrix A, Hence the convenience of the general notation
given in equation (76).

What now follows is the construction in symbolic form of the general ma-

trix A in terms of the mathematical formulation that was derived in sub-
section 2.3. Begin with

e T T T T
C44V4-I4-B14 II+B24 I+B4I +B J (5)

and

V,.=B,, V, -B,c V

3~ P3q Y4~ P35 B

V. -B

5 ~Bgg Vg - Byy Eq (4)

Substitute equation (9) and (13) into equation (5) for

: T : : T.. -1
Cyq V4 = Bry Cp1(-BygVy-ByqEq) + Byy Mp = (-By,Vy-ByiE,
T

8¢ 8 (1)

-B..R.B.. I -B.. R T

T
o5 Rgg Bas ™ Iy - Byg Rog Bgg ™ Jg) + Bgy o

3+B
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Use equations (24), (10) (23) and (15) into equation (4) for

. T . T *
Loy Iy + Lye (Bge™ I+ Bge Jg) (76)
i 1 T T T

= -BgyVy - BagMg * |=Byg Ggg (BoyVy + BonEg) + Bgo ™ I3 + By Ja}
T .

T, - .
-Bge (Lgg + Lgg Byg ) I = Bgg Lge Beg Jg -~ Byp By

s, 2l

Equation (74) can be manipulated to yield

T . T : T . -1 ;
(Cyq* Byy CpyByg) V4 =-Byy €y BygEq-Byy Mp (1324 2 3
T T
-By7Eq - BygResBgs I - BygRg5Bgs J8> ?
T T , !
+B34 13+B84 J8 (77") é
§
Equation (78) yields %
L..+L.B.Y+B..L.+B.L.B..T|1 (78")
33 * L3g Bag 36 Lgs * B3e Lee Bag | I3 3
) A/ . T T T
= “B3yaVy - BysMyg 7 -Bog o GooBoyVy -Bog GooBogEn + Byg Iy +

T . 'I‘ -
LecBss I8

.r )
Bgs Jg | - BggEq - LgegBge g = Bag
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If only the coefficients of V4, I3, V4 and I3 (the state variables
and the state variable derivatives) are retained. equations (77') and (78')
become considerably simplified and can be written in matrix notation as

. -1
v, M, o (79)

Lo ML
-1

T, 1 T T T
(-Byy, Mp " Byy) By,  -Bgy  Mp " BygReeBgs )| |V,

——
WH.

R

. 0T 1. T
(BgsMg ~ Bgg Ggg Boy = Byy) (-BggMy "Bgae ) Iy

T
where Mc = C44 + E14 Cu B14

_ T T
and My = Lgg + LagBgg + Baglog + ByglgeBag

The matrix appearing on the right side of equation (79) is now in a form
corresponding to the first term on the right side of equation (73). This
matrix is the symbolic form of the general A matrix that is needed to use
implicit integration (Ref. 8, 9) with the basic program formulation.

Another method is available to construct the Jacobian that is based
on a numerical rather than a symbolic approach. Each time that the Ja-
cobian is to be reevaluated, m calls are made to SIMUL 8 to compute

Yi =f(YI'. ... Y'm,t)
Approximations to the desired partials are then obtained by

2Y; Y - (80)

Y, AR

) j
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Section III

SYSTEM OPERATION

3.1 INTRODUCTION

The SCEPTRE System is a Fortran IV computer program written for
the IBM 7090/94 Data Processing System. It consists of two major phases.
The first, called the Program Generator, creates (on magnetic tape) another
FORTRAN IV computer program containing circuit equations for electrical
networks. SCEPTRE does this automatically, using the input data describing
the circuit to be analyzed. Both d-c steady-state and transient equations for
non-linear circuits can be generated. The second phase, the Circuit Solution
Executive, computes the circuit response by solving these equations generated
in the FORTRAN IV program.

Operation of the SCEPTRE System depends upon the monitor system
--IBSYS--which controls its execution on the IBM 7090/94. Under control
of IBSYS, SCEPTRE executes in two phases as separate job steps that are
loaded and executed sequentially. Prior to loading, however, the monitor
system performs any required FORTRAN compilation. Programs to be com-
piled do not have to reside on the standard input tape upon which the input
data are stored. Instead, the system can he instructed, via system control
cards, to compile and load programs from an alternate input tape. SCEPTRE
uses this feature of IBSYS as a means of linking its two job steps. This
is illustrated in the System Flow Diagram, figure 10.

3.2 PROGRAM GENERATOR

The Program Generator is an executive program that controls the in-
putting of circuit description data, generation of a FORTRAN IV subprogram
for calculating circuit response, generation of circuit parameter data, stor-
age of circuit models on library tapes, restart of discontinued runs. and re-
outputting of computed results. Each of these six program tasks as well as
the Program Generator (EXEC1) are described in the flow diagrams, figures
11 through 16.

3.2.1 CIRCUIT DESCRIPTION PROCESSOR

The SCEPTRE circuit description language is used to describe eclec-
trical networks. This application-oriented language is powerful, easy to
learn and use, and nearly format free. With it, circuits composed of funda-
mental circuit elements and prestored circuit models can be described. The
types of fundamental electrical characteristics allowed are resistance,
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capacitance, inductance, current and voltage sources, and mutual inductance.
Using the same components and circuit description langauge, equivalent cir-
cuit models of devices such as transistors and diodes can be described and
stored on magnetic tape for future use. When a stored model is referenced
in a circuit description, it is located on the specified library tape and its
elements appropriately substituted into the circuit being described.

Often, when a model is called out in déscribing a circuit, the desired
parameter values are different from those originally specified. Rather than
permanently change the model stored on tape, the SCEPTRE circuit descrip-
tion language allows n ndel parameter valuges to be changed when model ele-
ment substitution takes place.

3.2.2 MODEL EDITOR

Using the SCEPTRE circuit description language, circuit models con-
structed by the user can be stored on a model library tape by the Model
Editor program. One permanent library tape and one temporary library tape
are provided for storing models. Circuit models may be any arbitrary n-
terminal configuration of the allowed fundamental circuit elements. Any
model so described can be stored on either library tape using the Model Edi-

tor program,
3.2.3 CIRCUIT EQUATION GENERATOR

After the description of the circuit to be analyzed has been reconstructed
in memory by the Circuit Description Processor, the FORTRAN IV sub-
program called SIMULS is created. It contains either d-c steady-state equa-
tions, transient solution equations, or both, depending on the type of analysis
requested by the user. These equations are based on the formulation pre-
sented in Section II of this report. The SIMULS program is written on mag-
netic tape (PROGRAM SAVE TAPE) and stored until the second phase of
SCEPTRE operation, when it will be compiled and executed. The mamner in
which the circuit equations are written provides a very efficient computation
of the circuit response during execution, thus allowing the responsc of a
large circuit to be calculated rapidly.

3.2.4 DATA GENERATOR AND RERUN PROCESSOR

Essentially the SIMULS program contains only the circuit equations for
the network under investigation. The parameter or component values of the
network are stored separately as input data to the SIMULS8 program. The
Data Generator program organizes and stores the circuit data on the PRO-
GRAM SAVE TAPE,
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Once a circuit has been described to SCEPTRE, multiple or repeated
circuit solutions can be run by changing parameter values between runs.
The circuit description language is used to specify the number of repeated
runs, each known as a rerun, and the changes in parameter values desired
for each rerun. The Rerun Processor interprets and processes this informa-
tion., The Da.a Generator then creates and stores one block of circuit di.ta
for each rerun on the PROGRAM SAVE TAPE. Since only parameter values
are changed between reruns (i.e.. no topological changes). the SIMULE pro-
gram containing the original circuit equations is simply re-executed during
the solution phase using the data created for each rerun.

3.2.5 CONTINUE PROCESSOR

The Continue Processor allows previously terminated transient solution
runs to be restarted and continued. In addition, it is necessary that the
PROGRAM SAVE TAPE from the original transient solution run be available.
This tape contains, in addition to the SIMULS8 program, all of the parameter
values and data required to continuc the transient solution. The Continue

Processor also allows certain run control parameters to be changed and used
for the continuation of the original transient run.

3.2,6 RE-OUTPUT PROCESSOR

The SCEPTRE user may wish to re-create both the printed and plotted
outputs for a particular transient analysis run. This can be done, providing
the OUTPUT SAVE TAPE is saved froin the original solution run.by usingthe
Re-Output Processor. Several changes in the output can be made during a
Re-Output run. For example:

e Output labels can be changed
e New quantities can be plotted

° The order in which output quantities are printed out and plotted
can be changed

0 Printing and plotting of output quantities can be suppressed.

3.3 SOLUTION EXECUTIVE

In the second phase of SCEPTRE operation, the FORTRAN IV subpro-
gram SIMULS is compiled and executed. During the loading of this job step.
the IBSYS system is instructed to read the SIMULS8 program from the PRO-
GRAM SAVE TAPE. compile it, and then load it along with the other pro-
grams being loaded.
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Fxecution commences, as shown in figure 16, witn the reading of the
run control parameters from the PROGRAM SAVE TAPE. Then the SIMULS
program is called. It reads the remaining circuit parameter values stored
on the  PROGRAM SAVE TAPE and then enters the circuit solution equations.
The circuit equations are solved, thus computing the state-variable deriva-

t ves. Calling the selected numerical integration routine then rroduces new
valves of the state variables for the next time step. At the conclusion of each
successful integration step, the requested output quantities are buffered in
memory. When the buffer is full, it is written on the OUTPUT SAVE TAPE
in FORTRAN IV binary format. After the circuit solution is complete, con-
trol is returned to the Solution Executive Program, whereupon the contents

of the OUTPUT SAVE TAPE (computed results) are re-formatted in lists and
graphs and stored on the SYSTEM OUTPUT TAPE for peripheral processing.

If any reruns were requested, control is tiven returned to SIMUL3S for
re-execution of the solution phase and subsequent outputting. This re-
cycling is continued until all circuit reruns have been processed.

At the conclusion of each transient solution, the critical parameter
values and data are stored on the PROGRAM SAVE TAPE. Thus, if the tape
is saved at the end of the run, the soluti a can be continued at some future
time. Use of the Continue Processor allows previously terminated solution
runs to be restarted and continued with changes in the run control parameters.

Transient solution runs may be terminated or simply saved by the com-
puter operator by depressing sense switch No. 6 on the 7090/94 console.
Using this feature, a PROGRAM SAVE TAPE could, for example, be gener-
ated every 15 minutes on long running transient solutions, eliminating the
need for repeating previous calculations in the event of an abnormal run
termination.

If, at the conclusion of a transient analysis run, the OUTPUT SAVE
TAPE is saved, the Re-Output Processor may be used to reproduce lists and
graphs of any of the circuit quantities originally requested for output. In
addition, graphs of variables plotted against variables other than time which
may not have been requested originally can be conveniently produced.
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Appendix I

B MATRIX DERIVATION

The derivation of the general B matrix that expresses link voltages in
terms of tree branch voltages and tree branch currents in tcrms of link

currents is as follows:

Two fundamental incidence matrices that arise from network topology
theory will be called the Q and T matrices here. The fundamental cut set
matrix, Q = [q;;] is a matrix containing (n-1) rows and b columns for a net-

wourk containing n nodes and b elements, where:

+1 if the ith fundamental cut set direction coincides with the refer-

q.. =
ence direction of the jth element

q;; = -1 if the ith fundamental cut set direction is in opposition to the
J' reference direction of the jth element

0 if the ith fundamental cut set does not include the jtI' element

q ij =
If the elements are properly ordered, it is always true that
Q- [8T u]

where the columns of the unit matrix U correspond to the tree branch ele-
ments.

The fundamental circuit matrix, T = [ti'] is a matrix containing m
rows and b columns for a network containing m’independent loops and b ele-

ments, where:

t.. = +1if the ith independent loop direction coincides with the refer-
1" ence direction of the jth element

ij = -1 if the ith independent loop direction apposes the reler-
ence direction of the jth element

tii - 0 if the ith independent loop does not include the j“l clement
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If the elements are properly ordered, it is always true that
T= (U B]

where the columns of the unit matrix U correspond to the network links.
Since it is always true that
Qly=0. TVy =0

direct substitution vields

1T
'-BTU][}L] :OandrUBl tVL} -0
L TB L Ve

Expansion of these relations gets

ITg=B 'Ipand V[ = -B VTR

so that the tree branch currents may be expressed in terms of the link cur-
rents and the link voltages may be cxpressed in terms of the tree branch
voltages through the B matrix.
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Appendix 1

DINDE REPRESENTATION IN THE INITIAL-CONDITIONS PROGRAM

The current in a diode or transistor junction at a point on its voltage vs.
current (V/I) characteristic may be separated iato two components as
: J = GjVJ+Q. Consider the typical diode curve below.

CURRENT, J /

a;

il ..‘.“muwmmmwmmmmwﬂmm ;

il

Ji bl

m‘mww T

R
N

/

VOLTAGE, E'

—

N e

[ —

Angle ay = angle ag is enclosed by the slope of the diode characteristic
at any point and the horizontal at that point. E' is an offset voltage that marks
the intersection of a continuation of the slope Gy and the line J = 0.

b o2 i AL L. Lt i el

i
From the figure: 3
_ S G
i tanal—tanaz—GJ_VJ_E,

[ 3
: orJ =Gy Vy -Gy E'
{
' orJ Gy Vi QIifQ is defined as - GE b

}

:
]
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Appendix III

BASIC NEWTON-RAPHSON METHOD

Given a single algebraic or transcendental equation of the form F(x) = 0,

that is single vailued and differentiable in the domain of interest, a Newton-
Raphson procedure can be constructed using

) . OFX) Ao
F(x) + g Ax =0

8 F(xO)
An initial x - xp may be assumed and F(xp), N determined.
~F(xg)
Then AXx = —m@ and xq = Xg * AX
dX

The procedure is repetitive until
F(xp,pP - Flx)] <z
where z is some specified convergence criteria. When this last relation is

satisfied, the process is said to have converged. Extension to systems of
equations adds no complications.
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Appendix IV

EQUIVALENCE OF EQUATIONS (44) AND (44/)

To show the equivalence of equations (44) and x (44'). it will be
sufficient to show that

Vg [F1 (Vg, V2, V5)] B
-1 -1
Vol - [ZJ Fg (Vg, Vo. Vg5)| - [Z]
Vs | F3 (Vg, V2, V)
or
m r -
Vg -Bgq Eq
-1
vy |=[2] ﬂ -Bp7 Eq
T T T
Vs lBgs + Byg °| Qg + Bgs Jg
L . \L -
or
Vg -Bg7 E
[z] Vg | = -Bgq Eq
T T T
Vs Bgs + Bgg a| Qg + Bgs Jg

The lelt side of the above equation expands into

1395T4 BOSTQ

V9 + 895

Vg + Bog Vo

Vs
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-Bg7 Eq

-Ba7 E7

T T
[Bg5T+ 805 a Qg + BBS ‘18

F; (Vg. Vg, Vg)
Fy (Vg, Va2, Vs)

.

Fl (Vg, Vz. V5)

Fo (Vg. Va. V5)

LF3 (Vg, Vo, V5)

. T .
GggVg - B25 GgyVa + Gs5Vg
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é r;
}
g
P and th stitut
e right side, upon substituio of vquations (37) thravgh (39 becomes
r s
: ) ) B
V9 BS)S ' Q ,
, Vo © By, Ve 7
| .
t R T T ) | 7
A [895 + Bos a]099 Vo - Bl Gao vz L Gyg vs E"d
. | /
! which shows the equivalenc ‘

S
| ]
| 3
i
? 'y
i
| :
!
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